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1 September 4th: Nir Elber
Today we’re talking about the local theory of Tate’s thesis.

1.1 A Little Global Theory
In order to not lose perspective in the Fourier analysis that makes up the body of this talk, we discuss a little
global theory. The goal of Tate’s thesis is to derive analytic properties of L-functions such as the follow-
ing.

Definition 1. We define the Riemann ζ-function as

ζ(s) :=
∏

p prime

1

1− p−s
.

Definition 2. Given a Dirichlet character χ : (Z/NZ)× → C×, we define the Dirichlet L-function by

L(s, χ) :=
∏

p prime

1

1− χ(p)p−s
.

Definition 3. For a number field K, we define the Dedekind ζ-function of a number field K

ζK(s) :=
∏

p⊆OK

p prime

1

1−N(p)−s
.

For now, “analytic properties” means deriving a meromorphic continuation, which in practice means deriv-
ing a functional equation.
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1.2 Local Z-integrals 1 SEPTEMBER 4TH: NIR ELBER

Remark 4. There is a common generalization of the above twoL-functions called a “HeckeL-function,”
but streamlined definitions would require a discussion of the adeles, which we are temporarily avoiding.

In fact, Hecke had proven functional equations before Tate, but Tate’s arguments modernize better, which
is why we will talk about them.

By way of example, we state the functional equation for the Riemann ζ-function ζ(s).

Theorem 5 (Riemann). Define the completed Riemann ζ-function by

Ξ(s) := π−s/2Γ(s)ζ(s).

ThenΞ(s) admits an analytic continuation to all ofC and satisfies the functional equationΞ(s) = Ξ(1−s).

In some sense, the real goal of Tate’s thesis is to explain the presence of the mysterious factor π−s/2Γ(s)
which permits the functional equation Ξ(s) = Ξ(1− s). To understand this, we write

Ξ(s) = π−s/2Γ(s)
∏

p prime

1

1− p−s
,

and the idea is that we should view this product over all places of Q: the factor π−s/2Γ(s) belongs to the
archimedean place of Q!

Idea 6 (Tate).! Completed L-functions should be products over all places.

Very roughly, Idea 6 allows us to reduce global functional equations into products of local ones.

1.2 Local Z-integrals
We are interested in proving equations of the type Z(s) ≈ Z(1 − s) for some suitable function Z. We will
emply the following trick: we will show that both Z(s) and Z(1− s) live in the same one-dimensional space
of functions and then study the scale factor between the two functions later.

To define our function Z, we take motivation from the definition of

Γ(s) =

∫
R+

e−tts
dt

t
.

We know that this should correspond to the archimedean place of Q, but we would like to extend this defi-
nition to the finite places. As such, we make the following observations.

• R is the completion of Q with respect to the archimedean place.

• The function t 7→ e−t is an additive character R → C×.

• The function t 7→ t−s is a multiplicative character R× → C×.

• The measure dt/t is a Haar measure of R+.

To begin our generalizations, we recall the definition of a local field, which will place R in the correct con-
text.

Definition 7 (local field). A local field is a locally compact nondiscrete topological field. (Here, a topo-
logical field is one that requires the addition, multiplication, and inversion to all be continuous.) It turns
out that local fields of characteristic zero are exactly the finite extensions of R and Qp.

Next up, to place dt/t in the correct context, we should define a Haar measure.

3



1.2 Local Z-integrals 1 SEPTEMBER 4TH: NIR ELBER

Definition 8 (Haar measure). Fix a locally compact topological groupG. Then a left-invariant Haar mea-
sure dµℓ(g) is a Radon measure such that µℓ(gS) = µℓ(S) for each g ∈ G and measureable set S. In
terms of intergrals, this is equivalent to∫

G

f(gh) dh =

∫
G

f(h) dh

for each g ∈ G and integrable function f . It turns out that the Haar measure is unique up to scalar.

Remark 9. In general, a left-invariant Haar measure need not be right-invariant. However, this is fre-
quently true: for example, if G is abelian or “reductive” (such as G = GLn), then left-invariant Haar
measures are right-invariant.

Example 10. The Lebesgue measure dt is a Haar measure on R. The measure dt/ |t| is a Haar measure
on R+ and R×.

Example 11. Fix a prime p. There is a unique Haar measure µ on Qp such that µ(Zp) = 1. For example,
we find that µ(a+ pZp) = 1

p for each a ∈ Qp.

Remark 12. Local fields turn out be normed, though this is not immediately obvious from the definition.
Even though R, C, and Qp all have natural norms (extended from Q), here is a hands-free way to obtain
this norm from a local fieldK: choosing a Haar measure dt onK, we define the norm |a| of some a ∈ K
as the scalar such that

d(at) = |a| dt.

It is not at all obvious that |·| is a norm (in particular, why does it satisfy the triangle inequality?), but it is
true. As an example, |·| is the square of the Euclidean norm on C. For Qp, we find |p| = 1/p.

Example 13. We are now able to say that dt/ |t| is a Haar measure of K× for any local field K.

At this point, we may expect that our generalization of Γ(s) to a generic local field K to be

Z(ψ, ω) =

∫
K

ψ(t)ω(t)
dt

|t|
,

where ψ : K → C× and ω : K× → C× are characters. However, this is a little too rigid for our purposes.
Notably, by taking linear combinations of additive characters, Fourier analysis explains that understand-

ing Γ very well should permit understanding integrals of the form∫
R+

f(t)ts
dt

t
,

where f : R → C is some sufficiently nice function. It will help to have the flexibility that this extra f per-
mits.

Definition 14. Fix a local field K. For a nice enough function f and character ω : K× → C×, we define
the local Z-integral

Z(f, ω) :=

∫
K×

f(t)ω(t)
dt

|t|
.

We will not dwell on this, but perhaps we should explain what is required by “nice enough” function f . The
keyword is “Schwartz–Bruhat.”
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1.3 Fourier Analysis 1 SEPTEMBER 4TH: NIR ELBER

Definition 15 (Schwartz–Bruhat). Fix a local field K.

• If K ∈ {R,C}, we say f : K → C is Schwartz–Bruhat if and only if it is infinitely differentiable and
for all of its derivatives to decay rapidly (namely, f(t)p(t) → 0 as |t| → ∞ for any polynomial p).

• For otherK, we say f : K → C is Schwartz–Bruhat if and only if it is locally constant and compactly
supported.

We let S(K) denote the vector space of Schwartz–Bruhat functions on K, and we let S(K)′ denote its
dual (i.e., the vector space of distributions).

Example 16. The function t 7→ e−t
2 is a Schwartz–Bruhat function C → C.

Example 17. Fix a prime p. Then the indicator function 1Zp
on Qp is Schwartz–Bruhat.

Importantly, the definition of Schwartz–Bruhat will promise that

1.3 Fourier Analysis
We now take a moment to review where we are standing. We were hoping to prove a statement likeZ(s) ≈
Z(1 − s), where Z(s) perhaps has some kind analytic properties. However, we currently have a function
Z(f, ω), so it’s not at all obvious how to replace f and ω with “dual” entries or how to make sense of analytic
properties. In this subsection, we address both of these concerns; they are both related to character theory.

Going in order of difficulty, it is a little easier to explain how to add analytic structure to Z. After taking
norms, we can find some s ∈ C such |ω| = |·|s so that η := ω |·|−s outputs to S1, and

ω = η |·|s .

Thus, we see that we can decompose characters K× → C× into a unitary part η and an “unramified” part
|·|s, and the unramified part now has a complex parameter s ∈ C. Namely, ω |·|−s now outputs to S1; i.e.,
this character is unitary. Fix a local field K.

Thus, we can view Z(f, η) as having three parameters as Z(f, η, s) := Z (f, η |·|s), where we now require
that η is unitary. Because we already have some notion of smoothness in the parameter s ∈ C, it remains to
understand smoothness in the parameter of unitary character η.

Example 18. In the archimedean case, the parameter η is not so interesting.

• The characters R× → S1 take the form t 7→ t−a |t|s where a ∈ {0, 1} and s ∈ C.

• The characters C× → S1 take the form z 7→ zazb |z|s where a, b ∈ Z and s ∈ C.

We now understand that our functional equation for Z should arise from Z(f, η, s). We hope to take s 7→
1− s, and it seems reasonable (by looking at functional equations for L(s, χ)) to replace η with η−1.

However, we still need to replace f with some dual function. In the archimedean case, we expect this to
be the Fourier transform defined by

f̂(s) :=

∫
R
f(t)e2πist dt.

Such a definition will more or less carry through for arbitrary local fields, but we will have to go through
approximately the same dictionary that defined Z(f, ω) from Γ(s). In particular, the functions t 7→ e2πist list
the characters of R, so the above is the integration of our function f against the list of characters. To this
end, we pick up the following theorem.

Theorem 19. Fix a local field K. Then there exists a nontrivial character ψ : K → S1. Any choice of ψ
defines a bijection K → K̂ by sending a ∈ K to the character ψa(t) := ψ(at).
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1.4 Multiplicity One 1 SEPTEMBER 4TH: NIR ELBER

Remark 20. For a general locally compact abelian groupG, one can give Ĝ := Hom(G,C) a locally com-
pact topology. With this topology in hand, one actually finds that the mapK → K̂ given by a 7→ ψa is an
isomorphism of locally compact abelian groups. However, we do not currently have the need to work in
this level of generality.

We are now ready to define our Fourier transform.

Definition 21. Fix a local fieldK, and choose a nontrivial characterψ : K → S1. For f ∈ S(K), we define
the Fourier transform

Fψf(t) :=
∫
K

f(t)ψ(st) dt.

Example 22. For K = R, choose ψ(t) := e2πit. Then the Fourier transform (up to normalization) agrees
with the usual one

Fψf(t) :=
∫
R
f(t)e2πist dt.

It turns out that one has the usual properties for the Fourier transform, such as FψFψf(t) = f(−t).
We are now ready to state the local functional equation.

Theorem 23. Fix a local field K, and choose a nontrivial character ψ : K → S1. For every f ∈ S(K), the
function Z(f, ω, s) has a meromorphic continuation to s ∈ C (with well-understood poles) and satisfies
a functional equation of the form

Z(f, ω, s) = γ(ψ, ω, s, dx)Z
(
Fψf, ω−1, 1− s

)
,

where γ(ψ, ω, s, dx) is meromorphic in s ∈ C (with well-understood poles).

Tate’s original proof of Theorem 23 was more or less by an explicit computation: by some argument in-
terchanging integrals, one can relate Z(f, ω, s) with Z(g, ω, s) for separate f, g ∈ S(K), which allows us to
reduce the proof to a single f . Then one chooses some f such that Fψf = f (e.g., one chooses a Gaussian
when K = R) and does an explicit computation to check the result.

1.4 Multiplicity One
We are not going to prove Theorem 23 in detail, but we will gesture towards an argument which uses a
bit more functional analysis and less explicit computation. The key point is that Z(−, ω) : S(K) → C is a
distribution with the curious property that∫

K×
f(at)ω(t)

dt

t
= ω−1(a)

∫
K×

f(t)ω(t)
dt

|t|
.

Thus, we see thatZ(−, ω) is an eigendistribution of sorts. To make this more explicit, we letK× act onS(K)
by translation: for a ∈ K and f ∈ S(K), we define (r(a)f)(t) := f(at). Then K× acts on the distributions
S(K)′ accordingly: for a ∈ K and λ ∈ S(K)′ and f ∈ S(K), we can define

⟨r′(a)λ, f⟩ :=
〈
λ, r(a)−1f

〉
.

Tracking everything through, we see that Z(−, ω) ∈ S(K)′ is an eigendistribution for the action of K× on
S(K)′ with eigenvalue given by the character ω.

Notation 24. Let S(K)′(ω) denote the space of K×-eigendistributions with eigenvalue ω.

6



2 SEPTEMBER 11: REED JACOBS

Now, we see that Z(−, ω) ∈ S(K)′(ω), and one can check that Z
(
Fψ−, ω−1

)
is also in S(K)′(ω). Thus, a

statement like Theorem 23 will follow from the following “representation-theoretic” multiplicity one re-
sult.

Theorem 25. Fix a local field K and character ω : K → C×. Then

dimS(K)′(ω) = 1.

Let’s explain the sort of inputs that go into proving Theorem 25, but we will not say more.

• One can verify that Z(−, ω) provides some vector in S(K)′(ω), so this space is at least nonempty.

• LetC∞
c (K) denote the set of compactly supported Schwartz functions onK. Duality provides an exact

sequence
0 → S(K)′0 → S(K)′ → C∞

c (K)′ → 0,

where S(K)′0 denotes the distributions supported at 0. Taking eigenspaces, we get an exact sequence

0 → S(K)′0(ω) → S(K)′(ω) → C∞
c (K)′(ω).

• One can show that C∞
c (K)′(ω) is one-dimensional with basis given by f 7→

∫
K
f(t)ω(t) dt/ |t|.

• Understanding S(K)′0 comes down to some casework. For example, we look at the nonarchimedean
case. If ω is trivial, we have the distribution f 7→ f(0); otherwise, S(K)′0(ω) is zero.

2 September 11: Reed Jacobs
Today we are talking about the global theory of Tate’s thesis. This will mostly be an excuse to discuss the
adeles.

2.1 Adeles
For today, K is a global field; in particular, it is a number field (in characteristic 0) or a finite extension of
Fp(t) (in postive characteristic p > 0). Here is our main character for today.

Definition 26 (adele ring). Fix a global field K, and let VK denote the set of places of K. Then the adele
ring AK is the restricted direct product

AK :=
∏
v∈VK

(Kv,Ov).

Here, this notation means that AK consists of infinite tuples (av)v ∈
∏
v∈VK

Kv where av ∈ Ov for all
but finitely many places v ∈ VK .

Remark 27. Even though Ov may not have a definition for infinite v, we see that this does not matter
because there are only finitely many infinite places anyway.

Remark 28. We see that AK becomes a ring under the pointwise operations. In fact, it becomes a topo-
logical ring when given the subspace topology of the product topology on

∏
vKv. In particular, upon

taking the intersection, we see that our basic open sets look like∏
v∈VK

Uv,

where Uv ⊆ Kv is open, but Uv = Ov for all but finitely many v ∈ VK .

7



2.2 Some Pontryagin Duals 2 SEPTEMBER 11: REED JACOBS

Here are some quick properties of the topology.

Proposition 29. Fix a global field K. Then AK is a locally compact topological ring.

Proof. The fact that the ring operations are continuous can be checked pointwise on the level of the product∏
vKv. Perhaps we should also check that AK is Hausdorff, for which we note that this follows from being

a subspace of
∏
vKv again.

To be locally compact, we have to do a little more work. This follows more or less Fix some x ∈ AK , and
we want some open neighborhood U ⊆ AK of xwith compact closure. By translation, we may assume that
x = 0. Then the open subset ∏

v∈VK
v infinite

Bv(0, 1)×
∏
v∈VK
v finite

Ov,

where Bv(0, 1) is the open ball around 0 ∈ Kv. This is open by construction, and its closure
∏
v∈VK

Bv(0, 1)
is a product of compact sets and hence compact. ■

Remark 30. Do note that
∏
vKv fails to be locally compact because the open subsets are too big! This is

one reason why we want to work with the adeles instead: once has a chance of doing some reasonable
topology on AK .

To misquote Tate, we remark that one can really only extract arithmetic information from AK by putting K
inside it. Here is this embedding.

Proposition 31. Fix a global field K. Then the embedding i : K ↪→ AK defined by

i : a 7→ (a)v

is discrete and cocompact.

Proof. We will not prove cocompactness; it is equivalent to the finiteness of the class group and Dirichlet’s
unit theorem. Alternatively, one can use Minkowski theory to show this directly.

Discreteness is a little easier to show. For a ∈ K, we must show that i(a) has an open neighborhood
disjoint from the rest of i(K). By translating, we may take a = 0. Now, define the open neighborhood of 0
given by

U :=
∏
v∈VK
v infinite

Bv(0, 1)×
∏
v∈VK
v finite

Ov.

Now, for any b ∈ K×, the product formula asserts that
∏
v |b|v = 1, but

∏
v |bv|v < 1 for any (bv)v ∈ U , so

U ∩ i(K) = {0}, as required. ■

The above cocompactness tells us that the quotient AK/K will be interesting to us; similarly, the group
A×
K/K

× will be interesting to us.

2.2 Some Pontryagin Duals
We have some time, so let’s expand the discussion of Remark 20.

Definition 32. Fix a locally compact abelian group G. Then we define the group G := Hom
(
G,S1

)
to be

the Pontryagin dual, which we turn into a topological group by giving it the compact-open topology. It
turns out that Ĝ is a locally compact abelian group.

8



2.3 A Poisson Summation Formula 2 SEPTEMBER 11: REED JACOBS

Example 33. Theorem 19 explains that local fields Kv are self-dual.

Example 34. One can check that a character Z → S1 has equivalent data to an element of S1, which
essentially proves Ẑ ∼= S1.

Example 35. On the other hand, a continuous homomorphismS1 → S1 must be exponentiation by some
integer, so Ŝ1 ∼= Z.

Remark 36. It is a general fact that the Pontryagin dual of Ĝ is isomorphic to G. There is at least a map
G→ Hom

(
Ĝ, S1

)
given by g 7→ evg, where evg : Ĝ→ S1 is given by evg(χ) := χ(g).

We even have a nice duality, as in Theorem 19.

Theorem 37. Fix a global field K. Then the locally compact abelian group AK is self-dual. More pre-
cisely, there exists a nontrivial characterψ : AK → S1. Then for any choice ofψ, then the map AK → ÂK
given by

a 7→ (ψa : t 7→ ψ(at))

is an isomorphism of locally compact abelian groups.

Sketch. This follows roughly from Theorem 19, essentially by trying to take a product of the self-duality
results for each local field in the restricted direct product. A detailed proof would require understanding the
topology of the Pontryagin dual in more detail, so we will avoid it. ■

Here is an application.

Corollary 38. Fix a global field K. Then the Pontryagin dual of K is AK/K.

Proof. Fix a nontrivial character ψ : AK/K → S1 (note the quotient!), and we construct that the composite

K ↪→ AK
ψ∼= ÂK ,

where the last map is given by Theorem 37. Now, this composite actually outputs to ÂK/K: any a ∈ K
produces a character ψa satisfying ψa(t) = ψ(at) = 1 for each t ∈ K, so ψa descends to a character of
AK/K. We claim that the above map is an isomorphism, which we do by combining three observations.

• We can check that ÂK/K is a vector space over K.

• Note AK/K is compact, so ÂK/K is discrete by some fact of Pontryagin duals.

• Note ÂK/K/K ⊆ ÂK/K ∼= AK/K, and this last space is compcat.

The last two observations imply ÂK/K is finite, but then the first observation requires it to be trivial. ■

2.3 A Poisson Summation Formula
The presence of a duality permits a well-behaved Fourier analysis. For our technicalities, we explain what
our Schwartz functions are.

9



2.3 A Poisson Summation Formula 2 SEPTEMBER 11: REED JACOBS

Definition 39 (Schwartz). A Schwartz–Bruhat function f on the quotient AK/K is a function of the form∏
ν fν such that each fν is Schwartz, and fν = 1Oν

for all but finitely many ν. We also permit finite
C-linear combinations of these functions to be Scwhartz–Bruhat.

And here is our corresponding Fourier transform; it is our global analogue of Definition 21.

Definition 40. Fix a global fieldK, and choose a nontrivial characterψ : AK/K → S1. For any Schwartz–
Bruhat function f , then we define the Fourier transform to be

Fψf(y) :=
∫
x∈AK

f(x)ψ(xy) dx.

Remark 41. For the discussion which follows shortly, it will be worth our time to write out what the
Fourier transform is in general for a locally compact abelian group G. Given a nice enough function
f : G→ C (such as Schwartz–Bruhat), the Fourier transform f̂ is a function on Ĝ defined by

f̂(χ) :=

∫
G

f(g)χ(g) dg.

For example, the identification of characters of AK with AK recovers the above definition. One finds
that taking the Fourier transform twice almost recovers the original function.

Notably, the Fourier transform depends on a choice of Haar measure. These can be found by taking the
product of the Haar measures on the local fields; by scaling, we can get the usual identity FψFψf(x) =
f(−x).

Riemann’s original proof of Theorem 5 has the result more or less follow from some functional equation
coming from a Poisson summation formula. As such, we desire a Poisson summation formula in our con-
text as well. The point of a Poisson summation formula is to relate sums for a function f over the discrete
cocompact subgroup Z ⊆ Q with the same sums of the Fourier transform. BecauseK ⊆ AK is discrete and
cocompact, it is natural to have the following statement.

Theorem 42 (Poisson summation). Fix a global field K, and choose a nontrivial character ψ : AK/K →
S1. For any Schwartz–Bruhat function f , we have∑

γ∈K
f(γ) =

∑
γ∈K

Fψf(γ).

Proof. Define F : AK → C by
F (x) :=

∑
γ∈K

f(x+ γ).

Note that F descends to a function on AK/K. Quickly, note that the convergence of these sums follows
from our definition of Schwartz–Bruhat; the convergence is fast enough to ensure that we get a continuous
function on AK/K. We will spend the rest of the proof ignoring convergence issues.

The point is to compute the Fourier transform of F and apply Fourier inversion. However, F has de-
scended to a function on AK/K, so its Fourier transform should be a function on the Pontryagin dual of
AK/K, which is K by Corollary 38. As such, we let D ⊆ AK be a fundamental domain for AK/K, which we

10
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give a volume of 1 to fix our Haar measure, and we compute

FψF (y) =
∫
AK/K

F (x)ψ(xy) dx

=

∫
D

F (x)ψ(xy) dx

=

∫
D

∑
γ∈K

f(x+ γ)ψ(xy) dx

=
∑
γ∈K

∫
D

f(x+ γ)ψ(xy) dx

=
∑
γ∈K

∫
D

f(x)ψ((x− γ)y) dx

∗
=

∑
γ∈K

∫
D

f(x)ψ(xy) dx

= Fψf(y),

where ∗
= holds because ψ|K = 1. The general theory of Pontryagin duality allows us to apply a Fourier

inversion formula for K̂ ∼= AK/K to see F (x) equals∑
y∈K

F̂ (y)ψ(xy) =
∑
y∈K

Fψf(y)ψ(xy).

(Note that this is basically the Fourier transform of the Fourier transform, where we are plugging into the
general definition of Remark 41.) Plugging in x = 0 completes the proof! ■

Remark 43 (Reed). In the case whereK is the function field of a curveC over a finite field Fq, one is able
to turn Theorem 42 into the Riemann–Roch theorem for C. We will not explain this in detail.

Remark 44. One can basically mimic the proof of Theorem 5 to prove a functional equation for “global
Z-integrals” which look like

Z(f, χ) :=

∫
A×

K

f(x)χ(x) d×x,

where d×x is some suitably defined Haar measure on A×
K . The key analytic input into the proof of The-

orem 5 is a Poisson summation formula used to produce the symmetry; analogously, the key input into
the global functional equation is the “adelic Poisson summation formula” Theorem 42 used to produce
the symmetry.

3 September 18th: Nir Elber
I filled in for Saud Molaib, who has a last-minute cancellation.

4 September 25th: Justin Wu
Today we are discussing how to put a topology on the adeles and related groups.

We begin by fixing some notation. Today, F will be a global field, and V (F ) is its set of places. Through-
out,S ⊆ V (K)will be a finite subset, usually including the finite set∞ of infinite places. We define the adele

11
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ring as the usual restricted direct product

AF =
∏

v∈V (K)

(Fv,Ov).

For our finite set S, we define

ASF :=
∏
v/∈S

(Fv,Ov)

FS := AF,S :=
∏
v∈S

Fv

ÔS
F :=

∏
v/∈S

Ov.

For example, A∅
F = AF , and Ô∞

F is compact.

Remark 45. There is not a unified consensus on notation. We are agreeing with Getz and Hahn.

4.1 Topology from Topological Rings
For an affine scheme X over F , we would like to give a topology on X(AF ). It is not totally obvious how
to do this. The classical example is that AF is a topological ring, and we may want to give a topology on its
units A×

F , but A×
F will fail to be a topological group if given the subspace topology from AF : the inversion

map A×
F → A×

F won’t be continuous!
The correct way to proceed is to use the closed embedding j : Gm → A2 given by x 7→

(
x, x−1

)
, which is

a closed embedding onto {
(x, y) ∈ A2 : xy = 1

}
.

Then we can give A×
F the subspace topology from A2. In particular, inversion when passed through this

embedding j merely permutes the two coordinates, so it succeeds at being continuous, even for a general
ring R! Here is the general result.

Theorem 46. Fix a Hausdorff topological ringR. There is a unique way to give a topology on the collec-
tion of setsX(R) asX varies over the collection of finite type affineR-schemes satisfying the following.

(a) Functoriality: scheme maps X → Y produce continuous maps X(R) → Y (R).

(b) Fiber products: given maps X → Z and Y → Z, the topology on (X ×Z Y )(R) is the topology
induced by the fiber product X(R)×Z(R) ×Y (R).

(c) Closed embeddings: given a closed embeddingX → Y of schemes, one gets a closed embedding
X(R) → Y (R) of topological spaces.

(d) Affine space: the topology on A1(R) is the topology on R.

Sketch. We show uniqueness, but we won’t show existence. For any affine R-scheme X of finite type, we
know that there is some r > 0 and a closed embedding X ↪→ Ar. Then the topology no Ar(R) is fixed by
the topology on A and taking fiber products, so the topology on X(R) ⊆ Ar(R) is fixed by having a closed
embedding. ■

Example 47. We see that the group GLn has a closed embedding into Mn ×Mn via g 7→
(
g, g−1

)
. This

allows us to give a topology on GLn(R) for any topological ring R.

12
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Example 48. For any affine groupG of finite type, we can find a closed embeddingG ⊆ GLn to produce
a topology on G(R) ⊆ GLn(R). For the adeles, one can check that the topology is given by

G(AF ) =
∏

v∈V (K)

(G(Fv), G(Fv) ∩GLn(Ov)).

4.2 Hyperspecial Subgroups
We would like to understand the subgroups G(Fv) ∩ GLn(Ov) of Example 48 in a way which is ambivalent
to the embedding. This is a local object, so we begin by telling a local story.

Definition 49 (unramified). Fix a reductive group G over a nonarchimedean local field Fv. We say that
G is unramified if and only ifG is quasi-split, and there is a finite unramified extensionEw/Fv such that
GEw is split.

Theorem 50. Fix a reductive group G over a nonarchimedean local field Fv. Then G is unramified if and
only if there is a smooth model G of G over Ov such that Gs is reductive.

Sketch. We sketch the backwards direction. If we have a model G, then we basically pass to the special
fiber to find our Borel subgroup and maximal torus; notably, the maximal torus may only split over a finite
extension of the residue field, but then this will only require a finite unramified extension in order to split the
torus back in G. ■

The remarkable part of conclusion of the above theorem is not exactly the mere existence of the model but
instead having the reductive special fiber. For example, given any embeddingG ⊆ GLn, one can look at the
Zariski closure of the composite

G→ GLn,Fv
→ GLn,Ov

to produce a model ofG over Ov; in fact, there is a way to smooth out this model as well. However, there is
no reason why the special fiber of this thing would be controlled.

This notion of models allows us to discuss subgroups like G(Fv) ∩GLn(Ov).

Definition 51 (hyperspecial). Fix a reductive group G over a nonarchimedean local field Fv. Then a sub-
group H ⊆ G(Fv) is hyperspecial if and only if there is a smooth model G of G over Ov such that G has
reductive special fiber, and H = G(Ov).

In fact, we can even give an almost topological description.

Theorem 52. Fix a reductive group G over a nonarchimedean local field Fv.

(a) Every compact subgroup K ⊆ G(Fv) is contained in some maximal compact subgroup.

(b) Every maximal compact subgroup K ⊆ G(Fv) equals G(Ov) for some smooth model G of G.

(c) All maximal compact subgroups are open.

We now transition back to our global theory. The miracle is that we achieve being hyperspecial almost ev-
erywhere.

Theorem 53. Fix a reductive group G over a global field F , and find a smooth model G of G over OS
F for

some finite subset S ⊆ V (K). Then the subgroup G(Ov) is hyperspecial for all but finitely many places
v /∈ S.

13
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The main point is that G is reductive at the generic fiber, and it turns out that one can spread out the reduc-
tivity to a Zariski dense open subset of the special fibers.

Being hyperspecial almost everywhere allows us to recast our topology on G(AF ).

Proposition 54. Fix an affine scheme X over a global field F with a smooth model X over OS
F . Then

there is a natural homeomorphism

X(AF ) →
∏

v∈V (K)

(X(Fv),X (Ov)).

Corollary 55. Fix a reductive groupG over a global field F . For any compact open subgroupK ⊆ G(ASF )
for a finite subset S ⊆ V (K), the projection of K onto G(Fv) is hyperspecial for all but finitely many
places v /∈ S.

Proof. We understand what (compact) open subsets of the restricted direct product look like once given a
model, so this follows from the above proposition. ■

4.3 The Adelic Quotient
For this subsection, take F to be a number field. For this seminar, we are essentially interested in the
representation theory of G(AF ) for reductive groups G. To do number theory, we should really embed
G(F ) → G(AF ) via F ↪→ AF , so perhaps we are really interested in the quotient G(F )\G(AF ).

Howver,G(F )\G(AF ) is much too large. For example, it will almost always fail to be compact due to the
presence of characteres.

Example 56. Take G = GLn. Then there is a surective composite

GLn(AF )
det→ GL1(AF )

|·|→ R+.

However, GLn(F ) goes to the identity!

Thus, to make G(F )\G(AF ) smaller, we want to restrict G(AF ) down to

G(AF )1 =
⋂

χ∈X∗(G)

ker(|·| ◦ χ),

where X∗(G) is the set of characters G→ Gm. Note that Gm(F ) is trivial under |·|, so G(F ) ⊆ G(AF )1.
Another reason the quotient G(F )\G(AF ) is too large due to the presence of the center. With this in

mind, we define AG ⊆ G(F∞) as follows: consider a maximal Q-split torus in ResF/Q ZG; then we take the
connected component of the identity of the R-points of this thing.

Example 57. We can compute that the maximal Q-split torus of ResF/Q Gm,F is Q× ⊆ F×. Thus,AGm =
R+. More generally,

AGLn
= {c1n : c > 0} ⊆ GLn(F∞).

We are now ready to define the adelic quotient.

Definition 58 (adelic quotient). Fix a reductive groupG over a global field F . Then the adelic quotient is
the set

[G] := AGG(F )\G(AF ).

For a number field F , this is the same as G(F )\G(AF )1.

14



6 OCTOBER 9TH: SAM GOLDBERG

Remark 59 (Tamagawa numbers). It turns out that G(F )\G(AF )1 may fail to be compact, but it will at
least always have finite measure with respect to the Haar measure on G(AF )1.

5 October 2nd: Nir Elber
We had another last-minute cancellation.

6 October 9th: Sam Goldberg
Today we’re talking about more on the adeles. We will be giving a topological reason why the adeles are a
natural object.

6.1 Characterizing the Adeles
Let’s try to state a characterization. Recall that a topological field k requires addition, multiplication, and
inversion to be continuous; we also recall a notion of a topologial k-algebra A which requires the scalar
multiplication map k → A to be continuous.

Example 60. Any field k becomes a locally compact topological field by using the discrete topology.

Anyway, here is our theorem.

Theorem 61 (Iwasawa, Levin). Let F be a discrete topological field. Then the following are equivalent.

(a) F is isomorphic to a global field as a field.

(b) There exists a topological F -algebra AF such that the short exact sequence

0 → F → AF → AF /F → 0 (6.1)

of topological abelian groups satisfies the following.

• The embedding F → AF is a homeomorphism onto its image.
• AF /F is compact.
• The sequence (6.1) does not split.

In fact, it turns out that AF is unique up to unique topological F -algebra isomorphism and satisfies
AF ∼= AF .

This is a long theorem statement, so some remarks are in order.

Remark 62. One can think of this statement as characterizing both global fields (algebraically!) and the
adele ringAF . Approximately speaking, we are claiming that the best topology on a global field F is the
discrete topology. To understand this claim, note that this is the only way to give a topology toF so that
all the completion maps F → Fv are continuous (for all places v).
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Remark 63. This result makes precise the way that Z ⊆ R is analogous to F ⊆ AF : namely, F sits inside
AF as a discrete cocompact subgroup. In fact, the short exact sequence

0 → Z → R → R/Z → 0

fails to be exact, which provides some motivation for the last condition in (b). Intuitively, we are finding
that global fields are precisely the fields which can behave like a lattice, which is why something like
Tate’s thesis (namely, the Poisson summation formula) can work!

Remark 64. It is worth noting that providing a characterization (like this) provides an explanation for
why number fields and function fields over a curve (over a finite field) are similar. One may hope to write
topological proofs of all results downstream from characterizations like this, but of course this is hard.

Remark 65. Let’s explain why the non-splitting is required. Indeed, if we had a splitting, then we would
find thatAF ∼= F ⊕M whereM is a compactK-algebra. But then it turns out that F acts onM by zero,
which is rather uninteresting. Thus, the non-splitting basically asks thatAF is at least a little interesting.

Remark 66. The uniqueness here implies that AF has no nontrivial F -algebra automorphisms. In par-
ticular, the restricted product decomposition of it is the only way to do this.

Remark 67. The uniqueness of the isomorphism for AF basically says that there is a unique morphism
of short exact sequences. One may hope to upgrade this to a universal property in a category of short
exact sequences, but Sam is not sure how to do this.

Let’s give an idea for the proof. Going from (a) to (b) has no content by taking AF = AF . The key is the
structure theory of locally compact Hausdorff abelian groups. If F has characteristic 0, one merely needs to
check that [F : Q] < ∞. If F has positive characteristic, then the main point is finding the transcendental
element. Anyway, let’s provide the structure theorem we need.

Theorem 68 (Levin). Let M be a locally compact Hausdorff OF -module, where F is some global field
(given the discrete topology). Then if M has no “trivial piece,” then

M ∼= R⊕ TM,

where R is a finite sum of infinite completions, and TM is topological torsion. In fact, one can further
decompose TM into a restricted direct product

TM =
∏

v∈V (F )
v<∞

(Mp, N ∩Mp),

where Mp is topological p-primary, and N ⊆ TM is any compact open submodule.

Remark 69. There is another structure theorem which removes some trivial pieces from AF .

What is amazing here is that these restricted direct products come out of our structure theory of locally
compact Hausdroff abelian groups!

7 October 16th: Alex Feiner
Today we are discussing the representation theory of affine algebraic groups.
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7.1 The Regular Representation
We begin by setting some notation for today.

• G is a locally compact Hausdorff group.

• If V is a Hausdorff topological vector space, then End(V ) consists of the continuous endomorphisms,
and GL(V ) consists of the continuous invertible linear maps.

• IfV is also a Hilbert space with inner product (−,−), we let the norm be ∥·∥2, and we letU(V ) ⊆ GL(V )
be the subgroup of invertible isometries.

In this seminar, we are interested in studying representations of groups G, but when G has some extra
structure, we would like to ensure that our representaions remember this structure.

Definition 70 (representation). A representation ofGonV is a continuous (left) group actionG×V → V .

Remark 71. For each g ∈ G, we thus produce a group homomorphism π : G → GL(V ). In the finite-
dimensional case, π is continuous, but in general, it may fail to be continuous. (One needs to adjust the
topology of GL(V ) in some way.)

Definition 72 (unitary). A representation ofGonV is unitary if and only if the mapπ(g) : V → V is unitary
for all g ∈ G.

As usual, one can define G-equivariant maps between representations (V, π) and (V ′, π′) as linear maps
φ : V →W such that

φ(π(g)v) = π′(g)φ(v)

for all g ∈ G and v ∈ V . This will form a category, so one can reasonably talk about isomorphisms of
representations and subrepresentations.

Let’s describe a general way to build representations.

Proposition 73 (regular action). Suppose that G has a continuous right action on a second-countable
locally compact Hausdorff space X. Then X has a Haar measure, and we further assume that the Haar
measure dx onX isG-invariant. Then the space L2(X) of square-integrable functions onX is a Hilbert
space (in the usual way), and the action

(gφ)(x) := φ(xg)

produces a unitary representation G× L2(X, dx) → L2(X).

Proof. It is not hard to see that we have a group action, and it is unitary because

(gφ1, gφ2) =

∫
G

φ1(xg)φ2(xg) dx
∗
=

∫
G

φ1(x)φ2(x) dx = (φ1, φ2),

where the key point is that ∗
=holds because dx isG-invariant. We will not show that the action is continuous,

but it is true. ■

Remark 74. Because the action is continuous, we see that the collection of compactly supported func-
tions Cc(X) ⊆ L2(X) is preserved by the given G-action.

Example 75. Note G acts on itself on the right by right multiplication, so we can take X = G above.
Notably, we must take a right Haar measure drg on G to make this work.
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7.2 The Modular Character
To produce other examples, we recall the following notion.

Definition 76 (unimodular). A locally compact Hausdorff groupG is unimodular if and only if its left Haar
measures are also right Haar measures.

Example 77. Fix a locally compact topological ring R. Then GLn(R) has Haar measure

dx11 · · · dxnn
|det(xij)|

.

This is both a left and right Haar measure, so GLn(R) is unimodular.

Example 78. IfG is abelian, then of course left and right multiplications are the same, soG is unimodular.

We will explain later how to check that G(R) is unimodular for any reductive group G.
Here is why we care about unimodularity (right now).

Example 79. IfG is unimodular, andH ⊆ G is some locally compact Hausdorff subgroup, thenH\Ggets
a right G-action, and it even has a quotient measure which is G-invariant. Thus, we can also consider
the representation G× L2(H\G) → L2(H\G) from Proposition 73.

As such, we would like some ways to detect if a group is unimodular.

Definition 80 (modular character). Fix a locally compact groupG. Fixing a right Haar measure drg onG,
we note that dr(gh) is still a right Haar measure for any h ∈ G, where dr(gh) is defined by dr(gh)(U) :=
drg(Uh). Because Haar measures are unique up to scalar, there exists a scalar δG(h) ∈ R+ such that

dr(gh) = δG(h) drg.

Remark 81. It turns out δG is a continuous character. Checking the continuity is a corollary of the proof
of the existence of the Haar measure, so we will omit it. Checking that it is a character follows from its
definition.

Remark 82. Importantly, we see that

drg(hU) = δG(h)drg(U)

for any h and U , so G is unimodular if and only if δG is the trivial character.

Example 83. If G is compact, then im δG must be a compact subgroup of R+. However, the only such
subgroup is {1}, so δG is identically 1, so G is unimodular.

7.3 Applications to Affine Groups
We now return to the setting where G is a smooth affine algebraic group defined over a field k. Recall that
there is a Lie algebra

g := LieG := ker

(
G

(
k [t]

(t2)
→ G(k)

))
,

18
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where the morphism is given by t 7→ 0. One can show that this in bijection with derivations at the identity of
g, so g is a vector space over k. Namely, one should think of g as the tangent space of G at the identity.

For example, the adjoint actionAdg : G→ G for each g ∈ G (given by conjugationh 7→ ghg−1) to an action
on the Lie algebra Adg : g → g, so we get a representation of G in g. More explicitly, for each k-algebra R,
we see that

g(R) := ker

(
G

(
R [t]

(t2)
→ G(R)

))
is g ⊗k R. Now, G(R) has an action on both the source and the target of our map by embedding R ↪→
R[t]/

(
t2
)

.

Example 84. For G = GLn, one finds (as expected) that g consists of n × n matrices, and the adjoint
action is given by conjugation of matrices.

We now specialize to the case where k := F is a global field, and let v be a place. Now, as in the study of
Lie groups, one can use a left G-invariant top differential form ω ∈ ∧ng∗ to produce a left Haar measure on
G(Fv) via integrating compactly supported functions f ∈ C∞

c (G(Fv)) against ω.
The moral of the story is that this adjoint action lets us algebraically compute δ!

Proposition 85. Fix notation as above. For each g ∈ G(Fv), we have

δG(Fv)(g) = |detAdg ∈ GL(g(Fv))| .

Sketch. The main point is that the modular character can be measured locally, so this will more or less arise
from the fact that δmeasures how much “conjugation by g” impacts a volume computation, which intuitively
is the determinant. ■

Corollary 86. If G◦ ⊆ G is reductive, then G(Fv) is unimodular.

Proof. It is enough to check that δ vanishes on G◦(Fv) (because the quotient G(Fv)/G◦(Fv) is finite), so we
may assume thatG is connected. Then reductive groups split into semisimple parts (which have no nontrivial
characters, and hence δ = 1) and abelian (which has δ = 1 for free), so we are done. ■

One can then glue this to see that G(AF ) is also unimodular!

Corollary 87. Any right Haar measure onG(AF ) is left invariant forG(F ). In fact,G(AF )1 is unimodular.

Proof. We want to check that δ vanishes onG(AF )1 ⊇ G(F ), for which we use the product formula applied
to the formula in Proposition 85. ■

8 October 23: Chris Yao
Today we talk about archimedean representation theory.

8.1 Defining (g, K)-modules
Today,Gwill be an affine algebraic group over an archimedean fieldF , andK will be a compact Lie subgroup
of G. We will work with Hilbert spaces throughout, but there is no difficulty in passing to Frechet spaces.
Let g be the Lie algebra of G. We begin by defining smooth vectors.
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Definition 88 (smooth vector). Let (π, V ) be a Hilbert space representation of G(F ). For φ ∈ V and
X ∈ g, we define

π(X)φ :=
d

dt
π(exp(tX))φ

∣∣∣∣
t=0

= lim
t→0

π(exp(tX))φ− φ

t
,

provided the limit exists. (We will abbreviate this to Xφ whenever possible.) If Xφ exists for all X ∈ g,
we say that X is C1. Recursively, if Xφ is in Ck for all X, then we say that φ is Ck+1. A vector is smooth
if and only if it is C∞; we let Vsm denote the collection of smooth vectors.

Remark 89. One can check that φ is smooth if and only if the map g 7→ π(g)φ is a smooth function
G(F ) → V .

Remark 90. By interchanging derivatives with actions, we find that the collection of smooth vectors is
invariant under G(F ).

Remark 91. From the construction, we see that the collection of smooth vectors grants a Lie algebra
representation of g.

The other part of the definition of a (g,K)-module comes from restriction to a compact subgroup.

Lemma 92. Fix a locally compact Hausdorff group G, and let K ⊆ G be a compact subgroup. For any
Hilbert space representation (π, V ), there is a K-invariant Hermitian inner product on V .

Proof. Average the inner product over K using the Haar measure to make sense of integration. ■

The point is that compact groups can unitarize their representations. In particular, taking orthogonal com-
plements allows us to see that any irreducible subrepresentation has a complement, which helps prove the
following theorem.

Notation 93. Fix a compact Hausdorff groupK. Then we let K̂ denote the collection of irreducible rep-
resentations of K, which we make unitary.

Theorem 94 (Peter–Weyl). Fix a compact Hausdorf group K.

(a) Any irreducible representation is finite-dimensional.

(b) Any unitary representation decomposes into a Hilbert space direct sum of unitary representations
in K̂.

(c) There is an isomorphism

L2(K) →
⊕̂
π∈K̂

EndVπ.

We will not say more about this proof; it is rather hard.
We now move directly towards defining a (g,K)-module. Well, we would like to temper our represen-

tations; one reasonable way to do this is to ask for some kind of finiteness condition, but there are infinitely
many elements of K̂ in general
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Definition 95. Fix a compact Hausdorff group K. Given a representation (π, V ) and σ ∈ K̂, we define

V (σ) = {φ ∈ V : {π(g)φ : g ∈ K} ∼= σ}.

We call V (σ) the σ-isotypic subspace, and we say that v ∈ V (σ) has K-type of σ; if v ∈ V (σ) for any σ,
we say that v isK-finite (because σ is finite-dimensional), and we let Vfin denote the collection of these
vectors.

Remark 96. Theorem 94 implies that Vfin will be dense in V , so there are many of these vectors.

Definition 97 (admissible). A representation (π, V ) of a compact Hausdorff groupK is admissible if and
only if dimV (σ) <∞ for all σ ∈ K̂.

Admissible is flexible enough for our purposes, as the following theorem claims.

Theorem 98. If G is reductive, then the unitary representations of G(F ) are admissible.

We are now ready to define (g,K)-modules.

Definition 99 ((g,K)-module). Fix a compact Lie subgroupK ofG and Lie algebra g ofG. Then a (g,K)-
module is a vector space V equipped with representations π : g → gl(V ) andK → GL(V ) satisfying the
following.

(a) V is a countable direct sum of finite-dimensional K-invariant subrepresentations.

(b) For all X ∈ k and φ ∈ V , the derivative Xφ exists.

(c) For k ∈ K and X ∈ g, we have

π(k)π(X)π(k)−1φ = π(AdkX)φ.

The (g,K)-module is admissible if and only if V (σ) is finite-dimensional for all σ ∈ K̂.

As usual, one can define morphisms as preserving the relevant g- and K-actions. This allows us to define
(g,K)-submodules and irreducible (g,K)-modules.

Example 100. Any Hilbert space representation (π, V ) of G(F ) makes Vfin ∩ Vsm densse in V , and it
provides an example of a (g,K)-module. One shows this by convolution with a smooth function.

Remark 101. In fact, if V is admissible, then Vfin ⊆ Vsm.

The underlying (g,K)-representation remembers quite a bit about the representation theory of G.

Theorem 102. If G is reductive, then an admissible Hilbert space representation (π, V ) is irreducible if
and only if the underlying (g,K)-representation is irreducible.

In fact, we can discuss some equivalence.

Definition 103 (infinitesimal equivalence). Two admissible representations of G(F ) are infinitesimally
equivalent if and only if their (g,K)-modules are isomorphic.
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Theorem 104. Two unitary representations of G(F ) are equivalent if and only if they are infinitesimally
quivalent.

8.2 (g, K)-modules for GL2(R)
We now classify (g,K)-modules for GL2(R). Take G := GL2(R), and we note that K := O2(R) is a maximal
compact subgroup with K◦ = SO2(R). We let B ⊆ G be the Borel subgroup of upper-triangular matrices.
We now define a few representations.

Definition 105 (principal series). Given a character χ of B, we let the induced representation IndGB χ be
a principal series representation.

Remark 106. Technically, this induction should remember being integrable in some suitable sense, but
we will ignore this.

Definition 107 (discrete series). An irreducible unitary representation of G is square-integrable if and
only if it is isomorphic to an irreducible subrepresentation of the regular representationL2(G,χ), where
χ is some character. We call these representations the discrete series.

The following theorem will be our key tool.

Theorem 108 (subrepresentation). One has the following.

(a) Every irreducible (g,K)-module arises from an irreducible admissible representation of G.

(b) Every irreducible admissible representation of G is infinitesimally equivalent to a subrepresenta-
tion of a principal series of G.

The moral of the story is that we are convinced to be interested in the (g,K)-modules of G. We do this in
steps.

1. We classify representations of K. Well, K = O2(R) is an extension of SO2(R) ∼= R/Z by Z/2Z. Thus,
we note that there is a determinant character det : O2(R) → C×, and the only characters of SO2(R) are
given by εn(κθ) := einθ where κθ ∈ SO2(R) is rotation by θ. One can then show that the only irreducible
representations of K are gien by the trivial character, det, and

τn := IndKK◦ εn.

2. Next, we note that all characters of B are given by characters of the diagonal because [B,B] contains
the upper-triangular matrices of the form [ 1 b0 1 ]. As such, our unitary characters χ : B → C× look like

χ

([
a b
0 d

])
= χ1(a)χ2(b),

where χ1 and χ2 take the form x 7→ sgn(x)ε |x|s where ε ∈ {0, 1} and s is purely imaginary. (Namely, s
being purely imaginary is what gives being unitary.) We will say χ = χ(ε1, ε2, s1, s2) where ε• ∈ {0, 1}
and s• ∈ C is purely imaginary.

3. We now induce fromB toG to produce representations V ◦
χ := IndGB χ, and we let Vχ be its completion

with respect to the natural inner product. Technically speaking, to make sense of the inner product,
one must be careful with the modular character ofB, soV ◦

χ contains the functions f : G→ C satisfying

f(bg) = χ(b)
√
|a/b| · f(g)

for all g ∈ G and b ∈ B. The point of this is that χ being unitary yields Vχ unitary.
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4. From here, one needs to decompose the various Vχ into their K-components and look for what we
found.

9 October 30: Jerry Yang
Today we will discuss the representation theory of totally disconnected groups.

9.1 Totally Disconnected Groups
Let’s give some motivation for what we are going to discuss today.

• We will not state the local Langlands correspondence, but let us note that the representation the-
ory of totally disconnected groups (in particular, some p-adic groups) plays a key role. For a rough
sketch, fix a nonarchimedean local field Fv, and define the Weil–Deligne group Wv to be generated
by the Frobenius and the inertia subgroup of Gal(F sep

v /Fv). Then the local Langlands correspondence
gives a correspondence betweenn-dimensional representations ofWv and irreducible smooth admis-
sible representations of GLn(Fv). It is a primary goal of this talk to define the adjectives “irreducible,”
“smooth,” and “admissible.”

• In this seminar, we are interested in representations of G(AF ) for global fields F . It will turn out (via
Flath’s theorem) that the representation theory for G(AF ) will split into representation theory of the
localizations.

We begin by discussing totally disconnected groups, which include our p-adic groups.

Definition 109 (totally disconnected). A locally compact Hausdorff spaceX is totally disconnected or td
if and only if any of the following equivalent conditions are satisfied.

(a) The topology of X has a basis of open compact sets. In particular, this basis is of clopen sets.

(b) Every subspace A ⊆ X with more than one point is disconnected.

(c) The space X is “locally profinite,” in that any point x ∈ X has an open neighborhood which looks
like a profinite set.

Example 110. We can show that a locally compact Hausdorff group G is td if and only if it has a neigh-
borhood basis of the identity of open compact subgroups. For example, G = Qp has a neighborhood
basis of the identity given by the open sets p•Zp.

Example 111. More generally, if F is any nonarchimedean local field, then the F -points G(F ) of any
affine algebraic group scheme G over F is a td group.

The point is that td groups have very small subgroups around the identity. This is in contrast to the theory
of real or complex Lie groups, where open neighborhoods of the identity frequently fail to be closed under
multiplication. For example, this allows us to show prove the following.

Lemma 112. The kernel of any homomorphism φ : G → H from a td group G to a real or complex Lie
group H is open.

Remark 113. There is a continuous character on Q×
p given in Tate’s thesis which has dense image in S1.

Thus, it is not true that the image is discrete if G fails to be compact.

The moral is that the theory of complex(!) representations of G is allowed to assume that the target groups
are given by the discrete topology. With this in mind, we brutally take the following definition.
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Definition 114 (smooth). Fix a td group G and a complex vector space V . Then a function f : G → V is
smooth if and only if it is locally constant. This collection of smooth functions is denoted by C∞(G,V ),
and we let C∞

c (G,V ) be the subspace of complactly supported functions.

9.2 Representation Theory
We are now ready to define smooth and admissible representations. However, everything should be locally
constant for our td groups.

Definition 115 (smooth). Fix a td groupG and a complex vector spaceV . A representationπ : G×V → V
is smooth if and only if the stabilizer of each v ∈ V is open in G.

Remark 116. One can check that this is equivalent to saying that there is an open compact neighborhood
of the identity of G acting trivially on V .

Remark 117. For smoothness, we recall that smoothness for archimedean representations amounted to
being able to define a Lie algebra representation. Because we are locally constant, this does not exactly
make sense for our context.

Let’s see some examples.

Non-Example 118. Choose an isomorphism Qp ∼= C. Then the standard representation of GLn(Qp) on
Cn is not smooth.

Example 119. Fix a td group G. Then the regular representation of G on Cc(G,C) is smooth. Explicitly,
the action is given by

(gf)(x) := f(xg).

Namely, for a locally constant function f , we see that f is a sum of finitely many indicators of open
compact subsets because it is locally constant and compactly supported, and there is a subgroup of G
stabilizing these finitely many open compact subgroups. If f fails to be compactly supported, then we
may allow f to be a sum of infinitely many disjoint indicators.

And now we define admissibility, analogously to

Definition 120 (admissible). Fix a td groupGand a complex vector spaceV . A representationπ : G×V →
V is admissible if and only if it is smooth, and

V K = {v ∈ V : K stabilizes v}

is finite-dimensional for each open compact subroup K ⊆ G.

This hypothesis is fairly flexible.
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Theorem 121. Fix a nonarchimedean local field F , and let G be a reductive group over F .

(a) Any smooth irreducible representation of G(F ) is admissible.

(b) Any irreducible unitary representation ofG(F ) is admissible. More precisely, ifV is a Hilbert space
representation of G(F ), then we can restrict our representation to the “smooth part”

Vsm :=
⋃
K⊆G

Kopen compact

V K ,

which turns out to be admissible.

Remark 122. Given any complex representation V , one can define Vsm as above, and it turns out that
Vsm ⊆ V is a dense subrepresentation, and Vsm is irreducible if and only if V is.

Example 123. Any smooth representation ofGL1(Qp) is 1-dimensional, given basically generated by the
two characters x 7→ |x|s for some s ∈ C and x 7→ ω(x), where ω is the cyclotomic character.

Example 124 (Steinberg). The representation theory ofGL2(Qp) is fairly involved, but let’s give an inter-
esting example. Let St consist of the locally constant functions P1

Qp
→ C modulo the constnat functions.

Then GL2(Qp) has a natural action on P1
Qp

, so GL2(Qp) gets an action on St.

9.3 Hecke Algebras
It turns out that one can view representations of G as modules over a Hecke algebra. We begin by consid-
ering modules over C∞

c (G,C).

Definition 125 (non-degenerate). Fix a td group G. A C∞
c (G,C)-module M is non-degenerate if and

only if any element of M can be written as a linear combination

a1m1 + · · ·+ armr

where a1, . . . , ar ∈ C∞
c (G,C) and m1, . . . ,mr ∈M .

Observe that this definition would have no content if C∞
c (G,C) has a unit, but this frequently fails to be the

case. In general, there is some approximate identity given by taking an ascending limit of functions

eK :=
1

µ(K)
1K

over all compact open subgroups K ⊆ G.
The point is that non-degenerate modules turn out to be in bijection with representations. We now

define the Hecke algebra.

Definition 126 (unramified Hecke algebra). Fix a td group G and open compact subgroup K. Then the
unramified Hecke algebraC∞

c (G/K) consists of the functions which areK-bi-invariant. It has ring mul-
tiplication given by convolution.

The point is that we can recover K-invariants of a representation V by ek · V = V K .
Let’s end by explaining the use of the Hecke algebra.
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Theorem 127. Fix a nonarchimedean local field Fv, and let G be a reductive group over Fv with open
compact subgroupK ⊆ G. LetG be a model, producing a hyperspecial subgroupG(Ov). For any smooth
representation V , if V K is nonzero, then dimV K = 1.

10 November 6: Sam Mayo
Today we are talking about the Satake isomorphism. For today,F is a nonarchimedean local field with ring of
integers O, and π ∈ O is a uniformizer. We let q denote the size of the residue field. Lastly, we setG := GLn,
and we let T be the maximal split torus of diagonal matrices, and our Weyl group isW := Sn (which acts on
T by permuting the diagonal entries).

10.1 Spherical Representations
We are interested in smooth representations of G(F ). We begin with a special subclass.

Definition 128 (spherical, unramified). Fix a split reductive group G over O. A smooth irreducible rep-
resentation V of G is spherical or unramified if and only if there is some v ∈ V fixed by G(O).

The term “spherical” is supposed to be analogous to what happens in the archimedean case, where maximal
compact subgroups (which G(O) is supposed to be analogous to) look like spheres.

We also have a notion of Hecke algebra.

Definition 129 (spherical Hecke algebra). Fix a split reductive group G over O. The spherical Hecke al-
gebra for G, denoted H0(G) consists of the functions G(F ) → C which are locally constant, compactly
supported, and G(O)-invariant on the left and right.

The hypotheses of H0(G) work together to give it the structure of an algebra with multiplication given by
the convolution operation

(f ∗ g)(x) :=
∫
G

f(z)g
(
z−1x

)
dz.

Here is the point.

Theorem 130. Fix a split reductive group G over O. There is a bijection between irreducible spherical
representations V of G and irreducible representations of H0(G).

In the forward direction, one takes irreducible spherical representations V to the subspace of G(O)-invar-
iants V G(O). Notably, V G(O) becomes a representation of H0(G) by the action

f · v :=

∫
G

f(g)(gv) dg.

In fact, one can upgrade this construction to an equivalence of categories. The point is that one should think
about H0(G) as the group ring for spherical representations.

10.2 The Cartan Decomposition
Let’s see what our Hecke algebra looks like for T .
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Example 131. Spherical representations of T (which is abelian) are equvalent to representations of the
quotient T (F )/T (O) because having one T (O)-fixed vector means that everything is fixed by T (O).
However, T is abelian, so we are really looking at representations of the double quotient

T (O)\T (F )/T (O).

Let’s try to understand this quotient. By splitting T = Grm, we see that T (F )/T (O) is isomorphic to
(F×/O×)r = Zr, where the second isomorphism is given by taking the norm. To avoid having to take a
splitting, one should work with the full coweight lattice X∗(T ) of homomorphisms Gm → T , and then
we have a short exact sequence

1 → T (O) → T (F ) → X∗(T ) → 1,

which is independent of any choices. As such, one finds that H0(T ) = C[X∗(T )].

For G = GLn, we need the following linear algebra result.

Theorem 132 (Cartan decomposition). One has

GLn(F ) =
⊔

k1≤···≤kn
k1,...,kn∈Zn

G(O)

π
k1

. . .

πkn

G(O).

This is simply the Smith normal form for O; in particular, one can hope to do some explicit linear algebra
to do the decomposition. In general, one has the following result, given by translating the notion of these
increasing sequeneces into weights.

Theorem 133 (Cartan decomposition). Fix a split reductive group G over O. Then

G(F ) =
⊔

λ∈X∗(T )
λ dominant

G(O)λ(π)G(O).

The point is that H0(G) has a basis given by indicators on these double cosets G(O)λ(π)G(O). In fact, by
computing the commutators explicitly, one can see that H0(G) is commutative.

Corollary 134. Fix a split reductive group G over O. Then H0(G) is commutative.

Proof. We write out the argument forG = GLn. The point is that we have an anti-involution (·)⊺ onG (this
is the transpose), so it extends to an anti-involution on the spherical Hecke algebra H0(GLn) via f⊺(x) :=
f(x⊺). Namely, we see that

(fg)⊺ = g⊺f⊺

by a direct computation. However, by computing (·)⊺ on the basis, we see that it is the identity, so we con-
clude that H0(G) is commutative! For general G, one can use a similar involution called the Chevalley invo-
lution. ■

Corollary 135. Fix a split reductive group G over O. The irreducible representations of H0(G) are one-
dimensional.

Proof. This is immediate from H0(G) being commutative. ■
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Corollary 136. Fix a split reductive groupG over O with maximal split torus T and Weyl groupW . There
is an isomorphism H0(G) → H0(T )W of vector spaces.

Proof. We know thatH0(G) has basis indexed by dominant coweights inX∗(T ), which can then be summed
over W to produce something in H0(T )W . ■

10.3 The Satake Transform
Corollary 136 is not trying to produce an isomorphism of algebras, which is false. To fix this, we will instead
try to build a map H0(G) → H0(T ) by restriction to T . This is a little funny to do, for the following some-
what vague reason: the torus T should really be thought of as a quotient B/N where B ⊆ G is some Borel
subgroup, and N is its unipotent radical. Borel subgroups are somewhat more natural to look at from the
perspective of representation theory.

We are now ready to define the Satake transform. Given f ∈ H0(G), we want to restrict along the
diagram

G ⊇ B ↠ B/N ∼= T.

The inclusion G ⊇ B should correspond to an actual restriction, but along B ↠ B/N one should be inte-
grating along fibers. As such, we define

Sf(t) := δB(t)
1/2

∫
N

f(tn) dn,

where δB is the modular character. (The modular character is needed to make sure that our integrals are
suitably invariant.)

Theorem 137 (Satake). Fix a split reductive group G over O. Let B be a Borel subgroup with unipotent
radicalN , and set T := B/N to be a maximal split torus. Then S : H0(G) → H0(T )W is an isomorphism.

This is fairly difficult to show, though one can of course write everything out in sufficient detail for (say)G =
SL2. Roughly speaking, one sends the basis of indicator functions to the restriction with some correction
terms coming from smaller coweights.

10.4 A Little Langlands
To end our discussion, we say something about the local Langlands correspondence. The classical theory of
Lie algebras and Lie groups provides a bijection between finite-dimensional irreducible representations of
a complex Lie group Ǧ(C) with dominant weights (which are in bijection with W -orbits in X∗(T )).

One can translate this into an isomorphism of the representation ring of Ǧ(C) with C[X∗(T )]W , which
looks suspiciously similar to what we have done above in the nonarchimedean setting. However, the caveat
is that the rest of our discussion has been working with X∗(T ) instead of X∗(T ). As such, one needs a
notion of duality: given our nonarchimedean groupG, one knows that there is a dual group LGwhose torus
Ť canonically has X∗(T ) ∼= X∗(Ť ). Then Langlands duality should boil down to the observation

H0(G)
S∼= H0(T )W ∼= C[X∗(T )]

W ∼= C[X∗(Ť )]W ∼= Rep Ǧ(C).

Thus, we have related nonarchimedean representation theory to complex representation theory! Explicitly,
we see that irreducible smooth spherical represntations of V are in bijection with irreducible modules of
H0(G), which are just one-dimensional and hence in bijection with maps H0(G) → C. The above chain then
puts this in bijection with maps Rep Ǧ(C) → C, which classical representation theory argues is in bijection
with semisimple conjugacy classes (given by some character theory).

Remark 138. One can construct an inverse for this construction given by principal series!
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11 November 13: Sam Goldberg
Today we have a sidequest talk about automorphic representations and quantum chaos.

11.1 Classical Chaos
Our motivation comes from physics. We have a Riemannian manifold (M, g), which we will assume to be
complete and a surface for ease. Then there is a “geodesic flow” G on T ∗M . Namely, for any position-
velocity pair (x, v) ∈ T ∗M , one has

Gt(x, v) = (γ(t), γ′(t)),

where γ is a geodesic starting with (x, v). Some computation shows that the unit cotangent (fiber) bundle
UT ∗M is invariant under G.

More specifically, today we will work Riemannian surfaces with constant curvature. Up to coverings,
there are three of these: R2 (which has 0 curvature), S2 (which has positive curvature), and H2 (which has
negative curvature).

Remark 139. Hyperbolic space kinda looks like a pringle chip. Sam does not want to draw a pringle chip.

More precisely, any complete connected surface M with constant curvature has one of R2, S2, or H2 as
a universal cover. In fact, we can see that the quotient map can be realized as a group quotient by some
discrete subgroup of isometries.

Example 140. The torus T is a surface with constant curvature. It has universal cover R2 ↠ T , and we
can see we can realize T as Z2\R2.

As such, we will be interested in dynamics on Γ\H2.

Theorem 141. Fix a connected hyperbolic surfaceM of finite volume. Then the geodesic flow onUT ∗M
is ergodic. For example, this implies that the geodesic flow applied to a point (x, v) ∈ UT ∗M equidis-
tributes over UT ∗M .

11.2 Quantum Chaos
Theorem 141 is “classical chaos.” We would like a formulation in quantum mechanics. To do this mathe-
matically, we begin with aC∗-algebraA, which is a subalgebra of some bounded (i.e., continuous) operators
on a Hilbert space, complete with respect to the norm and closed under the adjoint.

Example 142. Bounded functions on a Hilbert space itself is a C∗-algebra.

Example 143. Complex continuous functions on a locally compact Hausdorff space X make a C∗-alg-
ebra; adjoint becomes complex conjugation.

An observable in quantum mechanics amounts to functionals on our C∗-algebra A, and a state should be a
positive linear functional sending the identity of A to 1, from which we get a probability by evaluating at the
point. We further recover a notion of time evolution as automorphisms of A.

Concretely, revisiting our classical mechanics, the C∗-algebra will (roughly) be L2(M), where the mea-
sure is given by the Riemannian metric, and its states and observables are given by bounded continuous
functions. And we have a time evolution given by some operator e−it∆, where ∆ is some generalization of
the Laplacian to Riemannian manifolds. We would now like a notion of “quantum ergodicity” in this set-up.1

Well, here is a theorem.
1 This is predicted by the “Bohr correspondence principle.”
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Theorem 144. Fix a compact hyperbolic surface Γ\H. Then the action of ∆ on L2(Γ\∆) as above has an
orthonormal basis {φj}j∈N with discrete spectrum λ• → ∞. Then we have a notion of equidistribution
in the limit: for a bump function ψ ∈ C∞(M), we have

lim
j→∞

⟨ψφj , φj⟩ =
∫
M

ψ.

This was originally proven under the assumption that we can remove a natural density 0 subset of “excep-
tional” eigenfunctions. To explain why this is hard, there is a geodesic on SL2(Z) which more or less fails to
equidistribute. Here is some background, where much is known for arithmetic subgroups Γ ⊆ SL2(Z).

• Conditional under GRH, this was proven in 2002.

• In the compact case, this was proven in 2006.

• In the non-compact case, this was pveon in 2010.

11.3 Automorphic Forms
Automorphic forms will come from studying SL2(Z)\H. We are hoping to understand eigenfunctions on this
space. Number theory allows us to bring in the adeles: there is a homeomorphism

SL2(Z)\H ∼= Z(GL2(AQ))GL2(Q)\GL2(AQ)/K,

where K ⊆ GL2(AQ) is some maximal compact subgroup.
In higher dimensions, we recall GLn(AQ) is locally compact, so it admits a Haar measure, so we get a

space L2(GLn(AQ)). Being careful about a quotient, we even get

L2
(
Z(GLn(AQ))GLn(Q)\GLn(AQ)

)
.

For us, our automorphic representations will be seen as irreducible unitary subrepresentations of the above
space. For brevity, set [G] := Z(GLn(AQ))GLn(Q)\GLn(AQ). One finds that L2([G]) decompses into the
following pieces.

• There are cuspidal and residual parts, which are completely reducible.

• Then there is a continuous spectrum which (for example) includes Eisenstein series.

To recover “classical” modular forms, we note that we have an action by GL2(R), so we get a (g,K)-module
where g = gl2(R)C andK = SO2(R). We can further decompose this via the diagonalizable actions ofZ(Ug)
andK and the Hecke algebra, which eventually produces a classical automorphic form. Anyway, it will turn
out that all these pieces will be able to produce an eigenbasis for our Laplacian ∆.

Remark 145. This decomposition was much earlier known to Selberg in the case of SL2(Z)\H. This is
notable because it allows us to prove something like Parseval’s theorem for the non-compact space
SL2(Z)\H.

The point is that one is able to use these sorts of decompositions (and in particular our Parseval’s identity)
to prove Theorem 144 in our case.

12 November 20: Sai Sanjeev Balakrishnan
Today we define an automorphic form.

30



12.1 Our Definitions 12 NOVEMBER 20: SAI SANJEEV BALAKRISHNAN

12.1 Our Definitions
For today, F is a number field; there are definitions for general global fields, but there are a few caveats.
Here is our definition.

Definition 146 (automorphic form). Fix an affine algeraic group G over F . A function φ : G(AF ) → C is
an automorphic form if and only if it satisfies the following conditions.

(a) φ is smooth.

(b) φ had moderate growth.

(c) φ is G(F )-invariant.

(d) φ is K-finite, where K ⊆ G(AF ) is some subgroup factoring into K∞ ⊆ G(F∞) as a maximal
compact subgroup, and K∞ ⊆ G(A∞

F ) is compact open.

(e) φ is Z(g)-finite.

Remark 147. If it turns out that
∫
[
N ]φ(ng) dg = 0 for any unipotent radicalN of a parabolic subgroup P

of G, then the automorphic form is called cuspidal. Here, [N ] = N(F )\N(AF ).

Remark 148. It turns out that the choice of K does not matter. The point is that K-finiteness is equiv-
alent to beingK ′-invariant for some other subgroupK ′. Thus, it is enough to note that the infinite part
K∞ is unique up to conjugacy, andK∞ is well-understood as a subgroup of the finite part of the adeles
(for example, frequently being hyperspecial).

We will go through the various properties in an example: we will take G = GL2 and F = Q. Consider a
modular form f ∈ Sk(N) for some weight k and level N . To relate this to a function on GL2(AF ), we must
do a little work. Define the subgroup

Γ0(N) :=

{[
a b
c d

]
: c ≡ 0 (mod N)

}
if GL2(Z). Then one can define K0(N)p as the corresponding subgroup of Zp, and we define K0(N) ⊆
GL2(AF ) as the product over all ps.

Now, by strong approximation, one has an isoorphism

H/Γ0(N) ∼= O2(R)\GL2(R)/Γ0(N) ∼= Γ0(N)GL2(AQ)/K0(N).

As such, we will define φf on GL2(AF ) as f(g∞i)j(g∞i)−k, where g∞ is some matrix in GL2(R), and j is the
automorphy factor seen in modular forms.

Let’s now go through our definitions to check on φf .

(a) To check that φ is smooth, one remembers that we have a decomposition

C∞(G(AF )) = C∞(G(F∞))⊗ C∞(G(A∞
F )).

As such, we may view φ as a function on pairs (g∞, g
∞), where g∞ is the infinite part, and g∞ is the

finite part. Smoothness requires thatφ(g∞, ·) (as a function in the finite part g∞) to be locally constant
and that φ(·, g∞) (as a function in the infinite part g∞) to be smooth in the usual analytic sense.
One checks this for φf directly from its definition given above: the level provides locally constant in
the finite part, and the definition is of course smooth in the infinite part.

(b) To check thatφhas moderate growth, we give an embedding ι : G→ GLn for somen, which then gives
an embedding into SL2n via g 7→

(
h, h−1

)
. Thus, for g ∈ G(Fv), we can define ∥g∥v as the supremum
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norm of the element in SL2n(Fv), and we define the norm ∥g∥ for g ∈ G(AF ) by taking the product
of the local norms, which we note is finite because the product will only have finitely many terms not
equal to 1 by the integrality of the adeles. Moderate growth now asserts that

|φ(g)| ≤ C ∥g∥R

for some C and R. (One can check that this does not depend on the choice of embedding.)
For φf , one must recall the bound on modular forms given by∣∣∣yk/2f(x+ iy)

∣∣∣ < C

for some C > 0.

(c) Left invariance by G(F ) is self-explanatory. One checks this for φf by construction because we lifted
the function on GL2(R)+ to GL2(AF ) by having a quotient on the left by GL2(Q).

(d) Being K-finite is equivalent to asserting that the functions kφ ∈ G(AF ) defined by (kφ)(g) := φ(gk)
spans a finite-dimensional vector space over C.
In our example, our function φf is invariant on K∞ = SO2(R) by its construction, and we have taken
a quotient by GL2(Q), so we will be fully invariant by O2(R). Also, it is invariant on K0(N) again by
construction of the modular form and the automorphy factor. The K-finiteness follows.

(e) For Zg-finiteness, we begin by definining gv as the Lie algebra of ResFv/RGFv
for each infinite place

v, and then we set g∞ :=
∏
v|∞ gv. Then

Zg := Z(U(g∞)C),

and we are asking for finiteness exactly as in (d): the action of Z(UgC) on φ spans a finite-dimensional
vector space over C. Let’s recall what this aciton is: note that we have an action of X ∈ g on φ in the
usual way by

(Xφ)(g) := lim
t→0

(exp(tX)φ− φ)(g)

t
.

It turns out that K-finiteness promises that Xφ exists, and in fact one check that it is an automorphic
form.
In our example, we have g = gl2(R), and then we want to compute Z(gl2(C)), which turns out to
be the C-algebra generated by 12 and the Casimir element C := H2 + 2RL + 2LR (in Ug!), where
H := −i

[
1

−1

]
and L := 1

2

[
1 −i
−i −1

]
andR := 1

2

[
i i
i −1

]
. One can explicitly write down the action of these

elements on f , which turns into some differential operators. In particular, it is enough to note that

C · φf =
k

2

(
1− k

2

)
φf .

In particular, we must use the holomorphicity of f in order to do some of these computations, and the
weight needs to appear somewhere in life in order to get the above.

(f) Let’s check that a cuspidal modular form produces a cuspidal automorphic form. It is enough to check
this result for parabolic subgroups containing a fixed minimal parabolic subgroup because parabolic
subgroups always contain a conjugate of the given fixed minimal parabolic subgroup.
In our example, let’s suppose for simplicity that we are in level 1 so that we only have one cusp. In
this case, we may take our minimal parabolic subgroup to be the Borel subgroup of upper-triangular
matrices, which we note is also already maximal. Thus, we only have to work with the unipotent radical
of matrices of the form [ 1 ∗

1 ]. As such, we are interested in computing∫
N(Q)\N(AQ)

φf (ng) dn =

∫ 1

0

∫
Ẑ
φf

(([
1 t

1

]
n′
)
g

)
dn′ dt

=

∫ 1

0

f

([
1 t

1

]
g∞i

)
j(g∞,−i)−k dt,

where j is the automorphy factor.
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With the time we have left, let’s define an automorphic representation.

Definition 149. Recall that there is an action of (g∞,K∞)×G(A∞
F ) action on the space of automorphic

forms A. An automorphic representation is an irreducible admissible module over (g∞,K∞) × G(A∞
F )

which is isomorphic to a subquotient of A.

13 December 4: Andrew Cheng Jr
Today we are talking about Eisenstein series.

13.1 Parabolic Subgroups
Throughout today, G is a connected reductive group over a field K. In the sequel, K is typically a number
field, but we will not ask for this for now.

Definition 150 (parabolic). Fix a connected reductive groupG over a fieldK, and letBK ⊆ GK be a Borel
subgroup. An algebraic subgroup P ⊆ G is parabolic if and only if PK contains BK .

Notably, parabolic subgroups are not required to be reductive. However, a Levi decomposition recovers
reductivity.

Definition 151 (Levi subgroup). Fix a parabolic subgroupP of a connected reductive groupG over a field
K. Let U ⊆ P be the unipotent radical. Then there is a reductive subgroup M ⊆ P such that there is an
almost direct product

P =MU.

We call M the Levi subgroup. Also, we may write AM for the maximal split torus in M .

We will not show that M exists. Lastly, we will want the following terminology.

Definition 152 (cuspidal). Fix a connected reductive group G over a field K. For a parabolic subgroup
P ⊆ G, we will callP (K) ⊆ G(K) a cuspidal subgroup. We may then call the pair (P (K), AM ) a cuspidal
pair ofG(K). We may say that two cuspidal pairs (P (K), AM ) and (P ′(K), AM ′) are associate if and only
if AM and AM ′ are conjugate in G(K).

Remark 153. The relevance of these definitions for us is that an automorphic form φ is cuspidal if and
only if we have ∫

U

φ(xu) du = 0

for all x ∈ G(K), where U varies over the unipotent radicals of the parabolic subgroups of G.

Let’s see an example. Take G = SL2(R). Then one has an Iwasawa decomposition G = KAU with K =
SO2(R), and

A :=

{[
et

e−t

]
: t ∈ R

}
,

and
U :=

{[
1 x

1

]
: u ∈ R

}
.

Namely, we may write any element of G uniquely as r(θ)e(t)u(x), where r(θ) is rotation by θ, and e(t) and
u(x) are defined as above.
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13.2 Eisenstein Series
Let’s begin with a quick-and-dirty definition of the Eisenstein series. Fix a discrete arithmetically defined
subgroup Γ of G(K), and choose a cuspidal pair (P (K), AM ).

Example 154. Continuing with G = SL2, one can take K = Q and Γ = SL2(Z).

Our Eisenstein series is

E(g, φ,Λ) :=
∑

γ∈Γ/Γ∩P (k)

φ(γg) exp
(
Λ(H(γg)) + ρ(H(γg))

)
.

Here, Λ is a linear functional on LieAM , H : G(AF ) → AM is some function, and ρ is the half sum of the
positive roots appearing in P . The definition of H is somewhat technical, so we are omitting it.

Example 155. Take G = SL2(R) and Γ = SL2(Z). In this case, H sends r(θ)e(t)u(x) to t, and our Eisen-
stein series collapses into

1

2

∑
γ∈Γ/(Γ∩U(K))

e(λ−1)H(xγ).

Writing out x and γ out as 2× 2 matrices, one finds that this equals

1

2

∑
γ∈Γ/(U∩Γ)

|(xγ)1|λ−1
,

where (g)1 =
(
a2 + c2

)1/2 when g =
[
a b
c d

]
. The punchline is that this is the usual Eisenstein series. For

example, there is a way to give this a meromorphic continuation, and there is a functional equation.

Here is a quick application, which tells us at least that our definition knows a little about group theory.

Proposition 156. Fix cuspidal pairs (P (K), AM ) and (P ′(K), AM ′). Then they are associate if and only if
there are (g, φ,Λ) as above such that∫

U ′/(Γ∩U ′)

E(ug, φ,Λ) du ̸= 0.

Let’s close with another applications: the Eisenstein series produces the continuous spectrum.

Theorem 157. Let G be a connected reductive group over a number field K, and suppose that there all
split tori inG are trivial. Then [G] = G(K)\G(AK). Note thatG(AK) acts onL2([G]) be right translation.
Then spectral theory providesa decomposition

L2([G]) = L2
disc([G])⊕ L2

cont([G]).

In this case, L2
cont([G]) contains integrals parameterized by Eisenstein series, and L2

disc([G]) is conjec-
turally spanned by a cuspidal part and residues of some Eisenstein series.

14 December 11: CJ Dowd
Today is the last seminar of the semester! We are talking about the Rankin–Selberg method. We are going
to define Rankin–SelbergL-functions, which generalizes the construction ofL-functions for modular forms
and the HeckeL-functions seen in Tate’s thesis. Throughout, we will omit smoothness assumptions and the
like.
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14.1 Whittaker Models
We begin with a local situation. LetG be a quasi-split reductive group over a nonarchimedean local field F .
Fix an irreducible admissible unitary representationV ofG. To set ourselves up, we choose a Borel subgroup
B ofG, we letN ⊆ B be the unipotent radical, and we let ψ be character ofN(F ). For technical reasons, we
want the following notion.

Definition 158 (generic). Fix everything above. Then the characterψ is generic if and only ifψ is nontrivial
on Nα(F ) for all simple roots α.

We are now ready to move towards Whittaker models.

Definition 159 (Whittaker functional). Fix everything above. Then a ψ-Whittaker functional is a func-
tional λ : V → V such that

λ(nφ) = ψ(n)λ(φ)

for alln ∈ N(F ) andφ ∈ V . We then say that V isψ-generic if and only if there is a nonzeroψ-Whittaker
functional.

Note we have two different notions of generic, so let’s see how they interact.

Theorem 160. Fix everything as above. If ψ is generic, then the space of ψ-Whittaker functionals is at
most 1-dimensional.

The point of ψ-genericity, then, is that it ensures that there is an in fact a Whittaker functional.

Definition 161 (Whittaker function, Whittaker model). Fix everything as above. Then the space of ψ-
Whittaker functions W(ψ) consists of the smooth functions W : G(F ) → C such that

W (ng) = ψ(n)W (g).

A ψ-Whittaker model is an embedding Λ: V → W(ψ) of G(F )-representations, and we let W(π, ψ)
denotes its image.

Remark 162. The embedding Λ: V → W(ψ) gives rise to a Whittaker functional λ : φ 7→ Λ(φ)(1). This
in fact forms a bijection between Whittaker functionals and Whittaker models: given a Whittaker func-
tional λ, we can define Λ by sending φ to the Whittaker function g 7→ λ(gφ).

We now transition to the global situation. This time,G is a quasi-split reductive group over a global field F ,
and we choose V to be a cuspidal automorphic form. We continue letting B be a Borel subgroup, N ⊆ G is
its unipotent radical, and ψ is a generic character on N(AF ).

Definition 163 (global Whittaker function). Fix everything as above. Then a globalψ-Whittaker function
consists of the functions defined by

Wφ
ψ (g) :=

∫
[N ]

φ(ng)ψ(n) dn

as φ varies over V . This has someN-invariance baked into it. A Whittaker model can be defined analo-
gously to the local situation. We say that V is ψ-generic if the map φ 7→Wφ

ψ is nonzero.

Example 164. For G = GLn, cuspidal implies generic.

Here is more explanation of the above.

35



14.2 Rankin–Selberg L-Functions 14 DECEMBER 11: CJ DOWD

Theorem 165. Consider the group GLn over a global field F . If π is a cuspidal automorphic representa-
tion, and ψ is generic, then we have the expansion

φ(g) =
∑

γ∈Nn−1(F )\GLn−1(F )

Wφ
ψ

([
γ 0
0 1

]
g

)
.

Example 166. For n = 2, this approximately yields the Fourier expansion.

Remark 167. Morally, the point of a Whittaker model is able to give an explicit construction of a repre-
sentation, permitting computations. For example, for GL1, then everything comes down to characters,
so we are already able to do computations, but higher dimensions require us to do something more
complicated like this.

14.2 Rankin–Selberg L-Functions
For the remainder of the talk, we will let G = GLn; it is possible to run constructions like this in more
generality (for example, if π and π′ come from different general linear groups), but we will not. Returning
to the local theory, F is a nonarchimedean local field, and we will let π and π′ be smooth admissible unitary
irreducible representations of GLn. As usual, we let OF denote the ring of integers, p its maximal ideal, and
q := #(OF /p).

Definition 168 (local Rankin–Selberg integral). Given W ∈ W(π, ψ) and W(π′, ψ) and a Schwarz test
function Φ on Fn, we define

Ψ(s,W,W,Φ) :=

∫
Nn(F )\GLn(F )

W (g)W ′(g)Φ(eng) |det g|s dg.

As usual, en ∈ Fn is the last basis vector.

Remark 169. This integral is analogous to the integrals we saw in Tate’s thesis. There, we had a local
ζ-function on G = GL1 equal to ∫

F×
χ(x)Φ(x) |x|s d×x,

which we see generalizes the above construction. Recall that we showed that when χ is unramified and
Φ = 1OF

, we found that the integral equals (1− χ(p)q−s)
−1, where p ⊆ OF is the maximal ideal. This

was promising because it gave us an Euler factor which we could hope to multiply out to yield a global
ζ-function.

And here is our corresponding theorem.

Theorem 170. Fix everything as above.

(a) The local Rankin–Selberg integral coverges absolutely for Re s > 0.

(b) Ψ is a rational function of q−s.

(c) There exists a unique polynomial Pπ,π′ such that Pπ,π′(0) = 1 and

⟨Ψ(s,W,W ′,Φ)⟩ = Pπ,π′
(
q−s

)
C
[
qs, q−s

]
.
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Morally, we then see that Pπ,π′ (q−s) is the greatest common divisor. It is analogous to the local factor we
saw in our unramified computation, so we make the following definition.

Definition 171 (local L-function). Fix everything as above. Then we define the local L-function as

L(s, π × π′) = Pπ,π′
(
q−s

)−1
.

Remark 172. We see that L(s, π × π′) is meromorphic, and one can see that it is holomorphic and non-
vanishing for Re s ≥ 1.

Remark 173. As usual, one can do a computation when π and π′ are unramified, but we will not do it.

Remark 174. As one would expect, there is a functional equation: namely, there is some γ(s, π × π′, ψ)
such that

Ψ(1− s, W̃ , W̃ ′, Φ̂) = γ(s, π × π′, ψ)Ψ(s,W,W ′,Φ),

where W̃ (g) := W (wng
−⊺), where wn is the long Weyl element. This is essentially the local functional

equation we saw in Tate’s thesis! One can even define local ε-factors as in Tate’s thesis, but we will not
do this for time reasons.

We end this talk by returning to the global case. Once again, G = GLn, but we are now over a global field
F , and π and π′ are cuspidal unitary representations on GLn(AF ).

Definition 175 (global Rankin–Selberg L-function). Fix everything as above. Then the global Rankin–
Selberg L-function is given by

L(s, π × π′) :=
∏
v

L(s, πv × πv),

where the product is taken over all places v of F .

As in Tate’s thesis, one is able to prove meromorphic continuation and functional equation; further, the
continuation succeeds at being holomorphic unless π′ = π∨, in which case we can control the poles to be at
s ∈ {0, 1}.

Remark 176. From this discussion, one can prove a “strong multipicity 1” result: if π and π′ agree at all
but finitely many places, then π = π′. To see this, one notes that L(π∨ × π, s) and L((π′)∨ × π, s) equal
at all but finitely many places, so one has a pole if and only if the other has a pole! But the first one of
course has a pole, so the second one will have a pole at s = 1, so we must have π′ = π.
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