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CHAPTER 0

INTRODUCTION

What we didn’t do is make the construction at all usable in practice!
This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

0.1 Overview

Over the past few decades, there has been a growing interest in understanding how the geometry of a space
(such as a smooth projective variety) affects its arithmetic.

One example of these effects arises in the form of the Sato–Tate conjecture, which takes an abelian va-
riety A over Q and predicts the distribution of the point-counts #A(Fp) (suitably interpreted) as the primes
p varies. Here, one finds that the “geometric” invariant EndC(A) essentially determines the desired distri-
bution. We refer to section 3.1 for a more precise discussion, but approximately speaking, the point is that
one expects a “motivic monodromy group” to control this distribution, and the motivic monodromy group
can be computed either in a geometric situation over C or understood via such point-counts in an arithmetic
situation.

To be slightly more explicit, there are various monodromy groups at play: in the complex analytic situ-
ation, there is the Mumford–Tate group MT(A), and in the ℓ-adic situation, there is the ℓ-adic monodromy
group Gℓ(A). There are conjectural relations between these, and these conjectures codify the interplay
between geometry and arithmetic; for example, the Mumford–Tate conjecture predicts that MT(A)Qℓ

=
Gℓ(A)

◦. Ultimately, to understand point-counts, one becomes interested in the groupsGℓ(A), but this group
is difficult to compute directly, so it is frequently profittable to compute MT(A) instead and then use one of
the aforementioned conjectures.

In this article, we are interested in the effect of so-called “exceptional” geometry on arithmetic, con-
tinuing the work of [GGL24]. The exceptional geometry we are interested in concerns exceptional Hodge
classes, which are Hodge classes onA (or a power ofA) which are not generated by an endomorphism ofA
or the polarization of A. The absence of such classes gives control of the geometry of A and hence makes
MT(A) andGℓ(A) easy to compute. As another application, in the absence of exceptional classes, one knows
the Hodge conjecture for all powers ofA, so exceptional geometry is in some sense “the enemy” of proving
the Hodge conjecture.

4



0.1. OVERVIEW SATO–TATE GROUPS OF GENERIC CURVES

0.1.1 Fermat Curves

Roughly speaking, most abelian varieties do not support exceptional classes, so it requires some effort
to find abelian varieties with exceptional classes in nature (and then prove and study their existence!). In
[GGL24], Gallese, Goodson, and Lombardo are able to control exceptional classes in the Jacobians of the
hyperelliptic “Fermat” curves

y2 = xN + 1

as N ≥ 1 varies over positive integers. Namely, they are able to write down an algorithm which computes
the groups MT and Gℓ for moderately sized N (say, N ≤ 100), and they are able to prove general results
in certain cases (such as N prime). It is still true that some N fail to support exceptional classes, such as
when N is a prime, but composite N frequently support exceptional geometry, which must be understood
to execute the computation.

The present article can be considered a continuation of the work of [GGL24]. For example, the authrors
there remark that their methods should be able to be used to compute MT and Gℓ for the Jacobians of
quotients of the smooth projective Fermat curve

XN : XN + Y N + ZN = 0,

which includes the hyperelliptic curves y2 = xN +1 above. This is carried out in section 4.2; we note that the
main theorem is Theorem 4.33, where we provide an explicit description of the Galois action on (absolute)
Hodge classes in terms of Galois action on certain explicitly computed periods, but we will not give the
statement in the introduction because it is somewhat technical.

Remark 0.1. As an aside, we note that the authors of [GGL24] recourse to more general Fermat hyper-
surfaces

XN
0 +XN

1 + · · ·+XN
m = 0.

in order to understand powers of the Fermat curve XN . This theory rests on somewhat technical al-
gebraic geometry due to Deligne [Del18, Section 7]. In this article, we rebuild the thoery of [GGL24]
while only handling powers ofXN directly, allowing us to avoid Deligne’s algebraic geometry. The key
point is that a careful analysis of the Künneth isomorphism allows one to gain the same level of control
on the Hodge classes of a power of XN as one would get with embedding in a Fermat hypersurface.
This is carried out in section 4.2.1.

Having access to more general quotients allows us to see more geometry. To explain one example, we recall
the definition of Gℓ(A). Given an abelian variety A defined over a number field K, one can use the Galois
action on the Tate module VℓA of A to define a Galois representation

ρℓ : Gal(K/K)→ GL(VℓA).

Here,VℓA turns out to be a vector space verQℓ of dimension2 dimA. We then defineGℓ(A) to be the smallest
algebraic Qℓ-subgroup containing the image of ρℓ. The Mumford–Tate conjecture explains that one expects
to recover Gℓ(A)◦ from the complex geometry of A, so it becomes interesting to understand the quotient
Gℓ(A)/Gℓ(A)

◦, which we note is finite becauseGℓ(A) is an algebraic group. In light of the definition ofGℓ(A),
we see that we are interested in the pre-image ρ−1

ℓ (Gℓ(A)
◦); this needs to be a finite-index open subgroup

of Gal(K/K), so there is a finite extension Kconn
A of K such that ρℓ(σ) ∈ Gℓ(A)◦ if and only if σ fixes Kconn

A .
In [GGL24, Theorem 7.1.1], the authors find that their hyperelliptic curves y2 = xN + 1 all have Kconn

A

to be a multiquadratic extension of Q(ζN ), and they provide an algorithm to compute it. Further, they find
that the prime-power case will always have Kconn

A = Q(ζN ). One can now ask if one can hope for such
control for general quotients of the Fermat curve. Well, [Del18, Theorem 7.15] explains that the extension
Kconn
A /Q(ζN ) should always be abelian. However, it turns out that one cannot hope for much more than

this.
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0.1. OVERVIEW SATO–TATE GROUPS OF GENERIC CURVES

Example 0.2. In Proposition 4.79, we show that the Jacobian of the superelliptic curve

y9 = x
(
x2 + 1

)
,

which is a quotient of the Fermat curve X18 + Y 18 + Z18 = 0, has Kconn
A = Q(ζ18,

18
√
432), which is a

degree-18 cyclic extension of Q(ζ18).

Example 0.3. The Jacobian of the previous example is not simple. At the cost of having slightly higher
dimension, one can show something similar for the Jacobian of y11 = x2

(
x2 + 1

)
, but now this Jacobian

is simple.

In section 4.2, we work out the example curve y9 = x3 +1 in detail. Here, one does find exceptional classes,
but we still have Kconn

A = Q(ζ9).
To work with more examples, we need a finer understanding of the periods of Fermat curves [GGL24,

Sections 6.3–6.4]. This is accomplished in section 4.3. In short, it turns out that we need to understand
the algebraicity properties of certain products of Γs, and these products can be understood in terms of the
(combinatorial) theory of distributions. In [GGL24], the authors only work with the periods which can come
from the hyperelliptic Fermat curve, but we work with periods of the full Fermat curve. Here is an example
of what we can prove.

Theorem 4.77. LetKconn
A be the connected monodromy field of the JacobianA of the Fermat curveXN ,

and define the field
KN = Q(i, ζ2N )

(
{pp/N : prime p | N}

)
.

(a) We have KN ⊆ Kconn
A (i, ζ2N ).

(b) The extension Kconn
A (i, ζ2N )/KN is multiquadratic.

(c) If N is odd or divisible by 4, then

log2[K
conn
A (i, ζ2N ) : KN ] ≤ 2ω(N)−1 − 1,

where ω(N) is the number of distinct prime factors of N .

Remark 0.4. It would be interesting to know if the upper bound in (c) is sharp. This seems to be unknown
unless ω(N) = 1.

0.1.2 Beyond CM
One aspect of these Fermat curves is that they have so many automorphisms (given by multiplying X or Y
by an N th root of unity) that their Jacobians have complex multiplication. Complex multiplication aides the
computation in a few key ways: in this case, MT(A) andGℓ(A) are both tori, thus making them much easier
to control. For example, the Mumford–Tate conjecture is known in this case, and there exist algorithms to
compute MT(A) from certain combinatorial data attached to A.

As such, to the author’s knowledge, the literature does not have an example computation ofGℓ(A) when
A does not have complex multiplication and is not fully of Lefschetz type.1 In this article, we work out such
an example. Admittedly, we do not go far from complex multiplication: where complex multiplication would
require End(A) ⊗Z Q to contain a CM field of dimension 2 dimA, we work with certain abelian varieties A

1 Roughly speaking, “fully of Lefschetz type” means that all Hodge classes on A can be explained by endomorphisms and the po-
larization. In type III, it turns out that these classes do imply the existence of an exceptional class, which is the difference between not
supporting exceptional cycles and being “fully of Lefschetz type.”
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0.2. ODDS AND ENDS SATO–TATE GROUPS OF GENERIC CURVES

such that End(A)⊗Z Q contains a CM field of dimension dimA. Our limitations are rather technical, and we
expect that one can do much better.

As an example difficulty, let’s focus on computing MT(A). Recall that MT(A) is a connected reduc-
tive algebraic group defined over Q, so we can split up its computation into computing the derived sub-
group MT(A)der and the neutral component Z(MT(A))◦ of the torus. In section 2.2, we explain how the
current arguments used to understand MT(A) for A with complex multiplication can be used to compute
Z(MT(A))◦. To explain this result, we pick up some notation: setE := Z(End(A)), and then one can diago-
nalize the action of E on V := H1

B(A(C),C) to produce a piece of combinatorial data called the “signature”
Φ: Hom(E,C)→ Z≥0; for brevity, we will setΣE := Hom(E,C). It turns out that one can embedZ(MT(A))◦

into the torus TE := ResE/Q Gm,E , and our first main result explains how to recover this subtorus.

Corollary 2.77. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E, and define
V := H1

B(A,Q). Let Φ: ΣE → Z≥0 be the signature defined in Lemma 2.72. ThenZ(MT(V ))◦ ⊆ TE has
cocharacter group equal to the smallest saturated Galois submodule of X∗(TE) = Z[Σ∨

E ] containing∑
σ∈ΣE

Φ(σ)σ∨.

Remark 0.5. In fact, a careful reading of the arguments in section 2.2 reveal that we are actually able
to compute an explicit power ofZ(MT(A)), which technically contains more information. For example,
one could provide a sufficient condition for Z(MT(A)) being disconnected.

It remains to compute MT(A)der. Under certain simplifying hypotheses given above, we work this out in
Proposition 2.150, which we restate below for convenience. Here L(A) is the Lefschetz group, which is
intuitively what MT(A) would be in the absence of exceptional classes.

Proposition 2.150. Fix a geometrically simple abelian variety A over a number field K. Suppose that
E = Z(EndK(A)) equals a CM field such that dimA = dimE. LettingΦ be the corresponding signature,
we further suppose that Φ(σ) = 1 for exactly two σ ∈ ΣE . Then we show the Mumford–Tate conjecture
holds for A, and

MT(A)der = L(A)der.

The argument proving Proposition 2.150 achieves something slightly stronger, but it is technical to state
and not required for our application. In short, the idea of the proof is to upgrade the fact that the real Lie
groups SU(2, 0) and SU(1, 1) are not isomorphic using the Galois action.

Now that we understand MT(A), we would like to upgrade this to an understanding of Gℓ(A). After the
Mumford–Tate conjecture, we (roughly speaking) need to understand the quotient Gℓ(A)/Gℓ(A)◦, whch
section 2.4.3 explains that this amounts to computing the Galois action on certain “Tate classes.” Thus, the
trick is to not look at a particular Galois representation ρℓ but instead a family of them. We can engineer
everything so that generic members of the family satisfy the properties needed for the rest of the present
subsection to go through. Then our last trick is ensure that some special members of the family are quotients
of a Fermat curve, where we know the Galois action! In this way, we can “transport” the understanding of
the Galois action afforded by the Fermat curves to a generic curve. Here is the toy result we are able to
prove.

Theorem 4.39. For given λ ∈ Q(ζ9) \ {0, 1}, define A to be the Jacobian of the proper curve C̃ with
affine chart y9 = x(x− 1)(x−λ). Suppose thatA does not have complex multiplication. Then we show
Kconn
A = Q(ζ9), and we compute ST(A).

0.2 Odds and Ends
In this section, we explain some existential properties of this article.
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0.2. ODDS AND ENDS SATO–TATE GROUPS OF GENERIC CURVES

0.2.1 What Is in This Article
Let’s take a moment to explain the layout. For the most part, the exposition is arranged topically (by chapter,
then section), and we have done our best to remove situations which would require forward references.

As a very brief overview, chapter 1 explains all the Hodge theory we will require and then ends by intro-
ducing the category of motives using Deligne’s theory of absolute Hodge classes. Chapter 2 explains ev-
erything we will want to know about abelian varieties, detailing in particular properties and computational
aspects of the ℓ-adic representation. Chapter 3 motivates and states the Sato–Tate conjecture for abelian
varieties and then indicates some tools used in the proof of some of the known cases. Lastly, Chapter 4
explains how to compute the ℓ-adic monodromy group and the periods of the Fermat curves.

Because there are certain subsections whose purpose may not immediately be clear in a linear read of
the article, we also take a moment to explain some of the stories present in the exposition.

• Computation: a major goal of the thesis is to compute ℓ-adic monodromy groups. Proposition 2.86 ex-
plains how to compute the center of the Mumford–Tate group, which the Mumford–Tate conjecture
relates to ℓ-adic monodromy. Our needed case of the Mumford–Tate conjecture is given in Propo-
sition 2.150; we note that Lemma 1.62 is a key input. From here, Proposition 2.157 explains how to
treat the disconnected parts of the group, and this is the discussion used in the example discussions
of sections 3.1.3 and 4.2.4. Our most complicated example is given in Proposition 4.79, where we
require the algorithmic discussion of Fermat periods discussed in (the rather painful) section 4.3.

• Motives: after explaining what is required about Hodge structures in section 1.1, we may put in quite
a bit of effort in section 1.3 to define a category of motives. These notions are then used to define the
motivic Galois group in section 2.4.4, which helps contextualize our monodromy groups (see Exam-
ple 1.140 and Remark 2.118) and the Mumford–Tate conjecture (see Conjecture 2.166). Motives are
then used in the proof of that the Mumford–Tate conjecture implies the Algebraic Sato–Tate conjec-
ture in Theorem 3.23.

• Complex multiplication: complex multiplication is defined for abelian varieties in section 2.1.5, where
it serves as a basic case for many of conjectures and computations; for example, the Fermat Jacobians
have complex multiplication. We point out that the Mumford–Tate conjecture is proven for abelian
varieties in Example 2.143 by combining Propositions 2.86 and 2.141; these propositions also explain
how to the ℓ-adic monodromy group in practice. A notable input is the Fundamental theorem of com-
plex multiplication, a version of which is stated in Theorem 2.136. Another one of its applications is to
prove the Sato–Tate conjecture in this case, which is done in Theorem 3.117.

0.2.2 What Is Not in This Article
What follows are some topics which potentially fit in with the theme of the current article, but the author did
not find adequate time to think through them in detail and write down their details. Any reader is encouraged
to email the author if they have ideas or want further explanation.

1. A discussion of rigid cohomology and Kedlaya’s algorithm to compute Frobenius matrices.

(a) This would allow us to computationally verify Theorem 4.33.
(b) This would allow us to form p-adic analogues of many parts of our computation, such as Propo-

sition 2.150.
(c) In some cases, one could supplement a p-adic approximation (e.g., via the Cartier–Manin ma-

trix) with the Fundamental theorem of complex multiplication to be able to compute Frobenius
matrices.

2. Vertical Sato–Tate considerations.

(a) It may be possible to prove a vertical Sato–Tate result for arbitrary Shimura curves, such as the
one considered in this article, imitating [Del80, Theorem 3.5.3] or [Kat88, Theorem 3.6].
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0.2. ODDS AND ENDS SATO–TATE GROUPS OF GENERIC CURVES

(b) Computation of the center part of the relevant monodromy group requires the computation of the
Frobenius at at least one point, such as a special point. As such, one could apply computations
from 1(c) above.

3. More on Fermat periods.

(a) It would be interesting to lower-bound the degree of the connected monodromy field of the Fer-
mat curve (as an extension of its endomorphism field). Note that Proposition 4.73 provides an
upper bound.

(b) In [GGL24, Theorem 9.3.13], the authors prove a weak version of a Gross–Koblitz formula overQ.
It should be possible to work with arbitrary characters α of constant weight using Theorem 4.33
(and the idea of Lemma 4.76).
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CHAPTER 1

A LITTLE HODGE THEORY

Once we explicitely know a Mumford-Tate group, we can let it work for
us.

—Moonen [Moo, (5.5)]

In this chapter, we define the notion of a Hodge structure as well as some related groups (the Mumford–
Tate group and the Hodge group). Our exposition follows Moonen’s unpublished notes [Moo; Moo99] and
Lombardo’s master’s thesis [Lom13, Chapter 3]. Throughout, we find motivation from geometry (and in
particular the cohomology of complex varieties), but we will review cohomology only later.

1.1 Hodge Structures

Cohomology of a variety frequently comes with some extra structure. On the étale site, we will later get
significant utility of the fact that étale cohomology is a Galois representaion. On the analytic site, the corre-
sponding structure is called a “Hodge structure.”

1.1.1 Definition and Basic Properties
Here is our defintion.

Definition 1.1 (Hodge structure). A Q-Hodge structure is a finite-dimensional vector space V ∈ VecQ
such that VC admits a decomposition

VC =
⊕
p,q∈Z

V p,qC

where V p,qC = V q,pC . For fixedm ∈ Z, if V p,qC ̸= 0 unless p+ q = m, we say that V is pure of weightm. We
let HSQ denote the category of Q-Hodge structures, where a morphism of Hodge structures is a linear
map preserving the decomposition over C. In the sequel, it may be helpful to note that one can bring
this definition down to Z as well.

Example 1.2. We give the “Tate twist” Q(1) := 2πiQ a Hodge structure of weight −2 where the only
nonzero entry is Q(1)−1,−1 = Q(1).
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1.1. HODGE STRUCTURES SATO–TATE GROUPS OF GENERIC CURVES

Example 1.3. Given a complex projective smooth variety X, the Betti cohomology HnB(X,Q) admits a
Hodge structure via the comparison isomorphisms: we find that

HnB(X,C) ≃
⊕
p+q=n

Hp,q(X),

where Hp,q(X) := Hq(X,ΩpX/C). This construction is even functorial: a morphism of complex projective
smooth varieties φ : X → Y induces a morphism of Hodge structures φ∗ : HnB(Y,Q)→ HnB(X,Q).

Perhaps one would like to check that the category HSQ is abelian. The quickest way to do this is to realize
HSQ as a category of representations of some group. The relevant group is the Deligne torus.

Notation 1.4 (Deligne torus). Let S := ResC/R Gm,C denote the Deligne torus. We also let w : Gm,R → S
denote the weight cocharacter given by w(r) := r ∈ C on R-points.

Remark 1.5. One can realize S more concretely as

S(R) =
{[

a b
−b a

]
∈ GL2(R) : a

2 + b2 ∈ R×
}
,

where R is an R-algebra. Indeed, there is a ring isomorphism from R ⊗R C to
{[

a b
−b a

]
: a, b ∈ R

}
by

sending 1⊗ 1 7→ [ 1 1 ] and 1⊗ i 7→
[
1
−1

]
. For example, one can define two characters z, z : SC → Gm,C

given by z :
[
a b
−b a

]
7→ a + bi and z :

[
a b
−b a

]
7→ a − bi so that (z, z) is an isomorphism SC → G2

m,C. Thus,
the character group X∗(S) is a free Z-module of rank 2 with basis {z, z}, and the action of complex
conjugation ι ∈ Gal(C/R) simply swaps z and z.

Example 1.6. The following cocharacters of S will be helpful.

• We define the weight cocharacter w : Gm,R → S given by w(r) := r ∈ C on R-points.

• We define the miniscule cocharacter µ : Gm,C → SC given by µ(z) := (z, 1) on C-points.

Here is the relevance of S to Hodge structures.

Lemma 1.7. Fix some V ∈ VecQ. Then a Hodge structure on V has equivalent data to a representation
h : S→ GL(V )R.

Proof. Remark 1.5 informs us that the character groupX∗(S) of group homomorphisms S→ Gm is a rank-2
free Z-module generated by z :

[
a b
−b a

]
7→ a + bi and z :

[
a b
−b a

]
7→ a − bi on C-points.1 Without too many

details, upon passing to the Hopf algebra, one is essentially looking for units inR
[
a, b,

(
a2 + b2

)−1
]

, of which
there are not many. Note that there is a Galois action by Gal(C/R) on these two characters {z, z}, given by
swapping them. Let ι ∈ Gal(C/R) denote complex conjugation, for brevity.

Now, a representation h : S → GL(V )R must have VC decompose into eigenspaces according to the
characters X∗(S), so one admits a decomposition

VC =
⊕

χ∈X∗(S)

V χC .

However, one also needs V ιχC = V χC because ι swaps {χ, ιχ}. By Galois descent, this is enough data to
(conversely) define a representation h : S→ Gal(V )R.

1 Alternatively, note one has an isomorphism (C ⊗R C)× ∼= C× × C× by sending (z, w) 7→ z ⊗ w. Then these two characters are
(z, w) 7→ z and (z, w) 7→ w.
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1.1. HODGE STRUCTURES SATO–TATE GROUPS OF GENERIC CURVES

To relate the previous paragraph to Hodge structures, we recall that X∗(S) is a rank-2 free Z-module,
so write χp,q := z−pz−q so that ιχp,q = χq,p. Setting V p,qC := V

χp,q

C now explains how to relate the previous
paragraph to a Hodge structure, as desired. ■

Remark 1.8. The weight of a Hodge structure on some V ∈ HSQ can be read off of h as follows: note
the weight cocharacter h ◦ w equals the (−m)th power map if and only if the weight is m.

Thus, we see immediately the category HSQ is abelian. Additionally, representation theory explains how to
take tensor products and duals.

Example 1.9. We see that V ∈ HSQ has V ∨ inherit a Hodge structure by setting (V ∨)p,q := (V −p,−q)∨.

Example 1.10. We are now able to define the Tate twists Q(n) := Q(1)⊗n, where negative powers indi-
cates taking a dual. In particular, one can check that Q(n)⊗Q(m) = Q(n+m) for any n,m ∈ Z.

Notation 1.11. For any Hodge structure V ∈ HSQ and integer m ∈ Z, we may write

V (m) := V ⊗Q(m).

We conclude this section by explaining one important application of Hodge structures.

Definition 1.12 (Hodge class). Fix a Q-Hodge structure V . A Hodge class of V is an element of V ∩V 0,0.

Remark 1.13. Looking at the construction in the proof of Lemma 1.7, we see that v ∈ V is a Hodge class
if and only if it is fixed by the corresponding representation h : S→ GL(V )R.

Example 1.14. Fix a complex projective smooth variety X of dimension n and some even nonnegative
integer 2p ≥ 0. Then one has Hodge classes given by elements of

H2p
B (X,Q) ∩Hp,p(X)(p).

Now, any algebraic subvariety Z ⊆ X of codimension k defines a linear functional on H2n−2k
dR (X,C)

defined by
ω 7→

∫
Z

ω,

which one can check is supported on Hk,k. Thus, by Poincaré duality, one finds thatZ produces a Hodge
cycle in H2k

B (X,Q).

In light of the above example, one has the following conjecture.

Conjecture 1.15 (Hodge). Fix a complex projective smooth varietyX. Then any Hodge class can be writ-
ten as a linear combination of classes arising from algebraic subvarieties.
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Remark 1.16. Here are some remarks on what is known about the Hodge conjecture, though it is ad-
mittedly little in this level of generality.

• The Hodge classes in H2
B(X)(1) come from algebraic subvarieties.

• The cup product of any two classes arising from algebraic subvarieties continues to be Hodge and
arises from algebraic subvarieties.

For example, if one can show that all Hodge classes are cup products of Hodge classes of codimension
1 on a variety X, then one knows the Hodge conjecture for X.

We are not interested in proving (cases of) the Hodge conjecture in this thesis, so we will not say much more.

1.1.2 Polarizations
Here is an important example of a morphism of Hodge structures.

Definition 1.17 (polarization). Fix a Hodge structure V ∈ HSQ pure of weight m given by the represen-
tation h : S → GL(V )R. A polarization on V is a morphism φ : V ⊗ V → Q(−m) of Hodge structures
such that the induced bilinear form on VR given by

⟨v, w⟩ := (2πi)mφ(h(i)v ⊗ w)

is symmetric and positive-definite. If V admits a polarization, we may say that V is polarizable, and we
let HSpolQ ⊆ HSQ be the full subcategory of polarizable Q-Hodge structures.

Remark 1.18. The positive-definiteness condition on ⟨·, ·⟩ implies that φ is non-degenerate. Indeed,
one may check non-degeneracy upon base-changing to R (because this is equivalent to inducing an
isomorphism of vector spaces V → V ∨, which can be checked by fixing some Q-bases and computing
a determinant). Then we see that ⟨·, ·⟩ being non-degenerate implies that

φ(v ⊗ w) = (2πi)−m⟨h(−i)v, w⟩

is non-degenerate because h(−i) : V → V is an isomorphism of vector spaces (because h(−i)4 = idV ).

Remark 1.19. The symmetry condition on ⟨·, ·⟩ implies a symmetry or alternating condition on φ. In-
deed, we compute

φ(v ⊗ w) = (2πi)−m⟨h(−i)v, w⟩
= (2πi)−m⟨w, h(−i)v⟩
= φ(h(i)w ⊗ h(−i)v)
= hQ(−m)(i)φ(w ⊗ h(−1)v)
= 1φ (w ⊗ (−1)mw)
= (−1)mφ(w ⊗ v).

Thus, φ is symmetric when m is even, and φ is alternating when m is odd.

Let’s give some constructions of polarizable Hodge structures.

Example 1.20. It will turn out that H1
B(A,Q) of any abelian variety A (over C) is polarizable, explaining

the importance of this notion for our application. Because we are reviewing abelian varieties in chap-
ter 2, we will not say more here.
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Example 1.21. If V is polarizable and pure of weight m, then any Hodge substructure W ⊆ V is still
polarizable (and pure of weight m). Indeed, one can simply restrict the polarization to W , and all the
checks go through. For example, positive-definiteness of ⟨·, ·⟩means ⟨v, v⟩ > 0 for all nonzero v ∈ V ,
so the same will be true upon restricting to W .

Example 1.22. If V andW are polarizable and pure of weightm, then V ⊕W is also polarizable. Indeed,
letting φ and ψ be polarizations on V and W respectively, we see that (φ⊕ ψ) defined by

(φ⊕ ψ)((v, w), (v′, w′)) := φ(v, v′) + ψ(w,w′)

succeeds at being a polarization: certainly it is a morphism of Hodge structures to Q(−m− n), and one
can check that the corresponding bilinear form on V ⊕W simply splits into a sum of the forms on V and
W and is therefore symmetric and positive-definite.

Example 1.23. If V andW are polarizable and pure of weightsm and n respectively, then V ⊗W is also
polarizable. Indeed, as in Example 1.22, let φ and ψ be polarizationson V andW respectively, and then
we find that (φ⊗ ψ) can be defined on pure tensors by

(φ⊗ ψ)(v ⊗ w, v′ ⊗ w′) := φ(v, v′)ψ(w,w′).

One checks as before that this gives a polarization on V ⊗W : we certainly have a morphism of Hodge
structures, and the corresponding bilinear form is the product of the bilinear forms on V and W and is
therefore symmetric and positive-definite.

Example 1.24. If V is polarizable and pure of weight m with polarization φ, and W ⊆ V is a Hodge
substructure (which is polarizable by Example 1.21), then we claim W⊥ (taken with respect to ⟨·, ·⟩) is
also a Hodge substructure and hence polarizable by Example 1.21. Well, for anyw′ ∈W⊥

R and z ∈ S(R),
we must check that h(z)w′ ∈W⊥

R . For this, we note that any w ∈W has

⟨w, h(z)w′⟩ = (2πi)−mφ(h(i)w ⊗ h(z)w′)

= hQ(−m)(1/z)(2πi)
−mφ(h(i/z)w ⊗ w′)

= hQ(−m)(1/z)⟨h(i/z)w,w′⟩
= 0,

where the last equality holds because W ⊆ V is a Hodge substructure.

Note that one does not expect any Hodge substructure to have a complement, so Example 1.24 is a very
important property of polarizations.

1.1.3 The Albert Classification

The presence of a polarization places strong restrictions on the endomorphisms of a Hodge structure. To
explain how this works, we begin by reducing to the irreducible case: given a polarizable Hodge structure
V ∈ HSQ, we begin by noting that V can be decomposed into irreducible Hodge substructures

V =

N⊕
i=1

V ⊕mi
i ,

14
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where Vi is an irreducible Hodge structure (i.e., an irreducible representation of S) and mi ≥ 0 is some
nonnegative integer. Then standard results on endomorphisms of representations tell us that

EndHS(V ) =

N⊕
i=1

Mmi(EndHS(Vi)),

and Schur’s lemma implies that EndHS(Vi) is a division algebra. The point of the above discussion is that we
may reduce our discussion of endomorphisms to irreducible Hodge structures. We remark that polarizability
of V implies that irreducible Hodge substructures continue to be polarizable by Example 1.21.

We are thus interested in classifying what algebras may appear asEndHS(V ) for irreducible Hodge struc-
tures V ∈ HSQ. To this end, we note that EndHS(V ) comes with some extra structure.

Definition 1.25 (Rosati involution). Let φ be a polarization on a Hodge structure V ∈ HSQ. The Rosati
involution is the function (·)† : EndQ(V )→ EndQ(V ) defined by

φ(dv ⊗ w) = φ(v ⊗ d†w)

for all d ∈ EndHS(V ) and v, w ∈ V .

Remark 1.26. In light of Remark 1.18, we see that d† is simply the adjoint of d : V → V associated to
φ viewed as a non-degenerate bilinear pairing. For example, we immediately see that (·)† induces a
well-defined linear operator EndQ(V )→ EndQ(V ).

Here are the important properties of the Rosati involution.

Lemma 1.27. Fix a Hodge structureV ∈ HSQ pure of weightmwith polarizationφ and associated Rosati
involution (·)†.

(a) If d ∈ EndHS(V ), then d† ∈ EndHS(V ).

(b) Anti-involution: for any d, e ∈ EndQ(V ), we have d†† = d and (de)† = e†d†.

(c) Positive: for any nonzero d ∈ EndQ(V ), we have tr dd† > 0.

Proof. We show the claims in sequence.

(a) This follows because φ is a morphism of Hodge structures. Formally, we would like to check that d†
commutes with the action of S. Let h : S→ GL(V )R be the representation corresponding to the Hodge
structure. Well, for any g ∈ S(C) and v, w ∈ V , we compute

φ(v ⊗ d†h(g)w) = φ(dv ⊗ h(g)w)
= hQ(−m)(g)φ

(
h(g−1)dv ⊗ w

)
∗
= hQ(−m)(g)φ

(
dh(g−1)v ⊗ w

)
= hQ(−m)(g)φ

(
h(g−1)v ⊗ d†w

)
= φ(v ⊗ h(g)d†w)

where ∗
= holds because d is a morphism of Hodge structures. The non-degeneracy of φ given in Re-

mark 1.18 now implies that d†h(g) = h(g)d†, so we are done.

(b) This is a purely formal property of adjoints.
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(c) The point is to reduce this to the case where V is a matrix algebra over R and (·)† is the transpose.
Indeed, this positivity can be checked after a base-change to R. As such, we let ⟨·, ·⟩ be the symmetric
positive-definite bilinear form assocated to φ defined by

⟨v, w⟩ := (2πi)−mφ(h(i)v ⊗ w)

for any v, w ∈ VR. We thus see that (·)† is also the adjoint operator with respect to ⟨·, ·⟩: we know

(2πi)−m⟨h(i)dv, w⟩ = (2πi)−m⟨h(i)v, d†w⟩

for any v, w ∈ VR, which is equivalent to always having ⟨dv, w⟩ = ⟨v, d†w⟩. Now, we may fix an or-
thornomal basis of VR with respect to ⟨·, ·⟩ so that EndR(VR) is identified with Mn(RdimV ) and (·)† is
identified with the transpose. Then tr dd⊺ is the sum of the squares of the matrix entries of d and is
therefore positive when d is nonzero. ■

We are now ready to state the Albert classification, which classifies division algebras over Q equipped with
a positive anti-involution.

Theorem 1.28 (Albert classification). Let D be a division algebra over Q equipped with a Rosati invo-
lution (·)† : D → D. Further, let F be the center of D, and let F † be the subfield fixed by (·)†. Then D
admits exactly one of the following types.

• Type I: D is a totally real number field so that D = F = F †, and (·)† is the identity.

• Type II: D is a totally indefinite quaternion division algebra over F where F = F †, and (·)† corre-
sponds to the transpose on D ⊗Q R ∼=M2(R).

• Type III: D is a totally definite quaternion division algebra over F where F = F †, and (·)† corre-
sponds to the canonical involution on D ⊗Q R ∼= H (where H is the quaternions).

• Type IV: D is a division algebra over F , where F is a totally imaginary quadratic extension of F †,
and (·)† is the complex conjugation automorphism of F . In other words, F is a CM field, and F † is
the maximal totally real subfield.

Proof. This is a rather lengthy computaion. We refer to [Mum74, Section 21, Application I]. ■

1.2 Monodromy Groups

In this section, we define the Mumford–Tate group and the Hodge group.

1.2.1 The Mumford–Tate Group
We are now ready to define the Mumford–Tate group. Intuitively, it is the monodromy group of the associ-
ated representation of a Hodge structure.

Definition 1.29 (Mumford–Tate group). For some V ∈ HSQ, the Mumford–Tate group MT(V ) is the
smallest algebraic Q-group containing the image of the corresponding representation h : S→ GL(V )R.

Remark 1.30. Because S is connected, we see that h is also connected. Namely, MT(V )◦ ⊆ MT(V ) will
be an algebraic Q-group containing the image of h if MT(V ) does too, so equality is forced.
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Example 1.31. Suppose that V ∈ HSQ is pure of weight m.

• If m = 0, then we claim that MT(V ) ⊆ SL(V ). It is enough to check that h outputs into SL(V ).

• If m ̸= 0, then we claim that MT(V ) contains Gm,Q. It is enough to check that MT(V )C contains
Gm,C. Well, for any z ∈ C h(z, z) acts on the component V p,q ⊆ VC by z−pz−q = z−m, so MT(V )C
must contain the scalar z−m for all z ∈ C. The conclusion follows.

Because Hodge structures are defined after passing to C, it will be helpful to have a definition of MT(V ) as
a monodromy group corresponding to a morphism over C.

Lemma 1.32. Fix V ∈ HSQ, and let h : S→ GL(V )R be the corresponding representation. Then MT(V )
is the smallest algebraic Q-subgroup of GL(V ) such that MT(V )C contains the image of hC ◦ µ.

Proof. Let M ′ be the smallest algebraic Q-subgroup of GL(V ) containing hC ◦ µ. We want to show that
M ′ =M .

• To show M ′ ⊆ MT(V ), we must show that MT(V )C contains the image of hC ◦ µ. Well, MT(V )R
contains the image of h, so MT(V )C contains the image of hC, which contains the image of hC ◦ µ.

• ShowingMT(V ) ⊆M ′ is a little harder. We must show thatM ′ contains the image of h : S→ GL(V )R.
It is enough to check that M ′ contains the image of hC because then we can descend everything to R,
and because C is algebraically closed, we see that C-points are certainly dense enough so that it is
enough to chek that M ′(C) contains the image h(S(C)).
The point is thatM ′ is defined over Q, soM ′

C is stable under the action of complex conjugation, which
we denote by ι. Similarly, h being defined over R guarantees that it commutes with complex conjuga-
tion. In particular, we already know that M ′ contains the points of the form h(z, 1) for (z, 1) ∈ S(C).
Thus, we see that M ′ also contains the points

ι(h(z, 1)) = h(ι(z, 1)) = h(1, z)

because everything is defined over R. (This last equality follows by tracking through the action of ι on
S(C).) We conclude that M ′ contains h(z, w) for any (z, w) ∈ S(C), so we are done. ■

Roughly speaking, the point of the group MT(V ) is that MT(V ) is an algebraic Q-group remembering ev-
erything one wants to know about the Hodge structure. One way to rigorize this is as follows.

Proposition 1.33. Fix V ∈ HSQ. Suppose T ∈ HSQ can be written as

T =
N⊕
i=1

(
V ⊗mi ⊗ (V ∨)⊗ni

)
,

wheremi, ni ≥ 0 are nonnegative integers. ThenW ⊆ T is a Hodge substructure if and only if the action
of MT(V ) on T stabilizes W .

Proof. For eachW ∈ HSQ, we let hW denote the corresponding representation. In the backwards direction,
we note that MT(V ) stabilizing W implies that h(s) stabilizes WR for any s. We can thus view WR ⊆ TR
as a subrepresentation of S, so taking eigenspaces reveals that W can be given the structure of a Hodge
substructure of T .

The converse will have to use the construction ofT . Indeed, suppose thatW ⊆ T is a Hodge substructure,
and let M ⊆ GL(V ) be the smallest algebraic Q-group stabilizing W ⊆ T . We would like to show that
MT(V ) ⊆ M . By definition of MT(V ), it is enough to show that h factors through MR, meaning we must
show that h(s) stabilizes W for each s ∈ S. Well, h(s) will act by characters on the eigenspaces W p,q

C ⊆WC,
so h(s) does indeed stabilize W . ■
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Corollary 1.34. Fix V ∈ HSQ. Suppose T ∈ HSQ can be written as

T =

N⊕
i=1

(
V ⊗mi ⊗ (V ∨)⊗ni

)
,

wheremi, ni ≥ 0 are nonnegative integers. Then t ∈ T is a Hodge class if and only if it is fixed byMT(V ).

Proof. We apply Proposition 1.33 to Q(0) ⊕ T . Then we note that spanQ{(1, t)} ⊆ Q(0) ⊕ T is a Hodge
substructure if and only if it is preserved by MT(V ). We now tie each of these to the statement.

• On one hand, we see that being a one-dimensional Hodge substructure implies that (1, t) must have
bidegree (p, p) for some p ∈ Z, but we have to live in (0, 0) because our 1 lives in Q(0). Thus, this is
equivalent to being a Hodge class.

• On the other hand, being preserved by MT(V ) implies that MT(V ) acts by scalars on (1, t), but MT(V )
acts trivially on Q(0), so all the relevant scalars must be 1. Thus, this is equivalent to being fixed by
MT(V ). ■

We thus see that understanding the Mumford–Tate group is important from the perspective of the Hodge
conjecture (Conjecture 1.15). It will be helpful to note that this characterizes MT(V ) in some cases.

Proposition 1.35. Fix a field K of characteristic 0. Let H ⊆ GLn,K be a reductive subgroup. Suppose
H ′ is the algebraic Q-subgroup of GLn,K defined by fixing all H-invariants occuring in any tensor rep-
resentation

T =

N⊕
i=1

(
V ⊗mi ⊗ (V ∨)⊗ni

)
,

where mi, ni ≥ 0 are nonnegative integers. Then H = H ′.

Proof. NoteH ⊆ H ′ is automatic, so the main content comes from proving the other inclusion. Proving this
would step into the (rather deep) theory of algebraic groups, which we will avoid. Instead, we will mention
that the key input is Chevalley’s theorem, which asserts that any subgroup H of G is the stabilizer of some
line in some representation ofG. We refer to [Del18, Proposition 3.1]; see also [Mil17, Theorem 4.27]. ■

Corollary 1.36. Fix V ∈ HSQ such that MT(V ) is reductive. Then MT(V ) is exactly the algebraic Q-
subgroup of GL(V ) fixing all Hodge classes.

Proof. Corollary 1.34 explains that the Hodge classes are exactly the vectors fixed byMT(V ), so this follows
from Proposition 1.35. ■

Remark 1.37. Corollary 1.36 is true without a reductivity assumption (see [Del18, Proposition 3.4]),
but we will not need this in our applications. (On the other hand, one does not expect Proposition 1.35
to be true without any assumptions on H.) Namely, we will be interested in abelian varieties, whose
Hodge structures are polarizable by Example 1.20, and we will shortly see that this implies that MT(V )
is reductive in Lemma 1.44.
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1.2.2 The Hodge Group
In computational applications, it will be frequently be easier to compute a smaller monodromy group related
to MT(V ).

Definition 1.38 (Hodge group). Fix V ∈ HSQ of pure weight. Then the Hodge group Hg(V ) is the small-
est algebraic Q-subgroup GL(V ) containing the image of h|U, where U ⊆ S is defined as the kernel of
the norm character zz : S→ Gm,R.

Remark 1.39. Even though z and z are only defined as characters SC → Gm,C, the norm character zz is
defined as a character S→ Gm,R because it is fixed by complex conjugation. For example, we see that

U(R) = {z ∈ C : |z| = 1}.

Thus, we see that U stands for “unit circle.” While we’re here, we remark that U(C) ⊆ S(C) is identified
with the subset {(z, 1/z) : z ∈ C×}.

Remark 1.40. The same argument as in Remark 1.30 shows that the connectivity of U implies the con-
nectivity of Hg(V ).

Intuitively, Hg(V ) removes the scalars that might live in MT(V ) by Example 1.31. These scalars are an ob-
struction to MT(V ) being a semisimple group, and we will see in Proposition 2.67 that Hg(V ) will thus
frequently succeed at being semisimple. Let’s rigorize this discusison.

Lemma 1.41. Fix V ∈ HSQ pure of weightm, and let h : S→ GL(V )R be the corresponding representa-
tion.

(a) We have Hg(V ) ⊆ SL(V ).

(b) Thus,

MT(V ) =

{
Hg(V ) if m = 0,

Gm,Q Hg(V ) if m ̸= 0,

where the almost direct product in the second case is given by embedding Gm,Q → GL(V ) via
scalars.

Proof. We show the claims in sequence.

(a) It is enough to check that SL(V ) contains the image of h|U. In other words, we want to check that
deth(z) = 1 for all z ∈ U(R). By extending scalars, it is enough to compute the determinant as an
operator on VC. For this, we note that h(z) acts on the component V p,q ⊆ VC by the scalar z−pz−q, so
the determinant of h(z) acting on V p,q ⊕ V q,p is(

z−pz−q
)dimV p,q

·
(
z−qz−p

)dimV q,p

= (zz)−(p+q) dimV p,q

because dimV p,q = dimV q,p. This simplifies to (zz)−
1
2m dim(V p,q⊕V q,p) because V is pure of weightm,

so the result follows by summing over all pairs (p, q).2

(b) Before doing anything serious, we remark thatGm,Q Hg(V ) is in fact an almost direct product. Namely,
we should check that the intersectionGm,Q∩Hg(V ) is finite (even overC). Well, by (a),Hg(V ) ⊆ SL(V ).
Thus, it is enough to notice that Gm,Q ∩ SL(V ) is finite because V is finite-dimensional over C: over C,

2 If m is even, this argument does not work verbatim for the component (m/2,m/2). Instead, one can compute the determinant of
h(z) acting on V m/2,m/2 directly as (zz)−

1
2
m dimV m/2,m/2

.
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the intersection consisits of scalar matrices λ idV such that λdimV = 1, so the intersefction is the finite
algebraic group µdimV .

We now proceed with the argument. BecauseU ⊆ S, we of course haveHg(V ) ⊆ MT(V ), and ifm ̸= 0,
then Example 1.31 implies that Gm,Q ⊆ MT(V ) so that Gm,Q Hg(V ) ⊆ MT(V ). It is therefore enough
to check the given equalities after base-changing to R. Namely, using Lemma 1.32, we should check
that Hg(V )(C) contains the image of hC ◦µwhenm = 0, and C× Hg(V )(C) contains the image of hC ◦µ
when m ̸= 0. Well, for any z ∈ C×, we may write z = reiθ where r ∈ R+ and θ ∈ R. Then we compute

h(µ(z)) = h(z, 1)

= h
(
reiθ, 1

)
= h

(√
reiθ/2,

√
re−iθ/2

)
h

(√
reiθ/2,

1√
reiθ/2

)
.

Now, h
(√
reiθ/2,

√
re−iθ/2

)
is a scalar as computed in Example 1.31, and

(√
reiθ/2, 1√

reiθ/2

)
lives in

U(C) = {(z, w) : zw = 1}. Thus, we see thath(µ(z)) is certainly contained inC× Hg(V )(C), completing
the proof in the case m ̸= 0. In the case where m = 0, the scalar h

(√
reiθ/2,

√
re−iθ/2

)
is actually the

identity, so we see that h(µ(z)) ∈ Hg(V )(C). ■

It is worthwhile to note that there is also a tensor characterization of Hg(V ).

Proposition 1.42. Fix V ∈ HSQ of pure weight. Suppose T ∈ HSQ is of pure weight n and can be written
as

T =

N⊕
i=1

(
V ⊗mi ⊗ (V ∨)⊗ni

)
,

wheremi, ni ≥ 0 are nonnegative integers. ThenW ⊆ T is a Hodge substructure if and only if the action
of Hg(V ) on T stabilizes W .

Proof. Of course, ifW ⊆ T is a Hodge substructure, thenW is preserved by the action of MT(V ), soW will
be preserved by the action of Hg(V ) ⊆ MT(V ).

Conversely, if Hg(V ) stabilizes W , then we would like to show that W ⊆ T is a Hodge substructure,
which by Proposition 1.33 is the same as showing that MT(V ) stabilizes W . For this, we use Lemma 1.41,
which tells us that MT(V ) ⊆ Gm,Q Hg(V ). Namely, because Hg(V ) already stabilizesW , it is enough to note
that of course the scalars Gm,Q stabilize the subspace W ⊆ T . ■

Corollary 1.43. Fix an irreducible Hodge structure V ∈ HSQ of pure weight. Observe that the inclusion
Hg(V ) ⊆ GL(V ) makes V into a representation of Hg(V ). Then V is irreducible as a representation of
Hg(V ).

Proof. By Proposition 1.42, a Hg(V )-submodule is a Hodge substructure, but there are no nonzero proper
Hodge substructures because V is an irreducible Hodge structure. ■

1.2.3 Bounding with Known Classes
Here, we use endomorphisms and the polarization to bound the size of MT(V ) and Hg(V ).

Lemma 1.44. Fix a polarizable Hodge structure V ∈ HSQ of pure weight. Then MT(V ) and Hg(V ) are
reductive.
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Proof. By [Mil17, Corollary 19.18], it is enough to find faithful semisimple representations of MT(V ) and
Hg(V ). We claim that the inclusionsMT(V ) ⊆ GL(V ) andHg(V ) ⊆ GL(V ) provide this representation: cer-
tainly this representation is faithful, and it is faithful because any subrepresentation is a Hodge substructure
by Propositions 1.33 and 1.42. ■

Lemma 1.45. Fix V ∈ HSQ. Let D := EndHS(V ) be the endomorphism algebra of V . Then MT(V ) is an
algebraic Q-subgroup of

GLD(V ) := {g ∈ GL(V ) : g ◦ d = d ◦ g for all d ∈ D}.

Proof 1. Noting that GLD(V ) is an algebraic Q-group (it is a subgroup of GL(V ) cut out by the equations
given by commuting with a basis of D), it is enough to show that GLD(V ) contains the image of the repre-
sentation h : S→ GL(V )R. Well, by definition D consists of morphisms commuting with the action of S, so
the image of h must commute with D. ■

Proof 2. Motivated by Corollary 1.36, one expects to find Hodge classes corresponding to the condition
of commuting with D. Well, there is a canonical isomorphism V ⊗ V ∨ → EndQ(V ) of S-representations,
so by tracking through how representations of S correspond to Hodge structures, we see that f : V → V
preserves the Hodge structure if and only if it is fixed by S, which is equivalent to the corresponding element
f ∈ V ⊗ V ∨ being fixed by S, which is equivalent to f being a Hodge class by Remark 1.13. This completes
the proof of the lemma upon comparing with Corollary 1.34. ■

Remark 1.46. Of course, we also have Hg(V ) ⊆ GLD(V ) because Hg(V ) ⊆ MT(V ).

Lemma 1.47. Fix V ∈ HSQ pure of weight m with polarization φ. Then MT(V ) is an algebraic Q-
subgroup of

GSp(φ) := {g ∈ GL(V ) : φ(gv ⊗ gw) = λ(g)φ(v ⊗ w) for fixed λ(g) ∈ Q}.

Proof 1. Once again, we note that GSp(φ) is an algebraic Q-group cut out by equations of the form

φ(gv ⊗ gw)φ(v′ ⊗ w′) = φ(v ⊗ w)φ(gv′ ⊗ gw′)

as v, w, v′, w′ ∈ V varies over a basis. Thus, it is enough to check that GSp(φ) contains the image of h : S→
GL(V )R. Well, for any z ∈ S(R), we note that

φ(h(z)⊗ h(z)w) = hQ(−m)(z)φ(v ⊗ w)

for any v, w ∈ VR because φ is a morphism of Hodge structures. ■

Proof 2. Once again, Corollary 1.36 tells us to expect the polarization to produce a Hodge class correspond-
ing to the above equations cutting out MT(V ).

This construction is slightly more involved. We begin by constructing two Hodge classes.

• Note φ : V ⊗ V → Q(−m) is a morphism of Hodge structrures, so it is an S-invariant map and hence
given by an S-invariant element of V ∨ ⊗ V ∨(−m). Thus, φ ∈ V ∨ ⊗ V ∨(−m) is a Hodge class by
Remark 1.13.

• Because φ is non-degenerate, it induces an isomorphism V (m) → V ∨. Now, EndQ(V ) is canonically
isomorphic to V ⊗ V ∨, which we now see is isomorphic (via φ) to V ⊗ V (m). We let C ∈ V ⊗ V (m)
be the image of idV ∈ EndQ(V )S in V ⊗ V (m), which we note is a Hodge class again by Remark 1.13.
(Here, C stands for “Casimir.”)
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In total, we see that we have produced a Hodge classC ⊗φ. It remains to show that g ∈ GL(V ) fixingC ⊗φ
implies that g ∈ GSp(φ), which will complete the proof by Corollary 1.34.

Well, suppose g(C ⊗ φ) = C ⊗ φ. Note g(C ⊗ φ) = gC ⊗ gφ, which can only equal C ⊗ φ ∈ (V ⊗ V )⊗Q
(V ∨ ⊗ V ∨) if there is a scalar λ ∈ Q× such that gC = λC and gφ = λ−1φ. This second condition amounts to
requiring

φ
(
g−1v ⊗ g−1w

)
= λ−1φ(v ⊗ w)

for any v, w ∈ V , which rearranges into g ∈ GSp(φ). ■

Remark 1.48. The construction given in the above proof is described in [GGL24, Remark 8.3.4]. They
also show the converse claim that any g ∈ GSp(φ) fixes C ⊗ φ.

To see this, one has to do an explicit computation withC. For this, let {v1, . . . , vn}be a basis ofV , and
{v∗1 , . . . , v∗n} be the dual basis of V (m) taken with respect toφ. ThenC =

∑n
i=1 vi⊗v∗i . Similarly, we see

that {gv1, . . . , gvn} is a basis of V with a dual basis {(gv1)∗, . . . , (gvn)∗} so thatC =
∑n
i=1(gvi)⊗ (gvi)

∗.
Now, on one hand, if g has multiplier λ, then gφ = λ−1φ. On the other hand, φ(gvi, gv∗j ) = λ1i=j , so
(gvi)

∗ = λ−1gv∗i , which allows us to compute gC = λC. In total, g(C ⊗ φ) = C ⊗ φ.

Remark 1.49. One can check thatGSp(φ)does not depend on the choice of polarization. Roughly speak-
ing, the point is that the choice of a different polarization amounts to some choice of an element inD×

which we can track through.

In light of the above two lemmas, we pick up the following notation.

Notation 1.50. Fix V ∈ HSQ pure of weight m with D := EndHS(V ) and polarization φ. Then we define

GSpD(φ) := GLD(V ) ∩GSp(φ).

By Lemmas 1.45 and 1.47, we see that MT(V ) ⊆ GSpD(φ).

Remark 1.51. In “most cases,” we expect that generic Hodge structures V should have the equality
MT(V ) = GLD(V ), and if V admits a polarization φ, then we expect the equality MT(V ) = GSpD(φ).
To rigorize this intuition, one must discuss Shimura varieties, which we will avoid doing for now.

We can also apply Lemmas 1.45 and 1.47 to bound Hg(V ).

Notation 1.52. Fix V ∈ HSQ pure of weight m with D := EndHS(V ) and polarization φ. Then we define

Sp(φ) := {g ∈ GL(V ) : φ(gv ⊗ gw) = φ(v ⊗ w)},

and
SpD(φ) := GLD(V ) ∩ Sp(φ).

Remark 1.53. Let’s explain why Hg(V ) ⊆ SpD(φ). By Lemma 1.45, we see that Hg(V ) ⊆ MT(V ) ⊆
GLD(V ), so it remains to check that Hg(V ) ⊆ Sp(φ). Proceeding as in Lemma 1.47, it is enough to
check that the image of h|U lives in Sp(φ)R, for which we note that any z ∈ U(R) has

φ(h(z)v ⊗ h(z)w) = hQ(−m)(z)φ(v ⊗ w),

but hQ(−m)(z) = |z|
−2m

idQ(−m) is the identity because z ∈ U(R).

Thus far, our tools have been upper-bounding MT(V ) and Hg(V ). Here is a tool which sometimes provides
a lower bound.
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Lemma 1.54. Fix V ∈ HSQ of pure weight, and let D := EndHS(V ) be the endomorphism algebra of V .
Then

D = EndQ(V )MT(V ) = EndQ(V )Hg(V ).

Proof. As discussed in the second proof of Lemma 1.45, the Hodge calsses ofEndQ(V ) ∼= V ⊗V ∨ are exactly
the endomorphisms of the Hodge structure, so the first equality follows from Corollary 1.34.

The second equality is purely formal: note that the scalar subgroup Gm,Q ⊆ GL(V ) acts trivially on V ⊗
V ∨ ∼= EndQ(V ). Thus, we use Lemma 1.41 to compute

EndQ(V )Hg(V ) = EndQ(V )Gm,Q Hg(V )

= EndQ(V )Gm,Q MT(V )

= EndQ(V )MT(V ),

as required. ■

Remark 1.55. To understand Lemma 1.54 as providing a lower bound, note that ifMT(V ) is “too small,”
then there will be many invariant elements in EndQ(V )MT(V ), perhaps exceedingD. On the other hand,
the upper bound MT(V ) ⊆ GLD(V ) corresponds to the inequality D ⊆ EndQ(V )MT(V ).

1.2.4 Sums
For later use in computations, it will be helpful to have a few remarks on computing the Mumford–Tate and
Hodge groups of a sum. Here the Hodge group really shines: given two Hodge structures V1, V2 ∈ MT(V )
pure of nonzero weight, Lemma 1.41 tells us thatMT(V1) andMT(V2) andMT(V1⊕V2) are all equal to some
smaller group times scalars. It will turn out to be reasonable to hope that

Hg(V1 ⊕ V2)
?
= Hg(V1)×Hg(V2),

but then the introduction of scalars makes the hope MT(V1 ⊕ V2)
?
= MT(V1)×MT(V2) unreasonable!

With this in mind, let’s begin to study Hodge groups of sums of Hodge structures.

Lemma 1.56. Fix Hodge structures V1, . . . , Vk ∈ HgQ pure of the same weight.

(a) The subgroup Hg(V1 ⊕ · · · ⊕ Vk) ⊆ GL(V1 ⊕ · · · ⊕ Vk) is contained in Hg(V1) × · · · × Hg(Vk) ⊆
GL(V1 ⊕ · · · ⊕ Vk).

(b) For each i, the projection map pri : Hg(V1 ⊕ · · · ⊕ Vk)→ Hg(Vi) is surjective.

Proof. For each i, let hi denote the representations of S corresponding to the Hodge structures Vi, and let
h := (h1, . . . , hk) be the representation S → GL(V ) where V := V1 ⊕ · · · ⊕ Vk. We show the claims in
sequence.

(a) We must show that Hg(V1)× · · · ×Hg(Vk) contains the image of h|U. Well, for any z ∈ U(R) and index
i, we see that hi(z) ∈ Hg(Vi), so

h(z) = diag(h1(z), . . . , hk(z))

lives in Hg(V1)× · · · ×Hg(Vk), as required.

(b) Fix an index i. It is enough to show that smallest algebraic Q-group containing the image of pri also
contains the image of hi|U. Well, by definition of h, we see that hi is equal to the composite

S h→ GL(V1)× · · · ×GL(Vk)
pri→ GL(Vi),

from which the claim follows. ■
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Remark 1.57. All the claims in Lemma 1.56 are true if Hg is replaced by MT everywhere. One simply
has to replace U with S in the proof.

Lemma 1.56 makes Hg(V1 ⊕ V2)
?
= Hg(V1) × Hg(V2) appear to be a reasonable expectation. However, we

note that we cannot in general expect this to be true: roughly speaking, there may be Hodge cycles onV1⊕V2
which are not seen on just V1 or V2. Here is a degenerate example.

Example 1.58. Fix a Hodge structure V ∈ HSQ of pure weight, and let n ≥ 1 be a positive integer. Let-
ting h : S → GL(V )R be the corresponding representation, we get another Hodge structure hn : S →
GL (V ⊕n). We claim that the diagonal embedding of Hg(V ) into GL(V )n ⊆ GL (V ⊕n) induces an iso-
morphism

Hg(V )→ Hg
(
V ⊕n) .

On one hand, we note that Hg (V ⊕n) lives inside the diagonal embedding of Hg(V ): note Hg (V ⊕n) ⊆
Hg(V )n by Lemma 1.56, and Hg (V ⊕n) must live inside the diagonal embedding of GL(V ) ⊆ GL (V ⊕n)
becuase all components of hn : S → GL (V ⊕n)R are equal. On the other hand, the surjectivity of the
projections Hg (V ⊕n) → Hg(V ) from Lemma 1.56 implies that Hg (V ⊕n) must equal the diagonal em-
bedding of Hg(V ) (instead of merely being contained in it).

One can upgrade this example as follows.

Lemma 1.59. Fix Hodge structures V1, . . . , Vk ∈ HgQ pure of the same weight, and let m1, . . . ,mk ≥ 1

be positive integers. Then the diagonal embeddings∆i : GL(Vi)→ GL
(
V ⊕mi
i

)
induce an isomorphism

Hg(V1 ⊕ · · · ⊕ Vk)→ Hg
(
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k

)
.

Proof. We proceed in steps. The proof is a direct generalization of the one given in Example 1.58. For
each i, let hi : S → GL(Vi)R be the representation corresponding to the Hodge structure, and set h :=
(hm1

1 , . . . , hmk

k ).

1. We claim that Hg
(
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k

)
lives in the image of (∆1, . . . ,∆k). Indeed, the image is some

algebraic Q-subgroup of GL
(
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k

)
, so we would like to check that this algebraic Q-

subgroup contains the image of h|U. Well, for any z ∈ U(R), we see that

h(z) = (∆1(h1(z)), . . . ,∆k(hk(z)))

lives in the image of (∆1, . . . ,∆k).

2. For each i, let Hi be the projection of Hg
(
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k

)
onto one of the Vi components as in

Lemma 1.56; the choice of Vi component does not matter by the previous step. By Lemma 1.56, we
see that Hi = Hg(Vi). However, the previous step now requires

Hg
(
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k

)
= ∆1(H1)× · · · ×∆k(Hk),

so we are done. ■

Remark 1.60. As usual, this statement continues to be true for MT replacing Hg. One can either see
this by applying Lemma 1.41 or by redoing the proof with S replacing U.

The point of the lemma is that we can reduce our computation of Hodge groups to Hodge structures which
are the sum of pairwise non-isomoprhic irreducible Hodge strucutures. Let’s make a few remarks about this
situation for completeness. Let V1, . . . , Vk be pairwise non-isomorphic irreducuble Hodge structures which
are pure of the same weight, and set V := V1 ⊕ · · · ⊕ Vk. Here are some remarks on Hg(V1 × · · · × Vk),
summarizing everything we have done so far.
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• We know that Hg(V ) ⊆ Hg(V1)× · · · ×Hg(Vk).

• We know that the projections of Hg(V ) onto each factor Hg(Vi) are surjective.

• For each i, we may view Vi as a representation of Hg(Vi) via the inclusion Hg(Vi) ⊆ GL(Vi). Then
Corollary 1.43 tells us that Vi is an irreducible representation of Hg(Vi).

• One can also apply Lemma 1.54 to the full space V to see that

EndHg(V )(V ) = EndHS(V )

=

k∏
i=1

EndHS(Vi)

=

k∏
i=1

EndHg(Vi)(Vi).

The following results take the above situation and provides some criteria to have

Hg(V )
?
= Hg(V1)× · · · ×Hg(Vk).

Before stating the lemma, we remark that all groups in sight are connected by Remark 1.40, and we already
have one inclusion by Lemma 1.56, so it suffices to pass to an algebraic closure and work with Lie algebras
instead of the Lie groups. The following lemma is essentially due to Ribet [Rib76, pp. 790–791].

Lemma 1.61 (Ribet). Work over an algebraically closed field of characteristic 0. Let V1, . . . , Vk be finite-
dimensional vector spaces, and let g be a Lie subalgebra of gl(V1) × · · · × gl(Vk). For each index i, let
pri : (gl(V1)× · · · × gl(Vk))→ gl(Vi) be the ith projection, and set gi := pri(g). Suppose the following.

(i) Each gi is nonzero and simple.

(ii) For each pair (i, j) of distinct indices, the projection map (pri,prj) : g→ gi × gj is surjective.

Then g = g1 × · · · × gk.

Proof. We proceed by induction on k. If k ∈ {0, 1}, then there is nothing to say. For the induction, we now
assume that k ≥ 2 and proceed in steps.

1. For our set-up, we let J be the kernel of prk : g → gn. By definition, J ⊆ g1 × · · · × gk takes the form
I ⊕ 0 for some subspace I ⊆ g1 × · · · × gk−1. Formally, one may let I be the set of vectors v such that
(v, 0) ∈ J and argue for the equality J = I ⊕ 0 because all vectors in J take the form (v, 0).
The main content of the proof goes into showing that I is actually an ideal. To set ourselves up to prove
this claim, let n ⊆ g1×· · ·×gk−1 denote its normalizer. We would like to show that n = g1×· · ·×gk−1,
for which we use the inductive hypothesis.

2. For each pair of distinct indices i, j < k, we claim that the projection (pri,prj) : n→ gi×gj is surjective.
Well, choose Xi ∈ gi and Xj ∈ gj , and we need to find an element in n with Xi and Xj at the correct
coordinates.
To begin, we note that (ii) yields some (X1, . . . , Xk) ∈ g such that with the correctXi ∈ gi andXj ∈ gj
coordinates. We would like to show thatX := (X1, . . . , Xk−1) lives in n, which will complete this step.
Well, select any Y := (Y1, . . . , Yk−1) in I, and we see (Y, 0) ∈ J , so

[(X,Xk), (Y, 0)] = ([X,Y ], 0)

lives in J too (recall J is an ideal), so we conclude [X,Y ] ∈ I. We conclude that X normalizes I, so
X ∈ n.
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3. We take a moment to complete the proof that I ⊆ g1 × · · · × gk−1 is an ideal. It is enough to check
that the normalizer n of I in g1 × · · · × gk−1 equals all of g1 × · · · × gk−1. For this, we use the inductive
hypothesis. The previous step shows that gi = pri(n) for each i, and we know by (i) that each gi is
already nonzero and simple. Lastly, the previous step actually checks condition (ii) for the inductive
hypothesis, completing the proof that n = g1 × · · · × gk−1.

4. We claim I = g1 × · · · × gk−1. Because I ⊆ g1 × · · · × gk−1 is an ideal of a sum of simple algebras, we
know that

I =
⊕
i∈S

gi

for some subset S ⊆ {1, . . . , k − 1} of indices. Thus, to achieve the equality I ?
= g1 × · · · × gk−1, it

is enough to check that each projection pri : I → gk−1 is surjective. Unravelling the definition of I, it
is enough to check that each Xi ∈ gi has some (X1, . . . , Xk) ∈ g with the correct Xi coordinate and
Xk = 0. This last claim follows from hypothesis (ii) of g!

5. We now finish the proof of the lemma. Certainlyg ⊆ g1×· · ·×gk, so it is enough to compute dimensions
to prove the equality. By the short exact sequence

0→ J → g→ gn → 0,

it is enough to show that dim J = dim g1 + · · · + dim gk−1. However, this follows from the previous
step because dim J = dim I. ■

In practice, it is somewhat difficult to check (ii) of Lemma 1.61. Here is an automation.

Lemma 1.62 (Moonen–Zarhin). Work over an algebraically closed field of characteristic 0. LetV1, . . . , Vk
be finite-dimensional vector spaces, and let gbe a Lie subalgebra of gl(V1)×· · ·×gl(Vk). For each index i,
let pri : (gl(V1)×· · ·×gl(Vk))→ gl(Vi) be the ith projection, and set gi := pri(g). Suppose the following.

(i) Each gi is nonzero and simple.

(ii) Fix a simple Lie algebra l, and define I(l) := {i : gi ∼= l}. If #I(l) > 1, we require the following to
hold.

• All automorphisms of l are inner.
• One can choose isomorphisms l → gi for each i ∈ I(l) such that the representations l →
gi → gl(Vi) are all isomorphic.

• The diagonal inclusion ∏
i∈I(l)

Endgi
(Vi)→ Endg

( ⊕
i∈I(l)

Vi

)
is surjective.

Then g = g1 × · · · × gk.

Proof. We will show that (ii) in the above lemma implies (ii) of Lemma 1.61, which will complete the proof.
We will proceed by contraposition in the following way. Fix a pair (i, j) of distinct indices, and we are inter-
ested in the map (pri,prj) : g → gi × gj . Supposing that (pri,prj) fails to be surjective (which is a violation
of (ii) of Lemma 1.61), we will show that (ii) cannot be true. In particular, we will assume the first two points
of (ii) and show then that the third point of (ii) is false.

Roughly speaking, we are going to use the first two points of (ii) to find an h and then produce an en-
domorphism of

⊕
i∈I(h) Vi which does not come from gluing together endomorphisms of the Vis. Having

stated the outline, we proceed with the proof in steps.
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1. We claim that the image h of the map (pri,prj) : g → gi × gj is the graph of an isomorphism gi → gj .
For this, we use the hypothesis that (pri,prj) fails to be surjective. Well, we claim that the projections
h→ gi and h→ gj are isomorphisms, which implies that h is the graph of the composite isomorphism

gi ← h→ gj .

By symmetry, it is enough to merely check that h → gi is an isomorphism. On one hand, h → gi is
surjective because pri : g → gi is surjective by construction of gi. On the other hand, the kernel of the
projection h→ gi will be an ideal of h of the form 0⊕I where I ⊆ gj is some subspace. In fact, becasue
the projection h → gj is also surjective, we see that I ⊆ gj must be an ideal, so the simplicity of gj
grants two cases.

• If I = 0, then pri : h→ gi becomes injective and is thus an isomorphism, completing this step.
• If I = gj , then h fits into a short exact sequence

0→ (0⊕ gj)→ h→ gi → 0,

so dim h = dim(gi ⊕ gj), implying the inclusion h ⊆ gi ⊕ gj is an equality. However, this cannot
be the case because we assumed that (pri,prj) : g→ gi → gj fails to be surjective!

2. We construct an isomorphism of g-representations Vi → Vj . For this, we use the first two points of
(ii). Let’s begin by collecting some data.

• The previous step informs us that gi ∼= gj . In fact, because this isomorphism is witnessed by the
projections pri : g → gi and prj : g → gj , we see that we are granted an isomorphism f : gi → gj
such that prj = f ◦ pri.

• We now let l be a simple Lie algebra isomorphic to both(!) gi and gj . The second point of (ii)
grants isomorphisms fi : l→ gi and fj : l→ gj of Lie algebras and an isomorphism d : Vi → Vj of
l-representations.

We now construct our isomorphism from d. Because d is only an isomorphism of l-representations,
we are only granted that (X1, . . . , Xk) ∈ g satisfies f(Xi) = Xj and hence

d
(
(fif

−1
j f)(Xi)vi

)
= d

(
fi
(
f−1
j f(Xi)

)
vi
)

= fj
(
f−1
j f(Xi)

)
d(vi)

= Xjd(vi)

for all vi ∈ Vi. We would be done if we could remove the pesky automorphism fif
−1
j f : gi → gi. This

is possible because all automorphisms of gi ∼= l are inner (!), so one may simply “change bases” to
remove the inner automorphism. Explicitly, find a ∈ GL(Vi) such that fif−1

j f(X) = aXa−1 for all
X ∈ gi, and then we define e := d ◦ a. Then we find that any vi ∈ Vi has

e(Xivi) = d
(
aXia

−1 · av
)

= d
(
(fif

−1
j f)(Xi) · av

)
= Xjd(av)

= Xje(v).

3. We complete the proof. The previous step provides a morphism e : Vi → Vj of g-representations. We
thus note that the composite ⊕

i′∈I(l)

Vi′ ↠ Vi
e→ Vj ↪→

⊕
i′∈I(l)

Vi′

is an endomorphism which does not come from the diagonal inclusion of
∏
i∈I(l) Endgi

(Vi). This com-
pletes the proof by showing that the third point of (ii) fails to hold. ■
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Remark 1.63. We should remark on some history. Lemma 1.61 is due to Ribet [Rib76, pp. 790–791],
but the given formulation is due to Moonen and Zarhin [MZ95, Lemma 2.14]. In the same lemma,
Moonen and Zarhin prove Lemma 1.62, and they seem to be the first to recognize the utility of this
lemma for computing Hodge groups. For example, Lombardo includes this result in his master’s thesis
[Lom13, Lemma 3.3.1] and includes a generalized version in another paper as [Lom16, Lemma 3.7],
where it is used to compute Hodge groups of certain products of abelian varieties.

Remark 1.64. Let’s explain how Lemma 1.62 is typically applied, which is admittedly somewhat differ-
ent from the application used in this thesis. In the generic case, one expects (i), for example if Hg(V ) =
SpD(φ)

◦ for D of Types I–III as in Remark 1.51. In this case, one can also check the first condition of
(ii) by a direct computation, the second condition of (ii) has no content, and the third condition of (ii)
comes from Lemma 1.54. For more details, we refer to (for example) the applications given in [Lom13;
Lom16].

1.2.5 The Lefschetz Group
For motivational reasons, we mention the Lefschetz group L(V ), which contains Hg(V ) but is more con-
trolled. Here is our definition.

Definition 1.65 (Lefschetz group). Fix a polarizable Hodge structure V ∈ HSQ of pure weight. Then we
define

L(V ) := SpD(φ),

where D := EndHS(V ), and φ is a polarization.

Thus, Remark 1.53 that Hg(V ) ⊆ L(V ).

Remark 1.66. Let’s interpretL(V ) geometrically. Roughly speaking, L(V ) is a form ofHg(V )which only
keeps track of endomorphisms and the polarization instead of keeping track of all Hodge classes. As
such, we generically expect Hg(V ) = L(V ) to hold, but we do not expect it to hold always. (Technically,
there are generic cases when we do not expect this equality; for example, if V is irreducible of Type III
in ths sense of the Albert classificaiotn Theorem 1.28, then L(V ) is not connected, so we cannot have
equality.) Furthermore, when Hg(V ) = L(V ), we expect to have strong control on the Hodge classes of
V ; for example, the Hodge conjecture is known in many such cases [Mur84, Theorem 3.1].

Computationally, one reason why L(V ) is more controlled is that it is much easier to compute. For example,
L behaves well in sums.

Lemma 1.67. Fix pairwise non-isomorphic irreducible polarizable Hodge structures V1, . . . , Vk of the
same pure weight, and let m1, . . . ,mk ≥ 1 be integers. Then the diagonal embeddings ∆i : GL(Vi) →
GL
(
V ⊕mi
i

)
induce an isomorphism

L(V1)× · · · × L(Vk)→ L
(
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mk

k

)
.

Proof. The main idea is to compute some endomorphism algebras and polarizations. We proceed in steps.
Set V := V ⊕m1

1 ⊕ · · · ⊕ V ⊕mk

k for brevity.

1. We work with endomorphisms. We may view Hodge structures as S-representations, whereupon we
find that

EndHS (V ) = EndHS(V1)
m1×m1 × · · · × EndHS(Vk)

mk×mk .

In particular, we see that any f commuting with EndHS(V ) implies that f must preserve each V ⊕mi
i

(because there is a separate algebra EndHS

(
V ⊕mi
i

)
for each i). Further, f |

V
⊕mi
i

must come from the
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diagonal embedding EndHS(Vi) → EndHS

(
V ⊕mi
i

)
because EndHS(Vi)

mi×mi may swap any of the mi

copies of Vi.
We conclude that f commutes with endomorphisms implies that

f = (∆1f1, . . . ,∆kfk),

where∆i : End(Vi)→ End
(
V ⊕mi
i

)
is the diagonal embedding, and each fi commutes withEndHS(Vi).

Conversely, the computation of EndHS(V ) above allows us to conclude that any f in the above form
commutes with EndHS(V ).

2. We work with the polarization. Choose polarizations φ1, . . . , φk on V1, . . . , Vk (respectively), and we
note that these polarizations glue into a polarization φ on V . With this choice of polarization, we see
that f = (∆1f1, . . . ,∆kfk) as in the previous step preserves φ if and only if each factor ∆ifi preserves
the polarization φ|

V
⊕mi
i

, which is equivalent to fi preserving the polarization φi. In total, we thus see
that f ∈ L(V ) if and only fi ∈ L(Vi) for each i, so we are done. ■

Lemma 1.67 tells us that we can always reduce the computation of the Lefschetz group to irreducible com-
ponents. In this way, it now suffices to compute L(V ) by working with V according to the Albert classifi-
cation (Theorem 1.28). All these computations are recorded in [Mil99, Section 2]. Because we will only be
interested in Type IV in the sequel, we will only record the part of this computation we need for complete-
ness.

Lemma 1.68. Fix V ∈ HSQ of pure weight with D := EndHS(V ) and polarization φ. Suppose D = F is a
CM field. Then

L(V )C ∼= GL[V :F ](C)
1
2 [F :Q].

Proof. We proceed in steps. Let F † ⊆ F be the maximal totally real subfield, and choose embeddings
ρ1, . . . , ρe0 : F

† ↪→ R, where e0 := 1
2 [F : Q]. For each i, we will letσi and τi be complex conjugate embeddings

F ↪→ C restricting to ρi.

1. We begin by explaining the exponent e0 = 1
2 [F : Q]. Note V is a free F †-module of rank [V : F ], so VR

is a free module over

F † ⊗ R =

e0∏
i=1

F †
ρi ,

where F †
ρ = R refers to the F † ⊗ R module where F acts by ρ. The above decomposition of F ⊗ R

implies a decomposition
VR = V1 ⊕ · · · ⊕ Ve0 ,

where each Vi of a vector space over F †
ρi , all the same dimension.

We now understand the effect of endomorphisms and the polariaztion on our decomposition. Thus,
we see that f : VR → VR commutes with F † ⊗ R if and only if f preserves each factor Vi (due to the
decomposition of F † ⊗ R) and commute with the action of F †

ρi on each Vi. Similarly, we see that the
polarization φ makes the Vis orthogonal: for each d ∈ F †, we see that any vi ∈ Vi and vj ∈ Vj has

ρi(d)φ(vi, vj) = φ(dvi, vj)

= φ(vi, dvj)

= φ(vi, dvj)

= ρj(d)φ(vi, vj),

so i ̸= j implies that φ(vi, vj) = 0. Thus, we see that φ must restrict to non-degenerate skew-
symmetric bilinear forms on each Vi individually. In total, f : VR → VR preserves φ if and only if f |Vi

preserves φ|Vi for each i. In total, we see that

L(V )R = SpF⊗ρ1R
(φ|V1

)× · · · × SpF⊗ρk
R(φ|Ve0

).
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2. It remains to show that SpF⊗ρi
R(φ|Vi)C is isomorphic to GL[V :F ](C); here, note [V : F ] = [Vi : F

†
ρi ].

For this, we abstract the situation somewhat: suppose that a vector space V overR has been equipped
with an action by C ⊆ EndR(V ), and furthermore, φ is a skew-Hermitian form on V . Then we want to
show SpC(φ)C

∼= GL[V :R](C).
The trick is that we can keep track of commuting with the action of C on V by merely commuting with
the action of i ∈ C. Thus, let J : V → V be this map, which satisfies J2 = −1. Now, the action of JC
on VC must diagonalize into eigenspaces Vi⊕V−i with eigenvalues i and−i respectively; note that we
must have dimVi = dimV−i in order for the characateristic polynomial of J to have real coefficients.
The point is that f ∈ End(VC) commutes with the action of C if and only if it commutes with the action
of J , which we can see is equivalent to f preserving the decomposition Vi ⊕ V−i.
We now study the polarization φ. Note that φ vanishes on V±i ⊕ V±i: for any v, v′ ∈ V±i, we see that

±iφ(v, v′) = φ(Jv, v′)

= φ(v,−Jv′)
= ∓iφ(v, v′),

from which φ(v, v′) = 0 follows. For example, this implies that any f ∈ End(VC) commuting with
the J-action will automatically preserve φ on V±i × V±i. Additionally, we see that φ must restrict to a
non-degenerate bilinear form on Vi × V−i.
We are now ready to claim that restriction defines an isomorphism SpC(φ)C → GLC(Vi). This restric-
tion does actually output to GLC(Vi) because g ∈ SpC(φ)C must preserve the decomposition Vi ⊕ V−i.
To see the injectivity, we note that preserving φ requires

φ(v, gw) = φ
(
g−1v, w

)
for all v ∈ Vi and w ∈ V−i; thus, the non-degeneracy of φ implies that g ∈ SpC(φ)C is uniquely de-
termined by its action on Vi. Conversely, for the surjectivity, we see that we can take any element in
GL(Vi) and use the previous sentence to extend it uniquely to an element of SpC(φ)C. ■

1.3 Absolute Hodge Classes
We now discuss the main application of Hodge structures: cohomology. This will allow us to discuss abso-
lute Hodge classes. Our exposition an abbreviated form [Del18].

1.3.1 Some Cohomology Theories
In this subsection, we will give a lighting introduction to the cohomology theories that we will use. We begin
with sheaf cohomology.

Definition 1.69 (sheaf cohomology). Fix a topological space X. Then the category Ab(X) of abelian
sheaves on X has enough injectives. Given a sheaf F on X, we then may define the sheaf cohomology
as the abelian groups

Hi(X,F) := RiΓ(X,F),

where Γ: Ab(X) → Ab is the global-sections functor. Explicitly, one can compute these cohomology
groups by taking the cohomology of an acyclic resolution of F .

This allows us a quick definition of Betti cohomology.

Definition 1.70 (Betti cohomology). Fix a topological space X and a ring R. Then we define the Betti
cohomology of X with coefficients in R as Hi(X,R), where R denotes the constant sheaf R.

It will be helpful to a more geometric description of H•
B.
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Definition 1.71 (singular homology, singular cohomology). Fix a topological space X and a ring R. For
each n ≥ 0, we define the n-simplex ∆n ⊆ Rn+1 as the set of points (t0, . . . , tn) ⊆ [0, 1]n+1 summing to
1. Then we define the complex S•(X,R) as having entries which are the freeR-module with basis given
by the maps ∆• → X and boundary morphism given by ∂ : Sn(X,R)→ Sn−1(X,R) given by

∂(σ) :=

n∑
i=0

(−1)iσ([0, . . . , î, . . . , n])

for σ : ∆n → X, where [0, . . . , î, . . . , n] denotes the (n− 1)-simplex with vertices {0, . . . , î, . . . , n}. Then
we define the singular homology HB

i (X,R) as the homology of this complex. We now define singular
cohomology as the cohomology of the dual cocomplex S•(X,R).

Remark 1.72. The universal coefficient theorem shows that singular homology and cohomology are
dual if R is a principal ideal domain, such as Z or a field.

Our notation suggests that singular cohomology should be Betti cohomology, so we check this.

Theorem 1.73. Fix a topological manifold X. For any field K, there is a canonical isomorphism

Hi(S•(X,K))→ Hi(X,K).

Proof. The idea is to replace S•(X,K) with a complex of sheaves S•(X,K), and then one finds that this
complex is an acyclic resolution of K. The requirement that X be a topological manifold helps because it
allows us to reduce local checks on X to the case of a unit ball. ■

We now add smoothness to our manifolds, which allows us to define de Rham cohomology.

Definition 1.74 (de Rham cohomology). Fix a smooth manifoldX of dimension n. For each i ≥ 0, we let
ΩiX∞

be the sheaf of smooth differentialn-forms onX. Then we define de Rham cohomologyHidR(X,R)
to be the cohomology of the complex

0→ Ω0
X∞

d→ Ω2
X∞

d→ · · · d→ ΩnX∞
→ 0,

where d denotes the de Rham differential.

We once again have a comparison isomorphism.

Theorem 1.75. Fix a smooth manifold X. For each i, there is a functorial perfect paring HB
i (X,R) ×

HidR(X,R)→ R given by

⟨σ, ω⟩ :=
∫
σ

ω

for each smooth map σ : ∆i → X.

We next upgrade to complex Kähler manifolds. For example, one can upgrade our de Rham cohomology
to use holomorphic differential forms instead of smooth differential forms, and the cohomology does not
change. The key benefit of the complex manifold situation is that the de Rham cohomology gains a Hodge
structure.
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Theorem 1.76. Fix a compact complex Kähler manifold X. For each n ≥ 0, there is a decomposition

HidR(X,C) =
⊕
p+q=n

Hpq(X),

where Hpq(X) := Hp(X,ΩqX).

For our last setting, let X be a smooth projective variety over a field K. Here, there are multiple ways to
form Betti cohomology.

Notation 1.77. Fix a smooth projective variety over a fieldK. For any embedding σ : K ↪→ C, we define
Betti cohomology relative to σ as

Hiσ(X,R) := HiB(Xσ(C), R)

forany ring R. Frequently, we will have fixed once and for all an embedding of K into C, so we may
abbreviate Hiσ(X,R) to just HiB(X,R).

Similarly, one is now able to define de Rham cohomology for X, though we do make a moment to remark
that there is a theory of algebraic de Rham cohomology that is able to work in greater generality.

Working with varieties gives access to the last cohomology theory we will need.

Definition 1.78. Fix a smooth projective variety X over a field K. For some étale sheaf F , we are able
to define the étale cohomology Hi(X,F) in the same way as sheaf cohoomology. In particular, for any
prime ℓ which is nonzero in K, we define the ℓ-adic cohomology by

Hiét(XK ,Qℓ) :=
(
lim←−Hiét(XK ,Z/ℓ

•Z)
)
⊗Z Q

Importantly, we note that étale cohomology has the natural action by Gal(K/K). As usual, there is a com-
parison isomorphism.

Theorem 1.79. Fix a smooth projective variety X over C. Then there is a natural isomorphism

HiB(X,Qℓ)→ Hiét(XK ,Qℓ).

We may find it convenient to glue our cohomology theories together.

Notation 1.80. Fix a smooth projective variety X over a field K with an embedding σ : K ↪→ C. Then
we define

HiA(X) := HidR(X,R)×

(
lim←−
n

Hiét(XK ,Z/nZ)⊗Z Q

)
.

We note that there are natural projections π∞ onto HidR(X,R) and πℓ onto Hiét(XK ,Qℓ).

Remark 1.81. One can realize this as a restricted direct product

HidR(X,R)×
∏
ℓ

(
Hiét(XK ,Qℓ),H

i
ét(XK ,Zℓ)

)
,

which provides some motivation for the A in the notation.

Thus far, we have defined many cohomology theories, so it is worthwhile to explain why one may expect
them to somehow be related to one another. We have already mentioned a few comparison isomorphisms,
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but it also turns out that they all have other properties which tie them together. For example, they all have a
cup product, which turn the collection of cohomology groups Hi(X) into a graded commutative ring H•(X).
There is also some functoriality: for a map f : X → Y of spaces, there is always an induced pullback map

f∗ : H•(Y )→ H•(X),

which turns out to be a homomorphism of graded algebras.
As a more complicated example, there is a Künneth formula: for any of the above cohomology theories

H defined on a space X and Y , there is an isomorphism

Hn(X × Y ) =
⊕
i+j=n

Hi(X)⊗Hj(Y ).

Of course, it is a major theorem among each of our cohomology theories that the Künneth formula is satis-
fied, which we will not prove.

There is also a notion of Poincaré duality. To explain Poincaré duality, we need some twists.

Definition 1.82 (Tate twist). We define our Tate twists as follows.

• If X is a topological manifold, then the Tate twist QB(1) is the Q-vector space 2πiQ.

• IfX is a smooth manifold, then the Tate twist RdR(1) is simply R. It has a Hodge structure of pure
of weight−2 concentrated in bidegree (−1,−1).

• IfX is a smooth projective variety over a fieldK, then the Tate twistQℓ(1) for any prime ℓ (nonzero
in K) is the Galois representation (lim←−µℓ•)⊗Z Q.

Notation 1.83. For any cohomology theory H defined on a space X, we may write

Hi(X)(n) := Hi(X)⊗ T⊗n,

where T denotes the Tate twist, and i ≥ 0 and n ∈ Z. If n ≤ 0, then we take the dual.

Now, for any of these cohomology theories H over a field F defined on a space X of equidimension d,
Poincaré duality provides a perfect pairing

Hi(X)⊗H2d−i(X)(d)→ F

for each index i. Once again, it is a major theorem among each of our cohomology theories above that
Poincaré duality is satisfied.

1.3.2 Weil Cohomology Theories
It will be worth our time to encode everything we need that the above cohomology theories have in com-
mon. In essence, we are asking for a formalism of a cohomology theory, which is known as a Weil cohomol-
ogy theory. Approximately speaking, a Weil cohomology theory is a cohomology theory with the minimum
amount of data to prove the Lefschetz trace formula without too much pain. Our exposition here follows
[SP, Tag 0FFG]. Throughout, we freely use facts about intersection theory and Chow groups because the
author is too ignorant to provide a suitable review of these notions; everything we need can be found in
[Ful98].

Throughout, we fix a base fieldK and a coefficient field F . We require charF = 0, but we do not require
K to be algebraically closed. These hypotheses will not be repeated!

Notation 1.84. Let P(K) denote the category of smooth projective varieties over K, with morphisms
given by regular maps.

Here is the data we will be working with.
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Definition 1.85 (Weil cohomology datum). A Weil cohomology datum consists of the following data.

• A one-dimensional F -vector space F (1).

• A contravariant functor H• fromP(K) to the category of Z-graded commutative F -algebras. We
will write the product as a cup ∪.

• For X ∈ P(K) of equidimension d, there is a trace map
∫
X
: H2d(X)(d)→ F .

• For X ∈ P(K), there is a cycle class map clX : CHi(X) → H2i(X)(i), which is required to be a
group homomorphism.

Frequently, we will call H• alone the Weil cohomology datum, leaving the other inputs implied.

In short, F (1) is the Tate twist, H• are the vector spaces one usually remembers with Weil cohomology
theories,

∫
X

keeps track of Poincaré duality, and clX relates cohomology to geometry.
In order to keep us thinking “cohomologically,” we use some special notation.

Notation 1.86. Fix a Weil cohomology datum H• over K with coefficients in F .

• For any F -vector space V , we write V (n) := V ⊗F (1)⊗n. Here, negative exponents denote duals.

• If f : X → Y is a regular map, we let f∗ : H•(Y ) → H•(X) denote the induced ring homomor-
phism.

Remark 1.87. In the sequel, we may note that f ∗ (α ∪ β) = f∗α ∪ f∗β without comment: indeed, this
follows because f∗ is a ring homomorphism! Similarly, we may use the fact that (g◦f)∗ = f∗◦g∗, which
follows because the functor H• is contravariant.

Now, a Weil cohomology datum is going to be required to satisfy many axioms. Before going further, let’s
summarize them.

• We need a Künneth formula to ensure that products of varieties go to products in graded algebras.

• We need Poincaré duality, for example to define pushfowards. This adds some coherence to the cycle
class maps.

• To add some geometric input to the picture, we need some coherence of our cycle class maps.

• Lastly, we will need another axiom to ensure that, for example, H is only supported in nonnegative
indices.

Let’s begin with the Künneth formula.

Definition 1.88 (Künneth formula). Fix a Weil cohomology datumH• overK with coefficients inF . Then
H• satisfies the Künneth formula if and only if it satisfies the following for all X,Y ∈ P(K).

(a) Künneth formula: the map
H•(X) ⊗ H•(Y )→ H•(X × Y )

α ⊗ β 7→ pr∗1 α ∪ pr∗2 β

is an isomorphism of graded F -algebras. We may write α⊠ β := pr∗1 α ∪ pr∗2 β.

(b) Fubini’s theorem: if X and Y have equidimension d and e, respectively, then∫
X×Y

(α⊠ β) =

∫
X

α ·
∫
Y

β

for any α ∈ H2d(X)(d) and β ∈ H2e(Y )(e).
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Remark 1.89. It is worth recalling the grading on the tensor product of two graded vector spaces: if V
and W are Z-graded vector spaces, then (V ⊗W ) has a grading given by

(V ⊗W )n =
⊕
i+j=n

Vi ⊗Wj .

In particular, we see that satisfying the Künneth formula implies that there is a canonical isomorphism⊕
i+j=n

Hi(X)⊗Hj(Y )→ Hn(X × Y ).

It is worth noting that the Künneth formula has good functoriality properties.

Lemma 1.90. Fix a Weil cohomology datum H• over K with coefficients in F satisfying the Künneth
formula. Given morphisms f : X → X ′ and g : Y → Y ′ in P(K), we have

(f × g)∗ = f∗ ⊗ g∗.

Proof. Note that these are both automatically ring mapsH•(X ′×Y ′)→ H•(X×Y ). By the Künneth formula,
it is enough to check this on elements of the form α ⊠ β = pr∗1 α ∪ pr∗2 β, where α ∈ H•(X) and β ∈ H•(Y ).
Well, we note

(f × g)∗ pr∗1 α = f∗α,

and similarly (f × g)∗ pr∗2 β = g∗β. Combining completes the proof. ■

We now move on to Poincaré duality.

Definition 1.91 (Poincaré duality). Fix a Weil cohomology datum H• overK with coefficients inF . Then
H• satisfies Poincaré duality if and only if it satisfies the following for allX ∈ P(K) of equidimension d.

(a) Finite type: we have dimF Hi(X) <∞ for all i ∈ Z.

(b) Poincaré duality: for each index i, the composite

Hi(X)×H2d−i(X)(d)
∪→ H2d(X)(d)

∫
X→ F

is a perfect pairing of vector spaces over F .

Remark 1.92. Notably, our definition allows cohomology to be supported in negative degrees! We will
remedy this later in Lemma 1.117 when we have a full definition of a Weil cohomology theory.

An important feature of Poincaré duality is that it lets us define the pushforward.

Notation 1.93. Fix a Weil cohomology datum H• overK with coefficients inF satisfying Poincaré dual-
ity. If f : X → Y is a regular map of smooth projective varieties of equidimensions d and e respectively,
we define the index-i pushforward

f∗ : H
2d−i(X)(d)→ H2e−i(Y )(e)

as the transpose of the pullback f∗ under Poincaré duality.
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Remark 1.94. Explicitly, given α ∈ H2d−i(X)(d), then f∗α ∈ H2e−i(X)(e) is defined as the unique ele-
ment such that ∫

X

(f∗β ∪ α) =
∫
Y

(β ∪ f∗α)

for all β ∈ Hi(Y ). For example, if α ∈ H2d(X)(d), we may choose β = 1 to see that
∫
X
α =

∫
Y
f∗α.

Remark 1.95. The pushforward construction is functorial: given maps f : X → Y and g : Y → Z, we
check that (g ◦ f)∗ = g∗ ◦ f∗. Well, we already know that (g ◦ f)∗ = f∗ ◦ g∗ by functoriality of H•, so this
follows by taking the transpose along Poincaré duality.

Remark 1.96. If dimX = dimY , then f∗ preserves the grading. Further, we can undo the twisting to
see that f∗ becomes a graded linear map f∗ : H•(X)→ H•(Y ).

We know that f∗(α ∪ β) = f∗α ∪ f∗β. We would like a similar way to compute f∗ on products. This is not
quite possible, but one can do something.

Lemma 1.97 (Projection formula). Fix a Weil cohomology datum H• over K with coefficients in F sat-
isfying Poincaré duality. If f : X → Y is a regular map of smooth projective varieties of equidimensions
d and e respectively, then

f∗(f
∗β ∪ α) = β ∪ f∗α

for each α ∈ H2d−i(X)(d) and β ∈ Hj(Y ).

Proof. We unravel the definition, following Remark 1.94. Indeed, for any β′ ∈ Hi−j(X) has∫
X

f∗β′ ∪ (f∗β ∪ α) =
∫
Y

β′ ∪ (β ∪ f∗α)

by definition of f∗α. ■

Remark 1.98. This projection formula is expected on the level of cycles: forα ∈ CH(X) and β ∈ CH(Y ),
one has f∗(f∗β · α) = β · f∗α for any proper map f : X → Y .

Lemma 1.99. Fix a Weil cohomology datum H• over K with coefficients in F satisfying the Künneth
formula and Poincaré duality. Given X,Y ∈ P(K) which are equidimensional of dimensions d and e
respectively, then

pr2∗(α⊠ β) =

(∫
X

α

)
β

for any α ∈ H2d(X)(d) and β ∈ H•(Y )(e).

Proof. It is enough to consider the case where β is homogeneous, so say β ∈ H2d−j(Y )(e). Then we must
check that ∫

X×Y
pr∗2 β

′ ∪ (α⊠ β)
?
=

∫
Y

β′ ∪
(∫

X

α

)
β

for any β′ ∈ Hj(Y ). Well, β′ ∪ (α⊠ β) = α⊠ (β′β), so this follows from the Künneth formula. ■

Our last collection of coherence assumptions on H• is for the cycle class maps.
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Definition 1.100 (cycle coherence). Fix a Weil cohomology datum H• overK with coefficients in F sat-
isfying Poincaré duality. Then H• satisfies cycle coherence if and only if it satisfies the following.

(a) Pullbacks: if f : X → Y is a regular map of smooth projective varieties, then clX(f !β) = f∗ clX(β)
for any β ∈ CH•(Y ).

(b) Pushforwards: if f : X → Y is a regular map of smooth equidimensional projective varieties, then
clY (f∗α) = f∗ clX(α) for any α ∈ CH•(X).

(c) Cup products: given α, α′ ∈ CH•(X), we have clX(α · α′) = clX(α) ∪ clX(α′).

(d) Non-degeneracy: we have
∫
SpecK

clSpecK([SpecK]) = 1.

We now have enough axioms to start proving some results, so let’s give a name for our current stopping
point.

Definition 1.101 (pre-Weil cohomology theory). Fix a Weil cohomology datum H• over K with coef-
ficients in F satisfying Poincaré duality. Then H• is a pre-Weil cohomology theory if and only if H•

satisfies the Künneth formula, Poincaré duality, and cycle coherence.

As we start to move into proving things, it is worth keeping track of the following idea.

Idea 1.102.! To prove something about all Weil cohomology theories, one proves something “motivic”
(i.e., “geometric”) and then does linear algebra.

We will point out the various places we use motivic input; typically, one can see it as where we apply anything
about cycle class maps. As an example, let’s compute the cohomology of the point.

Example 1.103. Fix a pre-Weil cohomology theory H• over K with coefficients in F . Then the coho-
mology ring H•(SpecK) is supported in degree 0, and∫

SpecK

: H0(SpecK)→ F

is an isomorphism of algebras over F .

Proof. Our pieces of motivic input will be that SpecK × SpecK = SpecK and that [SpecK] · [SpecK] =
[SpecK] in CH0(SpecK).

Note SpecK × SpecK ∼= SpecK, so dimF H•(SpecK × SpecK) = dimF H•(SpecK). Thus, the Künneth
formula requires dimF H•(SpecK) ∈ {0, 1}. However, the non-degeneracy part of cycle coherence forces
H0(SpecK) ̸= 0, so we conclude dimF H•(SpecK) = 1. Now, Poincaré duality tells us that dimF Hi(X) =
dimF H−i(X) for all i ∈ Z, so H• must be supported in degree 0.

It remains to show that
∫
SpecK

: H0(SpecK) → F is an isomorphism of algebras. This map is cer-
tainly an F -linear map of one-dimensional F -vector spaces, so it takes the form a 7→ a

∫
SpecK

1 where
1 ∈ H0(SpecK) is the unit. It thus suffices to check that

∫
SpecK

1 = 1. Well, cycle coherence requires∫
SpecK

clSpecK([SpecK]) = 1, so we would like to show clSpecK([SpecK]) = 1. For this, we note that

[SpecK] · [SpecK] = [SpecK],

so cycle coherence forces clSpecK([SpecK]) ∈ {0, 1}, and zero it is not permitted by non-degeneracy. ■

Corollary 1.104. Fix a pre-Weil cohomology theory H• overK with coefficients inF . IfX ∈ P(K), then
clX([X]) = 1.
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Proof. Let pX : X → SpecK be the structure map. Then we have some motivic input [Y ] = p∗Y ([SpecK]), so
cycle coherence tells us that

clY ([Y ]) = p∗Y (clSpecK([SpecK])),

from which clY ([Y ]) = 1 follows by Example 1.103. ■

We can also check that our cohomology is sufficiently nontrivial.

Proposition 1.105. Fix a pre-Weil cohomology theory H• over K with coefficients in F . If X ∈ P(K) is
nonempty, then H0(X) ̸= 0.

Proof. Throughout, for Y ∈ P(K), the structure morphism is denoted by pY : Y → SpecK. The proof has
two steps.

1. We show that H•(X) ̸= 0 if X is nonempty and irreducible. It suffices to show that H• has some
nonzero functional, for which we use points. Because X is smooth, it has a closed point x ∈ X
with residue field κ(x) finite and separable over K; let i : {x} → X denote the inclusion. Then (pX ◦
i) : {x} → SpecK is given by the inclusion K ↪→ κ(x), from which we can compute

(pX)∗i∗[x] = [κ(x) : K] · [SpecK].

(At the level of intersection theory, one can see this by passing to the algebraic closure, whereupon x
splits into [κ(x) : K] distinct geometric points.) This provides our geometric input. Then cycle class
coherence and Corollary 1.104 show that

(pX)∗(clX(i∗[x])) = [κ(x) : K].

BecauseF has characteristic 0, we see that the right-hand is nonzero, so clX(i∗[x]) ̸= 0, so H•(X) ̸= 0.

2. We reduce to the irreducible case. Suppose X is nonempty, and let X ′ ⊆ X be an irreducible compo-
nent. We would like to show that 1 ̸= 0 in H•(X). Well, there is a ring map H•(X)→ H•(X ′) given by
the inclusion, so it is actually enough to check that 1 ̸= 0 in H•(X ′). This has been done in the previous
step. ■

Example 1.106. Fix a pre-Weil cohomology theory H• over K with coefficients in F . Then H•(∅) = 0.

Proof. For anyX ∈ P(K), our geometric input is that ∅×X = ∅, from which the Künneth formula requires

dimF H•(∅) · dimF H•(X) = dimF H•(∅).

Now, we choose X to be nonempty of dimension at least 1 (for example, X = P1
K ), then Proposition 1.105

showsH0(X) ̸= 0, from which Poincaré duality yieldsdimF H•(X) ≥ 2. Plugging this in to the above equality
gives H0(X) dimF H•(∅) = 0, from which the result follows. ■

In the sequel, we will also want more general control over unions.

Proposition 1.107. Fix a pre-Weil cohomology theory H• over K with coefficients in F . Given X,Y ∈
P(K), let i1 : X → X ⊔ Y and i2 : Y → X ⊔ Y denote the canonical inclusions. Then the map

H•(X ⊔ Y )→ H•(X) × H•(Y )
γ 7→ (i∗1γ , i∗2γ)

is an isomorphism.
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Proof. If X = ∅ or Y = ∅, then the other inclusion is an isomorphism, and there is nothing to do. Let the
given map be denoted i. Ultimately, the difficulty in this proof arises from the fact that there is no canonical
inverse map, so we will have to apply various tricks to put ourselves in situations where we have approxi-
mations.

Quickly, we note that i is a product of algebra maps and hence an algebra map, so the main content
comes from checking that this is a bijection. We will check injectivity and surjectivity, both in two steps.
Let’s start with injectivity.

1. We show that i is injective if X and Y are equidimensional with dimX = dimY . This hypothesis will
be used to allow us to think of pushforwards along i1 and i2 at the level of the full graded vector spaces,
as in Remark 1.96. In particular, we will show that

γ
?
= i1∗i

∗
1γ + i2∗i

∗
2γ

for any γ ∈ H•(X ⊔ Y ); injectivity follows because this shows that (α, β) ⊔ i1∗α + i2∗β is a one-sided
inverse for i.
By the projection formula (Lemma 1.97), it is enough to check that

1
?
= i1∗1 + i2∗1,

from which one can apply γ ∪ −. Well, by Corollary 1.104, this is equivalent to asking for

clX⊔Y ([X ⊔ Y ]) = i1∗ clX([X]) + i2∗ clY ([Y ]),

We now see that this has motivic input given by the equation [X ⊔ Y ] = [X] + [Y ], from which the
result follows after using cycle coherence.

2. We show that i is injective in the general case. This will require a geometric trick. Given X and a
positive integer d > dimX, we will construct X ′ of dimension d for which there is an embedding
jX : X → X ′ and a projection qX : X ′ → X such that qX ◦ jX = idX . If we choose d to exceed
max{dimX,dimY } and apply the same construction to Y , then we can conclude as follows. The dia-
grams

X ⊔ Y X, Y H•(X ⊔ Y ) H•(X)×H•(Y )

X ′ ⊔ Y ′ X ′, Y ′ H•(X ′ ⊔ Y ′) H•(X ′)×H•(Y ′)

(qX⊔qY )∗ q∗Yq∗X
qX⊔qY qX qY

commute (the right diagram is induced from the left by functoriality), and the bottom row of the right
diagram is injective by the previous step. Now, q• ◦ i• = id•, so i∗• ◦ q∗• = id∗•, meaning that the vertical
q∗•s in the right diagram are all injective. Thus, the diagonal morphism of the right diagram is injective,
so its top morphism is injective as well.
It remains to construct X ′. Decompose X into irreducible components {X1, . . . , Xn}, and we note
that the smoothness ofX implies that its irreducible components are connected components as well.
Thus, X = X1 ⊔ · · · ⊔Xn, allowing us to define

X ′ :=
(
X1 × Pd−dimX1

K

)
⊔ · · · ⊔

(
Xn × Pd−dimXn

K

)
.

Choosing a point of the projective spaces gives an inclusionX ↪→ X ′, and there is an obvious projection
X ′ ↠ X by getting rid of the projective spaces.

We now turn to the surjectivity. It would be wonderful if the one-sided inverse in the first step also showed
surjectivity (even in the case dimX = dimY ), but this only works once we know that the maps H•(X ⊔Y )→
H•(X) and H•(X ⊔ Y )→ H•(Y ) are surjective. We will have to expend some effort for this.

3. Suppose that there is a morphism f : Y → X. Then we show that the map i∗1 : H•(X ⊔ Y ) → H•(X)
is surjective. Indeed, the inclusion i1 : X ⊆ X ⊔ Y admits a section s : X ⊔ Y → X by sending all of Y
along f . Thus, s ◦ i1 = idX , meaning i∗1 ◦ s∗ = id∗X , so i∗1 is surjective.
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4. We show that the map i∗1 : H•(X ⊔ Y ) → H•(X) is always surjective. This requires a trick: all objects
among F -vector spaces are faithfully falt, so we may check surjectivity after applying − ⊗ H•(Z) for
any Z. By the Künneth formula, we see that we are reduced to checking if

i∗1 : H
•((X × Z) ⊔ (Y × Z))→ H•(X × Z)

is surjective. In light of the previous step, we are tasked with finding Z such that there is a map (Y ×
Z) → (X × Z). Well, X is nonempty and smooth, so it has some closed point x ∈ X with separable
residue field κ(x); then there is a map Yκ(x) → Xκ(x) given by mapping all of Y to x.

5. We show that the map i is surjective. We are not going to use an assumption like dimX = dimY ;
instead, we interface directly with eX := cl[X⊔Y ]([X]) and eY := cl[X⊔Y ]([Y ]).
By the previous step, the map i∗1H•(X⊔Y )→ H•(X) is surjective, as is i∗2 by symmetry. Thus, it suffices
to show that i surjects onto elements of the form (i∗1γ, i

∗
2δ). Well, we claim that{

i∗1(eX ∪ γ + eY ∪ δ)
?
= i∗1γ,

i∗2(eX ∪ γ + eY ∪ δ)
?
= i∗2δ.

Indeed, because i∗1 and i∗2 are ring homomorphisms, it is enough to note that i∗1eX = eX and i∗1eY = 0
by cycle coherence for the first equality, and i∗2eX = 0 and i∗2eY = eY by cycle coherence for the second
equality. ■

Remark 1.108. IfX andY are equidimensional withdimX = dimY , then the first step shows that there
is a canonical inverse given by

(α, β) 7→ i1∗α+ i2∗β.

Importantly, these pushforwards really only make sense in the equidimensional case!

Corollary 1.109. Fix a pre-Weil cohomology theory H• over K with coefficients in F . Suppose X,Y ∈
P(K) are equidimensional of dimension d. For any α ∈ H2d(X ⊔ Y )(d), we have∫

X⊔Y
α =

∫
X

i∗1α+

∫
Y

i∗2α.

Proof. By Remark 1.108, we see that α = i1∗i
∗
1α+ i2∗i

∗
2α. Thus, for example, we compute

∫
X⊔Y i1∗i

∗
1α is∫

X⊔Y
(1 ∪ i1∗i∗1α) =

∫
X

(1 ∪ i∗1α),

which is
∫
X
i∗1α. Adding together a similar computation for i∗2α completes the argument. ■

As an application, we can now fairly easily compute the cohomology of multiple points.

Example 1.110. Fix a pre-Weil cohomology theoryH• overK with coefficients inF . SupposeX ∈ P(K)
is zero-dimensional. Then H•(X) is supported in degree 0, and H0(X) is a separable algebra over F of
dimension equal to the degree of X → SpecK. Further,

∫
X
: H0(X)→ F is the trace.

Proof. For psychological reasons, we quickly reduce to the case where X is a closed point. By decompos-
ing X into irreducible components (which are connected components by smoothness) and using Proposi-
tion 1.107, it suffices to show the various claims in the case that X is irreducible (indeed, the conclusion is
closed under taking disjoint unions). Thus, we may assume that X is irreducible.

Because X is zero-dimensional, the structure morphism X → SpecK is finite, so X is affine; we write
X = SpecL. Because X is smooth and hence étale, we see that L must be a finite-dimensional separable
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algebra overK. In fact, Lmust be a field extension ofK becauseX is irreducible. LetM be a Galois closure
of the separable extension L/K. Roughly speaking, the idea of the proof is to run all of our checks after
extending up to M . We proceed in steps.

1. We explain how to base-change to M . Well, there is an isomorphism

L ⊗M →
∏

σ∈HomK(L,M)

M

a ⊗ b 7→ (σ(a)b)σ

becauseL/K is separable. This translates into the motivic inputX×SpecM =
⊔
σ∈HomK(L,M) SpecM ,

which induces an isomorphism

H•(X) ⊗ H•(SpecM)→ H•(SpecM)HomK(L,M)

α ⊗ β 7→ (σ∗α ∪ β)σ

by the Künneth formula and Proposition 1.107.

2. We check that H•(X) is concentrated in degree 0, and H0(X) is an algebra over F of dimension equal
to the degree of the structure morphism X → SpecK. (Note that this degree is [L : K].) Well, taking
dimensions on both sides of the last map in step 1 (and notingdimF H

•(SpecM) ≥ dimF H0(SpecF ) >
0 by Proposition 1.105), we find that

dimF H•(X) = dimF H0(X) = [L : K].

The needed claims follow.

3. We check that H0(X) is separable over F . Well, H0(Y ) is faithfully flat over F because it is a finite-
dimensional separable algebra over F by what we already know. Further, separability can be checked
after a faithfully flat extension, so checking the separability of H0(X) over F can be seen by checking
the separabiility of

H0(X)⊗H0(Y ) = H0(Y )HomK(L,M)

over H0(Y ), which is now clear.

4. We show that
∫
X
: H0(X) → F is the trace. The main point is to compare the traces on X × SpecM

and
⊔
σHomK(L,M) SpecM . Fix some α ∈ H0(X), and we would like to compute

∫
X
α. On one hand,

Lemma 1.99 gives
∫
X
α = pr2∗(α⊠ 1), but alternatively one can see via our explicit isomorphism that

pr2∗(α⊠ 1) =
∑

σ∈HomK(L,M)

σ∗α.

Indeed, for anyβ ∈ H•(SpecM), we see
∑
σ

∫
SpecM

(β∪σ∗α) =
∫
X×SpecM

pr∗2 β∪(α⊠1), where we have
used Corollary 1.109. It remains to check that α 7→ σ∗α amounts to the full set of homomorphisms
H0(X)→ F . Well, upon choosing some map ι : H0(SpecM)→ F , we see that there is an isomorphism

H0(X) ⊗ F → FHomK(L,M)

α ⊗ β 7→ (τ(σ∗α) ∪ β)σ

which completes the proof because H0(X)⊗F is supposed to be isomorphic to FHom(H0(X),F ) via this
sort of map. ■

Corollary 1.111. Fix a pre-Weil cohomology theory H• over K with coefficients in F . Given X ∈ P(K)
and some zero-dimensional cycle Z ⊆ X, we have

deg[Z] =

∫
X

clX([Z]).
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Proof. We may adjust Z so that it is smooth divisor. Letting i : Z → X denote the inclusion, we get the
motivic input that [Z] = i∗[Z], so clX([Z]) = i∗1 by Corollary 1.104 and cycle coherence. It follows that∫

X

clX([Z]) =

∫
Z

1

by Remark 1.94. We now use Example 1.110 to compute the right-hand side: because
∫
X
: H0(Z) → F is

the trace, its evaluation on 1 is the dimension dimF H0(Z), which we know to be the degree of Z → SpecK.
This completes the proof. ■

Now that we’ve done work with our pre-Weil cohomology theories, let’s introduce our last axiom.

Definition 1.112 (Weil cohomology theory). Fix a pre-Weil cohomology theory H• over K with coeffi-
cients in F . Then H• is a Weil cohomology theory if and only if the induced map

H0(Spec Γ(X,OX))→ H0(X)

is an isomorphism for all X ∈ P(K).

Remark 1.113. Let’s explain where this map comes from. There is a natural map X → Spec Γ(X,OX);
for example, this exists already on the level of locally ringed spaces, though one could alternatively de-
fine it by gluing together maps on affine open subschemes. However, we must check Spec Γ(X,OX) ∈
P(K): certainly Γ(X,OX) is some finite-dimensional K-algebra, so the issue is separability. For this,
we base-change to K, noting

Γ(X,OX)K = Γ(XK ,OXK
)

because cohomology is stable under base change. The right-hand side is a product of fields because
XK is still a proper variety, so it follows that Γ(X,OX) is separable and hence smooth over K.

It is certainly desirable to have H0(Spec Γ(X,OX)) → H0(X) be an isomorphism. Let’s explain some of its
applications.

Lemma 1.114. Fix a Weil cohomology theory H• over K with coefficients in F . For any X ∈ P(K) of
equidimension d, the space H2d(X)(d) is generated by classes of points as an H0(X)-module.

Proof. If X = ∅, there is nothing to do, so we assume that X is nonempty. By Proposition 1.107, we may
assume thatX is irreducible. DefineL := Γ(X,OX) for brevity; becauseX is irreducible, L is a field, and we
know that it is finite separable over K.

Now, for each closed point x ∈ X (which we assume to have residue field κ(x) to be separable over L),
let i : {x} → X, and we would like to check that the class clX([x]) ∈ H2d(X)(d) generates as a module over
H0(X) = H0(SpecL). Quickly, note that clX([x]) = i∗1 by Corollary 1.104 and cycle coherence. As such, we
want to show that the map H0(X) → H2d(X)(d) given by α 7→ (α ∪ i∗1) is surjective. Now, Lemma 1.97
explains α ∪ i∗1 = i∗i

∗α, so we might as well show that the map i∗ : H0({x})→ H2d(X)(d) is surjective.
Continuing, it is enough to check that the transpose i∗ : H0(X)→ H0({x}) is injective. Now, let p : X →

SpecL be the canonical projection, and then p∗ : H0(SpecL)→ H0(X) is an isomorphism! Thus, it is enough
to show that i∗p∗ : H0(SpecL) → H0({x}) is injective. There are a few ways to conclude, but here is one
using Example 1.110: it is enough to check injectivity after faithfully flat base change, so we may check
injectivity after tensoring with the separable K-algebra H0(SpecM), where M is some Galois closure of
Lκ(x)/K. Then bothH0(SpecL) andH0({x}) split up into products ofH0(SpecM), from which the injectivity
follows. ■

Remark 1.115. It turns out that the conclusion of the lemma also implies that H0(Spec Γ(X,OX)) →
H0(X) is an isomorphism, but we will not need this. We refer to [SP, Tag 0FI0].
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Lemma 1.116. Fix a Weil cohomology theory H• over K with coefficients in F . If f : X → Y is a finite
map of equidimensional varieties of dimension dwith Y geometrically irreducible, then f∗f∗ = (deg f).

Proof. We begin with a couple reductions.
• It is enough to check that f∗f∗ = (deg f) on homogeneous elements of H•(Y ), and in fact, it is enough

to merely check equality of traces on elements in H2d−i(Y )(d). Indeed, to check that f∗f∗β = (deg f)β
for any β ∈ H2d−i(Y )(d), Remark 1.94 explains that it is enough to check∫

X

f∗β′ ∪ f∗β ?
=

∫
Y

β′ ∪ (deg f)β

for all β′ ∈ Hi(Y ). This now follows by applying
∫
Y
◦(f∗f∗) = (deg f)

∫
Y

to β′ ∪ β ∈ H2d(Y )(d); in
particular, recall

∫
Y
◦f∗ =

∫
X

by Remark 1.94.

• We show that it is enough to check the equality
∫
X
◦f∗ = (deg f)

∫
Y

on the image of clX : CHd(Y ) →
H2d(Y )(d). Because Y is geometrically irreducible, we see that Γ(Y,OY ) = K (this can be checked af-
ter passing to the algebraic closure), so H2d(Y )(d) is isomorphic to H0(Y ) (by Poincaré duality), which
is isomorphic to H0(SpecK) (because this is a Weil cohomology theory), which is simply F (by Exam-
ple 1.103). It is thus enough to check the result at a single vector in H2d(Y )(d), such as the class of a
point (which is nonzero by Lemma 1.114).

As such, our “motivic” input will come from checking
∫
X
◦f∗ = (deg f)

∫
Y

on classes of points: because f is
finite, any q ∈ Y has

f∗[q] =
∑

p∈f−1({q})

mp · [p],

where mp is a multiplicity satisfying
∑
pmp[κ(p) : K] = deg f . Then passing this through clX (and using

cycle coherence), followed by applying
∫
X

(and Corollary 1.111) completes this check. ■

Lemma 1.117. Fix a Weil cohomology theory H• over K with coefficients in F . For any X ∈ P(K) of
dimension d, the graded algebra H•(X) is supported in degrees [0, 2d].

Proof. By Proposition 1.107, it is enough to check this in the case that X is irreducible. Then X has equidi-
mension d, so Poincaré duality implies that it is enough to show that H•(X) is supported in nonnegative
degrees.

We will show that H•(X) is supported in nonnegative degrees by an awkward contraposition: we will
show that any pre-Weil cohomology theory H• admitting some Y ∈ P(Y ) with H•(Y ) supported at a neg-
ative index must fail to be a Weil cohomology theory. By replacing Y with Y × Y and using the Künneth
formula, we may assume that H−2n(Y ) ̸= 0 for some n > 0. We now set X := Y × PnK , so the Künneth
formula gives

H0(X) =
⊕
i∈Z

Hi(Y )⊗H−i(PnK)

For example, H0(X) contains the summands H0(Y ) ⊆ H0(X) and H−2n(Y )⊗H2n(PnK), so

dimF H0(X) > dimF H0(Y ).

(Note H2n(PnK) is nonzero by Proposition 1.105 and Poincaré duality.) However, Γ(X,OX) = Γ(Y,OY ): a
global section is a map to A1, and the only maps PnK → A1 are constants anyway. Thus, it is impossible to
have both H0(X) ∼= H0(Γ(X,OX)) and H0(Y ) ∼= H0(Γ(Y,OY ))! ■

We have now cobbled together enough of a theory of Weil cohomology. Let’s work towards an application:
the Lefschetz trace formula. After everything we’ve done, this proof is purely formal. Our exposition follows
[Mil13, Section 25].

Given a regular map f : X → X, the Lefschetz trace formula computes the intersection number Γf ·∆ in
terms of cohomology. Thus, our proof will begin by understanding the graph Γf .
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Lemma 1.118. Fix a pre-Weil cohomology theory H• overK with coefficients inF . For any regular map
f : X → Y of equidimensional projective varieties and β ∈ H•(Y ), we have

pr1∗
(
clX×Y ([Γf ]) ∪ pr∗2 β

)
= f∗β.

Proof. Our motivic input is that [Γf ] = (idX , f)∗([X]), by definition. Then cycle coherence and Corol-
lary 1.104 shows clX×Y ([Γf ]) = (idX , f)∗1. Thus, the projection formula (Lemma 1.97) implies

pr1∗(clX×Y ([Γf ]) ∪ pr∗2 β) = pr1∗(idX , f)∗(idX , f)
∗ pr∗2 β.

Functoriality reveals this is f∗β. ■

Lemma 1.119. Fix a pre-Weil cohomology theoryH• overK with coefficients inF . For equidimensional
X ∈ P(K) with d := dimX, let {eij}1≤j≤βi be a basis of Hi(X) for each i; further, choose a dual basis
{e∨2d−i,j}1≤j≤βi

of H2d−i(X)(d) so that
∫
X
(e∨2d−i,j ∪ eij′) = 1j=j′ for each j and j′. Then any regular map

f : X → X admits a decomposition

clX×X([Γf ]) =
∑
i∈Z

1≤j≤βi

f∗eij ⊠ e∨2d−i,j .

Proof. Note that the e∨2d−i,js exist by Poincaré duality. Now, the Künneth formula tells us that Hd(X ×
X)(d) =

⊕
i∈Z H

i(X)⊗H2d−i(X)(d), so clX×X([Γf ]) admits some decomposition

clX×X([Γf ]) =
∑
i∈Z

1≤j≤βi

αij ⊠ e∨2d−i,j ,

whereαij ∈ Hi(X) is some class. We would like to showαij = f∗eij . To extract out the needed coefficients,
we need to cup with a basis vector and apply the pairing. As such, we compute

pr1∗
(
clX×X([Γf ]) ∪ pr∗2 eij

)
=

∑
i∈Z

1≤j≤βi

pr1∗
(
αij ⊠ (e∨2d−i,j ∪ eij)

)
,

which collapses down to αij by Lemma 1.99 and construction of the e∨2d−i,js. We now complete the proof
by recognizing the left-hand side as f∗eij by Lemma 1.118. ■

Example 1.120. Taking f = idX shows that the diagonal ∆ ⊆ X ×X has a decomposition

clX×X([∆]) =
∑
i∈Z

1≤j≤βi

eij ⊠ e∨2d−i,j .

Remark 1.121. It may appear that Lemma 1.119 needs some finiteness condition like Lemma 1.117,
but our proof actually shows that all but finitely many of the f∗eij are allowed to vanish.

We are now ready for the proof.

Theorem 1.122 (Lefschetz trace formula). Fix a Weil cohomology theory H• overK with coefficients in
F . For equidimensional X ∈ P(K) and endomorphism f : X → X, we have

deg([Γf ] · [∆]) =

2d∑
i=0

(−1)i tr
(
f∗; Hi(X)

)
.
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Proof. This proof is essentially a direct computation. By Corollary 1.111, we see that

deg([Γf ] · [∆]) =

∫
X×X

clX×X([Γf ]) ∪ clX×X([∆]),

where we have quietly also used cycle coherence. We now fix a basis {eij}ij of H•(X) and a dual basis
{e2d−i,j}ij of H2d−•(X) as in Lemma 1.119. Then Lemma 1.119 (and a reversed Example 1.120) allows us
to compute this as

deg([Γf ] · [∆]) =
∑
i,i′∈Z

1≤j,j′≤βi

∫
X×X

(
f∗eij ⊠ e∨2d−i,j

)
∪
(
(−1)i

′
e∨2d−i′,j′ ⊠ ei′j′

)
.

By expanding out α⊠ β = pr∗1 α ∪ pr∗2 β and rearranging, we may rewrite the right-hand side as

deg([Γf ] · [∆]) =
∑
i,i′∈Z

1≤j,j′≤βi

(−1)i+ii
′
∫
X×X

(f∗eij ∪ e∨2d−i′,j′)⊠ (e∨2d−i,j ⊠ ei′,j′),

which by the Künneth formula is

deg([Γf ] · [∆]) =
∑
i,i′∈Z

1≤j,j′≤βi

(−1)i+ii
′
∫
X

(f∗eij ∪ e∨2d−i′,j′)
∫
X

(e∨2d−i,j ∪ ei′,j′).

Now, the right-hand integral is 1i=i′1j=j′ by construction of our dual basis, so we are left with

deg([Γf ] · [∆]) =
∑
i∈Z

1≤j≤βi

∫
X

(f∗eij ∪ e∨2d−i,j).

Because technically {eij}j and {(−1)ie∨2d−i,j}j are the dual bases with
∫
X
(eij ∪ (−1)ie∨2d−i,j′) = 1j=j′ , we

see that the right-hand integral collapses down to (−1)i tr(f∗; Hi(X)). This completes the proof upon using
Lemma 1.117 to restrict the sum to i ∈ [0, 2d]. ■

Remark 1.123. Technically, this argument works for pre-Weil cohomology theories, provided we sum
over all i ∈ Z instead of i ∈ [0, 2d].

Let’s apply some of the theory we built to do one last calculation.

Example 1.124. Fix a pre-Weil cohomology theory H• over K with coefficients in F . Then

Hi(P1
K) =


F if i = 0,

F (−1) if i = 2,

0 else.

Proof. The main claim is that dimF H•(P1
K) = 2. Quickly, let’s explain why the main claim completes the

proof. Certainly H0(P1
K) ̸= 0 by Proposition 1.105, so H2(P1

K)(1) ̸= 0 by Poincaré duality as well, which
provides the lower bound dimF H•(P1

K) ≥ 2. If we were to have equality, then we must have H•(P1
K) =

H0(P1
K)⊕H2(P1

K), and H0(P1
K) = F and H2(P1

K)(1) = F become forced.
We now prove the main claim. It remains to show dimF H•(P1

K) ≤ 2. Technically, Theorem 1.122 will
not be enough for our purposes because the Euler characteristic includes a−dimF H1(X) term. Our motivic
input is that the cycle class [∆] in P1

K × P1
K is equal to pr∗1[∞] + pr∗2[∞], where∞ ∈ P1

K is a point at infinity.
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Indeed, consider the function f : P1×P1 → P1 given by f(x, y) := x− y. Then f has zero-set given by ∆ and
poles given by {∞} × P1

K and P1 × {∞}, so

div f = pr∗1[∞] + pr∗2[∞]−∆

must be a trivial divisor class. We conclude that

clP1
K×P1

K
([∆]) = clP1

K
([∞])⊠ 1 + 1⊠ clP1

K
([∞]).

Now, Example 1.120 shows that the left-hand side has no expression in terms of fewer than dimF H•(X)
total pure tensors, so we concldue that dimF H•(X) ≤ 2! ■

1.3.3 Tannakian Formalism
It was frequently apparent from our discussion of Weil cohomology theories that proofs frequently have
some geometric component, from which some algebraic calculations derived an interesting result. As such,
we are motivated to look for a conjectural category where we can run such geometric calculations. Of course,
it would be lovely to work directly with P(K) (or P(K)op) directly, but this is a pretty bad category; for ex-
ample, it is very far from abelian.

Instead, we will attempt to “close up” the category P(K) in various ways to produce a well-behaved
category. In this subsection, we will make rigorous what we mean by “well-behaved”: we are hoping for
(neutral) Tannakian categories. Our exposition follows [DM12] and [And04, Chapters 2 and 6].

Warning 1.125. We will not need any proofs from the theory of Tannakian formalism, so we will not
provide them.

Intuitively, a Tannakian category is one that looks like the categoryRepF (G) of finite-dimensional represen-
tations of an affine F -group G. An important property of RepF (G) is the ability to take tensor products, so
we codify how useful tensor products are.

Definition 1.126 (monoidal). A monoidal category or⊗-category is a category C equipped with a bifunc-
tor⊗ : C × C → C and identity object 1 ∈ C with the following identities.

• Associativity: there is a natural isomorphism α : ((−⊗−)⊗−)⇒ (−⊗ (−⊗−)).

• Identity: there are natural isomorphisms (1⊗−)⇒ − and (−⊗ 1)⇒ 1.

These isomorphisms satisfy certain coherence properties ensuring that one can associate and apply
identity naturally in any suitable situation.

In fact, RepF (G) has a symmetry property.

Definition 1.127 (symmetric monoidal). A symmetric monoidal category is a monoidal category C fur-
ther equipped with a symmetry isomorphism (−⊗−)⇒ (−⊗−) such that the composite

(A⊗B)→ (B ⊗A)→ (A⊗B)

is the identity.

The reason we restrictedRepF (G) to finite-dimensional representations is so that we can take duals.

Definition 1.128 (rigid). A rigid symmetric monoidal category is a symmetric monoidal category C fur-
ther equipped with a natural isomorphism (−)∨ : C → Cop such that each A ∈ C makes (−⊗ A∨) is left
adjoint to (−⊗A), and (A∨ ⊗−) is right adjoint to (A⊗−).
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Remark 1.129. Rigidity allows one to define an internal hom by Hom(X,Y ) := X∨ ⊗ Y . For example,
one may define the trace trX as the composite

End(X) = X∨ ⊗X → 1,

where the second map is canonically given by the adjunction. With a trace, one can also define a rank
by rankX := trX(idX).

Lastly, RepF (G) has a forgetful functor to VecF , akin to the forgetful functor Set(G)→ Set which appears in
Grothendieck’s Galois theory (used to define the étale fundamental group).

Definition 1.130 (fiber functor). Fix an abelian rigid symmetric monoidal category C such that F ′ :=
End(1) is a field. A fiber functor is a faithful exact⊗-functorω : C → VecF for some finite field extension
F of F . If F = F ′, then we say that C is neutral Tannakian over F .

What is remarkable is that it turns out that one can recover the affine F -group G from the (forgetful) fiber
functor ω : RepF (G) → VecF as “Aut⊗(ω).” Explicitly, for an F -algebra R, an element of Aut⊗(ω)(R) is
a collection of automorphisms (gX)X∈RepF (G) where gX is an R-linear automorphism of ω(X) ⊗F R, and
these automorphisms are natural in G-linear maps X → Y .

This process can in general recover a group G from a neutral Tannakian category.

Theorem 1.131. Fix a neutral Tannakian category C over a field F equipped with fiber functor ω : C →
VecF .

(a) The functor Aut⊗(ω) (defined analogously as above) is represented by an affine F -group G.

(b) The fiber functor ω then upgrades to a⊗-equivalence C → RepF (G).

Proof. See [DM12, Theorem 2.11]. ■

In fact, a careful review of the proof reveals that one can do away with many hypotheses on C.

Theorem 1.132. Suppose that C is an essentially small F -linear category equipped with an F -linear
symmetric monoidal functor ⊗ : C × C → C. Further, suppose that there is an exact faithful functor
ω : C → VecF satisfying the following.

(i) ω(X ⊗ Y ) = ω(X)⊗ ω(Y ) for all X,Y ∈ C.

(ii) The functor ω preserves the commutativity and associativity coherences.

(iii) The functor ω sends the unit 1 to F ∈ VecF , and ω preserves the unit coherences.

(iv) Each X ∈ C such that dimF ω(X) = 1 has some object Y ∈ C such that X ⊗ Y ∼= 1.

Then C is neutral Tannakian, and ω is a fiber functor.

Proof. See [Mil17, Theorem 9.24]. ■

Let’s see some examples.

Example 1.133. Of course, RepF (G) is a neutral Tannakian category for any affine group G over F ,
where the fiber functor is given by the forgetful functor ω : RepF (G)→ VecF .
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Example 1.134. For any profinite group G and field F , the category RepF G of continuous representa-
tions of G succeeds at being neutral Tannakian. The fiber functor is still the forgetful functor.

Example 1.135. The categoryGrVecF ofZ-graded vector spaces is a neutral Tannakian category, where
the fiber functor is the forgetful functor. In fact, by diagonalizing, we can see that a graded vector space
has exactly the same data as a representation of Gm,F , where the graded piece in degree d ∈ Z corre-
sponds to the eigenvector with eigenvalue T 7→ T d.

Example 1.136. The category HSR of real Hodge structures is Tannakian. Indeed, Lemma 1.7 explains
that a real Hodge structure corresponds to a representation of the Deligne torus S = ResC/RGm,C.
In fact, one can check (e.g., with Theorem 1.132) that the category HSQ of rational Hodge structures
continues to be a Tannakian category.

Example 1.137. IfC is a neutral Tannakian category over a fieldF with fiber functorω, andD is an abelian
rigid symmetric monoidal category equippd with a faithful exact⊗-functorD → C, then the composite

D → C ω→ VecF

becomes a fiber functor forD, thereby makingD neutral Tannakian.

For more examples, we pass to subcategories.

Definition 1.138 (⊗-subcategory). Fix an abelian rigid symmetric monoidal category C. Then the full
⊗-subcategory generated by a subset S ⊆ C of objects, denoted ⟨S⟩⊗ is the smallest full abelian rigid
monoidal subcategory.

Remark 1.139. One can see (e.g., via Example 1.137) that a fiber functor for C will induce a fiber functor
for a full abelian rigid monoidal subcategory.

Example 1.140. Given a rational Hodge structure V , we claim that the Mumford–Tate group MT(V ) is
exactly the group corresponding to the subcategory ⟨V ⟩⊗ ⊆ HSQ. Indeed, we can see that ⟨V ⟩⊗ consists
of the Hodge substructures W of large tensors T which look like

T :=

N⊕
i=1

(
V ⊗mi ⊗ (V ∨)⊗ni

)
,

but Proposition 1.33 explains that W ⊆ T is a rational Hodge substructure if and only if W is a subrep-
resentation of MT(V ). This implies ⟨V ⟩⊗ ⊆ RepQ(MT(V )), and this embedding is essentially surjec-
tive because all representations of MT(V ) can be generated by the (faithful) standard representation V
[Mil17, Theorem 4.14].

The above example is in fact extremely important: it is the guiding principle behind what a monodromy
group is. In particular, this idea of monodromy group is akin to the definition of a fundamental group as
the automorphism group of the category of covering spaces, and it is akin to defining the étale fundamental
group as the automorphism group of the category of finite étale covering spaces. Let’s codify this intuition
into some notation.

Notation 1.141. Fix a neutral Tannakian category C over a field F . Given a fiber functor ω : C → VecF ,
we set Gω := Aut⊗ω to be the corresponding group. For any subset S ⊆ C, we define Gω(S) to be the
group corresponding to the tensor subcategory ⟨S⟩⊗.
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Remark 1.142. If S ⊆ T , then ⟨T ⟩⊗ ⊆ ⟨S⟩⊗, so we induce a surjection Gω(T ) ↠ Gω(S).

While we’re discussing (neutral) Tannakian categories, we take a moment to define some useful language.
Because we will be interested in constructing a useful neutral Tannakian category from the categoryP(K)op,
it will be helpful to have a notion of some gradings and “Tate twist” in our category.

Definition 1.143 (grading). Fix a field F . A Z-grading on an F -linear abelian symmetric monoidal cate-
gory C is a homomorphism Gm → Aut⊗(idC).

Remark 1.144. The data of the homomorphism w : Gm → Aut⊗(idC) is equivalent to the data of a ho-
momorphism Gm → AutC X for each object X ∈ C which is functorial in X and respects tensor prod-
ucts, where the latter means that w(t)(X ⊗ Y ) = w(t)(X) ⊗ w(t)(Y ) for any t ∈ Gm and X,Y ∈ C. By
diagonalizing the Gm-action in the usual way, we see that this is equivalent to producing a functorial
Z-grading on each object X ∈ C (say, X =

⊕
n∈ZXn) which also preserves tensor products, in that

(X ⊗ Y )n =
⊕
i+j=n

Xi ⊗ Yj .

This particular grading of the tensor product arises from the (diagonalization) identificationRepF Gm =
GrVecF .

Definition 1.145 (Tate triple). Fix a field F . A Tate triple is a triple (C, w,T) of a neutral Tannakian cat-
egory C over F , a weight Z-grading w : Gm → Aut⊗(idC), and an invertible object T ∈ C (called the
Tate twist) whose induced Z-grading is supported in degree−2. A morphism of Tate triples is a tensor
functor preserving the grading and Tate twist.

Notation 1.146. Fix a Tate triple (C, w,T) over a field F . For any object X ∈ C and integer n ∈ Z, we
may write X(n) := X ⊗ T⊗n.

Example 1.147. The category HSQ of rational Hodge structures is aready neutral Tannakian. Continu-
ing, we note that all Hodge structures already come with a functorial weight grading which preserves
tensor products. (Explicitly, for a Hodge structure V , the decomposition VC =

⊕
i,j V

ij may define the
grading by Vn :=

⊕
i+j=n V .) This becomes a Tate triple after defining the Tate twist T := Q(1).

Remark 1.148. Because T is invertible, we see that ⟨T⟩⊗ simply has quotients of objects of the form⊕
i T

⊗ni . BecauseThas pure nonzero weight, we see that ⟨T⟩⊗ admits a fully faithful functor toGrVecF
with essential image in fact equivalent to GrVecF . We conclude that Gω(T ) = Gm.

It is helpful to have some more concrete ways to understandG from its Tannakian category. Here are a few
incarnations of this by “functoriality.”

Proposition 1.149. Fix a morphism f : G→ G′ of affine F -groups G, and let ω : RepF (G
′)→ RepF (G)

be the corresponding functor.

(a) Suppose RepF (G) is semisimple and thatF has characteristic 0. Then f is faithfully flat if and only
if the following holds: for given X ′ ∈ RepF (G

′), every subobject of ω(X ′) is isomorphic to ω(Y ′)
for some subobject Y ′ of X ′.

(b) Then f is a closed embedding if and only if every objectX ∈ RepF (G) is isomorphic to a subquo-
tient of ω(X ′) for some X ′ ∈ RepF (G

′).
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Proof. Combine [DM12, Remark 2.29] with [DM12, Proposition 2.21]. ■

Proposition 1.150. Fix an affine F -group G.

(a) ThenG is finite if and only if there is an objectX such that every object ofRepF (G) is a subquotient
of X⊕n for some nonnegative n.

(b) ThenG is algebraic (namely, finite type overF ) if and only ifRepF (G) equals ⟨X⟩⊗ for some object
X.

Proof. See [DM12, Proposition 2.20]. ■

Proposition 1.151. Fix a fieldF of characteristic 0 and an affineF -groupG. ThenG◦ ⊆ G is a projective
limit of reductive F -groups if and only if RepF (G) is semisimple.

Proof. See [DM12, Remark 2.28]. ■

Example 1.152. The category of polarizable Hodge structures is semisimple, so its corresponding affine
group is pro-reductive by Proposition 1.151.

1.3.4 Chow Motives
In this subsection, we explain how to (conjecturally!) turn the category P(K)op into a neutral Tannakian
category. Roughly speaking, we are looking for a graded, neutral Tannakian categoryM(K) such that each
object X ∈ P(K) gives rise to an object h(X) ∈M(K). In fact, each h(X) should also spawn objects

h0(X), h1(X), . . . , h2d(X) ∈M(K),

where d := dimX. Additionally, regular maps f : X → Y should produce pullback maps f∗ : h(Y ) → h(X)
which respect the grading.

However, it turns out to be desirable to have access to more maps than just these pullbacks. A basic
deficiency is that arbitrary regular maps cannot be added together. Here is one incarnation of this: for any
i ∈ Z, it is natural to expect the composite

h(X) ↠ hi(X) ↪→ h(X)

to be an endomorphism of h(X),3 but this map cannot come from an endomorphism f : X → X in gen-
eral.

Example 1.153. Fix a Weil cohomology theory H• overK with coefficients in F . Then there is no endo-
morphism f : P1

K → P1
K such that f∗ : H•(P1

K)→ H•(P1
K) equals the composite

H•(P1
K) ↠ H2(P1

K) ↪→ H•(P1
K).

Proof. There are two cases for an endomorphism f : P1
K → P1

K .

• If f is a constant map to a point x ∈ P1
K , then f factors into i◦p, where p : P1

K → {x} is some projection
and i : {x} ↪→ P1

K is some inclusion. It follows that f∗ = p∗ ◦ i∗ must factor through H•({x}). However,
H•({x}) is supported in degree 0 by Example 1.110, so the image of f∗ must also be supported in
degree 0, so we are done.

3 Such an endomorphism is called a “Künneth projector.”
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• If f is non-constant, then it is a finite map of some degree deg f . Then Lemma 1.116 explains that f∗f∗
is multiplication by deg f , so it is not possible for f∗ to be zero in degree 0 and the identity in degree
2. ■

To “linearize” our regular maps, we use correspondences.

Definition 1.154 (correspondence). Given X and Y in P(K), we define correspondences as the cycles
in Corr(X,Y ) := CH(X × Y ). For γ ∈ Corr(X,Y ), we define γ∗ : CH(Y )→ CH(X) by

γ∗(β) := pr1∗ (γ · pr∗2 β)

Example 1.155. Let’s explain why this is a reasonable definition of γ∗: if f : X → Y is a regular map,
then [Γf ] ∈ Corr(X,Y ), and Lemma 1.118 shows that our pullback (on cohomology) satisfies

f∗β = pr1∗ ([Γf ] · pr∗2 β) .

Thus, we have expanded our regular maps to include sums and differences, but our new expansion needs a
notion of composition.

Definition 1.156. GivenX,Y, Z ∈ P(K) and γ ∈ Corr(X,Y ) and δ ∈ Corr(Y,Z), we define the compos-
ite (δ ◦ γ) ∈ Corr(X,Z) by

(δ ◦ γ) := pr13∗ (pr
∗
12 γ · pr∗23 δ) .

Here are some basic checks.

Notation 1.157. Given γ ∈ Corr(X,Y ), we define γ⊺ ∈ Corr(Y,X) to be sw∗ γ = sw∗ γ, where sw: X ×
Y → Y ×X is the isomorphism swapping the two coordinates.

Lemma 1.158. Fix a ground field K, and choose W,X, Y, Z ∈ P(K).

(a) The operation ◦ is Z-bilinear.

(b) Associativity: given γ ∈ Corr(W,X) and δ ∈ Corr(X,Y ) and ε ∈ Corr(Y, Z), we have ε ◦ (δ ◦ γ) =
(ε ◦ δ) ◦ γ.

(c) Function composition: given γ ∈ Corr(X,Y ) and f : W → X and h : Z → Y , we have

[Γ⊺
h] ◦ γ ◦ [Γf ] = (f, h)∗γ.

(d) Functoriality: given γ ∈ Corr(X,Y ) and δ ∈ Corr(Y,Z), we have (δ ◦ γ)∗ = γ∗ ◦ δ∗.

Proof. All these proofs are basically direct computation with the projection formula and base-change of
cycles. Throughout this proof, we may write things like prABC,AC or prAC for the projection A × B × C →
A× C.

(a) Pullbacks are ring homomorphisms, and multiplication isZ-bilinear, so this follows from the definition
of ◦.

(b) By a direct expansion, we see that ε ◦ (δ ◦ γ) is

prWYZ,WZ∗
(
pr∗WYZ,WY prWXY,WY ∗(pr

∗
WXY,WX γ · pr∗WXY,XY δ) · pr∗WYZ,Y Z ε

)
.

By base-change, we see that pr∗WYZ,WY prWXY,WY ∗ = prWXY Z,WY Z∗ pr
∗
WXY Z,WXY , so the projec-

tion formula allows us to collapse the above into

prWXY Z,WZ∗
(
pr∗WXY Z,WX γ · pr∗WXY Z,XY δ · pr∗WXY Z,Y Z ε

)
.
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A symmetric argument shows that this is also equal to (ε ◦ δ) ◦ γ.

(c) Note that the expression [Γ⊺
h] ◦ γ ◦ [Γf ] makes sense because we already checked associativity. For

clarity, we will show this in two parts.

• We show that γ ◦ [Γf ] = (f, idY )
∗γ. Well, [Γf ] = (idW , f)∗[W ], so γ ◦ [Γf ] is

prWY ∗ (pr
∗
WX(idW , f)∗[W ] · pr∗XY γ) .

Now, base-change implies that pr∗WXY,WX(idW , f)∗ = (idW , f, idY )∗ pr
∗
WX,W , so the projection

formula shows that this equals

prWY ∗(idW , f, idY )∗ (pr
∗
W [W ] · (idW , f, idY )∗ pr∗XY γ)

Functoriality and the fact that [W ] is the unit for the intersection product finishes.
• We show that [Γ⊺

h] ◦ γ = (idX , h)
∗γ. This proof is the same. Note that [Γ⊺

h] = (h, idZ)∗[Z], so
[Γ⊺
h] ◦ γ is

prXZ∗ (pr
∗
XY γ · pr∗Y Z(h, idZ)∗[Z]) .

Now, base-change implies that pr∗XY Z,Y Z(h, idZ)∗ = (idX , h, idZ)∗ pr
∗
XZ,Z , so the projection for-

mula shows that this equals

prXZ∗(idX , h, idZ)∗ ((idX , h, idZ)
∗ pr∗XY γ · pr∗Z [Z]) .

The same sort of functoriality and fact that [Z] is the multiplicative unit finishes.

Combining the above two points completes the proof.

(d) Choose α ∈ CH(Z), and we must show that (δ ◦ γ)∗α = γ∗δ∗α.
On one hand, γ∗δ∗α is

prXY,X∗
(
γ · pr∗XY,Y prY Z,Y ∗(δ · pr∗Y Z,Z α)

)
.

Now, base-change gives pr∗XY,Y prY Z,Y ∗ = prXY Z,Y ∗ pr
∗
XY Z,Y Z , so we may use the projection formula

to collapse the above expression into

prXY Z,X∗
(
pr∗XY Z,XY γ · pr∗XY Z,Y Z δ · pr∗XY Z,Z α

)
after a little functoriality.
On the other hand, (δ ◦ γ)∗α is

prXZ,X∗
(
prXY Z,XZ∗(pr

∗
XY Z,XY γ · pr∗XY Z,Y Z δ) · pr∗XZ,Z α

)
.

An application of the projection formula reveals this to be

prXY Z,X∗
(
pr∗XY Z,XY γ · pr∗XY Z,Y Z δ · pr∗XY Z,Z α

)
,

so we are done. ■

Example 1.159. Letting γ be the diagonal class in (c), we see that f : X → Y and g : Y → Z will have

[Γ⊺
f ] ◦ [Γ

⊺
g ] = [Γ⊺

g◦f ].

Thus, P(K) with correspondences for its morphisms produces a Z-linear category. We will not show it
now (because we do not need it), but this category admits sums given by ⊔, and it is a symmetric monoidal
category where the tensor product is given by×.

Quickly, it is worthwhile to note that we ought to not work with all correspondences for our morphisms
because many “shift degree” in a way that the graph of a regular map would not.
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Notation 1.160. GivenX and Y inP(K), subdivideX into
⋃
d≥0Xd,w hereXd is the union of d-dimen-

sional irreducible components. For each i ∈ Z, we define

Corri(X,Y ) :=
⊕
d≥0

CHd+i(Xd × Y ).

Example 1.161. If f : Y → X is a regular map and dimX = d, then [Γ⊺
f ] is a class of codimension d in

X × Y . If X is no longer equidimensional, then we still have [Γ⊺
f ] ∈ Corr0(X,Y ) by construction.

Remark 1.162. Because pullback preserves codimension, and pushforward preserves dimension, we
see that ◦ defines an operation

◦ : Corrj(Y, Z)× Corri(X,Y )→ Corri+j(X,Z)

for any i, j ∈ Z. Indeed, by dividing everything into connected components, we may assume that ev-
erything in sight is connected. Then γ ∈ Corri(X,Y ) and δ ∈ Corrj(Y,Z) makes pr∗12 γ · pr∗23 δ have
codimension i + j + dimX + dimY and hence dimension dimZ − (i + j), so the pushforward has
codimension (i+ j) + dimX.

Thus, we may want to consider a category CQ(K) where the objects are given by h(X) for any X ∈ P(K),
and the morphisms are given by

MorCQ(K)(h(X), h(Y )) := Corr0(X,Y )Q.

(The composition is well-defined by Remark 1.162.) The category CQ(K) already has some desirable prop-
erties. We know that it is Q-linear (by Lemma 1.158), and there is already a canonical faithful contravariant
functor h : P (K)op → CQ(K) given by sending X 7→ h(X) and a morphism f : Y → X to [Γ⊺

f ] ∈ Corr0(X,Y )
(by Examples 1.159 and 1.161). Here are two more easy checks.

Lemma 1.163. The category CQ(K) is additive. In fact, h(X)× h(Y ) ∼= h(X ⊔ Y ).

Proof. The empty product is h(∅). As for products of two objects, after undoing the transposition, we need
to show that the inclusions induce a natural isomorphism

Corr0(X ⊔ Y,−) ?≃ Corr0(X,−)× Corr0(Y,−),

which amounts to checking⊕
d,e≥0

CHd+e((Xd ⊔ Ye)×−)
?≃
⊕
d≥0

CHd(Xd ×−)⊕
⊕
e≥0

CH(Ye ×−),

where Xd is the union of the d-dimensional irreducible components of X (with Ye defined analogously).
Well, (X ⊔Y )×− is isomorphic to (X ×−)⊔ (Y ×−) already as schemes, so this follows because any cycle
on a disjoint union can be uniquely decomposed into a cycle on either part. In other words, we see that the
inclusions induce a natural isomorphism

CH(X ×−)× CH(Y ×−)→ CH((X ×−) ⊔ (Y ×−)),

so we are done after tracking that the codimensions pass through correctly on each irreducible component
■
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Lemma 1.164. The category CQ(K) admits the structure of a symmetric monoidal category with unit
h(pt) and product h(X)⊗ h(Y ) := h(X × Y ).

Proof. In fact,P(K) is already a symmetric monoidal category with unit pt and product×. We already have
commutativity and associativity constraints induced by the universal property of the fiber product, and there
is a canonical isomorphism X × pt → X. The various coherences required for × here are automatically
satisfied by the universal property of the fiber product. ■

Thus, we can see that CQ(K) is pretty close to our category of motives, but it has two key failures at being
neutral Tannakian.

• The category CQ(K) fails to be abelian. Glaringly, there are many correspondences which fail to have
kernels.

• The category CQ(K) fails to be rigid. Namely, we want to have duals, which by an expected Poincaré
duality axiom, more or less amounts to adding a Tate twist.

We are going to handle each of these concerns individually. To begin, we will not add all kernels and cok-
ernels or even all kernels; it turns out that it will be enough to merely add kernels of idempotents. This is a
rather explicit construction in pure category theory.

Definition 1.165 (Karoubian). A Q-linear category C is Karoubian or pre-abelian if and only if anyX ∈ C
and idempotent p : X → X admits a kernel.

Remark 1.166. Because p : X → X is idempotent, we see that (1 − p) : X → X is also an idempotent.
As such, we claim that

X
?
= ker(p)⊕ ker(1− p).

Indeed, this follows by writing out what it means to be a direct sum in an additive category and noting
that the relevant equations are satisfied because 1 = p+(1−p) and p(1−p) = (1−p)p = 0. In particular,
we see that p : X → X factors through ker(1− p), and (1− p) : X → X factors through ker(p).

Lemma 1.167. Fix a Q-linear category C, and define the category Split(C) to be the category whose
objects are pairs (X, p) where X ∈ C and p : X → X is idempotent, and morphisms are given by

MorSplit(C)((X, p), (Y, q)) := q ◦MorC(X,Y ) ◦ p.

Then Split(C) is Q-linear and Karoubian. Further, any Q-linear functor F : C → D to a Karoubian cate-
gory factors uniquely through Splic(C).

Proof. We have many checks. Intuitively, the point is that (X, p) should be the image of the idempotent of
p : X → X; in particular, because 1 = p + (1 − p), the object (X, p) should be the kernel of the idempotent
(1− p).

1. We check that Split(C) makes sense as an additive Q-linear category. Note Mor((X, p), (Y, q)) is a
Q-subspace of Mor(X,Y ), and with composition defined as usual, we still have identity morphisms
(where p ∈ Mor((X, p), (X, p)) behaves as an identity), and composition is well-defined and Q-bilinear
by construction.

While we’re here, we note that there is a Q-linear faithful functor h : C → Split(C) sending objects X
to (X, 1) and morphisms to themselves.
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2. We check that Split(C) is Karoubian. Well, let pfp : (X, p)→ (X, p) be some idempotent, and we need
to show that this map has a kernel. For brevity, we q := pfp, and we note that pq = q = qp because
p is itself idempotent. Now, q : X → X is already some endomorphism, and q and hence (1 − q) are
idempotent by hypothesis, so (X, 1− q) is an object in Split(C) which we expect to be the kernel. Note
that there is a canonical map (X, p− q)→ (X, p) given by p(p− q) = p− q.
It remains to check that we have actually constructed the kernel. Suppose we have some morphism
pgr : (Z, r) → (X, p) such that pqgr = 0. We would like this pgr to factor uniquely through (X, 1 − q).
Namely, we are looking for some unique (p− q)g′r : (Z, r)→ (X, p− q) such that

p(p− q)g′r = pgr.

Certainly g = g′ works because pqgr = 0 by hypothesis; on the other hand, if some other g′ has p(1 −
q)g′r = p(1−q)gr, then we note that (1−p)(p−q)g′r = (1−p)(p−q)gr as well because (1−p)(p−q) = 0,
so summing gives (p− q)g′r = (p− q)gr.

3. Suppose that F : C → D is a Q-linear functor to a Karoubian category, which we would like to uniquely
factor through h. Well, we will simply describe how to extend the functor F on C to a functor G on
Split(C). For each (X, p) ∈ Split(C), we must determineG((X, p)) ∈ D; well,G needs to be an additive
functor, so Remark 1.166’s decomposition

(X, 1) = (X, p)⊕ (X, 1− p)

shows that G((X, p)) must be the kernel of F (1 − p) : FX → FX (which is equivalently the im-
age of Fp). (This provides uniqueness up to some natural isomorphism.) Continuing, any morphism
qfp : (X, p) → (Y, q) must factor through the aforementioned decompositions,4 and therefore must
be sent to the induced map on G(qfp). Lastly, we ought to check that this functor is well-defined:
well, G sends identities to identities by construction, and the relevant uniqueness in place provides
functoriality. ■

Definition 1.168 (Karoubian envelope). Given a Q-linear category C, we define the Q-linear additive
category Split(C) of Lemma 1.167 to be the Karoubian envelope.

Remark 1.169. If C is additive, then Split(C) is also: the direct sum of (X, p) and (Y, q) can simply be
given by (X ⊕ Y, (p, q)). Indeed, note a pair of morphisms rfp : (X, p)→ (Z, r) and rgq : (Y, q)→ (Z, r)
amount to the same data as a single morphism (rfp, rgq) : (X ⊕ Y, (p, q))→ (Z, r).

Remark 1.170. If C admits a symmetric monoidal structure given by⊗, then Split(C)does as well, where
we define

(X, p)⊗ (Y, q) := (X ⊗ Y, p⊗ q).

The relevant coherences for⊗ all lift from C to Split(C).

Example 1.171. Let’s exhibit the sort of decompositions we can exhibit in Split(C). Suppose that we
have a “projection” p : X → Y in C with a section s : Y → X, meaning that ps = idY . Then we note that
sp : X → X is an idempotent, and we claim that (X, sp) ∼= (Y, idY ), meaning that Y is not a sub-object
of X in Split(C)! To show this, we note that p = psp is a map (X, sp) → (Y, idY ), and s = sps is a map
(Y, idY )→ (X, sp), and we know ps = idY and sp = id(X,sp).

Thus, to make CQ(K) more abelian, we can take its Karoubian envelope. This produces the category of ef-
fective Chow motives.

4 Explicitly, the morphism (X, p) → (Y, q) can be expressed as a composite (X, p) ↪→ X
f→ Y → (Y, q), whose behavior upon being

passed through G is now forced by F .
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Definition 1.172 (effective Chow motives). Fix a ground field K. The category ChMot+Q (K) of effective
Chow motives is the Karoubian envelope of CQ(K).

Remark 1.173. Because CQ(K) is Q-linear, additive, and symmetric monoidal, the same holds for its
Karoubian envelope ChMot+Q (K) (see Remarks 1.169 and 1.170), but effective Chow motives now suc-
ceed at being Karoubian. Notably, the canonical functor h : P(K)op → CQ(K) extends to ChMot+Q (K),
and we may write the effective Chow motive (h(X), p) as simply ph(X).

Example 1.174 (Künneth projector). It is a standard conjecture that there is a correspondence h(X) →
h(X) giving rise to the Künneth projections, so hi(X) can be defined as the image.

As our standard example, let’s begin computing the motive of P1: by Example 1.124, we are expecting h(pt)
and some other piece given by a Tate twist.

Lemma 1.175. Fix a ground field K. Suppose some irreducible X ∈ P(K) has a K-rational point∞ ∈
X(K). Then h(pt) is a sub-object of h (X).

Proof. We use Example 1.171. Consider the structure morphism p : X → pt and the embedding i : pt→ X.
Then pi = idpt, so h(i) ◦ h(p) = idh(pt) by functoriality, so the result follows. ■

Next up, we would like to add in a Tate twist to recover our rigidity. Namely, we would like to have duals.
For example, Lemma 1.175 tells us that h(P1) decomposes as

h(P1) = h(pt)⊕ L

for some effective Chow motiveL, which is expected to be the dual of the Tate twist by Example 1.124. Thus,
to ensure that L has a dual, we must add in its inverse! Note that once we have Tate twists, Poincaré duality
tells us that we expect all of our Chow motives to have duals. We are now ready to define the category of
Chow motives.

Definition 1.176 (Chow motives). Fix a ground field K. The category ChMotQ(K) of Chow motives is
defined as the category of triples (X, p, i) where X ∈ CQ(K) and p ∈ Corr0(X,X) is an idempotent and
i ∈ Z, where morphisms are given by

HomChMotQ(K)((X, p, i), (Y, q, j)) := q ◦ Corrj−i(X,Y )Q ◦ p.

For brevity, we define the Tate motive T := (pt, id, 1) and the Lefschetz motive L := (pt, id,−1).

Remark 1.177. As usual, we remark that composition makes sense by Remark 1.162 and is Q-linear by
Lemma 1.158.

Remark 1.178. The canonical faithful, essentially surjective, Q-linear functor h : P(K)op → CQ(K) ex-
tends to ChMotQ(K) by X 7→ (X,∆X , 0), where ∆X ⊆ X × X is the diagonal. (The idea is that the
“degree-0” part of our Chow motives simply recovers the effective Chow motives.) As such, we may
write the Chow motive (X, p, i) as ph(X)(i).

Remark 1.179. One may alternatively define Chow motives by taking CQ(K), first adding in Tate twists
by considering pairs (X, i) where i ∈ Z, and then taking the Karoubian envelope. We have not done this
because the intermediate category of pairs (X, i) is not obviously additive: for example, how should one
add (pt, 0) and (pt, 1)?

56



1.3. ABSOLUTE HODGE CLASSES SATO–TATE GROUPS OF GENERIC CURVES

Remark 1.180. Note that ChMotQ(K) continues to be Karoubian. The point is that an idempotent q of
some triple (X, p, i) will have q ∈ Hom((X, p), (X, p)) anyway, so letting (X, p) = ker(q) ⊕ im(q) be the
sum of Remark 1.166 in the category of effective Chow motives, we see

(X, p, i) = (ker(q), i)⊕ (im(q), i)

by shifting the Tate twist by i everywhere, so we conclude that (ker(q), i) is the kernel of q : (X, p, i) →
(X, p, i).

Here are our basic checks on this category.

Lemma 1.181. The category ChMotQ(K) admits the structure of a symmetric monoidal category with
unit h(pt)(0).

Proof. Unsurprisingly, we define

(X, p, i)⊗ (Y, q, j) := (X × Y, p× q, i+ j).

Then one can simply repeat the proof of Lemma 1.164, carrying around commutativity and associativity of
addition in Z to upgrade the commutativity and associativity constraints. ■

Remark 1.182. This is not actually the correct symmetric monoidal structure! In short, the problem is
the commutativity constraint does not take into account the fact that h(X) should behavae as a graded
commutative algebra. Explicitly, given any Weil cohomology theory H•, we would like the commuta-
tivity constraint h(X)⊗ h(Y )→ h(Y )⊗ h(X) to be given by

H•(X)⊗H•(Y ) = H•(X × Y )
sw→ H•(Y ×X) = H•(Y )⊗H•(X).

But sw needs to be an isomorphism of graded commutative rings, so the mapHi(X)⊗Hj(Y )→ Hj(Y )⊗
Hi(X) needs to have the sign (−1)ij .

Example 1.183. We now see that ph(X)(i) = ph(X) ⊗ Ti, thus explaining why we might view the cat-
egory of Chow motives as simply the category of effective Chow motives extended by the Tate twist
T = h(pt)(1).

Example 1.184. Fix a ground field K. Then

h
(
P1
K

)
= h(pt)⊕ L.

In particular, L is an effective Chow motive.

Proof. We imitate Example 1.124. For brevity, set X := P1
K . Upon choosing a point∞ ∈ X, we recall from

Example 1.124 that we had a “motivic” input

[∆X ] = [∞×X] + [X ×∞],

where ∆X ⊆ X×X is the diagonal. Notably, [∆X ] = idh(X), so the above is a decomposition of the identity.
In fact, it is a decomposition into idempotents: for example, [∞×X] is [Γ⊺

i ], where i : X → X is the constant
map sending all points to∞, so the equality i ◦ i = i implies that [Γ⊺

i ] is an idempotent by Example 1.159. It
follows that [X ×∞] is the orthogonal idempotent.
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Now, Lemma 1.175 tells us that h(pt) is already a sub-object of h(X), and in fact the proof shows that
h(pt) is in fact the image of h(i) : h(X) → h(X); in other words, h(pt) is isomorphic to (X, [∞×X]). Thus,
it remains to check that

L
?∼= (X, [X ×∞]).

In fact, we suspect that L should be the image of [X × pt] ∈ Corr0(X,X). Indeed, [X × pt] is an element of

HomChMotQ(K)((X, [X ×∞], 0), (pt, id,−1)) = CH0(X × pt) ◦ [X ×∞]

because [X×pt]◦ [X×∞] = [X×pt] by a direct calculation of the composition. On the other hand, [pt×∞]
is an element of

HomChMotQ(K)((pt, id,−1), (X, [X ×∞], 0)) = [X ×∞] ◦ CH1(pt×X)

because [X×∞]◦ [pt×x] = [pt×∞] for any x ∈ X(K). It remains to calculate [X×pt]◦ [pt×∞] = [pt×pt]
and [pt×∞] ◦ [X × pt] = [X ×∞] are both their respective identities, so we are done. ■

Lemma 1.185. The category ChMotQ(K) is additive.

Proof. The empty product is h(∅). We exhibit our sums in two steps.

1. Copying the proof of Lemma 1.163 with an appropriate degree change shows ph(X)(i)× qh(Y )(i) =
(p⊔q)h(X⊔Y )(i), so the main problem is dealing with degree shifts. (In degree i = 0, we already knew
this from Remark 1.173.) To be slightly more explicit, after decomposing X and Y as X =

⊔
d≥0Xd

and Y =
⊔
e≥0 Ye into equidimensional pieces, we find

HomChMotQ(K)((X ⊔ Y, p ⊔ q, i), (Z, r, j)) =
⊕
d≥0

r ◦ CHd+j−i((Xd ⊔ Yd)× Z) ◦ (p ⊔ q),

which then decomposes into cycles on X and Y individually as in the proof of Lemma 1.163.

2. We now reduce to the previous case. For any Chow motives (X, p, i) and (Y, q, j), we note that there
is an integer n large enough so that (X, p, i)⊗ L⊗n and (Y, q, j)⊗ L⊗n are both effective: for example,
(X, p, i−n) becomes effective as soon as i−n is nonpositive, for then we get (X, p, 0)⊗L−(i−n), which
is effective by Example 1.184. Thus, we may define the sum of (X, p, i) and (Y, q, j) as(

(X, p, i)⊗ L⊗n ⊕ (Y, q, j)⊗ Ln
)
⊗ T⊗n.

The fact that L and T are inverses shows that this is in fact a valid sum.5 ■

Thus, we have built a Q-linear, additive, and Karoubian category ChMotQ(K) of Chow motives. The remain-
ing properties are only conjectural.

Conjecture 1.186 (Grothendieck). The category ChMotQ(K) is a semisimple neutral Tannakian cate-
gory.

Remark 1.187. It turns out that any pre-Weil cohomology theory H• : P(K)op → GrVecF extends to
a unique Q-linear symmetric monoidal functor ChMotQ(K) → GrVecF , fulfilling a prophecy from the
start of this subsection. In fact, one expects this functor to be a fiber functor for our neutral Tannakian
category! We will not need this fact, and the proof is rather involved, so we will not prove it. Instead,
we refer to [SP, Proposition 0FHM], and we note that Theorem 1.207 proves a version of this in the next
section.

5 One can see that Hom(−⊗ T,−) ≃ Hom(−,−⊗ L) already on the level of correspondences.
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1.3.5 Motives from Absolute Hodge Cycles
The goal of the present subsection is to build a concrete category MotQ(K) of motives which we can prove
satisfies the required properties (namely, it is semisimple neutral Tannakian and lives in a Tate triple) and
is conjecturally equivalent to ChMotQ(K). The idea is to add in more correspondences to Corr(X,Y ). For
example, the previous subsection repeatedly asked for an idempotent h(X)→ h(X) whose image is hi(X),
but the existence of such correspondences inCorr0(X,X) is still conjectural. Thus, we will want the category
MotQ(K) to admit such correspondences.

In particular, isntead of having Corr(X,Y ) be made up of algebraic cycle classes, we will use absolute
Hodge classes, following [Del18]. For motivation, we want the Hodge classes on a complex Kähler manifold
X to be elements of the cohomology group H2i

dR(X,C)(i) of bidegree (0, 0) and satisfying some rationality
condition. The definition of an absolute Hodge class comes from trying to be agnostic about the embedding
of the base field of X.

Definition 1.188 (absolute Hodge class). Fix a smooth projective varietyX over a fieldK algebraic over
Q. An absolute Hodge class is an element t of some H2i

A (XK)(i) if and only if it satisfies the following
properties.

• π∞(t) lives in the component (0, 0) of H2i
dR(X,C).

• For each embedding σ : K ↪→ C, the element t is in the image of the embedding H2i
B (X,Q)(i) into

H2i
A (X)(i).

We denote the collection of these absolute Hodge classes by CiAH(XK) or CiAH(X).

Remark 1.189. Deligne [Del18, Section 2] gives a definition for smooth projective varieties defined over
a general field of characteristic 0. The above definition makes sense essentially verbatim for any fieldK
of characteristic 0 and finite transcendence degree because then one has access to embeddings into C.
For the general case, one must argue that any class with sufficient rationality properties will descend
to a field of finite transcendence degree and that the choice of this descent does not matter.

Example 1.190. Any algebraic class γ ∈ CHi(X) produces cycle classes in the various cohomology the-
ories. Because γ ought to arise rationally (over K) because it already produces a cycle class in Betti
cohomology, we see that taking the corresponding cycle class in H2i

A (X)(i) successfully produces an
absolute Hodge class. Note that the Hodge conjecture would imply that all absolute Hodge classes
arise in this way.

Remark 1.191. Here is a notable advantage of working with absolute Hodge classes over typical Hodge
classes: there is an action of Gal(K/K) on H2i

A (XK)(i) given by the pullback of the action on XK , but
this Galois action may very well permute the image of H2i

B (X,Q)(i) for a given σ : K ↪→ C. Indeed,
τ ∈ Gal(K/K) has τ∗Hσ = Hτσ. As such, the space of Hodge classes is not obviously a Galois repre-
sentation, but the space of absolute Hodge classes is!

We are ready to (re)define our correspondences in terms of absolute Hodge classes.

Notation 1.192. Fix a field K algebraic over Q. For any X,Y ∈ P(K), we define

CorrAH(X,Y ) := CAH(X × Y ).

Upon decomposingX into equidimensional components as
⊔
d≥0Xd, we may set the degree-i compo-

nent as
CorriAH(X,Y ) :=

⊕
d≥0

Ci+dAH (Xd × Y ).
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It is worthwhile to describe these correspondences cohomologically.

Definition 1.193 (absolute Hodge correspondence). Fix a field K algebraic over Q and X,Y ∈ P(K).
Then an absolute Hodge correspondence of degree i is a triple ((fℓ)ℓ, fdR, (fσ)σ) as follows.

• For each prime ℓ, the element fℓ is a Galois-invariant graded homomorphism H•
ét(XK ,Qℓ) →

H•
ét(YK ,Qℓ)(i).

• The element fdR is a graded homomorphism H•
dR(X,C) → H•

dR(Y,C)(i) preserving the Hodge
structure.

• For each embedding σ : K ↪→ C, the element fσ is a graded homomorphism H•
σ(X)→ H•

σ(Y )(i).
Further, we require fℓ and fdR to agree with fσ after applying the suitable comparison isomor-
phism (Theorems 1.75 and 1.79).

Lemma 1.194. Fix a field K algebraic over Q and X,Y ∈ P(K). The group CorriAH(X,Y ) is isomorphic
to the vector space of absolute Hodge correspondences of degree i.

Proof. This is [DM12, Proposition 6.1]. We go ahead and decompose X =
⊔
d≥0Xd, where Xd is equidi-

mensional of dimension d. The point is to describe how a correspondence should give rise to a morphism in
cohomology. To be explicit, our correspondences are just some classes in

⊕
dH

2i+2d
A (Xd × Y )(i+ d), which

the Künneth formula and Poincaré duality tell us give rise to elements in

H2i+2d
A (Xd × Y )(i+ d) =

⊕
p+q=2i+2d

HpA(Xd)(d)⊗HqA(Y )(i)

=
⊕
p

HpA(Xd)
∨ ⊗Hp+2i

A (Y )(i)

= Hom (H•
A(Xd),H

•
A(Y )(i)) .

This explains how CorrpAH(X,Y ) embeds into the group of tuples ((fℓ), fdR). (Note that the fσ are uniquely
determined if they exist by the nature of the comparison isomorphisms.) It remains to characterize the im-
age, so pick up some f ∈ CorriAH(X,Y ), and we must describe what the image tuple must look like. Here
are our checks.

• Note f is a Hodge cycle by definition, so it must be in the (0, 0) component in all the above equalities,
eventually causing the induced map fdR on de Rham cohomology to preserve the Hodge structures.

• Because our f ∈ CorriAH(X,Y ) is required to be absolutely Hodge, it will come from a rational element
fσ ∈ H2i+2d

σ (X × Y )(i) for each embedding σ : K ↪→ C, from which the above equalities explain how
to produce morphisms fσ : Hσ(X)→ Hσ(X)(i). This explains why the fσ exist.

• Lastly, because f arises rationally, it must be a Galois-invariant class, so because the equalities above
are Galois-invariant at each ℓ, we conclude that the fℓs are Galois-invariant at the end.

Conversely, given an absolute Hodge correspondence ((fℓ), fdR, (fσ)σ), we may go backwards to produce
f ∈

⊕
dH

2i+2d
A (Xd× Y )(i+ d), and the above checks are all reversible and thus tell us that the provided f is

an absolute Hodge class. ■

Intuitively, if one can canonically produce a class for all of our known cohomology theories, we receive an
absolute Hodge class. Here are a few examples.
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Example 1.195 (Künneth projectors). For any pre-Weil cohomology H• and X ∈ P(K) of dimension d
and index i ∈ [0, 2d], the various projections

H•(X) ↠ Hi(X) ↪→ H•(X)

assemble into an absolute Hodge correspondence. Indeed, this follows from properties of each coho-
mology theory and their comparison isomorphisms. We call this absolute Hodge correspondence πi,
and we may identify it with an element in Corr0(X,X) by Lemma 1.194.

Example 1.196 (Poincaré duality). Fix a field K algebraic over Q and some X ∈ P(K) which is equidi-
mensional of dimension d. Poincaré duality provides a perfect pairing

H2d
A (X ×X) =

⊕
i

HiA(X)⊗H2d−i
A (X)→ H2d

A (X)

∫
X→ H0

A(pt)(−d),

which lives in Betti cohomology and is compatible for all of our cohomology theories. Thus, this perfect
pairing arises from some absolute Hodge class ψ ∈ Corr−d(X ×X,pt).

Example 1.197 (Hodge involution). Fix a field K algebraic over Q and some X ∈ P(K) which is equidi-
mensional of dimension d. For each index i, there is ∗ ∈ CorrAH(X,X) such that the degree-(−i) com-
ponent induces an isomorphism

HiA(X)→ H2d−i
A (X)(d− i).

Proof. This is the main content of [DM12, Proposition 6.2]. We use the Hard Lefschetz theorem [GH94,
p. 122], whose statement we now recall. Upon choosing a projective embedding forX, we may find a generic
hyperplane whose intersection L with X is smooth of codimension 1. As such, L produces a cycle class
ℓ ∈ H2

A(X)(1). Then the Hard Lefschetz theorem asserts that the cup-product map

ℓi : Hd−iA (X)→ Hd+iA (X)(i)

is an isomorphism for all i ≤ d. As an application, we are able to deduce the Lefschetz decomposition: note
that ℓi being an isomorphism implies that ℓi+1 : Hd−iA (X)→ Hd+i+2

A (X)(i+ 1) is the first time one can see a
kernel, so we define the primitive cohomology

Hd−iA (X)prim := ker
(
ℓi+1 : Hd−1

A (X)→ Hd+i+2
A (X)(i+ 1)

)
as precisely this kernel. We now claim that

Hd−iA (X)
?
= Hd−iA (X)prim ⊕ ℓHd−i−2

A (X)(−1)

for each i ≤ d. Indeed, note the left-exact sequence

0→ Hd−iA (X)prim → Hd−iA (X)→ Hd+i+1
A (X)(i+ 1)

in fact is surjective on the right due to the Hard Lefschetz theorem providing a splitting map

Hd+i+1
A (X)(i+ 1)

∼← Hd−i−1
A (X)(−1)

ℓ
⊆ Hd−iA (X).

Applying our claim inductively reveals that

Hd−iA (X) =
⊕
j≥0

ℓjHd−i−2j
A (X)prim(−j)
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for each i ≤ d. Applying the Hard Lefschetz theorem once more grants the equality

Hd+iA (X) =
⊕
j≥0

ℓi+jHd−i−2j
A (X)prim(−j),

but we can synthesize the prior two assertions into the single Lefschetz decomposition

HiA(X) =
⊕
j≥0

i−2j≤d

ℓjHi−2j
A (X)prim(−j).

We are now ready to define our operator ∗: for x ∈ HiA(X), this Lefschetz decomposition lets us expand
x =

∑
j ℓ
jxj for xj ∈ Hi−2j

A (X)prim(−j), and then we define

∗x :=
∑
j≥0

i−2j≤d

(−1)(i−2j)(i−2j+1)/2ℓd−i+jxj

so that ∗x ∈ H2d−i
A (X)(d− i). This operator ∗ is defined compatibly for all of our cohomology theories, so it

produces an absolute Hodge correspondence and so comes from an absolute Hodge class by Lemma 1.194.
Additionally, we see that ∗ merely rearranges the Lefschetz decomposition up to a sign, so it is an isomor-
phism. ■

Remark 1.198. The Hodge–Riemann relations [GH94, p. 123] show that the induced composite

Hiσ(X)⊗Hiσ(X)→ Hiσ(X)⊗H2d−i
σ (X)(d− i)→ H0

σ(pt)(−i)

is a polarization of Hodge structures. We remark that one can sum this polarization over different Xs,
so its existence (coming from an absolute Hodge class) no longer requires that X is equidimensional.

We now repeat the story of the previous section to construct a category of motives from absolute Hodge
classes. Let’s take a moment to quickly review the constructions.

• Pullbacks: any γ ∈ CorrAH(X,Y ) gives rise to a morphism γ∗ : CAH(Y )→ CAH(X) given by

γ∗(β) := pr1∗(γ ∪ pr∗2 β),

where we are using the ∪ product structure which exists on H•
A.

• Composition: any γ ∈ CorrAH(X,Y ) and δ ∈ CorrAH(Y, Z) can be composed via

δ ◦ γ := pr13∗ (pr
∗
12 γ ∪ pr∗23 δ) .

The exact same proof as in Lemma 1.158 (replacing the use of the projection formula with Lemma 1.97
and base-change with base-change formulae in our cohomology theories) establishes Q-linearity and
associativity of ◦ and that [Γ⊺

f ] ◦ [Γ⊺
g ] = [Γ⊺

g◦f ]. The same calculation aas in Remark 1.162 shows that ◦
is in fact a morphism of Z-graded groups.
While we’re here, we note that (δ ◦ γ)∗ = γ∗ ◦ δ∗ allows one to see that we may as well just compose
the corresponding absolute Hodge correspondences.

• We may now define a category CAH(K)whose objects are given byh(X) forX ∈ P(K) and morphisms
given by correspondences in degree 0. Then we still have a faithful, essentially surjective, additive
functorh : P(K)op → CAH(K). The same arguments as in Lemmas 1.163 and 1.164 show that CAH(K)
is additive (with h(X)× h(Y ) = h(X ⊔ Y )) and symmetric monoidal (with h(X)⊗ h(Y ) = h(X ⊗ Y )).

• We are now ready to define the category of effective motives as Mot+Q (K) := Split(CAH(K)), which is
now also Karoubian. For example, one can use the idempotents πi from Example 1.195 to define

hi(X) := (h(X), πi).
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• Lastly, by adding in Tate twists, we may define the category of motives MotQ(K) as the category of
triples (X, p, i) where X ∈ P(K) and p ∈ Corr0AH(X,X) is an idempotent and i ∈ Z. Here, morphisms
are given by

HomMotQ(K)((X, p, i), (Y, q, j)) := q ◦ Corrj−iAH (X,Y ) ◦ p.

This category is still Q-linear, and the argument of Remark 1.180 shows that it is still Karoubian. We
continue to set T := (pt, id, 1) and L := (pt, id,−1) to be the Tate and Lefschetz motives respectively,
and we remark that the exact same argument as in Example 1.184 shows that L is an effective motive.
As such, the argument of Lemma 1.185 verifies that MotQ(K) is additive.

Remark 1.199. Later on, it will be useful to note that any embeddingK ⊆ K ′ of fields gives rise to a fully
faithful base-change functor MotQ(K) → MotQ(K

′). To check that this functor is fully faithful, we are
implicitly using Remark 1.189: we need to know that extending K does not actually affect the rational
subspace of absolute Hodge classes. By construction, we can also see that this functor is linear, and it
will preserve the symmetric monoidal structure of Proposition 1.206 once we get there.

Our present goal is to show that MotQ(K) is a neutral Tannakian category, for which we will use Theo-
rem 1.132; later, we will also want to place MotQ(K) in a Tate triple. Let’s begin by showing that MotQ(K)
is semisimple abelian. Here is a general test which explains how to do this upgrading.

Lemma 1.200. Let C be a Q-linear, additive, Karoubian category. Suppose that EndC(X) is a finite-
dimensional semisimple algebra for all X ∈ C. Then C is a semisimple abelian category.

Proof. This is [Jan92, Lemma 2]. We proceed in steps.

1. We note that any object X ∈ C is a sum of finitely many indecomposable objects. Indeed, EndC(X) is
a semisimple algebra, so Wedderburn’s theorem allows us to write it as a product

EndC(X) ∼=Mn1
(A1)× · · · ×Mnk

(Ak)

of matrix algebras over division algebras. Expanding EndC(X) out as a product like this produces an
idempotent decomposition of idX , so Remark 1.166 (recall C is Karoubian!) shows

X ∼= X1 ⊕ · · · ⊕Xk,

whereX• is the image of the idempotent in EndC(X) which corresponds to the identity inMn•(A•); in
particular, EndC(X•) = Mn•(A•). (We can see this on the level of the construction of Split(C), which
must be canonically equivalent to C.) Next, we let Y• be the projection of X• along the idempotent in
Mn•(A•) which is the elementary matrixE11. The idempotent decomposition 1n• = E11 + · · ·+En•n•

can be plugged into Remark 1.166 to show

X• ∼= Y n•
• .

We now have EndC(Y•) = A•. BecauseA• is a division algebra, it has no idempotents other than 0 and
1, so Y• must be indecomposable.

2. The main claim is that X ∼= Y if and only if HomC(X,Y ) ̸= 0 for any indecomposable X,Y ∈ C. Let’s
quickly explain why the main claim implies the result.

• We check that every morphism has a kernel and cokernel. Using the previous step, we may sup-
pose that our morphism f is between the objects

⊕n
i=1X

⊕ki
i and

⊕n
i=1X

⊕ℓi
i for some indecom-

posables X• and sequences k• and ℓ• of nonnegative integers. But the hypothesis implies that
the different indecomposables have no interaction with each other, so

HomC

(
n⊕
i=1

X⊕ki
i ,

n⊕
i=1

X⊕ℓi
i

)
=

n⊕
i=1

Mℓi×ki(EndC Xi),
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so we can realize f as an n-tuple of matrices over division algebras. Doing some row-reduction
(which amounts to changing bases of theX⊕ki

i s andX⊕ℓi
i s) lets us put the matrix form of f into a

row-reduced Echelon form, from which one can read off a kernel and cokernel for f as one does
for vector spaces.

• We check that every monomorphism is a kernel; the check that every epimorphism is a coker-
nel is essentially the same. As in the previous point, we may write our morphism f as some map
f :
⊕n

i=1X
⊕ki
i →

⊕n
i=1X

⊕ℓi
i in a matrix form, which we may put into row-reduced Echelon form.

Note then that all diagonal entries of all matrices must be nonzero, for otherwise f has a non-
trivial kernel, so f will fail to be a monomorphism. It follows from the row-reduced Echelon form
that ki ≤ ℓi for each i, and f is simply embedding X⊕ki

i into the first ki coordinates of X⊕ℓi
i . In

particular, f will then be the kernel of projection

n⊕
i=1

X⊕ℓi
i ↠

n⊕
i=1

X
⊕(ℓi−ki)
i

away from these coordinates.
• We check that C is semisimple. By the previous step, it is enough to check that every indecom-

posable object X ∈ C is actually simple. Well, any nontrivial map X ′ → X must have quotient
0. Indeed, after decomposing X ′ into indecomposables, we may assume that X ′ is indecompos-
able. But now the main claim implies X ′ ∼= X, so because EndC(X) is a division algebra (by the
previous step) and so the map X ′ → X is an isomorphism.

3. It remains to prove the main claim. Certainly X ∼= Y implies HomC(X,Y ) ̸= 0, so we merely must
show the converse. As such, suppose that HomC(X,Y ) ̸= 0. Observe that we will be done as soon as
we know that there are f : X → Y and g : Y → X such that gf ̸= 0 or fg ̸= 0; take gf ̸= 0 because the
other case is similar. Well, because X is indecomposable, EndC(X) is a division algebra (see the first
step), so gf ∈ End C(X) has an inverse, so f : X → Y has a left inverse given by g′ := (gf)−1g. Thus,
Example 1.171 tells us that Y decomposes into X = im fg′ plus another object im(1 − fg′), but then
X ∼= Y is forced because Y is indecomposable.
It remains to show that such f : X → Y and g : Y → X exist. This will require a trick. As in the first
step, we may view EndC(X ⊕ Y ) as some algebra 2× 2 matrices{[

a b
c d

]
: a ∈ EndC(X), b ∈ HomC(Y,X), c ∈ HomC(X,Y ),HomC(Y, Y )

}
.

Now, consider the subgroup

N :=

{[
0 0
c 0

]
: c ∈ HomC(X,Y )

}
.

This subgroup N is nonzero and nilpotent, so because EndC(X ⊕ Y ), it cannot be an ideal! Thus, we
must be able to find morphisms such that[

a1 b1
c1 d1

] [
0 0
c2 0

] [
a3 b3
c3 d3

]
/∈ N

A quick calculation shows that this matrix is
[
b1c2a3 b1c2b3
d1c1a3 d1c2b3

]
, so b1c2 ̸= 0 or c2b3 ̸= 0, as needed. ■

Remark 1.201. We needed to assume that C was additive in order to be able to write down the sum
X ⊕ Y . This seems to be the only place where we need to use the existence of arbitrary finite sums.

Thus, we would like to check that EndMotQ(K)(M) is a finite-dimensional semisimple algebra for each M ∈
MotQ(K). Finite-dimensionality is easy.
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Lemma 1.202. Fix a field K algebraic over Q. For any M ∈ MotQ(K), we have

dimQ EndMotQ(K)(M) <∞.

Proof. Write M = (X, p, i), and then

EndMotQ(K)(M) ⊆ Corr0AH(X,X)

by construction, so we are reduced to checking thatdimQ CAH(X) <∞ for anyX ∈ P(K). Well, for any fixed
index i and embedding σ : K ↪→ C, the space CAH(X) is contained in the image of H2i

B (X)(i) in H2i
A (X)(i),

and dimQ H2i
B (X)(i) <∞ by properties of H•

B. ■

To check that EndMotQ(K)(M) is semisimple will require a trick: we will use polarizations.

Lemma 1.203. Fix a Q-algebra A. Suppose that there is an involution (·)† : Aop → A such that aa† ̸= 0
for all nonzero a ∈ A. Then A is semisimple.

Proof. We will show that any nonzero two-sided ideal I ⊆ A fails to be nilpotent. Define the function
N : (I \ {0})→ (I \ {0}) by

N(a) := aa†

We are given that N is well-defined. Note that N(a)† = N(a) for each a, so N becomes squaring on its
image. We conclude that all iterated squares of any b ∈ imN continue to be nonzero, so imN ⊆ I \ {0} fails
to be nilpotent. ■

Lemma 1.204. Fix a field K algebraic over Q. For any M ∈ MotQ(K), the algebra EndMotQ(K)(M) is
semisimple.

Proof. We proceed in steps.

1. We reduce to the case ofM of the form h(X). Indeed, we may writeM = (X, p, i), from which we find
that

EndMotQ(K)(M) = p ◦ EndMotQ(K)(h(X)) ◦ p.

Now, if we know that EndMotQ(K)(h(X)) is semisimple, we may use Wedderburn’s theorem (finite-
dimensionality follows from Lemma 1.202) to write it as a product

EndMotQ(K)(h(X)) =Mn1
(A1)× · · · ×Mnk

(Ak)

of matrix algebras of division algebras. Our idempotent p can now be viewed as some tuple of idem-
potent matrices in theMn•(A•)s. After base-changing fromQ toC, we see that each of these matrices
can be upper-triangularized and is thus diagonalizable with eigenvalues in {0, 1} because p is an idem-
potent; by searching for this eigenbasis over Q, we see that p is still diagonalizable over Q. It follows
that EndMotQ(K)(M) is isomorphic to a product of submatrix algebras from the given product, so it
continues to be semisimple.

2. We show that EndMotQ(K)(h(X)) = Corr0(X,X) is semisimple. We will use Lemma 1.203. For each i,
letψi be the polarization ofHiσ(X)defined in Remark 1.198 by using the Hodge involution and Poincaré
duality. Polarizations are perfect pairings, so any γ ∈ Corr0AH(X,X) induces a pullback map γ∗ ∈
End(H•

A(X)), which then must have a unique transpose map (γ†)∗ ∈ End(H•
A(X)) satisfying

ψi(γ
∗αi, βi) = ψi

(
αi, (γ

†)∗βi
)
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for any i ∈ Z and αi, βi ∈ HiA(X). The uniqueness (plugged into Lemma 1.194) shows that (γ†)∗

arises rationally and is compatible with all of our cohomology theories, so it comes from an element
in Corr0AH(X,X).
The ambient uniqueness shows that γ 7→ γ† is Q-linear, involutive, and we can see that (γδ)† = δ†γ†

by a computation with the uniqueness. To apply Lemma 1.203, it remains to check that γγ† ̸= 0 for
each nonzero γ. It is enough to find α, β ∈ H•

A(X) such that

ψ
(
α, (γγ†)∗β

)
= ψ (γ∗α, γ∗β)

is nonzero. It is enough to check this on the de Rham component where ψ becomes a polarization,
and then we may as well base-change everything from Q to R. In particular, we may take α ̸= 0 and
β :=

√
−1α (where

√
−1 acts on Hσ(X)R via the Hodge structure), so the fact that γ∗dR is a morphism

of Hodge structures shows that the above value will be positive by the positive-definiteness of ψ. ■

Proposition 1.205. The category MotQ(K) is a Q-linear, semisimple, abelian category.

Proof. The category MotQ(K) is already Q-linear, additive, and Karoubian essentially by its construction, so
we may plug Lemmas 1.202 and 1.204 into Lemma 1.200. ■

We have completed our first major check leading up to the application of Theorem 1.132 showing that
MotQ(K) is a neutral Tannakian category. Next up, we will show that MotQ(K) has a symmetric monoidal
structure.

Proposition 1.206. Fix a field K algebraic over Q. The category MotQ(K) has a symmetric monoidal
structure.

Proof. Repeating the proof of Lemma 1.181, we may simply define

(X, p, i)⊗ (Y, q, j) := (X × Y, p× q, i+ j).

For example, we can see that the unit should be given by (pt, id, 0). The associativity coherence will be in-
duced by the associativity of the fiber product (and addition in Z), but Remark 1.182 explains that we should
be slightly careful with the commutativity coherence. Because we have Künneth projectors (Example 1.195),
we may expand

ph(X)(i) =
⊕
n

phn(X)(i) and qh(Y )(j) =
⊕
m

qhm(Y )(j),

so we define the commutativity constraint (X, p, i) ⊗ (Y, q, j) → (Y, q, j) ⊗ (X, p, i) to be the obvious signs
multiplied by the sign (−1)mn on each of the above graded pieces. ■

And let’s complete the proof.

Theorem 1.207. Fix a field K algebraic over Q. The category MotQ(K) is neutral Tannakian. In fact, for
each embedding σ : K ↪→ C, the Betti cohomology functor H•

σ induces a fiber functor ωσ.

Proof. We use Theorem 1.132 with ω = H•
σ. Explicitly, H•

σ is extended to MotQ(K) by

ω•
σ((X, p, i)) := pσH

•
σ(X)(i),

where the notation pσ comes from viewing p as an absolute Hodge correspondence via Lemma 1.194. Func-
toriality for absolute Hodge correspondences grants functoriality for H•

σ.6

6 Formally, one ought to appeal to Lemma 1.167 and then explain functoriality with the Tate twist by hand. We will not bother.
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Proposition 1.205 has shown that MotQ(K) is already a Q-linear abelian and semisimple category, and
Proposition 1.206 gives it the structure of a symmetric monoidal category. Continuing, we note that the
functor H•

σ is certainly Q-linear and faithful (see Lemma 1.194), and H•
σ is exact because MotQ(K) is already

semisimple and H•
σ preserves sums because it is additive.

We now must check (i)–(iv) of Theorem 1.132. For (i), the Künneth formula explains why H•
σ preserves

products. For (ii), the construction of the symmetric monoidal structure explains that H•
σ successfully pre-

serves the commutativity and associativity constraints; we refer to Remark 1.182 to explain why GrAlgQ
requires the sign in the commutativity constraint. Additionally, for (iii), we note H•

σ(pt) = Q, and one can
check that the unit constraints are all preserved by H•

σ because they are all given by the canonical isomor-
phism pr1 : X × pt→ X.

Lastly, for (iv), it remains to understand the objects (X, p, i) ∈ MotQ(K) such that dimQ H•
σ((X, p, i)) = 1.

We may as well assume that i = 0 because it will not affect the dimension, and (X, p, 0) admits an inverse if
and only if (X, p, i) = (X, p, 0)⊗ T⊗i admits an inverse. Upon decomposing X into equidimensional pieces
asX =

⊔
dXd whereXd is equidimensional of dimension d, we see that Poincaré duality (via Example 1.196)

gives a morphism
h(X)⊗

⊕
d≥0

h(Xd)(d)︸ ︷︷ ︸
M ′:=

→ pt

which produces the Poincaré duality pairing upon applying H•
σ (or H•

A). Now, setting q := 1 − p allows a
decomposition h(X) = ph(X) ⊕ qh(X). Letting p′ and q′ be the dual maps (on H•

A or H•
σs) via Poincaré

duality, we see that they produce absolute Hodge correspondences by the coherences, so we receive a dual
decompositionM ′ = p′M ′⊕q′M ′. Namely, the induced map ph(X)⊗p′M ′ → ptwill induce a perfect pairing

pσH
•
σ(X)⊗ p′σH•

σ(M
′)→ H0

σ(pt).

For example, this implies that dimQ p
′
σH

•
σ(M

′) = 1. Lastly, because H•
σ is faithful, we conclude that the

induced map ph(X) ⊗ p′M ′ → pt is an isomorphism. This completes the check (iv) of Theorem 1.132 and
thus the proof. ■

Remark 1.208. The fiber functor ωσ : MotQ(K) in fact factors through HSQ. To begin, note pσH•
σ(X)(i)

is a rational Hodge structure becauseH•
σ(X) andT are, and pσ is an endomorphism of Hodge structures

(because pdR is by Lemma 1.194). Furthermore, any morphism f : (X, p, i)→ (Y, q, j) of motives arises
from an absolute Hodge correspondence, which does induce a morphism of rational Hodge structures
upon passing through ωσ because fdR preserves Hodge structuers (by Lemma 1.194).

Remark 1.209. One can repeat this proof for ℓ-adic or de Rham cohomology, provided that we base-
change MotQ(K) to the corresponding F -linear category MotF (K), where F is the coefficient field. In
particular, each prime ℓ has H•

ét induce a fiber functor ωℓ : MotQℓ
(K) → VecQℓ

. But now, ωℓ actually
factors through RepQℓ

Gal(K/K): the proof is the same as in Remark 1.208, where the main point is
that ℓ-adic cohomology produces Galois representations, and our absolute Hodge correspondences
specialize to Galois-invariant maps by their definition.

Remark 1.210. We remark thatωℓ is naturally isomorphic to (·)Qℓ
◦ωσ. Indeed, this follows from the fact

that the comparison isomorphism Theorem 1.79 is an isomorphism of Weil cohomology theories, so we
can see (by hand, via the constructions suggested in Theorem 1.207) that the comparison isomorphism
induces a natural isomorphism (·)Qℓ

◦ ωσ ⇒ ωℓ.

While we’re here, we remark that we can upgrade these things to Tate triples.

Corollary 1.211. Fix a field K algebraic over Q. The Künneth decompositions induce a Z-grading w on
MotQ(K), thus making (MotQ(K), w,T) into a Tate triple.
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Proof. We already knowMotQ(K) is neutral Tannakian by Theorem 1.207, and we are going putT in weight
−2, so the main content of the argument arises from defining the weight grading. For any effective motive
ph(X) ∈ MotQ(K), we claim that

ph(X)
?
=
⊕
i∈Z

phi(X).

Indeed, p is induced by an absolute Hodge correspondence h(X) → h(X), so p has degree 0, meaning that
all the induced maps on cohomology preserve the degree. Thus, the map

⊕
i∈Z ph

i(X) → ph(X) is an iso-
morphism on each of our cohomology theories, so its inverse also succeeds at being an absolute Hodge
correspondence because the uniqueness of the inverse provides the needed compatibility. The equality fol-
lows.

Our weight grading is now given by the decomposition

ph(X)(n) =
⊕
i∈Z

phi+2n(X)(n).

(In particular, T sits in weight−2.) Here are the needed checks on this grading.

• Functorial: a morphism ph(X)(n) → qh(Y )(m) of motives arises from an absolute Hodge corre-
spondence γ of degree m − n. Such an absolute Hodge correspondence arises from graded maps
pH•(X)(n)→ qH•(Y )(m)on our cohomology. We conclude that our absolute Hodge correspondences
preserve the Künneth projectors (we are implicitly using some functoriality) and thus the gradings.

• Tensor: given two motives ph(X)(n) and qh(Y )(m), their tensor product has been given by

ph(X)(n)⊗ qh(Y )(m) = (p× q)h(X × Y )(n+m).

The Künneth isomorphism for our cohomology theories upgrades to an absolute Hodge correspon-
dence by its compatibility, thereby ensuring

ph(X)(n)⊗ qh(Y )(m) =
⊕
i,j

phi(X)(n)⊗ qhj(Y )(m).

Thus, for any k, the degree-k piece on the right-hand side is given by

(ph(X)(n)⊗ qh(Y )(m))k =
⊕
i+j=k

phi+2n(X)(n)⊗ qhj+2m(Y )(m),

as required. ■

Remark 1.212. In fact, for any embedding σ : K ↪→ C, the functor ωσ is a morphism of Tate triples
(MotQ(K), w,T)→ (HSQ, w,Q(1)). Of course, T goes to Q(1), so it remains to check that ωσ preserves
the weight gradings. But this is basically by construction: for any motive ph(X)(n), we have

pσH
•
σ(X)(n) =

⊕
i∈Z

pσH
i−2n
σ (X)(n)

because pσ is a morphism of rational Hodge structures.

Remark 1.213. The category imωℓ ⊆ RepQℓ
Gal(K/K) now has an induced weight grading by simply

porting over the weight grading from MotQ(K). Noting that ωℓ(T) = Qℓ(1) by construction of ωℓ, we
find that ωℓ : MotQ(K)→ imωℓ upgrades to a morphism of Tate triples.

We have thus completed the main content of the present subsection. Of course, even though we have found
that MotQ(K) is neutral Tannakian, this does not make it easy to understand; for example, it is highly non-
obvious what the corresponding affine group should be. We close this section with the easiest nontrivial
subset of this question.
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Definition 1.214 (Artin motive). Fix a field K algebraic over Q. The category Mot0Q(K) of Artin motives
is the full⊗-subcategory

⟨h(X) : dimX = 0⟩⊗ .

Example 1.215. Fix a field K algebraic over Q. The functor Mot0Q(K) → RepQ Gal(K/K) defined by
extending h(X) 7→ Mor(X(K),Q) is an equivalence.

Proof. This is [DM12, Proposition 6.17]. For brevity, we will set G := Gal(K/K). We proceed in steps.

1. Define the category C0AH(K) as the full subcategory of CAH(K) given by 0-dimensional varieties. Let’s
begin by defining a fully faithful functor ω : C0AH(K) → RepQG on objects. Well, for any choice of
embedding σ : K ↪→ C, we note that

H•
σ(X) = Mor(X(K),Q),

and this embedding is independent of the choice of σ: we are simply getting a copy of Q in degree 0
for each geometric point. Note that the right-hand side is a permutation representation of a quotient
of G (note #X(K) < ∞ because X is proper and zero-dimensional), so this does in fact produce an
object in RepQG.

2. We explain why the functor ω : C0AH(K) → RepQG is well-defined and fully faithful. Well, for X,Y ∈
C0AH(K), an absolute Hodge correspondence f in Corr0AH(X,Y ) amounts to a special map H•

A(X) →
H•

A(Y ) satisfying some properties and arising from Betti cohomology. By the previous paragraph, aris-
ing from Betti cohomology is equivalent to saying that f arises from a linear map

r(f) : Mor(X(K),Q)→ Mor(Y (K),Q).

As for the extra properties, we note that the de Rham part fdR automatically preserves the relevant
Hodge structure because everything is already supported in degree (0, 0), and we note that fℓ being
Galois-invariant is equivalent to r(f) being Galois-invariant. We conclude that r induces an isomor-
phism

Corr0AH(X,Y )→ MorG
(
Mor(X(K),Q),Mor(Y (K),Q)

)
.

3. Now, RepQG is Karoubian (indeed, it is abelian), so ω uniquely extends to the Karoubian envelope
Split

(
C0AH(K)

)
of C0AH(K). We claim that the essential image imh ⊆ MotQ(K) of Split

(
C0AH(K)

)
is

exactly Mot0Q(K). For this, we should show that imh is already a right abelian symmetric monoidal
subcategory.
Well, the same argument as in Proposition 1.205 explains that Split

(
C0AH(K)

)
and hence imh is semi-

simple abelian. Further, the construction of the symmetric monoidal structure in Proposition 1.206
explains that imh is also closed udner ⊗. Lastly, the proof of Theorem 1.207 shows that the dual of
h(X) is h(X)(dimX) = h(X) (with the perfect pairing given by Poincaré duality), so imh is rigid.

4. The previous steps have shown that the fiber functorωσ ofMot0Q(K) upgrades to a fully faithful functor
ωσ : Mot0Q(K)→ RepQG. It remains to show that this last functor is essentially surjective.
To begin, we claim that the representation Mor(S,Q) is in the essential image, for any S ∈ FinSet(G).
Indeed, Grothendieck’s theory of the étale fundamental group establishes that πét

1 (SpecK) = G (es-
sentially reformulating Galois theory), meaning that taking geometric points produces an equivalence
of categories from the category of finite étale covers of SpecK to the category FinSet(G). Namely,
there is some smooth projective zero-dimensional scheme X over SpecK such that X(K) ∼= S as
G-sets, implying that

ωσ(h(X)) ∼= Mor(S,Q).

Thus, Mor(S,Q) is in our essential image.
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It remains to show that the representations Mor(S,Q) ∈ RepQG generate the category. Indeed, any
representation V of G has an open stabilizer H ⊆ G, so V descends to a representaiton of G/H. But
G/H is a finite group, so RepQG/H is generated by the regular representation, which is a permutation
representation, thereby completing the proof; explicitly, we have V ∈ ⟨Q[G/H]⟩⊗. ■
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CHAPTER 2

ABELIAN VARIETIES

Hold tight to your geometric motivation as you learn the formal
structures which have proved to be so effective in studying

fundamental questions

—Ravi Vakil [Vak23]

In this chapter, we gather together all the results about abelian varieties we need. Many of the results in
the earlier sections discussed here can be found in any reasonable text on abelian varieties such as [Mum74;
Mil08; EGM]. Results in the later sections are more specialized, and we will provide references when appro-
priate. Ultimately, our goal is to define ℓ-adic monodromy groups, explain why one might care about them,
and indicate how one might compute them.

2.1 Definitions and Constructions

In this section, we set up the theory of abelian varieties rather quickly. We will usually only indicate proofs
that work in the complex analytic situation because the general theory usually requires intricate algebraic
geometry.

2.1.1 Starting Notions

Let’s begin with a definition.

Definition 2.1 (abelian variety). Fix a ground scheme S. An abelian scheme A over S is a smooth pro-
jective geometrically integral group scheme over S. An abelian variety A is an abelian scheme over a
field.

Remark 2.2. Throughout, we will work with abelian varieties instead of abelian schemes as much as
possible. However, one should be aware that many of the results generalize.

Here, a group variety refers to a group object in the category of varieties over K.
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Remark 2.3. With quite a bit of work, one can weaken the hypotheses of being an abelian variety quite
significantly. For example, arguments involving group varieties are able to show that being connected
and geometrically reduced implies geometrically integral, and it is a theorem that one can replace pro-
jectivity with properness. See [SP, Remark 0H2U] for details.

Here are the starting examples.

Example 2.4 (elliptic curves). Any (smooth) cubic equation cuts out a genus-1 curve in P2. If the curve
has points defined over K, this defines an elliptic curve, which can be shown to be an abelian variety.
The interesting part comes from defining the group structure. One way to do this is to show that the
map E → Pic0E/K given by x 7→ [x] − [∞] is an isomorphism of schemes and then give E the group
structure induced by Pic0E/K . (Here, Pic0E/K is the moduli space of line bundles over E of degree 0.
Smoothness of the curve makes this in bijection with divisors of degree 0.)

Example 2.5. Fix a positive integer g ≥ 0. If Λ ⊆ Cg is a polarizable sublattice, then Cg/Λ defines an
abelian variety over C. Here, polarizable means that there is an alternating mapφ : Λ×Λ→ Z such that
the pairing

⟨x, y⟩ := ψR(x, iy)

on ΛR is symmetric and positive-definite. (As worked out in [Mil20b, Section I.2], this is equivalent data
to a polarization on the Hodge structure Λ = HB

1 (A,Z).) The requirement of polarizability is used to
show that the quotient Cg/Λ is actually projective; see [Mum74, Section 3, Theorem].

It is notable that we have not required our abelian varieties A to actually be abelian even though (notably)
both examples above are abelian. Indeed, abelian varieties are always abelian groups, which follows from
an argument using the Rigidity theorem. We will not give this argument in full because we will not use it,
but we state a useful corollary.

Proposition 2.6. Let φ : A → B be a smooth map of abelian varieties over a field K. Then φ is the
composition of a homomorphism and a translation.

Proof. By composing with a translation, we may assume that φ(0) = 0. Then one applies the Rigidity theo-
rem to the map φ̃ : A×A→ B defined by

φ̃(a, a′) := φ(a+ a′)− φ(a)− φ(a′)

to find that φ̃ is constantly 0, completing the proof. See [Mil08, Corollary I.1.2] for details. ■

Corollary 2.7. The group law on an abelian variety A is commutative.

Proof. The inversion map i : A→ A on an abelian variety sends the identity to itself, so Proposition 2.6 tells
us that i must be a homomorphism. It follows that the group law is commutative. ■

In particular, we find that morphisms between abelian varieties are rather strutured: we are allowed to ba-
sically only ever consider homomorphisms!

It will turn out that considering abelian varieties up to isomorphism is too strong for most purposes, so
we introduce the following definition.
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Definition 2.8 (isogeny). A morphism φ : A → B of abelian varieties over a field K is an isogeny if and
only if it is a homomorphism satisfying any one of the following equivalent conditions.

(a) φ is surjective with finite kernel.

(b) dimA = dimB, and φ is surjective.

(c) dimA = dimB, and φ has finite kernel.

(d) φ is finite, flat, and surjective.

The degree of the isogeny is #kerφ (thought of as a group scheme).

Remark 2.9. Let’s briefly indicate why (a)–(d) above are equivalent; see [Mil08, Proposition 7.1] for
details. A spreading out argument combined with the homogeneity of abelian varieties implies that

dimB = dimA+ dimφ−1({b})

for any b in the image ofφ; this gives the equivalence of (a)–(c). Of course (d) implies (a) (one only needs
the finiteness and surjectivity); to show (a) implies (d), we note flatness follows by “miracle flatness”
because all fibers have equal dimension, and finiteness follows because finite kernel upgrades to quasi-
finiteness.

Intuitively, an isogeny is a “squishy isomorphism.”

Example 2.10. Any dominant morphism of elliptic curves sending the identity to the identity is an iso-
geny.

Example 2.11. In the complex analytic setting, an isogeny of two abelian varieties A = Cg/Λ and B =
Cg/Λ′ amounts (up to change of basis) an inclusion of lattices Λ′ ⊆ Λ.

Example 2.12. Fix any abelian variety A. For any nonzero integer n, the multiplication-by-n endomor-
phism [n]A : A→ A is an isogeny. To see this, note that it is enough to check thatA[n] := ker[n]A is finite.
In the complex analytic situation where A = Cg/Λ, this follows because 1

nΛ/Λ is finite; in general, one
must show thatA[n] := ker[n]A is zero-dimensional, which is somewhat tricky. See [SP, Lemma 0BFG]
for details. We remark that one can compute deg[n]A = d2 dimA, which is again not so hard to see in the
complex analytic situation.

Motivated by the complex analytic setting (and the “squishy isomorphism” intuition), one might hope that
one can recover weak-ish inverses for isogenies. This turns into an important property of abelian vari-
eties.

Lemma 2.13. Fix an isogeny φ : A → B of abelian varieties of degree d. Then there exists an “inverse
isogeny” β : B → A such that {

α ◦ β = [d]B ,

β ◦ α = [d]A.

Proof. By some theory regrading group scheme quotients, it is enough to check thatφ factors through [d]A,
which holds because kerφ has order d as a group scheme and thus vanishes under [d]A. ■
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Remark 2.14. As usual, we remark that the above lemma is easier to see in the complex analytic situa-
tion, but the key point of trying to factor through [d]A remains the same.

Lemma 2.13 motivates the following definition, and it codifies our intuition viewing isogenies as squishy
isomorphisms.

Definition 2.15 (isogeny category). Fix a field K. We define the isogeny category of abelian varieties
over K as having objects which are abelian varieties over K, and a morphism A → B in the isogeny
category is an element of HomK(A,B)Q.

We close our discussion of isogenies with one last remark on the size of kernels.

Remark 2.16. If φ : X → Y is a finite separable morphism of varieties, then a spreading out argument
shows that the number of geometric points in a general fiber of φ equals the degree of φ. Applied to
isogenies, the homogeneity of abelian varieties is able to show that the number of geometric points in
the fiber of any separable isogeny equals the degree.

Example 2.17. Here is an application of Remark 2.16: if charK ∤ n, then one can show that A[n] has
n2 dimA geometric points. Again, this is not so hard to see in the complex analytic setting. The hypoth-
esis charK ∤ n is needed to show that [n]A is separable; in general, the argument is trickier and can (for
example) use some intersection theory [Mil08, Theorem I.7.2].

Now that we have a reasonable category, one can ask for decompositions. Here is the relevant result and
definition.

Theorem 2.18 (Poincaré reducibility). Fix an abelian subvarietyB of an abelian varietyA defined over a
field K. Then there is another abelian subvariety B′ ⊆ A such that the multiplication map induces an
isogeny B ×B′ → A.

Proof. As usual, we argue only in the complex analytic case. Here write A = V/Λ for complex affine space
V , and we find thatB =W/(Λ ∩W ) for some subspaceW ⊆ V . Now, the polarization induces a Hermitian
form on V , so we can define W ′ := W⊥ so that B′ := W ′/(Λ ∩W ′) will do the trick. For more details, see
[Mil20b, Theorem 2.12] for more details. ■

Definition 2.19 (simple). Fix a fieldK. An abelian varietyA overK is simple if and only if it is irreducible
in the isogeny category.

Remark 2.20. Theorem 2.18 implies that any abelian variety can be decomposed uniquely into a product
of simple abelian varieties, of course up to isogeny and permutation of factors.

2.1.2 The Jacobian
In this thesis, the abelian varieties of interest to us will be Jacobians. There are a few approaches to their
definition, which we will not show are equivalent, but we refer to [Mil08, Chapter III] for details. The most
direct definition is as a moduli space.

Definition 2.21 (Jacobian). Fix a smooth proper curve C over a field K such that C(K) is nonempty.
Then the Jacobian JacC is the group variety Pic0C/K , where Pic0C/K is the moduli space of line bundles
on C with degree 0.
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Remark 2.22. We will not check that we have defined an abelian variety, nor that we have even defined a
scheme. There are interesting questions regarding the representability of moduli spaces, which we are
omitting a discussion of. Milne provides a reasonably direct construction in [Mil08, Section III.1], but
we should remark that one expects representability to be true in a broader context. In particular, there
are formal ways to check (say) properness of Pic0C/K , from which it does follow that we have defined an
abelian variety.

Remark 2.23. One can actually weaken the smoothness assumption on C to merely being “compact
type.” This is occasionally helpful when dealing with moduli spaces because it allows us to work a little
within the boundary of the moduli space of curves.

Remark 2.24. Notably, Example 2.4 tells us that the Jacobian of a curve is E itself.

Note that the assumption C(K) ̸= ∅ allows us to choose some point∞ ∈ C(K) and then define a map
C(K) → JacC by p 7→ [p] − [∞]. This map turns out to be a regular closed embedding [Mil08, Proposi-
tion 2.3]. It is psychologically grounding to see that this map is universal in some sense.

Proposition 2.25. Fix a smooth proper curve C over a field K such that C(K) ̸= ∅. Choose∞ ∈ C(K),
and consider the map ι : C → JacC given by ι(p) := [p] − [∞]. For any abelian variety A over K and
smooth map φ : C → A such that φ(∞) = 0, there exists a unique map φ̃ : JacC → A making the
following diagram commute.

C JacC

A

ι

φ
φ̃

Proof. We will not need this, so we won’t even point in a direction of a proof. We refer to [Mil08, Proposi-
tion III.6.1]. ■

It is worthwhile to provide a complex analytic construction of the Jacobian. Given a curveC, line bundles are
in bijection with divisor classes, and divisor classes of degree 0 can all be written in the form

∑k
i=1([Pi]−[Qi])

for some points P1, Q1, . . . , Pk, Qk ∈ C(C). One can take such a divisor and define a linear functional on
H1(C,Ω1

C) by

ω 7→
k∑
i=1

∫ Pi

Qi

ω.

The construction of this linear functional is not technically well-defined up to divisor class; instead, one can
check that changing the divisor class adjusts the linear functional exactly by the choice of a cycle in HB

1 (C,Z)
embedded into H1(C,Ω1

C)
∨ via the integration pairing. In this one way, one finds that

JacC(C) =
H1(C,Ω1

C)
∨

HB
1 (C,Z)

.

In particular, we have realized JacC explicitly as a complex affine space modulo some lattice, exactly as
in Example 2.5. (One sees that rankZ HB

1 (C,Z) = dimR H1(C,Ω1
C)

∨ by the Betti-to-de Rham comparison
isomorphism.) This construction makes it apparent that

HB
1 (JacC(C),Z) ∼= HB

1 (C,Z).

This is in fact a general property.
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Proposition 2.26. Fix a smooth proper curve C over a field K such that C(K) ̸= ∅. Choose∞ ∈ C(K),
and consider the map ι : C → JacC given by ι(p) := [p]− [∞]. Then the induced map

ι∗ : H1(JacC)→ H1(C)

is an isomorphism, where H is any of the Weil cohomology theories of section 1.3.1.

Proof. The proof requires analyzing each cohomology theory individually. Above we outlined the proof
when H is Betti cohomology, and we note that the result follows for de Rham cohomology by the com-
parison isomorphism. ■

Corollary 2.27. Fix a smooth proper curveC over a fieldK such thatC(K) ̸= ∅. Then dimJacC equals
the genus of the curve C.

Proof. Again, this is easy to see in the complex analytic case from the explicit construction. In general, one
can read off the dimension of an abelian variety A from dimH1(A) and then apply Proposition 2.26. ■

2.1.3 The Dual
Even though we will technically not need it, we take a moment to discuss duality and polarizations of abelian
varieties; we do want to understand these notions so that we can make sense of the Weil pairing. Motivated
by the utility of the Picard group in defining the Jacobian, we make the following definition.

Definition 2.28 (dual abelian variety). Fix an abelian variety A over a field K. Then we define the dual
abelian variety A∨ as the group scheme Pic◦A/K over K.

Remark 2.29. As usual, we will not check that A∨ is an abelian variety or even a scheme, but it is. (The
ingredients that go into these arguments will not be relevant for us.) We refer to [EGM, Chapter 6] for
these arguments, in addition to the useful fact that dimA = dimA∨.

Remark 2.30. It is worthwhile to note that, in the complex analytic situation, there already is a notion of
a dual abelian variety. If A = V/Λ is an abelian variety, then A∨ = V ∗/Λ∗, where V ∗ is the vector space
of conjugation-semilinear functionals V ∗ → C, and Λ∗ consists of the functionals which are integral
on Λ. It is rather tricky to explain how this definition relates to the one above, so we will not do so and
instead refer to [Ros86, Section 4].

It is worth our time to explain why this is called duality. To begin, there is a duality for morphisms.

Lemma 2.31. Fix a homomorphism f : A → B of abelian varieties over a field K. Then there is a dual
homomorphism f∨ : B∨ → A∨.

Proof. We define the homomorphism on geometric points. Then a point ofB∨(K) is a line bundleL onBK ,
which we can pull back to a line bundle f∗L on AK , which is a point of A∨(K). ■

Lemma 2.32. Fix an abelian variety A over a field K. Then there is a canonical isomorphism A→ A∨∨.
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Proof. We sketch the construction of the map and refer to [EGM, Theorem 7.9] for details. Because A∨

is a moduli space of line bundles, there is a universal Poincaré line bundle PA on A × A∨. Unravelling the
definition ofA∨, we see that morphisms S → A∨ correspond to line bundles onA×S. Turning this around,
we thus see that we can view PA as a family of line bundles on A∨ parameterized by A and thus providing a
map A→ A∨∨. This map is the required isomorphism. ■

Most of the utility one achieves from the dual is that it allows us to the complex-analytic notion of a polariza-
tion into algebraic geometry. As in Remark 2.30, we viewA = V/Λ as a complex torus, and the dual abelian
variety A∨ can be realized concretely as some V ∗/Λ∗. Now, a polarization of A refers to a polarization of
Λ = HB

1 (A,Z), which as mentioned in Example 2.5 has equivalent data to an alternating form ψ : Λ⊗Λ→ Z
such that the bilinear form

⟨x, y⟩ := ψR(x, iy)

on ΛR is symmetric and positive-definite. But now we see that this choice of ψ determines a map A → A∨

given by v 7→ ψ(v, ·).
Thus, we would like our polarizations some kind of map A → A∨. However, we need to keep track of

all the adjectives that ψ had in order to make this an honest definition. For example, perhaps we want to
keep track of the constraint that ψ is alternating. To do so, we use cohomology. We will shortly explain
in Theorem 2.98 that the cup product provides an isomorphism ∧2H1(A,Z) → H2(A,Z), which induces an
isomorphism

HomZ
(
∧2Λ,Z

) ∼= H2(A,Z)

upon taking duals. Thus, ψ being an alternating form can be traced backed to it coming from a class in
H2(A,Z).

Continuing, perhaps we want to keep track of the constaint that ⟨·, ·⟩ is symmetric. This is equivalent to
havingψR(ix, iy) = ψ(x, y), which turns out to be equivalent toψC ∈ H2(A,C) living in the (1, 1) component.
Well, it turns out that the exponential short exact sequence

0→ Z 2πi→ OA
exp→ O×

A → 0

induces a (first Chern class) map c1 : H1(A,O×
A)→ H2(A,Z), which is an isomorphism onto the (1, 1) compo-

nent. Thus, the condition that ⟨·, ·⟩ is symmetric can be traced back to ψC coming from a class in H1(A,O×
A),

which has equivalent data to a line bundle L.
Lastly, it turns out that positive-definiteness of ⟨·, ·⟩ corresponds to the L being ample. On the other

hand, given a line bundle L on A, we remark that there already is a natural way to construct a map A→ A∨

from a line bundle. This gives our definition.

Definition 2.33 (polariaztion). Fix an abelian variety A over a field K. A polarization is a morphism
φ : A→ A∨ such that there is an ample line bundle L on AK giving the equality

φ(x) = t∗xL ⊗ L−1

for any x ∈ AK . We say that φ is principal if and only if it is an isomorphism, and we say that A is a
pricipally polarized.

Remark 2.34. It turns out that the construction of the above map does correspond to the map A→ A∨

defined complex-analytically.

Remark 2.35. It turns out that polarizations are isogenies.
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Remark 2.36. Here is the sort of thing that one can do with this definition. One may also want to define a
Rosati involution on End(A)Q, analogous to the Rosati involution on polarized Hodge structures. Well,
given a (principal) polarizationφ : A→ A∨, we can define a Rosati involution (·)† onEnd(A)Q by sending
any f ∈ End(A)Q to

f† := φ−1 ◦ f∨ ◦ φ.

If λ is a principal polarization, then this Rosati involution descends to End(A). One can check that (·)†
continues to be a positive anti-involution, but it is not easy; see for example [EGM, Theorem 12.26].
This allows us to apply the Albert classification Theorem 1.28 to our situation.

Example 2.37. For any smooth proper curveC such thatC(K) ̸= ∅, it turns out that the Jacobian JacC
is principally polarized. It is not too hard to describe the line bundle which gives the polarization: let
ι : C → Jac(C) be an embedding given be one of the points in C(K), and then the line bundle is given
by the divisor

f(C) + · · ·+ f(C)︸ ︷︷ ︸
g−1

,

where g is the genus of C. See [EGM, Theorem 14.23] or [Mil08, Theorem 6.6] for more details.

Analogous to the complex-analytic setting A = V/Λ, we may still want to be able to define an alternating
form on Λ = HB

1 (A,Z). We will achieve a satisfying version of this in Lemma 2.111, but for now, let us
point that this is not immediately obvious how to do this because we currently have no analogue for Λ in the
general setting. However, we note that the alternating form Λ is able to induce an alternating form on V ,
and we can access a dense subset of V by taking torsion. Thus, for now, we will aim to provide a pairing

A[n](Ksep)×A[n](Ksep)→ Z/nZ

for each integer n such that charK ∤ n. Unwinding how we took a polarization to a map A → A∨, we note
that we may as well define the above map using a polarization φ : A→ A∨ by instead defining a pairing

A[n](Ksep)×A∨[n](Ksep)→ Z/nZ

and then pre-composing withA→ A∨. More generally, given an isogeny f : A→ B, we will be able to show
that there is a perfect pairing

(ker f)× (ker f∨)→ Gm,

upon which we find the desired pairing by taking f = [n]A and taking Ksep-points.

Proposition 2.38 (Weil pairing). Fix an isogeny f : A → B of abelian varieties over K. Then there is a
perfect pairing

(ker f)× (ker f∨)→ Gm.

Proof. We provide an explicit construction of the pairing on Ksep-points, but we will not check that it is
perfect, for which we refer to [Ton15, Theorem 8.1.3]. Select x ∈ (ker f)(Ksep) and y∨ ∈ (ker f∨)(Ksep).
The point y∨ corresponds to a line bundleLonB∨

Ksep . Being in the kernel of f grants a trivializationσ : f∗L →
OAKsep , which is unique up to a scalar. Now, note that t∗af∗L = f∗t∗f(a)L = f∗L because a ∈ ker f , so there is
another trivialization of f∗L given by t∗aβ : L → OAKsep . We now define our Weil pairing as t∗aβ ◦ β−1, which
we realize as an element ofGm(Ksep) by noting that t∗aβ◦β−1 is an automorphism ofOAKsep and is therefore
a scalar. ■
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Corollary 2.39. Fix an abelian variety A over a field K, and let φ : A → A∨. For each positive integer n,
there is a Galois-invariant perfect symplectic pairing

eφ : A[n](K
sep)×A[n](Ksep)→ µn.

Furthermore, for any positive integer m, the following diagram commutes.

A[nm](Ksep) A[nm](Ksep) µmn

A[n](Ksep) A[n](Ksep) µn

×

m

eφ

m m

×
eφ

Proof. We described above how to construct the pairing from the one given in Proposition 2.38 by setting
f = [n]A and then using the polarization φ. The remaining properties of eφ (such as Galois-invariance) can
be checked using the explicit construction given in Proposition 2.38. ■

2.1.4 Applying Hodge Theory
We now explain the utility of chapter 1 to our application. Here is the main result.

Theorem 2.40 (Riemann). The functor A 7→ H1
B(A,Q) provides an equivalence of categories between

the isogeny category of abelian varieties defined overC and the category of polarizableQ-Hodge struc-
tures V such that VC = V 0,1 ⊕ V 1,0.

Proof. Writing A = Cg/Λ for a polarizable lattice Λ, we see that the given functor takes A to Λ ⊗Z Q. It is
thus not hard to see that this functor is fully faithful. To see that it is essentially surjective, we begin with any
polarizable Q-Hodge structure V and find a polarizable sublattice Λ in order to produce the desired abelian
variety A/Λ. Admittedly, most of the work for this theorem was already done in Example 1.20 when we
showed that the previous sentence actually gives an abelian variety! ■

The moral of the story is that we can keep track of abelian varieties A over C by only keeping track of their
Hodge structures H1

B(A,Q). With this in mind, we allow ourselves the following notation.

Notation 2.41. Fix an abelian variety A over C. Then we define the Mumford–Tate group of A to be

MT(A) := MT
(
H1

B(A,Q)
)
.

We define Hg(A) and L(A) similarly.

Here is the main corollary of Theorem 2.40 that we will want.

Corollary 2.42. Fix an abelian variety A over C. Then the natural map

EndC(A)⊗Z Q→ EndQ
(
H1

B(A,Q)
)MT(A)

is an isomorphism.

Proof. By Lemma 1.54, we see that the right-hand side is simply EndHS

(
H1

B(A,Q)
)

. The result now follows
from Theorem 2.40. ■

As another aside, we go ahead and restate the Albert classification (Theorem 1.28) for our abelian vari-
eties.
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Proposition 2.43. Fix a simple abelian variety A of dimension g, defined over a field K of characteristic
0, and set D := EndK(A)Q and E := Z(D). Letting (·)† be the Rosati involution on D, we also let E† be
the (·)†-invariants of E. Further, set d :=

√
[D : E] and e := [E : Q] and e0 := [E† : Q]. Then we have

the following table of restrictions on (g, d, e, e0).

Type e d Restriction
I e0 1 e | g
II e0 2 2e | g
III e0 2 2e | g
IV 2e0 d e0d

2 | g

Proof. Recall that D is amenable to the Albert classification as discussed in Remark 2.36. The middle two
columns follow from the discussion of the various types; for example, in Type I, we see d = 1becauseD = E,
and e = e0 because E is totally real. To receive the dimension restrictions, we note that some descent
argument allows us to reduce to the case whereK = C, where we receive an inclusionD ⊆ End(H1

B(A,Q))
by Theorem 2.40.1 This is an inclusion of division Q-algebras, so we see that dimQD | 2g; this implies

d2e | 2g,

which rearranges into the required restrictions. ■

Remark 2.44. The requirement that charE = 0 is necessary in the table; the restrictions are somewhat
different (and weaker!) in positive characteristic.

While we’re here, we state the main theorem of [Del18] on absolutely Hodge cycles.

Theorem 2.45 (Deligne). Fix an abelian vareityA defined over a number fieldK. Then all Hodge classes
on A are absolutely Hodge.

2.1.5 Complex Multiplication
Even though it is not strictly necessary for our exposition, we take a moment to discuss some theory sur-
rounding complex multiplication. We refer to [Mil20b] throughout for more details. The relevance of this
discussion to us mostly arises because we have defined analogous notions in sections 2.2.2 and 2.2.3.

Intuitively, complex multiplication simply means that an abelian variety has many endomorphisms. To
explain this properly, we note that the endomorphism algebra of a simple abelian variety A is a division Q-
algebra described in Proposition 2.43; if we drop the assumption thatA is simple, then it could be a product
of matrix algebras of such division Q-algebras. This motivates the following definition to properly account
for such matrix algebras.

Definition 2.46 (reduced degree). Write a semisimple algebraD over a fieldK as a productD1×· · ·×Dk

of simple algebras. Then we define the reduced degree as

[D : K]red :=

k∑
i=1

√
[Di : Ei] · [Di : K],

where Ei := Z(Di) for each i

1 It is still possible to get an inclusion like this in general. It requires a discussion of the ℓ-adic representations, which we engage in
later.
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Remark 2.47. It is not technically obvious that [Di : Fi] is a square, but this follows from the theory of
central simple algebras. Roughly speaking, one can show thatDi⊗Di

∼=Mn(Di) for some n ≥ 0, from
which the result follows; see [Mil20a, Corollary IV.2.16].

Remark 2.48. Given an inclusion B ⊆ EndK(V ), one receives a bound

[B : K]red ≤ [V : K].

Roughly speaking, this follows by breaking upB into simple pieces (which are matrix algebras of division
algebras) and then looking for these pieces in EndK(V ). See [Mil20b, Proposition I.1.2]

In light of the previous remark, we are now able to make a definition.

Definition 2.49 (complex multiplication). Fix an abelian variety A over a field K. Then A has complex
multiplication over K if and only if

[EndK(A)Q : Q]red = 2dimA.

Namely, we see that 2 dimA is as large as possible by Remark 2.48, by taking V to be H1 for some Weil
cohomology H.2

Remark 2.50. The key benefit of the reduced degree is that it is additive: given abelian varieties A and
A′, we claim

[End(A⊕A′)Q : Q]red
?
= [End(A)Q : Q]red + [End(A′)Q : Q]red.

Indeed, by breaking everything into simple pieces, we may assume that A and A′ are both powers of
a simple abelian variety. If they are powers of different simple abelian varieties, then this is a direct
computation. Otherwise, they are powers of the same simple abelian variety, in which case all central
simple algebras in sight are matrix algebras over the same division algebra, and the result follows by
another computation.

Remark 2.51. A computation with Proposition 2.43 shows that a simple abelian variety A has complex
multiplication only in Type IV when d = 1; i.e., we require EndK(A) to be a CM field. Combining this
with Remark 2.50, we find that an abelian variety A has complex multiplication if and only if each of its
factors does.

Remark 2.52. If an abelian variety A with complex multiplication is a sum of non-isomorphic simple
abelian varieties, then its endomorphism algebra is simply a product of CM fields. In general, one can
show that it is still the case that any abelian variety A with complex multiplication has a CM algebra of
degree 2 dimA contained in its endomorphism algebra. However, this requires a little structure theory
of semisimple algebras; see [Mil20b, Proposition 3.6].

Complex multiplication places strong constraints on the Mumford–Tate group.

Proposition 2.53. Fix an abelian varietyAoverC. ThenAhas complex multiplication if and only ifMT(A)
is a torus.

Proof. We show the two implications separately.
2 Outside the complex-analytic case, it may look like one wants to use the ℓ-adic result Theorem 2.124 over a general field. However,

it turns out to be enough to merely achieve the injectivity of the map Theorem 2.124, which is easier.
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• In one direction, ifAhas complex multiplication, then Remark 2.52 grants a CM algebraE ⊆ EndC(A)Q
with [E : Q] = 2 dimA. ThenH1

B(A,Q) is a free module overE of rank1, so we see thatGLF
(
H1

B(A,Q)
)

is isomorphic to TF . We conclude by Lemma 1.45.

• In the other direction, suppose MT(A) is a torus. Find a maximal torus T containing MT(A). Then
Corollary 2.42 tells us that

EndC(A)Q = EndQ
(
H1

B(A,Q)
)MT(A)

,

which then contains EndQ
(
H1

B(A,Q)
)T . However, the latter is a commutative semisimple Q-algebra

of dimension 2g: it suffices to check this after base-changing to C, whereupon we may identify T with
the diagonal torus, from which the claim follows. This completes the proof. ■

One benefit of complex multiplication is that it lets move difficult geometric questions into combinatorial
ones. To see this, we need to define the following combinatorial gadget.

Definition 2.54. Fix an abelian variety A with complex multiplication defined over C, and set V :=
H1

B(A,Q). Choose a CM algebra E ⊆ EndC(A)Q with dimE = 2dimA. Then we define the CM type
Φ: ΣE → Z≥0 of A to be the CM signature (E,Φ) given by

V 1,0 ∼=
⊕
σ∈ΣF

CΦ(σ)
σ .

Note that H1
B(A,Q) is then a one-dimensional E-vector space, so imΦ ⊆ {0, 1}, so we can realize Φ as

a subset of Hom(E,C).

Remark 2.55. Note that we are not requiring E = Z(EndC(A)Q), though this is automatically the case
when the simple components ofA all have multiplicity 1. Of course, there still is a CM signature coming
from the case E = Z(EndC(A)Q).

Remark 2.56. There is a still a way to recover the CM type even when A is not defined over C. For
example, one can note that H10 is supposed to be the Lie algebra LieA, so one can instead recover Φ
from the E-action on LieA.

Remark 2.57. One can read the simplicity ofA off of the CM type (E,Φ). To begin, one needsE to be a
field for A to be simple. Now that E is a field, we know that A ∼ Br where B is an abelian variety with
complx multiplication; say that it has CM type (E′,Φ′). Then the Hodge structure on A is determined
by the Hodge structure on B. Tracking this through as in [Lan11, Theorem 3.6] shows that A is simple
if and only if any Galois extension L/Q of E has that

{σ ∈ Gal(L/Q) : Φσ = Φ} = Gal(L/E),

where Φ is being suitably thought of as an element of Z[Hom(E,L)].

Remark 2.58. It turns out that there is (essentially) exactly one abelian variety with CM type (E,Φ), up
to isogeny over the algebraic closure. See [Mil20b, Proposition 3.12].

Remark 2.58 tells us that we are basically allowed to only pay attention to the CM type in the theory of
complex multiplication.

2.2 The Center of MT

In this section, we begin with a computational tool to compute MT(A) for an abelian varietyA. This discus-
sion is somewhat involved, so we will spend a full section here.
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Let’s begin with some motivation. Fix an abelian variety A. In the application of this thesis, we will use
Lemma 1.62 to compute Hg(A)der: note Hg(A)der is semisimple and hence its Lie algebra can be written
as the sum of simple Lie algebras which may be amenable to the lemma. Because Hg(A) is reductive by
Lemma 1.44, it remains to compute the center Z(Hg(A)); recall Hg(A) is connected by Remark 1.40, so we
may as well compute the connected componentZ(Hg(A))◦. As usual, the same discussion holds forMT(A),
but we note that Z(MT(A))◦ tends to be nontrivial because usually Gm,Q ⊆ MT(A) by Example 1.31.

In Proposition 2.67, we find that Z(Hg(A))◦ is trivial unless A has irreducible factors of Type IV in the
sense of the Albert classification (Theorem 1.28). As such, we spend the rest of the section focusing on
computations in Type IV. Computations are well-understood when V comes from an abelian variety with
complex multiplication, so the main contribution here is that these arguments generalize with only slight
modifications.

2.2.1 General Comments

In this subsection, we will mostly work with general polarizable Hodge structures V .

Lemma 2.59. Fix V ∈ HSQ of pure weight, and set D := EndHS(V ) with E := Z(D). Viewing D as a
Q-group, we have

Z(Hg(V )) ⊆ ResE/Q Gm,E ,

where ResE/Q Gm,E embeds into GL(V ) via the D-action on V .

Proof. Here,E is a product of number fields because it is a commutative semisimpleQ-algebra. Recall from
Lemma 1.54 that

D = EndQ(V )Hg(V ),

which upgrades to an equality of algebraic subgroups ofEndQ(V ) becauseQ-points are dense in these alge-
braic groups by combining [Mil17, Corollary 17.92] and [Mil17, Definition 12.59]. In particular, we see that
Hg(V ) commutes with D×, so the double centralizer theorem enforces Z(Hg(V )) ⊆ D× even as algebraic
groups. However, Z(Hg(V )) now commutes fully withD×, so in fact Z(Hg(V )) ⊆ Z(D)×, which is what we
wanted. ■

Remark 2.60. One also hasZ(MT(V )) ⊆ ResE/Q Gm,E because MT(V ) ⊆ Gm,Q Hg(V ) by Lemma 1.41,
and the scalars Gm,Q already live in ResE/Q Gm,E .

Lemma 2.59 is that it places the center Z(Hg(V )) in an explicit torus ResE/Q Gm,E . Subgroups of tori are
well-understood by (co)character groups, so this puts us in good shape. This torus will be important enough
to have its own notation.

Notation 2.61. Fix a commutative semisimple Q-algebra E (i.e., a product of number fields). Then we
define the torus

TE := ResE/Q Gm,E .

Remark 2.62. Writing E as a product of number fields E1 × · · · × Ek, we find

TE = TE1
× · · · × TEk

because E = E1 × · · · × Ek is an equality of Q-algebras.
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Remark 2.63. Let’s compute the character group X∗(TE). By Remark 2.62, it’s enough to do this com-
putation when E is a field. The choice of a primitive element α ∈ E with minimal monic polynomial
f(x) yields an isomorphism E ∼= Q[x]/(f(x)). Upon base-changing to Q, we get a ring isomorphism

E ⊗Q Q ∼=
n∏
i=1

Q[x]

(x− αi)
,

where α1, . . . , αn ∈ Q are the roots of f(x) in Q. Each root αi provides a unique embedding E ↪→ Q, so
we see that (TE)Q ∼= Gn

m,Q, where the n maps (TE)Q → Gm,Q are given by the embedding σi : E ↪→ Q
defined by σi(α) := αi. In total, we find that X∗(TE) is a free Z-module spanned by the embed-
dings ΣE := {σ1, . . . , σn}, and it has the natural Galois action. Dually, X∗(TE) has the dual basis
Σ∨
E = {σ∨

1 , . . . , σ
∨
n}.

In the light of the above remark, we will want the following notation.

Notation 2.64. Given a number field E, we let ΣE denote the collection of embeddings E ↪→ Q. Given
a product of number fields E := E1 × · · · × Ek, we define ΣE := ΣE1 ⊔ · · · ⊔ ΣEk

.

The point of the above notation is that X∗(TE) = Z[ΣE ] as Galois modules.
It is possible to upgrade Lemma 2.59 in the presence of a polarization.

Lemma 2.65. Fix a polarizable V ∈ HSQ of pure weight, and set D := EndHS(V ) with E := Z(D). Then

Z(Hg(V )) ⊆
{
g ∈ TE : gg† = 1

}
,

where (·)† is the Rosati involution.

Proof. As usual, everything in sight upgrades to algebraic groups. Let φ be a polarization. Fix some g ∈
Hg(V ); note that Lemma 2.59 implies g ∈ TE , so it makes sense to write down g†.

Now, by the non-degeneracy of φ, it is enough to show that

φ
(
gg†v ⊗ w

) ?
= φ(v ⊗ w)

for any v, w ∈ V . Well, the definition of (·)† tells us that the left-hand side equals φ
(
g†v ⊗ g†w

)
, which

equals φ(v ⊗ w) because Hg(V ) ⊆ Sp(φ) by Remark 1.53. ■

Once again, this torus is important enough to earn its own notation.

Notation 2.66. Fix a commutative semisimple Q-algebra E with involution (·)†. Then we define the
torus

UE :=
{
g ∈ TE : xx† = 1

}
.

Here is an application of Lemma 2.65.

Proposition 2.67. Fix polarizable V ∈ HSQ of pure weight. Suppose that V has no irreducible Hodge
substructures with endomorphism algebra of Type IV in the sense of the Albert classification (Theo-
rem 1.28). Then Z(Hg(V )) is finite, and Hg(V ) is semisimple.

Proof. Quickly, recall from Lemma 1.44 that Hg(V ) is reductive, so the finitness of Z(Hg(V )) implies that
Z(Hg(V ))◦ = 1 and thus Hg(V ) = Hg(V )der, making Hg(V ) is semisimple. (See also [Mil17, Proposi-
tion 19.10].) As such, we will focus on the first claim.
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SetD := EndHS(V ) withE := Z(D) so that Hg(V ) ⊆ UE by Lemma 2.65. It is therefore enough to check
that UE is finite. Well,E is a product of number fields, and upon comparing with Theorem 1.28, we see that
avoiding Type IV implies that E is a product of totally real fields. Totally real fields have only two units, so
finiteness of UE follows. ■

Thus, we see that we have pretty good control outside of Type IV factors, so we will spend the rest of this
section on Type IV. For some applications outside Type IV, see (for example) [Lom16].

2.2.2 Type IV: The Signature
The arguments in the next two subsections are motivated by the computation of [Yu15, Lemma 4.2] and
[Yan94, Proposition 1.1]. For this subsection, A is an abelian variety over C whose irreducible factors are
of Type IV in the sense of the Albert classification (Theorem 1.28). Note that V := H1

B(A,Q) is a Hodge
structure concentrated in V 0,1 and V 1,0, so we do so.

By assumption, we know thatD := EndHS(V ) is a division algebra over its centerE := Z(D), whereE is
a CM algebra (i.e., a product of CM fields), and the Rosati involution (·)† restricts to complex conjugation on
E. In particular, E† is the product of the maximal totally real subfields of E.

The basic approach of this subsection is that Lemma 2.59 requires Z(Hg(A))◦ ⊆ TE , and one can com-
pute subtori using the machinery of (co)character groups. In particular, we recall that X∗(ΣE) = Z[ΣE ] and
X∗(ΣE) = Z[Σ∨

E ] as Galois modules. We will need a way to work directly with the Hodge structure on V . It
will be described by the following piece of combinatorial data. Recall that a CM algebra is a product of CM
fields.

Definition 2.68 (signature). Fix a CM algebraE, and recall thatΣE is the set of homomorphismsE ↪→ Q.
Then a signature is a function Φ: ΣE → Z≥0 such that the sum

Φ(σ) + Φ(σ)

is constant with respect to σ ∈ ΣE ; here, σ denotes the complex conjugate embedding to σ. We may
call the pair (E,Φ) a CM signature.

Remark 2.69. One can also view Φ as an element of Z[ΣE ] as

Φ :=
∑
σ∈Φ

Φ(σ)σ.

Remark 2.70. The case that Φ(σ) + Φ(σ) always equals 1 corresponds to Φ being a CM type.

Remark 2.71. If we expand E as a product of CM fieldsE = E1 × · · · ×Ek, then ΣE = ΣE1 ⊔ · · · ⊔ΣEk
.

Thus, we see that a signature of E has only a little more data than a signature on each of the ΣE•s
individually; in particular, one should make sure that Φ(σ) + Φ(σ) remains equal across the different
fields.

The idea is that we can keep track of a signature with a Hodge structure.

Lemma 2.72. Fix an abelian variety A over C such that End(A) contains a CM algebra E, and define
V := H1

B(A,Q). Then the function Φ: ΣE → Z≥0 defined by

V 1,0 ∼=
⊕
σ∈ΣE

CΦ(σ)
σ

is a signature, which we will call the induced signature. This is an isomorphism of E-representations,
where Cσ is a complex E-representation via the embedding σ.
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Proof. In short, the condition that Φ(σ) + Φ(σ) is constant comes from the condition V 0,1 = V 1,0. To see
this, note that V is a free module over E, so VC is a free module over E ⊗ C of finite rank. As such, we may
set d := [V : E] so that V ∼= Ed as E-representations, and then we find

VC ∼=
⊕
σ∈ΣE

Cdσ.

Now, VC = V 1,0 ⊕ V 0,1, and because E acts by endomorphisms of Hodge structures, we get a well-defined
action of E on V 1,0 and V 0,1 individually. In particular, the definition of Φ also grants

V 0,1 ∼=
⊕
σ∈ΣE

Cd−Φ(σ)
σ

as E-representations, so
V 0,1 ∼=

⊕
σ∈ΣE

Cd−Φ(σ)
σ

To complete the proof, we note that V 0,1 = V 1,0 continues to be true as E-representations, so we must
have Φ(σ) = d− Φ(σ) for all σ. The result follows. ■

Of course, we cannot expect this signatureΦ to remember everything about the Hodge structure. For exam-
ple, if End(A) contains a larger CM algebra E′ than E, then the signature induced by E′ knows more about
the Hodge structure than the one induced by E. However, in “generic cases,” this signature is expected to
suffice. For our purposes, we will take generic to mean that there are no more endomorphisms than the
ones promised by E; i.e., this explains why we will assume Z(End(A)) = E in the sequel.

We now relate our signature to cocharacters ofZ(Hg(A))◦. For this, it will be helpful to realizeZ(Hg(A))
as some kind of monodromy group. The trick is to consider the determinant.

Lemma 2.73. Fix an abelian varietyA over C such that Z(End(A)) equals an algebraE, and define V :=
H1

B(A,Q). Then Z(Hg(A))◦ equals the largest algebraic Q-subgroup of TE containing the image of
(detE ◦ h) : U→ (TE)R.

Proof. The point is that taking the determinant will kill Hg(A)der because Hg(A) ⊆ GLE(V ). There are two
inclusions we must show.

• We show that Z(Hg(A))◦ contains the image of (detE ◦ h|U). Well, Hg(A) contains the image of h|U,
so it is enough to show that Z(Hg(A))◦ contains the image of detE : Hg(A) → TE . For this, we recall
that Hg(A) is connected (by Remark 1.40), so

Hg(A) = Z(Hg(A))◦ Hg(A)der.

Note thatdetE is simply (·)dimE V on the torusZ(Hg(V ))◦, so that piece surjects ontoZ(Hg(A))◦! Thus,
it is enough to check that detE : Hg(A)der → TE is trivial, which is true by the definition of the derived
subgroup upon noting that detE is a homomorphism with abelian target.

• Suppose that T ⊆ TE contains the image of (detE ◦ h|U). Then we claim that T contains Z(Hg(A))◦.
Let H ⊆ GLE(V ) be the pre-image of T under detE : GLE(A) → TE . Then H must contain the
image of h|U, so it contains Hg(A) by defintion. In particular, H contains Z(Hg(A))◦! Now, T con-
tains detE(H), so T contains detE(Z(Hg(A))◦), but the previous point check remarked that this simply
equals Z(Hg(A))◦, so we are done. ■

Proposition 2.74. Fix an abelian varietyAoverC such thatZ(End(A)) equals a CM algebraE, and define
V := H1

B(A,Q). Let Φ: ΣE → Z≥0 be the induced signature. Then the induced representation (detE ◦
h) : U→ (TE)R sends the generator of X∗(U) to

−
∑
σ∈ΣE

(Φ(σ)− Φ(σ))σ∨.
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Proof. This boils down to computing the map detE ◦ h|U. We proceed in steps.

1. To set ourselves up, recall that
UC = {(z, 1/z) : z ∈ Gm,C},

so one has an isomorphism cocharacter z∨ : Gm,C → UC given by z∨ 7→ z 7→ (z, 1/z). Thus, we have
left to show that

detE ◦ hC ◦ z∨
?
= −

∑
σ∈ΣE

(Φ(σ)− Φ(σ))σ∨.

We may check this equality on geometric points.

2. We describe the map hC : SC → GL(V )C. By definition, h(z, w) ∈ GL(V ) acts by z−1 on V 1,0 and by
w−1 on V 0,1. Thus, the definition of Φ grants that h(z, w) diagonalizes. To be more explicit, for each
σ ∈ ΣE , we defineV p,qσ to be the σ-eigenspace for theE-action onV p,q ⊆ VC. Then we see that h(z, w)
acts on V 1,0

σ by the scalar z−1 and on V 0,1 by the scalar w−1.

3. We describe the map (detE ◦ hC) : SC → (TE)C. Realizing geometric points in (TE)C as tuples in CΣE ,
we see that detE simply takes the determinant of the matrix hC(z, w)|Vσ

to the σ-component in (TE)C.
(One finds this by tracking through the definition of detE as a morphism of algebraic groups.) As such,
we see that

dethC(z, w)|Vσ
= z−Φ(σ)w−Φ(σ)

because Φ is a signature.

4. We complete the proof. The previous step shows that (detE ◦ hC ◦ z∨)(z) goes to the element(
z−Φ(σ)+Φ(σ)

)
σ∈Σ(E)

∈ CΣE .

This completes the proof upon noting that the cocharacter σ∨ : Gm,C → TE simply maps into the σ-
component of CΣE on geometric points. ■

Remark 2.75. Notably, the given element sums to 0, which corresponds to the fact that Hg(A) ⊆ SL(V )
as seen in Lemma 1.41. Indeed, by diagonalizing theE-action on V , we see that (TE∩SL(V ))◦ consists
of the g ∈ TE such that the product of the elements in g equals 1.

Proposition 2.74 easily translates into a computation of the cocharacter group X∗(Hg(A))◦. In the next few
results, saturated simply means that the induced quotient is torsion-free.

Corollary 2.76. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E, and define
V := H1

B(A,Q). Let Φ: ΣE → Z≥0 be the induced signature. Then Z(Hg(A))◦ ⊆ TE has cocharacter
group equal to the smallest saturated Galois submodule of X∗(TE) = Z[Σ∨

E ] containing∑
σ∈ΣE

(Φ(σ)− Φ(σ))σ∨.

Proof. This is immediate from combining Lemma 2.73 and Proposition 2.74 with the equivalence of cate-
gories X∗ between algebraic tori and Galois modules. See [Mil17, Theorem 12.23] for the proof that X∗ is
an equivalence, which is similar. ■

Corollary 2.77. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E, and define
V := H1

B(A,Q). Let Φ: ΣE → Z≥0 be the signature defined in Lemma 2.72. ThenZ(MT(V ))◦ ⊆ TE has
cocharacter group equal to the smallest saturated Galois submodule of X∗(TE) = Z[Σ∨

E ] containing∑
σ∈ΣE

Φ(σ)σ∨.
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Proof. This follows from Corollary 2.76. By Lemma 1.41, it is enough to add in the cocharacter given by the
scalars Gm,Q → TE , which is

∑
σ∈ΣE

σ∨. Thus, the fact that Φ is a signature implies that∑
σ∈ΣE

Φ(σ)σ∨

certainly lives in X∗(MT(A)) ⊆ X∗(TE).
Conversely, if X is some saturated Galois submodule containing

∑
σ∈ΣE

Φ(σ)σ∨, then we would like
to show that X∗(MT(A)) ⊆ X. Well, X is a Galois submodule, so it must contain the complex conjugate
element

∑
σ∈ΣE

Φ(σ)σ∨. On one hand, this then sums with the given element to produce∑
σ∈ΣE

σ∨ ∈ X

because X is saturated. On the other hand, we can take a difference to see that∑
σ∈ΣE

(Φ(σ)− Φ(σ))σ∨ ∈ X.

We conclude that X contains the cocharacter of the scalars Gm,Q ⊆ TE and the cocharacter lattice of
Z(Hg(A))◦ ⊆ TE , so we conclude that X must also contain the cocharacter lattice of Z(MT(A))◦. ■

Remark 2.78. One can also prove the above corollary by following the proof of Corollary 2.76. For ex-
ample, this approach provides a monodromy interpretation of Z(MT(A))◦ analogous to Lemma 2.73.
Here, one replaces the generator of X∗(U) with the cocharacter µ ∈ X∗(S), and one finds that detE ◦ hC
sends µ to

∑
σ∈ΣE

Φ(σ)σ∨. One is then able to prove statements analogous to Proposition 2.74 and
Corollary 2.76.

Let’s pause for a moment with an explanation of how one can use Corollary 2.77 to compute Z(MT(A))◦ ⊆
TE . The approach for Z(Hg(A))◦ is similar but only a little more complicated.

We will only compute over a Galois extension L/Q containing all factors of E. In this case, the E-action
on VL diagonalizes, so one can identify (TE)L ⊆ GL(V )L as the diagonal torus for some basis of VL. In
particular, for each σ ∈ ΣE , the cocharacter σ∨ corresponds to one of the standard cocharacters for the
diagonal torus ofGL(V )L. Now, Corollary 2.77 tells us thatX∗(Z(MT(A))◦) ⊆ X∗(TE)equals the saturation
of the sublattice spanned by the vectors

g

( ∑
σ∈ΣE

Φ(σ)σ∨

)
=
∑
σ∈ΣE

Φ(σ)(gσ)∨,

where g varies over Gal(L/E). By computing a basis of the saturation of this sublattice, we get a family of
1-parameter subgroups of the diagonal torus of GL(V )L which together generate Z(MT(A))◦. This more
or less computes Z(MT(A))◦.

2.2.3 Type IV: The Reflex
In the sequel, we will be most interested in equations cutting out Z(MT(A))◦ ⊆ TE . One could imagine
proceeding as above to computeZ(MT(A))◦ ⊆ TE via 1-parameter subgroups and then afterwards finding
the desired equations. This is somewhat computationally intensive, so instead we will turn our attention to
computing character groups. As in [Yu15, Lemma 4.2], this will require a discussion of the reflex.

Definition 2.79 (reflex signature). Fix CM fields E and E∗ and CM signatures (E,Φ) and (E∗,Φ∗). We
say that these CM signatures are reflex if and only if there is a Galois extension L/Q containing E and
E∗ such that each σ ∈ Gal(L/Q) has

Φ(σ|E) = Φ∗ (σ−1|E∗
)
.

In this situation, we may call (E∗,Φ∗) a reflex signature for (E,Φ).

88



2.2. THE CENTER OF MT SATO–TATE GROUPS OF GENERIC CURVES

Remark 2.80. We check that (E,Φ) and (E∗,Φ∗) does not depend on the choice of Galois extension L.
Indeed, suppose that we have another Galois extension L′/Q containing E and E∗; let L′′ be a Galois
extension containing both L and L′. By symmetry, it is enough to check that (E,Φ) are reflex with re-
spect to L if and only if they are reflex with respect to L′′. Well, for any σ ∈ Gal(L′′/Q), we see that
Φ(σ|E) = Φ∗ (σ−1|E∗

)
is equivalent to σ|L ∈ Gal(L/Q) satisfying Φ(σ|L|E) = Φ∗ (σ|−1

L |E∗
)

, so we are
done after remarking that restriction Gal(L′′/Q)→ Gal(L/Q) is surjective.

Remark 2.81. We check that reflex signatures certainly exist: one can choose any Galois closure L ofE
and then define Φ∗ : Gal(L/Q)→ Z≥0 by Φ∗(σ) := Φ

(
σ−1|L

)
.

Remark 2.82. In the theory of abelian varieties with complex multiplication, it is customary to make
E∗ as small as possible, which makes it unique. This is useful for moduli problems. However, this is
not our current interest, and we are not requiring that the reflex signature be unique because it will be
convenient later to take large extensions.

The point of introducing the reflex is that it provides another monodromy interpretation of Z(MT(A))◦. To
achieve this, we need the reflex norm.

Definition 2.83 (reflex norm). Fix CM fieldsE andE∗ and reflex CM signatures (E,Φ) and (E∗,Φ∗). Then
we define the reflex norm as the map NΦ∗ : E∗ → Q by

NΦ∗(x) :=
∏

σ∈ΣE∗

σ(x)Φ
∗(σ).

Note that this is a character in X∗(TE∗).

Technically, this definition does not require us to remember that (E∗,Φ∗) is reflex to (E,Φ), but we will want
to know this in the following checks.

Lemma 2.84. Fix CM fields E and E∗ and reflex CM signatures (E,Φ) and (E∗,Φ∗).

(a) If (E∗
1 ,Φ

∗
1) is a CM signature restricting to (E∗,Φ∗), then (E,Φ) and (E∗

1 ,Φ
∗
1) are still reflex, and

NΦ∗
1
= NΦ∗ ◦NE∗

1/E
∗ .

(b) The image of NΦ∗ lands in E.

Proof. Here, “restricting” simply means that E∗
1 contains E∗ and Φ∗

1(σ) = Φ∗(σ|E∗) for all σ ∈ ΣE∗
1

.

(a) That (E,Φ) and (E∗
1 ,Φ

∗
1) are still reflex follows from the definition: choose a Galois extension L con-

taining E and E∗
1 , and then each σ ∈ Gal(L/Q) has

Φ(σ|E) = Φ∗ (σ−1|E∗
)

= Φ∗
1

(
σ−1|E∗

1

)
.

To check the equality of reflex norms, we extend each σ ∈ ΣE∗ to some σ̃ ∈ Gal(Q/Q), and then we

89



2.2. THE CENTER OF MT SATO–TATE GROUPS OF GENERIC CURVES

directly compute

NΦ∗
(
NE∗

1/E
∗(x)

)
=

∏
σ∈ΣE∗

σ
(
NE∗

1/E
∗(x)

)Φ∗(σ)

=
∏
σ∈Σ∗

E

τ∈HomE∗ (E∗
1 ,Q)

σ̃τ(x)Φ
∗(σ)

=
∏
σ∈Σ∗

E

τ∈HomE∗ (E∗
1 ,Q)

σ̃τ(x)Φ
∗
1(σ̃τ)

= NΦ∗
1
(x),

where the last step holds by noting that σ̃ ◦ τ parameterizes ΣE∗ .

(b) We begin by reducing to the case where E∗/Q is Galois. Indeed, the previous step tells us that ex-
tending E∗ merely passes to a norm subgroup of E∗, but norm subgroups are Zariski dense in TE∗ ,
so it suffices to check the result on such norm subgroups. Thus, we may assume that E∗/Q is Galois,
contains E, and thus Φ∗(σ) = Φ

(
σ−1|E

)
. Now, for any g ∈ Gal(E∗/E), we see Φ∗(σ) = Φ∗ (g−1σ

)
, so

g (NΦ∗(x)) =
∏

σ∈Gal(E∗/Q)

gσ(x)Φ
∗(σ)

=
∏

σ∈Gal(E∗/Q)

σ(x)Φ
∗(g−1σ)

= NΦ∗(x),

as required. ■

At long last, we move towards our monodromy interepretation using the reflex. The following argument
generalizes [Yu15, Lemma 4.2].

Lemma 2.85. Fix reflex CM signatures (E,Φ) and (E∗,Φ∗). Suppose that E∗ contains E and is Galois
over Q. For each g ∈ Gal(E∗/Q), the reflex norm NΦ∗ : TE∗ → TE sends the cocharacter g∨ ∈ X∗(TE∗)
to

X∗ (NΦ∗) (g∨) =
∑
σ∈ΣE

Φ(σ)(gσ)∨.

Proof. Notably, NΦ∗ outputs to TE by Lemma 2.84. To begin, we expand

X∗ (NΦ∗) (g∨) =
∑

σ∈ΣE∗

Φ∗(σ)X∗(σ)(g
∨).

We now check X∗(σ)(g
∨) =

(
gσ−1

)∨: for any τ ∈ X∗(TE∗), we compute the perfect pairing

⟨τ,X∗(σ)(g
∨)⟩ = ⟨τσ, g∨⟩,

which is the indicator function for τσ = g and hence equals
〈
·, (gσ−1)∨

〉
. We are now able to write

X∗ (NΦ∗) (g∨) =
∑

σ∈ΣE∗

Φ∗(σ)
(
gσ−1

)∨
.

Replacing σ with σ−1, we are done upon recalling Φ∗ (σ−1
)
= Φ(σ|E) and collecting terms which together

restrict to the same embedding of E. ■

90



2.3. THE ℓ-ADIC REPRESENTATION SATO–TATE GROUPS OF GENERIC CURVES

Proposition 2.86. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E = E1 ×
· · · × Ek, and define V := H1

B(A,Q). Let Φ: ΣE → Z≥0 be the induced signature, which we decompose
as Φ = Φ1⊔· · ·⊔Φk where (E•,Φ•) is a CM signature for allE•. SupposeE∗ is a CM field equipped with
CM signatures Φ∗

1, . . . ,Φ
∗
k such that (Ei,Φi) and (E∗,Φ∗

i ) are reflex for all i. Then Z(MT(A))◦ ⊆ TE is
the image of

(NΦ∗
1
, . . . ,NΦ∗

k
) : TE∗ → TE .

Proof. Note that norms are surjective on these algebraic tori, so Lemma 2.84 tells us that the image of NΦ∗

will not change if we pass to an extension of E∗. As such, we will go ahead and assume that E∗ contains E
and is Galois over Q.

In light of Corollary 2.77, it is enough to show that the image of X∗(NΦ∗) (which we note is already a
Galois submodule) has saturation equal to the smallest saturated Galois submodule of X∗(TE) containing∑
σ∈ΣE

Φ(σ)σ∨. This follows from the computation of Lemma 2.85 upon letting g vary over Gal(E∗/Q). ■

Let’s explain how Proposition 2.86 is applied to compute equations cutting out Z(MT(A))◦ ⊆ TE , where
E = E1 × · · · ×Ek is a CM algebra. As before, we will only compute over an extension L = E∗ ofE which is
Galois over Q; let Φ∗

1, . . . ,Φ
∗
k be the signatures on L making (L,Φ∗

i ) and (Ei,Φi) reflex for each i. Note, we
know that (TE)L ⊆ GL(V )L may embed as a diagonal torus.

An equation cutting out Z(MT(A))◦L in the (subtorus of the) diagonal torus (TE)L ⊆ GL(V )L then be-
comes a character of (TE)L which is trivial on Z(MT(A))◦. In other words, these equations are given by the
kernel of

X∗(TE)→ X∗(Z(MT(A))◦).

We now use Proposition 2.86. We know that Z(MT(A))◦ ⊆ TE is the image of (NΦ∗
1
, . . . ,NΦ∗

k
) : TL → TE ,

so the kernel of the above map is the same as the kernel of

X∗ ((NΦ∗
1
, . . . ,NΦ∗

k
)
)
: X∗(TE)→ X∗(TL).

To compute this kernel cleanly, note Lemma 2.85 computes X∗
(
NΦ∗

i

)
for each i, so we see X∗ (NΦ∗

i

)
can

be computed as the transpose of the matrix of X∗ (NΦ∗). Attaching these matrices together gives a matrix
representation for the above map, and we get our equations by computing the kernel of this matrix.

Remark 2.87. In practice, one can expand V = V1 ⊕ · · · ⊕ Vk into irreducible Hodge substructures and
then work with E := E1 × · · · × Ek where Ei := Z(EndHS(Vi)) for each i. Technically speaking, E may
only embed intoE “diagonally” because someV•s may be isomorphic to each other. However, this does
not really affect anything we do because we may as well work with the image of Z(MT(A))◦ under the
inclusion TE ⊆ TE . Working with TE is more convenient because it can actually be identified with the
diagonal torus of GL(V )E instead of merely a diagonally embedded subtorus.

2.3 The ℓ-Adic Representation
In this subsection, we now define the ℓ-adic representation and give some of its basic properties.

2.3.1 The Cohomology of Abelian Varieties
Fix an abelian variety A over a field K. In this section, we will compute the Weil cohomology ring H•(A),
for many Weil cohomology theories H• defined over K with coefficients in F . As usual, charF = 0. More
precisely, we will show that dimF H1(A) = 2 dimA implies that the cup product defines an isomorphism

∧•H1(A)→ H•(A).

As is usual with our discussions of Weil cohomology, our argument will have a linear algebraic component
and a motivic component; the “motivic” component will be this equality dimF H1(A) = 2 dimA. Our expo-
sition follows [EGM, Corollary 13.32].
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Let’s begin with the linear algebraic component. Our exposition follows [Hat01, Section 3.C]. The key
point is that the group structure onAwill endowH•(A)with extra structure: H•(A) becomes a Hopf algebra.
The following definition is a bit non-standard, but it will suffice for our purposes.

Definition 2.88 (Hopf algebra). Fix a fieldF . A graded Hopf algebraH• overF is a Z≥0-graded commu-
tative algebra overF equipped with gradedF -algebra homomorphisms e : H• → F (called the co-unit)
and m : H• → H• ⊗H• (called the co-multiplication). Further, e and m are required to satisfy the fol-
lowing.

(a) Co-identity: (e⊗ id) ◦m and m ◦ (e⊗ id) both equal to id : H• → H•.

(b) Co-associativity: we have (m⊗ id) ◦m = m ◦ (m⊗ id) as maps H• → H• ⊗H• ⊗H•.

If the structure map F → H0 is an isomorphism, then H• is connected.

It turns out that we can get by with less information. For our purposes, we will really only need the following
fact about the co-multiplication.

Lemma 2.89. Let H• be a connected, graded Hopf algebra over a field F .

(a) The co-unit e : H• → F is the inverse of F → H0 in degree 0 and vanishes in higher degrees.

(b) For each α ∈ Hn with n > 0, we have

m(α)− (α⊗ 1 + 1⊗ α) ∈
⊕
i,j>0

Hi ⊗Hj .

Proof. We show each part in separately.

(a) Because e is a homomorphism of graded F -algebras, e automatically vanishes in positive degrees. As
for degree 0, we already know that the structure map F → H0 is an isomorphism, so e : H0 → F must
be its inverse because it maps the “basis vector” 1 ∈ H0 back to 1 ∈ F .

(b) This follows from the co-identity axiom. To begin, the grading structure on H• ⊗H• implies that we
may write

m(α) =

∞∑
i,j=0

αi ⊗ α′
j ,

where αi, α′
i ∈ Hi for each i. Thus, applying (e⊗ id) to this expression reveals

α =

∞∑
j=0

α0 ⊗ α′
j .

We conclude that α′
j automatically vanishes except at degree n, where α = α0α

′
n. A symmetric ar-

gument (using (id ⊗ e) ◦ m = id) shows that αi vanishes except at degree n, where α = α′
0αn. We

conclude that

m(α)− (α⊗ 1 + 1⊗ α) =
∞∑

i,j=1

αi ⊗ α′
j ,

as required. ■

Here are some basic examples.

Example 2.90. If A• and B• are graded commutative Hopf algebras over F , then A• ⊗B• is as well.
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Proof. Let eA and mA be the co-unit and co-multiplication for A•, respectively; define eB and mB analo-
gously forB•. Now, we can define e : A•⊗B• → F by eA⊗ eB , and we definem : (A•⊗B•)→ (A•⊗B•)⊗2

on pure homogeneous tensors by m(a⊗ b) := (−1)deg(a) deg(b)m(a)⊗m(b), where we have identified

(A• ⊗B•)⊗2 = (A•)⊗2 ⊗ (B•)⊗2

by swapping the middle two entries. Here are our checks.

• Homomorphisms: note e is a homomorphism because it is the tensor product of two homomorphisms
(eA and eB). Similarly, m is also a tensor product of two homomorphisms (mA and mB) but now fol-
lowed up with a swap

B• ⊗A• → A• ⊗B•,

which we can see is also a homomorphism of graded algebras. (The sign is present to account for
graded commutativity!)

• Co-identity: this follows by taking the tensor product of the co-identity axioms for A and B and then
swapping to correct the order of the factors. We won’t write out these manipulations.

• Co-associativity: the same discussion as for co-identity applies. ■

Example 2.91. Let V be a graded vector space over F with charF ̸= 2, supported in positive degree.

(a) If V is supported in even degree, then the symmetric algebra S•V is a graded commutative Hopf
algebra.

(b) If V is supported in odd degree, then the exterior algebra ∧•V is a graded commutative Hopf
algebra.

Proof. In both cases, let the given algebra be A•, and then the co-unit e : A• → F is defined in degree 0
by id : A0 → F and vanishing in higher degrees. Additionally, the co-multiplication is defined by m : A• →
A•⊗A• is defined by extendingm(v) := (1⊗v)+(v⊗1) for any v ∈ V . Notably, given vectors v1, . . . , vn ∈ V ,
we see that we have to define

m(v1 ⊗ · · · ⊗ vn) :=
n∏
i=1

(vi ⊗ 1 + 1⊗ vi).

It remains to run our checks.

• Connected: because V 0 = 0, we have A•V = F in both cases.

• Homomorphisms: in both cases, e can be described as the quotient of the functional on the tensor
algebra T •V which just sends all the generators to 0. This functional T •V → F is a homomorphism of
graded F -algebras, so e is as well.
It remains to check thatm is a well-defined homomorphism. Once again,m begins its life as a graded
linear map T •V → T •V ⊗T •V on the tensor algebra, given by the above formula on pure tensors. We
now go down to A• in cases.

– If V is supported in even degrees, then we consider the quotient map T •V → S•V ⊗ S•V . For
any v, w ∈ V , we can compute that m(v ⊗ w) and m(w ⊗ v) are both equal to 2(vw ⊗ 1 + 1⊗ vw)
by commutativity, so we find that this descends to a well-defined graded linear map S•V →
S•V ⊗S•V . As for multiplicativity, it is now enough to check multiplicativity on generators, where
it follows by definition.

– If V is supported in odd degrees, then we consider the quotient map T •V → ∧•V → ∧•V . Once
again, for any v ∈ V , we can compute thatm(v⊗v) = 2(v⊗v), which vanishes because (v⊗1)(1⊗
v) = −(1⊗v)(v⊗1) forces v⊗v = 0. Thus, we descend to a graded linear map∧•V → ∧•V ⊗∧•V ,
and multiplicativity follows because it is true on generators by definition.
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• Co-identity: it is enough to check the equality of two maps A• → A• on generators. By symmetry, it
will be enough to check that (e⊗ id) ◦m = id. Well, for any v ∈ V , we see that (e⊗ id)(m(v)) is

(e⊗ id)(v ⊗ 1 + 1⊗ v) = v.

• Co-associativity: again, it is enough to check the equality of two mapsA• → (A•)⊗3 on generators. As
such, for any v ∈ V , we compute that (m⊗ id)(m(v)) is

(m⊗ id)(1⊗ v + v ⊗ 1) = 1⊗ 1⊗ v + 1⊗ v ⊗ 1 + v ⊗ 1⊗ 1,

which by a similar argument is the same as (id⊗m)(m(v)). ■

Remark 2.92. Fix graded vector spaces V and W supported in odd positive degree. (There is an analo-
gous remark for positive even degree.) Then the inclusions provide a canonical graded linear map

∧•V ⊗ ∧•W → ∧•(V ⊕W ).

(Explicitly, this map sends v ⊗ 1 7→ v and 1⊗ w 7→ w.) If V and W are finite-dimensional, then one can
see on graded components that this graded linear map restricts to a bijection of bases, so this is an iso-
morphism. In fact, this map can be quickly checked to be multiplicative, and in fact it is an isomorphism
of graded commutative Hopf algebras.

Unsurprisingly, here is our main example.

Example 2.93. Fix a Weil cohomology theory H• over K with coefficients in F . For any abelian variety
A, the graded F -algebra H•(A) has the structure of a connected, graded commutative Hopf algebra
over F .

Proof. It suffices to define the co-unit and the co-multiplication, and then we need to check the required
properties. Here is the data.

• Co-unit: the identity map e : SpecK → A of our abelian variety defines a pullback e∗ : H•(A) →
H•(SpecK). Because H•(SpecK) = F by Example 1.103, we may let e∗ be our co-unit.

• Co-multiplication: the multiplication mapm : A×A→ A defines a pullbackm∗ : H•(A)→ H•(A×A).
This becomes our co-multiplication as soon as we identifyH•(A×A) = H•(A)⊗H•(A) via the Künneth
formula.

And here are our checks.

• Co-identity: by symmetry, it will be enough to check (e∗ ⊗ idH•(A)) ◦m∗ = idH•(A). This comes from
the identity law on the abelian variety, which tells us m ◦ (e× idA) = idA. Indeed, this implies that

(e× idA)
∗ ◦m∗ = id∗A .

We can see that id∗A = idH•(A), so we are done as soon as we note that (e × idA)
∗ = e∗ ⊗ id∗A by

Lemma 1.90.

• Co-associativity: this follows from the associativity law on abelian varieties. Indeed, we know that

m ◦ (m× idA) = m ◦ (idA ×m),

so taking pullbacks gives
(m× idA)

∗ ◦m∗ = (idA ×m)∗ ◦m∗.

We are done after plugging in Lemma 1.90.
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• Connected: this follows because A is proper and geometrically irreducible. Indeed, this implies that
Γ(A,OA) = K, so the fact that H• is a Weil cohomology theory enforces a structure isomorphism
H0(SpecK)→ H0(A). But H0(K) = F by Example 1.103, so we are done. ■

The benefit to having given ourselves extra structure is that it severely cuts down on the possibilities for the
ring structure of H•(A).

Theorem 2.94 (Hopf). LetH• be a connected, graded commutative Hopf algebra overF , where charF =
0. Suppose that dimF H

i < ∞ for all i. Then the F -algebra H• is isomorphic to a tensor product of
exterior and symmetric power algebras.

Proof. We follow [Hat01, Theorem 3.C.4]. We proceed in steps.

1. Let’s set up some generators. Because dimF H
i <∞ for all i, we may find a countable list {x1, x2, . . .}

of generators ofH• as anF -algebra. By decomposing these generators into homogeneous compone-
nents, we may assume that our generators are homogeneous of positive degree. Additionally, the
finite-dimensional constraint implies that we may rearrange our generators so that deg x1 ≤ deg x2 ≤
· · · .

2. Our proof is going to proceed by induction, so let’s set this up. For each n ≥ 0, set H•
n to be the

connected, graded commutative F -algebra generated by the elements {x1, . . . , xn}. For example, for
each n, H•

n has all the needed generators in degree less than deg xn, so

Hi
n ⊆ H•

n

for each i < deg xn. Quckly, we claim thatH•
n ⊆ H• is a Hopf subalgebra. For example, one can simply

restrict the co-identity e to H•
n, and one can use Lemma 2.89 to see that m also restricts to H•

n: by
induction, it is enough to check m(xn) ∈ H•

n, which is true because m(xn) only uses the terms xn and
ones of strictly smaller degree! The co-identity and co-associativity axioms now hold by restriction.
We will use induction to show that H•

n is a tensor product of exterior and symmetric power algebras
for each n ≥ 0. Because H• =

⋃
nH

•
n, the conclusion will then follow for H• because tensor products

commute with colimits. As for our induction, we quickly note that H•
0 = F , so there is noting to show

for our base case n = 0.

3. We explain the main claim in the inductive step. Suppose H•
n is a product of exterior and symmetric

power algebras, and we want to show the same forH•
n+1. If xn+1 ∈ H•

n, thenH•
n+1 = H•

n, and there is
nothing to do. Otherwise, we let V be the one-dimensional vector space spanned by xn+1. Then there
is a canonical map A•V → H•

n+1 of F -algebras, where

A•V :=

{
∧•V if deg xn+1 is even,
S•V if deg xn+1 is odd.

Indeed, there is certainly a canonical map T •V → H•
n+1 sending xn+1 7→ xn+1, but T •V = S•V , so

we are done in the even-degree case. In the odd-degree case, it remains to note that x2n+1 = 0 if
deg xn+1 is odd, so our map descends to ∧•V . Now, becauseH•

n+1 is generated byH•
n and xn+1, there

is a canonical surjection
p : H•

n ⊗A•V → H•
n+1.

The main claim of this proof is that this map is injective, hence an isomorphism, which completes the
inductive step and hence the proof.

4. We define a linear map which will help us “take derivatives.” Let I ⊆ H•
n+1 be the ideal generated

by H•
n and x2n+1, and we will be interested in the map f : H•

n+1 → H•
n+1 ⊗ H•

n+1/I defined by the
composite

H•
n+1

m→ H•
n+1 ⊗H•

n+1 ↠ H•
n+1 ⊗H•

n+1/I.
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For example, any α ∈ H•
n vanishes in the quotient, so it goes to α ⊗ 1 (where we have quietly used

Lemma 2.89). Also, xn+1 goes toxn+1⊗1+1⊗xn+1 because the remaining terms given in Lemma 2.89
all live in I. We conclude that a generic element

∑∞
i=0 αix

i
n+1 of H•

n+1 is mapped to

∞∑
i=0

(αi ⊗ 1)(xn+1 ⊗ 1 + 1⊗ xn+1)
i =

∞∑
i=0

αix
i
n+1 ⊗ 1 +

∞∑
i=1

iαix
i−1
n+1 ⊗ xi.

5. We show that p is injective deg xn+1 is odd. In this case, a generic element of H•
n ⊗ ∧•V looks like

α0 ⊗ 1 + α1 ⊗ xn+1 for some α0, α1 ∈ H•
n. If this element lived in ker p, then α0 + α1xn+1 = 0, and

we will show that α0 = α1 = 0. Indeed, passing the relation α0 + α1xn+1 = 0 through f , we find that
α1 = 0, so α0 = 0 follows.

6. We show that p is surjective when deg xn+1 is even. In this case, a generic element ofH•
n ⊗ S•V looks

like β :=
∑d
i=0 αi ⊗ xin+1. We will show that β ∈ ker p implies β = 0 by induction on d. Indeed, given

β ∈ ker p, we can pass the equality
∑d
i=0 αix

i
n+1 = 0 through f to see

d∑
i=1

iαix
i−1
n+1 = 0.

This is some element with strictly smaller xn+1-degree, so we see that iαi = 0 for i ∈ {1, . . . , d}. Thus,
β = α0, but now α0 = p(β) = 0 as well. ■

Remark 2.95. This proof does not use the co-associativity axiom anywhere.

Corollary 2.96. Let H• be a connected, graded commutative Hopf algebra over F , where charF = 0.
If dimF H

• < ∞, then H• is isomorphic (as an F -algebra) to ∧•V for some graded vector space V
supported in odd degrees.

Proof. Because dimF H
• < ∞, we see that Theorem 2.94 forces H• to be a finite tensor product of exte-

rior and symmetric power algebras, but symmetric power algebras are infinite-dimensional and hence also
disallowed. The result now follows from Remark 2.92. ■

And here is our application of this linear algebraic input.

Proposition 2.97. Fix a Weil cohomology theory H• over a fieldK with coefficients inF . For any abelian
variety A over K, if dimF H1(A) = 2 dimA, then the cup product defines an isomorphism

∧•H1(A)→ H•(A)

of graded commutative F -algebras.

Proof. We proceed in steps. Set g := dimA for brevity.

1. By Example 2.93, we find that H•(A) is a connected, graded commutative Hopf algebra over F , and
Poincaré duality (and Lemma 1.117) tell us that dimF H•(A) <∞, so Corollary 2.96 kicks in to provide
with an isomorphism

H•(A) ∼= ∧•V1 ⊗ ∧•V3 ⊗ · · ·

of F -algebras, where Vi is some finite-dimensional graded vector space over F supported in degree
i. Because H•(A) is only supported in degrees i ∈ [0, 2g], we see immediately that Vi = 0 for i > 2g.
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2. For each i, set di := dimF Vi. We provide a relation among the dis. Indeed, dimF H0(A) = 1 because
A is geometrically irreducible (so that Γ(A,OA) = K, where we are quietly using Example 1.103), so
dimF H2g(A) = 1 as well by Poincaré duality. The only way to get a one-dimesional vector space out
of our tensor product of exterior powers is to have

H2g(A) ∼= ∧d1V1 ∧ · · · ∧d2g−1 V2g−1,

so d1 + · · ·+ d2g−1 = 2g follows.

3. We complete the proof. Because we have assumed d1 = 2g, we see that di = 0 for all other i. Now,
checking degree 1 reveals our isomorphism must send H1(A) ∼= V 1, so inverting this produces our
required isomorphism ∧•H1(A)→ H•(A) of F -algebras. ■

Theorem 2.98. Fix a Weil cohomology theory H• over a field K with coefficients in F , among those
defined in section 1.3.1. For any abelian variety A over K, the cup product defines an isomorphism

∧•H1(A)→ H•(A)

of graded commutative F -algebras.

Proof. By Proposition 2.97, we must show that dimF H1(A) = 2g, where g := dimA. We proceed in cases.

• Suppose thatA is defined over C, and we show dimQ H1
B(A,Q) = 2g; note this gives dimR H1

dR(A,R) =
2g as well by the comparison isomorphism in Theorem 1.75. We proceed as in [Mil20b, Proposi-
tion 2.6]. Write A = Cg/Λ for a lattice Λ. Fixing some index p, we will show that the cup product
defines an isomorphism

dimQ H1
B(A,Z) = 2g.

Well, we note that A is homeomorphic to
(
S1
)2g, so the Künneth formula allows us to reduce the

question to S1, where the result is true by a direct computation.

• It remains to handle ℓ-adic cohomology. In this case, we must show that dimQℓ
H1

ét(A,Qℓ) = 2g. In
the following section, we will show that H1

ét(A,Qℓ) is dual to the ℓ-adic Tate module TℓA, which can
be directly computed to be 2g-dimensional. ■

Remark 2.99. One does have dimF H1(A) = 2 dimA for any Weil cohomology theory H•, but this re-
quires more significant motivic input (and possibly more linear algebraic input) than we would like to
introduce here. We refer to [EGM, Corollary 13.32] for a proof.

Because we are able to prove a theorem for many cohomology theories, it should not be surprising that we
can show a motivic variant as well.

Definition 2.100. Let C be an abelian symmetric monoidal category. For any object X ∈ C and some
n ≥ 0, we consider the natural action of Sn on X⊗n. Then we define SymnX as the eigenspace of the
trivial character Sn → {±1}. Further, we define Sym•X :=

⊕
n≥0 ∧nX provided that this sum exists.

Remark 2.101. Equivalently, if C is Q-linear, we may define ∧nX as the kernel of the idempotent

1

n!

∑
σ∈Sn

σ ∈ Q[Sn]

acting on X. This is a definition which also works for symmetric monoidal, Karoubian categories.
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Example 2.102. If C = RepF (G) for some affine group G over F , then Symn V and Sym• V are exactly
the expected objects for any V ∈ RepF (G).

Example 2.103. One must be careful with MotQ(K) because the symmetric monoidal structure is set
up to be graded commutative. For any X ∈ P(K), we in fact claim that

H•
σ

(
Sym• h1(X)

)
= ∧•H1

σ(X),

where the right-hand exterior product is the usual exterior power of vector spaces. The point is that the
exterior power of vector spaces will actually be the symmetric power for H1

σ in the category of graded
vector spaces because the grading adds a sign for every transposition. The result follows by properties
of the fiber functor H•

σ (see Theorem 1.207).

Corollary 2.104. Fix an abelian variety A over a field K algebraic over Q. Then the cup product defines
an isomorphism

Sym• h1(A)→ h(A)

of motives in MotQ(K).

Proof. Quickly, we refer to Example 2.103 to explain why we are taking the symmetric power instead of the
exterior power in the statement. The map∧•H1(A)→ H•(A) is defined for any Weil cohomology theory H•,
so upon noting the compatibility of the cup product, Lemma 1.194 explains that there is an absolute Hodge
correspondence giving rise to the map Sym• h1(A) → h(A) which specializes to the cup-product map for
any of our cohomology theories.

To show that this map is an isomorphism on motives, it is enough to explain how to construct the inverse
absolute Hodge correspondence. Well, Theorem 2.98 does promise that the cup-product map does have a
(unique) inverse on each cohomology theory, which will be compatible among our cohomology theories by
the ambient uniqueness, so Lemma 1.194 promises that we have an inverse on the level of absolute Hodge
classes. ■

Remark 2.105. As in Remark 2.99, we note that one can actually exhibit this isomorphism on the level
of the Chow motives ChMotQ(K). Once again, this requires more motivic input than we would like to
introduce, so we merely refer to [EGM, Theorem 13.47]. To give a taste for why one might expect this to
be difficult, we note that the statement requires one to define h1(A), so one has to explain why Künneth
projectors exist for abelian varieties.

Remark 2.106. Corollary 2.104 explains that the tensor subcategory ⟨h(A)⟩⊗ ⊆ MotQ(K) may in fact
merely be generated by h1(A) and Q(1).

2.3.2 The Construction
A priori, an abelian variety A gives rise to many ℓ-adic Galois representations via each of its cohomology
groups H•

ét(AKsep ,Qℓ). However, by Theorem 2.98, we see that one can understand all cohomology groups
of A by merely understanding H1

ét(AKsep ,Zℓ). Analogous to the complex analytic case, we will be able to
work with the dual “homology group” more concretely.

Let’s spend some time giving a more elementary description of H1
ét(AKsep ,Zℓ)∨. We refer to [EGM,

Corollary 10.38] and the surrounding discussion for more details. We will do this by passing to the fun-
damental group. In particular, note that there is a Galois-invariant isomorphism

H1(AKsep ,Zℓ) ∼= Hom(π1(AKsep , a),Zℓ) ,
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where a ∈ A(Ksep) is some basepoint. We will go ahead and choose a = 0.

Remark 2.107. Let’s take a moment to explain this isomorphism. By taking limits, it is enough to show
this isomorphism with Zℓ replaced by µn where charK ∤ n. Then one knows that H1(AKsep , µn) is in
bijection with Galois coverings with Galois group µn by using the short exact sequence

1→ µn → Gm
n→ Gm → 1.

This completes the proof upon unravelling the definition of π1 on the right-hand side.

We now use the fact that A is an abelian variety to compute π1(AKsep , 0): one can show that any étale cov-
ering of A is still an abelian variety and hence is an isogeny onto A (for suitable choice of group law). Thus,
Lemma 2.13 promises that the multiplication-by-nmaps [n]A : A→ A provide a cofinal sequence of Galois
étale coverings ofA (at least when charK ∤ n), allowing us to compute that the ℓ-part of π1(AKsep , 0) equals

lim←−A [ℓ•] (Ksep).

In conclusion, we see that H1(AKsep ,Zℓ) is naturally isomorphic to(
lim←−A [ℓ•] (Ksep)

)∨
as Galois representations. We are now allowed to define the Tate module.

Definition 2.108 (Tate module). Fix an abelian variety A over a field K, and suppose ℓ is a prime such
that charK ∤ ℓ. Then we define the ℓ-adic Tate module as

TℓA := lim←−A [ℓ•] (Ksep),

and we define the rational ℓ-adic Tate module as VℓA := TℓA⊗Z Q.

Remark 2.109. Intuitively, TℓA should be thought of as an ℓ-adic stand-in for H1(A).

The discussion above suggests that TℓA should be a free Zℓ-module of rank 2. Let’s check this directly. By
taking limits, it is enough to show the following.

Lemma 2.110. Fix an abelian varietyA over a fieldK, and suppose ℓ is a prime such that charK ∤ ℓ. For
each ν ≥ 0, there is a group isomorphism

A [ℓν ] (Ksep) ∼= Z/ℓ2ν dimAZ.

Proof. The two groups have the same size by Example 2.17, so the result follows for ν ∈ {0, 1} automati-
cally. For ν ≥ 2, we induct using the short exact sequence

0→ A[ℓ](Ksep)→ A
[
ℓν+1

]
(Ksep)

ℓ→ A [ℓν ] (Ksep)→ 0

and some cardinality arguments. For example, one can finish by applying the classification of finite abelian
groups. ■

One benefit of a more concrete object is that it is easier to work with directly. For example, we can now find
a perfect pairing on H1

ét(AKsep ,Zℓ).

Lemma 2.111. Fix an abelian variety A over a field K, and suppose ℓ is a prime such that charK ∤ ℓ.
Choose a polarization φ : A→ A∨. Then the Weil pairing induces a Galois-invariant perfect symplectic
pairing

eφ : H
1
ét(AKsep ,Zℓ)⊗Qℓ

H1
ét(AKsep ,Zℓ)→ Zℓ(−1).
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Proof. By taking duals, it is enough to induce a Galois-invariant perfect symplectic pairing

eφ : TℓA⊗Qℓ
TℓA→ Zℓ(1).

This follows by taking a limit of the Weil pairing given in Corollary 2.39. Recall that Zℓ(1) is the Galois rep-
resentation lim←−µℓ• . ■

One can also see the Galois action more explicitly: being careful about the Galois action on cohomology and
the Tate module, we see that the induced Galois representation

ρℓ : Gal(Ksep/K)→ GL(TℓA)

is simply given by the Galois action on the points in the limit A [ℓ•] (Ksep).

2.3.3 The ℓ-Adic Monodromy Group
Now that we have a representation, we may as well define a monodromy group.

Definition 2.112 (ℓ-adic monodromy group). Fix an abelian A over a field K, and suppose ℓ is a prime
such that charK ∤ ℓ. Then the ℓ-adic monodromy group Gℓ(A) is the smallest algebraic Qℓ-group con-
taining the image of the Galois representation

Gal(Ksep/K)→ GL
(
H1

ét(AKsep ,Qℓ)
)
.

Remark 2.113. By taking duals, we see that one produces an isomorphic Galois representation by work-
ing with TℓA instead. Note this dual is not very expensive: by using the Weil pairing of Lemma 2.111,
we can remove the dual in exchange for a twist, writing

H1
ét(AKsep ,Zℓ) ∼= TℓA(−1).

Remark 2.114. UnlikeMT(A) andHg(A), we do not expectGℓ(A) to be connected in general. However,
being an algebraic Qℓ-group, it will only have finitely many connected components. Thus, we see that
the pre-image ofGℓ(A)◦ inGal(Ksep/K) is an open subgroup of finite index, so there is a unique minimal
field extension Kconn

A /K such that Gℓ(AKconn
A

) = Gℓ(A)
◦. Thus, our group becomes connected, only at

the cost of a field extension.

Remark 2.115. For a finite extensionK ′ ofK, Remark 2.114 explains that we may easily haveGℓ(A) ̸=
Gℓ(AK′), but we now remark that Gℓ(A)◦ = Gℓ(AK′)◦. Well,

ρℓ(Gal(Ksep/K ′)) ⊆ ρℓ(Gal(Ksep/K))

is some finite-index subgroup, soGℓ(AK′) ⊆ Gℓ(A) is a finite-index subgroup (upon taking the closure).
It follows these groups must have the same connected component; for example, one can pass to C and
then see that a closed subgroup of a Lie group with smaller dimension necessarily has infinite index due
to being able to continuously translate the smaller subgroup.

The interesting geometric objects arising from Hodge theory were the Hodge classes, which Remark 1.13
explains were exactly the vectors fixed by the group action. Analagously, we pick up the following defini-
tion.
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Definition 2.116 (Tate class). Fix an abelianA over a fieldK, and suppose ℓ is a prime such that charK ∤
ℓ. Then a Tate class is a vector of some tensor construction

k⊕
i=1

H1
ét(AKsep ,Qℓ)⊗ni ⊗H1

ét(AKsep ,Qℓ)∨⊗mi(pi),

where the n•s, m•s, and p•s are some nonnegative integers, fixed by the action of Gal(Ksep/K)

Remark 2.117. We remark as in Proposition 1.33 that a subspaceV as above is fixed by the Galois action
if and only if it is fixed by the indcued action byGℓ(A). Indeed, the subset ofGL

(
H1

ét(AKsep ,Qℓ)
)

fixingV
is some algebraic Qℓ-subgroup, so if it contains the image of Gal (Ksep/K), then it containsGℓ(A). We
also take a moment to note that Proposition 1.35 explains that one can now cut outGℓ(A) by requiring
it to hold all the Tate classes invariant, as discussed in Corollary 1.36.

Remark 2.118. The same argument as in Example 1.140 explains thatGℓ(A) is the algebraic group cor-
responding to the tensor subcategory〈

H1
ét(AK ,Qℓ)

〉⊗ ⊆ RepQℓ
(Gal(K/K)).

Notably, the application of Proposition 1.33 is replaced by the discussion in Remark 2.117.

Analogous to Conjecture 1.15, one has a Tate class, which we will only state for abelian varieties.

Conjecture 2.119 (Tate). Fix an abelian varietyA over a number fieldK, and fix a prime number ℓ. Then
any Tate class can be written as a Qℓ-linear combination of classes arising from algebraic subvarieties
of powers of A.

Remark 2.120. Of course, there are Tate classes and there is a Tate conjecture for more general vari-
eties.

We conclude this section with a few bounds on the ℓ-adic monodromy group, analogous to the discussion
for Mumford–Tate groups in section 1.2.3. Let’s begin with endomorphisms.

Lemma 2.121. Fix an abelian varietyA over a fieldK, and suppose ℓ is a prime such that charK ∤ ℓ. Set
D := EndK(A)⊗Z Q. Then

Gℓ(A) ⊆
{
g ∈ GL

(
H1

ét(AKsep ,Qℓ)
)
: g ◦ d = d ◦ g for all d ∈ D

}
.

Proof. We proceed as in Lemma 1.45. The right-hand group is an algebraic Qℓ-group, so it suffices to check
that it contains the image of Gal(Ksep/K). Well, for any g ∈ Gal(Ksep/K), we see that

g ◦ d = d ◦ g

is an equality which holds on the level of endomorphisms ofAbecause d is defined overK (which g fixes). ■

Lemma 2.122. Fix an abelian variety A over a field K, and suppose ℓ is a prime such that charK ∤ ℓ.
Choose a polarization φ : A→ A∨. Then there is a perfect symplectic pairing eφ such that

Gℓ(A) ⊆
{
g ∈ GL

(
H1

ét(AKsep ,Qℓ)
)
: eφ(gv ⊗ gw) = λ(g)eφ(v ⊗ w) for fixed λ(g) ∈ Qℓ

}
.
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Proof. We proceed as in Lemma 1.47. The right-hand group is an algebraic Qℓ-group, so it suffices to check
that it contains the image of Gal(Ksep/K). Well, for any g ∈ Gal(Ksep/K), we see that

eφ(gv ⊗ gw) = geφ(v ⊗ w)

by the Galois-invariance of Lemma 2.111. Now, we note that Gal(Ksep/K) acts on Qℓ(−1) through the
cyclotomic character, so the right-hand side equals a scalar λ(g) times eφ(v ⊗ w), so we are done. ■

Remark 2.123. There are of course alternate proofs of Lemmas 2.121 and 2.122 by finding Tate classes
and then appealing to Remark 2.117. One uses the same classes constructed in the alternate proofs of
Lemmas 1.45 and 1.47.

Lastly, we would like to recover the bound of Corollary 2.42 on endomorphisms, sharpening Lemma 2.121.
However, the proof is not so easy: the proof of Corollary 2.42 had to translate endomorphisms of the Hodge
structure back to endomorphisms of the abelian variety via Theorem 2.40. Recovering the equivalence of
Theorem 2.40 is rather difficult: this result is due to Faltings [Fal86, Theorem 3], in his proof of Mordell’s
conjecture.

Theorem 2.124 (Faltings). Fix an abelian varietyAover a number fieldK, and suppose ℓ is a prime. Then
the induced map

EndK(A)⊗Z Qℓ → EndGal(K/K)

(
H1

ét(AK ,Qℓ)
)

is an isomorphism.

We will definitely not attempt to summarize a proof here, but we will remark that it is not even totally obvious
that this map is injective! Speaking from experience, this makes for a reasonable topic for a final term paper
in a first course in algebraic geometry.

Remark 2.125. Via the isomorphism

EndQℓ

(
H1

ét(AK ,Qℓ)
) ∼= H1

ét(AK ,Qℓ)⊗H1
ét(AK ,Qℓ)

∨,

we see that Theorem 2.124 can be viewed as asserting that all the Tate classes in the above space arise
from endomorphisms of A. This verifies Conjecture 2.119.

Remark 2.126. We have snuck in the hypothesis that K is a number field into the statement of Theo-
rem 2.124. It is also true for finite fields, where it is due to Tate [Tat66]. However, it is not expected to
be true in general!

We are now able to provide a satisfying analogue to Lemma 1.54.

Corollary 2.127. Fix an abelian variety A over a number field K, and suppose ℓ is a prime. Then the
natural map

EndK(A)⊗Z Qℓ → EndGℓ(A)

(
H1

ét(AK ,Qℓ)
)

is an isomorphism.

Proof. Remark 2.125 explains that the endomorphisms of A are exactly the Tate classes, so the result fol-
lows from the discussion in Remark 2.117. ■

Remark 2.128. The above corollary allows us to prove the following analogue of Proposition 2.53 (by
the same proof!): A has CM defined over a number field K if and only if Gℓ(A) is a torus.

While we’re here, we remark on another property of Gℓ(A) due to Faltings.
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Theorem 2.129 (Faltings). Fix an abelian varietyAover a number fieldK, and suppose ℓ is a prime. Then
Gℓ(A) is reductive.

Proof. By [Mil17, Corollary 19.18], it is enough to find a faithful semisimple representation of Gℓ(A). As in
Lemma 1.44, we see that the inclusion

Gℓ(A) ⊆ GL
(
H1

ét(AK ,Qℓ)
)

is semisimple by [Fal86, Theorem 3], so we are done. ■

Remark 2.130. Over finite fields, Tate [Tat66] has proven that the Galois representation H1
ét(AFq

,Qℓ)
is semisimple. Because the Galois group is (topologically) generated by the Frobenius, this amounts to
checking that the endomorphism Frobq has semisimple action.

To finish up our discussion of computational tools for Gℓ(A), we repeat the results Lemmas 1.56 and 1.59
for our new context. Their proofs are exactly the same, replacing U (or S) with Gal(K/K) and then making
the same minimality arguments for our monodromy groups.

Lemma 2.131. Fix abelian varieties A1, . . . , Ak over a field K.

(a) The subgroup
Gℓ(A1 × · · · ×Ak) ⊆ GL(H1

ét((A1 × · · · ×Ak)Ksep ,Qℓ))

is contained in Gℓ(A1)× · · · ×Gℓ(Ak).

(b) For each i, the projection map pri : Gℓ(A1 × · · · ×Ak)→ Gℓ(Ai) is surjective.

Lemma 2.132. Fix abelian varieties A1, . . . , Ak over a field K, and let m1, . . . ,mk ≥ 1 be positive in-
tegers. Then the diagonal embeddings ∆i : GL

(
H1

ét(Ai,Ksep ,Qℓ)
)
→ GL

(
H1

ét(A
mi

i,Ksep ,Qℓ)
)

induce an
isomorphism

Gℓ(A1 × · · · ×Ak)→ Gℓ (A
m1
1 × · · · ×Amk

k ) .

2.4 Computational Tools
In this section, we give some tools to compute the ℓ-adic representation and the ℓ-adic monodromy group
in particular.

2.4.1 The Fundamental Theorem of Complex Multiplication
Before continuing, we give essentially the only class of examples in which one is able to imagine computing
the ℓ-adic representation. For this subsection, we will let A be an abelian variety of dimension g defined
over a number field K with complex multiplication by an orderO of a CM number field E. We let Φ denote
the CM type, which we now think of as a subset of ΣE , and we let (E∗,Φ∗) be a reflex CM type; we may as
well descend (E∗,Φ∗) to be as small as possible. Our exposition closely follows [Con04, Section 3]. It is
slightly beyond the scope of our current discussion to give a precise statement of the Fundamental theorem
of complex multiplication; instead, we will work with the following consequence.

Ultimately, we are interested in computing the Galois action of Gal(Q/K) on the Tate module of A. In
order to avoid fixing a prime ℓ, we pick up the following notation.
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Notation 2.133. Fix an abelian variety A defined over a field L of characteristic 0. Then we define the
adelic Tate modules T̂f (A) :=

∏
ℓ Tℓ(A) and V̂f (A) := Tf (A)⊗Z Q.

Remark 2.134. Note that T̂fA is a free Ẑ-module of rank 2g, and V̂fA is a free AQ,f-module of rank 2g.

Thus, we are interested in the Galois representation

ρA : Gal(Q/K)→ GL(V̂fA).

Suitably interpreted, this Galois representation will turn out to be the reflex norm, up to a root of unity.
Because A has complex multiplication by E defined over K, the image of ρA commutes with the action

of K on V̂fA, so ρA actually factors through GLE⊗ZẐ(VfA). By looking factor-by-factor (on each ℓ), we see
that this target is contained inE⊗Z Ẑ becauseK is its own commutator. Thus, ρA factors as a Galois repre-
sentation

ρA : Gal(Q/K)→ (E ⊗Z Ẑ)×,

where the embeddingE ⊗Z Ẑ ↪→ GL(TfA) is given by the action ofE onA. We take a moment to note that
this target is (E⊗Z Ẑ)× = (E⊗Q AQ,f )

× = A×
E,f . Anyway, because the target is now abelian, we see that ρA

factors through
ρA : Gal(Kab/K)→ A×

E,f .

Artin reciprocity provides a canonical map ArtK : A×
K → Gal(Kab/K), so we may as well work with the

composite ρA
A×
K → Gal(Kab/K)

ρA→ A×
E,f .

We take a moment to remark that we may as well work with a quotint of A×
K .

Remark 2.135. By [NSW08, Corollary 8.2.2], we note that ArtK is surjective with kernel containingK×

and A×
K,∞ ⊆ A×

K . To see A×
K,∞ is in the kernel, we need to know that K has no real places, which holds

because K contains the CM field E∗ because E∗ is the field of definition for the endomorphisms of A.

For example, this implies that ρA factors through A×
K ↠ A×

K,f .
It is this induced map ρA which will essentially turn out to be the reflex norm. Here is our statement of

the Fundamental theorem of complex multiplication, which we will not prove.

Theorem 2.136 (Fundamental). Fix an abelian variety A with complex multiplication by (E,Φ) defined
over a number field K. Then there is a continuous homomorphism λ : A×

K,f → E× such that any sf ∈
A×
K,f has

ρA(ArtK sf ) = λ(sf )NΦ(NK/E∗(sf ))
−1.

Here, λ is continuous where E× has been given the discrete topology.

Remark 2.137. Technically, the definition of NK/E∗ depends on a choice of reflex E∗ inside K, which
depends on a choice of embeddingK ↪→ Q. However, it turns out that the composite NΦ ◦NK/E∗ does
not depend on the choice of embeddingL ↪→ Q. We will not need this, so we will not show it; we remark
that this is essentially shown in Lemma 2.84.

Remark 2.138. Theorem 2.136 is frequently cited as merely a corollary of the Fundamental theorem,
and the Fundamental theorem is indeed a more precise statement about the Galois action on A. How-
ever, the precise statement of the usual Fundamental theorem is rather technical, and we will not need
it, so we will be happy merely using Theorem 2.136 in this article.

Let’s give a few properties of this mysterious character λ for future use.
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Proposition 2.139. Fix an abelian varietyAwith complex multiplication by (E,Φ)defined over a number
field K. Define the continuous character λ : A×

K,f → E× as in Theorem 2.136.

(a) For sf ∈ A×
K,f , the fractional ideal generated by NΦ(NK/E∗(sf )) is λ(sf )OE .

(b) Choose a prime P of K. Then A has good reduction at P if and only if λ is trivial onO×
P ⊆ A×

K,f .

(c) Choose a prime P of K with uniformizer ϖP ∈ O×
P. Suppose A has good reduction at P. Then

λ(ϖP) ∈ OK , and it agrees with the qP-Frobenius endomorphism on the reductionAκ(P) (where
qP := #κ(P)).

Proof. We show these parts one at a time. For (b) and (c), it will help to fix a rational prime ℓ not lying under
P.

(a) For each finite prime P of K, we must show NΦ(NK/E∗(sf )) and λ(sf ) have the same P-valuations.
Equivalently, we would like to check that

u(sf ) := λ(sf )NΦ(NK/E∗(sf ))
−1 ?
∈
∏
P

O×
E,P.

Well, by Theorem 2.136, we see that u(sf ) acts on the Tate module V̂fA as ρA(ArtL sf ), which is no-
tably an automorphism fixing the integral sublattice T̂fA ⊆ V̂fA. We conclude that u(sf ) is a unit at
all finite places.

(b) We use the Néron–Ogg–Shafaverich criterion [ST68], which tells us that A has good reduction at P
if and only if ρA : Gal(Q/K)→ VℓA is trivial on the inertia subgroup IP. The Artin map ArtK : A×

K,f →
Gal(Q/K) is surjective, and the image of O×

P ⊆ A×
K,f is precisely IP, so A has good reduction at P if

and only if the composite

O×
P ⊆ A×

K,f ↠ Gal(Kab/K)→ A×
E,f ↠ A×

E,ℓ

is trivial. Well, by Theorem 2.136, we see that this composite is λ multiplied by the reflex norm. The
image of the reflex norm onO×

P ⊆ A×
K,f will land away from A×

K,ℓ ⊆ A×
E,f , so it does not affect whether

this composite is trivial. Thus, we conclude that the composite is trivial if and only if λ|O×
P

is trivial.

(c) Quickly, observe that λ(ϖP) ∈ O×
E follows from agreeing with the Frobenius on the reduction. In-

deed, agreeing with the Frobenius on the reduction implies that λ(ϖP) is the root of the characteristic
polynomial of the Frobenius, which is monic with coefficients in Z.

It remains to check agreement with the Frobenius on the reduction. The computation of the compos-
ite used in the proof of (b) explains that the Galois action of FrobP = ArtK(ϖP) on VℓA is given by
λ(ϖP)ℓ ∈ A×

E,ℓ. Thus, the action of λ(ϖP) on the Tate module TℓAκ(P) of the reduction also agrees
with the action of the Frobenius, which lifts to an equality of actions on the actual reduction Aκ(P)

because passing to the Tate module is faithful (see Remark 2.126). ■

Remark 2.140. For (c), one may want to say that λ(ϖP) is a characteristic-0 lifting of the Frobenius
endomorphism on the reduction. However, if we do not haveOE ⊆ EndK(A), then we cannot actually
guarantee this lifting.

Here is an example application of Theorem 2.136.
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Proposition 2.141. Fix an abelian variety A over a number field K with complex multiplication by a CM
algebra E = E1 × · · · × Ek. Let Φ: ΣE → Z≥0 be the induced signature, which we decompose as
Φ = Φ1 ⊔ · · · ⊔Φk where (E•,Φ•) is a CM signature for allE•. ExtendK to be a CM field equipped with
CM signatures Φ∗

1, . . . ,Φ
∗
k such that (Ei,Φi) and (K,Φ∗

i ) are reflex for all i. Then Gℓ(A)◦ ⊆ TE is the
Zariski closure of the image of

(NΦ∗
1
, . . . ,NΦ∗

k
) : TK → TE .

Proof. We follow [Yu15, Lemma 4.1]. We quickly explain why extendingK does not actually affect the con-
clusion. On one hand, Gℓ(A)◦ is independent of extending K by Remark 2.115; on the other hand, passing
to an extension cannot change the closure of the image of the reflex norms by Lemma 2.84 and the fact that
norms of field extensions have Zariski dense image.

Technically, the rest of this subsection has dealt with simple abelian varieties, so we must do some work
to handle the given CM algebra E. We may decompose A = A1 × · · · × Ak, where Ai is simple and has
complex multiplication by (Ei,Φi). Define λi for Ai as in Theorem 2.136. Then we see ρA outputs to TE =
TE1
× · · · × TEi

, where the ith component is just given by ρAi
.

Recall from Remark 2.135 that the Artin map ArtK : A×
K,f/K

× → Gal(Kab/K) is surjectve, so it is
enough to compute the image ofρA,ℓ◦ArtK , where the ℓ signifies that we are working with the ℓ-component.
In particular, for sf ∈ A×

K,f , Theorem 2.136 implies that

(ρAi,ℓ ◦ArtK)(sf ) = λi(sf )(NΦ∗
i
)−1(sℓ),

so
(ρA,ℓ ◦ArtK)(sf ) =

(
λ1(sf )(NΦ∗

1
)−1(sℓ), . . . , λk(sf )(NΦ∗

k
)−1(sℓ)

)
.

We may as well compress the right-hand side into λ(sf )NΦ∗(sf )
−1
ℓ , where λ and NΦ∗ output to k-tuples in

TE . The above equality explains where the image of the reflex norm is going to come from. We now have
two inclusions; let T ⊆ TE denote the Zariski closure of NΦ∗ .

• We claim thatGℓ(A)◦ ⊆ T. Note kerλ ⊆ A×
K,f is open by continuity of theλis, so strong approximation

implies thatK×\A×
K,f/ kerλ is finite.3 Thus, imλ/T is finite, and we conclude thatGℓ(A) is contained

in T multiplied by some finite group imλ/T. Finite groups are disconnected, so Gℓ(A)◦ ⊆ T follows.

• We claim that T ⊆ Gℓ(A). Again, kerλ ⊆ A×
K,f is open, so

ρA,ℓ(ArtK(kerλ)) = NΦ∗(kerλℓ).

Now, kerλℓ is Zariski dense in Q×
ℓ , so the right-hand side is Zariski dense in T. The inclusion follows.

■

2.4.2 The Mumford–Tate Conjecture
Over the next few subsections, we will explain some tools used to compute Gℓ(A). In this subsection, we
will discuss Gℓ(A)◦. Suppose that A is defined a number field K.

A motivic perspective would have us hope that all the monodromy groups attached to A are essentially
the same. However, as explained in Remark 2.114, we only expect Gℓ(A) to be connected after an exten-
sion K. Thus, for example, one can only hope that MT(A) knows about Gℓ(A)◦; this now makes sense be-
causeGℓ(A)◦ is independent of the base fieldK by Remark 2.115. We may now state the following conjec-
ture.

3 In this case, this reduces to finiteness of the class number hK : being open means kerλ is commensurable with Ô×
K , and

K×\A×
K,f/Ô

×
K is isomorphic to the class group as a pointed set.
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Conjecture 2.142 (Mumford–Tate). Fix an abelian varietyA over a number fieldK. For all primes ℓ, we
have

MT(A)Qℓ
= Gℓ(A)

◦

as subgroups of GL
(
H1

ét(A,Qℓ)
)

. Here, MT(A) is embedded into this group by the Betti-to-étale com-
parison isomorphism.

Our work in chapter 1 provides many tools for computing MT(A), so Conjecture 2.142 would allow us to
translate this knowledge into a computation of Gℓ(A)◦.

Even though Conjecture 2.142 is not fully proven, there is a lot known. Let’s review a little.

Example 2.143. IfA is an absolutely simple abelian variety with complex multiplication by a CM algebra
E, then bothGℓ(A)◦ and MT(A) equal the Zariski closure of the image of a suitably defined reflex norm
to TF . For the Mumford–Tate group, this is Proposition 2.86; for the ℓ-adic monodromy group, this is
Proposition 2.141.

Remark 2.144. The Mumford–Tate conjecture for abelian varieties with complex multiplication is quite
old: it is originally due to Pohlmann [Poh68, Theorem 4], but Ribet in [Rib04] has pointed out that the
result is a corollary of results due to Shimura and Tanimaya [ST61], and [Yu15] has recently explicated
this argument.

Let’s move on to some more general results. For example, both groups are reductive by Lemma 1.44 and
Theorem 2.129. Additionally, Theorem 2.124 provides a suitable analogue of Theorem 2.40, telling us that
both groups MT(A) and Gℓ(A) cut out endomorphisms in End(A).

As a philosophical check, one can show that Gℓ(A)◦ “contains” the Hodge structure morphism; the fol-
lowing result is due to Sen [Sen73, Theorem 1].

Theorem 2.145 (Sen). Fix an abelian variety A over a number field K. Define the operator Φ as acting
by mutltiplication-by-i on each eigenspace

H1
ét(AK ,Qℓ)Cℓ

(i),

where the (i)th eigenspace acts by ith power of the cyclotomic character. Then LieGℓ(A)
◦ is the small-

est Lie algebra containing Φ.

Continuing, one inclusion of Conjecture 2.142 is known, due to Deligne [Del18, Corollary 6.2].

Theorem 2.146 (Deligne). Fix an abelian variety A over a number field K. For all primes ℓ, we have

Gℓ(A)
◦ ⊆ MT(A)Qℓ

.

In particular, it becomes enough to compare numerical invariants of the two groups (such as rank) to argue
for an equality. For example, the following independence result is due to Larsen and Pink [LP95, Theo-
rem 4.3].

Theorem 2.147 (Larsen–Pink). Fix an abelian variety A over a number field K. If MT(A)Qℓ
= Gℓ(A)

◦

holds for any prime ℓ, then it holds for all primes ℓ.

One even knows that the centers of the groups coincide, due to Vaisu [Vas07, Theorem 1.3.1].

Theorem 2.148 (Vaisu). Fix an abelian variety A over a number field K. For each prime ℓ, we have

Z(MT(A))◦Qℓ
= Z(Gℓ(A))

◦.

107



2.4. COMPUTATIONAL TOOLS SATO–TATE GROUPS OF GENERIC CURVES

Vaisu [Vas07] has in fact shown quite a bit about the Mumford–Tate conjecture; see in particular [Vas07,
Theorem 1.3.4].

Much is known about products, especially products with restricted endomorphism types. By combining
[Ich91; Lom16], one is able to compute both MT(A) and Gℓ(A)◦ for many abelian varieties of Types I–III
and control contributions coming from Type IV; this permits a proof of the Mumford–Tate conjecture for
products of abelian varieties of dimension at most 3. More generally, the following result is due to Commelin
[Com18, Theorem 1.2].

Theorem 2.149 (Commelin). Fix abelian varietiesA andB over a number fieldK. If the Mumford–Tate
conjecture holds for both A and B, then it holds for A×B.

To give a taste for how some of these results are proven, we show the following, which follows from [Vas07,
Theorem 1.3.4].

Proposition 2.150. Fix a geometrically simple abelian variety A over a number field K. Suppose that
E = Z(EndK(A)) equals a CM field such that dimA = dimE. LettingΦ be the corresponding signature,
we further suppose that Φ(σ) = 1 for exactly two σ ∈ ΣE . Then we show the Mumford–Tate conjecture
holds for A, and

MT(A)der = L(A)der.

Proof. For special ℓ, we will actually compute MT(A)der andGℓ(A)◦,der “simultaneously” to show that they
are equal to the suitable version ofGSpE(φ)

der orGSpE(eφ)
der. By adding in what we know about the centers

from Theorem 2.148 (and the independence of ℓ given in Theorem 2.147), the Mumford–Tate conjecture
follows for A. The outline is to base-change to C, where the Lie algebra of L(A)der becomes a product of
sl2(C)s, from which we can appeal to Lemma 1.62.

Before beginning the computation, we set up some notation. In practice, it will be convenient to only
write down the computation for MT(A)der, but we will indicate along the way the changes that need to be
made for Gℓ(A)◦,der. Now, for brevity, set V := H1

B(A,Q) so that Hg(A) = Hg(V ) and L(A) = L(V ); we
remark that V is a free module over E of rank 2.

Continuing with the set-up, we recall some part of the computation from Lemma 1.68. Fix a polarization
φ on V . Then let ρ1, . . . , ρe0 be the embeddings of E†

i into a Galois closure M†, which is the totally real
subfield of the Galois closure M of E. Then we admit a decomposition

VM† = V1 ⊕ · · · ⊕ Ve0

so that
L(V )M† = SpE⊗ρ1

M†(φ|V1)× · · · × SpE⊗ρe0
M†(φ|Ve0

).

We now also recall from Lemma 1.68 that each SpE⊗ρi
M†(φ|Vi)M is isomorphic to GL2(M); in particular,

this group is connected. In particular, to achieve this decomposition, we diagonalize the induced action of
M on Vi and then projects onto one of the eigenspaces.

Now, we would like to show that the inclusion

Hg(V )derM ⊆ SpE⊗ρ1
M†(φ|V1

)M × · · · × SpE⊗ρe0
M†(φ|Ve0

)M

is an isomorphism, where the last group is embedded in GL(V )M . All groups involved are connected, so we
may check this inclusion on the level of the Lie algebra, so we would like for the inclusion

LieHg(V )derM ⊆ SpE⊗ρ1M
†(φ|V1

)M × · · · × SpE⊗ρe0
M†(φ|Ve0

)M

is surjective. For this, we use Lemma 1.62. Here are our checks; for brevity, set hg(V ) := LieHg(V )M , and
let sl2(M)i be the factor Lie SpE⊗ρi

M†(φ|Vi
)derM , which we note is isomorphic to sl2(M).
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(i) We claim that hg(V )der surjects onto sl2(M)i, which we note is nonzero and simple. Because the hg(V )
is semisimple, its image in sl2(M)i continues to be reductive.
Now, reductive subgroups of sl2(M) are either tori of all of sl2(M), so we merely need to check that
the image cannot be a torus. If the image in some sl2(M)i is a torus, then because the Galois ac-
tion Gal(M/Q) permutes the decomposition of V into {Vi}i (but will fix Hg(V )), so we see that the
image in sl2(M)i will continue to be a torus for all i. Explicitly, we note that the image of Hg(V ) in
SpE⊗ρi

M†(φ|Vi
)M needs to be preserved under Gal(M/Q), so if the projection is commutative in one

factor, then it is commutative in all factors because the Q-points are dense. In particular, Hg(V ) must
be a torus, so A has complex multiplication by Proposition 2.53, which is a contradiction to its defini-
tion.

(ii) The first point of (ii) is automatic from the construction. The second point follows because all the
sl2(M)is include as the standard representation into gl(Vi).
For the last point, we use the Galois action together with the hypothesis on the signature. Arguing as
in the proof of Lemma 1.62, it is really enough to check the (Vi)Ms are non-isomorphic as hg(V )derM -
modules. To make sense of the signature, we choose an embedding ε : M → C, and then Lemma 2.72
grants a signature Φε from the decomposition of Vε into E ⊗ε C-eigenspaces: explicitly, for each em-
bedding σ ∈ Hom(E,M), we find

Φε(σ) = dim(Vσ)
1,0
ε ,

where (·)1,0 signifies that we are taking the eigenspace where i ∈ C acts by i−1. However, the choice
of a different embedding ε will permute the Vσs in sight.
To explain how the signature is now used, we note that if {Φε(σ),Φε(σ)} ̸= {Φε(τ),Φε(τ)} for two
embeddingsσ, τ ∈ Hom(E,M)where ρi = σ|E† and ρj = τ |E† , then we must haveVi ̸∼= Vj ashg(V )derε -
modules. Indeed, unwrapping the definition of the signature, we know that the projection of hg(V )R
(where the embedding M† ↪→ R is given by the restriction of ε) into gl4(R) is

so(Φε(σ),Φε(σ)).

To see this, note that this a semisimple algebra of the correct rank, so it is enough remark that the
image of hg(V )der must land in the above Lie subalgebra by tracking the action of h(i). (One should use
Theorem 2.145 in the ℓ-adic computation.) Thus, we are now able to remark that so(Φε(σ),Φε(σ)) ̸∼=
so(Φε(τ),Φε(τ)).
To complete the proof, the hypothesis implies there exists exactly one pair {σ0, σ0} of embeddings
E ↪→ C such that Φε(σ0) = Φε(σ0) = 1. Thus, for any two distinct embeddings σ, τ ∈ Hom(E,M), we
can choose ε so that εσ = σ0 but ετ ̸= σ0 and apply the previous paragraph. ■

Remark 2.151. This argument is inspired by [Zar83, Remark 1.9.4], where “changing the embedding”
is used similarly to conclude that the Hodge group is large.

2.4.3 Computing ℓ-Adic Monodromy
The previous subsection explains that one expects to be able to computeGℓ(A)◦ = MT(A). We now explain
how to use a computation of Gℓ(A)◦ to compute Gℓ(A) in full. The idea is to use the Galois action on Tate
classes. Our exposition follows [GGL24, Sections 8.1–8.2]. We begin with some notation.

Notation 2.152. Fix an abelian varietyA defined over a fieldK, and let ℓ be a prime such that charK ∤ ℓ.
We will write V := H1

ét(AK ,Qℓ). For each n ≥ 0, we define Wn to be the spce of Tate classes in the nth
tensor power, writing

Wn :=
(
V ⊗n ⊗ V ∨⊗n)Gℓ(A)◦

.

We also write W :=
⊕

n≥0Wn for brevity.
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Remark 2.153. Because A is an abelian variety, one has a polarization V ⊗ V → Qℓ(1), so we see that
one can replace Wn with (

V ⊗2n(n)
)Gℓ(A)◦

.

Roughly speaking, the point is that the spaces W• of Tate classes are able to keep track of Gℓ(A)◦.

Lemma 2.154. Fix an abelian variety A defined over a field K, and let ℓ be a prime such that charK ∤ ℓ,
and define V and W• as in Notation 2.152.

(a) If G ⊆ GL
(
H1

ét(AK ,Qℓ)
)

fixes W , then G ⊆ Gℓ(A)◦.

(b) There is a finite-dimensional subspace W ′ ⊆ W such that G ⊆ GL
(
H1

ét(AK ,Qℓ)
)

fixes W ′ if and
only if G ⊆ Gℓ(A)◦.

Proof. This essentially follows from Proposition 1.35.

(a) Recall Gℓ(A)◦ is reductive by Theorem 2.129. Thus, by Proposition 1.35, we know that if G ⊆ GL(V )
fixes every Gℓ(A)◦-invariant in any

k⊕
i=1

(
V ⊗mi ⊗ V ∨⊗ni

)
,

then G ⊆ Gℓ(A)
◦. However, we claim that all Gℓ(A)◦-invariants in the above space can be found in

W , which will complete the proof. Indeed, by Theorem 2.148, we see that the scalars Gm,Qℓ
can be

found in Gℓ(A)◦; however, these scalars act by the character z 7→ zmi−ni on V ⊗mi ⊗ V ∨⊗ni , so any
Gℓ(A)

◦-invariant subspace must then have mi = ni.

(b) The above argument provides countably many equations (in the form of invariant tensors) which cut
out Gℓ(A)◦. However, any algebraic subgroup of GL(V ) will be cut out by finitely many equations, so
we can choose W ′ to be the span of any such subset of finitely many defining equations. ■

Remark 2.155. The proof of (b) in fact gives an effective way to compute the subspaceW ′: simply write
down enough tensor elements to cut out Gℓ(A)◦ ⊆ GL (V ).

We would now like to upgrade from Gℓ(A)
◦ to Gℓ(A).

Lemma 2.156. Fix an abelian variety A defined over a field K, and let ℓ be a prime such that charK ∤ ℓ,
and define V and W• as in Notation 2.152. For each n ≥ 0, the subspace Wn is stabilized by Gℓ(A).

Proof. We already know that Gℓ(A)◦ acts trivially on Wn, so this will follow purely formally from the fact
that Gℓ(A)◦ is a normal subgroup of Gℓ(A).

We would like to show that each g ∈ Gℓ(A) stabilizes Wn. Well, Wn exactly consists of the Gℓ(A)◦-
invariants inside V ⊗n ⊗ V ∨⊗n, so it suffices to show that gWn is stabilized by Gℓ(A)◦. Well, for any g0 ∈
Gℓ(A)

◦, we see that
g0gWn = g · g−1g0gWn,

so we conclude by noting that g−1g0g ∈ Gℓ(A)◦ because Gℓ(A)◦ ⊆ Gℓ(A) is a normal subgroup. ■

Combining the above two lemmas, we see that we get a faithful representation

Gℓ(A)/Gℓ(A)
◦ → GL(W ).

This faithful representation allows us to compute Gℓ(A): we are looking for elements of GL
(
H1

ét(AK ,Qℓ)
)

which produce the automorphisms of W seen in the image of the above faithful representation. Tracking
through this sort of reasoning produces our main result.
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Proposition 2.157. Fix an abelian varietyA defined over a fieldK, and let ℓ be a prime such that charK ∤
ℓ, and define V and W• as in Notation 2.152. Then Gℓ(A) equals the group⋃

σ∈Gal(K/K)

{g ∈ GL (V ) : g|W = σ|W } .

In fact, each set in the union is a connected component of Gℓ(A).

Proof. We begin by noting that Gal(K/K) does in fact preserve W : indeed, one has a composite

Gal(K/K)→ Gℓ(A)→ GL(W ),

where the first map is well-defined by the definition ofGℓ(A), and the second map is well-defined by sum-
ming Lemma 2.156.

Now, we have two inclusions to show.

• Suppose g ∈ Gℓ(A). Then we must find σ ∈ Gal(Q/Q) such that g|W = σ|W . Well, Gℓ(A) is by
definition the Zariski closure of the image ofGal(K/K) inGL(V ), so the open subset gGℓ(A)◦ ofGℓ(A)
must contain σ|V for some σ ∈ Gal(K/K). Now,Gℓ(A)◦ acts trivially onW , so we see that g|W = σ|W .

• Suppose g ∈ GL(V ) satisfies g|W = σ|W . Then we would like to show that g ∈ Gℓ(A). The argument
in the previous point grants g0 ∈ Gℓ(A) such that g0|V = σ|V , so in particular, g|W = g0|W . Thus, gg−1

0

acts trivially on W , so gg−1
0 ∈ Gℓ(A)◦, so it follows that g ∈ Gℓ(A).

Lastly, it remains to discuss connected components. Well, note that g, g′ ∈ Gℓ(A) live in the same connected
component if and only if g′g−1 ∈ Gℓ(A), which is equivalent to g′g−1 acting trivially onW , which is equivalent
to gGℓ(A)◦ = g′Gℓ(A)

◦. ■

Remark 2.158. A careful reading of the above proof shows that we only needed the following facts
about W : it is stable under Gℓ(A), and g ∈ GL (V ) lives in Gℓ(A)◦ if and only if it fixes W . Thus, we see
that we can replace W with any Gℓ(A)-subrepresentation W ′ ⊆ W which cuts out Gℓ(A)◦ in the sense
of Lemma 2.156. This allows us to make W ′ quite small (e.g., finite-dimensional).

Remark 2.159. It is worth comparing Proposition 2.157 with the twisted Lefschetz group, defined in
[BK15, Definition 5.2]. Roughly speaking, the twisted Lefschetz group is simply the construction of
Proposition 2.157 withW replaced by the subspace ofW generated by endomorphisms and the polar-
ization; see [GGL24, Remark 8.3.5] for precise discussion of the relation. In this way, one expects the
twisted Lefschetz group to equalGℓ(A) in generic cases, but Remark 2.158 explains that one may need
to remember more Hodge classes in exceptional cases.

Proposition 2.157 suggests that one can find representatives of each connected component in Gℓ(A) by
looping over all σ ∈ Gal(K/K) and finding some g ∈ GL(V ) such that g|W = σ|W . This is currently not
so computable because Gal(K/K) is an infinite group, and W is an infinite-dimensional vector space. Re-
mark 2.158 explains how to replaceW with a finite-dimensional subrepresentation, so it remains to explain
how to reduce Gal(K/K) to a finite quotient.

Definition 2.160 (connected monodromy field). Fix an abelian varietyA defined over a fieldK, and let ℓ
be a prime such that charK ∤ ℓ. Then we define the connected monodromy fieldKconn

A so that the open
subgroup Gal(K/Kconn

A ) is the pre-image of the connected component Gℓ(A)◦ in the Galois represen-
tation

Gal(K/K)→ GL
(
H1

ét(AK ,Qℓ)
)
.
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Remark 2.161. Note that such a field Kconn
A exists and is finite over K by Galois theory: note Gℓ(A)◦ ⊆

Gℓ(A) is a finite-index subgroup (because the quotient is a discrete algebraic group), so the pre-image
U ⊆ Gal(K/K) of Gℓ(A)◦ similarly must be open and finite index and hence closed and finite index.

Thus, we see that the Galois reprentation to GL(W ) factors through the finite group Gal(Kconn
A /K). In

this way, we are able to reduce the computation suggested by Proposition 2.157 from the infinite group
Gal(K/K) to the finite quotient Gal(Kconn

A /K).

Remark 2.162. Let’s describe how one might compute Kconn
A in practice. By combining the definition

of Kconn
A with Lemma 2.154, we see that Gal(K/Kconn

A ) is the kernel of the representation

Gal(K/K)→ GL(W ),

so one could imagine computing the open subgroup Gal(K/Kconn
A ) by computing the above represen-

tation. As usual, we remark that Lemma 2.154 allows us to replace W with a finite-dimensional sub-
representation W ′ “cutting out” Gℓ(A)◦.

2.4.4 The Motivic Galois Group

In this last subsection, we recast some of our monodromy discussions motivically. The Mumford–Tate con-
jecture is more or less an assertion that there should really only be one monodromy group for an abelian
variety. This indicates that there should be a motivic version of this conjecture. Here is one formulation,
using our category of motives.

Definition 2.163. Fix a motive M over an algebraic extension K of Q.

• For a fixed embedding σ : K ↪→ C, we define the Mumford–Tate group MT(M) as the Mumford–
Tate group of the rational Hodge stucture Hσ(M). (See Remark 1.208.)

• For each prime ℓ, we define the ℓ-adic monodromy group as the smallest algebraic subgroup con-
taining the image of

Gal(K/K)→ GL (ωℓ(M)) ,

where ωℓ : MotQ(K)→ RepQℓ
Gal(K/K) is given by ℓ-adic cohomology. (See Remark 1.209.)

Remark 2.164. The same arguments as in Example 1.140 and Remark 2.118 show that MT(M) is the
algebraic group attached to the subcategory ⟨H•

σ(M)⟩⊗ ⊆ HSQ, and Gℓ(M) is the algebraic group at-
tached to the subcategory ⟨ωℓ(M)⟩⊗ ⊆ RepQℓ

Gal(K/K).

Example 2.165. Fix an abelian variety A. Because ⟨H•
σ(A)⟩⊗ = ⟨H1

σ(A)⟩⊗ (by Theorem 2.98) we see
MT(h(A)) = MT(A). The same argument shows Gℓ(h(A)) = Gℓ(A).

Conjecture 2.166 (Motivic Mumford–Tate). Fix a motiveM over a number fieldK. For each prime ℓ, we
have

MT(M)Qℓ
= Gℓ(M)◦.

(More precisely, these are isomorphic via the embeddings of Remarks 2.177 and 2.178.)
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Example 2.167. Let’s prove the conjecture when M is an Artin motive. On one hand, H•
σ(MK) has

Hodge structure concentrated in bidegree (0, 0), so MT(M) is trivial. On the other hand,Gℓ(M) is alge-
braic (by its construction) and a quotient of the profinite group Gal(K/K) (by Example 1.215) and thus
finite. We conclude Gℓ(M)◦ is trivial and thus agrees with MT(M)Qℓ

.

However, a motivic formulation not only tells us what to expect more generally, but it will tell us what the
more general monodromy group attached to a motive should be. Following Remark 2.164, we are motivated
to define a motivic monodromy group as follows.

Definition 2.168 (motivic Galois group). Fix an algebraic extension K of Q.

• For a set of motives S ⊆ MotQ(K), we define the motivic Galois group Gmot,K(S) to be the alge-
braic group associated with the tensor subcategory ⟨S⟩ ⊆ MotQ(K).

• If S = {M} is a singleton, we may write Gmot,K(M).

• Further, if M = h(X), we may write Gmot,K(X).

We will omit the subscripted field K from the notation as much as possible. If we want to specify the
fiber functor ωσ (for an embedding σ : K ↪→ C) in this notation, we may write Gσ instead of Gmot.

Example 2.169. Let M be an Artin motive. In this case, Example 1.215 explains that we may identify
M with the Galois representation ωσ(M). Then the same argument as in Remark 2.118 shows that
Gmot(M) is exactly the image of the structure map

Gal(K/K)→ GL(ωσ(M)).

Remark 2.170. For an abelian varietyA, Remark 2.106 explains whyGmot(A) = Gmot

(
h1(A)

)
: the ten-

sor categories of these motives are the same!

Remark 2.171. For an abelian variety A of dimension g, we claim that Gmot(A) ⊆ GL2g,Q. Indeed,
choosing an embedding ω : K ↪→ C will induce a group homomorphism

Aut⊗ωσ|⟨h(A)⟩⊗ → GL
(
H1
σ(A)

)
given by explaining how a given⊗-automorphism of ωσ acts on ωσ

(
h1(A)

)
. The corresponding functor

RepQ GL
(
H1
σ(A)

)
→ ⟨h(A)⟩⊗ simply takes the tensor generator H1

σ(A) back to the tensor generator
h1(A), so the above group homomorphism is an embedding by Proposition 1.151.

Remark 2.172. In fact, Gmot(A) ⊆ GSp2g,Q. For a given polarization A → A∨, the induced Weil pair-
ing and polarization on Hodge structures assemble into an absolute Hodge correspondence h1(A) ⊗
h1(A) → L. Now, each g ∈ Gmot(A) must commute with this absolute Hodge correspondence, which
means (on the Betti realization, say) that g preserves the induced perfect pairing on H1

σ(A) up to a scalar
given by the action of g on L.

For example, one expects that Gmot(M)◦ = MT(M) and Gmot(M)Qℓ
= Gℓ(M), but we cannot expect to be

able to prove these equalities easily because they together imply the (Motivic) Mumford–Tate conjecture.
Fortunately, we will be able to prove the former equality when M is an abelian variety, and we will then be
able to show that the latter equality is equivalent to the Mumford–Tate conjecture. This is the goal of the
present section.

Let’s begin with the equality Gmot(A)
◦ = MT(A).
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Lemma 2.173. LetAbe an abelian variety defined over an algebraic extensionK ofQ. ThenGmot(AK) =
MT(A).

Proof. This is [DM12, Proposition 6.22(a)]. Fix an embedding σ : K ↪→ C. Then Remark 1.208 explains that
the fiber functor ωσ : MotQ(K) → HSQ is faithful, but because all Hodge classes on abelian varieties are in
fact absolute Hodge classes, we will be able to show that the restricted functor

ωσ : ⟨h(A)⟩⊗ → HSQ

is fully faithful. Indeed, ⟨h(A)⟩⊗ is made of quotients of objects which look like
⊕

i h(A)
ni ⊗ (h(A)∨)mi ,

but Poincaré duality (in Theorem 1.207) explains h(A)∨ = h(A)(dimA), so we may work with quotients of
objects which look like ⊕

i

h(A)ni(mi dimA).

But then correspondences between such quotients may as well be lifted up to absolute Hodge classes on
disjoint unions of powers ofA, which are the same as Hodge classes by Theorem 2.45, so we may unwind our
correspondences to merely be given by Hodge classes! This shows thatωσ is fully faithful on the subcategory
⟨h(A)⟩⊗.

To finish the proof, we see that the induced functor

ωσ : ⟨h(A)⟩⊗ → ⟨H•
σ(A)⟩⊗

is an equivalence (it is essentially surjective by construction), so the groups given by Tannakian reconstruc-
tion must be isomorphic. ■

Remark 2.174. In fact, the proof shows that we expect to haveGmot(MK) = MT(M), but we only know
achieve this once we know that all Hodge classes in ⟨M⟩⊗ are absolute Hodge. Nonetheless, Proposi-
tion 1.149 explains that the proof may take ωσ and produce an embedding MT(M) → Gmot(MK) for
any motive M .

Lemma 2.175. Fix any set S of motives over an algebraic extension K of Q, and let Γ be the Tannakian
group of the category ⟨S⟩⊗ ∩Mot0Q(K). Then there is an exact sequence

1→ Gmot(SK)→ Gmot(S)→ Γ→ 1.

Proof. This is [DM12, Proposition 6.23]. Throughout this argument, we are fixing an algebraic closure K
and K along with a frequently implicit embedding ι : K ⊆ K. We will also need to choose an embedding
σ : K ↪→ C. Anyway, we proceed in steps.

1. We describe the left map. There is a natural functor ⟨S⟩⊗ → ⟨SK⟩⊗ given by base-changing our mo-
tives (along ι). By construction, Proposition 1.149 explains that the relevant group homomorphism
p : Gmot(SK)→ Gmot(S) is an embedding.

It will be worthwhile to explicate this map somewhat: given some g ∈ Gmot(SK), we note that g is
really an automorphism of the⊗-functor ωσ on ⟨SK⟩⊗. But then g induces an automorphism on ⟨S⟩⊗
(and hence an element i(g) ∈ Gmot(S)) as

ωσι(M) = ωσ(MK)
g→ ωσ(MK) = ωσι(M).

Namely, because g is already an automorphism of⊗-functors, we see that i(g) is as well.
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2. We describe the right map. There is a fully faithful embedding ⟨S⟩⊗ ∩Mot0Q(K) ⊆ ⟨S⟩⊗, so our Tan-
nakian formalism (Proposition 1.149) induces an embedding p : Gmot(S)→ Γ. As in the previous point,
we may view p as restricting an automorphism of the ⊗-functor ωσι from ⟨M⟩⊗ to the subcategory
⟨S⟩⊗ ∩Mot0Q(K).

3. The above remarks have already provided exactness of our sequence on the left and right. It remains
to show exactness at Gmot(S). One of these checks is easier: we start by showing that p ◦ i is trivial.
Namely, for any g ∈ Gmot(SK), we must show that i(g) fixes ωσι(M) for any M ∈ ⟨S⟩⊗ ∩MotQ(K).
Upon unwinding the definition of i(g), we see that we would like to check that g fixes ωσ(MK). It will
be enough to check that any ⊗-automorphism of ωσ acting on ⟨SK⟩⊗ ∩Mot0Q(K) is trivial, but this is
not hard: this category is just ⟨h(SpecK)⟩⊗, and any⊗-automorphism will fix the unit.

4. We finish showing exactness in the middle. Suppose g ∈ Gmot(S) goes to the identity in Γ, and we
want to show that g ∈ im i. The main point is to show that gM ∈ Autωσι(M) only depends on MK .
For a moment, choose two motives M,N ∈ MotQ(K), which we will assume to be isomorphic af-
ter base-change to K in a moment. Observe that HomMotQ(K)(MK , NK) is some subspace of abso-
lute Hodge classes, so it is a Galois representation by Remark 1.191.4 It follows that we may view
HomMotQ(K)(MK , NK) as an Artin motive in Mot0Q(K) via Example 1.215, so g acts trivially on this mo-
tive. This means that the action of g fixes the relevant absolute Hodge correspondences, which causes
the diagram

ωσι(MK) ωσι(MK)

ωσι(NK) ωσι(NK)

gM

ωσι(f) ωσι(f)

gN

to commute for any f : MK → NK . For example, upon taking f to be an isomorphism, we are left with
the statement that gM and gN are the same automorphism.
As such, we may define g ∈ Aut⊗ωσ by gMK

:= gM , which the previous paragraph promises is well-
defined. (These motives generate our category, so g can be uniquely extended to kernels and tensor
products because it is already a linear ⊗-automorphism where it is defined.) Then i(g) = g by con-
struction. ■

Proposition 2.176. Fix an abelian variety A over an algebraic extension K of Q. Then

Gmot(A)
◦ = MT(A).

Proof. Plugging the equality MT(A) = Gmot(AK) of Lemma 2.173 into Lemma 2.175 yields the exact se-
quence

1→ MT(A)→ Gmot(A)→ Γ→ 1,

where Γ is some quotient of Gal(K/K) by Example 1.215. In particular, Γ is thus a quotient of a profinite
group and an algebraic group Gmot(A) by Proposition 1.150, so Γ must be finite.

Now, on one hand, MT(A) is connected by Remark 1.30, so MT(A) ⊆ Gmot(A)
◦ follows. On the other

hand,Γ is discrete, soGmot(A)
◦ must be contained in the kernel of the right-hand projection, which is exactly

MT(A) by exactness. The result follows. ■

Remark 2.177. Continuing from Remark 2.174, we see that this proof shows Gmot(M)◦ = MT(M) for
an arbitrary motive as soon as we know that all Hodge classes are absolutely Hodge, and one can always
construct an embedding MT(M)→ Gmot(M)◦.

We now turn to the second equality Gmot(M)Qℓ
= Gℓ(M), which is called a “motivic analogue of the Tate

conjecture” in [CC22].
4 Fixing a degree via Tate twists and taking idempotent subspaces are both Galois-invariant operations, so the subspace of absolute

Hodge classes continues to be Galois-invariant.
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Remark 2.178. One can construct a candidate isomorphism for Conjecture 2.179. The comparison iso-
morphism (in the form of Remark 1.210) shows that the fiber functors MotQ(K) → VecQℓ

defined by
M 7→ ωσ(M)Qℓ

andM 7→ ωℓ(M) are naturally isomorphic. This induces a morphism ⟨M⟩⊗ → ⟨ωℓ(M)⟩⊗
of neutral Tannakian categories, which then induces the desired map Gℓ(M) → Gmot(M). Exam-
ple 1.137 explains that this map is an embedding.

Conjecture 2.179. Fix a motive M over a number field K. For each prime ℓ, the canonical map

Gℓ(M)→ Gmot(M)Qℓ

of Remark 2.178 is an isomorphism.

Example 2.180. Let’s prove the conjecture when M is an Artin motive. Well, the comparison isomor-
phism Remark 1.210 explains that there is an isomorphism ωσ(M)Qℓ

→ ωℓ(M) of Galois representa-
tions, so we are done as soon as we compare Example 2.169 with the definition of Gℓ(M).

Intuitively, one should expect Conjecture 2.179 to follow by independently comparing identity components
and component groups. Proposition 2.176 indicates that comparing the identity components will require
some input from the Mumford–Tate conjecture, but luckily, we can compare the component groups less
conjecturally.

Lemma 2.181. Fix a motive M over a number field K. Then the canonical map Gℓ(M) → Gmot(M) of
Remark 2.178 induces a surjection

π0Gℓ(M)→ π0Gmot(M)Qℓ
.

Proof. The idea is that finite groups should correspond to Artin motives, where the conjecture is already
known by Example 2.180. Let’s begin by finding the relevant Artin motive: the quotient map Gmot(M) ↠
π0Gmot(M) induces an embedding

RepQ π0Gmot(M) ↪→ ⟨M⟩⊗.

The left-hand category has a tensor generator (e.g., take the regular representation of the finite group
π0Gmot(M)), so the essential image has a tensor generator N ∈ ⟨M⟩⊗. To see that this is an Artin motive,
we note that π0Gmot(M) is a quotient of the motivic Galois group of ⟨M⟩⊗ ∩Mot0Q(K) by Lemma 2.175, so
we must have N ∈ Mot0Q(K).

Let’s explain why N is the Artin motive we are looking for: by the construction of N , the category ⟨N⟩⊗
is equivalent to RepQ π0Gmot(M), so Gmot(N) = π0Gmot(M). We are now ready to complete the proof: the
commutative diagram

⟨N⟩⊗ ⟨M⟩⊗

⟨ωℓ(N)⟩⊗ ⟨ωℓ(M)⟩⊗
ωℓ ωℓ

induces a commutative diagram
Gℓ(M) Gℓ(N)

Gmot(M)Qℓ
Gmot(N)Qℓ

where the right-hand arrow is in fact an isomorphism by Example 2.180. We conclude that the induced map
Gℓ(M)→ π0Gmot(M) is surjective, so the claim follows. ■
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Proposition 2.182. Fi an abelian varietyA over a number fieldK. Then Conjecture 2.179 forA is equiv-
alent to the Mumford–Tate conjecture for A.

Proof. This is part of [CC22, Theorem]. Remark 2.178 induces a morphism

1 Gℓ(A)
◦ Gℓ(A) π0Gℓ(A) 1

1 Gmot(A)
◦
Qℓ

Gmot(A)Qℓ
π0Gmot(A)Qℓ

1

of short exact sequences. Quickly, we note that the left map is injective because the middle map is injective,
and the right map is surjective by Lemma 2.181. Additionally, we note that the canonical map MT(A) →
Gmot(A)

◦ is an isomorphism by Proposition 2.176.
Before continuing, we note that the Mumford–Tate conjecture (in the form Conjecture 2.142) is equiv-

alent to the induced map Gℓ(A)
◦ → MT(A)Qℓ

being an isomorphism. Indeed, perhaps one can be wor-
ried that the map constructed in Conjecture 2.142 is not this map, but it is: the embedding MT(A) →
GL
(
H1

B(A)
)

simply asks howMT(A) should act on the vector spaceH1
B(A) and thus factors throughGmot(A)

by Remarks 2.171 and 2.174. Similarly, the embedding Gℓ(A) → GL
(
H1

ét(AK ,Qℓ)
)

again factors through
Gmot(A) via the discussion of Remark 2.178.

We now show both directions of the proposition independently.

• Given the Mumford–Tate conjecture, the snake lemma now implies that the left and right maps being
surjective implies that the middle map is surjective, thereby proving Conjecture 2.179.

• Given Conjecture 2.179, we see that the left map is an isomorphism because taking identity compo-
nents is functorial. ■
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CHAPTER 3

THE SATO–TATE CONJECTURE

Well, there’s only one way I’ve ever seen something substantial proved
about an arithmetic L-function—and that’s to relate it to automorphic

forms.

—Richard Taylor, [Tay07]

The classical application of monoromy groups is to the Sato–Tate conjecture, which we now discuss.

3.1 The Statement
In this section, we state the Sato–Tate conjecture, and then we explain how it can be numerically verified.

3.1.1 The Weil Conjectures
The Sato–Tate conjecture is about counting points on an abelian varietyA over finite fields Fq as q varies. In
this subsection, we will describe the Weil conjectures because they explain why these point-counts ought
to be related to cohomology.

The main character of our story is a zeta function.

Definition 3.1. Fix a variety X over a finite field Fq. Then its zeta function is the formal power series

ZX(T ) := exp

( ∞∑
m=1

#X (Fqm)
Tm

m

)
.

Remark 3.2. It is not important why this is the precise definition of the ζ-function, but we remark that
there is a general definition of ζX when X is a scheme of finite type over Z, given by

ζX(s) =
∏

closed x∈X

1

1−N(x)−s
,

whereN(x) := #κ(x); for example, for a number fieldK, ζSpecOK
(s) = ζK(s). A purely formal argument

can verify that ζX(s) = ZX(q−s). Roughly speaking, one merely has to write log ζX(s) out as a sum over
closed points x and then group the terms by N(x).
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The Weil conjectures [Wei49, p. 507], now theorems due to Deligne [Del74; Del80], assert the following
properties for ZX(T ) when X is smooth, geometrically irreducible, projective variety over Fq of dimension
d.

1. Rationality: ZX(T ) ∈ Q(T ).

2. Functional equation: there is a sign± such that

ZX

(
1

qdT

)
= ±qdχ/2TχZX(T ),

where χ is a suitably defined Euler characteristic deg(∆ ·∆).

3. Riemann hypothesis: there is a factorization

ZX(T ) =
P1(T ) · · ·P2n−1(T )

P2(T ) · · ·P2d(T )

so that P1(T ) = 1−T , P2d(T ) = 1− qdT , and each Pi(T ) has P (0) = 1 and has roots which all take the
form 1/αi where αi is an algebraic integer of magnitude qi/2.

4. Betti numbers: if X admits a smooth projective integral model X , then

degPi = dimQ HiB(X (C),Q)

for each i.

All of these conjectures are proven using cohomological methods. We will not explain the proofs of all of
them here, but we will show everything except the Riemann hypothesis. Our exposition follows [Har77,
Appendix C.4].

In short, the proofs we provide will take some cohomological input and then do a little linear algebra to
prove a theorem. For example, to explain how cohomology enters our picture via the Lefschetz trace formula
(Theorem 1.122), we need the following linear algebraic lemma.

Lemma 3.3. Let f : V → V be an endomorphism of a vector space. Then there is an equality of formal
power series

− log det(1− fT ;V ) =

∞∑
m=1

tr (fm;V )
Tm

m
.

Proof. Taking traces and determinants is immune to base-change by a field, so we may assume that V is a
vector space over an algebraically closed field. Then we may choose a basis of V so that the matrix repre-
senting f is upper-triangular. Now, we set n := dimV , and we let {λ1, . . . , λn} be the diagonal entries of f .
Then

− log det(1− fT ;V ) =

n∑
i=1

− log (1− λiT ) ,

and

tr (fm;V ) =

n∑
i=1

λim,

so we conclude the proof using the formal power series expansions− log(1− λiT ) =
∑
m≥1 λ

m
i T

m/m. ■
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Proposition 3.4. Fix a Weil cohomology theory H• over Fq with coefficients in F . Choose a smooth
projective variety X over a finite field Fq of equidimension d. Letting Frobq : X → X be the q-power
(absolute) Frobenius endomorphism, we have

ZX(T ) =

2d∏
i=0

det
(
1− Frob∗qT ; H

i(X)
)(−1)i+1

.

Proof. We proceed in steps.

1. For expositional reasons, we isolate the “motivic” input in this proof: we claim the diagonal ∆: X →
X×X and the graphΓofFrobq intersect transversely. BecauseΓ and∆have the correct dimensions to
intersect transversely, it is enough to check their Zariski tangent spaces are disjoint on the intersection.
On one hand, for x ∈ X(Fq), we see that

T(x,x)∆ = {(v, v) : v ∈ TxX}

because ∆ is the image of (idX , idX) : X → X × X. On the other hand, the action of Frobq : X → X
on the Zariski cotangent space is an endomorphism d(Frobq)x of mx/m2

x which can be computed to
vanish: the derivative of the q-power map in positive characteristic will vanish! Thus,

T(x,x)Γ = {(v, 0) : v ∈ TxX}

because Γ is the image of (idX ,Frobq) : X → X × Y . This tangent spaces are in fact disjoint.

2. We now claim that #X(Fq) = deg(Γ ·∆), where ∆: X → X ×X is the diagonal. To begin, by embed-
ding X into some projective space, where the action of the Frobenius can be seen as taking q-powers
on points, we see thatX(Fq) is exactly the set of (geometric) points fixed by f . However, the set of Fq-
points fixed by the Frobenius is count is simply Γ(Fq) ∩∆(Fq), whose cardinality will equal deg(Γ ·∆)
because Γ and ∆ intersect transversely.

3. We are now in a position to use the Lefschetz trace formula, so the remainder of the proof is a calcu-
lation. Indeed, by Theorem 1.122, we may take powers of Frobq in the previous two steps to see that
#X(Fqm) equals

deg(∆ · ΓFrobm
q
) =

2d∑
i=0

(−1)i tr
(
(Frobmq )∗; Hi(X)

)
.

Thus, summing over all m, we see that
∞∑
m=1

#X(Fqm)
Tm

m
=

2d∑
i=0

(−1)i+1 log det(1− Frob∗q ; H
i(X))

by Lemma 3.3. Taking exponentials completes the proof. ■

Remark 3.5 (Betti numbers). In the Riemann hypothesis conjecture, one takes

Pi(T ) := det
(
1− Frob∗qT ; H

i(X)
)
.

Thus, taking H• to be ℓ-adic cohomology, the Betti–étale comparison isomorphism Theorem 1.79 es-
tablishes the Betti numbers conjecture.

Example 3.6 (Riemann hypothesis, i = 0). IfX is a smooth, geometrically irreducible, projective variety
over Fq, then Γ(X,OX) = Fq. (One can check this by base-changing to the algebraic closure.) But now
the q-power Frobenius acts trivially on Fq, so we conclude P0(T ) should equal

det
(
1− Frob∗qT ; H

0(X)
)
= 1− T.
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Thus, we see that computing ZX(T ) is “as easy as” computing the characteristic polynomial of a Frobe-
nius. At the very least, this perspective will have a lot of theoretical power. Let’s start with the rationality
conjecture.

Lemma 3.7. Let F ⊆ F ′ be a field extension. Then F [[T ]] ∩ F ′(T ) = F (T ).

Proof. Of course, F (T ) ⊆ F [[T ]] ∩ F ′(T ), so the difficult inclusion is the reverse.
Suppose f(T ) =

∑∞
i=0 aiT

i is in F [[T ]]. Then f(T ) lives in F (T ) if and only if one can find a polyno-
mial g(T ) ∈ F [T ] such that f(T )g(T ) ∈ F [T ]. In other words, we need to find finitely many coefficients
{b0, . . . , bn} such that the coefficient

n∑
i=0

aN−ibi

of TN in f(T )
∑n
i=0 biT

i vanishes for N large enough. However, this is equivalent to the purely linear-
algebraic condition that there is are n,N > 0 for which the subspace

Vn,N := spanF {(ai, . . . , ai+n) : i > N}

of Fn+1 vanishes on a nontrivial functional. In other words, we are asking for some n,N > 0 for which the
inclusion Vn,N ⊆ Fn+1 is proper.

However, linear algebraic conditions can be checked after field extensions, so we are basically done.
Indeed, f(T ) /∈ F (T ) is equivalent to having Vn,N = Fn+1 for all n,N > 0. However, such an equality of
vector spaces can be checked after base-changing to F ′, so this is equivalent to Vn,N ⊗F F ′ = (F ′)n+1 for
all n,N > 0, which is equivalent to f(T ) /∈ F ′[[T ]] by the previous paragraph! ■

Theorem 3.8 (Rationality). Suppose there is a Weil cohomology theory H• over Fq with coefficients in
F . Then ZX(T ) ∈ Q(T ) for any smooth projective variety X over Fq.

Proof. By construction, ZX(T ) ∈ Q[[T ]], and Proposition 3.4 shows that ZX(T ) ∈ F (T ), so we are done by
Lemma 3.7. ■

Remark 3.9. This proof says nothing about the rationality of the polynomials det(1−f∗T ; Hi(X)), which
by the Riemann hypothesis (and Remark 3.5) are expected to be rational and with very controlled roots.

We now turn to the functional equation. This will come from “dualizing” ZX(T ) via Poincaré duality. As
such, we will want to understand the dual of f∗ : H•(X) → H•(X) and how this affects characteristic poly-
nomials.

Lemma 3.10. LetX be a scheme overFq of finite type and equidimensiond. Then the q-power Frobenius
Frobq : X → X is finite of degree qd.

Proof. Note thatFrobq is finite because it is affine, finite type, universally closed (hence proper), and quasifi-
nite by definition. As for its degree, it is enough to compute the degree affine-locally, so we may assume
that X = SpecA. Now, Noether normalization provides some finite map A → AdFq

. Because the Frobenius
Frobq will commute with any morphism over Fq, we see that it is then enough to compute the degree of
the Frobenius on AdFq

. But this can be done directly: writing AdFq
= SpecFq[X1, . . . , Xd], the degree of the

Frobenius equals the degree of the extension

[Fq(X1, . . . , Xd) : Fq(Xq
1 , . . . , X

q
d)],

which is simply qd. ■
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Lemma 3.11. Let V and W be an n-dimensional vector spaces over F equipped with a perfect pairing
⟨·, ·⟩ : V ×W → F . Given endomorphisms f and g of V and W , respectively, satisfying ⟨f(v), g(w)⟩ =
λ⟨v, w⟩ for some nonzero λ, we have det(f ;V ) det(g;W ) = λn and

det

(
1− f

λT
;V

)
=

(−1)n det(f ;V )

λnTn
det(1− gT ;W ).

Proof. Calculation of the characteristic polynomial is invariant under extending F , so we may assume that
F is algebraically closed. Setting n := dimV , we may now choose a basis {v1, . . . , vn} for V making the
matrix representing f upper-triangular; then the dual basis {w1, . . . , wn} ofW will make g lower-triangular.
Indeed, we have that ⟨f(vi), wj⟩ = 0 for i < j, which implies that ⟨vi, g(wj)⟩ = 0 for i < j as well.

In fact, we can relate the diagonal entries of f and g: because f is upper-triangular while g is lower-
triangular, we see that ⟨f(vi), g(wi)⟩ equals

⟨vi, g(wi)⟩⟨f(vi), wi⟩.

Thus, if the diagonal entries of f are {λ1, . . . , λn}, then the diagonal entries of g are {λ/λ1, . . . , λ/λn}. For
example, multiplying together all these entries reveals det(f ;V ) det(g;W ) = λn. Additionally, we see that
det(1− gT ;W ) is the product

n∏
i=1

(
1− λT

λi

)
=

(−1)nλnTn

det(f ;V )

n∏
i=1

(
1− λi

λT

)
,

and now the product on the right-hand side is det(1 − f/λT ;V ). The result follows after some rearrange-
ment. ■

Theorem 3.12 (Functional equation). Suppose there is a Weil cohomology theory H• over Fq with coef-
ficients in F . Choose a smooth, geometrically irreducible, projective varietyX over a finite field Fq of d.
Then there is a sign± such that

ZX

(
1

qdT

)
= ±qdχ/2TχZX(T ),

where χ := deg(∆ ·∆).

Proof. Let Frobq : X → X denote the q-power Frobenius. The idea is to use Poincaré duality to relate Hi(X)
with H2d−i(X). By Lemma 3.10, the degree of Frobq is qd, so Lemma 1.116 shows that (Frobq)∗Frob∗q = qd.
Unwrapping the definitions, this is saying that∫

X

(Frob∗qα ∪ Frob∗qα
′) = qd

∫
X

(α ∪ α′)

for any α ∈ Hi(X) and α′ ∈ H2d−i(X)(d). By Poincaré duality, this trace pairing is perfect, so Lemma 3.11
implies

det

(
1−

Frob∗q
qdT

; Hi(X)

)
=

(−1)βi det(Frob∗q ; H
i(X))

qdβiT βi
det
(
1− Frob∗qT ; H

2d−i(X)(d)
)
,

where βi := dimF Hi(X). Note that the twist (d) will not change the characteristic polynomial, so we may
ignore it. Now, by taking the (signed) product over all i, we see that

ZX

(
1

qdT

)
=

(
(−1)χqdχTχ

2d∏
i=0

det
(
Frob∗q ; H

i(X)
)(−1)i+1

)
ZX(T ),
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where χ =
∑2d
i=0(−1)iβi, which is χ = deg(∆ ·∆) by Theorem 1.122. It remains to compute the product on

the right-hand side. Another application of Lemma 3.11 shows

det
(
Frob∗q ; H

i(X)
)
det
(
Frob∗q ; H

2d−i(X)
)
= qdβi ,

so the square of the product is q−dχ. Thus, our product is ±qdχ/2, and the proof is complete upon plugging
this in. ■

Remark 3.13. The proof explains that the sign± is (−1)χ sgn det
(
Frob∗q ; H

d(X)
)

.

Example 3.14 (Riemann hypothesis, i = 2d). The proof shows that P2d(T ) = det
(
1− Frob∗qT ; H

2d(X)
)

is
− (−1)β1qdβ1T β1

det
(
Frob∗q ; H

0(X)
)P0

(
1

qdT

)
.

Because X is geometrically irreducible, Γ(X,OX) = Fq, so H0(X) = F by Example 1.103, so β1 = 1.
Now, Example 3.6 explains that P0(T ) = 1− T , so P2d(T ) = 1− qdT follows.

It remains to prove the Riemann hypothesis conjecture. This is much too difficult to be done here in
any amount of detail, but we will mention how one might do this for abelian varieties A over Fq. By Theo-
rem 2.98, it really amounts to checking the required properties of the roots of

P1(T ) = det
(
1− Frob∗qT ; H

1(A)
)
.

Approximately speaking, one wants to find a duality among the roots of P1(T ): for example, if α is a root,
then there should be another root α with αα = q. After some work with linear algebra, this eventually boils
down to the following fact.

Proposition 3.15. Fix an abelian varietyA over a finite field Fq, and consider the induced Frobenius en-
domorphism Frobq. Then

Frobq ◦ Frob†q = [q]A.

Proof. We refer to [Mil08, Lemma III.1.2]. ■

3.1.2 The Sato–Tate Group
In this section, we will define the Sato–Tate group and state the Sato–Tate conjecture. Our exposition
loosely follows [Sut19]. Fix an abelian variety A defined over a number field K, and choose a prime ℓ. We
also let ρℓ : Gal(K/K)→ GL

(
H1

ét(AK ,Qℓ)
)

denote the associated Galois representation.
Intuitively, the Sato–Tate conjecture asserts that the Frobenius elements ρℓ(Frobp) equidistribute in

Gℓ(A) as p varies over the maximal ideals of OK . This conjecture does not make sense verbatim, so we
will have to work a bit to write down something formal. Consider the following points.

• To begin, we note that Frobp only makes sense as a conjugacy class, and it only makes sense as a
conjugacy class when ρℓ vanishes on the relevant inertia subgroup of Gal(K/K).
Two remarks are thus in order. First, to vanish on the inertia subgroup, we must exclude a finite set
of primes p whereA has bad reduction. (We are using the Néron–Ogg–Shafarevich criterion [BLR90,
Theorem 5].) Second, we will simply regard ρℓ(Frobp) as a conjugacy class as well. Thus, we really
want to say that conjugacy classes equidistribute in a suitable space of conjugacy classes.

• It turns out that ρℓ(Frobp) is not a totally random element of Gℓ(A). Indeed, by Proposition 3.15, we
see that the multiplier ofFrobp acting onH1

ét(AK ,Qℓ) equalsN(p). Thus, we would like to rescaleFrobp
back down by 1/

√
N(p).
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Once again, this requires two remarks. First, after rescaling, we will be working in the smaller sub-
group

G1
ℓ(A) := Gℓ(A) ∩ Sp(eφ),

where φ is a choice of polarization on A. Second, the rescaling cannot happen in Qℓ because Qℓ does
not have enough square roots. As such, we must choose an embedding ι : Qℓ ↪→ C, allowing us to
consider the elements 1√

N(p)
ιρℓ(Frobp) in the complex Lie group G1

ℓ(A)ι(C).1

• Another piece of structure to keep track of is that ρℓ(Frobp) is semisimple (see Remark 2.130). This
means that the subgroup topological generated by 1√

N(p)
ιρℓ(Frobp) (which we now see has all eigen-

values equal to 1 after the normalization in the previous step) will be compact! A standard result in
the structure theory of complex Lie groups is that they have maximal compact subgroups unique up
to conjugacy, so one can find an element in our conjugacy class 1√

N(p)
ιρℓ(Frobp) in any given maximal

compact subgroup of G1
ℓ(A)ι(C).

With the above preparations, we are now ready to state the Sato–Tate conjecture.

Definition 3.16 (Sato–Tate group). Fix an abelian variety A defined over a number field K, and choose
a prime ℓ and an embedding ι : Qℓ ↪→ C. Then we define the Sato–Tate group ST(A) to be a maximal
compact subgroup of the complex Lie groupG1

ℓ(A)ι, whereG1
ℓ(A) is the subset ofGℓ(A) with multiplier

equal to 1.

Conjecture 3.17 (Sato–Tate). Fix an abelian varietyAdefined over a number fieldK, and choose a prime
ℓ and an embedding ι : Qℓ ↪→ C. For each nonzero prime ideal p ofK such thatA has good reduction at
p, choose the conjugacy class xp ∈ Conj(ST(A)) containing the conjugacy class 1√

N(p)
ιρℓ(Frobp). Then

the conjugacy classes {xp} equidistribute with respect to the pushforward of the Haar measure along
ST(A)→ Conj(ST(A)).

The relevance of the Sato–Tate conjecture for us is that it will let us numerically check that we have the
correct ℓ-adic monodromy group; precisely how this is done will be explained in the subsequent subsections.

We will spend the rest of the present subsection making some remarks about Conjecture 3.17.

Remark 3.18. Not much is known about Conjecture 3.17. Roughly speaking, all known proofs prove
something akin to modularity for not just the Galois representation attached toA but also its symmetric
powers (and maybe more!).

• If A has complex multiplication, then this essentially follows from the Fundamental theorem of
complex multiplication.

• For elliptic curves, the state of the art is [Bar+14; Bar+11], where the Sato–Tate conjecture is
proven for elliptic curves over totally real and CM fields.

• These potential automorphy techniques were extended to some classes of abelian varieties by
Johansson in [Joh17, Theorem 1].

One obnoxious defect of Conjecture 3.17 is that we must make choices regarding ℓ and ι. The choice ι is not
so egregious because everything ought to descend to something algebraic, but it is quite unclear that ST(A)
and evenG1

ℓ(A)does not depend crucially on ℓ. One expectsGℓ(A)◦ to not depend on ℓby the Mumford–Tate
conjecture (Conjecture 2.142). The relevant conjecture for the full group Gℓ(A) is the Algebraic Sato–Tate
conjecture [BK15, Conjecture 2.1].

1 Another reason for passing to C is that groups in C have access to a good measure theory.
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Conjecture 3.19 (Algebraic Sato–Tate). Fix an abelian variety A defined over a number field K. Then
there exists an algerbaic subgroup AST(A) ⊆ GL2g(Q) such that

AST(A)Qℓ
= G1

ℓ(A)

for all primes ℓ.

This conjecture, being similar in spirit to the Mumford–Tate conjecture, has quite a bit known. For example,
Banaszak and Kedlaya have shown this conjecture for products of abelian varieties of dimensions at most 3
[BK15, Theorem 6.11]. Roughly speaking, their proof boils down to the fact that one has Hg(A) = L(A)◦ in
these small dimensions, which permits a direct computation of AST(A) along the lines of Proposition 2.157
(see Remark 2.158).

Remarkably, Farfán and Commelin have shown that the Algebraic Sato–Tate conjecture is implied by
the Mumford–Tate conjecture in [CC22]. We will spend the rest of this subsection explaining their proof.
Because we are interested in exhibiting a monodromy group related to all ℓ-adic groups, we are motivated
to relate our conjectural AST to the motivic Galois group. Thus, we want to use a construction from our
Tannakian formalism.

Notation 3.20. Fix a Tate triple (C, w,T) over a field F , and choose a fiber functor ω : C → VecF . If Gω
is the corresponding affine group, we let G1

ω denote the kernel of the canonical map Gω ↠ Gω(T). If
S ⊆ C is a subset, we will write G1

ω(S) for the image of G1
ω in Gω.

The following lemma aides our computation of G1
ωs.

Lemma 3.21. Fix a Tate triple (C, w,T) over a field F , and choose a fiber functor ω : C → VecF . Given
a subset S ⊆ C, let m be the smallest positive integer such that T⊗m ∈ ⟨S⟩⊗ and 0 if there is no such
integer. Then G1

ω(S) is the kernel of the canonical map Gω(S) ↠ G1
ω (T

⊗m).

Proof. This is in [CC22, Section 2]. LetK denote the kernel of the canonical mapG1
ω(S) ↠ G1

ω (T
⊗m), which

is faithfully flat by Proposition 1.149. Then K will fit into the following morphism

1 G1
ω Gω Gω(T) 1

1 K Gω(S) Gω (T
⊗m) 1

of short exact sequences. Here, the commutativity (and faithfully flatness) of the top-right square can be
seen categorically, from which the left arrow is induced. Similarly, the construction of G1

ω(S) permits the
morphism

1 G1
ω Gω Gω(T) 1

1 G1
ω(S) Gω(S) Gω(S)/G

1
ω(S) 1

of short exact sequences, where the right arrow is induced.
The main claim is that the surjection

Gω ↠ Gω(T) ↠ Gω(S)/G
1
ω(S)

in fact factors through Gω(T⊗m). In fact, any g ∈ Gω is the identity on ⟨T⊗m⟩⊗ = ⟨S⟩⊗ ∩ ⟨T⟩⊗ if and only
if g|⟨S⟩⊗ admits an extension to G1

ω, which is equivalent to g|⟨S⟩⊗ ∈ G1
ω(S). Thus, we see that the induced

surjection Gω(T⊗m) ↠ Gω(S)/G
1
ω(S) is also an embedding and therefore an isomorphism. We conclude

that the kernel K of the surjection Gω(S) ↠ Gω(T
⊗m) must in fact by G1

ω(S). ■
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Example 3.22. We show that G1
ℓ(A) is the kernel of the canonical map Gℓ(A) ↠ Gℓ(T). (As in Re-

mark 2.172, the polarization realizes T−1 as a quotient of h1(A)⊗ h1(A).) Well, for any g ∈ Gℓ(A), the
argument of Remark 2.172 shows that g preserves a choice of Weil pairing

H1
ét(AK ,Qℓ)⊗H1

ét(AK ,Qℓ)→ Qℓ(−1),

so g has multiplier equal to 1 if and only if g fixes ωℓ
(
T−1

)
= Qℓ(−1).

We are now ready for our main result.

Theorem 3.23 (Farfán–Commelin). Fix an abelian varietyA defined over a number fieldK. IfA satisfies
the Mumford–Tate conjecture (Conjecture 2.142) thatGℓ(A)◦ = MT(A) for all primes ℓ, thenA satisfies
the Algebraic Sato–Tate conjecture (Conjecture 3.19). In fact, for all primes ℓ,

G1
mot(A)Qℓ

= G1
ℓ(A).

Proof. This is part of [CC22, Theorem]; its argument is analogous to Proposition 2.182. The main point is
that Remark 2.178 induces a morphism

1 G1
ℓ(A) Gℓ(A) Gℓ(T) 1

1 G1
mot(A)Qℓ

Gmot(A)Qℓ
Gmot(T)Qℓ

1

of short exact sequences, where G1
mot(A) is defined in the obvious way, and the horizontal maps are well-

defined becauseT ∈ ⟨h(A)⟩⊗ (see Remark 2.172). Indeed, the commutativity of the right square can be seen
categorically on the level of fiber functors, and then the left map is induced.

We now complete the proof. Remark 1.148 explains that Gmot(T) = Gm,Q and Gℓ(T) = Gm,Qℓ
simply

by identifying the relevant catregories with GrVec. Thus, the right arrow is an isomorphism, so the middle
arrow is an isomorphism if and only if the left one is. We are now done because the middle arrow being an
isomorphism is equivalent to the Mumford–Tate conjecture for A by Proposition 2.182. ■

Remark 3.24. In fact, the proof above shows that the canonical map G1
ℓ(A) → G1

mot(A)Qℓ
being an

isomrphism is equivalent to the Mumford–Tate conjecture for A. In other words, a sufficiently precise
version of the Algebraic Sato–Tate conjecture is equivalent to the Mumford–Tate conjecture.

3.1.3 Some Examples
In this subsection, we compute some basic Sato–Tate groups. The general outline is to compute the Hodge
or Mumford–Tate groups first, check the Mumford–Tate conjecture to get G◦

ℓ , and then compute some
Galois action to get Gℓ. We begin with some elliptic curves.

Example 3.25 (no complex multiplication). Consider the elliptic curveE : y2 = x3+x+1overQ. One can
compute that EndC(E) = Z, so E does not have complex multiplication. Thus, Hg(E) ⊆ SL2,Q needs
to be a connected reductive subgroup which is not a torus (see Proposition 2.53); however, the only Lie
subalgebras of sl2(C) are either commutative or all of sl2(C), so we conclude that Hg(E) = SL2,Q. Thus,
MT(E) = GL2,Q.

The same computation (with Remark 2.128) allows us to conclude that Gℓ(E) = GL2,Qℓ
for all

primes ℓ, thus proving the Mumford–Tate conjecture (Conjecture 2.142) in this case. We thus find
G1
ℓ(E) = SL2,Qℓ

, so upon choosing ι : Qℓ ↪→ C, we see that G1
ℓ(E)ι = SL2,C, so choosing a maximal

compact subgroup finds ST(E) = SU2.
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Example 3.26 (complex multiplication). Consider the elliptic curve E : y2 = x3 + 1 over Q(ζ3). Then we
see that EndC(E) = Z[ζ3], where ζ3 acts by (x, y) 7→ (ζ3x, y), so E has complex multiplication. Thus,
Hg(E) ⊆ SL2,Q(ζ3) is a torus (by Proposition 2.53), but it cannot be trivial (by Corollary 2.42), so we
conclude that Hg(E) is the diagonal torus of SL2,Q(ζ3).

For primes ℓwhich split completely in Q(ζ3), the same computation (with Remark 2.128 and Corol-
lary 2.127) where ℓ splits completely inQℓ revealsGℓ(E) = G2

m,Qℓ
equals the diagonal torus inGL2,Q(ζ3),

proving the Mumford–Tate conjecture (Conjecture 2.142) in this case. We thus find G1
ℓ(E) ∼= Gm,Qℓ

,
so upon choosing ι : Qℓ ↪→ C, we see that G1

ℓ(E) ∼= Gm,Qℓ
, so choosing a maximal compact subgroup

finds ST(E) ∼= U1.

Example 3.27 (potential complex multiplication). Consider the elliptic curveE : y2 = x3+1but now over
Q. Example 3.26 computed that MT(E) ∼= Gm,Q and Gℓ(E)◦ = Gm,Qℓ

(for primes ℓ ≡ 1 (mod 3)). In
this case, we see that there are endomorphisms not defined overQ and hence not fixed byGal(Q/Q), so
Kconn
E ̸= Q; instead, these endomorphisms are defined over Kconn

E = Q(ζ3). We thus see that Gℓ(E) ⊆
GL2,Qℓ

normalizes its index-2 subgroup Gℓ(E)◦ (which is the diagonal torus), so Gℓ(E) must be the
diagonal torus together with the nontrivial Weyl element in GL2,Qℓ

, which we write as G2
m,Qℓ

⋊ S2. We
thus find G1

ℓ(E) ∼= Gm,Qℓ
⋊ S2, so ST(E) ∼= U1 ⋊ S2.

Remark 3.28. In the above example, we appealed to the fact that the only elements normalizing the
diagonal torus are the Weyl elements, which is a bit ad-hoc and will not work in higher dimensions.
Roughly speaking, Proposition 2.157 provides the machine which works in higher dimensions, where
we know that the Galois representation now factors through Gal(Q(ζ3)/Q), and we are allowed to re-
place W with merely W1 ⊕ W2, which can be computed to be generated by the endomorphisms and
polarization.

We take a moment to remark that the above examples generalize to work with all elliptic curves, doing case-
work on having no complex multiplication, complex multiplication, and potential complex multiplication.

We now introduce the main example of the present thesis.

Proposition 3.29. Fix λ ∈ C \ {0, 1}, and define A to be the Jacobian of the normalization of the proper
curve C with affine chart y9 = x(x− 1)(x− λ). If A does not have complex multiplication, then{

MT(A)derC
∼= SL2(C)3

Z(MT(A))◦C
∼= G4

m.

We use this to compute ST(AK) if λ ∈ K and K contains Kconn
A .

Proof. We proceed in steps.

1. To begin, we do some prelimarinary algebraic geometry, along the lines of [Moo10, Section 1]. The
curveC comes equipped with a natural map x : C → P1, with Galois with cyclic Galois group µ9, where
µ9 acts onC by multiplication of the y-coordinate. As such, a computation with the Riemann–Hurwitz
formula reveals that the genus is g = 7, so dimA = 7. From here, we can find the differentials{

dx

y4
,
dx

y5
,
dx

y6
,
dx

y7
,
dx

y8
,
x dx

y7
,
x dx

y8

}
are all holomorphic on C, and they are linearly independent, so we see that this is a basis of the space
of differentials in H0(C,Ω1

C/C) = H0(A,Ω1
A/C). We remark that the above is also an eigenbasis for the

induced µ9-action on H0(A,Ω1
A/C).
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2. We decompose A into pieces. Note that C projects onto the elliptic curve C0 : y
3 = x(x − 1)(x − λ)

via the map (x, y) 7→
(
x, y3

)
, so C0 is a factor of A. One can see that the basis of differentials of C0 is

given by dx/y2, which pulls back to the differential dx/y6 on A. In this way, we see that the quotient
A1 := A/C0 will have H0(A1,Ω

1
A1/C) have a basis given by{

dx

y4
,
dx

y5
,
dx

y7
,
dx

y8
,
x dx

y7
,
x dx

y8

}
.

Note that we do not yet know if A1 is simple!

3. We compute some endomorphism algebras. NoteC0 hasµ3 ⊆ Aut(C0)where ζ3 acts by multiplication
on the y-coordinate, so C0 has complex multiplication by F0 := Q(ζ3).

We conclude this step by showing that A1 is simple. This will follow from the fact that A does not
have complex multiplication. Note the µ9-action on A fixes C0 (we can be seen on the level of the
Hodge structure), so it must also fix A1, so we see Q(ζ9) ⊆ EndC(A1)Q. Thus, A1 contains an isotypic
component Br (where B is simple) such that

Q(ζ9) ⊆ EndC(B
r) =Mr

(
EndC(H

1
B(B,C))

)
.

As such, we set D := EndC(B) and F := Z(D) so that d :=
√
[D : F ] and e := [F : Q] satisfy 6 | rde

(because Q(ζ9) is contained in a maximal subfield of Mr(D)) and r2d2e ≤ 2 dimA1 = 12. If we had
r2d2e = 12, thenA1 would have complex multiplication, which contradicts the fact thatAdoes not have
complex multiplication. Thus, we must instead have rde = r2d2e = 6, which implies that r = d = 1
and so A1 = B with EndC(A1) given exactly by F1 := Q(ζ9).

4. We compute some signatures. We begin with C0. Letting τi ∈ Gal(Q(ζ3)/Q) be given by τi(ζ3) := ζi3
for i ∈ {1, 2}, we see that the signature Φ0 : Gal(Q(ζ3)/Q) → Z≥0 of E0 is thus given by Φ0(τ1) = 1
and Φ0(τ2) = 0 because the second step provided an (eigen)basis of H10(C0) = H0(C0,Ω

1
C0/C).

We next consider A1. The second step provided a basis of H10(A1) = H0(A1,Ω
1
A1/C). As such, we

define σi ∈ Gal(Q(ζ9)/Q) to be the automorphism given by σi(ζ9) := ζi9 for i ∈ {1, 2, 4, 5, 7, 8}, and we
are able to compute that our signature Φ1 : Gal(Q(ζ9)/Q)→ Z≥0 is given by

Φ(σi) =


0 if i ∈ {7, 8},
1 if i ∈ {4, 5},
2 if i ∈ {1, 2}.

5. We compute MT(A)der; note that this equals Hg(A)der by Lemma 1.41. By Lemma 1.56, we have an
inclusion

Hg(A)→ Hg(C0)⊕Hg(A1)

which surjects onto each factor. Now, C0 has complex multiplication, so Hg(C0) is a torus by Propo-
sition 2.53, so Hg(A)der has trivial projection onto Hg(C0). We conclude that the above inclusion up-
grades into an isomorphism Hg(A)der → Hg(A1)

der.

To compute Hg(A1)
der, we use Proposition 2.150 to see that this equals L(A1)

der, so we complete this
step by noting that L(A1)

der
C
∼= SL2(C)3 by the computation in Lemma 1.68.

6. We compute Z(MT(A))◦C. We use Proposition 2.86 and in particular the discussion following the
proof. Indeed, setL := Q(ζ9), which we note is a Galois extension of Q containing F0F1. Then we note
that Z(MT(A))◦ ⊆ TF , where F := F0×F1 has (TF )L embedded into GL

(
H1

B(A,L)
)

as a subtorus of
the diagonal torus. Explicitly, we can choose an F -eigenbasis of H1

B(A,L) = H1
B(C0, L) ⊕ H1

B(A1, L)
as

{u1, u2, v1, v′1, v2, v′2, v4, v′4, v5, v′5, v7, v′7, v8, v′8},
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where the subscript partially indicates the F -eigenvalue. (For technical reasons, we will want to know
that {vi, v′i} is a dual basis for {v9−i, v′9−i} according to the polarization.) Then we see that (TF )L ⊆
GL
(
H1

B(A,L)
)

embeds as

{diag(µ1, µ2, λ1, λ1, λ2, λ2, λ4, λ4, λ5, λ5, λ7, λ7, λ8, λ8) : µ•, λ• ∈ Gm,L} .

The discussion following Proposition 2.86 explains that equations cutting out Z(MT(A))◦L ⊆ (TF )L
can be viewed as elements of the kernel of the map

X∗ ((NΦ∗
0
,NΦ∗

1
)
)
: X∗(TF )→ X∗(TL).

Using the established bases for these lattices, we see that our map can be written as the matrix

µ1 µ2 λ1 λ2 λ4 λ5 λ7 λ8


σ1 1 0 2 2 1 1 0 0
σ2 0 1 1 2 2 0 0 1
σ4 1 0 0 1 2 0 1 2
σ5 0 1 2 1 0 2 1 0
σ7 1 0 1 0 0 2 2 1
σ8 0 1 0 0 1 1 2 2

.

Then one can compute a basis of the kernel of the matrix, which tells us that Z(MT(A))◦L ⊆ (TF )L is
cut out by the equations

λ1λ8 = λ2λ7,

λ1λ8 = λ4λ5,

µ1µ2λ7 = λ5λ8,

λ1λ4λ7 = λ2λ5λ8.

Thus, we see that Z(MT(A))◦C
∼= G4

m,C with isomorphism given by the cocharacters (µ1, λ1, λ4, λ8).

7. We use the previous steps to compute G1
ℓ(A) when ℓ splits completely in Kconn

A . Recall we notably
know the Mumford–Tate conjecture that Gℓ(A)◦ = MT(A)Qℓ

by Proposition 2.150. Thus, we choose
ℓ to split completely in Kconn

A so that Q(ζ9) ⊆ Qℓ, allowing us to engage in the diagonalization of the
previous step. For example, the computation in Lemma 1.68 reveals that the isomorphism between
L(A)der and SL3

2 is defined over L (indeed, one merely needs to be able to take L-eigenspaces), so we
find that

Gℓ(A)
der =

{
diag

(
12, g1, g2, g4, g

−⊺
4 , g−⊺

2 , g−⊺
1

)
: g1, g2, g3 ∈ SL2,Qℓ

}
.

Continuing, we add in the equation det g = 1 to the equations cutting out Z(Gℓ(AL))◦ ⊆ (TF )Qℓ
given

in the previous step. This reveals that Z
(
G1
ℓ(AL)

)◦ ⊆ (TF )Qℓ
is cut out by the equations

µ1µ2 = 1,

λ1λ8 = 1,

λ2λ7 = 1,

λ4λ5 = 1,

λ2 = λ1λ4.

In particular, we see that Z
(
G1
ℓ(A)

)◦ ∼= G3
m,Qℓ

given by the cocharacters (µ1, λ1, λ4). In total, we find
G1
ℓ(A) ⊆ GL14,Qℓ

equals{
diag

(
µ1, µ

−1
1 , λ1g1, λ1λ4g2, λ4g4, λ

−1
4 g−⊺

4 , λ−1
1 λ−1

4 g−⊺
2 , λ−1

1 g−⊺
1

)
: µ•, λ• ∈ Gm,Qℓ

, g• ∈ SL2,Qℓ

}
.
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8. At last, we compute ST(AK) where K contains Kconn
A . By Theorem 3.23, we see that ST(A) does not

depend on the choice ℓ, so we may as well choose ℓ to split completely inKconn
A . Then we simply base-

change the result of the previous step to C, and then we may take maximal compact subgroups to see
ST is {

diag
(
µ1, µ

−1
1 , λ1g1, λ1λ4g2, λ4g4, λ

−1
4 g−⊺

4 , λ−1
1 λ−1

4 g−⊺
2 , λ−1

1 g−⊺
1

)
: µ•, λ• ∈ U1, g• ∈ SU2

}
.

(It is not too hard to see that the product of maximal compact subgroups continues to be a maximal
compact subgroup.) This completes the computation. ■

Remark 3.30. Note that MT (A) ̸= L(A) because the centers are different! This continues to be visible
in the Sato–Tate group: the first four equations µ1µ2 = λ1λ8 = λ2λ7 = λ4λ5 = 1 can be explained
by the polarization (see Lemma 2.65), but the last equation λ2 = λ1λ4 corresponds to an exceptional
Hodge class not generated by endomorphisms or the polarization.

Remark 3.31. Up to squaring, one can replace the equation µ1µ2λ7 = λ5λ8 with the equation λ1λ8 =
µ2
1µ

2
2, thus making it clear that it arises from the polarization. Note this squaring is not too much of

an issue because we had to take a determinant in Remark 2.78 anyway; in particular, by looking at the
end result of the computation, we do see that MT(A) contains the diagonalizable group cut out by our
equations where we have done the replacement with λ1λ8 = µ2

1µ
2
2.

The hypothesis that A fails to have CM is necessary, as we will see in the following two examples.

Proposition 3.32. DefineA to be the Jacobian of the proper curveC with affine chart y9 = x3− 1. Then
MT(A)C is a torus isomorphic to G4

m,C. We use this to compute ST(AK) where K contains Kconn
A .

Proof. We proceed in steps, following Proposition 3.29.

1. To begin, we once again note that C has genus 7, so A has dimension 7, and we have a basis of holo-
morpic differentials given by {

dx

y4
,
dx

y5
,
dx

y6
,
dx

y7
,
dx

y8
,
x dx

y7
,
x dx

y8

}
.

This time around, we see that µ3 × µ9 acts on C by coordinate-wise multiplication on (x, y) ∈ C.

2. We decompose A into pieces.

• NoteC projects ontoC0 : y
3 = x3− 1 by (x, y) 7→

(
x, y3

)
. (This is the quotient ofC by µ3× 1.) We

see thatC0 is an elliptic curve, and it has complex multiplicatino by µ3; for example, µ3 can act by
multiplication on y. One can compute that C0 has a basis of holomorphic differentials given by
dx/y2, which pulls back to the differential dx/y6 on C.

• Note C projects onto the proper curve C1 with affine chart y9 = x3(x − 1) by (x, y) 7→
(
x3, xy

)
,

so A has A1 := JacC1 as a factor.2 (This is the quotient of C by µ3 ⊆ µ3 × µ9 embedded by ζ 7→(
ζ, ζ
)

.) One can compute thatC1 is genus 3using the Riemann–Hurwitz formula, and then we can
compute that it has a basis of holomorphic differentials given by

{
x2 dx/y8, x2 dx/y7, x dx/y5

}
,

which pull back to the differentials
{
dx/y8, x dx/y7, dx/y5

}
on C (up to a scalar).

Note that C1 has an action by µ9 by multiplying on the y-coordinate, so Q(ζ9) ⊆ EndC(A1)Q.
However, dimA1 = 3, so we see that A1 has complex multiplication. We will check that A1 is
simple shortly.

2 Technically, we should take normalizations everywhere. We will omit these normalizations.
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• NoteC projects onto the proper curveC2 with affine chart y9 = x6(x−1) by (x, y) 7→
(
x3, x2y

)
, so

A hasA2 := JacC2 as a factor. (This is the quotient ofC by µ3 ⊆ µ3×µ9 embedded by ζ 7→ (ζ, ζ).)
One can compute that C2 has genus 3 using the Riemann–Hurwitz formula, and then we can
compute that it has a basis of holomorphic differentials given by

{
x5 dx/y8, x4 dx/y7, x2 dx/y4

}
,

which pull back to the differentials
{
x dx/y8, dx/y7, dx/y4

}
on C (up to a scalar).

Note that C2 has an action by µ9 by multiplying on the y-coordinate, so Q(ζ9) ⊆ EndC(A2)Q.
However, dimA2 = 3, so we see that A2 has complex multiplication. We will check that A2 is
simple shortly.

We spend a moment checking that A is isogenous to C0 × A1 × A2. The above computations have
provided a map C0 × A1 × A2 → A, so it is enough to check that this is an isomorphism after base-
changing to C. The computations above have shown that this map provides an isomorphism

H0
(
A,Ω1

A/C

)
→ H0

(
C0,Ω

1
C0/C

)
⊕H0

(
A1,Ω

1
A1/C

)
⊕H0

(
A2,Ω

1
A2/C

)
.

(We take a moment to remark that the right-hand side is even a decomposition of H0
(
A,Ω1

A/C

)
into

µ3-eigenspaces!) This corresponds to an isomorphism on one piece of the Hodge structure, which
we note upgrades to an isomorphism of Hodge structures because the relevant Hodge structures are
concentrated in (0, 1) and (1, 0), which are complex conjugates. We conclude that A is isogenous to
C0 ×A1 ×A2 by Theorem 2.40.

3. We compute some signatures. For our notation, we let F0 := Q(ζ3) have the embeddings {τ1, τ2},
where τ• ∈ Gal(F0/Q) sends ζ3 7→ ζ•3 ; similarly, we let F1 = F2 := Q(ζ9) have the embeddings
{σ1, σ2, σ4, σ5, σ7, σ8}where σ• ∈ Gal(Q(ζ9)/Q) sends ζ9 7→ ζ•9 . Here are our signatures.

• OnC0, we see thatH10 is spanned bydx/y2, so withµ3 acting on y, we get the signatureΦ0(τ1) = 1
and Φ0(τ2) = 0.

• On C1, we see that H10 has basis given by
{
x2 dx/y8, x2 dx/y7, x dx/y5

}
. Thus, with µ9 acting on

y, we get the signature

Φ1(σi) =

{
0 if i ∈ {5, 7, 8},
1 if i ∈ {1, 2, 4}.

One can check that Φ1 satisfies the check of Remark 2.57, proving that A1 is simple.
• On C2, we see that H10 has basis given by

{
x dx/y8, dx/y7, dx/y4

}
. Thus, with µ9 acting on y, we

get the signature

Φ2(σi) =

{
0 if i ∈ {4, 7, 8},
1 if i ∈ {1, 2, 5}.

One can check that Φ2 satisfies the check of Remark 2.57, proving that A1 is simple.

The above computation allows us to conclude that we have decomposedA into simple abelian varieties
with complex multiplication.

4. We compute MT(A)C. BecauseA has complex multiplication, we see that MT(A) is a torus by Propo-
sition 2.53 embedded in TF , where F := F0 × F1 × F2. As such, we may use Proposition 2.86 and
the surrounding discussion following the proof to compute equations cutting out MT(A) ⊆ TF . In
particular, set L := Q(ζ9), which we note is a Galois extension of Q containing F0F1F2. Then we note
that H1

B(A,L) = H1
B(C0, L)⊕H1

B(A1, L)⊕H1
B(A2, L) can be given a basis

{u1, u2, v1, v2, v4, v5, v7, v8, w1, w2, w4, w5, w7, w8},

where the subscript partially indicates the F -eigenvalue. Then we see that (TF )L ⊆ GL
(
H1

B(A,L)
)

embeds as

{diag(µ1, µ2, λ1, λ2, λ4, λ5, λ7, λ8, κ1, κ2, κ4, κ5, κ7, κ8) : µ•, λ•, κ• ∈ Gm,L} .
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The discussion following Proposition 2.86 explains that equations cutting out Z(MT(A))◦L ⊆ (TF )L
can be viewed as elements of the kernel of the map

X∗ ((NΦ∗
0
,NΦ∗

1
,NΦ∗

2
)
)
: X∗(TF )→ X∗(TL).

Using the established bases for these lattices, we see that our map can be written as the matrix

µ1 µ2 λ1 λ2 λ4 λ5 λ7 λ8 κ1 κ2 κ4 κ5 κ7 κ8


σ1 1 0 1 1 1 0 0 0 1 1 0 1 0 0
σ2 0 1 0 1 1 0 0 1 1 1 1 0 0 0
σ4 1 0 1 1 0 1 0 0 1 0 0 1 1 0
σ5 0 1 1 1 0 1 0 0 1 0 0 1 1 0
σ7 1 0 1 0 0 1 1 0 0 0 0 1 1 1
σ8 0 1 0 0 0 1 1 1 0 0 1 0 1 1

.

Then one can compute a basis of the kernel of the matrix, which tells us that MT(A)L ⊆ (TF )L is cut
out by the following equations. To begin, it turns out that (A1)L and (A2)L are isogenous, which we
can see from the six equations

λ1 = κ5,

λ2 = κ1,

λ4 = κ2,

λ5 = κ7,

λ7 = κ8,

λ8 = κ4.

(Namely, these equations imply an isomorphism of MT(A)-representations H1
B(A1, L) ∼= H1

B(A2, L)
and hence an isomorphism of Hodge structures, which gives the isogeny by Theorem 2.40.) Then there
are the equations given by the polarization (via Lemma 2.65)

µ1µ2 = κ1κ8,

κ1κ8 = κ2κ7,

κ1κ8 = κ4κ5.

Lastly, there is the exceptional equation

µ1κ7 = κ5κ8.

In total, we find that MT(A)L is a torus isomorphic to G4
m,L via the cocharacters (κ1, κ2, κ4, κ8).

5. We use the previous step to compute G1
ℓ(AK) when ℓ splits completely in K := Kconn

A . Recall that we
know the Mumford–Tate conjecture that Gℓ(A)◦ = MT(A)Gℓ

by Remark 2.144. Thus, we choose ℓ to
split completely in Kconn

A so that L ⊆ Qℓ, allowing us to engage in the diagonalization of the previous
step. Now, to computeG1

ℓ(AK) fromGℓ(AK), we simply need to add in the equation that the multipler
is 1. This reveals that G1

ℓ(AKconn
A

) ⊆ (TF )Qℓ
is cut out by the following equations. As before, we have

the six equations

λ1 = κ5,

λ2 = κ1,

λ4 = κ2,

λ5 = κ7,

λ7 = κ8,

λ8 = κ4
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given by the isogeny (A1)L ∼ (A2)L, and we have the equations given by the polarization

µ1µ2 = 1,

κ1κ8 = 1,

κ2κ7 = 1,

κ4κ5 = 1.

Lastly, there is still the exceptional equation

µ1κ7 = κ5κ8.

In total, we find that G1
ℓ(A) is a torus isomorphic to G3

m,L via the cocharacters (κ1, κ2, κ4). In total, we
see G1

ℓ(AK)◦ ⊆ GL14 is{
diag

(
κ2
κ1κ4

,
κ1κ4
κ2

, κ−1
4 , κ1, κ2, κ

−1
2 , κ−1

1 , κ4, κ1, κ2, κ4, κ
−1
4 , κ−1

2 , κ−1
1

)
: κ• ∈ Gm,Qℓ

}
.

6. At last, we compute ST(AK) where K contains Kconn
A . By Theorem 3.23, we see that ST does not

depend on the choice of ℓ, so we may as well choose ℓ to split completely inKconn
A . Then we may simply

base-change the result of the previous step to C, and then we may take maximal compact subgroups
to see ST is{

diag

(
κ2
κ1κ4

,
κ1κ4
κ2

, κ−1
4 , κ1, κ2, κ

−1
2 , κ−1

1 , κ4, κ1, κ2, κ4, κ
−1
4 , κ−1

2 , κ−1
1

)
: κ• ∈ U1

}
.

Once again, we remark that the product of maximal compact subgroups continues to be maximal com-
pact. ■

Proposition 3.33. Define A to be the Jacobian of the proper curve C with affine chart y9 = x
(
x2 + 1

)
.

Then MT(A)C is a torus isomorphic to G4
m,C. We use this to compute ST(AK) whereK containsKconn

A .

Proof. This argument is essentially the same as Proposition 3.32, so we will be a bit briefer.

1. Once again, we see that C has genus 7, so A has dimension 7, and we have a basis of holomorphic
differentials given by {

dx

y4
,
dx

y5
,
dx

y6
,
dx

y7
,
dx

y8
,
x dx

y7
,
x dx

y8

}
.

This time around, we see that µ18 acts on C by ζ18 · (x, y) = (−x,−ζ9y).

2. We decompose A into pieces.

• As usual, C0 projects onto y3 = x
(
x2 + 1

)
by (x, y) 7→

(
x, y3

)
. (This is the quotient of C by µ3.)

The Riemann–Hurwitz formula yields that C0 is an elliptic curve with complex multiplication by
µ3 acting on the y-coordinate. We see that C0 has a basis of holomorphic differentials given by
dx/y2, which pulls back to dx/y6 ln C.

• Now,C projects onto the proper curveC1 with affine chart y9 = x5(x+1) by (x, y) 7→
(
x2, xy

)
, so

A has A1 := JacC1 as a factor. (This is the quotient of C by µ2.) The Riemann–Hurwitz formula
implies that C1 has genus 3, and then we can compute that it has a basis of holomorphic differ-
entials given by

{
x4 dx/y8, x3 dx/y7, x2 dx/y5

}
, which pulls back to

{
x dx/y8, dx/y7, dx/y5

}
onC

(up to scalar).
Note that C1 has an action by µ9 acting on the y-coordinate, so Q(ζ9) ⊆ EndC(A1)Q. We will
check in the next step that A1 is simple by computing its signature and applying Remark 2.57.

133



3.1. THE STATEMENT SATO–TATE GROUPS OF GENERIC CURVES

We can see on the level of differentials that the induced mapC0×A1 → A is injective, so we letA2 be
the cokernel. In terms of Hodge structures, we can see from the computation that

H1
B(A,Q) = H1

B(C0,Q)⊕H1
B(A1,Q)⊕H1

B(A2,Q)

is a decomposition of µ18-representations because the left two spaces on the right-hand side are sta-
ble under the µ18-action. We conclude that Q(ζ9) ⊆ EndC(A2)Q as well.

3. We compute some signatures. As before, we let F0 := Q(ζ3) have {τ1, τ2} = Gal(Q(F0)/Q) where
τ• : ζ3 7→ ζ•3 , and we let F1 = F2 := Q(ζ9) have {σ1, . . . , σ8} = Gal(Q(ζ9)/Q) has σ• : ζ9 7→ ζ•9 .

• On C0, we look at the µ9-eigenbasis of H10 to conclude that our signature has Φ0(τ1) = 1 and
Φ0(τ2).

• On C1, we look at the µ9-eigenbasis of H10 to conclude that our signature is

Φ1(σi) =

{
0 if i ∈ {5, 7, 8},
1 if i ∈ {1, 2, 4}.

One can check that Φ1 satisfies the check of Remark 2.57, proving that A1 is simple.

• On A2, we take the remaining differentials from A to find that our signature is

Φ2(σi) =

{
0 if i ∈ {4, 7, 8},
1 if i ∈ {1, 2, 5}.

Again, one checks that Φ2 satisfies the check of Remark 2.57

4. At this point, we recognize that our signatures are the same as in Proposition 3.32 up to swapping
Φ1 and Φ2. Thus, up to some reordering of letters, the exact same computation goes through. Let’s
provide the result.

To be explicit, we give H1
B(A,L) = H1

B(C0, L)⊕H1
B(A1, L)⊕H1

B(A2, L) a basis

{u1, u2, v1, v2, v4, v5, v7, v8, w1, w2, w4, w5, w7, w8},

where the subscript partially indicates the F -eigenvalue, where F := F0 × F1 × F2. Then we set
L := Q(ζ9), and we see (TF )L ⊆ GL

(
H1

B(A,L)
)

embeds as

{diag(µ1, µ2, λ1, λ2, λ4, λ5, λ7, λ8, κ1, κ2, κ4, κ5, κ7, κ8) : µ•, κ•, λ• ∈ Gm,L} .

With this choice of lettering, the equations that end up cutting out MT(A)L ⊆ (TF )L are exactly the
same, so MT(A)L ∼= G4

m,L via the cocharacters (κ1, κ2, κ4, κ8).

One is now able to compute G1
ℓ(A) in the case where ℓ splits completely in K := Kconn

A . One finds the
exact same equations via the same computation, so we find G1

ℓ(AK) ⊆ GL14 is given by{
diag

(
κ2
κ1κ4

,
κ1κ4
κ2

, κ−1
4 , κ1, κ2, κ

−1
2 , κ−1

1 , κ4, κ1, κ2, κ4, κ
−1
4 , κ−1

2 , κ−1
1

)
: κ• ∈ Gm,Qℓ

}
.

Base-changing to C and taking a maximal compact subgroup, we find ST(AK) is{
diag

(
κ2
κ1κ4

,
κ1κ4
κ2

, κ−1
4 , κ1, κ2, κ

−1
2 , κ−1

1 , κ4, κ1, κ2, κ4, κ
−1
4 , κ−1

2 , κ−1
1

)
: κ• ∈ U1

}
,

as required. ■
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3.1.4 Moment Statistics
In this subsection, we explain how to numerically verify the Sato–Tate conjecture (Conjecture 3.19). Fix an
abelian varietyAof dimension g defined over a number fieldK, and choose a prime ℓand embedding ι : Qℓ ↪→
C; for example, this allows us to define the usual ℓ-adic representation ρℓ : Gal(K/K)→ GL

(
H1

ét(AK ,Qℓ)
)

.
The main idea is that the map sending g ∈ ST(A) to the characteristic polynomial of g ∈ GL2g(C) is

well-defined up to conjugacy classes, so it defines a (continuous) map Conj(ST(A))→ C2g+1, where C2g+1

simply lists out the coefficients of the characteristic polynomial. In this way, we can push the Haar measure
on ST(A) all the way to C2g+1 to compute what the distribution of the characteristic polynomial will be.

Of course, in practice, it may be difficult to compute the characteristic polynomial of[
1√
N(p)

ιρℓ(Frobp)

]
∈ Conj(ST(A))

for some prime p ofK such thatA has good reduction at p. For our application, we will only be interested in
superelliptic curves, for which this can be computed in SageMath [Aru+19]. To help out the computation a
bit more, we make two quick remarks.

Remark 3.34. Let P (T ) be the characteristic polynomial of Frobp acting on H1
ét(AFp

,Qℓ). Then we re-
mark that P (1) has a geometric interpretation as #A(Fp).

Remark 3.35. It suffices to only consider primes p which are totally split inK because such primes have
density 1. This is helpful because primes that split p completely have residue fields isomorphic to Fp
where p ∈ Z is the prime sitting below p, so we are frequently able to reduce the computation to some-
thing only involving integral coefficients.

As before, let’s begin with some elliptic curve examples. Here, we note that the characteristic polynomial
of 1

N(p) ιρℓ(Frobp) will have degree 2, with leading coefficient 1, and the condition on the multiplier (from
Proposition 3.15) implies that the constant coefficient is 1. Thus, we see that the only interesting coefficient
of the characteristic polynomial is given by the trace.

Lemma 3.36. The map tr : Conj(SU2)→ [−2, 2] is a homeomorphism, and the pushforward of the nor-
malized Haar measure of SU2 ontoConj(SU2) = [−2, 2] is given by the semicircle measure 1

2π

√
4− t2 dt.

Proof. We show the claims separately.

1. We show that tr : Conj(SU2)→ [−2, 2] is a well-defined homeomorphism. Note that tr : Conj(SU2)→
C is continuous, and all spaces in sight are compact and Hausdorff, so it is enough to check that tr is a
bijection.
A priori, tr is only defined as a map tr : Conj(SU2)→ C. To begin, we note that any element ofSU2 is di-
agonalizable by a unitary matrix, and the corresponding diagonal matrix must then look like diag(λ, λ)

where |λ|2 = 1. By writing λ = eiθ, we see that the trace of this element is 2 cos θ, so we see that
tr : Conj(SU2)→ [−2, 2] is a well-defined surjection.
It remains to check that tr is injective. Because each conjugacy class is represented by a diagonal ma-
trix, it is enough to check that g1 := diag(λ1, λ1) and g2 := diag(λ2, λ2) have tr g1 = tr g2 only if g1 and
g2 are conjugate. Well, write λ• = eiθ• , and then we see that

2 cos θ1 = 2 cos θ2,

which implies that {±θ1} = {±θ2}, so {λ1, λ1} = {λ2, λ2}. We now do casework: if λ1 = λ2, then we
see that g1 = g2 on the nose; otherwise, λ1 = λ2, and we see that[

1
−1

] [
λ1

λ1

] [
−1

1

]
=

[
λ2

λ2

]
,
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so g1 is conjugate to g2.

2. We now compute the required measures. A linear algebra argument with the condition gg† = 12 shows
that any element of SU2 can be written uniquely in the form[

α −β
β α

]
where |α|2 + |β|2 = 1. In this way, we see that SU2 is isomorphic to the unit group of the quaternions
H, so SU2 is diffeomorphic to S3 and inherits a Haar measure by pullback. Explicitly, one finds that
SU2 inherits an action on S3 by rotations, so the Lebesgue measure on S3 is invariant under the group.
Note that we have yet to normalize the Haar mesure on SU2.

We would now like to compute the volume of SU2 with given trace t. Writingα = a+ bi and β = c+di,
we see that we are forcing a = 1

2 t, which then requires the remaining coordinates to live in a sphere of
radius

√
1− 1

4 t
2. Thus, we see that our normalized Haar measure is

√
1− 1

4 t
2 dt∫ 2

−2

√
1− 1

4 t
2 dt

.

A quick substitution with t = 2 cos θ in the bottom integral reveals that it equals π, whereupon we find
that the desired measure is 1

2π

√
4− t2 dt after some rearranging. ■

Remark 3.37. In the sequel, it is occasionally more convenient to identify Con(SU2) with the collection
of diagonal matrices diag

(
eiθ, e−iθ

)
where θ ∈ [0, π). Then we see that the trace is 2 cos θ, so we produce

a measure of 2
π sin2 θ dθ on [0, π).

Example 3.38 (no complex multiplication). We continue with the elliptic curve E : y2 = x3 + x + 1
over Q studied in Example 3.25. Then we recall that ST(E) = SU2, so we may use the computation
of Lemma 3.36 to see that the Sato–Tate conjecture (Conjecture 3.17) implies that the values{

tr
1√
N(p)

ιρℓ(Frobp)

}
p prime

equidistribute according to the semicircle measure 1
2π

√
4− t2 dt on [−2, 2].

Example 3.39 (complex multiplication). We continue with the elliptic curve E : y2 = x3 + 1 over Q(ζ3)
studied in Example 3.26. Then we recall that ST(E) ∼= U1 embedded as z 7→ diag(z, z). We may write
U1 asU1 =

{
eiθ : θ ∈ [0, 2π)

}
, so we can equip this group with the normalized Haar measure 1

2π dθ. (The
map eiθ 7→ θ is a homeomorphism away from a set of measure 0.) Noting the trace of diag

(
eiθ, e−iθ

)
is

2 cos θ, we see the Sato–Tate conjecture (Conjecture 3.17) implies that the values{
tr

1√
N(p)

ιρℓ(Frobp)

}
p prime

equidistribute according to the measure 1
π ·

1√
4−t2 dt on [−2, 2].
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Example 3.40 (potential complex multiplication). We continue with the elliptic curve E : y2 = x3 + 1
over Q(ζ3) studied in Example 3.27. Then we recall that ST(E) ∼= U1 ⋊ S2, where U1 ⊆ GL2,C is
embedded as z 7→ diag(z, z), and S2 = {1, w} acts by switching the coordinates. Again, we give
U1 =

{
eiθ : θ ∈ [0, 2π)

}
the normalized Haar measure 1

2π dθ, so U1 ⋊S2 gets the normalized Haar mea-
sure 1

4π dθ. For u = diag
(
eiθ, e−iθ

)
∈ U , we note that the trace of (u, 1) ∈ U1 ⋊ S2 is simply 2 cos θ while

the trace of (u,w) ∈ U1⋊S2 vanishes. Thus, we see the Sato–Tate conjecture (Conjecture 3.17) implies
that the values {

tr
1√
N(p)

ιρℓ(Frobp)

}
p prime

equidistribute according to the measure 1
2π ·

1√
4−t2 dt +

1
2δ0 dt on [−2, 2]. Here, δ0 refers to the δ-

distribution concentrated at 0.

We now return to the Jacobian of (the normalization of the proper curve with affine chart) y9 = x(x−1)(x−
λ). It will be helpful to take products of Haar measures in the sequel. The following result is an easier form
of [DE14, Proposition 1.5.6].

Lemma 3.41. Fix a locally compact topological group G. Choose closed subgroups H,K ⊆ G such that
G = HK and K ⊆ CG(H). Letting dh and dg be left Haar measures on H and K, respectively, we find
that dk dh is a left Haar measure on G.

Proof. We are tasked with showing that the integral∫
H

∫
K

f(hk) dk dh

is left-invariant for G. It is left-invariant for H with no content, so it suffices to show the same for K. This
follows after some manipulation because K commutes with H. ■

Remark 3.42. In fact, [DE14, Proposition 1.5.6] shows something much stronger: one can replace the
strong group-theoretic condition that K ⊆ CG(H) with merely that K is compact. In fact, a careful
reading of the proof there reveals that we may even replace the condition thatK is compact with merely
having H ∩K compact and ∆G|K = 1, where ∆G is the modular function on G.

Here is our application.

Proposition 3.43. Let A be the Jacobian of the normalization of the proper curve with affine chart y9 =
x(x− 1)(x− λ), where λ lives in a number field. Suppose thatA does not have complex multiplication.
We compute a Haar measure on ST(AK) whenever K contains Kconn

A .

Proof. The Sato–Tate computation of Proposition 3.29 (combined with the conjugacy class computation of
Lemma 3.36) reveals that an element of Conj(ST(A)) can be written as

diag

([
eiα0

e−iα0

]
,

[
eiα1+iθ1

eiα1−iθ1

]
,

[
eiα1+iα4+iθ2

eiα1+iα4−iθ2

]
,

[
eiα4+iθ4

eiα4−iθ4

]
,

[
e−iα4+iθ4

e−iα4−iθ4

]
,

[
e−iα1−iα4+iθ2

e−iα1−iα4−iθ2

]
,

[
e−iα1+iθ1

e−iα1−iθ1

])

where α• ∈ [0, 2π) and θ• ∈ [0, π). Technically, the map (α•, θ•) : [0, 2π)
4 × [0, π)3 → Conj(ST(A)) is the

finite-to-one because Z(ST(A))◦ ∩ ST(A)der is finite, but this will make no effect on our computations as
long as we normalize to have total volume 1 and only integrate against genuine functions on Conj(ST(A)).
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Anyway, we see that the trace is given by

2 cosα0 + 2 cos(α1 + θ1) + 2 cos(α1 − θ1) + 2 cos(α1 + α4 + θ2) + 2 cos(α1 + α4 − θ2)
+ 2 cos(α4 + θ4) + 2 cos(α4 − θ4).

We finish by remarking that Lemma 3.41 gives our Haar measure as

1

(2π)3
dα0 dα1 dα4 ·

1

π2

(
2 sin2 θ1 · 2 sin2 θ2 · 2 sin2 θ4

)
dθ1 dθ2 dθ4,

which is what we wanted. (Note we used Remark 3.37 for the Haar measure on SU2.) ■

Proposition 3.44. Let A be the Jacobian of the normalization of the proper curve with affine chart y9 =
x3− 1. Suppose thatA does not have complex multiplication. We compute a Haar measure on ST(AK)
whenever K contains Kconn

A .

Proof. The Sato–Tate computation of Proposition 3.32 reveals that an element ofConj(ST(A)) can be writ-
ten as

diag
(
eiα2−iα1−α4 , eiα1+iα4−iα2 , e−iα4 , eiα1 , eiα2 , e−α2 , e−α1 , eiα4 , eiα1 , eiα2 , eiα4 , e−iα4 , e−iα2 , e−iα1

)
where α• ∈ [0, 2π). For example, we see that the trace is given by

2 cos cos(α1 − α2 + α4) + 4 cosα1 + 4 cosα2 + 4 cosα4

We finish by remarking that Lemma 3.41 gives our Haar measure as

1

(2π)3
dα1 dα2 dα4,

which is what we wanted. ■

Remark 3.45. As remarked at the end of the proof of Proposition 3.33, we can run the exact same com-
putation with working the curve given by y9 = x

(
x2 + 1

)
because the resulting Sato–Tate group is the

same up to reordering the basis.

Remark 3.46. For the previous examples, there are more interesting coefficients in the characteristic
polynomial than merely the trace. Hoever, they are rather lengthy to write down, so we have chosen
not to.

It still remains to explain how we numerically verify the Sato–Tate conjecture. The idea is that we can try to
compute

tr
1√
N(p)

ιρℓ(Frobp)

for various primes p and then compare it with what is expected from∫
Conj(ST(A))

tr g dg,

where dg refers to the pushforward of the Haar measure from Conj(ST(A)). One usually expects the above
integral to vanish, so one can either look at other coefficients of the characteristic polynomial or at powers
of tr g. In the sequel, we will compute with only powers of tr g for simplicity, but we do remark that one can
typically recover the other coefficients via a combination of Vieta’s formulae and Newton’s sums.

As usual, let’s begin with elliptic curves. Here, explicit formulae are possible.
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Example 3.47 (no complex multiplication). We continue with the elliptic curve E : y2 = x3 + x+ 1 over
Q studied in Examples 3.25 and 3.38. Fix some integer m ≥ 0. Using the given Haar measure (from

Remark 3.37), we find that one expects the average of
{(

tr 1√
N(p)

ιρℓ(Frobp)

)m}
p prime

to be

∫ π

0

(2 cos θ)m
2

π
sin2 θ dθ =

{
1

m/2+1

(
m
m/2

)
if m is even,

0 if m is odd,

where the last equality is verified by expanding 2 cos θ = eiθ + e−iθ and 4 sin2 θ = 2− e2iθ − e−2iθ.

Example 3.48 (complex multiplication). We continue with the elliptic curve E : y2 = x3 + 1 over Q(ζ3)
studied in Examples 3.26 and 3.39. Fix some integer m ≥ 0. Using the given Haar measure, we find

that one expects the average of
{(

tr 1√
N(p)

ιρℓ(Frobp)

)m}
p prime

to be

∫ 2π

0

(2 cos θ)m
1

2π
dθ =

{(
m
m/2

)
if m is even,

0 if m is odd,

where the last equality is verified by expanding 2 cos θ = eiθ + e−iθ.

Example 3.49 (complex multiplication). We continue with the elliptic curveE : y2 = x3+1 over Q stud-
ied in Examples 3.27 and 3.40. Fix some integer m ≥ 0. Using the given Haar measure, we find that

one expects the average of
{(

tr 1√
N(p)

ιρℓ(Frobp)

)m}
p prime

to be

∫ 2π

0

(2 cos θ)m
1

4π
dθ =

{
1
2

(
m
m/2

)
if m is even,

0 if m is odd,

where the last equality is verified by expanding 2 cos θ = eiθ + e−iθ.

We now return to y9 = x(x − 1)(x − λ). Here, we do not attempt to give explicit formulae, but we list the
first few expected values, which were computed using SageMath.

Example 3.50. Let A be the Jacobian of the normalization of the proper curve with affine chart y9 =
x(x−1)(x−10). SageMath can verify thatAdoes not have complex multiplication. Form ∈ {0, 1, . . . , 6},

we use Proposition 3.43 to find that we expect the aveage of
(
tr 1√

N(p)
ιρℓ(Frobp)

)m
as p varies over

primes K (for K containing Kconn
A ) to be as follows.

m 0 1 2 3 4 5 6
expected 1 0 8 0 186 0 7160

actual 1.0 0.0 7.8 0.2 180 16 6400

Here, the “actual” amounts have been rounded to two significant digits, and they were computed by
averaging over primes p < 216289 which were 1 (mod 9); the condition p ≡ 1 (mod 9) corresponds to
splitting completely in Q(ζ9) (see Remark 3.35). These “actual” amounts suggest that Kconn

A = Q(ζ9),
a fact which we will verify in the next chapter.
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Example 3.51. Let A be the Jacobian of the normalization of the proper curve with affine chart y9 =
x3 − 1, where λ lives in a number field. For m ∈ {0, 1, . . . , 6}, we use Proposition 3.44 to find that we

expect the aveage of
(
tr 1√

N(p)
ιρℓ(Frobp)

)m
as p varies over primes K (for K containing Kconn

A ) to be

as follows.
m 0 1 2 3 4 5 6

expected 1 0 26 0 2118 0 239300
actual 1.0 0.0 25 6.0 2000 890 220000

Here, the “actual” amounts have been rounded to two significant digits, and they were computed by
averaging over primes p < 100000 which were 1 (mod 9); the condition p ≡ 1 (mod 9) corresponds to
splitting completely in Q(ζ9) (see Remark 3.35). These “actual” amounts suggest that Kconn

A = Q(ζ9),
a fact which we will verify in the next chapter.

Remark 3.52. If one runs the same computation as in the previous example with y9 = x
(
x2 + 1

)
, one

should further restrict primes past p ≡ 1 (mod 9) in order to see the correct moment statistics. This is
because now Kconn

A ̸= Q(ζ9).

3.2 The Utility of L-Functions
In this section, we will explain how L-functions are used in analytic number theory. Before delving into the
main content of this section, we give a rough indication of what an L-function is, though we will wait to
explain why we care. One generally expects an L-function to have a Dirichlet series

L(s) =

∞∑
n=1

bn
ns

which converges in some region {s ∈ C : Re s > σ}, where σ is a real number. (We may call σ the “abscissa”
of convergence.) In this situation, one may find that σ to is a pole ofL(s) (though not always), but we usually
expect L(s) to admit a meromorphic continuation beyond {s ∈ C : Re s > σ}.

Another important feature is that L-functions frequently come with “Euler products” that look like

L(s) =
∏
p

Lp(s),

where the “Euler factor” Lp(s) is a rational function in p−s. We will be mostly interested in non-vanishing
and holomorphy of our L-functions, and these properties tend to be insensitive to adjusting finitely many
Euler factors. Thus, we pick up the following notation.

Notation 3.53. Given two infinite products
∏
p ap and

∏
p bp, we write∏

p

ap
.
=
∏
p

bp

if and only if the two products are equal up to a finite number of nonzero terms.

3.2.1 The Prime Number Theorem
To prove an equidistribution result, one needs to end up proving some natural density results. For a natural
density result, one needs to be able to count a total in order to estimate the denominator. Thus, for Con-
jecture 3.17, we will need to count the number of primes. As such, in this subsection, we will pick up some
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tools from analytic number theory, and then we will prove the prime number theorem as an application. Our
exposition is very standard; for example, all arguments are results can be found in [Mur08, Chapter 3].

Formally, the prime number theorem states that∑
p≤x

1 ∼ x

log x
.

Now, even though we are interested in counting primes, it is easier to prove a result of the form∑
p≤x

log p ∼ x

because the right-hand side is simpler (roughly speaking). Quickly, we give names to our “prime-counting”
functions of interest.

Definition 3.54. For x > 0, define π(x) as the number of primes p ≤ x, and define

ψ(x) :=
∑

p prime,k>0

pk≤x

log p.

For brevity, we let Λ(n) be log p if n is a power of a prime p and 0 otherwise; then ψ(x) =
∑
n≤x Λ(n).

It is easier to estimate ψ than π, but their estimates can be shown to be equivalent. To explain this, we use
Abel summation.

Proposition 3.55 (Abel summation). Choose a sequence of complex numbers {bn}n≥1, and set B(x) :=∑
n≤x bn. For any continuously differentiable f : [0,∞)→ C, we have

∑
a≤n≤x

bnf(n) = B(x)f(x)−
∫ x

1

B(t)f ′(t) dt.

Proof. The main idea is to write bn = B(n)−B(n− 1), so telescoping shows∑
n≤x

bnf(n) = B(⌊x⌋)f(⌊x⌋)−
∑
n<⌊x⌋

B(n)(f(n+ 1)− f(n)).

Now, f(n+ 1)− f(n) =
∫ n+1

n
f ′(t) dt, so the sum collapses into the integral

∑
n≤x

bnf(n) = B(⌊x⌋)f(⌊x⌋)−
∫ ⌊x⌋

1

B(t)f ′(t) dt.

It remains to move from ⌊x⌋ to x, for which we note that B(t) = B(⌊x⌋) for t ∈ [⌊x⌋ , x], so

B(x)f(x)−B(⌊x⌋)f(⌊x⌋) =
∫ x

⌊x⌋
B(t)f ′(t) dt,

thereby completing the proof. ■

Corollary 3.56. If ψ(x) ∼ x, then π(x) ∼ x/ log x.
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Proof. Given ψ(x) ∼ x, we begin by claiming
∑
p≤x log p ∼ x. Indeed,∣∣∣∣∣ψ(x)−∑

p≤x

log p

∣∣∣∣∣ = ∑
p prime,k>1

pk≤x

log p.

We bound this sum unintelligently: it is
log2 x∑
k=2

∑
p≤x1/k

log p ≤ (log2 x)(
√
x log x),

which is o(x), and the claim follows.
We now show π(x) ∼ x/ log x. This requires Abel summation in the form of Proposition 3.55. Indeed,

we see π(x) equals∑
n≤x

1is prime(n) log n ·
1

log n
=

1

log x

∑
p≤x

log p+

∫ x

2

(∑
p≤x

log p

)
1

t(log t)2
dt.

Thus, it remains to show that the integral is o(x/ log x). Well,
∑
p≤x log p ∼ x, so it is enough to show that

the intgral
∫ x
2
(log t)−2 dt is o(x/ log x). Well, for x large, we see that∫ √

x

2

1

(log t)2
dt+

∫ x

√
x

1

(log t)2
dt ≤

√
x+

x

(log
√
x)2

,

which is manifestly o(x/ log x). ■

Remark 3.57. In fact, one can reverse the application of Proposition 3.55 to show the reverse implica-
tion, but we will not need this.

We will spend the rest of our time trying to show that ψ(x) ∼ x. We will use a weak form of the Weiner–
Ikehara theorem to prove this from some analytic properties of the Riemann zeta function. As such, we
spend some time working towards the Weiner–Ikehara theorem. Our approach follows [New80] and uses
the following Tauberian theorem.

Theorem 3.58 (Newman). Let f : [0,∞) → C be a bounded and piecewise continuous function, and let
F (s) :=

∫
R+ f(t)e

−st dt denote the Laplace transform. Suppose that F (s) admits an analytic continua-
tion to the half-plane {s ∈ C : Re s ≥ 0}. Then the integral∫

R+

f(t) dt

converges and equals F (0).

Proof. In order to estimate with convergent integrals, for any T > 0, we define the function FT : C→ C

FT (s) :=

∫ T

0

f(t)e−st dt.

We quickly remark that F is analytic on {s ∈ C : Re s > 0} for free because boundedness of f implies that
the integral converges in this region; similarly, we note that FT is automatically entire for any T > 0.

Our goal is to show that FT (0) → F (0) as T → ∞. We will estimate |F (0)− FT (0)| via some clever
contour integration. Fix some R > 0, which will eventually tend to∞. Then we note that compactness of
the interval {bi : −R ≤ b ≤ R} implies that there is δ > 0 such that the analytic continuation of F extends to
an open set containing the box {a+ bi : a ≥ −δ,−R ≤ b ≤ R}. We now let γ denote the following contour,
oriented counterclockwise.
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R

δ
γ

We also let γ+ and γ− denote the parts in the right-half and left-half planes, respectively. Now, the main
trick is to note that

F (0)− FT (0) =
1

2πi

∫
γ

F (s)− FT (s)
s

· esT
(
1 +

s2

R2

)
ds

by the Cauchy integral formula. (The magic will come from the strange factor esT
(
1 + s2/R2

)
.) We now

estimate this integral as (in order) T →∞, δ → 0, and R→∞.

• We estimate the integral on γ+. This can be done directly. On one hand, expanding out the integral
reveals

|F (s)− FT (s)| ≤ ∥f∥∞ ·
e−T Re s

Re s
.

On the other hand, we note s/R is on the unit circle, so∣∣∣∣ests
(
1 +

s2

R2

)∣∣∣∣ ≤ eT Re s

R
· 2Re(s/R).

Combining estimates, we bound our integral by

|F (0)− FT (0)| ≤
∥f∥∞
R

,

which vanishes as R→∞, as required.

• To estimate the integral on γ−, we split the integral into a sum of integrals of F and FT separately.
In this point, we bound the integral of FT . Here, FT is entire, we may replace the contour γ− with a
semicircle of radius R in the left-half plane. Proceeding as in the above point, we note that

|FT (s)| ≤ ∥f∥∞ ·
e−T Re s

−Re s

by expanding out the integral, and then estimating est
(
1 + s2/R2

)
as before yields∣∣∣∣∣ 1

2πi

∫
γ−

FT (s)

s
· esT

(
1 +

s2

R2

)
ds

∣∣∣∣∣ ≤ ∥f∥∞R ,

which again vanishes as R→∞.

• It remains to bound the integral of F over γ−. This will require some care. We will split the estimates
into the horizontal and vertical pieces. Throughout,R and δ remain fixed, and we will only sendT →∞;
in particular, F is bounded in the region of interest, so we may ignore its contribution.

– On the horizontal pieces, for δ > 0 small enough, we may still find that our integrand is on the
order of eT Re s · 2Re s, as in the first point. However, we note that the function x 7→ xe−x on
R+ achieves its maximum at (1, 1/e), so with Re s < 0, we see that our integrand is bounded by
e−1/T . To complete our estimate, we send T →∞.
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– On the vertical piece, for δ > 0 small enough, we note∣∣∣∣esTs
(
1 +

s2

R2

)∣∣∣∣ ≤ 3e−δT

δ
.

Sending T →∞ causes this piece to vanish. ■

We are now ready to prove our weakened Weiner–Ikehara theorem. We follow [Vat15, Theorem 2].

Theorem 3.59 (Weiner–Ikehara). Choose a sequence of nonnegative real numbers {bn}n≥1, and set
L(s) :=

∑
n≥1 bnn

−s and B(x) :=
∑
n≤x bn. Suppose the following.

(i) The series L(s) converges absolutely for Re s > 1.

(ii) The functionL(s)admits a meromorphic continuation toRe s = 1and has no poles except possibly
a simple pole at s = 1 with residue c.

(iii) We have B(x) = O(x).

Then B(x) = cx+ o(x).

Proof. There are two steps.

1. By Proposition 3.55, we see that

L(s) = s

∫ ∞

1

B(t)t−s−1 dt

holds for Re s > 1. Now, the idea is to apply Theorem 3.58 to the integral∫ ∞

0

B(et)− cet

et
e−st dt =

L(s+ 1)

s+ 1
− c

s
,

where the equality follows from the previous one after the substitutions s 7→ s+1 and t 7→ et. Notably,
we are allowed to apply Theorem 3.58 because one already knows that the function e−tB (et) − c is
bounded by (iii), and the right-hand side provides the required analytic continuation. Thus, we are told
that ∫ ∞

0

B(et)− cet

et
dt =

∫ ∞

1

B(t)− ct
t2

dt

converges.

2. We are now ready to conclude. We must show that B(x)/x → 1 as x → ∞. Suppose for the sake of
contradiction this is not the case; then either lim supx→∞B(x)/x > c or lim infx→∞B(x)/x < c. We
handle the case lim supx→∞B(x)/x > c because the other case is similar. In this case, there is ε > 0
and an infinite sequence {xi}i≥1 tending to infinity such that B(xi)/xi > c(1 + ε) for all i ≥ 1. For any
such xi, we see that ∫ (1+ε)xi

xi

B(t)− ct
t2

dt ≥
∫ (1+ε)xi

xi

(c+ ε)xi − ct
t2

dt.

Upon a change of variables, we see this integral equals
∫ 1+ε

1
(c(1+ε)−ct)t−2 dt, which is some nonzero

constant not depending on xi. Because we can let the xi tend to infinity, we conclude that the integral∫∞
1

(B(t)− ct)t−2 dt cannot converge! This is our required contradiction. ■

Remark 3.60. Note thatL is by definition real on the real axis (when the series converges), which implies
that the residue c must be real because the residue equals the limit of sL(s) as s→ 1+.
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Remark 3.61. The hypothesis (c) in the statement of Theorem 3.59 is not necessary, but one requires a
somewhat more technical proof.

We will now apply Theorem 3.59 to show ψ(x) ∼ x. Because (iii) of Theorem 3.59 is unrelated to the other
two conditions, we handle it first. The argument is combinatorial.

Lemma 3.62 (Chebychev). We have ψ(x) = O(x).

Proof. Arguing as in Corollary 3.56, it is enough to show that
∑
p≤x log p = O(x). We proceed in steps.

1. For any n ≥ 0, we claim that
∑
n<p≤2n log p < 2n log 2. The idea is to consider

(
2n
n

)
. By expanding

out its prime factorization, we note that
(
2n
n

)
has each prime factor p in the range n < p ≤ 2n, so

log
(
2n
n

)
≥
∑
n<p≤2n log p. On the other hand, the binomial theorem requires

(
2n
n

)
< (1 + 1)2n, so

log
(
2n
n

)
< 2n log 2, as required.

2. For any ν ≥ 0, we claim that
∑
p≤2ν log p < 2ν+1 log 2. Indeed, this sum is

ν−1∑
k=0

( ∑
2k<p≤2k+1

log p

)
≤
ν−1∑
k=0

2k+1 log 2

by the previous step, from which the claim follows.

3. We complete the proof. For any x > 1, we may find ν ≥ 0 such that 2ν ≤ x < 2ν+1. Then
∑
p≤x log p is

bounded by 2ν+2 log 2 by the previous step, but this is in turn bounded by 4x log 2, so we are done. ■

For (i) of Theorem 3.59, we must explain the relevance of the Riemann ζ-function to our argument.

Definition 3.63 (Riemann ζ-function). We define the Riemann ζ-function by

ζ(s) :=

∞∑
n=1

1

ns
.

Lemma 3.64. For s such that Re s > 1, we have ζ(s) ̸= 0 and

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns
.

This series also converges absolutely for Re s > 1.

Proof. Unique prime factorization produces the Euler product

ζ(s) =
∏
p

1

1− p−s
,

so taking logarithms implies
log ζ(s) =

∑
p

− log
(
1− p−s

)
.

Using the Taylor expansion of log(1− x), we find that

log ζ(s) =
∑
p

∞∑
k=1

1

kpks
.
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The claimed equality would now follow by taking the derivative with respect to s, but of course, we must
know that log ζ(s) is an analytic function to be able to do this. Well, we will actually show that the right-
hand side is absolutely convergent, which we note then implies ζ(s) ̸= 0. To check absolute convergence,
we may rearrange our sum, so we sum over k. The k = 1 term is bounded by ζ(Re s), which is finite. For the
remaining terms, we bound our sum in magnitude by

∞∑
n=1

∞∑
k=2

1

nk
=

∞∑
n=1

1/n2

1− 1/n
.

The summand is 1
n(n−1) , so the entire sum converges. ■

Thus, the function L(s) arising from trying to show ψ(x) ∼ x is simply ζ ′(s)/ζ(s). It remains to show the
required facts about meromorphic continuation for (ii). We begin by showing that ζ continues.

Lemma 3.65. The function ζ(s) admits a meromorphic continuation to Re s > 0 with no poles except a
simple pole at s = 1 with residue 1.

Proof. We use Abel summation. By Proposition 3.55, we see that

ζ(s) = s

∫ ∞

1

⌊t⌋ t−s−1 dt.

Now, we write ⌊t⌋ = t− {t} to see

ζ(s) =
s

s− 1
− s

∫ ∞

1

{t}t−s−1 dt.

The listed claims will follow once we show that the reminaing integral I(s) is analytic on Re s > 0. Well, we
see

|I(s)| ≤
∫ ∞

1

1

tRe s+1
dt =

1

Re s
,

so the integral is always finite, so the integral is analytic because the integrand is.3 ■

Thus, the check (ii) of Theorem 3.59 amounts to the following non-vanishing result.

Proposition 3.66. If s ∈ C has Re s = 1, then ζ(s) ̸= 0.

Proof. The following proof is tricky. We proceed in steps, following [Mur08, Section 3.2].

1. For σ > 1 and t ∈ R, we claim that

Re log ζ(σ + it)
?
=

∞∑
n=2

Λ(n) cos(t log n)

nσ log n
.

Well, the argument of Lemma 3.64 (equivalently, integrating the statement) shows that

log ζ(s) =
∑
p

∞∑
k=1

1

kpks
,

3 This point techincally requires some care because one needs to apply some kind of dominated convergence theorem as in [Mat01].
Our proof actually shows that I(s) is analytic on any region {s : Re s > σ} for any σ > 0, from which I(s) being analytic on {s : Re s >
0} follows by taking unions.
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where s = σ + it. This sum absolutely converges (as shown in Lemma 3.64), so we may view it as a
sum over prime-powers n = pk, in which case we see that the summand is Λ(n)n−s/ log n. Thus, we
see that

log ζ(s) =

∞∑
n=2

Λ(n)

nσ log n
· n−it.

We conclude by noting that Ren−it = cos(t log n).

2. For σ > 1 and t ∈ R, we claim that

∣∣ζ(σ)3ζ(σ + it)4ζ(σ + 2it)
∣∣ ?
≥ 1.

Well, by taking logarithms, it is enough to show that

3Re log ζ(σ) + 4Re log ζ(σ + it) + Re log ζ(σ + 2it)
?
≥ 0.

By the previous step, we see that it is enough to check that

3 + 4 cos θ + cos 2θ ≥ 0

for any θ ∈ R. This amounts to mimizing the function 4 cos θ+cos 2θ; taking the derivative reveals that
minima will occur when sinx = 0 or cosx = 1, so x is a multiple of π. Thus, we complete this step by
noting that the above inequality holds when x is a multiple of π.

3. We conclude the proof. Fix some nonzero real number t, and we would like to show that ζ(1+ it) ̸= 0.
Well, suppose for the sake of contradiction that ζ(1 + it) = 0. Then

lim
σ→1+

ζ(σ)3ζ(σ + it)4ζ(σ + 2it) = 0

because the order of the zero at σ = 0 is at least−3 + 4+ 0 > 0. This contradicts the previous step, so
we are done. ■

We are now ready to prove the Prime number theorem.

Theorem 3.67 (Prime number). We have π(x) ∼ x/ log x.

Proof. It only remains to synthesize the discussion from this subsection. By Corollary 3.56, it is enough
to show ψ(x) ∼ x. For this, we will use Theorem 3.59 applied to the sequence {Λ(n)}n≥1, for which
Lemma 3.64 explains makes the Dirichlet series equal to −ζ ′(s)/ζ(s). It remains to check the three con-
ditions in Theorem 3.59.

(i) The absolute convergence of −ζ ′(s)/ζ(s) follows because Λ(n) = O(nε) for any ε > 0, so the series
converges absolutely and uniformly on compacts on any region {s ∈ C : Re s > ε} for any ε > 0.

(ii) Because ζ(s) is nonzero on {s : Re s = 1}, we conclude that −ζ ′(s)/ζ(s) admits a meromorphic con-
tinuation to this line. We already know that we are defined everywhere except at s = 1, and we see
that having ζ have a simple pole with reside 1 at s = 1 implies the same for−ζ ′(s)/ζ(s) by expanding
out a Taylor series at s = 1.

(iii) Lastly, we see ψ(x) = O(x) by Lemma 3.62. ■
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3.2.2 The Prime Ideal Theorem
In the sequel, we will want to count not just rational primes but also for number fields, so we want to extend
Theorem 3.67 to number fields. The method remains the same, though we will not give a complete proof
now because showing the required meromorphic continuation is harder. Our exposition loosely follows
[RV99, Sections 7.4 and 7.7], which in turn follows [Hei10].

Here are our prime-counting functions.

Definition 3.68. Fix a number field K. For x > 0, define πK(x) as the number of prime ideals p with
N p ≤ x. Now, define ΛK as a function on the ideals ofOK by

ΛK(I) :=

{
log N p if I = pk for k ≥ 1,

0 else,

and we set ψK(x) :=
∑

N(I)≤x ΛK(I).

This time around, the relevant L-function for the Weiner–Ikehara theorem is as follows.

Definition 3.69 (Dedekind zeta function). Fix a number fieldK. Then we define the Dedekind ζ-function
as

ζK(s) :=
∑
I⊆OK

1

N(I)s
.

Remark 3.70. As in Lemma 3.64, we note that one has an Euler product

ζK(s) =
∏

p prime

1

1−N p−s
.

It will later be convenient to “twist” our Dedekind zeta function slightly.

Definition 3.71 (HeckeL-function). Fix a number fieldK and a continuous characterχ : K×\A×
K → C×.

Factoring χ =
∏
v χv as a product over places ofK, we define the Hecke L-function as L(χ) :=

∏
p(1−

χp(p))
−1, where

χp(p) :=

{
χp(ϖp) if χp|O×

p
= 1,

0 else,

whereϖp ∈ p is a uniformizer. We may call the former case “unramified” and the latter case “ramified.”
If χ is a unitary character (i.e., imχ ⊆ S1), then we may also write L(s, χ) := L (χ |·|s).

Remark 3.72. By expanding out (1− χp(p))
−1 =

∑∞
k=0 χp(p)

k, we see that one can recover a “Dirichlet
series” expansion for L(s, χ) in the form

L(s, χ) =
∑
I⊆OK

χ(I)

N(I)s

for suitably defined χ(I) (depending on its prime factorization).

Example 3.73. If χ is the trivial character, then we recover the Dedekind ζ-function.
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Example 3.74. Take K = Q. Given a character χ : (Z/nZ)× → C×, we abuse notation and lift χ to a
character K×\A×

K → C× via the composition

Q×\A×
Q = R+ ×

∏
p

Z×
p ↠

∏
p

Z×
p ↠ (Z/nZ)× χ→ C×.

Upon expanding out the Euler product, we find

L(s, χ) =

∞∑
n=1

χ(n)

ns
.

We begin by stating part of the required analytic check.

Lemma 3.75. Fix a number field K and a continuous unitary character χ : K×\A×
K → C×. Then L(s, χ)

converges absolutely and is nonzero for s such that Re s > 1.

Proof. We will instead show that

logL(s, χ) =
∑
p

− log
(
1− χp(p)N p−s

)
absolutely converges when Re s > 1. (Some formal business involving Euler products can then show that
the Dirichlet series described in Remark 3.72 also converges absolutely.) Using the Taylor expansion, our
sum is

logL(s, χ) =
∑
p

∑
k≥1

χp(p)
k

kN pks
.

Now, to check absolute convergence, we see that may replace
∣∣χp(p)

k
∣∣ ∈ {0, 1}with 1, essentially reducing

to the case where χ = 1.
We now find a way to reduce to the case for K = Q, where the result follows from the argument of

Lemma 3.64. Well, for each prime p, we see that N p ≥ p where p is the prime lying over p. Further, there
are at most [K : Q] primes of K sitting above p, so we see that

|logL(s, χ)| ≤ [K : Q]
∑
p

∑
k≥1

1

kpkRe s
.

We now have reduced to the situation in Lemma 3.64, so we are done. ■

Remark 3.76. Term-by-term differentiation shows that the Dirichlet series defining −L′(s, χ)/L(s, χ)
continues to be absolutely convergent for s satisfying Re s > 1. In particular, we see that

−ζ
′
K(s)

ζK(s)
=
∑
I⊆OK

ΛK(I)

N(I)s
.

This time around, one lacks the integration trick done in Lemma 3.65. The proof is significantly more in-
volved, so we merely state the result we need.

Theorem 3.77 (Hecke). Fix a number field K and a continuous unitary character χ : K×\A×
K → C×.

Then L(s, χ) admits a meromorphic continuation to {s : Re s > 0}. Further, L(s, χ) has no poles except
a simple pole when χ |·|s is trivial on all unramified primes.
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Proof. It is possible to prove an analytic continuation to {s : Re s = 1} “combinatorially,” essentially by
counting ideals of bounded norm; for example, see [ME05, Section 11.2]. However, the best proofs of this
result go through Tate’s thesis [Tat10]. See also [RV99, Theorem 7-19]. ■

Because it is more within reach (and closer in flavor to the results we are interested in), we will prove the
needed non-vanishing result.

Proposition 3.78. Fix a number field K and a continuous unitary character χ : K×\A×
K → C×. If s ∈ C

has Re s = 1, then L(s, χ) ̸= 0.

Proof. Note that L(s + it, χ) = L
(
s, χ |·|it

)
, so we may twist χ in order to assume that s = 1. Now, if χ is

trivial on the finite adeles (A∞
K )×, then Theorem 3.77 explains that there is a pole, so there is nothing to do.

We now admit two lengthy cases. There are two lengthy cases.

• Suppose that χ2
p is nontrivial on some unramified prime p. In this case, we may proceed as in Proposi-

tion 3.66: for σ > 1, an expansion as in Lemma 3.75 finds that

Re logL(σ, χ) =
∑
p

∑
k≥1

cos(kθp)

N pkσ
,

where θp ∈ R is chosen so that χp(p) = eiθp . But now the trigonmetric identity 3 + 4 cos θ + cos 2θ
proven in Proposition 3.66 verifies that∣∣L(σ, 1)3L(σ, χ)4L(σ, χ2)

∣∣≫ 1,

where the implied constant comes from replacing the Euler product for L(σ, 1) with one with the cor-
rect Euler factors at ramified primes. We now send σ → 0+ and see that having L(σ) = 0 would force
the entire quantity to vanish by pole-counting: we have a zero of order at least−3 + 4 + 0 > 0, where
notably, the hypothesis implies that there is no pole at L(1, χ2).

• Now suppose that χ2 is trivial on all unramified primes. The idea is to consider the Dirichlet series
L(s) := ζK(s)L(s, χ), for which one can use the Dirichlet convolution to find equals

L(s) =
∑
I⊆OK

( ∑
I=AB

χ(B)

)
1

N(I)s
,

for suitably defined χ(I). We are going to appeal to some somewhat difficult fact about Dirichlet se-
ries. To this end, we want some input from the coefficient b(I) :=

∑
I=AB χ(B). Multiplicativity reveals

that
b(I) =

∏
p

(
1 + χ(p) + · · ·+ χ(pνp(I)

)
,

and χ outputs to {−1, 0, 1}, so we see that b(I) is a nonnegative integer always. Furthermore, b(I)
is nonzero when I is a square (because each factor is nonzero), so we see that L(s) ≥ ζK(2s). For
example, the pole at s = 1 for ζK(2s) then implies that L(s)’s abscissa of holomorphy cannot go past
{s : Re s = 1/2}.

Now, becauseL(s)has all nonnegative coefficients, its abscissa of holomorphy agrees with its abscissa
of absolute convergence [RV99, Lemmas 7-29]. Thus, if L(s, χ) has a zero at s = 1, then L(s) will
succeed at being holomorphic at s = 1, so the abscissa of holomorphy for L(s) goes all the way to
Re s = 0 by Theorem 3.77. This contradicts the previous paragraph. ■

At long last, we are ready to apply Theorem 3.59.
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Theorem 3.79 (Prime ideal). We have

{p : N p ≤ x} ∼ x

log x
.

Proof. Arguing as in Corollary 3.56, it is enough to check that the function

ψK(x) :=
∑

p prime,k≥1

N pk≤x

log N p

satisfiesψK(x) ∼ x, for which we use Theorem 3.59. Now, Remark 3.76 explains that−ζ ′K/ζK is the relevant
Dirichlet series. We are now ready to run the checks of Theorem 3.59.

(i) The absolute convergence of−ζ ′(s)/ζ(s) on {s : Re s > 1} follows from Lemma 3.75.

(ii) Note that ζK(s) continues to {s : Re s = 1} by Theorem 3.77, and it is nonvanishing by combining
Lemma 3.75 with Proposition 3.78. Thus, we achieve the continuation of −ζ ′K(s)/ζK(s), and we can
compute that the residue of its simple pole at s = 1 is 1.

(iii) To check ψK(x) = O(x), we claim that∑
N(I)≤x

ΛK(I)
?
≤

∑
p prime,k≥1

pk≤x

[K : Q] log pk.

Indeed, it is enough to only consider I of the form pk; summing over the primes p below p, we may
upper-bound ΛK(I) by log pk and then maximize the number of terms in the sum by noting that there
are at most [K : Q] primes p above p and bounding N pk ≤ pk.
Now, arguing as in Corollary 3.56, one finds that ψK(x) = O(x) now follows from ψ(x) = O(x).
Roughly speaking, the size of this sum is dominated by the k = 1 term (what is left is O

(√
x(log x)2

)
),

and the k = 1 term is a constant multiple of ψ(x), so we are done. ■

3.2.3 Equidistribution
In this subsection, we will prove a few facts about equidistribution, following [Fit15, Section 2] and [Ser98,
Appendix to Chapter I]. Although the term already appeals in the statement of our conjecture (Conjec-
ture 3.17), we go ahead and provide a suitable definition. We will assume some measure theory throughout,
though we remark that our measures µ will all be Radon on compact Hausdorff spaces X, so they may be
thought of as continuous linear functionals on C(X) by the Reisz representation theorem [Fol99, Theo-
rem 7.2], where C(X) denotes the space of complex continuous functions on X.

Definition 3.80 (equidistributed). Fix a compact Hausdorff space X with a probability Radon measure
µ (namely, µ(X) = 1). Then a sequence {xn}n≥1 is equidistriubted with respect to µ if and only if any
f ∈ C(X) has

lim
N→∞

1

N

N∑
n=1

f(xi) =

∫
X

f dµ.

Remark 3.81. One may want to upgrade this definition from f ∈ C(X) to f ∈ L1(X) or similar, but
this is somewhat tricky: functions in L1(X) are well-defined up to a measure-zero subset, and it is
frequently the case that countable subsets of X are measure zero. Concretely, with X = [0, 1], we find
that no countable sequence will equidistribute by testing against the function f which indicates this
sequence!
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The definition has been chosen to be quite strong, but this makes it difficult to check. As such, we pick up
the following lemma.

Lemma 3.82. Fix a compact Hausdorff space X with a probability Radon measure µ. The following are
equivalent for a sequence {xn}n≥1.

(i) The sequence {xn}n≥1 equidistributes.

(ii) Suppose that F ⊆ C(X) is a subset of functions such that linear combinations of functions in F
forms a dense subspace of C(X). Then for any f ∈ F , we have

lim
N→∞

1

N

N∑
n=1

f(xi) =

∫
X

f dµ.

Proof. Of course (i) implies (ii) because F ⊆ C(X). For the reverse inclusion, let V ⊆ C(X) denote the
subset for which the conclusion holds. We know F ⊆ V , and we would like to show that V = L1(X).
Certainly V is a subspace, and by the hypothesis of F , we see that V is a dense subspace ofL1(X). Thus, for
any f ∈ C(X), we fix some ε > 0, and we may find gε ∈ V such that ∥f − gε∥∞ < ε. Then∣∣∣∣∣ limN→∞

1

N

N∑
n=1

f(xi)−
∫
X

f dµ

∣∣∣∣∣ ≤
∣∣∣∣∣ limN→∞

1

N

N∑
n=1

gε(xi)−
∫
X

gε dµ

∣∣∣∣∣
+

∣∣∣∣∣ limN→∞

1

N

N∑
n=1

(f − gε)(xi)

∣∣∣∣∣+
∣∣∣∣∫
X

(f − gε) dµ
∣∣∣∣ .

The rightmost term vanishes because g ∈ V , and the remaining terms are bounded by 2ε, which goes to 0
we send ε→ 0+. ■

In the sequel, we will be interested in the case where X = Conj(G) where G is some compact Hausdorff
topological group; here X is given the quotient topology induced by the canonical projection G ↠ X. We
quickly note thatX is certainly compact, andX is Hausdorff becauseG is normal (and conjugacy classes are
closed because they are images of certain continuous mapsG→ G). We now note that Fourier analysis can
detect equidistribution.

Lemma 3.83. Fix a compact Hausdorff topological group G with probability Haar measure µ, and set
X := Conj(X). The following are equivalent for a sequence {xn}n≥1 of X.

(i) The sequence {xn}n≥1 equidistributes.

(ii) For any nontrivial finite-dimensional complex irreducible continuous representation ρ, one has

lim
N→∞

1

N

N∑
n=1

tr ρ(xi) = 0.

Proof. Quickly, we note that (ii) has tr ρ(xi) well-defined because the character of a representation is well-
defined up to conjugacy. Now (i) implies (ii) is immediate because (tr ◦ ρ) : X → C is a continuous function.

For (ii) implies (i), we use Lemma 3.82. By (ii) above, we see that the conclusion of (ii) in Lemma 3.82
holds for each of the nontrivial irreducible characters tr ◦ ρ of G because∫

G

ρ dµ = 0

by the nontriviality of ρ. Additionally, we note that the conclusion of (ii) in Lemma 3.82 also holds for the
trivial character because then everything in sight is 1. Thus, it remains to check that irreducible characters
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of G form a dense subset of C(X). In fact, characters are dense in L2(G) by (a corollary to) the Peter–Weyl
theorem [Fol16, Proposition 5.23], so we are done. ■

Remark 3.84. Of course, one may replace the application of the Peter–Weyl theorem when it is easier
to prove. For example, ifG is a finite abelian group, then the relevant Fourier analysis is much easier to
prove.

Example 3.85. Consider the compact abelian group G = R/Z so that G = X. We claim that the se-
quence {nα}n≥0 equidistributes in G for any irrational α ∈ R.

Quickly, we note that the representations of G are one-dimensional because G is abelian. Further,
we claim they all take the form t 7→ e2πimt form ∈ Z: indeed, any character ofGmust lift to a character
R → C×, but it must land in S1 because G is compact, so our character further lifts to a homomo-
morphism R → R. Continuous homomomorphisms R → R are just scalars, so the claim follows upon
ensuring that the induced map R→ S1 has Z in its kernel.

To conclude the proof, it is now enough to compute that any nonzero m makes

N∑
n=0

e2πimnα =
e2πim(N+1)α − 1

e2πimα − 1
,

which is Om(1) and hence om(N).

As in the example, we remark that the condition (ii) may also be read as

N∑
n=1

tr ρ(xi) = o(N),

so it is the sort of thing that one may hope to prove using the Weiner–Ikehara theorem (Theorem 3.59). We
explain the application as follows.

Proposition 3.86 (Serre). Fix a compact Hausdorff topological group G with probability Haar measure
µ, and set X := Conj(X). Further, fix a number field K, and order the set of finite places p by norm
(breaking ties arbitrarily), and let {xp}p be a sequence in X. Now, for each finite-dimensional complex
continuous representation ρ of G, define the L-function

L(s, ρ) :=
∏
p

1

det (1− ρ(xp)N p−s)
,

and suppose that L(s, ρ) admits a non-vanishing holomorphic analytic continuation to the line {s :
Re s = 1} for each nontrivial irreducible ρ. Then the sequence {xp}p equidistributes in G.

Proof. We apply Lemma 3.83. Using Theorem 3.79 to count the number of prime ideals p of norm less than
some bound, we see that we need ∑

N p≤x

tr ρ(xp)
?
= oρ

(
x

log x

)
for all nontrivial irreducible complex representations ρ of G. We go ahead and fix such a representation ρ;
set d := dim ρ for brevity. We proceed in steps.

1. As in Theorem 3.67, the idea is to apply the Weiner–Ikehara theorem to the logarithmic derivative
L(s, ρ). The correct “twisted” prime-counting function is a little involved, so we postpone its computa-
tion for a moment. Instead, let’s go ahead and compute−L′(s, ρ)/L(s, ρ). For each p, let {λp1, . . . , λpd}
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denote the eigenvalues of ρ(xp) (counted with multiplicity), so we see that

log
(
det
(
1− ρ(xp)N p−s

))
=

d∑
i=1

log
(
1− λpiN p−s

)
,

so taking the logarithmic derivative as in Lemma 3.64 of L(s, ρ) yields

−L
′(s, ρ)

L(s, ρ)
=
∑
p

∑
k≥1

d∑
i=1

λkpi log N p

N pks
.

Thus, we see that the correct weights are given by

Λρ(I) :=

{∑d
i=1 λ

k
pi log N p if I = pk and k ≥ 1,

0 else.

In particular,−L′(s, ρ)/L(s, ρ) =
∑
I⊆OK

Λρ(I)/N(I)s; this sum is purely formal, in the sense that one
side makes sense as soon as the other does. Do note that Λρ(p) = tr ρ(xp) logN p for each prime p.
Also, note

2. We now see that arguing as in Corollary 3.56 shows that it will be enough to check that∑
I⊆OK

N(I)≤x

Λρ(I)
?
= oρ (x) .

This is somewhat involved, so we will provide some detail. Well, we group this sum as∑
p prime,k>1

N pk≤x

Λρ
(
pk
)
.

We now have two observations.

• We note we may discard the terms with k ≥ 2. Because G is compact, the eigenvalues λpi are
all roots of unity, so the sum

∑d
i=1 λ

k
pi is Oρ(1), so we may ignore its contribution. Now, for each

prime p, we may rudely bound Λρ
(
pk
)

as log p[K:Q]k, where p is the prime under p. On the other
hand, the number of primes p with N p can be näıvely bounded by [K : Q], so we will do so. Thus,
we see that our contribution totals to

[K : Q]2
log2 x∑
k=2

∑
p≤x1/k

log p ≤ [K : Q]2(log2 x)(
√
x log x)

as in Corollary 3.56. We conclude that our hypothesis is equivalent to∑
N p≤x

Λρ(p)
?
= oρ(x).

• We now use Abel summation in the form of Proposition 3.55 to see

∑
N p≤x

tr ρ(xp) =
1

log x

∑
N p≤x

Λρ(p) +

∫ x

2

( ∑
N p≤x

Λρ(x)

)
1

t(log t)2
dt

(Technically, we should stratify the sum over terms of given norm before applying Abel summa-
tion.) The left term in the right-hand side is now o(x/ log x) by the hypothesis, and the right term
is o(x/ log x) as argued in Corollary 3.56.
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3. We are now ready to complete the proof using Theorem 3.59. Here are our checks.

(i) It is enough to check that ∑
N(I)=n

Λρ(I) = Oρ(n
ε)

for each ε > 0. We may assume that I is a prime-power pk. As in the previous step, we see that
the contribution from

∑d
i=1 λ

k
pi log N p is Oρ(1) is Oρ(1), so it has no effect. We now argue as in

Theorem 3.79: the number of I with I = pk is bounded by [K : Q], and they only contribute
log N p = O(log n). The result follows.

(ii) This follows immediately from the hypothesis on L(s, ρ).
(iii) From Theorem 3.79, we already know that∑

N(I)≤x

ΛK(x) = O(x).

The previous step explains that the contribution
∑d
i=1 λ

k
pi log N p is Oρ(1), so we conclude. ■

Remark 3.87. Essentially the same proof as in (i) of step 3 above shows that logL(s, ρ) converges abso-
lutely in the region {s : Re s > 1}, so L(s, ρ) converges absolutely and is nonzero. Indeed, one merely
needs to re-weight the Dirichlet series coefficient

∑
N(I)=n Λρ(I) to undo the derivative, effectively re-

moving a log n factor.

3.2.4 The Chebotarev Density Theorem
We now give a standard application of Proposition 3.86, to the Chebotarev desnity theorem. For any Galois
extension L/K of number fields, our goal is to show that the Frobenius conjugacy classes Frobp equidis-
tribute in Conj(Gal(L/K)). In light of Proposition 3.86, we see that we are interested in the following L-
functions.

Definition 3.88 (ArtinL-function). For a number fieldK, let ρ : Gal(K/K)→ GL(V ) be a finite-dimen-
sional complex representation. Then we define the Artin L-function

L(s, ρ) :=
∏
p

1

det (1− ρ(Frobp)N p−s|V Ip)
,

where Ip ⊆ Gal(K/K) denotes the inertia subgroup of p.

Remark 3.89. Let us explain this factor. Formally, one should fix a prime P of K living above p (al-
ternatively, one could choose a compatible system of primes for every subfield of K), and then Ip and
Frobp mean IP and FrobP, respectively. Let’s check that this definition is independent of the choice
of P: any other prime living above p looks like gP for some g ∈ Gal(K/K). Then IgP = gIPg

−1 and
FrobgP = gFrobPg

−1. Thus, we see that v 7→ ρ(g)v sends V IP → V IgP and sends the action of FrobP
to the action of FrobgP. As such, the characteristic polynomials must be equal.

Example 3.90. Taking ρ to be the trivial representation, we find that L(s, 1) and ζK(s) are equal to a
finite number of Euler factors. Recall that we may write L(s, 1) = ζK(s).

Before going any further, we state some helpful facts about Artin L-functions.
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Lemma 3.91. For a number field K, let ρ : Gal(K/K) → GL(V ) be a finite-dimensional complex rep-
resentation. Then ker ρ is open, and ρ has finite image.

Proof. We have two steps.

1. We show the following “no small subgroups” result: we claim that there is an open neighborhoodU ⊆
GL(V ) of the identity which does not contain any nontrivial subgroup. Indeed, recall that exp: gl(V )→
GL(V ) is a local diffeomorphism; say that it is a diffeomorphism on some bounded open subset U1 ⊆
gl(V ), and then set U := exp

(
1
2U1

)
.

Now, suppose for the sake of contradiction that U contains a subgroup H ⊆ GL(V ). Then note that
any exp(x) ∈ H for x ∈ 1

2U1 must have exp(2x) in H and hence in U , so 2x ∈ 1
2U1 as well; this shows

that 1
2U1 is unbounded, which is a contradiction.

2. We complete the proof. Choose an open neighborhood U ⊆ GL(V ) of the identity as in the previous
step. Then ρ−1(U) ⊆ Gal(K/K) is an open subset, but the profinite topology of Gal(K/K) promises
that this open subset contains an open subgroupH ⊆ Gal(K/K). Then ρ(H) ⊆ U is a subgroup, which
must be trivial, so we conclude that H ⊆ ker ρ. Now, H is a subgroup of finite index, so we conclude
the same is true for ker ρ. ■

Lemma 3.92 (additive). For a number field K, let ρ1 and ρ2 be finite-dimensional complex representa-
tions of Gal(K/K). Then L(s, ρ1 ⊕ ρ2) = L(s, ρ1)L(s, ρ2).

Proof. This follows because, for any g ∈ G, the characteristic polynomial of (ρ1 ⊕ ρ2)(g) is the product of
the characteristic polynomials of ρ1(g) and ρ2(g). ■

Lemma 3.93 (induction). Fix a finite extension L/K of number fields. Given a finite-dimensional com-
plex representation ρ : Gal(K/L)→ GL(V ), we have

L(s, ρ) = L
(
s, Ind

Gal(K/K)

Gal(K/L)
ρ
)
.

Proof. We follow [Neu99, Proposition VII.10.4(iv)]. Once again, we equate Euler factors over a prime pofK.
For psychological reasons, we come down to finite extensions. By Lemma 3.91, we may find a finite Galois
extensionM ofK extendingL such that Gal(M/L) is in the kernel of ρ. Then we may replace all instances of
K withM without changing the value of theL-function; for example, ρ is certainly well-defined throughout.

Now, for brevity, set G := Gal(M/K) and H := Gal(M/L), and let ρ̃ := IndGH ρ denote the induction;
further, set Vρ := V and Vρ̃ := IndGH V for clarity. We want to show that

1

det
(
1− ρ̃(Frobp)N p−s|V Ipρ̃

) ?
=
∏
q|p

1

det
(
1− ρ(Frobq)N q−s|V Iqρ

) ,
where q varies over primes ofL lying over p. Note that these inertia subgroups can now be brought down to
automorphisms of M . We now proceed in steps.

1. We begin with a special case. Suppose that there is a single prime P ofM above p, and set q := P∩L.
In this case, G = DP, and we would like to show that

det
(
1− ρ̃(FrobP)T |V IPρ̃

)
= det

(
1− ρ(FrobP)[G:H]T [G:H]|V IPρ

)
,

where T is a formal variable replacing N p−s. (Note that N q = N p[G:H].) Note that we may as well
replace L/K with M/L, effectively allowing us to assume that H is trivial.
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For psychological reasons, we explain how to reduce to the case where IP is trivial by adjusting the
representations. On one hand, we’d like to replace Vρ with V

H∩IP
ρ . On the other hand, note that(

IndGH ρ
)IP

can be descended to Ind
G/IP
H/(H∩IP) V

H∩IP
ρ : a function f : G → V succeeds at being invari-

ant under IP if and only if it descends to a function onG/IP, and we see that we must restrict outputs
to V H∩IP because h ∈ H ∩ IP will have f(x) = f(xh) = ρ(h)f(x). Thus, by taking the quotient by IP
everywhere, we may assume that it is trivial.
Now, DP has become cyclic of order f := f(P/p) generated by the Frobenius, so we will be able to
compute IndG1 ρ relatively easily. Indeed, view Vρ̃ as the vector space V ⊕f by sending the function f to
the f-tuple

(
f(FrobiP)

)f−1

i=0
. Then we see that FrobP acts on V ⊕f by

(v0, v1, . . . , vf−2, vf−1) =
(
ρ(FrobP)fvf−1, v0, . . . , vf−3, vf−2

)
.

We may now compute the determinant of 1− ρ̃(FrobP)T by commuting the determinant of the matrix

1 −T 0 · · · 0 0
0 1 −T · · · 0 0
0 0 1 · · · 0 0
...

...
. . .

...
...

0 0 0 · · · 1 −T
−ρ(FrobP)fT 0 0 · · · 0 1


,

which we see is det
(
1− ρ(FrobP)fT f

)
after some row-reduction.

2. We now return to the general case for the remainder of the proof. All decomposition, inertial, and
Frobenius elements will be taken over p unless otherwise specified. We begin by computing the action
of ρ̃. The idea is to use Mackey theory. Indeed, for fixed prime P of M above p, we are only interested
in the action of DP on IndGH ρ, so we note there is an isomorphism

ResGDP
IndGH ρ

?∼=
⊕

g∈H\G/DP

Ind
DP

DP∩g−1Hg ρg,

where ρg (d) = ρ
(
gdg−1

)
. Let’s quickly explain this. There is a forward map sending a function f : G→

V to the tuple of functions (fg)g where fg : DP → V is defined by fg(x) := f (xg). There is also a
backward map sending the tuple (fg)g to the function f : G → V given by f(hgd) := ρ(h)fg(d). These
maps are G-invariant and can be checked to be DP-invariant, so we have our isomorphism.
Thus, we see that

det
(
1− ρ̃ (FrobP)N p−s|V IPρ̃

)
=

∏
g∈H\G/DP

det
(
1− FrobP N p−s|(IndDP

DP∩g−1Hg ρg)
IP
)
.

Undoing conjugation by g, we can rewrite this as

det
(
1− ρ̃ (FrobP)N p−s|V IPρ̃

)
=

∏
g∈H\G/DP

det
(
1− FrobgP N p−s|(IndDgP

DgP∩H ρ)
IgP
)
.

3. We translate the product using some group theory. For this, we need to enumerate the primes of
L above p. Note Gal(M/K) acts transitively on the set of primes of M above p, so g 7→ gP defines
a bijection from G/DP to this set of primes. Then restricting to L, we see that g 7→ (gP ∩ L) is a
surjective map from G/DP to the set of primes in L above p; this map descends to H\G/DP, where
we claim that it actually defines a bijection. Indeed, (gP ∩ L) = (g′P ∩ L) implies that gP and g′P are
both primes of M sitting above the same prime of L, so there is h ∈ Gal(M/L) such tthat hgP = g′P,
which implies hgDP = g′DP.
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Thus, we see that∏
q|p

det
(
1− ρ(Frobq)N q−s|V Iqρ

)
=

∏
g∈H\G/DP

det
(
1− ρ(FrobgP)fg N p−fgs|V IgPρ

)
,

where fg = f(gP/(gP ∩ L)) = [DgP : DgP ∩H] is the required inertial degree.

4. We are now ready to complete the proof. In light of the previous two steps, we would like to show that
any P′ of M above p has

det
(
1− FrobP′T |(IndDP′

DP′∩H ρ)
IP′
)
= det

(
1− ρ(FrobP′)[DP′ :DgP′∩H]T [DP′ :DgP′∩H]|V IP′

ρ

)
,

where T is a formal variable replacing N p−s. Now, we note that we may define K ′ := MDP′ and
L′ := MDP′∩H , whereupon we see that P′ is the only prime above of M the prime p′ := P′ ∩ K ′ in
K ′. The above equality then follows from the special case in the first step applied to the extension
L′/K ′. ■

Remark 3.94. Given subgroups D ⊆ H ⊆ G and a representation ρ of H, the above proof used the fact
that

ResGD IndGH ρ
∼=

⊕
η∈H\G/D

IndDD∩η−1Hη Ind
D
D∩η−1Hη ρη,

where ρη(d) := ρ(ηdη−1). This fact is remarkably useful.

Example 3.95. LetL/K be a Galois extension of number fields with Galois groupG. Then Ind
Gal(K/K)

Gal(K/L)
1

is the regular representation of G, so by decomposing the regular representation into irreducible rep-
resentations and using Lemmas 3.92 and 3.93, we find

ζL(s) =
∏

ρ∈IrRep(G)

L(s, ρ)dim ρ,

where IrRep(G) refers to the set of irreducible representations of G.

In light of Proposition 3.86, we need to show that nontrivial irreducible ρ give L(s, ρ) a non-vanishing holo-
morphic continuation to the line {s : Re s = 1}. The rough idea is to use the Brauer induction theorem to
reduce to the abelian case, and then the abelian case can be turned over to Hecke L-functions by class field
theory.

Thus, we begin with the abelian case. As promised, this is essentially class field theory.

Proposition 3.96. Fix a number field K, and let ρ : Gal(K/K) → C× be a continuous character. Then
there is a continuous unitary character χ : K×\A×

K → C× such that

L(s, ρ) = L(s, χ)

for s such that Re s > 1.

Proof. The main point is that global class field theory in the form of [Mil20a, Theorem 5.3] provides an
isomorphism

K̂×\A×
K
∼= Gal(K/K)ab.

With this in mind as a guide, we construct the character χ. Because the target of ρ is abelian, we see that ρ
factors through Gal(K/K)ab = Gal(Kab/K). For convenience, we recall from Lemma 3.91 that ρ descends
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to a representation of Gal(L/K) for some minimal finite Galois extensionL/K, and once again, we find that
Gal(L/K) is abelian. Thus, we may define χ as the composite

K×\A×
K ↠ K× NL/K(A×

L )\A
×
K
∼= Gal(L/K)

ρ→ C×,

where the isomorphism is given by global class field theory [Mil20a, Theorem 5.3]; explicitly, on finite
primes p of K unramified in L, it is trivial on O×

p ⊆ A×
K and sends a uniformizer ϖp ∈ Op to Frobp ∈

Gal(L/K). By construction, χ is a continuous character, and it is unitary because ρ must output to S1 by
the compactness of Gal(K/K).

We now compare the Euler factors of L(s, ρ) and L(s, χ) at a prime p of K. There are two cases.

• Suppose that p is a prime unramified in L/K. Then we see that

det
(
1− ρ(Frobp)N p−s | C

)
= 1− χp(ϖp)N p−s

by construction of χ (and properties of the global class field theory map), so we are done.

• Suppose that p is a prime ramified inL/K. On one hand, ρ is nontrivial on Ip ⊆ Gal(L/K), so CIp must
be zero-dimensional, so the Euler factor ofL(s, ρ) is 1. On the other hand, we note thatNL/K(A×

L )does
not containO×

p by a computation of norm subgroups, so χ is nontrivial onO×
p by tracking through the

global class field theory isomorphism, so the Euler factor of L(s, χ) is also 1. ■

Remark 3.97. Because a Dirichlet series is uniquely determined by its coefficients, we see that the char-
acter χ is uniquely determined by ρ. However, this is not a bijection: the disagreement between the
topologies ofK×\A×

K and Gal(K/K)ab means that there are many more continuous unitary characters
K×\A×

K → C×.

Corollary 3.98. Fix a number fieldK, and let ρ : Gal(K/K)→ C× be a nontrivial continuous character.
Then L(s, ρ) admits a nonvanishing holomorphic continuation to {s : Re s = 1}.

Proof. Note L(s, ρ) is already holomorphic and nonvanishing on {s : Re s > 0} by Remark 3.87. Now,
construct the continuous unitary characterχ : K×\A×

K → C× as in Proposition 3.96 so thatL(s, χ) = L(s, ρ).
The nonvanishing now follows from Proposition 3.78. Lastly, the continuation follows from Theorem 3.77
as soon as we check that χ |·|1+it is never trivial on all unramified primes. This follows by the nontriviality of
ρ, which requires there to be an unramified prime p where ρ(Frobp) ̸= 1; this corresponds to the needed fact
about χ. ■

We are now in a position to prove equidistribution of Frobenius elements in Gal(Kab/K), from which one
can prove the general case by a clever reduction argument. However, we will be honest to our discussion
of equidistribution and prove nonvanishing holomorphic continuation to {s : Re s = 1} for L(s, ρ) for all
nontrivial irreducible continuous representations ρ.

The idea is to write ρ as a “linear combination” of inductions of characters. Then the result will follow
from the abelian case combined with our properties about L-functions. One almost achieves the full holo-
morphic nonvanishing as well, but it would be technically possible to see the trivial character in our linear
combination, thus possibly introducing a pole or zero.

Of course, it does not a priori make sense to talk about linear combination of representations, so we
must pass to their linearization: virtual characters. Thus, we will want to define the Artin L-function of a
class function. To motivate, use Lemma 3.91 to descend ρ to some representation Gal(L/K) → C×. For
some g ∈ Gal(L/K), we let λ1, . . . , λd denote the eigenvalues of g (with algebraic multiplicities), so we see
that

log
(
det(1− ρ(g)T )−1

)
=

d∑
i=1

− log(1− λiT ).
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Now, expanding out the Taylor series reveals that

1

det(1− ρ(g)T )
= exp

( ∞∑
k=1

tr ρ
(
gk
)
T k

k

)
.

We are now ready to make the following definition.

Definition 3.99 (Artin L-function). Fix a Galois extension L/K of number fields with Galois group G.
For a class function χ : G→ C, we define the Artin L-function as

L(s, χ) :=
∏
p unr.

exp

( ∞∑
k=1

χ(Frobkp)

kN p−s

)
,

where the product is taken over primes of K unramified in L.

Example 3.100. The discussion preceding the definition shows that L(s, ρ) .= L(s, tr ◦ ρ) for any finite-
dimensional complex representation ρ : Gal(L/K)→ GL(V ).

Remark 3.101. A notable defect of this definition is that we have not defined our Euler factors at rami-
fied primes. This will cause us to use some .

=s in the sequel; this is no issue because finitely many Euler
factors will not change holomorphy or nonvanishing.

Here are the standard properties of these L-functions, which are carried over from our previous discus-
sion.

Lemma 3.102. Fix a Galois extension M/K of number fields with Galois group G.

(a) If χ : G→ C is a class function, then L(s, χ) converges absolutely to a nonvanishing holomorphic
function in the region {s : Re s > 1}.

(b) Additive: if χ1, χ2 : G→ C are class functions, then L(s, χ1 + χ2) = L(s, χ1)L(s, χ2).

(c) Inflation: let L/K be a Galois subextension such that Gal(M/L) = H. If χ : G/H → C is a class
function, then L(s, χ) .= L(s, χ̃), where χ̃ : G→ C is the induced class function.

Proof. Here, (a) follows as in Remark 3.87 by noting that the series expansion for logL(s, χ) absolutely con-
verges to a finite value; notably, G is finite, so χ is bounded, so it does not meaningfully contribute. Con-
tinuing, (b) follows by a direct expansion of the Euler product, and (c) follows because the Euler factors are
exactly the same for any prime p of K unramified in M (and hence also unramified in K). ■

The suitable analogue of Lemma 3.93 on induction remains true, but we will not need it in the full generality
of complex class functions. However, we do need to know how to induct character.

Notation 3.103. Fix a subgroup H of a finite group G. Given a class function χ : H → C, define the
induced class function

IndGH χ(g) :=
1

|H|
∑
η∈G

ηgη−1∈H

χ
(
ηgη−1

)
.

Lemma 3.104. Fix a subgroupH of a finite groupG. Given a finite-dimensional representation ρ : H →
GL(V ), then we check that tr ◦ IndGH ρ = IndGH(tr ◦ ρ).
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Proof. We will use many of the same tricks appearing in Lemma 3.93. Fix some g ∈ G, and we would like
to check the result at g. We proceed in steps.

1. We begin with the special case where G is cyclic and generated by g. If H = G, there is nothing to do.
Otherwise, if H ̸= G, then IndGH(tr ◦ρ)(g) is an empty, so we must show tr IndGH ρ(g) vanishes. Well,
view elements IndGH V as sequences of vectors {vHg′} indexed byH\G, and then we see that IndHG ρ(g)
acts by a (generalized) permutation matrix which is a sum of nontrivial cycles of length [G : H]. Thus,
this operator has no trace.

2. We now show the general case. By Remark 3.94, we see that

ResG⟨g⟩ Res
G
H ρ
∼=

⊕
η∈H\G/⟨g⟩

Ind
⟨g⟩
⟨g⟩∩η−1Hη ρη,

where ρη(g′) := ρ
(
ηg′η−1

)
. Thus, we see that

tr IndGH ρ(g) =
∑

η∈H\G/⟨g⟩

tr Ind
⟨g⟩
⟨g⟩∩η−1Hη ρη (g) .

Now, by the previous case, we see that terms vanish as long as g /∈ η−1Hη; on the other hand, if
g ∈ η−1Hη, then we get a contribution of tr ρ

(
ηgη−1

)
, so we see

tr IndGH ρ(g) =
∑

η∈H\G/⟨g⟩
ηgη−1∈H

tr ρ
(
ηgη−1

)
.

The result now follows by replacing the sum over H\G/⟨g⟩with a sum over G. ■

In order to allow us to stop talking about L-functions as quickly as possible, let’s go ahead and explicate
the inductive approach to meromorphic continuation via Brauer’s theorem. We begin with the following
non-standard definition.

Definition 3.105 (Brauer). Fix a finite groupG. ThenG is Brauer if and only if, for any finite-dimensional
complex irreducible representation ρ, there is a sequence of pairs {(ai, Hi, ψi)}ni=1 where ai ∈ Z and
Hi ⊆ G is a subgroup and ψi : Hi → C× is a representation such that

tr ◦ ρ =

n∑
i=1

ai Ind
G
Hi
ψi

as virtual character. A representation of the form IndGHi
ψi is said to be monomial.

Lemma 3.106. Fix a Galois extension L/K of number fields with Galois group G. Suppose that G is
Brauer. For any finite-dimensional complex representaion ρ of G, the function L(s, ρ) admits a mero-
morphic continuation to {s : Re s = 1} with no poles or zeroes except possibly a pole or zero at s = 1.
Further, the order of the pole at s = 1 is ⟨tr ◦ ρ, 1⟩.

Proof. By the additivity of Lemma 3.92, we may assume that ρ is irreducible. By Example 3.100, it is enough
to check the result for L(s, tr ◦ ρ). BecauseG is Brauer, we receive an expansion tr ◦ ρ =

∑n
i=1 ai Ind

G
Hi
ψi of

tr ◦ ρ into a Z-linear combination of inductions of characters, which implies that

L(s, tr ◦ ρ) =
n∏
i=1

L
(
s, IndGHi

ψi

)ai
by Lemma 3.102. By Example 3.100, we may now think of each L

(
s, IndGHi

ψi

)
as an Artin L-function of a

representation (up to finitely many Euler factors), so Lemma 3.93 tells us that this L-function is L(s, ψi).
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The meromorphic continuation now essentially follows from Corollary 3.98, which tells us each non-
trivial ψi grants a nonvanishing holomorphic continuation of L(s, ψi) to {s : Re s ≥ 1}. Note the same is
true for trivial ψi except at the point s = 1 where we find a pole in L(s, ψi) because this is a Dedekind ζ-
function by Example 3.90; see Theorem 3.77 and proposition 3.78. Taking the appropriate product of these
contributions proves the statement.

It remains to prove the last sentence. This will require a trick. On one hand, by the discussion in the
previous paragraph, we see that the order of the pole is∑

1≤i≤n
ψi=1Hi

ai.

On the other hand, we see ⟨tr ◦ ρ, 1⟩ equals
n∑
i=1

ai

〈
IndGHi

ψi, 1G

〉
=

n∑
i=1

ai ⟨ψi, 1Hi
⟩

by Frobenius reciprocity. The last sentence now follows. ■

Thus, we will achieve our nonvanishing holomorphi continuation as soon as we check that all finite groups
are Brauer; we will complete the nonvanishing later by a careful analysis of s = 1.

Our current goal is to prove Brauer’s theorem that all finite groups are Brauer; our exposition follows
[Ser77, Chapter 10]. We begin by creating a large supply of Brauer groups.

Lemma 3.107. Let G be a finite nilpotent group. Then G is Brauer.

Proof. We induct on |G|. For our base case, we note that if G is already abelian (for example, |G| = 1), then
there is nothing to do because all irreducible representations are already one-dimensional.

Thus, for our induction, we may assume thatG is nonabelian, and we fix some complex irreducible repre-
sentation ρ : G → GL(V ) of G. Because taking induction commutes with taking quotients, we may replace
G with G/ ker ρ, effectively allowing us to assume that ρ is injective. We will show directly that ρ can be
induced from a character, which will complete the proof; we proceed in steps.

1. We claim that there is an abelian normal subgroupN ⊆ G strictly containingZ(G). This follows quickly
because G is nilpotent: because G is nonabelian and nilpotent, we see that G/Z(G) is nontrivial and
has nontrivial center, so we let N ⊆ G be the pre-image of the center. Then N strictly contains Z(G)
and is normal because it is the pre-image of a normal subgroup along a surjective homomorphism.

2. We now decompose ResGN ρ into irreducibles as

ResGN ρ =
⊕

ψ∈Hom(N,C×)

V ψ,

where V ψ ⊆ V denotes the ψ-eigenvectors of V . (The sum is over the characters ofN ; this decompo-
sition exists because N is abelian.) Now, because N ⊆ G is normal, we know that each of the spaces
ρ(g)V ψ ⊆ V continues to be N-invariant and in fact will be N-isotypic. Thus, we see that G acts on
the collection {V ψ}ψ, and it must act transitively because the span of the G-orbit of some V ψ will be
a G-subrepresentation of the irreducible representation ρ.

3. We claim that ResGN ρ is not isotypic. This is by the construction of N : this would imply that N acts by
scalars on V , thereby implying that ρ(N) commutes with ρ(G), thereby giving N ⊆ Z(G) because ρ is
faithful. This contradicts the construction of N as strictly containing Z(G).

4. We now complete the proof. Choose some ψ0 ∈ Hom(N,C×), and let G0 ⊆ G be the stabilizer of the
action given in the second step. Thenρ restricts to a representationρ0 : G0 → GL(V0)whereV0 := V ψ0 .
Now, we claim that ρ = IndGG0

ρ0, which will complete the proof becauseG0 is a strictly smaller nilpo-
tent group than G. Well, for the isomorphism, view IndGG0

ρ0 as C[G] ⊗C[G0] ρ0, and then define the
map IndGG0

ρ0 → ρ by sending g ⊗ v0 to gv0. ■
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Thus, to show that any groupG is Brauer, one may simply show that any virtual character for an irreducible
complex representation is a Z-linear combination of ones induced from nilpotent subgroups. Now that we
are working with virtual characters than one-dimensional ones, we pick up the following notation.

Definition 3.108 (virtual character). Fix a finite group G. Then we let R(G) denote the free Z-module
of class functions G → C generated by the virtual characters tr ◦ ρ as ρ varies over finite-dimensional
complex representations of G. One frequently calls R(G) the ring of virtual characters.

Remark 3.109. By taking tensor products of representations, we see that R(G) is a subring of the set
of functionsG→ C. By induction and restriction of representations, we see that ResGH and IndGH induce
ring homomorphisms R(G)→ R(H) and R(H)→ R(G), respectively.

Thus, to check that a group G is Brauer, it will be enough to show that the map

Ind:
⊕
H⊆G
H Brauer

R(H)→ R(G)

is surjective, for any element of one of the R(H)s can be expanded into a sum of virtual characters induced
from linear characters. For example, we will eventually show that one can restrict this direct sum to nilpotent
subgroups.

Remark 3.110. While we’re here, we remark that one can check the surjectivity of this map after ten-
soring with any free Z-module because this essentially takes both sides to a finite power. In particular,
in the sequel, we will frequently work with R(G)Z[ζn] where n = |G|, which is conveneint because the
functions inR(G) output to the ring Z[ζn]. (Indeed, for any g ∈ G and representation ρ, because gn = 1,
the eigenvalues of g are all nth roots of unity, so tr ρ(g) ∈ Z[ζn].)

Most of our work in eventually proving that all finite groups are Brauer will come from a construction of
many virtual characters. We begin with a couple preliminary lemmas.

Lemma 3.111. Fix a finite group G of order n, and choose a class function f : G → Z[ζn]. Then nf is in
the image of the map

Ind:
⊕
H⊆G
H cyclic

R(H)Z[ζn] → R(G)Z[ζn].

Proof. The proof has two steps.

1. We show that n is in the image of the given map. For each cyclic subgroup H ⊆ G, define θH : H → Z
as |H| times the indicator function of generating H. Then we claim that

n
?
=

∑
H⊆G
H cyclic

IndGH θH .

Well, for any g ∈ G, we begin by computing IndGH θH(g) as

1

|H|
∑
η∈G

ηgη−1∈H

θH
(
ηgη−1

)
=
∣∣{η ∈ G : ηgη−1 generates H}

∣∣ .
Now, upon summing over all H, we see that each ηgη−1 surely generates exactly one cyclic subgroup
H, so the claim follows.
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2. We complete the proof. By the previous step, we see that nf equals( ∑
H⊆G
H cyclic

IndGH θH

)
f =

∑
H⊆G
H cyclic

IndGH(θHf |H),

so we will be done as soon as we check that θHf |H ∈ R(H)Z[ζn]. Well, because H is cyclic, orthog-
onality of characters permits to merely check that ⟨θHf |H , ψ⟩ ∈ Z[ζn] for any character ψ : H → C×;
however, this follows by a direct expansion of the inner product because ψ outputs to Z[ζn] and f |H
outputs to |H|Z[ζn]. ■

For the next lemma, we need a piece of notation.

Notation 3.112. Fix a finite group G of order n, and fix a prime p. Choose g ∈ G, whose order we write
as ord(g) = mpν where p ∤ m. Then we may find integers x and y such that xm+ ypν = 1. Now, for any
g ∈ G, we define gp := gxm (which has prime-power order) and g′p := gyp

ν (which has order coprime to
p) so that g = gpg

′
p.

Lemma 3.113. Fix a finite groupG of order n. For any class function f : G→ Z[ζn] inR(G)Z[ζn], we have

f(g) ≡ f(g′p) (mod pZ[ζn])

for any g ∈ G and prime p.

Proof. Because we are only interested in the values of f on powers of g, we may as well work with f |⟨g⟩.
Now, because ⟨g⟩, we may write f |⟨g⟩ as Z[ζn]-linear combination of linear characters ⟨g⟩ → C×. Notably,
the conclusion is Z[ζn]-linear in f , so we may as well assume that f |⟨g⟩ is a linear character ⟨g⟩ → C×.

Now, recall that g′p is gypν where the order of g equals mpν for p ∤ m and x, y ∈ Z satisfy xm + ypν = 1.
Thus, f(g) will be an mpνth root of unity, so it will be enough to check that

ζ ≡ ζyp
ν

(mod pζ[ζ]),

where ζ is a primitive mpνth root of unity. Well, by the Frobenius automorphism, it is enough to check that
sufficiently large pth powers of both sides are equal. For this, note that pν ≡ (1 + y)pν (mod mpν), so it is
enough to take pνth powers. ■

Now is as good a time as any to begin our main argument.

Theorem 3.114 (Brauer). Let G be a finite group. Then G is Brauer.

Proof. Let n be the order of n. The idea is to show that the map

IndZ[ζn] :
⊕
H⊆G

H nilpotent

R(H)Z[ζn] → R(G)Z[ζn]

is surjective, which completes the proof. Namely, one can undo the base-change by Z[ζn] because Z[ζn] is
a free Z-algebra of finite rank; then one merely notes that any complex irreducible representation ρ of G
can be written as a linear combination of inductions R(H) for nilpotent subgroups H ⊆ G, but anything in
R(H) is induced from a linear character by Lemma 3.107. In fact, we will find that we may merely consider
H which are the product of a cyclic group and a p-group.

As always, we proceed in steps.
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1. To ground ourselves, we note that it is enough to check that 1 is in the image of IndZ[ζn]. Indeed,
it is then enough to check that the image of IndZ[ζn] is an ideal, for which it is enough to check that
IndGH R(H) ⊆ R(G) is an ideal for any subgroup H ⊆ G. Well, for any fH ∈ R(H) and fG ∈ R(G), we
see that fG IndGH fH = IndGH(fG|HfH).
Our proof will eventually build a small supply of constant functions in the image of IndZ[ζn], which will
produce the constant function 1 by taking suitable linear combinations.

2. We proceed with the key construction. Fix a prime p, and choose x ∈ G of order coprime to p. Then
we claim that there is f : G→ Z in the image of IndZ[ζn] such that f(x) ̸≡ 0 (mod p) while f(y) = 0 of
y has order coprime to p and is not conjugate to x.
In fact, we will induce f directly from the subgroupH = ⟨x⟩×P , whereP is a Sylow p-subgroup of the
centralizerC(x) ⊆ G. (Note thatH is nilpotent because it is the product of nilpotent groups. Also,H is
in fact a subgroup because ⟨x⟩ has cardinality coprime to p, thus making the induced map ⟨x⟩×P → G
an injective homomorphism.) We now define fH : H → G by

fH
(
xiy
)
:=

{
|⟨x⟩| if xi = x,

0 else,

for any xi ∈ ⟨x⟩ and y ∈ P . We quickly check that fH ∈ R(H): note that fH = fH ◦pr⟨x⟩, so it is enough
to check that fH |⟨x⟩, which follows from Lemma 3.111

It remains to check that f := IndGH fH satisfies the required conditions. For example, of course f is
in the image of IndZ[ζn] and defines a function G → Z. Before doing anything else, we remark on the
condition ηgη−1 ∈ H for g, η ∈ G. Namely, if g has order coprime to p, then ηgη−1 ∈ H continues to
have order coprime to p; thus, by writing it out as xiy for y ∈ P , we find that we must have ηgη−1 ∈ ⟨x⟩.
In particular, to have fH

(
ηgη−1

)
̸= 0, we must have ηgη−1 = x on the nose!

• Using the previous paragraph, we compute f(x) as

1

|⟨x⟩| · |P |
∑
η∈G

ηxη−1=x

|⟨x⟩| .

This sum is now |C(x)| / |P |, which is coprime to p because P ⊆ C(x) is a Sylow p-subgroup.
• Again using the paragraph preceding our checks, we see that any g of order coprime to p must

have g conjugate to x in order for the sum IndGH fH(g) to have any nonzero terms. We conclude
that f(g) = 0 when g has order coprime to p but is not conjugate to x.

3. Fix a prime p. Then we claim that there is f : G → Z in the image of IndZ[ζn] such that p ∤ f(x) for all
x ∈ G. Quickly, we note that Lemma 3.113 allows us to merely check the conclusion for x ∈ G of order
coprime to p.
Now, let X ⊆ G be a set of representatives of the conjugacy classes of the elements of G with order
coprime to p. Then for each x ∈ X, we construct fx : G → Z in the image of IndZ[ζn] via the previous
step. Then we define

f :=
∑
x∈X

fx.

We now check that f works. Certainly f is in the image of IndZ[ζn]. Further, the construction of the fxs
means that any y ∈ G of order coprime to p will produce a nonzero contribution (mod p) at exactly
one summand (namely, the x ∈ X conjugate to y).

4. We complete the proof. For each prime p, we factor n = mpν where p ∤ m; then we claim that m is in
the image of IndZ[ζn]. By letting p vary over the prime factors of n, this allows us to conclude that 1 is
in the image of IndZ[ζn] by taking Z-linear combinations, thereby completing the proof.
Now fix a prime p. The previous step provides f : G→ Z such that f(x) ̸≡ 0 (mod p) for all x ∈ G. By
replacing f with a suitably large power (which we may do because the image of IndZ[ζn] is an ideal), we

165



3.2. THE UTILITY OF L-FUNCTIONS SATO–TATE GROUPS OF GENERIC CURVES

may achieve that f ≡ 1 (mod pν) for all x ∈ G. Then mf −m is a class function G → Z with values
divisible by n, so Lemma 3.111 tells us it is in the image of IndZ[ζn]. We are now allowed to conclude
m is in the image of IndZ[ζn]. ■

At long last, we may prove the Chebotarev density theorem.

Theorem 3.115 (Chebotarev density). Fix a number field K. For each prime p of K, choose a prime
P of K above p, and let xp be the conjugacy class of FrobP in Gal(K/K). Then the sequence {xp}p
equidistributes in Conj(Gal(K/K)).

Proof. By Proposition 3.86, it is enough to check that the L-functions L(s, ρ) have nonvanishing holomor-
phic continuation to {s : Re s ≥ 1} for each nontrivial complex irreducible representation ρ of Gal(K/K).
Well, fix some such ρ. By Lemma 3.91, we can find a finite Galois extension L of K with Galois group G
such that ρ descends to Gal(L/K). Now,G is Brauer by Theorem 3.114, so Lemma 3.106 provides a mero-
morphic continuation to {s : Re s ≥ 1} which is holomorphic and nonvanishing for s ̸= 1. Furthermore,
⟨tr ◦ ρ, 1⟩ = 0 because ρ is nontrivial and irreducible, so holomorphy and nonvanishing follows. ■

3.2.5 Abelian Varieties with Complex Multiplication
For this subsection, we will let A be an abelian variety of dimension g defined over a number field K with
complex multiplication by an order O of a CM number field E. We will prove the Sato–Tate conjecture for
A.

Lemma 3.116. Fix an abelian variety A over a number field K satisfying Conjecture 3.19. For any rep-
resentation r of ST(A), there is an ℓ and an algebraic extension r̃ to Gℓ(A) and an integer w ∈ Z such
that r̃(t) = tw (for scalars t) and

L(s− w/2, r̃ ◦ ρA,ℓ)
.
=
∏
p

1

det
(
1− r

(
ιρA,ℓ(Frobp)N p−1/2

)
N p−s

) .
Proof. This is [Joh17, p. 6315]. Note r is a continuous representation of the compact Lie group ST(A), so it
upgrades to an algebraic representation of G1

ℓ(A)ι and hence of G1
ℓ(A). (This algebraic representation will

descend to Qℓ for some ℓ.) Now, Gℓ(A) = Gm,Qℓ
· G1

ℓ(A), so extending r is a matter of making sure r̃ is
well-defined on Gm,Qℓ

∩G1
ℓ(A). However, this is some finite subgroup of Gm,Qℓ

, say µn, so we merely need
to select w ∈ Z so that r(ζn) = ζwn . The final equality now follows by a direct expansion. ■

Theorem 3.117. LetA be an abelian variety over a number fieldK with complex multiplication by a CM
algebra E. Then the Sato–Tate conjecture is true for A.

Proof. We proceed in steps.

1. By Proposition 3.86, it is enough to check that∏
p

1

det
(
1− r

(
ιρA,ℓ(Frobp)N p−1/2

)
N p−s

)
admits a non-vanishing holomorphic analytic continuation to the region {s : Re s ≥ 1} for all non-
trivial irreducible representation r of ST(A). Now, Lemma 3.116 allows us to extend r to an algebraic
representation r̃ of Gℓ(A) such that there is an integer w ∈ Z for which r̃(t) = tw on scalars. Then
we are tasked with checking that L(s − w/2, r̃ ◦ ρA,ℓ) admits a non-vanishing holomorphic analytic
continuation to the region {s : Re s ≥ 1 + w/2}.
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2. We remark that what makes this case achievable is that Remark 2.128 explains thatGℓ(A) ⊆ TE is just
a torus, so r̃ is just a character Gℓ(A) → Gm,Qℓ

.4 Thus, we are interested in finding a Hecke character
which understands ρA,ℓ. This is necessarily a little tricky because ρA,ℓ is ℓ-adic, but Hecke characters
are archimedean.
We will use the Fundamental theorem of complex multiplication, following [Con04, Theorem 3.7].
In particular, we would like to apply Proposition 2.141. Quickly, let’s reduce to the case where K is
a CM extension of E. Observe that almost all primes of K are totally split over Q, so the Sato–Tate
conjecture for a subfield of K will imply it for K: indeed, that density-1 subset of totally split primes
does not change Frobenius upon restriction to the smaller field. But now, there is an abelian variety
isogenous toA defined over the reflex field ofE, so we may takeK to be that CM field. (Note isogenies
induce isomorphisms on the level of the Galois representation.)
We may now apply the proof of Proposition 2.141: Theorem 2.136 provides a continuous character
λ : A×

K,f → E×, and then we know there is a suitable reflex norm NΦ∗ : TK → TE such that

ρA(ArtK sf ) = λ(sf )NΦ∗(sf )
−1

for any sf ∈ A×
K,f . This is currently valued in A×

E,f , so to value it in archimedean places, we define
χ : A×

K → A×
E,∞ by

χ(s) := λ(sf )NΦ∗(s∞)−1.

Note χ is continuous by construction. Further, for t ∈ K×, we already knew that ArtK t = id, so
λ(t) = NΦ∗(t), so we continue to haveK× ⊆ kerχ. The point is that we have built a Hecke character χ
which keeps track of our Galois information in λ.

3. With χ in hand, we may complete the proof. Importantly, Proposition 2.141 explains that χ actu-
ally factors through Gℓ(A)(AE), so r̃ ◦ χ is a well-defined Hecke character K×\A×

K → C×. Because
ρA(Frobp) will be given by λ(p) for almost all p, we further see that this Hecke character r̃ ◦ χ has

L(s− w/2, r̃ ◦ ρA,ℓ)
.
= L

(
s, |·|−w/2 (r̃ ◦ χ)

)
.

Quickly, let’s check that the right-hand Hecke character is unitary: it’s enough to show that the image
is bounded, which is clearer on the left-hand side because the elements ιρA,ℓ(Frobp) can be placed (up
to conjugacy) in the compact group ST(A).
Thus, Theorem 3.77 tells us that we get a nonvanishing meromorphic continuation, and we have a
pole at a certain value of s = 1 + it if and only if |·|1−w/2+it (r̃ ◦ χ) = |·|, which is equivalent to

r̃ ◦ χ ?
= |·|w/2+it .

Note that (r̃ ◦ χ) defines an algebraic map TK(AQ,∞) → TE(AQ,∞), so it can only ever be integral
powers of |·|, meaning we only have to worry about t = 0. But r̃ ◦ χ = |·|w/2 will go back and imply
that r

(
ιρA,ℓ(Frobp)N p−1/2

)
is trivial for almost all p, which implies that r is trivial because Frobenius

elements are dense in Gal(K/K) by Theorem 3.115. This completes the proof. ■

Remark 3.118. In fact, [Joh17, Proposition 16] proves the Sato–Tate conjecture for abelian varieties
with potential complex multiplication.

4 We may choose ℓ favorably because the conjugacy class ofρA,ℓ(Frobp)does not depend on ℓ: the Fundamental theorem of complex
multiplication (in the form Proposition 2.139 explains that the Frobenius action must be given by a uniform scalar in E×.
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CHAPTER 4

THE FERMAT CURVE

Usually mathematicians have to shoot somebody to get this much
publicity.

—Thomas R. Nicely

In ths chapter, we will study the Galois representation attached to the projective Q-curve X1
N ⊆ P1

Q cut
out by the equation

XN : XN + Y N + ZN = 0,

where N ≥ 3 is some nonnegative integer. For the rest of this chapter, we will fix N and thus denote this
curve by X ⊆ P1

Q.

4.1 Homology and Cohomology
The exposition of this section follows [Ots16, Sections 2 and 3]. We will spend this section setting up some
notation and proving basic facts about how these objects relate to each other.

4.1.1 The Group Action
Throughout, it will be helpful to note that the finite alegbraic Q-group

GN :=
µN × µN × µN

∆µN

acts onXN ; here, ∆µN ⊆ µN ×µN ×µN refers to the diagonally embedded copy of µN . As withXN , we will
denote this group by G for the rest of the chapter, and we will let ζ := ζN be a primitive N th root of unity.

Notably, the action map G × X → X is defined over Q even though G(Q) is trivial. For brevity, we will
denote elements of G by g[r:s:t] := [ζr : ζs : ζt]. We will also have occasion to study the character group
Ĝ := ĜN , which we identify with

ĜN =
{
(a, b, c) ∈ (Z/NZ)3 : a+ b+ c = 0

}
.

Explicitly, given a triple (a, b, c), we let α(a,b,c) denote the corresponding character, which sends g[r:s:t] 7→
ζra+bs+tc.

In the sequel, we will have many vector spaces induced by X via (co)homology, which therefore have a
G-action by functoriality. With this in mind, we make the following definition.

168



4.1. HOMOLOGY AND COHOMOLOGY SATO–TATE GROUPS OF GENERIC CURVES

Definition 4.1. Given a Q(ζ)-vector space H with a G-action, we define

Hα := {v ∈ H : g · v = α(g)v}

to be the α-eigenspace for each α ∈ Ĝ.

One inconvenience of this definition is that the vector spaces H of interest are frequently defined over Q, but
Hα is not.

Thus, we note that some τ ∈ Gal(Q/Q) acts on Ĝ as follows: say τ(ζ) = ζu for some u ∈ (Z/NZ)×, and
then

(τα)([ζr : ζs : ζt]) = α
(
[ζu

−1r, ζu
−1s : ζu

−1t]
)
,

so we see that τα = u−1α, where the multiplication u−1α is understood to happen where α is a triple in
(Z/NZ)3. With this in mind, given α ∈ Ĝ, we let [α] ⊆ Ĝ be the collection of characters of the form uα
as u ∈ (Z/NZ)× varies; for example, −α ∈ [α]. The point of this discussion is that we are able to build a
decomposition

Q[G] ∼=
∏

[α]∈G/(Z/NZ)×
Q([α]),

where Q([α]) is the image of the map Q[G] → C given by the characters in [α]. We are now ready to make
the following definition.

Definition 4.2. Given some Q-vector space H with a G-action, we are now ready to define

H[α] :=

{
v ∈ H : v ⊗ 1 ∈

⊕
β∈[α]

(H⊗Q Q)α

}
.

The discussion of the Galois action of the previous paragraph implies that H[α] is a generalized eigenspace
of the G-action on H. In particular, we find that H[α] ⊗Q =

⊕
β∈[α] Hβ , so H =

⊕
[α] H[α].

4.1.2 Differential Forms

In this subsection, we will define a few differential forms. A reasonable reference for this subsection is
[Lan11, Section 1.7]. A computation with the Riemann–Hurwitz formula shows that the genus of X is
(N−1)(N−2)

2 , so we know that there are many holomorphic differential forms. On the other hand, we know
that the space of differential forms lives in H1

dR(X(C),C), which is equipped with a G-action. Anyway, we
are now ready to define our differential form.

Definition 4.3. Fix notation as above. For a ∈ Z/NZ, let [a] be a representative in {0, 1, . . . , N − 1}. For
any α(a,b,c) ∈ Ĝ, we define the differential form

ωα(a,b,c)
:= x[a]y[b]−N

dx

x

in the affine patch xN + yN + 1 = 0 of X. In the sequel, we may also denote this differential form by
ω(a,b,c).
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Remark 4.4. Because xN + yN + 1 = 0 implies xN−1 dx = −yN−1 dy, we also see that

ω(a,b,c) = −x[a]−Ny[b]
dy

y
.

Further, we can pass to the affine patch 1 + vN + uN = 0 of X by substituting (x, y) = (1/u, v/u), for
which we note d(1/u)/(1/u) = −du/u so that

ω(a,b,c) = −uN−[a]−[b]v[b]−N
du

u
.

Remark 4.5. Following [Col87, Section VI], we remark that it will be numerically convenient to work
with a rational multiple of the ω•s for some computations in the sequel. Namlely, we define να :=
K(α)ωα when α = (a, b, c) has nonzero entries, where

K(a, b, c) :=

{
N−[a]−[b]

N if [a] + [b] > N,

1 if [a] + [b] < N.

From Remark 4.4, we see thatω(a,b,c) always succeeds at being meromorphic with poles only at points of the
form [X : Y : 0], and it is closed (i.e., has vanishing residues) if and only if 0 /∈ {a, b, c}. Further, we see that
ω(a,b,c) succeeds at being holomorphic provided that we also have [a] + [b] < N , which we note is equivalent
to [a] + [b] + [c] = N .

We have now provided (N−1)(N−2)
2 holomorphic differentials of X, so we would like to check that we

have actually found a basis of H0(X(C),Ω1
X/C). Well, these differential forms are nonzero by construction,1

and they are linearly independent because they are all eigenvectors for the G-action.

Lemma 4.6. Fix notation as above. For each α ∈ Ĝ, the differential form ωα is an eigenvector for the
G-action with eigenvalue α.

Proof. Say α = α(a,b,c) for some a, b, c ∈ Z/NZ. Then for any g[r:s:0] ∈ G, we note

(g[r:s:0])
∗ω(a,b,c) = (ζrx)[a](ζsy)[b]−N

d(ζrx)

(ζrx)

= ζar+bs · x[a]y[b]−N dx

x
= α(a,b,c)(g[r:s:0])ω(a,b,c).

The reason to g[r:s:0] in the above computation is that we need the G-action to stay in the affine patch of
points of the form [X : Y : 1]. ■

Remark 4.7. Thus, we see that our differential forms must be linearly independent because they are
eigenvectors with different eigenvalues. As such, we have constructed eigenbases of H1

dR(X(C),C)
and H0(X(C),Ω1

X/C).

While we’re here, we compute the Poincaré pairing of our basis of differential forms.

1 Later, Remark 4.13 will give another way to prove this via periods.
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Lemma 4.8. Fix notation as above. Choose α, α′ ∈ Ĝ such that α = (a, b, c) and α′ = (a′, b′, c′) have
nonzero entries. Then the Poincaré pairing

P : H1
dR(X(C),C)×H1

dR(X(C),C)→ C

given by (ω, η) 7→ 1
2πi

∫
X
(ω ∧ η) sends (ωα, ωα′) to

P (ωα, ωα′) =

{
0 if α ̸= −α′,

(−1)N N
N−[a]−[b] if α = −α′.

Proof. We use the Poincaré residue, which implies that

P (ω, η) =
∑

x∈X(C)

Resx

(
η

∫
ω

)
,

where the sum is over poles, and
∫
ω refers to any choice of local primitive for ω in the neighborhood of x.

To use this, we note that the computation of Remark 4.4 implies that ωα and ωα′ can only have poles at the
points [1 : −ζs : 0] for some s ∈ Z/NZ, and in this neighborhood, we may write

ωα = −uN−[a]−[b]v[b]−N
du

u

and similarly for ωα′ . In particular, we see that

− 1

N − [a]− [b]
uN−[a]−[b]v[b]−N

makes a reasonable primitive for ωα, so the Poincaré residue yields

P (ωα, ωα′) =
∑

s∈Z/NZ

Res(−ζs,0)

(
− 1

N − [a]− [b]
uN−[a]−[b]v[b]−N · −uN−[a′]−[b′]v[b

′]−N du

u

)
.

Now, if α ̸= α′, then we see that we are computing the residues of some monomial times du/u, but the
power of u in the monomial is nonzero, so the residues all vanish. Lastly, we need to discuss what happens
with α = −α′, where we see

P (ωα, ω−α) =
∑

s∈Z/NZ

Res(−ζs,0)

(
− 1

N − [a]− [b]
uN−[a]−[b]v[b]−N · −uN−[−a]−[−b]v[−b]−N

du

u

)

=
∑

s∈Z/NZ

Res(−ζs,0)

(
− 1

N − [a]− [b]
uN−[a]−[b]v[b]−N · u[a]+[b]−Nv−[b] du

u

)

=
1

N − [a]− [b]

∑
s∈Z/NZ

Res(−ζs,0)

(
v−N

du

u

)
=

1

N − [a]− [b]

∑
s∈Z/NZ

(−ζs)−N

= (−1)N N

N − [a]− [b]
,

as desired. ■
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Remark 4.9. Following Remark 4.5, we see that α ∈ Ĝ with nonzero entries will have

P (να, ν−α) = (−1)N

because exactly one of K(α) or K(−α) will absorb the given rational constant. This is essentially the
reason for working with the ν•s instead of the ω•s.

4.1.3 Some Group Elements
In this subsection, we define a few elements ofQ[G]which we will then use in the next subsection. We begin
with the three elements

t :=
∑
g∈G

g, v :=
∑

s∈Z/NZ

g[0:s:0], and h :=
∑

r∈Z/NZ

g[r:0:0].

We take a moment to note that these elements satisfy the relations tg = gt = t for any g ∈ G, and t = hv =
vh, and v2 = Nv and h2 = Nh. In the sequel, we will get a lot of mileage out of the idempotent

p :=
1

N2

∑
r,s∈Z/NZ

(1− g[r:0:0])(1− g[0:s:0]).

Let’s check that p is idempotent.

Lemma 4.10. Fix notation as above.

(a) Then p is idempotent.

(b) For any r, s ∈ Z/NZ, we have (1− g[r:0:0])(1− g[0:s:0])p = (1− g[r:0:0])(1− g[0:s:0]).

Proof. Both claims hinge upon the fact that a direct expansion of (1− g[r:0:0])(1− g[0:s:0]) implies

p =
1

N2

(
N2 −Nh−Nv + t

)
.

We now show the claims separately.

(a) This is a direct computation: write

p2 =
1

N4

(
N2 −Nh−Nv + t

) (
N2 −Nh−Nv + t

)
=

1

N4

(
N4 +N2h2 +N2v2 + t2 − 2N3h− 2N3v + 2N2t+N2hv − 2Nht− 2Nvt

)
=

1

N4

(
N4 +N3h+N3v +N2t− 2N3h− 2N3v + 2N2t+N2t− 2N2t− 2N2t

)
=

1

N4

(
N4 −N3h−N3v +N2t

)
= p.

(b) We will compute as in (a): note h(1− g[r:0:0]) = 0 and v(1− g[0:s:0]) = 0, so

(1− g[r:0:0])(1− g[0:s:0])p = (1− g[r:0:0])(1− g[0:s:0]) ·
1

N2

(
N2 −Nh−Nv + hv

)
= (1− g[r:0:0])(1− g[0:s:0]) ·

N2

N2
+ 0 + 0 + 0

= (1− g[r:0:0])(1− g[0:s:0]),

as required. ■
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4.1.4 Homology
In this subsection, we will study HB

1 (X(C),Q). By the end, we will define a 1-cycle γ := γN such that
HB

1 (X(C),Q) = Q[G] · [γ]. Morally, this means that we can understand our homology by focusing on this
one cycle.

To begin, we need some path in X(C), so we define δ : [0, 1]→ X(C) by

δ(t) :=
[
t1/N : (1− t)1/N : ζ−1

2N

]
.

Notably, δ(0) = [0 : 1 : ζ−1
2N ] and δ(1) = [1 : 0 : ζ−1

2N ], so g = [ζr : ζs : 1] has g∗δ(0) = [0 : ζs : ζ−1
2N ] and

g∗δ(1) = [ζr : 0 : ζ−1
2N ]. The point of this computation is that we see

(1− g[r:0:0] − g[0:s:0] + g[r:s:0])∗δ ∈ ZB
1 (X(C),Q).

We are now ready to define γ.

Definition 4.11. Fix notation (and in particular δ) as above. Then we define

γ :=
1

N2

∑
r,s∈Z/NZ

(1− g[r:0:0])(1− g[0:s:0])∗δ.

Note γ = p∗δ.

The above computation shows that γ ∈ ZB
1 (X(C),Q). We will want to know to its periods later. Note that

the following result is essentially a special case of [Del18, Lemma 7.12].

Lemma 4.12. Fix notation as above. Suppose (a, b, c) ∈ (Z/NZ)3 has no nonzero entries. Then

∫
γ

ω(a,b,c) = ζ
[a]+[b]−N
2N

Γ
(

[a]
N

)
Γ
(

[b]
N

)
Γ
(

[a]
N + [b]

N

) .

Proof. This is a direct computation. Denote the integral by P (γ, ω(a,b,c)). By adjunction,
∫
p∗δ

ω(a,b,c) =∫
δ
p∗ω(a,b,c). This allows us to compute

P (γ, ω(a,b,c)) =
1

N2

∫
δ

∑
r,s∈Z/NZ

(1− g[r:0:0])(1− g[0:s:0])∗ω(a,b,c)

=
1

N2

∫
δ

∑
r,s∈Z/NZ

(1− ζar)
(
1− ζbs

)
ω(a,b,c)

=

(
1

N2

∑
r,s∈Z/NZ

(1− ζar)
(
1− ζbs

))∫
δ

ω(a,b,c)

=

(
1

N2

∑
r,s∈Z/NZ

(1− ζar)
(
1− ζbs

))
ζ
[a]+[b]−N
2N

∫ 1

0

t[a]/N (1− t)[b]/N−1 dt

t
.

The last integral (famously) equals the Beta function, and it evaluates to Γ
(

[a]
N

)
Γ
(

[b]
N

)
Γ
(

[a]+[b]
N

)−1

. We
take a moment to check that ∑

r,s∈Z/NZ

(1− ζar)
(
1− ζbs

) ?
= N2.

Well, (1− ζar)
(
1− ζbs

)
= 1 − ζar − ζbs + ζar+bs, and because a, b ̸= 0, we see that summing over r and s

causes the terms not equal to 1 to vanish. Thus, we are left with N2. ■
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Remark 4.13. Because the right-hand side is nonzero, Lemma 4.12 implies that the differential forms
ω(a,b,c) are nonzero.

Remark 4.14. Following Remark 4.5, it will be helpful to also compute
∫
γ
ν(a,b,c). We claim that

∫
γ

ν(a,b,c)
?
= (−1)⌊([a]+[b])/N⌋ζ

[a]+[b]−N
2N Γ

(
[a]

N

)
Γ

(
[b]

N

)
Γ

(
[a+ b]

N

)−1

.

We have two cases. If [a] + [b] < N , then ν(a,b,c) = ω(a,b,c), so this is immediate from Lemma 4.12.
Otherwise, if [a] + [b] > N , then ν(a,b,c) = N−[a]−[b]

N ω(a,b,c), so this follows from Lemma 4.12 as soon as
we compute

N − [a]− [b]

N
Γ

(
[a] + [b]

N

)−1
?
= −Γ

(
[a+ b]

N

)−1

.

This follows because Γ
(

[a]+[b]
N

)
= [a]+[b]−N

N Γ
(

[a+b]
N

)
.

We are now ready to show that HB
1 (X(C),Q) = Q[G] · [γ].

Lemma 4.15. Fix notation as above. Then HB
1 (X(C),Q) = Q[G] · [γ].

Proof. It is enough to show that HB
1 (X(C),C) = C[G] · [γ]. Note that there is a canonical pairing

HB
1 (X(C),C)×H1

dR(X(C),C)→ C
(c, ω) 7→

∫
c
ω

which is perfect by the de Rham theorem. We already have a basis {ω(a,b,c)}a,b,c̸=0 of H1
dR(X(C),C), so we

will find a dual basis for HB
1 (X(C),C) inside C[G] · [γ]. Well, for g ∈ G and α ∈ Ĝ, we see∫

g∗γ

ωα =

∫
γ

g∗ωα

equals α(g)P (γ, ωα), where P (γ, ωα) :=
∫
γ
ωα is the (nonzero!) period computed in Lemma 4.12. With this

in mind, we define
cα :=

1

N2P (γ, ωα)

∑
g∈G

α(g)−1g∗[γ]

for each α = α(a,b,c) with a, b, c ̸= 0. Then we see that
∫
cα
ωβ = 1α=β by the orthogonality relations, so {cα}

is a dual basis of HB
1 (X(C),C), and it lives in C[G] · [γ] by its construction. ■

4.2 Galois Action
We now use the notation set up in the previous section to write out the Galois action on the space of some ab-
solute Hodge cycles attached toX. Roughly speaking, we will be interested in computing ℓ-adic monodromy
groups of (quotients of) X, which requires us to have some understanding of the Galois representation

ρ : Gal(Q/Q)→ GL
(
H1

ét(XQ,Qℓ)
)
.

In particular, we recall from section 2.4.3 that it will really suffice to be able to compute the Galois action on
cetain Tate classes living in

H1
ét(XQ,Qℓ)

⊗p ⊗H1
ét(XQ,Qℓ)

∨⊗p ∼= H1
ét(XQ,Qℓ)

⊗2p(p),
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for some nonnegative index p ≥ 0, which is the main point of this section. In particular, the Künneth theorem
tells us that we will be interested in the cohomology group H2p

ét (X
2p

Q ,Qℓ)(p).
Roughly speaking, the outline will be to pass to absolute Hodge cycles. Indeed, by the Mumford–Tate

conjecture, one is able to correspond Tate classes to Hodge classes, and Hodge classes are known to be
absolutely Hodge, and our construction of absolute Hodge cycles makes it clear how they should specialize
to a Tate class. In this way, we find that we can attempt to compute Galois action on Tate classes by instead
computing Galois action on absolute Hodge classes. This is useful because absolute Hodge cycles have a
de Rham component, so we can run our computations on the de Rham component, which is the only place
where we can hope to have a basis.

Throughout this section, p is a nonnegative index. We take a moment to note that the action of G on
X upgrades into an action of G2p on X2p. Our exposition closely follows [GGL24, Subsection 8.5]. As in
section 4.1.1, we will identify Ĝ2p with some subset of tuples in (Z/NZ)6p. And for a vector space H defined
over Q(ζ) (respectively, Q) and character α ∈ Ĝ2p, we define Hα (respectively, H[α]) as the corresponding
α-eigenspace (respectively, [α]-generalized eigenspace). Then given a vector v ∈ H, we may also write vα
for the component in Hα.

In the sequel, we will find utility out of the following two subsets of Ĝ2p.

Definition 4.16. Fix notation as above.

• We define the subset A2p to be equal to the subset of α ∈ Ĝ2p having nonzero entries as a tuple
in (Z/NZ)6p.

• We define the subset B2p to be equal to the subset ofα ∈ A2p such thatα = (a1, . . . , a6p) satisfies

1

N

6p∑
i=1

[uai] = 3p

for all u ∈ (Z/NZ)×.

Morally, the characters in A2p correspond to basis vectors of H1
ét(XQ,Qℓ)

⊗p, and the characters in B2p cor-
respond to Hodge classes (see Proposition 4.23).

4.2.1 Hodge Cycles on X2p

To understand the geometry of X, we will only be interested in tensor powers of H1(X) (for a choice of
cohomology theory H), which by the Künneth formula embed as

H1(X)⊗2p ⊆ H2p
(
X2p

)
.

When H is de Rham cohomology HdR, we thus see we are interested in when the image of an element in
H1

dR(X)⊗p succeeds at being a Hodge cycle. Well, note that the action of G on H1
dR(X,C) extends to an

action of G2p on H1
dR (X,C)⊗2p. This action diagonalizes with one-dimensional eigenspaces by extending

Remark 4.7. We will use properties of the diagonalization to read off when we have an element of bidegree
(p, p) in H2p

dR

(
X2p,C

)
.

Following [Del18, Proposition 7.6], it will be useful to have the following definition.

Definition 4.17 (weight). Given a function f : Z/NZ → C, we define its weight map as the function
⟨f⟩ : (Z/NZ)× → C defined by

⟨f⟩(u) := 1

N

∑
a∈Z/NZ

f(ua)[a]

For p ≥ 0, we note that we may identify Ĝ2p with a tuple in (Z/mZ)2p, and then we define the weight
⟨α⟩ of a character α ∈ Ĝ2p as ⟨1α⟩(1), where 1α : Z/NZ→ Z is the multiplicity of an element in Z/NZ in
the tuple α.
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Remark 4.18. The point of this definition is as follows: given α ∈ Ĝ with α = (a, b, c) having nonzero
entries, we note that ωα has two possible cases.

• If [a] + [b] + [c] = N so that ⟨α⟩ = 1, then ω(a,b,c) is holomorphic so that ωα ∈ H10(X).

• If [a] + [b] + [c] = 2N so that ⟨α⟩ = 2, then ωα is not holomorphic so that ωα ∈ H01(X).

In all cases, we find ωα ∈ H2−⟨α⟩,⟨α⟩−1(X).

Remark 4.19. If f is instead a function f : 1
NZ/Z→ C, we may similarly define the weight by the formula

⟨f⟩(u) :=
∑

a∈ 1
N Z/Z

f(ua)⟨a⟩,

where ⟨a⟩ now refers to the element in [0, 1) in the class of a.

Remark 4.20. Suppose that α ∈ A2p has 1α of constant weight. Then we claim that ⟨α⟩ = 3p. Indeed,
we must have

1

N

6p∑
i=1

[ai] =
1

N

6p∑
i=1

[−ai],

but [−ai] = N − ai then forces the sum to equal 3p.

We now upgrade Remark 4.18 to H1
dR(X,C)⊗2p.

Notation 4.21. Choose α ∈ Ĝ2p as α = (α1, . . . , α2p) having nonzero entries. Then we set

ωα := ωα1 ⊗ · · · ⊗ ωα2p .

We define να similarly.

Lemma 4.22. Choose α ∈ Ĝ2p as α = (α1, . . . , α2p) having nonzero entries (i.e., α ∈ A2p). Then ωα
embedded in H2p

dR

(
X2p,C

)
is of bidegree (4p− ⟨α⟩, ⟨α⟩ − 2p).

Proof. Because the Künneth isomorphism upgrades to an isomorphism of Hodge structures, it is enough to
note that ωαi

∈ H2−⟨αi⟩,⟨αi⟩−1 (see Remark 4.18) implies ωα has bidegree(
4p−

2p∑
i=1

⟨αi⟩,
2p∑
i=1

⟨αi⟩ − 2p

)
.

The lemma follows because weight is additive. ■

Proposition 4.23. Chooseα ∈ A2p. ThenH2p
B

(
X2p

)
[α]

is one-dimensional overQ([α]), and the following
are equivalent.

(a) H2p
B

(
X2p

)
[α]

(p) consists entirely of Hodge classes.

(b) We have ⟨uα⟩ = 3p for all u ∈ (Z/NZ)×.
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Proof. Expand α = (α1, . . . , α2p). We begin by embedding

H2p
B

(
X2p,Q

)
[α]
⊗Q C =

⊕
u∈(Z/NZ)×

H2p
B

(
X2p,C

)
uα

into
H2p

dR

(
X2p,C

)
=

⊕
q1,...,q2p

q1+···+q2p=2p

Hq1dR(X,C)⊗ · · · ⊗H
q2p
dR (X,C),

where this last equality holds by the Künneth isomorphism. Quickly, we reduce to the case where q1 = · · · =
q2p = 1: for each u ∈ (Z/NZ)×, we note that uα has nonzero entries. On the other hand, the G-action on
H0(X) = C is always trivial, so we note that if any of the q•s are not equal to 1, then one of them must equal
0, meaning that (

Hq1dR(X,C)⊗ · · · ⊗H
q2p
dR (X,C)

)
uα

= Hq1dR(X,C)uα1
⊗ · · · ⊗H

q2p
dR (X,C)uα2p

is the zero vector space. Thus, we see that

H2p
dR

(
X2p,C

)
[α]

=
⊕

u∈(Z/NZ)×

(
H1

dR(X,C)⊗2p
)
uα
.

The comparison isomorphism now implies that H2p
B

(
X2p,Q

)
[α]

has dimension [Q([α]) : Q] over Q and thus
one dimension over Q([α]).

It remains to show that (a) and (b) are equivalent. Well, theQ-vector spaceH2p
B

(
X2p,Q

)
[α]

(p)will consist
of Hodge classes if and only if

(
H1

dR(X,C)⊗2p
)
uα

is of bidegree (p, p), which is equivalent to ⟨uα⟩ = 3p by
Lemma 4.22. ■

4.2.2 An Absolute Hodge Cycle
Thus far, we have access to classes ωα, and we know how to compute their periods against the Betti cycle
γ. We will be able to compute the Galois action on γ because it already comes from a Betti cycle, but we
then need to know how to translate this into a Galois action on the ωα; importantly, note that ωαs have no
obvious Galois action, and indeed, they cannot because they may not even be defined over a number field.
To do this, we need a way to put γ and the ωα on the same footing; following [GGL24, Section 8.5], we use
absolute Hodge classes.

For example, the machinery of cohomology tells us how to take γ and then apply some cycle class maps
to produce an absolute Hodge class. Let’s be more explicit: we may pass the class γ2p⊗ (2πi)−p through the
maps

HB
2p

(
X2p,C

)
(−p) ∼= H2p

B

(
X2p,C

)
(p) ⊆ H2p

A (X)(p),

where the last map is the cycle class map. In order to ensure that we output an absolute Hodge cycle, we
apply Proposition 4.23: we see that the generalized eigenspace for [α] contains all Hodge classes if and only
if α ∈ B2p, we simply define γ2p[α] ∈ HB

2p

(
X2p,Q

)
to be the projection to the [α]-component, and we now

know that its image γ2p[α],AH is a Hodge class, hence an absolute Hodge class by Theorem 2.45.

Remark 4.24. We remark that this last paragraph actually argues that the projection

CpAH(X)[α] ↠ H2p
dR

(
X2p,C

)
(p)[α]

is an isomorphism for any α ∈ B2p. In particular, both spaces are 1-dimensional vector spaces over
Q([α]).

Perhaps we should check that γ2p[α],AH is nonzero. Roughly speaking, we expect this to hold by the period
computations of Lemma 4.12.
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Proposition 4.25. Choose α ∈ B2p. Then

π∞

(
γ2p[α],AH

)
=

∑
β∈[α]

β=(a1,b1,c1,...,a2p,b2p,c2p)

(
(2πi)−p

2p∏
i=1

N − [ai]− [bi]

N

∫
γ

ω(−ai,−bi,−ci)

)
ωβ .

Proof. We know that the ωβ form an eigenbasis of H2p
dR

(
X2p,C

)
(p)[α] by restricting Remark 4.7 to the [α]-

generalized eigenspace. Thus, we know that π∞(γ[α],AH) is certainly a linear combination of the ωβs, so we
write

π∞

(
γ2p[α],AH

)
=
∑
β∈[α]

zβωβ ,

and it remains to compute the coefficients zβ . For this, we use the computation of the Poincaré pairing
computation from Lemma 4.8 (iterated 2p times), whereupon we see that

P
(
π∞

(
γ2p[α],AH

)
, ω−β

)
= zβ

2p∏
i=1

(−1)N N

N − [ai]− [bi]
,

where β = (a1, b1, c1, . . . , a2p, b2p, c2p). Thus, to get the correct answer for zβ , we would like to show that

P
(
π∞

(
γ2p[α],AH

)
, ω−β

)
?
= (2πi)−p

∫
γ

ω−β .

(Note that the sign has disappeared because (−1)N ·2p = 1.) To compute this Poincaré pairing, we would like
to remember that γ[α],AH comes from a Betti class. As such, we remark that the composite

HB
2p

(
X2p,C

)
(−p) ∼= H2p

B

(
X2p,C

)
(p) ⊆ H2p

A
(
X2p

)
(p) ↠ H2p

dR

(
X2p,C

)
is just the usual cycle class map from Betti to de Rham cohomology. Thus, we see that the Poincaré pairing
with γ2p[α],AH may be computed as the integration pairing

P
(
π∞

(
γ2p[α],AH

)
, ω−β

)
= (2πi)−p

∫
γ2p
[α]

ω−β .

To complete the proof, we note that we may pass from integrating over γ2p[α] to γ2p because the adjunctive
property of the integration pairing allows us to pass the projection onto the [α]-component to−β, but ω−β
already lives in the [α]-generalized eigenspace. ■

Thus, we see that γ[α],AH is nonzero because we have found nonzero coefficients: the integrals are nonzero
by Lemma 4.12. While we’re here, we translate this into a statement with ν•s.

Corollary 4.26. Choose α ∈ B2p. Then

π∞

(
γ2p[α],AH

)
=

∑
β∈[α]

β=(a1,b1,c1,...,a2p,b2p,c2p)

(
(2πi)−p

2p∏
i=1

∫
γ

ν(−ai,−bi,−ci)

)
νβ .

Proof. The same proof as in Proposition 4.25 applies when combined with Remark 4.9. ■

Remark 4.27. Following Remark 4.9, it will be computationally helpful to rewrite our formula in terms
of the ν•s because this will make the mysterious rational constant disappear.

In order to hide these integrals for now, we introduce the following notation.
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Notation 4.28. For α ∈ B2p such that α = (α1, . . . , α2p), we define

Per
(
γ2p, να

)
:= (2πi)−p

2p∏
i=1

∫
γ

ναi
.

Note that this number is algebraic by Proposition 4.23 because it is the integral of a differential against
an absolute Hodge class. (See the end of the proof of Proposition 4.25.)

Remark 4.29. In order to compute these integrals, we note Remark 4.14 grants the product of the in-
tegrals equals

2p∏
i=1

(−1)⌊([ai]+[bi])/N⌋ζ
[ai]+[bi]−N
2N Γ

(
[ai]

N

)
Γ

(
[bi]

N

)
Γ

(
[−ci]
N

)−1

.

We quickly note that
⌊
[ai]+[bi]

N

⌋
∈ {0, 1} equals 0 exactly p times and equals 1 exactly p times because

α ∈ B2p; additionally, ζ−N ·2p
2N = 1, so that power vanishes. Thus, our period equals

(−2πi)−p
2p∏
i=1

ζ
[ai]+[bi]
2N

Γ
(

[ai]
N

)
Γ
(

[bi]
N

)
Γ
(

[−ci]
N

) .

We will also want to express the ν•s in terms of γ.

Corollary 4.30. Choose α ∈ B2p. For any β ∈ [α], we have

νβ =
1

#G2p(Q) Per (γ2p, ν−α)

∑
g∈G2p(Q)

β(g)−1 · π∞
(
g∗γ2p[α],AH

)
.

Proof. By the orthogonality of characters applied to Corollary 4.26, we find that

1

#G2p(Q)

∑
g∈G2p(Q)

β(g)−1 · π∞
(
g∗γ2p[α],AH

)
= Per

(
γ2p, ν−α

)
νβ,AH,

so the result follows. ■

4.2.3 Computation of the Galois Action
In this subsection, we compute the Galois action on our absolute Hodge cycles. To ground ourselves, we
begin by noting that we are expecting a permutation matrix.

Lemma 4.31. Choose α ∈ A2p and a prime ℓ such that ℓ ≡ 1 (mod N). Given σ ∈ Gal(Q/Q) such that
σ(ζN ) = ζuN for some u ∈ (Z/NZ)×, we find that σ maps

H2p
ét

(
X2p

Q ,Qℓ
)
α
→ H2p

ét

(
X2p

Q ,Qℓ
)
u−1α

.

Proof. Choose v ∈ H2p
ét

(
X2p

Q ,Qℓ
)
α

. Then for any g ∈ G2p(Qℓ), we find that

σ(g · v) = σ(g) · σ(v)
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because the action of G2p is defined over Q and hence Galois-invariant. Rearranging, we see that

g · σ(v) = σ
(
σ−1(g)

)
· σ(v)

= σ
(
σ−1(g) · v

)
= σ

(
α
(
σ−1(g)

)
· v
)

= α
(
σ−1(g)

)
σ(v),

where the last equality holds because the Galois action is Qℓ-linear. A direct computation then shows
α
(
σ−1(g)

)
= σ−1(α(g)) and then σ−1(α(g)) =

(
u−1α

)
(g). ■

We now move towards the computation of the Galois action on absolute Hodge classes. This requires a
warning. Our computation will be able to succeed by using de Rham classes as representatives for absolute
Hodge classes. However, de Rham classes have no Galois action: only absolute Hodge classes have Galois
action (through the ℓ-adic components). The key to keeping track of the differences between these elements
is to keep track of our base-changes. In particular, for any prime ℓ, we may specify an embedding ι : Qℓ ↪→ C
and note the “comparison” isomorphisms

H2p
dR(X,C)(p)[α] = CpAH

(
X2p

Q

)
[α]
⊗Q C

= CpAH

(
X2p

Q

)
[α]
⊗Q Qℓ ⊗ι C

= H2p
ét

(
X2p

Q ,Qℓ
)
(p)[α] ⊗ι C,

where the last isomorphism is given by the Betti-to-étale comparison isomorphism. (We remark that these
identifications are all G2p-invariant.) For example, in the sequel, we may write bizzarre things such as

γ2p[α],AH ⊗ 1 ∈ CpAH

(
X2p

Q

)
⊗Q Q or να ⊗ 1 ∈ H2p

dR

(
X2p,Q

)
⊗Q Q

and then pretend that these elements live in the same vector space.
As promised in the previous section, we are able to compute the Galois action on γ. Explicitly, this

amounts to the following.

Lemma 4.32. Choose α ∈ B2p.

(a) There is a function λ : Gal(Q/Q)→ Q([α])× such that

σ
(
γ2p[α],AH

)
= λ(σ)γ2p[α],AH.

(b) For any σ ∈ Gal(Q/Q) and g ∈ G2p(Q), we have

σ
(
g∗γ2p[α],AH

)
= λ(σ) · σ(g)∗γ2p[α],AH.

(c) For any σ ∈ Gal(Q/Q), we compute ια(λ(σ)) ∈ Q(ζ2N ) as

ια(λ(σ)) =
σ
(
Per

(
γ2p, ν−α

))
Per (γ2p, ν−α)

.

Proof. Here, (a) follows becauseCpAH

(
X2p

)
[α]

is a one-dimensional vector space over Q([α]) which is stable
under the Galois action (because its Betti component is defined over Q); thus, we see that γ2p[α],AH is a basis
vector of this space, so (a) follows. Continuing, (b) follows because the action of G2p on X2p is defined over
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Q, implying that

σ
(
g∗γ2p[α],AH

)
= σ(g)∗σ

(
γ2p[α],AH

)
= σ(g)∗

(
λ(σ)γ2p[α],AH

)
= λ(σ) · σ(g)∗γ2p[α],AH,

where the last equality holds because σ(g)∗ is linear.
Lastly, (c) will require a computation. We will work in the de Rham component; the idea is to project onto

the α-component. Working in CpAH

(
X2p

)
⊗Q C, one has the equalities(

λ(σ)γ2p[α],AH ⊗ 1
)
=
(
σγ2p[α],AH ⊗ 1

)
.

We now project onto theα-eigenspace; because theG2p-action is defined over Q, the projection commutes
with the Galois action, leaving us with(

λ(σ)γ2p[α],AH ⊗ 1
)
α
= σ

(
γ2p[α],AH ⊗ 1

)
α
.

On one hand, by definition of ια, we see that the left-hand side will equal ια(λ(σ))
(
γ2p[α],AH ⊗ 1

)
; then pro-

jecting onto the de Rham component leaves us with

π∞

((
λ(σ)γ2p[α],AH ⊗ 1

)
α

)
= λ(σ) Per

(
γ2p, ν−α

)
να

by Corollary 4.26. On the other hand, for the right-hand side, we will want to project onto the de Rham
component first (which commutes with Galois action by our identifications). To complete the proof, we
now run computations in H2p

dR

(
X2p,C

)
= H2p

dR

(
X2p,Q

)
⊗Q C, for which we use Corollary 4.26 to see

π∞

(
σ
(
γ2p[α],AH ⊗ 1

)
α

)
= σ

(
π∞

(
γ2p[α],AH ⊗ 1

)
α

)
= σ

(
να ⊗ Per

(
γ2p, ν−α

))
= σ

(
Per

(
γ2p, ν−α

))
να,

where the last equality holds because the Galois action on H2p
dR

(
X2p,Q

)
is trivial. Comparing the previous

two computations completes the proof. ■

We are now ready for our main theorem.

Theorem 4.33. Choose α ∈ B2p. For any σ ∈ Gal(Q/Q) such that σ(ζN ) = ζuN for u ∈ (Z/NZ)×, we
have

σ(να ⊗ 1) = νu−1α ⊗
σ
(
Per(γ2p, ν−u−1α)

)
Per(γ2p, ν−α)

,

where this Galois action takes place in H2p
dR

(
X2p,Q

)
(p)[α] ⊗Q Q = CpAH

(
X2p

)
[α]
⊗Q Q.

Proof. We combine the computed Galois action in Lemma 4.32 with the change-of-basis results Corollar-
ies 4.26 and 4.30. To begin, Corollary 4.30 lets us write

σ(να ⊗ 1) = σ

(
1

#G2p(Q)

∑
g∈G2p(Q)

g∗γ2pAH ⊗
1

α(g) Per (γ2p, ν−α)

)

=
1

#G2p(Q)

∑
g∈G2p(Q)

σ

(
g∗γ2pAH ⊗

1

α(g) Per (γ2p, ν−α)

)

=
1

#G2p(Q)

∑
g∈G2p(Q)

σ
(
g∗γ2pAH

)
⊗ 1

α(g) Per (γ2p, ν−α)
,

181



4.2. GALOIS ACTION SATO–TATE GROUPS OF GENERIC CURVES

where the last equality takes place in CpAH

(
X2p

)
⊗Q Q so that the Galois action is happening in the left

component. Continuing, Lemma 4.32 tells us that

σ
(
g∗γ2p[α],AH

)
= σ(g)λ(σ) · σ(g)∗γ2p[α],AH,

so
σ(να ⊗ 1) =

1

#G2p(Q)

∑
g∈G2p(Q)

λ(σ) · σ(g)∗γ2p[α],AH ⊗
1

α(g) Per (γ2p, ν−α)
.

(We will wait to evaluateλ(σ) until the end because a trick is required to move it through the tensor product.)
We now go back to the basis of ν•s via Corollary 4.26, writing

σ(να ⊗ 1) =
1

#G2p(Q)

∑
g∈G2p(Q)
β∈[α]

λ(σ) · σ(g)∗νβ ⊗
Per(γ2p, ν−β)

α(g) Per (γ2p, ν−α)
.

Now, σ(g)∗νβ ⊗ 1 = νβ ⊗ β(σ(g)), where the equality is now taking place in H2p
dR

(
X2p,Q

)
⊗Q Q. Continuing,

we seeβ(σ(g)) = σ(β(g)) = β(g)u because evaluating a character is Galois-invariant. Rearranging the sums,
we now see that we can isolate the sum

1

#G2p(Q)

∑
g∈G2p(Q)

(uβ)(g)

α(g)
,

which orthogonality of characters tells us is the indicator for β = u−1α. Thus, we are left with

σ(να ⊗ 1) = λ(σ)νu−1α ⊗
Per(γ2p, ν−u−1α)

Per (γ2p, ν−α)
.

It remains to move λ(σ) through the tensor product. Note that this is not totally trivial because the tensor
product only lets us move rational numbers through. Anyway, it is enough to check the required equality in
the de Rham component, allowing us to use the proof of Lemma 4.32 to note

λ(σ)νu−1α ⊗ Per
(
γ2p, ν−u−1α

)
= νu−1α ⊗ σ

(
Per

(
γ2p, ν−u−1α

))
,

from which the required result follows after some rearranging. ■

Remark 4.34. Because the G2p-action commutes with the Galois action, it is not difficult to directly
check that an α-eigenvector should go to a u−1α-eigenvector.

Remark 4.35. As a sanity check, it is not hard to see that Theorem 4.33 actually defines a group repre-
sentation.

Remark 4.36. Following Remark 2.162, one can use Theorem 4.33 allows ons to compute the con-
nected monodromy field Kconn

A of the Jacobian A of any quotient C of the Fermat curve XN . Indeed,
Remark 2.162 explains that this is essentially a matter of computing enough the field of definition of
enough Tate classes (used to cut out the torus G◦

ℓ (A)). In particular, we already know that Q(ζN ) ⊆
Kconn
A (because of the endomorphisms), and then Theorem 4.33 explains that σ ∈ Gal(Q/Q(ζN )) fixes

a Tate cycle να if and only if it fixes the period Per
(
γ2p, ν−α

)
.

Let’s see an example.
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Corollary 4.37. Choose α := (a, b, c) ∈ A1, and set α′ := (a′, b′, c′) to be −α. Then (α, α′) ∈ B2, and for
any σ ∈ Gal(Q/Q) such that σ(ζN ) = ζuN for u ∈ (Z/NZ)×, we have

σ(ν(α,α′) ⊗ 1) = νu−1(α,α′) ⊗ (−1)⟨u
−1α⟩−⟨α⟩.

In particular, σ fixes ν(α,α′) ⊗ 1 if and only if u− 1 is divisible by N/ gcd(a, b, c,N).

Proof. To see that (α, α′) ∈ B2, we note that any u ∈ (Z/NZ)× still has uα = −uα′, so {⟨uα⟩, ⟨−uα⟩} =
{1, 2}.

Looking at Theorem 4.33, we see the main part of proof will be computing our periods. The main point
is that the reflection formula for Γ (recalled later in Proposition 4.40) reassures us that

Γ

(
[a]

N

)
Γ

(
[−a]
N

)
=

π

sin aπ
N

.

We now combine this with the computation in Remark 4.29 to achieve

Per
(
γ2p, ν−(α,α′)

)
= −(2πi)−1 · ζ [−a]+[−b]+[a]+[b]

2N · π

sin [a]π
N

· π

sin [b]π
N

·
sin [c]π

N

π
.

Note that [a]+[−a] = N , so the power of ζ2N disappears. Continuing, we expand sin z = 1
2i

(
z + z−1

)
, which

yields

Per
(
γ2p, ν−(α,α′)

)
= −

(
ζc2N − ζ

−c
2N

)(
ζa2N − ζ

−a
2N

) (
ζb2N − ζ

−b
2N

) .
Continuing, we factor ζc2N/ζ

−a−b
2N = ζ

N⟨α⟩
2N = (−1)⟨α⟩, leaving us with

Per
(
γ2p, ν−(α,α′)

)
= −(−1)⟨α⟩ ·

(
1− ζ−cN

)
(ζaN − 1)

(
ζbN − 1

) .
We now plug into Theorem 4.33 to reveal

σ(ν(α,α′) ⊗ 1) = νu−1(α,α′) ⊗
σ

(
(−1)⟨u−1α⟩ ·

(
1−ζ−u−1c

N

)
(ζu−1a

N −1)(ζu−1b
N −1)

)
(−1)⟨α⟩ · (1−ζ−c

N )
(ζaN−1)(ζbN−1)

,

which rearranges into the desired expression because σ
(
ζu

−1

N

)
= ζN .

It now remains the last sentence. Well, we see that σ fixes ν(α,α′) if and only if u−1α = α, which is
equivalent to uα = α. By taking Z-linear combinations, it is equivalent to asking for (u − 1) gcd(a, b, c) ≡ 0
(mod N), from which the claim follows. ■

4.2.4 Some Examples
We begin with the superelliptic curve C : y9 = x3 − 1.

Proposition 4.38. DefineA to be the Jacobian of the proper curveC with affine chart y9 = x3− 1. Then
we show Kconn

A = Q(ζ9), and we compute ST(A).

Proof. We will freely use the computation executed in Proposition 3.32. Thoughout, A := JacC, and we
recall that we have a decompositionA = C0 ×A1 ×A2 (over Q) into geometrically simple abelian varieties.
We proceed in steps.
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1. Even though this is not a Fermat curve, it is a quotient of the Fermat curve XN with N := 9: this is
witnessed by the quotient map from the affine patch x9 + y9 +1 = 0 toC given by ψ(x, y) :=

(
−x3, y

)
.

Thus, we will be able to use the Galois-invariant embedding ψ : H1
ét(CQ,Qℓ) ↪→ H1

ét(XN,Q,Qℓ) to use
Theorem 4.33 by restricting to the Galois submodule. To make this explicit, we recall that we have a
basis {

dx

y4
,
dx

y5
,
dx

y6
,
dx

y7
,
dx

y8
,
x dx

y7
,
x dx

y8

}
of H10(C), we see that we can pass this basis through ψ∗ to see that H10(C) ⊆ H10(X) has basis

{ν351, ν342, ν333, ν324, ν315, ν621, ν612} .

Combining with the conjugate differentials yeilds a full basis of H1
dR(C,Q) ⊆ H1

dR(X,Q).

2. We now explain how to pass the étale site. By Conjecture 3.19, which is known in this case by Theo-
rem 3.23, we may choose any ℓ, so we choose ℓ so thatQℓ contains any algebraic numbers we will need
in the sequel (most notably, we want ζN and our periods). For each p ≥ 0, we recall that any α ∈ B2p

produces idenitifications

H2p
dR

(
X2p,Q

)
[α]
⊗Q C = CpAH

(
X2p

)
[α]
⊗Q C ↪→ H2p

ét

(
X2p,Qℓ

)
(p)[α] ⊗ι C,

where ι : Qℓ ↪→ C is some fixed embedding. In this way, we see that we are allowed to treat an expres-
sion like ν351⊗1 as an element of H2p

ét

(
X2p,Qℓ

)
⊗ιC; for carefully chosen ℓ, a Galois descent argument

is even able to reassure us that the basis vectors να ⊗ 1 produces from the previous step can be found
in H2p

ét

(
X2p,Qℓ

)
(p)[α].

Thus, in the notation of Proposition 3.32, we see that ψ∗ pulls the basis vectors {u1 ⊗ 1, v1 ⊗ 1, v2 ⊗
1, v4 ⊗ 1, w1 ⊗ 1, w2 ⊗ 1, w5 ⊗ 1} to

{ν333 ⊗ 1, ν315 ⊗ 1, ν621 ⊗ 1, ν342 ⊗ 1, ν612 ⊗ 1, ν324 ⊗ 1, ν351 ⊗ 1},

and one can recover ψ∗ on the rest of the basis by taking conjugates.

3. We are now ready to begin executing Proposition 2.157; for this, Remark 2.158 informs us that we
need to build a space of W ′ of Tate classes cutting out Gℓ(A)◦ ⊆ GL14,Qℓ

. We begin by adding W1,
made up of the endomorphisms, which ensures (for example) that Gℓ(A)◦ is diagonal. Then Proposi-
tion 3.32 computed that we also have the “polarization equations”

µ1µ2 = κ1κ8,

κ1κ8 = κ2κ7,

κ1κ8 = κ4κ5,

and the exceptional equation

µ1κ7 = κ5κ8.

We remark that the polarization equations translate into a Tate class like ν(α,−α,β,−β) ⊗ 1 understood
as an element inH4

ét(XQ,Qℓ)(2)⊗QQℓ, but this Tate class actually already come from a class inW1 (see
Corollary 4.37), so we may safely ignore it. Thus, we only have to translate the exceptional equation
into the tensor

ν333,675,648,612 ⊗ 1 ∈ H4
ét(XQ,Qℓ)(2)⊗Q Qℓ

and its Galois orbit.

4. We claim thatKconn
A = Q(ζN ). By Remark 2.158, it is enough to know thatGal(Q(ζN )/Q) is the largest

subgroup of Gal(Q/Q) fixing W ′. We already know that our endomorphisms, except the isogeny
(A1)Q

∼= (A2)Q, are defined over Q(ζN ) (see also Corollary 4.37 for these equations and the polar-
ization). The isogeny corresponds to equations κu = λ2u for each u ∈ (Z/9Z)×, which means that we
would like to check that

Per
(
γ2p, νu(612,378)

)
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is in Q(ζN ). Well, by Remark 4.14, this element is

(−2πi)−1ζ
u(6+2+3+7)
2N ·

Γ
(

[6u]
9

)
Γ
(

[2u]
9

)
Γ
(

[8u]
9

) ·
Γ
(

[3u]
9

)
Γ
(

[7u]
9

)
Γ
(

[u]
9

) .

A quick application of the reflection formula as in Corollary 4.37 shows this is in Q(ζN ).
It remains to check that σ ∈ Gal(Q(ζN )/Q) fixes the Galois orbit of ν333,675,648,612 ⊗ 1. Well, looking at
Theorem 4.33, it is enough to check that σ fixes

Per
(
γ4, νu(333,675,648,612)

)
for any u ∈ (Z/NZ)×. Well, by Remark 4.14, we see this equals

(−2πi)−2ζ
u(3+3+6+7+6+4+6+1)
2N ·

Γ
(

[3u]
9

)
Γ
(

[3u]
9

)
Γ
(

[6u]
9

) ·
Γ
(

[6u]
9

)
Γ
(

[7u]
9

)
Γ
(

[4u]
9

) ·
Γ
(

[6u]
9

)
Γ
(

[4u]
9

)
Γ
(

[u]
9

) ·
Γ
(

[6u]
9

)
Γ
(

[u]
9

)
Γ
(

[7u]
9

) .

After the dust settles, we are left with

(−2πi)−2 · Γ
(
3

9

)2

Γ

(
6

9

)2

.

Now, the reflection formula yields Γ
(
3
9

)
Γ
(
6
9

)
= π

sin π
3

, so we see that this period lives in Q(ζN ) and
hence is fixed by σ; in fact, it is rational!

5. Choose σ ∈ Gal(Q(ζN )/Q) to satisfy σ(ζN ) = ζuN . We compute the action of σ on W ′. For example,
the previous step actually shows that σ fixes the Galois orbit of ν333,675,648,612 ⊗ 1, so it remains to
compute the action onW1. Note thatG acts on the C-vector space, so the action can be diagonalized.
Given some character (α, β) ∈ A2, we note that (W1)(α,β) is at most one-dimensional spanned by
ν(α,β) ⊗ 1, and this element being a Tate class is equivalent to H2

B(X,Q)(1)[α] has Hodge cycles by the
Mumford–Tate conjecture (known in this case by Remark 2.144), which is equivalent to (α, β) ∈ B2

by Proposition 4.23. With the aide of a computer, we can enumerate all such (α, β), and we see that
they come in two forms.

• We could have α = (a, b, c) and β = −α. In this case, Corollary 4.37 explains that

σ(ν(α,β) ⊗ 1) = νu−1(α,β) ⊗ (−1)⟨u
−1α⟩−⟨α⟩.

• We could have α = (a, b, c) and β = (−a,−c,−b). As in Corollary 4.37, the main point is to
compute our periods. Well, by Remark 4.14, we find

Per
(
γ2p, ν−(α,β)

)
= −(2πi)−1ζ

[a]+[−a]+[−b]+[c]
2N ·

Γ
(

[−a]
N

)
Γ
(

[−b]
N

)
Γ
(

[c]
N

) ·
Γ
(

[a]
N

)
Γ
(

[c]
N

)
Γ
(

[−b]
N

) ,

which after an appliation of the reflection formula gives

Per
(
γ2p, ν−(α,β)

)
= (2πi)−1ζ

[−b]+[c]
2N · π

sin aπ
N

=
ζ
[−b]+[c]
2N

ζa2N − ζ
−a
2N

=
ζ
[−b]+[c]+[a]
2N

ζaN − 1
.
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It will be convenient to write this entirely in terms of ζN , so we note that N being odd forces
ζ2N = −ζ(N+1)/2

N , so this equals (−1)[a]+[−b]+[c]ζ
(a−b+c)(N+1)/2
N . The purpose of this rewrite is

that all ζNs will go away in the computation

σ(ν(α,β) ⊗ 1) = νu−1(α,β) ⊗
σ
(
Per

(
γ2p, ν−u−1(α,β)

))
Per

(
γ2p, ν−(α,β)

)
because σ

(
ζu

−1

N

)
= 1, so we are left with

σ(ν(α,β) ⊗ 1) = νu−1(α,β) ⊗ (−1)[u
−1a]+[−u−1b]+[u−1c]+[a]+[−b]+[c].

6. Now choose σ ∈ Gal(Q(ζN )/Q) to satisfy σ(ζN ) = ζ5N , which we note is a generator. We now compute

{g ∈ GL14,Qℓ
: g|W ′ = σ|W ′}.

For this, we recall from Proposition 2.157 that we are looking at the component of Gℓ(A) containing
the image of σ. In particular, we know that σ is a permutation matrix sending (να ⊗ 1) 7→ (ν2α ⊗ 1) (up
to scalar), so we need g to also be a permutation matrix also sending (να ⊗ 1) 7→ (ν2α ⊗ 1) (again up
to scalar). Well, for each available α, we will compute relations among scalars {λα} defined to satisfy
g(να⊗ 1) = (ν2α⊗λα). BecauseGℓ(A)◦ is a torus of rank 4, we are expecting to be able to write all λ•s
in terms of four of them.
With this in mind, we use the previous step as follows to produce the required relations. For brevity, let
λ be the multiplier of g with respect to the pairing induced by the polarization; this multiplier becomes
the action of g on Qℓ(1).

• We need g to satisfy
g(ν(α,−α) ⊗ 1) = ν2(α,−α) ⊗ (−1)⟨2α⟩−⟨α⟩,

so λαλ−α = (−1)⟨2α⟩−⟨α⟩λ.
• For available (a, b, c), we need g to satisfy

g(ν(a,b,c,−a,−c,−b)) = ν(2a,2b,2c,−2a,−2c,−2b) ⊗ (−1)[2a]+[−2b]+[2c]+[a]+[−b]+[c],

so λ(a,b,c)λ(−a,−c,−b) = λ(−1)[2a]+[−2b]+[2c]+[a]+[−b]+[c]. For convenience, we note that (mod 2)
computations have

[2a] + [−2b] + [2c] + [a] + [−b] + [c] ≡ [2a] + [2b] + [2c] + [a] + [b] + [c] ≡ ⟨2α⟩ − ⟨α⟩,

so we are seeing the same sign as before.
• We need g to fix νu(333,675,648,612), so λu(333)λu(675)λu(648)λu(612) = λ2.

The above points tell us that we can determine g uniquely by choosing (κ1, κ2, κ4) = (λ612, λ324, λ648)
and λ. Explicitly, we get the matrix

−κ1κ4/κ2
λκ2/κ1κ4

λ/κ2
λ/κ4

κ1
λ/κ1

κ4
−κ2

−λ/κ4
κ1

κ2
λ/κ2

λ/κ1
κ4


as representing g.
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Thus, upon enforcing the multiplier to equal 1 and base-changing to C, we see that ST(A) is generated by
ST(A)◦ (computed in Proposition 3.32) and the matrix

−1
1

1
1
1

1
1

−1
−1

1
1

1
1

1


.

This completes our computation. ■

We now use the above computation to compute the Sato–Tate group of some generic superelliptic curves.

Theorem 4.39. For given λ ∈ Q(ζ9) \ {0, 1}, define A to be the Jacobian of the proper curve C̃ with
affine chart y9 = x(x− 1)(x−λ). Suppose thatA does not have complex multiplication. Then we show
Kconn
A = Q(ζ9), and we compute ST(A).

Proof. As usual, we proceed in steps. Throughout, we freely use the computation of Proposition 3.29.

0. Quickly, we note that we may pass from y9 = x(x−1)(x−λ) (forλ /∈ {0, 1}) to y9 =
(
x2 + x+ 1

)
(x−λ)

(for λ /∈ {ζ3, ζ3}). Indeed, consider the isomorphism f : P1 → P1 defined over Q(ζ9) by fixing∞ and
sending 0 7→ ζ3 and 1 7→ ζ3. Then the curves y9 = x(x− 1)(x− λ) and y9 =

(
x2 + x+ 1

)
(x− f(λ)) are

isomorphic by an isomorphism of the “ground” P1. Thus, the connected monodromy field over Q(ζ9)
of both curves must be the same. Because Kconn

A for both curves must contain Q(ζ9) anyway (there
are endomorphisms whose field of definition is Q(ζ9) already), we see that this movement must be
harmless!

1. We lift our situation to an abelian scheme. Let S be A1
Q \ {ζ3, ζ3}, and we let C → S be the curve cut

out by the equation y9 =
(
x2 + x+ 1

)
(x− λ) as λ varies over S; then we can normalize and complete

C to produce a family of smooth projective curves C̃ → S. Then A := Pic0 C/S is an abelian scheme
over S. In particular, for each λ ∈ Q \ {ζ3, ζ3}, we can specialize to λ ∈ S to produce Aλ := Aλ as the
Jacobian of the curve C̃λ := C̃λ.
While we’re here, we set up a family of Galois representations. In order to avoid any difficult étale
cohomology, we will do this cheaply using the Tate module. For each n ≥ 1, we have a finite flat group
schemeA[n]→ S, so each λ ∈ S(Q) gets a natural Galois-invariant pullback square as follows.

Aλ[n] A[n]

λ S

Taking limits over n, we get Galois-invariant inclusions VℓA → VℓA, where VℓA can be interpreted as
a sheaf with stalks given by VℓA. The moral of the story is that we will be able to use a special point in
S in order to compute the Galois action for generic λ ∈ S.

2. As before, we will use Proposition 2.157 in order to computeGℓ(Aλ) whenAλ does not have complex
multiplication. Thus, Remark 2.158 asks us to find a space W ′ of Tate classes cutting out Gℓ(A)◦.
We may as well work with MT(A) by the Mumford–Tate conjecture, which is known in our case by
Proposition 2.150. As before, we go ahead and add inW1 to account for the endomorphisms ofA. We
also add the class of the polarization toW ′. Thus, our Tate classes so far cut outL(A). The computation
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of Proposition 3.29 tells us that MT(A) is L(A) cut out by one additional equation from the center,
given by

λ1λ4λ7 = λ2λ5λ8.

Writing g ∈ MT(A) ⊆ L(A) asdiag(g0, g1, g2, g4, g5, g7, g8) as in Proposition 3.29, we see that the above
equation corresponds to the equation

det g1g4g7 = det g2g5g8,

which we see corresponds to the exceptional Tate class

(v1 ∧ v′1)⊗ (v4 ∧ v′4)⊗ (v7 ∧ v′7)⊗ 1 ∈ H6
ét(AQ,Qℓ)(3),

where v∧v′ = 1
2 (v⊗v

′−v′⊗v). Explicitly, the computation of Proposition 3.29 tells us that g ∈ Gℓ(A)
acts on (v1 ∧ v′1) ⊗ (v4 ∧ v′4) ⊗ (v7 ∧ v′7) by some power of the multiplier, which is then cancelled out
some by the Tate twist.

3. We claim thatKconn
Aλ

= Q(ζ9) for genericλ. Our endomorphisms come from the automorphisms of the
curve, which are all defined over Q(ζ9). Additionally, the polarization is certainly defined over Q(ζ9).
It remains to handle the Galois orbit of the exceptional class given in the previous step. By the discus-
sion at the end of the first step, it is enough to compute the Galois action at a single λwhere this Tate
class can be found. Well, we take λ = 1 so that we can appeal to the computations of Proposition 4.38.
To explicate our basis, we will take {v1, . . . , v8} = {v1, . . . , v8} and {v′1, . . . , v′8} = {w1, . . . , w8}. Unrav-
elling the Tate class, we see that it is a linear combination of the Tate classes given by permuting the
triples in the subscript of the Tate class

ν315,612,342,648,378,675.

(We also need to consider ν2(315,612,342,648,378,675) for the full Galois orbit, but the computation is es-
sentially the same.) We would like to check that this Tate class is defined over Q(ζ9). Well, by Theo-
rem 4.33, it is enough to check that the period

Per
(
γ6, ν315,612,342,648,378,675

)
lives in Q(ζ9). After expanding the Γs, we are eventually left with some power of ζ9 multiplied by(

(2πi)−1Γ

(
3

9

)
Γ

(
6

9

))3

,

which we see is in Q(ζ9).

4. We compute Gℓ(Aλ) for generic λ. Above we computed that the Tate classes cutting out Gℓ(Aλ) for
generic λ are a strict subset of those needed for λ = 1, so one finds thatGℓ(A1) ⊆ Gℓ(λ) for generic λ.
In particular, Proposition 4.38 tells us that Gℓ(Aλ) must contain

−1
1

1
−1

1
1
1
1

1
1
1
1

−1
1


,

where we have reordered the basis. However, having Kconn
Aλ

= Q(ζ9) implies by Proposition 2.157
that [Gℓ(Aλ) : Gℓ(Aλ)◦] = 9, and we can see that the group generated by Gℓ(A)◦ and the above ma-
trix also has Gℓ(Aλ)◦ as an index-9 subgroup. Thus, we conclude that Gℓ(Aλ) is generated by Gℓ(A)◦
(computed in Proposition 3.29) and the above matrix.

5. We conclude that ST(A) equals is generated by ST(A)◦ (computed in Proposition 3.29) and the matrix
given in the previous step. This completes the computation. ■
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4.3 Calculations of the Periods
Our calculation of the Galois action on absolute Hodge cycles above (Theorem 4.33) found that the main
difficulty reduces to a computation of the periods Per

(
γ2p, να

)
. In general, it is not an easy problem to com-

pute the periods of a variety, even an abelian variety with complex multiplication. However, we have already
put in a lot of work into being able to do this: Remark 4.29 explains that α ∈ B2p will have

Per
(
γ2p, να

)
= (2πi)−p

2p∏
i=1

ζ
[ai]+[bi]
2N

Γ
(

[ai]
N

)
Γ
(

[bi]
N

)
Γ
(

[−ci]
N

) .

It remains to compute these ratios, which comes down to being able to do arithmetic with products of Γ-
functions. This is the primary goal of this section.

4.3.1 Properties of Γ
To set ourselves up for the remaining subsections, we will now prove all needed properties of theΓ-function

Γ(s) :=

∫
R+

tse−t
dt

t

from scratch. We will be rather streamlined. Our end goal is to prove the following proposition.

Proposition 4.40. The function Γ(s) admits a meromorphic continuation to C with only simple poles at
the nonpositive integers. Further, it satisfies the following properties.

(a) Translation: Γ(s+ 1) = sΓ(s).

(b) Reflection: Γ(s)Γ(1− s) = π
sinπs .

(c) Multiplication: for any positive integer d,

Γ
( s
d

)
Γ

(
s+ 1

d

)
· · ·Γ

(
s+ (d− 1)

d

)
= (2π)(d−1)/2d1/2−sΓ(s).

Among (a)–(c), only (a) admits a quick proof.

Proof of Proposition 4.40(a). Assuming that the integral form is well-defined, we find that the result holds
by integration by parts.

Γ(s+ 1) =

∫
R+

ts+1e−t
dt

t

= −
∫
t∈R+

ts d
(
e−t
)

= −tse−t
∣∣∣∣t=∞

t=0

+ s

∫
R+

tse−t
dt

t

= sΓ(s),

as required. ■

Example 4.41. A direct integral computation shows that Γ(1) = 1, so we note that we may read the in-
tegration by parts above backwards to see that we have shown that the integral definingΓ(n) converges
and equals (n− 1)! for any positive integer n.
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Now that we have some idea how to bound the integral defining Γ, we are able to prove the meromorphic
continuation.

Proof of meromorphic continuation of Proposition 4.40. We have two steps.

1. We claim that the integral converges absolutely and uniformly on compacts in the region {s : Re s >
0}, which will prove that Γ is holomorphic there. Here, we may bound the integral absolutely by∫

R+

∣∣tse−t∣∣ dt ≤ ∫ 1

0

tRe s−1 dt+

∫ ∞

1

t⌈Re s−1⌉e−t dt.

The left integral equals 1
Re s−1 , so it converges absolutely on compacts. The right integral is bounded

by Γ(⌈Re s− 1⌉), which we know by Example 4.41 to converge.

2. We complete the meromorphic continuation. The equation Γ(s + 1) = sΓ(s) allows us to inductively
holomorphically continueΓ(s) to the regionC\{0,−1,−2, . . .}. This equation written asΓ(s) = 1

sΓ(s+
1)also explains thatΓadmits a simple pole at s = 0, which can then be inductively continued to produce
simple poles on the nonpositive integers. ■

Example 4.42. We compute Γ(1/2). The proof above shows that the integral converges, so we would
like to compute

∫
R+ t

−1/2e−t dt. Taking u =
√
t, we see that 2 du = t−1/2 dt, so

Γ(1/2) =

∫
R
e−u

2

du.

The technique of squaring the integral and passing to polar coordinates shows that the integral equals√
π.

We now turn to the reflection formula.

Proof of Proposition 4.40(b). We will have to do some work. The following slick argument is taken from
David Speyer, who credits Paul Monsky [Spe]. We will show that the function f(s) := Γ(s)Γ(1 − s) sinπs is
constant. Note that this will complete the proof because we can compute the constant is π by writing

f(1/2) = Γ(1/2)2 sin
π

2

and using Example 4.42. We now proceed in steps. The idea is that the ambient 1-periodicity of f means
that we only have worry about bounds on f(x+ iy) as |y| → ∞.

1. We claim that there is a holomorphic function g : C× → C such that f(s) = g
(
e2πis

)
. To begin, note

that Γ(s) has simple poles at the nonpositive integers, so Γ(1 − s) has simple poles at the positive
integers, so f(s) is entire. Furthermore, we claim that f(s + 1) = f(s). By analytic continuation, it
is enough to check this away from the real axis. Because the function sinπs satisfies sinπ(s + 1) =
− sinπs, it is enough to compute

Γ(s+ 1)Γ(1− (s+ 1)) = sΓ(s) · 1

−s
Γ(1− s).

We now turn towards defining g. The function s 7→ e2πis is an entire surjection C× → C× with non-
vanishing derivative everywhere, so one can at least locally invert it. Thus, we may use a local inverse
suitably composed with f to define g locally. This local definition of g however extends to a definition
on all C× because f(s+ 1) = f(s).
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2. We provide some bounds on the function g. We begin with some bounds on Γ: if x ∈ [0, 1] and |y| ≥ 1,
then

|Γ(x+ iy)| =
∣∣∣∣ 1

x+ iy

∣∣∣∣ · |Γ((x+ 1) + iy)|

≤ Γ(x+ 1)

≤ max
x∈[1,2]

Γ(x),

which is absolutely bounded by some constant C. Moving to f , we see

|f(x+ iy)| ≤ C2e−πy.

Lastly, moving to g, we see that
∣∣g (e2πi(x+iy))∣∣ ≤ C2e−πy. We evaluate this in two extreme cases:

sending y → ∞ tells us that |g(q)| ≤ C2 |q|1/2 as |w| → ∞; on the other hand, sending y → −∞ tells
us that |g(q)| ≤ C2 |q|−1/2 as q → 0.

3. We complete the proof. Our goal is to show that f is constant, so it is enough to show that g is constant.
It is enough to show that g(s) and g(1/s) both extend to holomorphic functions at s = 0 because this
will imply that g extendeds to a bounded holomorphic function, which is constant.
It is therefore enough to show the following lemma in complex analysis: suppose g : B(0, 1) \ {0} → C
is a holomorphic function such that |g(q)| ≤ |q|−1/2 as q → 0. Then we want to show that g extends
to a holomorphic function at 0. Well, the function g1(q) := qg(q) continues to be holomorphic on
B(0, 1) \ {0}, but now we see that it has a removable singularity at 0 with qg(q) → 0 as q → 0, so g1
admits a holomorphic continuation to B(0, 1) by taking g1(q) = 0. We may now divide out by the zero
to define g(q) at q = 0. ■

We now turn to the multiplication formula. This will be harder still. We will require two lemmas.

Lemma 4.43 (Stirling’s approximation). As s→∞, we have

Γ(s+ 1) ∼
(s
e

)s√
2πs.

Proof. The following argument is taken from [Con, Section 3]. In order to make the asymptotic terms ap-
pear, we set x := t−s√

s
so that

Γ(s+ 1) =

∫
R+

tse−t dt

=

∫ ∞

−
√
s

(
√
sx+ s)se−(

√
sx+s)

√
s dx

=
(s
e

)s√
s

∫ ∞

−
√
s

(
1 +

x√
s

)s
e−

√
sx dx︸ ︷︷ ︸

I(
√
s):=

It remains to check that I(s)→
√
2π as s→∞. This will be done using the Dominated convergence theorem.

Define fs : R → R by fs(x) :=
(
1 + x

s

)s2
e−sx so that I(s) =

∫
R fs(x) dx. (Here, fs is defined to be 0 on

(−∞,−s].) We have two steps.

1. We claim that fs(x) → e−x
2/2 as s → ∞. It is enough to check equality after taking logs, so we would

like to show that
lim
s→∞

(
s2 log

(
1 +

x

s

)
− sx

)
?
= −x

2

2
.
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Now, log
(
1 + x

s

)
=
∑
k≥1

1
k

(
x
s

)k, so the Monotone convergence theorem (used for s large) gives

lim
s→∞

(
s2 log

(
1 +

x

s

)
− sx

)
= lim
s→∞

(
s2
∑
k≥1

1

k

(x
s

)k
− sx

)

= 0︸︷︷︸
k=1

− x2

2︸︷︷︸
k=2

+
∑
k≥3

lim
s→∞

1

k

(x
s

)k
,

which evaluates to−x2/2, as needed.

2. We now apply the Dominated convergence theorem to see that I(s)→
∫
R e

−x2/2 dx, where the integral
equals

√
2π as remarked in Example 4.42. In light of the previous step, it remains to find a dominating

function for the fss. We will do this based on sign.

• For x ≤ 0, we claim that fs(x) ≤ e−x
2/2. If s ≤ −x, then fs(x) = 0, so there is nothing to do;

otherwise, we take s > −x. After taking logarithms, we see that we would like to check that the
function

s2 log
(
1 +

x

s

)
− sx+

x2

2
is nonpositive for x ≤ 0. This function vanishes at x = 0, so it is enough to check that it is increas-
ing, for which we note its derivative (with respect to x) is

s2

1 + x
s

· 1
s
− s+ x =

x2

s+ x
,

which is nonnegative for s ≥ −x.
• For x ≥ 0 (and s ≥ 1), we claim that fs(x) ≤ f1(x). After taking logarithms, we see that we would

like to show that
(log (1 + x)− x)−

(
s2 log

(
1 +

x

s

)
− sx

)
is nonnegative for x ≥ 0. This function vanishes at x = 0, so it is enough to check that it is
increasing, for which we note its derivative (with respect to x) is(

1

1 + x
− 1

)
−
(

s2

1 + x
s

· 1
s
− s
)

=
x2 (s− 1)

(1 + x) (s+ x)
,

which is nonnegative for s ≥ 1.

Thus, we see that our dominating function may be taken to be e−x2/2 in the negative region and f1(x)
in the positive region. ■

Lemma 4.44 (Euler form). If s > 0, then

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)
.

Proof. We evaluate the limit directly, using Lemma 4.43. Manipulating directly, we see the limit is

Γ(s) lim
n→∞

Γ(n+ 1)ns

Γ(s+ n+ 1)
.

We now see the desired Γ(s) term, so we want to show that the remaining limit equals 0. By Lemma 4.43
and taking logarithms, we see that we would like to show that

lim
n→∞

(x log x− x+ s log x− (s+ x) log (s+ x) + s+ x)
?
= 0.

After some simplification, this limit is seen to equal the limit of s− n log
(
1 + s

n

)
, which can be evaluated to

0 by expanding out the power series for log(1 + x). ■
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Remark 4.45. The right-hand side in fact defines a holomorphic function on C \ {0,−1,−2, . . .}, so the
given equality extends to this region by analytic continuation. This prior claim can be checked by verify-
ing that the right-hand side converges uniformly on compact sets in the region {s : Re s > 0} and also
satisfies the equation Γ(s+ 1) = sΓ(s).

Proof of Proposition 4.40(c). The following argument is taken from [Var]. By analytic continuation, it is
enough to check the identity when s is real and positive. We simply expand out the right-hand side us-
ing the Euler form (Lemma 4.44) and Stirling’s approximation (Lemma 4.43). To avoid off-by-one errors,
we note that

Γ(s) = lim
n→∞

n!ns

s(s+ 1) · · · (s+ n)

= lim
n→∞

n!ns−1

s(s+ 1) · · · (s+ n− 1)

= lim
n→∞

√
2πe−nnn+s−1/2

s(s+ 1) · · · (s+ n− 1)
.

Namely, the denominator now has precisely n terms. Now,

d−1∏
k=0

Γ

(
s+ k

d

)
= lim
n→∞

d−1∏
k=0

√
2πe−nnn+(s+k)/d−1/2(

s+k
d

) (
s+k+d
d

)
· · ·
(
s+k+(n−1)d

d

)
= lim
n→∞

(
√
2π)de−ndnnd+(ds+(0+···+(d−1)))/d−d/2

s
d

(
s+1
d

)
· · ·
(
s+nd−1

d

)
= lim
n→∞

(
√
2π)de−ndnnd+s−1/2dnd

s (s+ 1) · · · (s+ nd− 1)
.

We would like the Euler form (Lemma 4.44) for Γ(s) to come out of this limit, and this will be done by sub-
stituting nd → ∞ into the limit for the coordinate n → ∞. With this in mind, we move the strange factors
from the right-hand side of the desired equality in Proposition 4.40 to the left-hand side, writing our limit
as

(2π)−(d−1)/2ds−1/2
d−1∏
k=0

Γ

(
s+ k

d

)
= lim
n→∞

√
2πe−nd(nd)nd+s−1/2

s (s+ 1) · · · (s+ nd− 1)
,

which is indeed the Euler form for Γ(s). ■

4.3.2 Unrefined Algebraicity
It will be worthwhile to give ourselves some language to describe the sorts of products we want to evalaute.
A priori, we are basically computing a product which looks like

∏
i∈Z

Γ

(
i

N

)ai
,

where {ai}i∈Z is a sequence of integers arranged so that the above product is finite. (Namely, i/N should
never be in Z≤0 if ai > 0, and only finitely many of the ai should fail to vanish.) However, by using the fact
that Γ(s + 1) = sΓ(s), we may slide all factors of the product to (0, 1), meaning that we want to compute a
product which looks like

N−1∏
i=1

Γ

(
i

N

)f(i/N)

,

where f : 1
NZ/Z→ Z is some function.
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Notation 4.46. For any function f : 1
NZ/Z→ Z, we define

Γ(f) :=

N−1∏
i=1

Γ

(
i

N

)f(i/N)

.

Dually, for any element a ∈ Z
[
1
NZ/Z

]
, we may write a =

∑N−1
i=0 ai · i/N , and we define Γ(a) according

to the function i/N 7→ ai. Note that Γ(a) does not admit a value if a is nonzero at 0/N .

Remark 4.47. Because we are only interested in computing the periodsPer
(
γ2p, να

)
whereα ∈ B2p, we

may restrict our view to functions a : 1
NZ/Z→ Z such that the weight ⟨a⟩ : (Z/NZ)× → Z is constant.

Now, Proposition 4.40 gives us two further properties about products of Γs we may use. By suitably trans-
lating, we are able to compute products which look like

Γ
( a
N

)
Γ

(
N − a
N

)
and Γ

(
da

N

)−1 d−1∏
k=0

Γ

(
a

N
+
k

d

)
,

a, b ∈ {1, . . . , N}, and we require d | N and N ∤ da in the second product. Here is some notation to keep
track of this.

Notation 4.48. For a positive divisor d of N and a ∈ Z/NZ, we define the function εd,a : 1
NZ/Z → Z to

be the characteristic function of the set{
N − da
N

}
∪
{
a

N
+
k

d
: k ∈ {0, . . . , d− 1}

}
.

Similarly, for any a ∈ (Z/NZ) \ {0}, we define sa : 1
NZ/Z → Z to be the characteristic function of{

a
N ,

−a
N

}
.

Remark 4.49. Abusing notation slightly, we may identify εd,a and sa with the corresponding elements
in Z

[
1
NZ/Z

]
.

The moral is that we can compute Γ(εd,a) and Γ(sa), so we would like to see which functions 1
NZ/Z → Z

can be written as linear combinations of εd,as and sas. Recalling that we are only interested in functions of
constant weight, we pick up the following results in this direction.

Lemma 4.50. For any positive divisor d | N and a ∈ 1
NZ/Z, the weight functions ⟨εd,a⟩ and ⟨sa⟩ are

constant.

Proof. This is [Del79, Example, p. 343]. Note sa = ε1,a when a ̸= 0, so we are reduced to the considering
εd,as. Before doing any computation, we note that we will write [q] to be the representative in [0, 1) of an
element q ∈ Q/Z. We now proceed in steps.

1. For any u ∈ (Z/NZ)×, we find v such that uv ≡ 1 (mod N) and compute

⟨εd,a⟩(u) =
1

N

∑
b∈(Z/NZ)

1εd,a

(
ub

N

)
[b]

=

[
−dva
N

]
+

d−1∑
k=0

[
va

N
+
vk

d

]
= ⟨εd,va⟩(1).
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Thus, we see that we would like to show that ⟨εd,a⟩(1) = ⟨εd,ua⟩(1) for any u ∈ (Z/NZ)×; for example,
there is nothing to show in the case where a = 0.

2. Setting e := N/d, we note that εd,a = εd,a+e pointwise. Thus, we are reduced to the case where
a ∈ [0, e) by shifting a appropriately.

3. Now, for any q ∈ R/Z \ 1
dZ/Z, we define εd,q as the indicator of the set {[−dq]} ∪ {q + k/d : k ∈

{0, 1 . . . , d − 1}}. We claim that ⟨εd,q⟩(1) does not depend on q, which will complete the proof in the
cases where a/N = q by the first step. As in the second step, we note that εd,q only depends on the
class of q in Q/ 1

dZ, so we may assume that q ∈ (0, 1/d). Now, as in the first step, we compute

⟨εd,q⟩(1) = [−dq] +
d−1∑
k=0

[
q +

k

d

]
∗
= (1− dq) +

d−1∑
k=0

(
q +

k

d

)

= 1 +

d−1∑
k=0

k

d
,

which is independent of q. Here, the key equality ∗
= holds notably because q ∈ (0, 1/d). ■

Remark 4.51. In fact, the above proof shows that ⟨εd,a⟩ is d+1
2 when N ∤ da.

One also has a partial converse.

Proposition 4.52 (Koblitz–Ogus). Let f : 1
NZ/Z→ Q be a function of constant weight such that f(0) =

0. Then f is a Q-linear combination of the functions

{εd,a : d | N, d is prime, N ∤ da} ⊔ {sa : N | a}.

Proof. This is [Del79, Proposition, p. 344]. Approximately speaking, the idea is that we want to decompose
f into a sum over some cosets, which is a job for Fourier analysis. Before doing anything, we set up some
notation. Let E be the given set of εd,as. Note that the given statement is one about some functions E in a
vector space spanning the full space, which can be checked by extending scalars, so we go ahead and extend
scalars to C.

Now, for a given function f : 1
NZ/Z → C and a divisor d | N , we define fd : (Z/dZ)× → C by fd(u) :=

f(u/d). For example, because f(0) = 0, we see that f1 = 0. Continuing, for each function f : 1
NZ/Z→ C, we

define d(f) to be the smallest divisor of N such that fd(f) is nonzero, setting d(f) = N if f = 0. Lastly, for
convenience, we also define Id ⊆ (Z/NZ)× (for d | N ) to be the subgroup of elements u ∈ (Z/NZ)× such
that u ≡ 1 (mod d). Note that there is a short exact sequence

1→ Id ⊆ (Z/NZ)× ↠ (Z/dZ)× → 1.

We now proceed in steps.

1. The general approach is to induct on d(f). In particular, if d(f) = 1, then f = 0, so there is nothing
to do. Thus, we may fix a divisor d | N bigger than 1, and we would like to show that any (fixed) f of
constant weight with d(f) = d lives in spanCE, assuming this is true for any f ′ with d(f ′) < d(f). As
such, our goal is to find g ∈ spanCE such that d(f − g) < d(f).
We need to do something to get ourselves off the ground, so we go ahead and specify some kinds of
functions f with d(f) = d for which we are already able to conclude.
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(a) Suppose that fd factors through (Z/dZ)×/{±1}. Then fd(−a) = fd(a) for each a, so we may
define

f ′ := f −
∑

a∈(Z/dZ)×/{±1}

fd(a)sa/d.

By construction, f ′d = 0 while f ′e = fe for any other divisor e | N , so d(f ′) < d(f).

(b) Suppose that fd factors through
(
Z/dpZ

)× for some prime factor p | d. Let Id/p,d be the kernel
of the projection (Z/dZ)× ↠

(
Z/dpZ

)× so that fd is invariant under Id/p,d. Now, for each a ∈
(Z/dZ)×, we note that

a

d
Id/p,d =

({
d− pa
d

}
∪
{
a

d
+
k

p
: k ∈ {0, . . . , p− 1}

})
∩ 1

d
(Z/dZ)×

because both sides are simply the elements of the form b
d where b ∈ (Z/dZ)× has a ≡ b (mod d

p ).
Thus, as in (a), we may subtract out suitable multiples of εp,as from f to cause fd to vanish while
not changing fe for any e > d, thereby making d(f) smaller.

In the remaining steps, we will show that any fd is a linear combination of functions of the type de-
scribed in (a) and (b), which completes the induction and thus the proof.

2. The aforementioned goal will be achieved via Fourier analysis. Discrete Fourier analysis allows one to
write fd as a linear combination of characters χ : (Z/dZ)× → C×, writing

f =
∑

χ : (Z/dZ)×→C×

⟨f, χd⟩χ.

Because we want to show fd is a linear combination of functions which factor through (Z/dZ)×/{±1}
or
(
Z/dpZ

)×, we may as well show that fd is a linear combination of even and imprimitive characters.
Taking the contraposition, we must show ⟨fd, χd⟩ = 0 for any odd primitive character χd : (Z/dZ)× →
C×.

3. Forget the context of the previous step for a sentence. Continuing with the Fourier analysis, we will
show in the next step that any function f : 1

NZ/Z→ C and any character χ̃ : (Z/NZ)× → C× has

⟨⟨f⟩, χ̃⟩ =
∑
d|N

χ̃|Id=1

−L(0, χd) |Id| ⟨fd, χd⟩, (4.1)

whereχd : (Z/dZ)× → C× is the character induced from χ̃. Let’s explain how this completes the proof,
returning to the context of the previous step.

We apply (4.1) to our f and some character χ̃ : (Z/NZ)× → C× induced from a chosen odd primitive
character χd : (Z/dZ)×; we want to show that ⟨fd, χd⟩ = 0. Let’s look at both sides of (4.1).

• Because ⟨f⟩ is constant and χ̃ is nontrivial, the left-hand side ⟨⟨f⟩, χ̃⟩ vanishes.

• On the other hand, the right-hand side sees contributions only from divisors e | N for which
Ie ⊆ ker χ̃. But then the image of Ie in (Z/dZ)× will be contained in kerχd, which forces Ie ⊆ Id
because kerχd is trivial (because χd is primitive). Thus, our sum only consider divisors e | d, but
because d(f) = d, we see that fe = 0 whenever e < d. In total, our right-hand side features only
the term−L(0, χd) |Id| ⟨fd, χd⟩.

The above two points combine to imply −L(0, χd) |Id| ⟨fd, χd⟩ = 0, so ⟨fd, χd⟩ = 0 because χd being
odd and primitive implies L(0, χd) ̸= 0. (Namely, L(0, χd) ̸= 0 by combining the functional equation
for this Dirichlet L-function with the non-vanishing result Proposition 3.78.)
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4. It remains to check the equality (4.1). This is a direct computation. Expanding everything out, we see

⟨⟨f⟩, χ̃⟩ = 1

N

∑
u∈(Z/NZ)×
a∈Z/NZ

⟨a⟩
N
f
(au
N

)
χ(u).

In order to make fds appear, we stratify the sum over a, writing

⟨⟨f⟩, χ̃⟩ =
∑
d|N

1

d

∑
u∈(Z/NZ)×

v∈(Z/dZ)×

⟨v⟩fd (uv)χ(u).

Eventually, the sum over v will turn into a term like ⟨fd, χd⟩, so we need to get rid of the sum over u.
Let U ′

d ⊆ (Z/NZ)× be a set of coset representatives for (Z/NZ)×/Id so that (Z/NZ)× = U ′
dId. Then

the internal sum over u looks like ∑
u′∈U ′

d
u∈Id

fd(uu
′v)χ(uu′).

Note fd(uu′v) = fd(u
′v), so we may sum χ over just u alone. If Id ̸⊆ kerχ, then this sum over u

vanishes; otherwise, the sum over u is |Id|, so the total sum is∑
u′∈U ′

d

fd(u
′v)χ(u′) |Id| = χd(v) |Id| ⟨fd, χd⟩.

Plugging this back in, we see

⟨⟨f⟩, χ̃⟩ =
∑
d|N

(
1

d

∑
v∈(Z/dZ)×

⟨v⟩χd(v)

)
|Id| ⟨fd, χd⟩.

The claim now follows by [Was12, Proposition 4.1, Theorem 4.2]. ■

Corollary 4.53. Let f : 1
NZ/Z→ Z be a function of constant weight w. Then

π−wΓ(f) ∈ Q.

Proof. By adding or subtracting 10s (which have weight 0), we may assume that f(0) = 0. The hypothesis
and conclusion are Q-linear in f (note that fractional powers are permitted in an algebraicity question), so
Proposition 4.52 tells us that it is enough to check the result for f being one of the εd,as in the statement;
recall from Remark 4.51 that ⟨εd,a⟩ = d+1

2 .
In fact, for any divisor d | N and choice of a ∈ Z/NZ with N ∤ da, we claim that π−wΓ(εd,a) ∈ Q×, where

w = d+1
2 is the weight. Indeed, by combining the reflection and multiplication formulae (Proposition 4.40),

we see that Γ(εd,a) is

Γ

(
N − da
N

) d−1∏
k=0

Γ

(
a

N
+
k

d

)
≡ π(d+1)/2 (mod Q×

),

so the result follows. ■

4.3.3 The Universal Distribution
This section follows [Kub79b]. We are now permitted to make the following definition.
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Definition 4.54 (distribution). A distribution relation is an element of Z
[
1
NZ/Z

]
of the form

a−
∑

b∈ 1
N Z/Z
db=a

b,

where d | N is a positive divisor. A distrubtion is a function f : 1
NZ/Z→ A to an abelian groupAwhose

natural extension to Z
[
1
NZ/Z

]
vanishes on all distribution relations. A distribution is odd if and only if

it also satisfies f(−a/N) = −f(a/N) for all a.

Example 4.55 (universal). Let UN be the abelian group given by taking the quotient of Z
[
1
NZ/Z

]
by the

subgroup generated by the distribution relations. Then there is a natural inclusion i : 1
NZ/Z → UN ,

which we see is a distribution by construction. In fact, we see that every distribution f : 1
NZ/Z → A

factors uniquely through i, so i is initial in the category of distributions.

Example 4.56. By Proposition 4.40, the function 1√
2π

Γ: Q/Z→ C/Q is an odd distribution. Namely, this
function descends to Q/Z by the translation property, it is a distribution by the multiplication formula,
and it is odd by the reflection formula. The Lang–Rohrlich conjecture asserts that 1√

2π
Γ is a universal

odd distribution; we refer to [And04, Lemma 24.6.1.1] for some related conjectures.

Example 4.56 explains why we are discussing distributions in this section: products of Γs can be tracked
through as satisfying these distribution relations. We also remark that integer-valued functions of constant
weight 0 live a new life here.

Lemma 4.57. Let D−
N ⊆ Z

[
1
NZ/Z

]
be the Z-module generated by the distribution relations and the

elements a+−a and 0. After identifying Z
[
1
NZ/Z

]
with functions 1

NZ/Z→ Z, we seeD−
N is generated

by the elements 0 and εd,a where d | N is a divisor and a ∈ (Z/NZ).

Proof. For nonzero a, note that ε1,a is simply the generator a/N +−a/N , and εd,a produces the distribution
relation

−εd,a + ε1,da =
da

N
−
d−1∑
k=0

a

N
+
k

d
.

Thus, up to adding or subtracting some ε1,•, we see that the distribution relations are in bijection with the
εd,as, so these elements generate the same subgroup of Z

[
1
NZ/Z

]
. ■

Remark 4.58. It is not hard to see that one may inductively write εd,as as a Z-linear combination of εp,as
where p is a prime. (For that matter, one can inductively write distribution relations in terms of ones
where the divisor d | N is prime.) The point is that we really only have to consider εp,as (with p prime)
and ε1,as in Lemma 4.57.

The goal of the present subsection is to show the following structure result [Kub79b, Theorem 1.8].

Theorem 4.59 (Kubert). Let i : 1
NZ/Z→ UN be an initial distribution. ThenUN is a free abelian group of

rank φ(N).

Proof from Propositions 4.61 and 4.63. We will go ahead and outline the argument, referring forward to
results we will prove in the sequel. There are two main steps.
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1. In Proposition 4.61, we show that any distribution f has ⟨im f⟩ admitting a generating set of φ(N)
elements.

2. In Proposition 4.63, we exhibit a distribution r with dimQ⟨im r⟩Q = φ(N).

Let’s quickly explain why these two implications allow us to conclude the proof. By the first step, we see that
there is a surjection Zφ(N) ↠ UN of abelian groups, and we will be done as soon as we know that this map
is an isomorphism. Well, because i is an initial distribution, we see that the distribution r factors through i,
meaning that there is an induced surjection

Zφ(N) ↠ UN ↠ ⟨im r⟩.

However, this composite must become an isomorphism after tensoring with Q (for dimension reasons) by
the second step, so the composite must in particular be injective. We conclude that the map Zφ(N) ↠ UN is
an isomorphism. ■

It remains to provide the proofs of Propositions 4.61 and 4.63. Before going further, we need some nota-
tion.

Notation 4.60. By the Chinese remainder theorem, summation provides an isomorphism∑
p|N

1

pνp(N)
Z/Z→ 1

N
Z/Z.

For any s ∈ 1
NZ/Z and p | N , we define sp ∈ 1

pνp(N)Z/Z to be the corresponding p-component. Similarly,
if we have a

N ∈
1
NZ/Z, we let ap

pνp(N) be the p-component.

Because it is faster, we now proceed with Proposition 4.63.

Proposition 4.61. Let f : 1
NZ/Z → A be a distribution. Then ⟨im f⟩ admits a generating set of φ(N)

elements.

Proof. This result is [Kub79b, Proposition 1.8], though we follow the isomorphic proof given in [Was12,
Proposition 12.10]. The idea is to use the distribution relations to minimize the number of generators. There
are two steps.

1. We claim that the collection

SN :=
{
f
( a
N

)
: ap = 0 or gcd(ap, p) = 1

}
generates ⟨im f⟩. We proceed by induction on the number of primes factors ofN , where the statement
has little content if N = 1.
Now, for a given N , choose some a/N ∈ 1

NZ/Z, and we want to show that f(a/N) ∈ ⟨SN ⟩. Quickly, if
ap = 0 for some prime p | N , then in fact a/N ∈ 1

dZ/Z for some divisor d | N with strictly fewer prime
factors, so f(a/N) ∈ ⟨Sd⟩ by the induction.
Thus, we may assume that ap ̸= 0 for all p | N . In this case, we hope to use a distribution relation
to find f(a/N) in ⟨SN ⟩. In particular, note that we can write a = dx where d | N and gcd(x,N) = 1:
indeed, simply write a

N in reduced terms as x
e , and then a = N

e ·x is a suitable expansion. (In particular,
e is the order of a, so p | e for all primes e, so gcd(x, e) = 1 implies gcd(x,N) = 1.) Thus, f(a/N) equals

f
(
d · x

N

)
=

d−1∑
k=0

f

(
x

N
+
k

d

)
,

and now every term in the right-hand side lives in SN .
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2. We claim that the collection

TN :=
{
f
( a
N

)
: ap = 0, or ap ̸= 1 and gcd(ap, p) = 1

}
generates ⟨im f⟩. Once again, we proceed by induction on the number of prime factors of N , where
the statement has little content ifN = 1. Note that the previous step tells us that it is enough to check
that SN ⊆ ⟨TN ⟩.
As such, we go ahead and pick up some f(a/N) ∈ SN , and to show that f(a/N) ∈ ⟨TN ⟩. As in the prior
step, we note that having ap = 0 for any prime p implies that f(a/N) ∈ Sd for some d | N with fewer
prime factors, yielding f(a/N) ∈ ⟨TN ⟩ by the induction. Thus, we may assume that ap ̸= 0 for all p.
We will induct on the number ω(a/N) of primes p such that ap = 1. Of course, if ω(a/N) = 0, then
a/N ∈ TN already, so there is nothing to do. Otherwise, suppose that our a/N has at least one prime
q | N with aq = 1. We now use the distribution relations twice: set

b

M
:=
∑
p|N
p ̸=q

ap
pνp(N)

,

and then we note that we have two equalities

f

(
qνq(N) · b

M

)
=

qνq(N)−1∑
k=0

f

(
b

M
+

k

qνq(N)

)
,

f

(
qνq(N)−1 · b

M

)
=

qνq(N)−1−1∑
k=0

f

(
b

M
+

qk

qνq(N)

)
.

Both left-hand sides are in ⟨TN ⟩ by the induction on the number of prime factors. Now, subtracting
these two equations produces the relation∑

k∈(Z/qνq(N))×

f

(
b

M
+

k

qνq(N)

)
∈ ⟨TN ⟩.

Note a
N = b

M + 1
qνq(N) is the first term in this sum while the other terms in the sum have strictly smaller

ω (because the q-component is not equal to 1), so we are done by the induction.

Note that the second step completes the proof because #SN equals∏
p|N

#

(
{0} ∪

(
Z/pνp(N)Z

)×
\ {1}

)
,

which is simply #(Z/NZ)× = φ(N) by the Chinese remainder theorem. ■

Remark 4.62. The proof of Proposition 4.61 actually gives explicit generators of im f . One can unwind
this (and the proof of Theorem 4.59) to give explicit generators of UN defined in Example 4.55.

We now turn to the construction for Proposition 4.63.

Proposition 4.63. There exists a distribution r : 1
NZ/Z→ A such that dimQ⟨im r⟩Q = φ(N).

Proof. To understand why this is difficult, we note that we are basically trying to compute the dimension of
the vector space UN,Q, where UN is the rather horrendous abelian group constructed Example 4.55. Tech-
nically, Proposition 4.61 tells us what should be a basis, but this vector space has so many relations that
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it is difficult to determine if these elements are actually linearly independent. The usual proof (in [Was12,
Chapter 12] or [Kub79b, Section 3]) uses cyclotomy theory and some facts about character sums, reducing
the task to a non-vanishing of some special value. These topics are moderately tangential to this thesis, so
we will not discuss them. Instead, we will follow [Kub79b, Section 4] and provide a direct combinatorial
construction.

Our target space will beAN := Q [(Z/NZ)×], and we note that (Z/NZ)× has a natural permutation action
on AN . Throughout, ord denotes the additive order of a group element. We require two elements of AN .

• For s ∈ 1
NZ/Z, we define

XN (s) :=
∑

x∈(Z/NZ)×
x·N/ ord s≡Ns

x.

For example, if ord s = N , then XN (s) = {Ns}. In general, if s = a/d where d = ord s so that
gcd(a, d) = 1, then the xs take the form (a+ kd).

• For prime divisors p | N , we define

YN (p) :=
∑

y∈(Z/NZ)×

py≡1 (mod N/pνp(N))

y.

Notably, the value of y ∈ (Z/NZ)× only has freedom in the p-component, so YN (p) has φ
(
pνp(N)

)
elements.

Because XN (s) and YN (p) are basically subsets of (Z/NZ)×, we may write #XN (s) or #YN (p) to mean the
number of their elements. We are now ready to define rN : 1

NZ/Z→ Q [(Z/NZ)×] by

rN (s) :=
XN (s)

φ(N)

∏
p|ord s

(
1− YN (p)

#YN (p)

)
.

It remains to run many checks on rN . They are all some explicit combinatorial manipulations.

1. For c ∈ (Z/NZ)×, we check that rN (cs) = crN (s). Note that cXN (s) = XN (cs) because both contain
the x such that cxN/ ord s ≡ Ns. It now suffices to check that

c

((
1− YN (p)

#YN (p)

)
·X
)

?
=

(
1− YN (p)

#YN (p)

)
· cX

for any prime divisor p | N and X ∈ Q [(Z/NZ)×]. Well, it is enough to check this claim for X ∈
(Z/NZ)×, whereupon doing some rearragnement shows that it is enough to check that c(YN (p)X) =
YN (p)(cX), which is true by definition of the (Z/NZ)×-action on AN .

2. For any divisor M | N , we claim that the diagram

1
MZ/Z Q [(Z/MZ)×]

1
NZ/Z Q [(Z/NZ)×]

rM

⊆

i

rN

commutes, where i is given by i(y) = φ(M)
φ(N)

∑
x≡y (mod M) x for any y ∈ (Z/MZ)×. Note that i is

injective andQ-linear by construction, but it is not a ring map because it does not map 1 7→ 1. However,
the leading constant is chosen to make imultiplicative: for y1, y2 ∈ (Z/MZ)×, we see i(y1)i(y2) equals(

φ(M)

φ(N)

)2 ∑
x1≡y1 (mod M)
x2≡y2 (mod M)

x1x2 =

(
φ(M)

φ(N)

)2 ∑
x≡y1y2 (mod M)
x′≡1 (mod M)

x,
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where we have substituted (x, x′) = (x1x2, x1/x2). We conclude i(y1)i(y2) = i(y1y2), an equation
which extends Q-linearly to all AN .
The main computation will be to compute i(rM (s)) for s ∈ 1

MZ/Z. Using the multiplicativity of the
previous paragraph, we see

i(rM (s)) =
i(XM (s))

φ(M)

∏
p|ord s

i

(
1− YM (p)

#YM (p)

)
.

We see that we have to compute i(XM (s)) and i(YM (p)).

• Note φ(N)
φ(M) i(XM (s)) = XN (s): some x ∈ (Z/NZ)× finds itself in φ(N)

φ(M) i(XM (s)) if and only if
x ·M/ ord s ≡Ms, which is equivalent to x ·N/ ord s ≡ Ns.

• We claim i(YM (p))
#YM (p) = i(1) YN (p)

#YN (p) . Note that the reduction map YN (p)→ YM (p) is surjective: any y
with py ≡ 1 (mod M/pM/νp(M)) may be lifted to a multiplicative inverse of p (mod N/pN/µp(N)).
We thus see that the support of φ(N)

φ(M) i(1)YM (p) agrees with the support of φ(N)
φ(M) i(YM (p)); how-

ever, each element in φ(N)
φ(M) i(YM (p)) is overcounted by a factor of φ

(
pνp(N)

)
/φ
(
pνp(M)

)
because

we already had freedom in the p-component. Adjusting for this completes the claim.

We now see
i(rM (s)) =

i(XM (s))

φ(M)

∏
p|ord s

i(1)

(
1− YN (p)

#YN (p)

)
.

To get rid of the factor of i(1), we note that i(XM (s))i(1) = i(XM (s)) by the multiplicativity. Lastly,
we may substitute i(XM (s))

φ(M) = XN (s)
φ(N) , writing

i(rM (s)) =
XN (s)

φ(N)

∏
p|ord s

(
1− YN (p)

#YN (p)

)
,

which is indeed rN (s).

3. We claim that rN is a distribution. Namely, for any divisor d | N and s ∈ 1
NZ/Z, we must check hat

rN (ds)
?
=

d−1∑
k=0

rN

(
s+

k

d

)
.

We begin with a few reductions. By adjusting s by some k/d, we may assume that ord s is divisible by
d. By inductively applying the distribution relations, we may assume that d is prime. Lastly, because
i defined in the previous step is injective, we can pass from rN to rord s, allowing us to assume that
ord s = N . We now have two cases for the prime divisor d of N .

• Suppose that d2 | N . In this case, all primes dividing ord s = N continue to divide ord ds = N/d.
Additionally, s+ k

d always has order N , so

d−1∑
k=0

rN

(
s+

k

d

)
=

(
1

φ(N)

d−1∑
k=0

XN

(
s+

k

d

))∏
p|N

(
1− YN (p)

#YN (p)

)
.

Because s+ k
d has orderN , we see XN

(
s+ k

d

)
= N(s+ k

d ). On the other hand, XN (ds) consists
of the x for which dx ≡ d(Ns), which is equivalent to having x = N(s+ k

d ). We conclude

d−1∑
k=0

rN

(
s+

k

d

)
=
XN (ds)

φ(N)

∏
p|N

(
1− YN (p)

#YN (p)

)
,

which is rN (ds).
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• Suppose d | N while d2 ∤ N . The same computation essentially goes through except for two
caveats: ord ds = N/d has one fewer prime factor, and s+ k

d need not have orderN . In particular,
the p-component of s+ k

d is the same as the same p-component of s, so the order of s+ k
d is either

N orN/d. Further, and we see that it will beN/d only when s+ k
d has d-component equal to 0 for

exactly when k; say that t = s+ k0
d is this value of k. Then

d−1∑
k=0

rN

(
s+

k

d

)
=

1

φ(N)

(
XN (t) +

d−1∑
k=1

XN

(
t+

k

d

)(
1− YN (d)

#YN (d)

)) ∏
p|N/d

(
1− YN (p)

#YN (p)

)
.

Comparing this to rN (ds) = rN (dt), we see that we have left to show

XN (dt)
?
= XN (t) +

d−1∑
k=1

XN

(
t+

k

d

)(
1− YN (d)

#YN (d)

)
,

which is equivalent to

XN (dt) +
1

#YN (d)

d−1∑
k=1

XN

(
t+

k

d

)
YN (d)

?
= XN (t) +

d−1∑
k=1

XN

(
t+

k

d

)
.

We now must compute the various XNs.

– Each t+ k
d has order N by construction of t, so XN

(
t+ k

d

)
= N(t+ k

d ). As such, multiplying
by YN (d) will leave us with x ∈ (Z/NZ)× such that x ≡ N

d (t+
k
d ) (mod N/d), which is equiv-

alent to x ≡ N
d t (mod N/d); in particular, the sum on the left-hand side counts all these

elements #YN (d) = (d − 1) times. On the other hand, XN (t) consists of the x for which
dx ≡ Nt, which is equivalent to x ≡ N

d t (mod N/d), so

1

#YN (d)

d−1∑
k=1

XN

(
t+

k

d

)
= XN (t).

– Similarly, dt has order N/d, so XN (dt) consists of the x ∈ (Z/NZ)× such that dx ≡ Ndt.
Well, this is equivalent to having x ≡ N(t+ k

d ), so

XN (dt) =

d−1∑
k=1

XN

(
t+

k

d

)
.

Combining the above two points completes the computation.

4. We begin computing ⟨im rN ⟩Q. For each prime p | N , define the fractional ideal

Up := XN

(
pνp(N)

N

)
Z
[
(Z/NZ)×

]
+

(
1− YN (p)

#YN (p)

)
Z
[
(Z/NZ)×

]
.

We claim that ⟨im rN ⟩ equals
∏
p|N Up. Because rN respects the (Z/NZ)×-action, it is enough to check

that ⟨im rN ⟩ is given by generators of this ideal. Well, a generic generator of
∏
p|N Up looks like

∏
p∤M

XN

(
pνp(N)

N

)∏
p|M

(
1− YN (p)

#YN (p)

)
,

whereM is some divisor ofN ; in fact, we may as well assume νp(M) ∈ {0, νp(N)} for all primes p. We
claim that the above element is φ(N)rN (1/M); this claim completes this step. To show the claim, we
note the right product is already seen in rN (1/M). It thus remains to show that∏

p∤M

XN

(
pνp(N)

N

)
?
= XN

(
1

M

)
.
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Indeed, the left-hand side is made of products
∏
p∤M xp where xp · pνp(N) ≡ pνp(N) (mod N), which is

equivalent to a condition on xp ≡ 1 (mod N/pνp(N)). By the Chinese remainder theorem, such prod-
ucts are in bijection with xs such that x ≡ 1 (mod N/M), which is XN (1/M).

5. We claim that (Up)Q = Q [(Z/NZ)×]. Because (#YN (p) − YN (p)) ∈ Up, it is enough to check that
YN (p) ∈ Up. In fact, we claim that YN (p) is a multiple of XN

(
pνp(N)/N

)
, which will complete the

proof. Well, YN (p) has x such that px ≡ 1 (mod N/pνp(N)), and XN

(
pνp(N)/N

)
has x such that x ≡ 1

(mod N/pνp(N)) as discussed in the previous step. Thus, we see

p′XN

(
pνp(N)

N

)
= YN (p),

where p′ ∈ (Z/NZ)× is chosen so that p′ ≡ p (mod N/pνp(N)), and the claim follows.

Thus, we have checked that rN is a distribution, and the last two steps check that ⟨im rN ⟩Q = AN , so
dim⟨im rN ⟩Q = φ(N) follows. ■

4.3.4 Cohomology of the Universal Distribution
Let i : 1

NZ/Z → UN be the initial distribution of Example 4.55, and further let U−
N be the quotient of UN

by the elements ⟨a + −a⟩a∈ 1
N Z/Z. The quotient U−

N is of interest to us because Γ factors through U−
N by

combining the reflection formula (Proposition 4.40) with Example 4.56.
We are now ready to state the main result of this subsection.

Theorem 4.64. Let i : 1
NZ/Z→ UN be the initial distribution of Example 4.55, and further letU−

N be the
quotient of UN by the elements ⟨a+−a⟩a∈ 1

N Z/Z.

(a) The torsion subgroup U−
N,tors is 2-torsion.

(b) If N is odd or divisible by 4, then dimF2
U−
N,tors = 2ω(N)−1, where ω(N) is the number of distinct

prime factors of N .

Proof from Propositions 4.65 and 4.67. As in the previous subsection, we go ahead and outline the argu-
ment, referring forward to results we will prove in the sequel. There are two steps: in Proposition 4.65, we
show thatU−

N,tors is isomorphic to the cohomology group H2(⟨±1⟩, UN ), thereby proving (a). The dimension
computation for this cohomology group is carried out in Proposition 4.67. ■

We now turn our attention to the proofs of Proposition 4.65 and Proposition 4.67.

Proposition 4.65. Let i : 1
NZ/Z→ UN be the initial distribution of Example 4.55. Further, let U−

N be the
quotient by the elements ⟨a+−a⟩a∈ 1

N Z/Z. Then the torsion subgroup of U−
N is isomorphic to

H2(⟨±1⟩, UN ).

Proof. This is an application of Theorem 4.59. We follow [GGL24, Proposition 6.3.3]. Note that the action
of ⟨±1⟩ ⊆ (Z/NZ)× on 1

NZ/Z extends to UN . We will actually show that U−
N,tors is isomorphic to the Tate

cohomology group

H0
T(⟨±1⟩, UN ) =

U
⟨±1⟩
N

N⟨±1⟩(UN )
,

which is enough because the group cohomology of a cyclic group is 2-periodic. We have two inclusions.

• On one hand, the denominator of H0
T(⟨±1⟩, UN ) is basically modding out by the elements a + −a.

Thus, we have an inclusion H0
T(⟨±1⟩, UN ) ⊆ U−

N , so H0
T(⟨±1⟩, UN ) ⊆ U−

N,tors because Tate cohomology
groups are torsion.
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• On the other hand, choose some f ∈ U−
N,tors, and we would like to check that f ∈ U

⟨±1⟩
N . Well, we

are given that there is some D > 0 such that Df vanishes in U−
N , so Df = (1 +−1)g (in UN ) for some

g ∈ UN . However, this implies that (1−−1)Df = 0 in UN , which requires (1−−1)f = 0 because UN
is torsion-free by Theorem 4.59! We conclude that f ∈ U ⟨±1⟩

N . ■

Before proceeding with the long proof of Proposition 4.67, we pick up a group-theoretic lemma.

Lemma 4.66. Fix finite abelian groups G and H. If M is a free Z[G×H]-module, then MH and M/MH

are both free Z[G]-modules.

Proof. Because M is a module over G × H, we see that MH is still a G-module. Quickly, note that M is a
sum of Z[G×H]s, so because taking (·)H and the quotient are both additive functors, it suffices to check the
result for M = Z[G×H]. We now show that MH and M/MH are free independently.

• We show that MH is a free Z[G]-module. Indeed, some element
∑

(g,h) a(g,h)(g, h) is H-invariant if
and only if a(g,h) = a(g,h′) always, in which case we see that

∑
(g,h)∈G×H

a(g,h)(g, h) =
∑
g∈G

(
a(g,1)(g, 1)

∑
h∈H

(1, h)

)
.

Thus, we see that the map Z[G]→ Z[G×H]H given by multiplying by
∑
h(1, h) is an isomorphism.

• We show that M/MH is a free Z[G]-module. Quickly, observe that Z[G × H] is free over Z[G] with a
basis given by {(1, h)}h∈H , so we may apply a linear transformation to see that Z[G ×H] is free over
Z[G] with basis instead given by {∑

h

(1, h)

}
⊔ {(1, h)}h̸=1.

The first element is a basis of Z[G×H]H over Z[G] by the previous point, so we see that the quotient
is free over Z[G] with basis given by the remaining entries. ■

Proposition 4.67 (Kubert). Fix a positive integerN which is odd or divisible by 4, and let i : 1
NZ/Z→ UN

be the initial distribution of Example 4.55. Then

dimF2 H
•
T(⟨±1⟩, UN ) = 2ω(N)−1,

where ω(N) is the number of distinct prime factors of N .

Proof. Our argument follows [Kub79a, Section 2]. We continue with the set-up of Proposition 4.63, but we
drop all the subscriptNs because we will work with fixedN throughout. Thus, we may also set νp := νp(N)
for each prime p. In particular, by the universal property (and as outlined in Theorem 4.59), we see that UN
is isomorphic to the image of induced map r : Z

[
1
NZ/Z

]
→ Q [(Z/NZ)×].

We will need a few other pieces of notation. For bookkeeping reasons, we say that a divisor M | N is
admissible if and only if νp(M) ∈ {0, νp} for all primes p; roughly speaking, M keeps track of a subset of
primes dividing N . For example, for each admissible divisor M | N , we define

U(M) :=
∏
p|M

Up,

where Up is the ideal defined at the end of the proof of Proposition 4.63; for example, U(1) = Z [(Z/NZ)×]
and U(N) = im r. In short, U(M)s will allow us to make certain inductive arguments.
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Continuing, for each admissible divisor M | N , we define the subgroup C(M) ⊆ (Z/NZ)× by

C(M) := {a ∈ (Z/NZ)× : a ≡ 1 (mod N/M)}.

Thus,C(M) ∼=
∏
p|M (Z/pνpZ)× is isomorphic to (Z/MZ)×. For example,C(1) = (Z/NZ)× andC(N) = {1}.

We also remark that the sumY (p) is fixed byC(pνp)by contruction (in fact, the set admits a transitive action),
and a quick expansion of the definitions reveals that X (pνp/N) = C(pνp). As usual, we may identify C(pνp)
with an element of Z [(Z/NZ)×] given by

∑
a∈C(pνp ) a.

In the end, we will show that

dimF2 H
•
T

(
⟨±1⟩, U(M)C(N/M)

)
?
= 2ω(M)−1

for any admissible divisor M | N bigger than 1, via an induction; taking M = N then produces the desired
result. Our proof now proceeds in many steps. We remark that our first few steps are picking up some
technica tools used later.

1. Let εp ∈ Q [(Z/NZ)×] be the idempotent 1
#C(pνp )

∑
a∈C(pνp ) a. Then we claim that x ∈ Q [(Z/NZ)×] is

fixed by C(pνp) if and only if (1− εp)x = 0. This is some abstract group theory. In one direction, if x is
fixed by C(pνp), then

1

#C(p)

∑
a∈C(pνp )

ax =
1

#C(pνp)

∑
a∈C(pνp )

x

is simply x. In the other direction, if (1 − εp)x = 0, then x = εpx; however, aεp = εp for all a ∈ C(pνp)
by a rearrangement of the terms in εp, so we see that εpx is certainly fixed by C(pνp).

2. For an admissible divisor M | N and prime p | (N/M), we claim that (1 − εp)U (Mpνp) = (1 − εp)UM
and

U (Mpνp)
C(pνp ) ?

= C(pνp) · U(M) +

(
1− Y (p)

#Y (p)

)
U(M)C(pνp ),

where C(p) refers to the element
∑
a∈C(p) a by abuse of notation.

For this, we note U (Mpνp) = UpU(M) by definition, so

U (Mpνp) = C (pνp)U(M) +

(
1− Y (p)

#Y (p)

)
U(M).

The first and the second claimed equalities are linked by the previous step, which tells us that we are
interested in the kernel of (1− εp). As such, let’s look at how (1− εp) behaves on each term.

• Certainly (1− εp) vanishes on C (pνp), so the left term above lives in the kernel.
• Similarly, Y (p) is fixed by C (pνp), so it is in the kernel of (1 − εp), from which one sees (1 −
εp)
(
1− Y (p)

#Y (p)

)
= (1 − εp). For example, we see that multiplying by (1 − εp) kills the coeffi-

cient
(
1− Y (p)

#Y (p)

)
. Additionally, the kernel of (1− εp) will simply be the kernel of (1− εp) acting

on U(M).

Combining these two points completes the proof.

3. Suppose thatM andM ′ are admissible divisors ofN such thatMM ′ | N . Then we claim that U(M) is
free as a C(M ′)-module; further, if MM ′ ̸= N , we claim that U(M) is free as a±C(M ′)-module.
For this, we induct on M . If M = 1, then U(M) is free over all subgroups of (Z/NZ)×, so there is
nothing to do. Thus, we focus on the inductive step, so suppose that the statement is true for M , and
we would like to show it for Mpνp for some prime p | (N/M). Then the previous step provides short
exact sequences as follows.

0 U(M)C(pνp ) U(M) (1− εp)U(M) 0

0 U(Mpνp)C(pνp ) U(Mpνp) (1− εp)U(Mpνp) 0
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The main claim is thatU(M)C(pνp ) = U(Mpνp)C(pνp ). Let’s quickly explain why this claim will complete
this step. Fix an admissible divisor M ′ | (N/Mpνp), and then there are two things to show.

• We would like to show that U(Mpνp) is free over C(M ′). By the inductive hypothesis, we know
that U(M) is free over C(M ′) and C(pνp) and even over the product of the two groups. Thus,
Lemma 4.66 tells us that U(M)C(pνp ) = U(Mpνp)C(pνp ) and (1 − εp)U(M) = (1 − εp)U(Mpνp)
are both free over C(M ′). Because the right term of the bottom short exact sequence is free, we
conclude that the bottom short exact sequence thus splits, forcing U(Mpνp) to be a sum of free
C(M ′)-modules and hence free.

• Suppose MM ′pνp ̸= N . Then we would like to show that U(Mpνp) is free over ±C(M ′). In this
case, U(M) is free over±C(pνp)C(M ′) by the induction, but±C(M ′) ∩ C(pνp) is trivial: any ele-
ment a in the intersection has a ≡ 1 (mod N/pνp) and a ≡ ±1 (mod N/M ′), but the +1 is forced
by having N/(M ′pνp) be bigger than 2 by the hypotheses on N . Thus, U(M) is actually free over
±C(M ′)× C(pνp), and now the argument can proceed as in the previous step.

It remains to prove the main claim U(M)C(pνp ) = U(Mpνp)C(pνp ). Well, the previous step grants

U (Mpνp)
C(pνp )

= C(pνp) · U(M) +

(
1− Y (p)

#Y (p)

)
U(M)C(pνp ).

By the inductive hypothesis, U(M) is free over C(pνp), so U(M)C(pνp ) = C(pνp) · U(M). Thus, it is
enough to show that

(
1− Y (p)

#Y (p)

)
U(M)C(pνp ) ⊆ U(M)C(pνp ). Well, Y (p) is stable underC(pνp), so we

can express
(
1− Y (p)

#Y (p)

)
·C(pνp) as (1− y) ·C(pνp) for some y ∈ Y (p), and the result follows because

U(M) is a fractional ideal for Z [(Z/NZ)×].

4. As a last tool, we show that the induced action of (Z/NZ)× on H• (⟨±1⟩, U(M)C(N/M)
)

is trivial for any
admissible divisorM | N . In fact, it’s enough to check that the action ofC(pνp) is trivial because these
subgroups generate (Z/NZ)×. Now, note that U(M)C(N/M) automatically has trivial action byC(pνp)
if p ∤M , so we now focus on the case p |M .
Well, for a given a ∈ C(pνp), we would like to show that the action of a is trivial, for which it is enough
to show that the action of (1− a) is zero. Well, we claim that multiplication by (1− a) factors through
H•

T

(
⟨±1⟩, U(M/pνp)C(N/M)

)
, which we note vanishes because U(M/pνp)C(N/M) is free over ⟨±1⟩ by

the previous step!
Now, to show that multiplication by (1 − a) factors as claimed, it is enough by functoriality to show
that multiplication by (1− a) on U(M) factors through U(M/pνp). Well, we see

U(M) = C (pνp)U(M/pνp) +

(
1− Y (p)

#Y (p)

)
U(M/pνp).

Note (1 − a)C (pνp) = 0, and (1 − a)
(
1− Y (p)

#Y (p)

)
= (1 − a) because Y (p) is fixed by a. Thus, (1 −

a)U(M) ⊆ U(M/pνp), as needed.

5. If M and Mpνp are admissible divisors of N , we claim that there is a short exact sequence

0→ H•
T

(
⟨±1⟩, U(M)C(N/M)

)
→ H•

T

(
⟨±1⟩, U(Mpνp)C(N/Mpνp )

)
→ H•+1

T

(
⟨±1⟩, U(M)C(N/M)

)
→ 0.

Note that we will have to do something nontrivial (beyond immediately applying a long exact se-
quence) because the middle group has a different invariant subgroup C acting on it. Our extra input
will come from the morphism

0 U(M)C(pνp ) U(M) (1− εp)U(M) 0

0 U(Mpνp)C(pνp ) U(Mpνp) (1− εp)U(Mpνp) 0

(1− Y (p)
#Y (p) )

(1−εp)

(1− Y (p)
#Y (p) )

(1−εp)
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of exact sequences discussed in the third step; note that the left arrow is well-defined by the second
step, and right arrow is then induced by the diagram. Before continuing, we make a few simplifiactions
to this diagram.

• In the third step, we showed that U(M)C(pνp ) = U(Mpνp)C(pνp ).

• Recall that Y (p) is fixed by C(pνp), so (1 − εp)
(
1− Y (p)

#Y (p)

)
= (1 − εp), thereby implying that the

right arrow is simply the identity. We no longer care about the exact content of this right-hand
term, so we denote it by K := (1− εp)U(M) = (1− εp)U(Mpνp).

• Using the fact that the set Y (p) has a transitive action by C(pνp), we see that multiplying an el-
ement of U(M)C(pνp ) by Y (p) is the same as multiplying it by any other element. Thus, we go
ahead and fix some element yp ∈ Y (p), and we see that the left arrow is simply multiplication by
(1− yp).

Our diagram now looks like the following.

0 U(M)C(pνp ) U(M) K 0

0 U(M)C(pνp ) U(Mpνp) K 0

(1−yp) (1− Y (p)
#Y (p) )

We now takeC(N/Mpνp)-invariants and ⟨±1⟩-cohomology to recover the result. TakingC(N/Mpνp)-
invariants keeps the exactness becauseU(M)C(pνp ) is free overC(N/Mpνp) by using Lemma 4.66 and
the result in step 3. Thus, our diagram looks like the following.

0 U(M)C(N/M) U(M)C(N/Mpνp ) K ′ 0

0 U(M)C(N/M) U(Mpνp)C(N/Mpνp ) K ′ 0

(1−yp) (1− Y (p)
#Y (p) )

Here,K ′ is the induced quotient, which we continue to not care about. We now take ⟨±1⟩-cohomology.
For brevity, we will set H•

T(M
′) := H•

T

(
⟨±1⟩, U(M ′)C(N/M ′)

)
for any admissible divisor M ′ | N .

H•−1
T (⟨±1⟩,K ′) H•

T(M) 0 H•
T(⟨±1⟩,K ′) H•+1

T (M) 0

H•−1
T (⟨±1⟩,K ′) H•

T(M) H•
T(Mpνp) H•

T(⟨±1⟩,K ′) H•+1
T (M)

(1−yp) (1−yp)

Here, the 0s arise because U(M)C(N/Mpνp ) is free over ⟨±1⟩ by the third step. We now make a few
simplications.

• The 0s in the top row imply that H•
T(⟨±1⟩,K ′)→ H•+1

T (M) is an isomorphism.
• By the previous step, we know that the (1− yp) arrows are the 0 map. Thus, the commutativity of

the diagram implies that the arrows H•−1
T (⟨±1⟩,K ′)→ H•

T(M) and H•
T(⟨±1⟩,K ′)→ H•+1

T (M) in
the bottom row are both the zero map.

The above two observations turns the bottom row into

0→ H•
T(M)→ H•

T(Mpνp)→ H•+1
T (M)→ 0.

6. We now complete the proof by induction. We want to compute dimF2
H•

T

(
⟨±1⟩, U(M)C(N/M)

)
for any

admissible divisor M | N . The previous step grants an “inductive step” that

dimF2
H•

T

(
⟨±1⟩, U(Mpνp)C(N/Mpνp )

)
=

∑
i∈{0,1}

dimF2
HiT

(
⟨±1⟩, U(M)C(N/M)

)
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whenever M and Mpνp is an admissible divisor of N . For example, we find that

dimF2
H•

T

(
⟨±1⟩, U(pνp)C(N/pνp )

)
=

∑
i∈{0,1}

dimF2 H
i
T

(
⟨±1⟩, U(1)C(N)

)
by takingM = 1. But now this dimension is independent of the cohomological index, so we inductively
see that

dimF2 H
•
T

(
⟨±1⟩, U(M)C(N/M)

)
= 2ω(M)−1

∑
i∈{0,1}

dimF2 H
i
T

(
⟨±1⟩, U(1)C(N)

)
for any admissible divisor M | N such that M > 1.
The proof will be over as soon as we check∑

i∈{0,1}

dimF2
HiT

(
⟨±1⟩, U(1)C(N)

)
= 1.

Well, note U(1) = Z[(Z/NZ)×], so the C(N)-fixed points are given by C(N) · Z[(Z/NZ)×] = ZC(N).
This has trivial action by ⟨±1⟩, so we are computing the Tate cohomology of the trivial ⟨±1⟩-module
Z. Well, one has {

H0
T(⟨±1⟩,Z) = Z/2Z,

H−1
T (⟨±1⟩,Z) = 0,

so we see that the sum of the F2-dimensions is in fact 1. ■

Remark 4.68. Choose admissible divisors M | M ′. The fifth step of the argument shows that there is
an inclusion U(M)C(N/M) ⊆ U(M ′)C(N/M ′) which then induces an inclusion

H•
T

(
⟨±1⟩, U(M)C(N/M)

)
→ H•

T

(
⟨±1⟩, U(M ′)C(N/M ′)

)
on (Tate) cohomology. As seen in the fifth step of the argument, these inclusions explain “half” of the
elements of a given H•

T

(
U(M ′)C(N/M ′)

)
by taking M | M ′ to be M ′/pνp for some prime p | M ′. The

“other half” arises from a quotient and is thus harder to describe.

Example 4.69. Let’s exhibit a nontrivial element in H0
T(⟨±1⟩, UN ). Remark 4.68 explains that there is an

inclusion Z[(Z/NZ)×](Z/NZ)× ⊆ UN which induces an inclusion

H0
T

(
⟨±1⟩,Z[(Z/NZ)×](Z/NZ)×

)
⊆ H0

T(⟨±1⟩, UN ).

Now, Z[(Z/NZ)×](Z/NZ)× ⊆ UN is isomorphic to Z generated by
∑
a∈(Z/NZ)× a. Because this module

has the trivial ⟨±1⟩-action, we see that this generating element
∑
a∈(Z/NZ)× a provides a nontrivial class

in H0
T(⟨±1⟩, UN ).

4.3.5 Refined Algebraicity
The previous subsections (and in particular Theorem 4.64) allows us to upgrade Proposition 4.52.

Lemma 4.70. Let f : 1
NZ/Z→ Z be a function of constant weight. Then 2f is a Z-linear combination of

the functions 10 and εd,a where N ∤ da.
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Proof. This is [GGL24, Proposition 6.3.6]. By adding or subtracting 10s (which have weight 0), we may as-
sume that f(0) = 0. By Proposition 4.52, we know that there is some denominator D > 0 such that Df
is a Z-linear combination of the functions 10 and εd,a where N ∤ da, and we can see that there are no 10s
because f(0) = 0. Thus, Lemma 4.57 tells us thatDf (up to 10) vanishes in the groupU−

N described in Theo-
rem 4.64. This group is actually 2-torsion by Theorem 4.64, so we conclude that 2f vanishes inU−

N . Another
application of Lemma 4.57 tells us that 2f is a Z-linear combination of the εd,as. ■

Remark 4.71. In fact, once we know that 2f is a Z-linear combination of 10 and the εd,as, one can use
some linear algebra to explicitly find this linear combination. We take a moment to note that Re-
mark 4.58 tells us that we are allowed to only use ε1,as and εp,as where p | N is prime.

Here is the appliation to products of Γ.

Lemma 4.72. LetKN be the extension ofQ(ζ2N , i)generated by the elementsπ−wΓ(f), where f : 1
NZ/Z

is a function of constant weight w which is a Z-linear combination of the εd,as. Then

KN = Q(i, ζ2N )
(
{pp/N : prime p | N}

)
.

Proof. It is enough to handle f which are equal to some εd,a. One can inductively write εd,a as a sum of ε1,•s
and εp,•s, so we can just handle those. By the reflection formula (Proposition 4.40), Γ(ε1,a) is in Q(ζ2N , i), so
we don’t have to worry about these elements.

Continuing, by the multipliation formula (Proposition 4.40), we see

Γ(εp,a)

Γ(ε1,pa)
= (2π)(p−1)/2p1/2−pa/N .

We now have two cases on the parity of p.

• If p is odd, then these elements show p1/2−pa/N ∈ KN . However, p1/2 ∈ Q(i, ζ2N ) already, so we are
only generating pp/N ∈ KN .

• Similarly, if p = 2, then these elements show 21/2 ·21/2−2/N ∈ KN . Thus, we are again only generating
22/N ∈ KN . ■

Proposition 4.73. Let LN be the extension of

KN = Q(i, ζ2N )
(
{pp/N : prime p | N}

)
generated by the elements π−wΓ(f), where f : 1

NZ/Z→ Z is a function of constant weightw. Then the
extension LN/KN is multiquadratic. If N is odd or divisible by 4, the degree is bounded by

log2[LN : KN ] ≤ 2ω(N)−1 − 1.

Proof. We proceed in steps, showing the various claims separately.

1. To check that this extension is multiquadratic, we will actually check that (π−wΓ(f))2 is inKN for each
f ; note that π−wΓ(f) is already algebraic by Corollary 4.53. Now, by Lemma 4.70, we may write 2f as
a Z-linear combination of εd,as, so Γ(f)2 can be written as a product of Γ(εd,a)s. But up to a power π,
Lemma 4.72 assures us that Γ(εd,a) is in KN .
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2. It remains to bound [LN : KN ] whenN is odd. By the previous step and Kummer theory [Lan02, The-
orem VI.8.1], we would like to show that the 2-subgroup ΓN ⊆ K×

N/K
×2
N generated by the elements

(π−wΓ(f))2 has

dimF2 ΓN
?
≤ 2ω(N)−1 − 1.

This bound will come from Theorem 4.64. To be formal, let φ : Morcw(
1
NZ/Z,Z)→ K×

N be the homo-
morphism taking functions f : 1

NZ/Z→ Z of constant weightw to (π−wΓ(f))2 ∈ K×
N . By construction,

we see that this homomorphism sends elements of the form εd,a toK×2
N , as discussed in Lemma 4.72.

Thus, Lemma 4.57 tells us that φ descends to a homomorphism

φ : U−
N,tors →

K×
N

K×2
N

,

and ΓN is the image of this map. Theorem 4.64 explains that the domain U−
N,tors is already a 2-torsion

group and has F2-dimension bounded by 2ω(N)−1, so we will be done if we can lower the dimension
any further.

3. We complete the proof by showing that φ has a nontrivial kernel. Indeed, consider the constant func-
tion f1 ≡ 1. We have two checks.

• On one hand, we claim that f1 ∈ kerφ. Then

f1 = 10 + 12|N11/2

⌊(N−1)/2⌋∑
a=1

ε1,a,

where 10 and 11/2 are indicators. Certainly 10 and 11/2 are in kerφ because Γ(10) = Γ(11/2) = 1
(see Example 4.42), and the ε1,as are in kerφ as already noted. We conclude f1 ∈ kerφ.

• On the other hand, we claim that f1 is a nontrivial element of U−
N,tors. This is a little tricky. Un-

der the isomorphism U−
N,tors

∼= H0
T(⟨±1⟩, UN ) of Proposition 4.65, f1 corresponds to the (Tate)

cohomology class ∑
a∈(Z/NZ)

a ∈ H0
T(⟨±1⟩, UN ).

However, this element is nontrivial by Example 4.69!

We conclude that kerφ is nontrivial, so ΓN = imφ satisfies

dimF2
imφ < dimF2

U−
N,tors,

so we are done by Theorem 4.64. ■

Remark 4.74. The first step of the proof has the pleasant consequence of providing an explicit algorithm
to compute the algebraic numbersπ−wΓ(f), as discussed in [GGL24, Theorem 6.3.9]. Indeed, it suffices
to compute the square π−2wΓ(2f). Now, Remark 4.71 says that we can use linear algebra to write
2f as a Z-linear combination of some εd,as, and then we can compute Γ(εd,a) using the reflection and
multiplication formulae of Proposition 4.40 (as explained in Corollary 4.53).

Remark 4.75. Whether equality is achieved in Proposition 4.73 is an interesting question. It seems to
be true in small examples; see Remark 4.78.

We now apply our theory to periods of the Fermat curve. To begin, we note that periods of Fermat curves
can handle fairly general functions of constant weight.
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Lemma 4.76. Let f : 1
NZ/Z → Z be a function of constant weight w such that f(0) = 0. Then there is

some index p ≥ 0 and α ∈ B2p and a list {ai}ni=1 ⊆ (Z/NZ) such that

f = 1α −
n∑
i=1

ε1,ai .

Proof. We will actually show that there is a list {ai}ni=1 such that f +
∑n
i=1 ε1,ai equals 1α for some α ∈ B2p.

In fact, it is enough to getα ∈ A2p: we already know that f+
∑n
i=1 ε1,ai has constant weight by Lemma 4.50,

so the weight will correctly be 3p as soon as this is some suitablyα ∈ A2p by Remark 4.20. As a last reduction,
we note that we may assume im f ⊆ Z≥0 by adding in suitable ε1,•s.

We now induct on ∥f∥1 =
∑n
i=0 f(i/N). Here are some small cases.

• If ∥f∥1 = 0, then f = 0, and we can take p = 0 and α to be empty.

• It is not possible for f to be supported on a single nonzero entry because such a function cannot have
constant weight.

• Suppose ∥f∥1 = 2. Because f should not be supported at a single point, we have f = a/N + b/N for
some a, b ∈ Z/NZ. We claim that f = ε1,a. Well, f needs to have constant weight, so

[a] + [b] = [−a] + [−b].

Thus, [a] + [b] = N , so b = −a, as required.

We now proceed with the induction. Suppose that ∥f∥1 > 2. Because f is nonzero, f is supported on at
least two points, which we name a/N and b/N where a, b ∈ (Z/NZ). We have two cases.

• Suppose that b = −a. Then f − ε1,a continues to have nonnegative image and constant weight, but
∥f − ε1,a∥1 < ∥f∥1, so we may apply the inductive hypothesis to f − ε1,a to conclude the proof.

• Suppose that b ̸= −a. Then there is a nonzero c ∈ (Z/NZ) such that a + b + c = 0, and we define
α := (a, b, c) to be in A1. We now see that

f − 1α + ε1,c

has nonnegative image and constant weight, but ∥f − 1α + ε1,c∥1 < ∥f∥1. We now again conclude by
applying the inductive hypothesis. ■

Theorem 4.77. LetKconn
A be the connected monodromy field of the JacobianA of the Fermat curveXN ,

and define the field
KN = Q(i, ζ2N )

(
{pp/N : prime p | N}

)
.

(a) We have KN ⊆ Kconn
A (i, ζ2N ).

(b) The extension Kconn
A (i, ζ2N )/KN is multiquadratic.

(c) If N is odd or divisible by 4, then

log2[K
conn
A (i, ζ2N ) : KN ] ≤ 2ω(N)−1 − 1,

where ω(N) is the number of distinct prime factors of N .

Proof. As explaind in Remark 4.36, Kconn
A is the extension of Q(ζN ) which contains the periods

Per
(
γ2p, να

)
= (2πi)−p

2p∏
i=1

ζ
[ai]+[bi]
2N

Γ
(

[ai]
N

)
Γ
(

[bi]
N

)
Γ
(

[−ci]
N

) ,
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where α ∈ B2p varies. By the reflection formula (Proposition 4.40), this period is in π−⟨α⟩Γ(1α)Q(i, ζ2N ).
Now, Lemma 4.76 explains that any function f : 1

NZ/Z → Z of constant weight can be transformed into
some 1α for α ∈ B2p at merely the cost of some 10s and ε1,as, so Kconn

A (i, ζ2N ) is actually generated by
π−wΓ(f), where f may now vary over all functions f : 1

NZ/Z → Z of some constant weight w. Part (a) now
follows from Lemma 4.72, and parts (b) and (c) now follow from Proposition 4.73. ■

Remark 4.78. Let A be the Jacobian of the curve y2 = xN − 1, which is a quotient of the Fermat curve
XN . In [GGL24, Theorem 7.1.1], it is shown that Kconn

A is multiquadratic over merely Q(ζN ) via some
algebro-geometric arguments. If N is odd, then Theorem 4.77 shows that

log2[K
conn
A (i) : Q(i, ζN )] ≤ 2ω(N)−1 − 1.

In particular, note that the pp/Ns define odd-degree cyclic extensions of Q(i, ζN ) and hence cannot live
in the multiquadratic extension Kconn

A of Q(ζN ). The above bound agrees with the table in [GGL24,
Example 6.4.10]; in fact, that table suggests that equality may hold without the added is!

Let’s see an example computation.

Proposition 4.79. Define A to be the Jacobian of the proper curve C with affine chart y9 = x
(
x2 + 1

)
.

Then we show Kconn
A = Q

(
ζN , 2

1/3, 22/9 · 31/6
)

.

Proof. This computation follows the one in Proposition 4.38. We will freely use the computation executed
in Proposition 3.33. Thoughout,A := JacC, and we recall that we have a decompositionA = C0 ×A1 ×A2

(over Q) into geometrically simple abelian varieties. We proceed in steps.

1. Set N := 18, and we note that there is a quotient map XN → C from the affine patch x18 + y18 + 1 =
0 to C given by ψ(x, y) :=

(
x9, xy2

)
. Thus, we will be able to use the Galois-invariant embedding

ψ : H1
ét(CQ,Qℓ) ↪→ H1

ét(XN,Q,Qℓ) to use Theorem 4.33 by restricting to the Galois submodule. To
make this explicit, we recall that we have a basis{

dx

y4
,
dx

y5
,
dx

y6
,
dx

y7
,
dx

y8
,
x dx

y7
,
x dx

y8

}
of H10(C), we see that we can pass this basis through ψ∗ to see that H10(C) ⊆ H10(X) has basis

{ν5,10,3, ν4,8,6, ν3,6,9, ν2,4,12, ν1,2,15, ν11,4,3, ν10,2,6} .

Combining with the conjugate differentials yeilds a full basis of H1
dR(C,Q) ⊆ H1

dR(X,Q).

2. We pass to the étale site in exactly the same way as in Proposition 4.38. In the notation of Proposi-
tion 3.33, we see that ψ∗ pulls the basis {u1 ⊗ 1, v1 ⊗ 1, v2 ⊗ 1, v4 ⊗ 1, w1 ⊗ 1, w2 ⊗ 1, w5 ⊗ 1} to

{ν3,6,9 ⊗ 1, ν10,2,6 ⊗ 1, ν2,4,12 ⊗ 1, ν4,8,6 ⊗ 1, ν1,2,15 ⊗ 1, ν11,4,3 ⊗ 1, ν5,10,3 ⊗ 1}.

3. We are now ready to begin executing Proposition 2.157; for this, Remark 2.158 informs us that we
need to build a space of W ′ of Tate classes cutting out Gℓ(A)◦ ⊆ GL14,Qℓ

. We begin by adding W1,
made up of the endomorphisms, which ensures (for example) that Gℓ(A)◦ is diagonal. Then Proposi-
tion 3.33 computed that we also have the “polarization equations”

µ1µ2 = κ1κ8,

κ1κ8 = κ2κ7,

κ1κ8 = κ4κ5,
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and the exceptional equation

µ1κ7 = κ5κ8.

We remark that the polarization equations translate into a Tate class like ν(α,−α,β,−β) ⊗ 1 understood
as an element inH4

ét(XQ,Qℓ)(2)⊗QQℓ, but this Tate class actually already come from a class inW1 (see
Corollary 4.37), so we may safely ignore it. Thus, we only have to translate the exceptional equation
into the tensor

ν(3,6,9),(7,14,15),(13,8,15),(1,2,15) ⊗ 1 ∈ H4
ét(XQ,Qℓ)(2)⊗Q Qℓ

and its Galois orbit.

4. Arguing as in Remark 4.36, we know that the periods of the Tate classes given in the previous step
generate Kconn

A , so it remains to compute these periods. We already know that our endomorphisms,
except for the isogeny (A1)Q

∼= (A2)Q, are defined overQ(ζN ) (see also Corollary 4.37). We now handle
the remaining cycles.

• The isogeny A1
∼= A2 corresponds to equations κu = λ2u for each u ∈ (Z/18Z)×, which means

that we would like to compute

Per
(
γ2p, νu(1,2,15),u(16,14,6)

)
.

Well, by Remark 4.14, this element is

(−2πi)−1ζ
u(1+2+16+14)
2N ·

Γ
(

[u]
18

)
Γ
(

[2u]
18

)
Γ
(

[3u]
18

) ·
Γ
(

[16u]
18

)
Γ
(

[14u]
18

)
Γ
(

[12u]
18

) .

One can check that the term on the left is in π−1Q(ζN ), so it remains to handle the product of Γs.
We handle the case where u = 1 because the others turn out to be essentially Galois conjugates.
(Indeed, Theorem 4.33 explains that the remaining us belong to the same Galois orbit.) Using the
algorithm suggested in Remark 4.74, one finds that this product equals

Γ(−ε1,8 − ε2,3 − ε2,4 − ε2,6 − ε2,7 + ε3,1 + ε3,2 + 2ε3,4),

which evaluates to (
−ζ5N + ζ2N + ζN + 1

)
·
(
222 · 33

)1/18
,

up to a (correct) power of π.
• It remains to compute

Per
(
γ4, ν(3,6,9),(7,14,15),(13,8,15),(1,2,15) ⊗ 1

)
.

Well, by Remark 4.14, we see this equals

(−2πi)−2ζ
(3+6+7+14+13+8+1+2)
2N ·

Γ
(

3
18

)
Γ
(

6
18

)
Γ
(

9
18

) ·
Γ
(

7
18

)
Γ
(
14
18

)
Γ
(

3
18

) ·
Γ
(
13
18

)
Γ
(

8
18

)
Γ
(

3
18

) ·
Γ
(

1
18

)
Γ
(

2
18

)
Γ
(

3
18

) .

As above, the term on the left belongs to π−2Q(ζN ), so it remains to handle the product of Γs.
Once again using the algorithm suggested in Remark 4.74, one finds that this product equals

Γ

(
ε1,7 − ε1,8 +

1

2
ε1,9 + ε2,5 − ε2,7 + ε2,8 + ε3,1 − ε3,3 + ε3,4 − ε3,5

)
,

which evaluates to 4 · 26/18 up to a (correct) power of π.

Altogether, we can combine these two calculations to show Kconn
A = Q

(
ζN , 2

2/9 · 31/6
)

because this
field already contains 21/3. ■

Remark 4.80. Perhaps it is notable that the exceptional Hodge class is defined over a smaller field than
the endomorphisms!
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tations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977),
Part 2. Proc. Sympos. Pure Math., XXXIII. With an appendix by N. Koblitz and A. Ogus. Amer.
Math. Soc., Providence, RI, 1979, pp. 313–346.

[Kub79a] Daniel S. Kubert. “The Z/2Z cohomology of the universal ordinary distribution”. In: Bull. Soc.
Math. France 107.2 (1979), pp. 203–224. ISSN: 0037-9484. URL: http://www.numdam.
org/item?id=BSMF_1979__107__203_0.

[Kub79b] Daniel S. Kubert. “The universal ordinary distribution”. In: Bull. Soc. Math. France 107.2 (1979),
pp. 179–202. ISSN: 0037-9484. URL: http://www.numdam.org/item?id=BSMF_1979_
_107__179_0.

[Del80] Pierre Deligne. “La conjecture de Weil. II”. In: Inst. Hautes Études Sci. Publ. Math. 52 (1980),
pp. 137–252. ISSN: 0073-8301. URL: http://www.numdam.org/item?id=PMIHES_
1980__52__137_0.

[New80] D. J. Newman. “Simple analytic proof of the prime number theorem”. In: Amer. Math. Monthly
87.9 (1980), pp. 693–696. ISSN: 0002-9890. DOI: 10.2307/2321853. URL: https://doi-
org.libproxy.berkeley.edu/10.2307/2321853.

[Zar83] Yu.G. Zarhin. In: Journal für die reine und angewandte Mathematik 1983.341 (1983), pp. 193–
220. DOI: doi:10.1515/crll.1983.341.193. URL: https://doi.org/10.1515/
crll.1983.341.193.

[Mur84] V. Kumar Murty. “Exceptional hodge classes on certain abelian varieties”. In: Mathematische
Annalen 268.2 (June 1984), pp. 197–206. ISSN: 1432-1807. DOI: 10.1007/BF01456085.
URL: https://doi.org/10.1007/BF01456085.

[Fal86] Gerd Faltings. “Finiteness Theorems for Abelian Varieties over Number Fields”. In: Arithmetic
Geometry. Ed. by Gary Cornell and Joseph H. Silverman. New York, NY: Springer New York,
1986, pp. 9–26. ISBN: 978-1-4613-8655-1. DOI: 10.1007/978-1-4613-8655-1_2. URL:
https://doi.org/10.1007/978-1-4613-8655-1_2.

[Ros86] Michael Rosen. “Abelian Varieties over C”. In: Arithmetic Geometry. Ed. by Gary Cornell and
Joseph H. Silverman. New York, NY: Springer New York, 1986, pp. 79–101. ISBN: 978-1-4613-
8655-1. DOI: 10.1007/978-1-4613-8655-1_4. URL: https://doi.org/10.1007/
978-1-4613-8655-1_4.

[Col87] Robert F. Coleman. “The Gross-Koblitz formula”. In: Galois representations and arithmetic al-
gebraic geometry (Kyoto, 1985/Tokyo, 1986). Vol. 12. Adv. Stud. Pure Math. North-Holland,
Amsterdam, 1987, pp. 21–52. DOI: 10.2969/aspm/01210021. URL: https://doi-org.
libproxy.berkeley.edu/10.2969/aspm/01210021.

[Kat88] Nicholas M. Katz. Gauss sums, Kloosterman sums, and monodromy groups. Vol. 116. Annals
of Mathematics Studies. Princeton University Press, Princeton, NJ, 1988, pp. x+246. ISBN: 0-
691-08432-7; 0-691-08433-5. DOI: 10.1515/9781400882120. URL: https://doi-org.
libproxy.mit.edu/10.1515/9781400882120.

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud. Néron models. Vol. 21. Ergeb-
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