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CHAPTER O
INTRODUCTION

What we didn’t do is make the construction at all usable in practice!
This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

0.1 Overview

Over the past few decades, there has been a growing interest in understanding how the geometry of a space
(such as a smooth projective variety) affects its arithmetic.

One example of these effects arises in the form of the Sato-Tate conjecture, which takes an abelian va-
riety A over Q and predicts the distribution of the point-counts #A(F,) (suitably interpreted) as the primes
p varies. Here, one finds that the “geometric” invariant End¢(A) essentially determines the desired distri-
bution. We refer to section 3.1 for a more precise discussion, but approximately speaking, the point is that
one expects a “motivic monodromy group” to control this distribution, and the motivic monodromy group
can be computed either in a geometric situation over C or understood via such point-counts in an arithmetic
situation.

To be slightly more explicit, there are various monodromy groups at play: in the complex analytic situ-
ation, there is the Mumford—Tate group MT(A), and in the ¢-adic situation, there is the ¢-adic monodromy
group Gy(A). There are conjectural relations between these, and these conjectures codify the interplay
between geometry and arithmetic; for example, the Mumford—-Tate conjecture predicts that MT(A4)g, =
G¢(A)°. Ultimately, to understand point-counts, one becomes interested in the groups G¢(A4), but this group
is difficult to compute directly, so it is frequently profittable to compute MT(A) instead and then use one of
the aforementioned conjectures.

In this article, we are interested in the effect of so-called "exceptional” geometry on arithmetic, con-
tinuing the work of [GGL24]. The exceptional geometry we are interested in concerns exceptional Hodge
classes, which are Hodge classes on A (or a power of A) which are not generated by an endomorphism of A
or the polarization of A. The absence of such classes gives control of the geometry of A and hence makes
MT(A)and G¢(A) easy to compute. As another application, in the absence of exceptional classes, one knows
the Hodge conjecture for all powers of A, so exceptional geometry is in some sense “the enemy” of proving
the Hodge conjecture.
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0.1.1 Fermat Curves

Roughly speaking, most abelian varieties do not support exceptional classes, so it requires some effort
to find abelian varieties with exceptional classes in nature (and then prove and study their existence!). In
[GGL24], Gallese, Goodson, and Lombardo are able to control exceptional classes in the Jacobians of the
hyperelliptic “Fermat” curves

y? =2V +1

as N > 1 varies over positive integers. Namely, they are able to write down an algorithm which computes
the groups MT and G, for moderately sized N (say, N < 100), and they are able to prove general results
in certain cases (such as N prime). It is still true that some N fail to support exceptional classes, such as
when N is a prime, but composite N frequently support exceptional geometry, which must be understood
to execute the computation.

The present article can be considered a continuation of the work of [GGL24]. For example, the authrors
there remark that their methods should be able to be used to compute MT and G, for the Jacobians of
quotients of the smooth projective Fermat curve

Xy: XV +YN + 2N =0,

which includes the hyperelliptic curves 4> = 2V + 1 above. This is carried out in section 4.2; we note that the
main theorem is Theorem 4.33, where we provide an explicit description of the Galois action on (absolute)
Hodge classes in terms of Galois action on certain explicitly computed periods, but we will not give the
statement in the introduction because it is somewhat technical.

Remark 0.1. As an aside, we note that the authors of [GGL24] recourse to more general Fermat hyper-
surfaces
XY +XxP+-+XxN =0

in order to understand powers of the Fermat curve Xy. This theory rests on somewhat technical al-
gebraic geometry due to Deligne [Dell8, Section 7]. In this article, we rebuild the thoery of [GGL24]
while only handling powers of Xy directly, allowing us to avoid Deligne’s algebraic geometry. The key
point is that a careful analysis of the Kiinneth isomorphism allows one to gain the same level of control
on the Hodge classes of a power of X as one would get with embedding in a Fermat hypersurface.
This is carried out in section 4.2.1.

Having access to more general quotients allows us to see more geometry. To explain one example, we recall
the definition of G;(A). Given an abelian variety A defined over a number field K, one can use the Galois
action on the Tate module V; A of A to define a Galois representation

pe: Gal(K/K) — GL(V,A).

Here, V; A turns out to be a vector space ver Q, of dimension 2 dim A. We then define G;(A) to be the smallest
algebraic Q,-subgroup containing the image of p,. The Mumford—Tate conjecture explains that one expects
to recover G¢(A)° from the complex geometry of A, so it becomes interesting to understand the quotient
Go(A)/Ge(A)°, which we note s finite because G, (A) isan algebraic group. In light of the definition of G,(A),
we see that we are interested in the pre-image p; ' (G¢(A)°); this needs to be a finite-index open subgroup
of Gal(K/K), so there is a finite extension K" of K such that py(c) € G¢(A)° if and only if o fixes K.

In [GGL24, Theorem 7.1.1], the authors find that their hyperelliptic curves y? = 2V + 1 all have K™»
to be a multiquadratic extension of Q({x), and they provide an algorithm to compute it. Further, they find
that the prime-power case will always have K™ = Q({x). One can now ask if one can hope for such
control for general quotients of the Fermat curve. Well, [Del18, Theorem 7.15] explains that the extension
K" /Q(¢n) should always be abelian. However, it turns out that one cannot hope for much more than
this.
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Example 0.2. In Proposition 4.79, we show that the Jacobian of the superelliptic curve
y9 =z (w2 + 1) ,

which is a quotient of the Fermat curve X8 + Y8 + 718 = 0, has K¢ = Q((1s, V/432), which is a
degree-18 cyclic extension of Q((1s).

Example 0.3. The Jacobian of the previous example is not simple. At the cost of having slightly higher
dimension, one can show something similar for the Jacobian of y'! = 22 (22 + 1), but now this Jacobian
is simple.

In section 4.2, we work out the example curve 3? = £ 4 1 in detail. Here, one does find exceptional classes,
but we still have K" = Q(¢o).

To work with more examples, we need a finer understanding of the periods of Fermat curves [GGL24,
Sections 6.3-6.4]. This is accomplished in section 4.3. In short, it turns out that we need to understand
the algebraicity properties of certain products of I's, and these products can be understood in terms of the
(combinatorial) theory of distributions. In [GGL24], the authors only work with the periods which can come
from the hyperelliptic Fermat curve, but we work with periods of the full Fermat curve. Here is an example
of what we can prove.

Theorem 4.77. Let K" be the connected monodromy field of the Jacobian A of the Fermat curve Xy,
and define the field

Kn =Q(i, an) ({pp/N rprime p | N}) .
(a) We have Ky C K" (4, (an).
(b) The extension K" (4, (2n)/K N is multiquadratic.

(c) If N is odd or divisible by 4, then
logy [K5™ (i, Can) + K] < 271 — 1,

where w(N) is the number of distinct prime factors of V.

Remark 0.4. It would be interesting to know if the upper bound in (c) is sharp. This seems to be unknown
unless w(N) = 1.

0.1.2 BeyondCM

One aspect of these Fermat curves is that they have so many automorphisms (given by multiplying X or Y’
by an Nth root of unity) that their Jacobians have complex multiplication. Complex multiplication aides the
computation in a few key ways: in this case, MT(A) and G((A) are both tori, thus making them much easier
to control. For example, the Mumford—-Tate conjecture is known in this case, and there exist algorithms to
compute MT(A) from certain combinatorial data attached to A.

As such, to the author’s knowledge, the literature does not have an example computation of G¢(A) when
A does not have complex multiplication and is not fully of Lefschetz type.! In this article, we work out such
an example. Admittedly, we do not go far from complex multiplication: where complex multiplication would
require End(A4) ®z Q to contain a CM field of dimension 2 dim A4, we work with certain abelian varieties A

1 Roughly speaking, “fully of Lefschetz type” means that all Hodge classes on A can be explained by endomorphisms and the po-
larization. In type I, it turns out that these classes do imply the existence of an exceptional class, which is the difference between not
supporting exceptional cycles and being “fully of Lefschetz type.”
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such that End(A) ®z Q contains a CM field of dimension dim A. Our limitations are rather technical, and we
expect that one can do much better.

As an example difficulty, let's focus on computing MT(A). Recall that MT(A) is a connected reduc-
tive algebraic group defined over @, so we can split up its computation into computing the derived sub-
group MT(A)%" and the neutral component Z(MT(A))° of the torus. In section 2.2, we explain how the
current arguments used to understand MT(A) for A with complex multiplication can be used to compute
Z(MT(A))°. To explain this result, we pick up some notation: set E := Z(End(A)), and then one can diago-
nalize the action of E on V := H}(A(C), C) to produce a piece of combinatorial data called the “signature”
®: Hom(E,C) — Zxo; for brevity, we will set £ .= Hom(E, C). It turns out that one canembed Z(MT(A))°
into the torus Tg = Resg g Gm, e, and our first main result explains how to recover this subtorus.

Corollary 2.77. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E, and define
V = HL(A, Q). Let &: X — Z> be the signature defined in Lemma 2.72. Then Z(MT(V))° C Tg has
cocharacter group equal to the smallest saturated Galois submodule of X,.(Tg) = Z[X};] containing

Z P(o)a”.

oEXE

Remark 0.5. In fact, a careful reading of the arguments in section 2.2 reveal that we are actually able
to compute an explicit power of Z(MT(A)), which technically contains more information. For example,
one could provide a sufficient condition for Z(MT(A)) being disconnected.

It remains to compute MT(A)4°*, Under certain simplifying hypotheses given above, we work this out in

Proposition 2.150, which we restate below for convenience. Here L(A) is the Lefschetz group, which is
intuitively what MT(A) would be in the absence of exceptional classes.

Proposition 2.150. Fix a geometrically simple abelian variety A over a number field K. Suppose that
E = Z(Endz(A)) equals a CM field such that dim A = dim E. Letting ® be the corresponding signature,
we further suppose that ®(¢) = 1 for exactly two o € ¥ . Then we show the Mumford—Tate conjecture
holds for A4, and

MT(A)der — L(A)der.

The argument proving Proposition 2.150 achieves something slightly stronger, but it is technical to state
and not required for our application. In short, the idea of the proof is to upgrade the fact that the real Lie
groups SU(2,0) and SU(1, 1) are not isomorphic using the Galois action.

Now that we understand MT(A), we would like to upgrade this to an understanding of G,(A). After the
Mumford—Tate conjecture, we (roughly speaking) need to understand the quotient G;(A)/G¢(A)°, whch
section 2.4.3 explains that this amounts to computing the Galois action on certain “Tate classes.” Thus, the
trick is to not look at a particular Galois representation p, but instead a family of them. We can engineer
everything so that generic members of the family satisfy the properties needed for the rest of the present
subsection to go through. Then our last trick is ensure that some special members of the family are quotients
of a Fermat curve, where we know the Galois action! In this way, we can “transport” the understanding of
the Galois action afforded by the Fermat curves to a generic curve. Here is the toy result we are able to
prove.

Theorem 4.39. For given A € Q(Co) \ {0,1}, define A to be the Jacobian of the proper curve C with

affine chart ¢ = z(z — 1)(z — \). Suppose that A does not have complex multiplication. Then we show
K™ = Q(¢9), and we compute ST(A).

0.2 OddsandEnds

In this section, we explain some existential properties of this article.

7
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0.2.1 Whatlsin This Article

Let's take a moment to explain the layout. For the most part, the exposition is arranged topically (by chapter,
then section), and we have done our best to remove situations which would require forward references.

As a very brief overview, chapter 1 explains all the Hodge theory we will require and then ends by intro-
ducing the category of motives using Deligne’'s theory of absolute Hodge classes. Chapter 2 explains ev-
erything we will want to know about abelian varieties, detailing in particular properties and computational
aspects of the ¢-adic representation. Chapter 3 motivates and states the Sato-Tate conjecture for abelian
varieties and then indicates some tools used in the proof of some of the known cases. Lastly, Chapter 4
explains how to compute the /-adic monodromy group and the periods of the Fermat curves.

Because there are certain subsections whose purpose may not immediately be clear in a linear read of
the article, we also take a moment to explain some of the stories present in the exposition.

« Computation: a major goal of the thesis is to compute ¢-adic monodromy groups. Proposition 2.86 ex-
plains how to compute the center of the Mumford—Tate group, which the Mumford—Tate conjecture
relates to /-adic monodromy. Our needed case of the Mumford—Tate conjecture is given in Propo-
sition 2.150; we note that Lemma 1.62 is a key input. From here, Proposition 2.157 explains how to
treat the disconnected parts of the group, and this is the discussion used in the example discussions
of sections 3.1.3 and 4.2.4. Our most complicated example is given in Proposition 4.79, where we
require the algorithmic discussion of Fermat periods discussed in (the rather painful) section 4.3.

» Motives: after explaining what is required about Hodge structures in section 1.1, we may put in quite
a bit of effort in section 1.3 to define a category of motives. These notions are then used to define the
motivic Galois group in section 2.4.4, which helps contextualize our monodromy groups (see Exam-
ple 1.140 and Remark 2.118) and the Mumford—Tate conjecture (see Conjecture 2.166). Motives are
then used in the proof of that the Mumford—Tate conjecture implies the Algebraic Sato—Tate conjec-
ture in Theorem 3.23.

« Complex multiplication: complex multiplication is defined for abelian varieties in section 2.1.5, where
it serves as a basic case for many of conjectures and computations; for example, the Fermat Jacobians
have complex multiplication. We point out that the Mumford-Tate conjecture is proven for abelian
varieties in Example 2.143 by combining Propositions 2.86 and 2.141; these propositions also explain
how to the ¢-adic monodromy group in practice. A notable input is the Fundamental theorem of com-
plex multiplication, a version of which is stated in Theorem 2.136. Another one of its applicationsis to
prove the Sato-Tate conjecture in this case, which is done in Theorem 3.117.

0.2.2 Whatls Notin This Article

What follows are some topics which potentially fit in with the theme of the current article, but the author did
not find adequate time to think through them in detail and write down their details. Any readeris encouraged
to email the author if they have ideas or want further explanation.

1. Adiscussion of rigid cohomology and Kedlaya’s algorithm to compute Frobenius matrices.

(@) This would allow us to computationally verify Theorem 4.33.

(b) This would allow us to form p-adic analogues of many parts of our computation, such as Propo-
sition 2.150.

(c) In some cases, one could supplement a p-adic approximation (e.g., via the Cartier—Manin ma-
trix) with the Fundamental theorem of complex multiplication to be able to compute Frobenius
matrices.

2. Vertical Sato—Tate considerations.

(@) It may be possible to prove a vertical Sato—Tate result for arbitrary Shimura curves, such as the
one considered in this article, imitating [Del80, Theorem 3.5.3] or [Kat88, Theorem 3.6].

8
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(b) Computation of the center part of the relevant monodromy group requires the computation of the
Frobenius at at least one point, such as a special point. As such, one could apply computations
from 1(c) above.

3. More on Fermat periods.

(@) ltwould be interesting to lower-bound the degree of the connected monodromy field of the Fer-
mat curve (as an extension of its endomorphism field). Note that Proposition 4.73 provides an
upper bound.

(b) In[GGL24, Theorem 9.3.13], the authors prove a weak version of a Gross—Koblitz formula over Q.
It should be possible to work with arbitrary characters « of constant weight using Theorem 4.33
(and the idea of Lemma 4.76).
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CHAPTER 1
A LITTLE HODGE THEORY

Once we explicitely know a Mumford-Tate group, we can let it work for
us.

—Moonen [Moo, (5.5)]

In this chapter, we define the notion of a Hodge structure as well as some related groups (the Mumford—
Tate group and the Hodge group). Our exposition follows Moonen’s unpublished notes [Moo; M0099] and
Lombardo’s master’s thesis [Lom13, Chapter 3]. Throughout, we find motivation from geometry (and in
particular the cohomology of complex varieties), but we will review cohomology only later.

1.1 Hodge Structures

Cohomology of a variety frequently comes with some extra structure. On the étale site, we will later get
significant utility of the fact that étale cohomology is a Galois representaion. On the analytic site, the corre-
sponding structure is called a “Hodge structure.”

1.1.1 Definition and Basic Properties

Here is our defintion.

Definition 1.1 (Hodge structure). A Q-Hodge structure is a finite-dimensional vector space V' € Vecg
such that V¢ admits a decomposition
Ve @ v

P,qEZL

where V&? = V#*. For fixed m € Z, if V" # 0 unless p+ ¢ = m, we say that V' is pure of weight m. We
let HSg denote the category of Q-Hodge structures, where a morphism of Hodge structures is a linear
map preserving the decomposition over C. In the sequel, it may be helpful to note that one can bring
this definition down to Z as well.

Example 1.2. We give the “Tate twist” Q(1) := 27iQ a Hodge structure of weight —2 where the only
nonzero entry is Q(1)~1 =1 = Q(1).

10
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Example 1.3. Given a complex projective smooth variety X, the Betti cohomology H}; (X, Q) admits a
Hodge structure via the comparison isomorphisms: we find that

HR(X,C) = @) HPI(X),

ptg=n

where H??(X) := HY(X, Q?(/c)~ This construction is even functorial: a morphism of complex projective

smooth varieties ¢: X — Y induces a morphism of Hodge structures ¢*: HE (Y, Q) — HE (X, Q).

Perhaps one would like to check that the category HSg is abelian. The quickest way to do this is to realize
HSgq as a category of representations of some group. The relevant group is the Deligne torus.

Notation 1.4 (Deligne torus). Let S := Resc/r G, c denote the Deligne torus. We also let w: G,z — S
denote the weight cocharacter given by w(r) := r € C on R-points.

Remark 1.5. One can realize S more concretely as

S(R):{[ab Z] GGLQ(R):a2+bQERX},

where R is an R-algebra. Indeed, there is a ring isomorphism from R @r Cto {[ % 2] : a,b € R} by
sending1® 1+ [!;]and1®i— [* _; |. For example, one can define two characters z,z: S¢ — G c
givenby z: [ % 2] — a+biandz: [ % ] — a — bisothat (z,%) is an isomorphism S¢ — G2, ... Thus,
the character group X*(S) is a free Z-module of rank 2 with basis {z,Zz}, and the action of complex
conjugation ¢ € Gal(C/R) simply swaps z and z.

Example 1.6. The following cocharacters of S will be helpful.
» We define the weight cocharacter w: G,, g — S given by w(r) := r € C on R-points.

» We define the miniscule cocharacter pi: G,, c — Sc given by u(z) := (z,1) on C-points.

Here is the relevance of S to Hodge structures.

Lemma 1.7. Fix some V' € Vecg. Then a Hodge structure on V' has equivalent data to a representation
h:S — GL(V)g.

Proof. Remark 1.5 informs us that the character group X*(S) of group homomorphisms S — G, is a rank-2
free Z-module generated by z: [ % 2] — a+biandz: [ % "] — a — bi on C-points. Without too many
details, upon passing to the Hopf algebra, one is essentially looking for unitsin R {a, b, (a® +b?) _1} , of which

there are not many. Note that there is a Galois action by Gal(C/R) on these two characters {z,z}, given by
swapping them. Let ¢ € Gal(C/R) denote complex conjugation, for brevity.

Now, a representation h: S — GL(V)g must have Vi decompose into eigenspaces according to the
characters X*(S), so one admits a decomposition

Vo= @ W
XEX*(S)

However, one also needs VX = TCX because ¢ swaps {x,tx}. By Galois descent, this is enough data to
(conversely) define a representation i: S — Gal(V)g.

1 Alternatively, note one has an isomorphism (C ®g C)* = C* x C* by sending (z,w) — z ® w. Then these two characters are
(z,w) = zand (z,w) — w.

11



1.1. HODGE STRUCTURES SATO-TATE GROUPS OF GENERIC CURVES

To relate the previous paragraph to Hodge structures, we recall that X*(S) is a rank-2 free Z-module,
sowrite x, 4 == 2 PZ 7 so that ux, q = Xq,p- Setting VE? := V2™ now explains how to relate the previous
paragraph to a Hodge structure, as desired. [ |

Remark 1.8. The weight of a Hodge structure on some V' € HSg can be read off of & as follows: note
the weight cocharacter h o w equals the (—m)th power map if and only if the weight is m.

Thus, we see immediately the category HSg is abelian. Additionally, representation theory explains how to
take tensor products and duals.

Example 1.9. We see that V' € HSg has V' inherit a Hodge structure by setting (V)P4 := (V~7—4)V.

Example 1.10. We are now able to define the Tate twists Q(n) := Q(1)®", where negative powers indi-
cates taking a dual. In particular, one can check that Q(n) ® Q(m) = Q(n + m) forany n,m € Z.

Notation 1.11. For any Hodge structure V' € HSg and integer m € Z, we may write

V(m) =V ® Q(m).

We conclude this section by explaining one important application of Hodge structures.

Definition 1.12 (Hodge class). Fixa Q-Hodge structure V. A Hodge class of V is an element of V N V2.0,

Remark 1.13. Looking at the construction in the proof of Lemma 1.7, we see that v € V isa Hodge class
if and only if it is fixed by the corresponding representation i: S — GL(V)g.

Example 1.14. Fix a complex projective smooth variety X of dimension n and some even nonnegative
integer 2p > 0. Then one has Hodge classes given by elements of

HP (X, Q) N HPP(X)(p).

Now, any algebraic subvariety Z C X of codimension k defines a linear functional on H2% 2*(X, C)

defined by
w+—>/w,
z

which one can check is supported on H**. Thus, by Poincaré duality, one finds that Z produces a Hodge
cycle in H¥ (X, Q).

In light of the above example, one has the following conjecture.

Conjecture 1.15 (Hodge). Fix a complex projective smooth variety X. Then any Hodge class can be writ-
ten as a linear combination of classes arising from algebraic subvarieties.

12



1.1. HODGE STRUCTURES SATO-TATE GROUPS OF GENERIC CURVES

Remark 1.16. Here are some remarks on what is known about the Hodge conjecture, though it is ad-
mittedly little in this level of generality.

« The Hodge classes in H4(X)(1) come from algebraic subvarieties.

» The cup product of any two classes arising from algebraic subvarieties continues to be Hodge and
arises from algebraic subvarieties.

For example, if one can show that all Hodge classes are cup products of Hodge classes of codimension
1 on avariety X, then one knows the Hodge conjecture for X.

We are not interested in proving (cases of) the Hodge conjecture in this thesis, so we will not say much more.

1.1.2 Polarizations

Here is an important example of a morphism of Hodge structures.

Definition 1.17 (polarization). Fix a Hodge structure V' € HSq pure of weight m given by the represen-
tation h: S — GL(V)g. A polarization on V' is a morphism ¢: V. ® V. — Q(—m) of Hodge structures
such that the induced bilinear form on Vi given by

(v,w) == 2m)"p(h(1)v @ w)

is symmetric and positive-definite. If VV admits a polarization, we may say that V is polarizable, and we
let HS%Ol C HSg be the full subcategory of polarizable Q-Hodge structures.

Remark 1.18. The positive-definiteness condition on (-, -) implies that ¢ is non-degenerate. Indeed,
one may check non-degeneracy upon base-changing to R (because this is equivalent to inducing an
isomorphism of vector spaces V — V'V, which can be checked by fixing some Q-bases and computing
a determinant). Then we see that (-, -) being non-degenerate implies that

v @ w) = (2mi) "™ (h(—1)v,w)

is non-degenerate because h(—i): V — V is an isomorphism of vector spaces (because h(—i)* = idy).

Remark 1.19. The symmetry condition on (-, -) implies a symmetry or alternating condition on . In-
deed, we compute

p(v@w) = (2mi) ™ (h(—i)v,w)
= (2mi) """ (w, h(—i)v)
= @(h(i)w ® h(—i)v)
= h@(,m) (z)go(w ® h(—l)v)
=lp(we (-1)"w)
= (=1)"p(w ).

Thus, ¢ is symmetric when m is even, and ¢ is alternating when m is odd.
Let’s give some constructions of polarizable Hodge structures.
Example 1.20. It will turn out that H5 (A, Q) of any abelian variety A (over C) is polarizable, explaining

the importance of this notion for our application. Because we are reviewing abelian varieties in chap-
ter 2, we will not say more here.

13
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Example 1.21. If V is polarizable and pure of weight m, then any Hodge substructure W C V is still
polarizable (and pure of weight m). Indeed, one can simply restrict the polarization to W, and all the
checks go through. For example, positive-definiteness of (-,-) means (v,v) > 0 for all nonzerov € V,
so the same will be true upon restricting to V.

Example 1.22. If V and W are polarizable and pure of weight m, then V & W is also polarizable. Indeed,
letting ¢ and ¢ be polarizations on V' and W respectively, we see that (p @ ) defined by

(0 @ ¥)((v,w), (v, w)) = p(v,0") + Y(w, w')

succeeds at being a polarization: certainly it is a morphism of Hodge structures to Q(—m — n), and one
can check that the corresponding bilinear form on V@ W simply splits into a sum of the forms on V and
W and is therefore symmetric and positive-definite.

Example 1.23. If V and W are polarizable and pure of weights m and n respectively, then V @ W is also
polarizable. Indeed, as in Example 1.22, let ¢ and 1) be polarizationson V and W respectively, and then
we find that (p ® ¢) can be defined on pure tensors by

(p® ’l/))(’l) w,v' ® w/) = 90(7]7 'U/)"/)(wv wl)'

One checks as before that this gives a polarization on V' ® W: we certainly have a morphism of Hodge
structures, and the corresponding bilinear form is the product of the bilinear forms on V and W and is
therefore symmetric and positive-definite.

Example 1.24. If V is polarizable and pure of weight m with polarization ¢, and W C V is a Hodge
substructure (which is polarizable by Example 1.21), then we claim W+ (taken with respect to (-,-)) is
also a Hodge substructure and hence polarizable by Example 1.21. Well, forany w’ € Wy and z € S(R),
we must check that h(z)w’ € Wi For this, we note that any w € W has

(w, h(2)w) = (2m8) o (h(i)w ® h(=)w)
— ho(m)(1/2)(2mi) "o (h(i/2)w ® w)
= ho(em)(L/2){h(i/2)w, w')
=0,

where the last equality holds because W C V' is a Hodge substructure.

Note that one does not expect any Hodge substructure to have a complement, so Example 1.24 is a very
important property of polarizations.

1.1.3 The Albert Classification

The presence of a polarization places strong restrictions on the endomorphisms of a Hodge structure. To
explain how this works, we begin by reducing to the irreducible case: given a polarizable Hodge structure
V € HSg, we begin by noting that V' can be decomposed into irreducible Hodge substructures

N
V= @ V;Gqui7
=1

14
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where V; is an irreducible Hodge structure (i.e., an irreducible representation of S) and m; > 0 is some
nonnegative integer. Then standard results on endomorphisms of representations tell us that

N
EHdHS (V) - @ ]\4rnZ (EHdHS (‘/;))a

i=1

and Schur’s lemma implies that Endgg(V;) is a division algebra. The point of the above discussion is that we
may reduce our discussion of endomorphisms to irreducible Hodge structures. We remark that polarizability
of V implies that irreducible Hodge substructures continue to be polarizable by Example 1.21.

We are thus interested in classifying what algebras may appear as Endys (V) forirreducible Hodge struc-
tures V € HSg. To this end, we note that Endyg (V') comes with some extra structure.

Definition 1.25 (Rosati involution). Let ¢ be a polarization on a Hodge structure V' € HSqg. The Rosati
involution is the function (-)": Endg(V) — Endg(V) defined by
p(dv @ w) = (v @ d'w)

foralld € Endyg(V)andv,w € V.

Remark 1.26. In light of Remark 1.18, we see that d' is simply the adjoint of d: V' — V associated to
¢ viewed as a non-degenerate bilinear pairing. For example, we immediately see that (-) induces a
well-defined linear operator Endg (V) — Endg(V).

Here are the important properties of the Rosati involution.
Lemma1.27. Fixa Hodge structure V' € HSq pure of weight m with polarization ¢ and associated Rosati
involution (-).

(a) If d € Endys(V), then d' € Endys(V).

(b) Anti-involution: for any d, e € Endg(V), we have d'f = d and (de)" = efdf.

(c) Positive: for any nonzero d € Endg(V), we have tr dd' > 0.

Proof. We show the claims in sequence.

(a) This follows because ¢ is a morphism of Hodge structures. Formally, we would like to check that d'
commutes with the action of S. Let h: S — GL(V)g be the representation corresponding to the Hodge
structure. Well, forany g € S(C) and v,w € V, we compute

o(v @ d'h(g)w) = p(dv ® h(g)w)

= ho(—m)(9)¢ (h(g_l)dv ® w)

= ho(-m)(9)¢ (dh(g™ v @ w)

= ho(—m)(9)¢ (h(g™ v @ d'w)
fw)

where = holds because d is a morphism of Hodge structures. The non-degeneracy of ¢ given in Re-
mark 1.18 now implies that d'h(g) = h(g)d', so we are done.

(b) This is a purely formal property of adjoints.

15
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(c) The point is to reduce this to the case where V is a matrix algebra over R and (-)' is the transpose.
Indeed, this positivity can be checked after a base-change to R. As such, we let (-, -) be the symmetric
positive-definite bilinear form assocated to ¢ defined by

(v, w) = (2mi)""p(h(i)v ® w)
for any v, w € Vg. We thus see that (-)T is also the adjoint operator with respect to (-, -): we know
(2md) ™ (h(i)dv, w) = (2m8) "™ (h(i)v, d w)

for any v,w € Vg, which is equivalent to always having (dv,w) = (v,d'w). Now, we may fix an or-
thornomal basis of Vi with respect to (-, -) so that Endg (V&) is identified with M,, (R¥™ V) and (-)T is
identified with the transpose. Then trddT is the sum of the squares of the matrix entries of d and is
therefore positive when d is nonzero. |

We are now ready to state the Albert classification, which classifies division algebras over Q equipped with
a positive anti-involution.

Theorem 1.28 (Albert classification). Let D be a division algebra over Q equipped with a Rosati invo-
lution (-)T: D — D. Further, let F be the center of D, and let F' be the subfield fixed by (-)T. Then D
admits exactly one of the following types.

« Type l: D is a totally real number field so that D = F = F'f, and ()t is the identity.

« Type ll: D is a totally indefinite quaternion division algebra over F' where F' = F'f, and (-)' corre-
sponds to the transpose on D ®g R = M>(R).

« Type lll: D is a totally definite quaternion division algebra over F where FF = F'f, and (-)! corre-
sponds to the canonical involution on D ®g R = H (where H is the quaternions).

« Type IV: D is a division algebra over F', where F is a totally imaginary quadratic extension of F'f,
and ()" is the complex conjugation automorphism of F. In other words, F is a CM field, and FT is
the maximal totally real subfield.

Proof. This is a rather lengthy computaion. We refer to [Mum74, Section 21, Application I]. |

1.2 Monodromy Groups
In this section, we define the Mumford—Tate group and the Hodge group.

1.2.1 The Mumford-Tate Group

We are now ready to define the Mumford—Tate group. Intuitively, it is the monodromy group of the associ-
ated representation of a Hodge structure.

Definition 1.29 (Mumford—Tate group). For some V' € HSg, the Mumford-Tate group MT (V') is the
smallest algebraic Q-group containing the image of the corresponding representation h: S — GL(V)g.

Remark 1.30. Because S is connected, we see that & is also connected. Namely, MT(V)° € MT(V) will
be an algebraic Q-group containing the image of h if MT(V') does too, so equality is forced.

16
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Example 1.31. Suppose that V' € HSg is pure of weight m.
o If m = 0, then we claim that MT(V) C SL(V). It is enough to check that h outputs into SL(V).

 If m # 0, then we claim that MT(V') contains G,,, g. It is enough to check that MT (V)¢ contains
G, c. Well, forany z € C h(z, Z) acts on the component V79 C Vg by 27P279 = 2=, so MT(V)¢
must contain the scalar 2= for all z € C. The conclusion follows.

Because Hodge structures are defined after passing to C, it will be helpful to have a definition of MT(V) as
a monodromy group corresponding to a morphism over C.

Lemma 1.32. Fix V' € HSg, and let h: S — GL(V)r be the corresponding representation. Then MT(V)
is the smallest algebraic Q-subgroup of GL(V') such that MT(V')¢ contains the image of h¢ o .

Proof. Let M’ be the smallest algebraic Q-subgroup of GL(V) containing k¢ o u. We want to show that
M = M.
» To show M’ C MT(V), we must show that MT (V)¢ contains the image of i¢c o u. Well, MT(V)g
contains the image of i, so MT(V)¢ contains the image of h¢, which contains the image of h¢ o p.

» Showing MT(V) C M'isallittle harder. We must show that M’ contains theimage of h: S — GL(V)g.
It is enough to check that M’ contains the image of h¢ because then we can descend everything to R,
and because C is algebraically closed, we see that C-points are certainly dense enough so that it is
enough to chek that M’(C) contains the image h(S(C)).

The point is that M’ is defined over Q, so M(. is stable under the action of complex conjugation, which
we denote by ¢. Similarly, h being defined over R guarantees that it commutes with complex conjuga-
tion. In particular, we already know that M’ contains the points of the form A(z, 1) for (z,1) € S(C).
Thus, we see that M’ also contains the points

t(h(z,1)) = h((z,1)) = h(1,2)

because everything is defined over R. (This last equality follows by tracking through the action of . on
S(C).) We conclude that M’ contains h(z,w) for any (z,w) € S(C), so we are done. [ |

Roughly speaking, the point of the group MT (V) is that MT(V) is an algebraic Q-group remembering ev-
erything one wants to know about the Hodge structure. One way to rigorize this is as follows.

Proposition 1.33. Fix V' € HSqg. Suppose T € HSq can be written as
N
T=E Ve vY)em),
g=il

where m;,n; > 0are nonnegative integers. Then W C T'is a Hodge substructure if and only if the action
of MT(V) on T stabilizes W.

Proof. ForeachW e HSg, we let hyy denote the corresponding representation. In the backwards direction,
we note that MT(V) stabilizing W implies that h(s) stabilizes Wg for any s. We can thus view W C T
as a subrepresentation of S, so taking eigenspaces reveals that W can be given the structure of a Hodge
substructure of T'.

The converse will have to use the construction of T'. Indeed, suppose that W C T'isa Hodge substructure,
and let M C GL(V) be the smallest algebraic Q-group stabilizing W C T. We would like to show that
MT(V) C M. By definition of MT(V), it is enough to show that h factors through Mg, meaning we must
show that h(s) stabilizes W for each s € S. Well, h(s) will act by characters on the eigenspaces W& C W,
so h(s) does indeed stabilize W. [ |
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Corollary 1.34. Fix V € HSg. Suppose T' € HSg can be written as
N

T= Ve e vY)em),
=1

where m;,n; > 0are nonnegative integers. Thent € T'isaHodge class ifand only if it is fixed by MT (V).

Proof. We apply Proposition 1.33 to Q(0) © 7. Then we note that spang{(1,#)} € Q(0) ® T is a Hodge
substructure if and only if it is preserved by MT(V'). We now tie each of these to the statement.

» On one hand, we see that being a one-dimensional Hodge substructure implies that (1,¢) must have
bidegree (p,p) for some p € Z, but we have to live in (0,0) because our 1 lives in Q(0). Thus, this is
equivalent to being a Hodge class.

» Onthe other hand, being preserved by MT (V') implies that MT (V') acts by scalars on (1, ¢), but MT(V)
acts trivially on Q(0), so all the relevant scalars must be 1. Thus, this is equivalent to being fixed by
MT(V). .

We thus see that understanding the Mumford—Tate group is important from the perspective of the Hodge
conjecture (Conjecture 1.15). It will be helpful to note that this characterizes MT (V') in some cases.

Proposition 1.35. Fix a field K of characteristic 0. Let H C GL,, x be a reductive subgroup. Suppose
H' is the algebraic Q-subgroup of GL,, x defined by fixing all H-invariants occuring in any tensor rep-
resentation

N
T= Ve e vY)em),
=1

where m;,n; > 0 are nonnegative integers. Then H = H'.

Proof. Note H C H'is automatic, so the main content comes from proving the other inclusion. Proving this
would step into the (rather deep) theory of algebraic groups, which we will avoid. Instead, we will mention
that the key input is Chevalley's theorem, which asserts that any subgroup H of G is the stabilizer of some
line in some representation of G. We refer to [Del18, Proposition 3.1]; see also [Mil17, Theorem 4.27]. A

Corollary 1.36. Fix V' € HSg such that MT(V') is reductive. Then MT(V) is exactly the algebraic Q-
subgroup of GL(V) fixing all Hodge classes.

Proof. Corollary 1.34 explains that the Hodge classes are exactly the vectors fixed by MT(V'), so this follows
from Proposition 1.35. |

Remark 1.37. Corollary 1.36 is true without a reductivity assumption (see [Dell8, Proposition 3.4]),
but we will not need this in our applications. (On the other hand, one does not expect Proposition 1.35
to be true without any assumptions on H.) Namely, we will be interested in abelian varieties, whose
Hodge structures are polarizable by Example 1.20, and we will shortly see that this implies that MT (V)
is reductive in Lemma 1.44.
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1.2.2 The Hodge Group
In computational applications, it will be frequently be easier to compute a smaller monodromy group related

to MT(V).

Definition 1.38 (Hodge group). Fix V' € HSq of pure weight. Then the Hodge group Hg(V') is the small-
est algebraic Q-subgroup GL(V') containing the image of h|y, where U C S is defined as the kernel of
the norm character 2z: S — G, r.

Remark 1.39. Even though z and Z are only defined as characters S¢ — G,,, ¢, the norm character 2z is
defined as a character S — G, r because it is fixed by complex conjugation. For example, we see that

UR)={z€C:|z| =1}

Thus, we see that U stands for “unit circle.” While we're here, we remark that U(C) C S(C) is identified
with the subset {(z,1/z) : z € C*}.

Remark 1.40. The same argument as in Remark 1.30 shows that the connectivity of U implies the con-
nectivity of Hg(V).

Intuitively, Hg(V') removes the scalars that might live in MT(V') by Example 1.31. These scalars are an ob-
struction to MT(V) being a semisimple group, and we will see in Proposition 2.67 that Hg(V") will thus
frequently succeed at being semisimple. Let's rigorize this discusison.

Lemma1.41. Fix V € HSq pure of weight m, and let h: S — GL(V)g be the corresponding representa-
tion.
(@) We have Hg(V) C SL(V).
(b) Thus,
MT(V) = Hg(V) !fm =0,
GmoHg(V) ifm#0,

where the almost direct product in the second case is given by embedding G,,, o — GL(V) via
scalars.

Proof. We show the claims in sequence.

(a) It is enough to check that SL(V') contains the image of Aly. In other words, we want to check that
det h(z) = 1forall z € U(R). By extending scalars, it is enough to compute the determinant as an
operator on V. For this, we note that /(z) acts on the component V77 C V¢ by the scalar z7Pz7¢, so
the determinant of h(z) acting on V¢ & V2P is

(prgfq)dimvp’q . (quzfp)diqu’p — (Zz)f(pﬂz) dim VP4

because dim V74 = dim V7. This simplifies to (zz) 2™ dm(V"*®V*") hacause V is pure of weight m,
so the result follows by summing over all pairs (p, q).

(b) Before doinganything serious, we remark that G,, o Hg(V) isinfact an almost direct product. Namely,
we should check that the intersection G,,, oNHg(V) is finite (even over C). Well, by (a), Hg(V) C SL(V).
Thus, it is enough to notice that G,,, o N SL(V) is finite because V is finite-dimensional over C: over C,

21f m is even, this argument does not work verbatim for the component (m/2,m/2). Instead, one can compute the determinant of

h(z) acting on V™/2:m/2 directly as (zE)’%m dim v/ /2
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the intersection consisits of scalar matrices A idy such that A4™V = 1, so the intersefction is the finite
algebraic group ptgim v -

We now proceed with the argument. Because U C S, we of course have Hg(V) C MT(V), and if m # 0,
then Example 1.31 implies that G,,,,g € MT(V) so that G,, o Hg(V) € MT(V). Itis therefore enough
to check the given equalities after base-changing to R. Namely, using Lemma 1.32, we should check
that Hg(V)(C) contains the image of h¢c o p whenm = 0, and C* Hg(V')(C) contains the image of hcop
when m # 0. Well, for any z € C*, we may write z = re'® where r € RT and § € R. Then we compute

h(u(z)) = h(z,1)
=h (rew, 1)

—h (\/;619/27\/;6—10/2) h <\/;619/27 \/* -9/2> )
re’

Now, h (y/re?/2,\/re=1%/2) is a scalar as computed in Example 1.31, and (ﬁe“’”, ﬁ) lives in

U(C) = {(z,w) : zw = 1}. Thus, we see that h(11(z)) is certainly contained in C* Hg(V')(C), completing
the proof in the case m # 0. In the case where m = 0, the scalar h (/re?/2, \/re="/2) is actually the
identity, so we see that h(u(z)) € Hg(V)(C). |

It is worthwhile to note that there is also a tensor characterization of Hg(V).

Proposition 1.42. Fix V' € HSg of pure weight. Suppose T' € HSg is of pure weight n and can be written
as

N
T = @ (Ve™ ® (VV)&™),
i=1
where m;,n; > 0are nonnegative integers. Then W C T isa Hodge substructure if and only if the action
of Hg(V') on T stabilizes W.

Proof. Of course, if W C T is a Hodge substructure, then W is preserved by the action of MT(V'), so W will
be preserved by the action of Hg(V') C MT(V).

Conversely, if Hg(V) stabilizes W, then we would like to show that W C T is a Hodge substructure,
which by Proposition 1.33 is the same as showing that MT (V) stabilizes W. For this, we use Lemma 1.41,
which tells us that MT(V) C G,,, o Hg(V). Namely, because Hg(V') already stabilizes W, it is enough to note
that of course the scalars G,,, g stabilize the subspace W C T.. [ |

Corollary 1.43. Fix an irreducible Hodge structure V' € HSq of pure weight. Observe that the inclusion
Hg(V) C GL(V) makes V into a representation of Hg(V'). Then V is irreducible as a representation of
Hg(V).

Proof. By Proposition 1.42, a Hg(V')-submodule is a Hodge substructure, but there are no nonzero proper
Hodge substructures because V' is an irreducible Hodge structure. |

1.2.3 Bounding with Known Classes

Here, we use endomorphisms and the polarization to bound the size of MT(V') and Hg(V).

Lemma 1.44. Fix a polarizable Hodge structure V' € HSq of pure weight. Then MT(V') and Hg(V') are
reductive.
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Proof. By [Mill17, Corollary 19.18], it is enough to find faithful semisimple representations of MT (V') and
Hg(V). We claim that the inclusions MT(V) C GL(V) and Hg(V) C GL(V) provide this representation: cer-
tainly this representation is faithful, and it is faithful because any subrepresentation is a Hodge substructure
by Propositions 1.33 and 1.42. |

Lemma 1.45. Fix V € HSq. Let D := Endyg(V') be the endomorphism algebra of V. Then MT(V) is an
algebraic Q-subgroup of

GLp(V)={9€GL(V):god=dogforalld € D}.

Proof 1. Noting that GLp (V) is an algebraic Q-group (it is a subgroup of GL(V') cut out by the equations
given by commuting with a basis of D), it is enough to show that GL (V') contains the image of the repre-
sentation h: S — GL(V)g. Well, by definition D consists of morphisms commuting with the action of S, so
the image of h must commute with D. |

Proof 2. Motivated by Corollary 1.36, one expects to find Hodge classes corresponding to the condition
of commuting with D. Well, there is a canonical isomorphism V @ V¥ — Endg(V') of S-representations,
so by tracking through how representations of S correspond to Hodge structures, we see that f: V — V
preserves the Hodge structure if and only if it is fixed by S, which is equivalent to the corresponding element
f € V. ® VYV being fixed by S, which is equivalent to f being a Hodge class by Remark 1.13. This completes
the proof of the lemma upon comparing with Corollary 1.34. |

Remark 1.46. Of course, we also have Hg(V) C GLp (V) because Hg(V)) C MT(V).

Lemma 1.47.Fix V € HSg pure of weight m with polarization ¢. Then MT(V) is an algebraic Q-
subgroup of

GSp(y) ={g € GL(V) : p(gv ® gw) = A(g)p(v ® w) for fixed A(g) € Q}.

Proof 1. Once again, we note that GSp(yp) is an algebraic Q-group cut out by equations of the form

@(gv ® gw)e(v' @ w') = (v @ w)p(gv’ ® gu')

asv,w,v’,w’ € V varies over a basis. Thus, it is enough to check that GSp(y) contains the image of h: S —
GL(V)g. Well, for any z € S(R), we note that

@(h(z) @ h(z)w) = hg—m)(2)p(v @ w)
forany v, w € Vg because ¢ is a morphism of Hodge structures. |

Proof 2. Once again, Corollary 1.36 tells us to expect the polarization to produce a Hodge class correspond-
ing to the above equations cutting out MT(V).
This construction is slightly more involved. We begin by constructing two Hodge classes.

« Note p: V@V — Q(—m) is a morphism of Hodge structrures, so it is an S-invariant map and hence
given by an S-invariant element of VV @ VV(—m). Thus, ¢ € V¥V ® VV(—m) is a Hodge class by
Remark 1.13.

+ Because ¢ is non-degenerate, it induces an isomorphism V(m) — V. Now, Endg (V) is canonically
isomorphic to V' ® V'V, which we now see is isomorphic (via p) to V ® V(m). We let C € V ® V(m)
be the image of idy € Endg(V)®in V ® V(m), which we note is a Hodge class again by Remark 1.13.
(Here, C stands for “Casimir.”)
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In total, we see that we have produced a Hodge class C' ® . It remains to show that g € GL(V) fixing C ® ¢
implies that g € GSp(), which will complete the proof by Corollary 1.34.

Well, suppose g(C ® ¢) = C ® ¢. Note g(C ® ) = gC ® gy, which canonlyequal C ® ¢ € (V@ V) ®q
(VY @ VV)ifthereisascalar A € Q% such that gC = AC and gy = A~!y. This second condition amounts to
requiring

plgTve g w) = 1o e w)

forany v, w € V, which rearranges into g € GSp(yp). [ ]

Remark 1.48. The construction given in the above proof is described in [GGL24, Remark 8.3.4]. They
also show the converse claim that any g € GSp(y) fixes C' ® .

To seethis, one has to do an explicit computation with C'. For this, let {v1, ..., v, } be abasisof V, and
{v},...,v:} bethe dual basis of V' (m) taken with respect to p. Then C' = >, v; ® v}. Similarly, we see
that {gv1, ..., gv,} is a basis of V with a dual basis {(gv1)*, ..., (gv,)*} sothat C = Y"1 (gv;) @ (gv;)*.
Now, on one hand, if g has multiplier \, then go = A~!p. On the other hand, o(gui, gvj) = Ali=j, SO
(gvi)* = A~ 1gv}, which allows us to compute gC = \C. In total, g(C ® ¢) = C ® .

Remark1.49. One can check that GSp(y) does not depend on the choice of polarization. Roughly speak-
ing, the point is that the choice of a different polarization amounts to some choice of an element in D*
which we can track through.

In light of the above two lemmas, we pick up the following notation.

Notation 1.50. Fix V' € HSg pure of weight m with D := Endys(V') and polarization ¢. Then we define
GSpp () = GLp(V) N GSp(y).

By Lemmas 1.45 and 1.47, we see that MT(V') C GSpp ().

Remark 1.51. In “most cases,” we expect that generic Hodge structures V should have the equality

MT(V) = GLp(V), and if V admits a polarization ¢, then we expect the equality MT (V') = GSpp(p).
To rigorize this intuition, one must discuss Shimura varieties, which we will avoid doing for now.

We can also apply Lemmas 1.45 and 1.47 to bound Hg(V).
Notation 1.52. Fix V' € HSq pure of weight m with D := Endyg(V') and polarization . Then we define

Sp(p) = {g € GL(V) : (gv ® gw) = (v @ w)},

and
Spp () = GLp(V) N Sp(y).

Remark 1.53. Let's explain why Hg(V) C Spp(¢). By Lemma 1.45, we see that Hg(V) € MT(V) C
GLp(V), so it remains to check that Hg(V) C Sp(y). Proceeding as in Lemma 1.47, it is enough to
check that the image of h|y lives in Sp(p)g, for which we note that any z € U(R) has

p(h(2)v ® h(z)w) = hg(-m)(2)p(v @ w),

but Ag(_m)(2) = |2| ™ idg(_m) is the identity because » € U(R).

Thus far, our tools have been upper-bounding MT(V') and Hg(V'). Here is a tool which sometimes provides
a lower bound.
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Lemma 1.54. Fix V' € HSg of pure weight, and let D := Endyg(V') be the endomorphism algebra of V.
Then
D = Endg(V)MTV) = Endg(V)He(V),

Proof. Asdiscussed inthe second proof of Lemma 1.45, the Hodge calsses of Endg (V) = V@V are exactly
the endomorphisms of the Hodge structure, so the first equality follows from Corollary 1.34.

The second equality is purely formal: note that the scalar subgroup G,,, o € GL(V) acts triviallyon V ®
VY = Endg(V). Thus, we use Lemma 1.41 to compute

End@(V)Hg(V) = EndQ(V)Gm,@ Hg(V)
— EndQ(V)Gm’@ MT(V)
= EndQ(V)MT(V),

as required. |

Remark 1.55. Tounderstand Lemma 1.54 as providing a lower bound, note that if MT(V) is “too small,”
then there will be many invariant elements in Endg (V)MT(Y), perhaps exceeding D. On the other hand,
the upper bound MT(V)) € GLp (V) corresponds to the inequality D C Endg(V)MT(V),

1.2.4 Sums

For later use in computations, it will be helpful to have a few remarks on computing the Mumford-Tate and
Hodge groups of a sum. Here the Hodge group really shines: given two Hodge structures V1, V5, € MT(V)
pure of nonzero weight, Lemma 1.41 tells us that MT(V;) and MT (V) and MT(V; @ V3) are allequal to some
smaller group times scalars. It will turn out to be reasonable to hope that

Hg(V) ® Vi) = Hg(Vi) x Hg(Va),

but then the introduction of scalars makes the hope MT(V; @ V2) < MT(V;) x MT(V2) unreasonable!
With this in mind, let’s begin to study Hodge groups of sums of Hodge structures.

Lemma 1.56. Fix Hodge structures Vi, ..., V4 € Hgg pure of the same weight.

(@) The subgroup Hg(Vi @ --- & Vi) C GL(V; @ --- @ V}) is contained in Hg(V}) x --- x Hg(V}) C
GL(V; @ - & V).

(b) Foreach i, the projection map pr;: Hg(Vy @ --- @ Vi) — Hg(V;) is surjective.

Proof. For each i, let h; denote the representations of S corresponding to the Hodge structures V;, and let
h = (h1,...,h;) be the representation S — GL(V) where V := V; & --- & Vi. We show the claims in
sequence.

(@) We must show that Hg(V4) x - - - x Hg(V}) contains the image of h|y. Well, forany z € U(R) and index
i, we see that h;(z) € Hg(V;), so

h(z) = diag(h1(z), . .., hi(2))
livesin Hg(V1) x --- x Hg(V%), as required.

(b) Fix anindex . It is enough to show that smallest algebraic Q-group containing the image of pr; also
contains the image of h;|y. Well, by definition of k, we see that h; is equal to the composite

S GL(V;) x - - x GL(V;,) 5 GL(V}),

from which the claim follows. [ |
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Remark 1.57. All the claims in Lemma 1.56 are true if Hg is replaced by MT everywhere. One simply
has to replace U with S in the proof.

Lemma 1.56 makes Hg(V; @ V5) z Hg(V1) x Hg(V3) appear to be a reasonable expectation. However, we
note that we cannot in general expect this to be true: roughly speaking, there may be Hodge cycleson V; & V5
which are not seen on just V; or V5. Here is a degenerate example.

Example 1.58. Fix a Hodge structure V' € HSg of pure weight, and let n > 1 be a positive integer. Let-
ting h: S — GL(V)g be the corresponding representation, we get another Hodge structure h™: S —
GL (V®™). We claim that the diagonal embedding of Hg(V) into GL(V)™ C GL (V®") induces an iso-
morphism

Hg(V) — Hg (VO™) .

On one hand, we note that Hg (V®") lives inside the diagonal embedding of Hg(V): note Hg (V®") C
Hg(V)™ by Lemma 1.56, and Hg (V®") must live inside the diagonal embedding of GL(V') C GL (V®")
becuase all components of A": S — GL (V®"); are equal. On the other hand, the surjectivity of the
projections Hg (V®") — Hg(V) from Lemma 1.56 implies that Hg (V®") must equal the diagonal em-
bedding of Hg(V) (instead of merely being contained in it).

One can upgrade this example as follows.

Lemma 1.59. Fix Hodge structures Vi, ..., Vi € Hgg pure of the same weight, and let my,...,my > 1
be positive integers. Then the diagonal embeddings A;: GL(V;) — GL (Vi@””) induce anisomorphism

Hg(V1 ®D---P Vk) — Hg (VIGBml @ ooo @ Vk@mk) .

Proof. We proceed in steps. The proof is a direct generalization of the one given in Example 1.58. For
each i, let h;: S — GL(V;)r be the representation corresponding to the Hodge structure, and set i :=
(h1™, ... hy™).

1. We claim that Hg (V"™ @ - -- & V,2") lives in the image of (A1,...,A). Indeed, the image is some

algebraic Q-subgroup of GL (Vl@m1 CRRRN¢> Vk@m’”‘), so we would like to check that this algebraic Q-
subgroup contains the image of h|y. Well, for any z € U(R), we see that

h(z) = (A1(h1(2)), - .- Ag(hi(2)))
lives in the image of (Aq,..., Ag).

2. For each i, let H; be the projection of Hg (VlEBml DB Vk@m’“) onto one of the V; components as in
Lemma 1.56; the choice of V; component does not matter by the previous step. By Lemma 1.56, we
see that H; = Hg(V;). However, the previous step now requires

Hg (V™ & @ V7™ ) = Ay (Hy) x - x Ap(Hy),
so we are done. .

Remark 1.60. As usual, this statement continues to be true for MT replacing Hg. One can either see
this by applying Lemma 1.41 or by redoing the proof with S replacing U.

The point of the lemma is that we can reduce our computation of Hodge groups to Hodge structures which
are the sum of pairwise non-isomoprhicirreducible Hodge strucutures. Let's make a few remarks about this
situation for completeness. Let V4, ..., V} be pairwise non-isomorphic irreducuble Hodge structures which
are pure of the same weight, and set V := V; @ --- @ Vj.. Here are some remarks on Hg(V} x --- x V%),
summarizing everything we have done so far.
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» We know that Hg(V') C Hg(V;) x --- x Hg(V%).
« We know that the projections of Hg(V') onto each factor Hg(V;) are surjective.

For each i, we may view V; as a representation of Hg(V;) via the inclusion Hg(V;) € GL(V;). Then
Corollary 1.43 tells us that V; is an irreducible representation of Hg(V;).

» One can also apply Lemma 1.54 to the full space V to see that

Enng(V) (V) = EIldHS (V)

k
[ Endus(vi)
i=1

k
= H Enng(Vi) (V;)

i=1
The following results take the above situation and provides some criteria to have
Hg(V) = Hg(V1) x - x Hg(Vi).

Before stating the lemma, we remark that all groups in sight are connected by Remark 1.40, and we already
have one inclusion by Lemma 1.56, so it suffices to pass to an algebraic closure and work with Lie algebras
instead of the Lie groups. The following lemma is essentially due to Ribet [Rib76, pp. 790-791].

Lemma 1.61 (Ribet). Work over an algebraically closed field of characteristic 0. Let V1, ..., V} be finite-
dimensional vector spaces, and let g be a Lie subalgebra of gl(V;) x --- x gl(V}). For each index i, let
pr;: (gl(V1) x -+ x gl(V%)) — gl(V;) be the ith projection, and set g; := pr,(g). Suppose the following.

(i) Each g; is nonzero and simple.
(i) Foreach pair (7, j) of distinct indices, the projection map (pr;, pr;): g — gi X g; is surjective.

Theng=g; X - - X gg.

Proof. We proceed by induction on k. If & € {0, 1}, then there is nothing to say. For the induction, we now
assume that & > 2 and proceed in steps.

1. For our set-up, we let J be the kernel of pr;,: g — g,. By definition, J C g1 x -+ x g, takes the form
I & 0forsome subspace I C g; X --- X gi_1. Formally, one may let I be the set of vectors v such that
(v,0) € J and argue for the equality J = I & 0 because all vectors in J take the form (v, 0).

The main content of the proof goes into showing that I is actually an ideal. To set ourselves up to prove
this claim, letn C g; x - - - X gi_1 denote its normalizer. We would like to show thatn = g; x - - - x gp_1,
for which we use the inductive hypothesis.

2. Foreach pair of distinctindices i, j < k, we claim that the projection (pr;, pr;): n — g; X g; is surjective.
Well, choose X; € g; and X; € g;, and we need to find an element in n with X; and X at the correct
coordinates.

To begin, we note that (ii) yields some (X1, ..., X}) € gsuch that with the correct X; € g; and X € g;
coordinates. We would like to show that X = (X7,..., X;_1) lives in n, which will complete this step.
Well, selectany Y := (Y3,...,Yx_1) inI,and we see (Y,0) € J, so

[(Xa Xk)7 (Y, 0)] = ([X, Y},O)

lives in J too (recall J is an ideal), so we conclude [X,Y] € I. We conclude that X normalizes I, so
X en.
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3. We take a moment to complete the proof that I C g1 x --- X gr_1 is an ideal. It is enough to check
that the normalizernof I'ing; x --- X gx_1 equalsall of g; x - -+ X gx_1. For this, we use the inductive
hypothesis. The previous step shows that g; = pr;(n) for each ¢, and we know by (i) that each g; is
already nonzero and simple. Lastly, the previous step actually checks condition (ii) for the inductive
hypothesis, completing the proof thatn = g; X -+ X ggx_1.

4. WeclaimI=g; x--- X gr_1. Because I C gy X --- X gr_1 is an ideal of a sum of simple algebras, we

know that
I=@Do

€S

for some subset S C {1,...,k — 1} of indices. Thus, to achieve the equality I < g1 X co X g1, it
is enough to check that each projection pr,: I — gr_1 is surjective. Unravelling the definition of I, it
is enough to check that each X; € g; has some (X3,...,Xx) € g with the correct X; coordinate and
X = 0. This last claim follows from hypothesis (ii) of g!

5. We now finish the proof of the lemma. Certainly g C g1 x- - - X g, soitisenough to compute dimensions
to prove the equality. By the short exact sequence

0—=J—=g—9g,—0,

it is enough to show that dim J = dimg; + - -+ + dim gx_1. However, this follows from the previous
step because dim J = dim I. |

In practice, it is somewhat difficult to check (ii) of Lemma 1.61. Here is an automation.

Lemma1.62 (Moonen-Zarhin). Work over an algebraically closed field of characteristic0. Let Vi,..., Vi
be finite-dimensional vector spaces, and let g be a Lie subalgebra of gI(V;) x - - - x gl(V}). For each index,
letpr;: (gl(Vh) x---xgl(Vk)) — gl(V;) be the ith projection, and set g; := pr;(g). Suppose the following.

(i) Each g; is nonzero and simple.
(ii) Fix a simple Lie algebra [, and define I(l) := {i : g; = [}. If #I(l) > 1, we require the following to
hold.

+ Allautomorphisms of [are inner.

» One can choose isomorphisms | — g; for each i € I(I) such that the representations [ —
g: — gl(V;) are all isomorphic.

« The diagonalinclusion
H Endg, (V;) — End,4 ( @ Vi>
i€l (1) i€I(l)

is surjective.

Theng=g; X -+ X gg.

Proof. We will show that (ii) in the above lemma implies (ii) of Lemma 1.61, which will complete the proof.
We will proceed by contraposition in the following way. Fix a pair (¢, j) of distinct indices, and we are inter-
ested in the map (pr;,pr;): g — g x g;. Supposing that (pr;, pr;) fails to be surjective (which is a violation
of (ii) of Lemma 1.61), we will show that (ii) cannot be true. In particular, we will assume the first two points
of (ii) and show then that the third point of (ii) is false.

Roughly speaking, we are going to use the first two points of (ii) to find an § and then produce an en-
domorphism of €P, ¢, Vi which does not come from gluing together endomorphisms of the V;s. Having
stated the outline, we proceed with the proof in steps.
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1. We claim that the image b of the map (pr;, pr;): g — g; x g; is the graph of an isomorphism g; — g;.
For this, we use the hypothesis that (pr;, pr;) fails to be surjective. Well, we claim that the projections
h — g;and h — g, are isomorphisms, which implies that § is the graph of the composite isomorphism

gi < b—g;.

By symmetry, it is enough to merely check that h — g; is an isomorphism. On one hand, h — g, is
surjective because pr;: g — g, is surjective by construction of g;. On the other hand, the kernel of the
projection h — g; will be an ideal of i of the form 06 I where I C g; is some subspace. In fact, becasue
the projection h — g; is also surjective, we see that I C g; must be an ideal, so the simplicity of g;
grants two cases.

« If I =0, thenpr;: h — g; becomes injective and is thus an isomorphism, completing this step.

« If I = g;, then b fits into a short exact sequence
0—(0&gj) >h—g,—0,

so dim b = dim(g; @ g;), implying the inclusion h C g; @ g, is an equality. However, this cannot
be the case because we assumed that (pr;, pr;): g — g; — g; fails to be surjective!

2. We construct an isomorphism of g-representations V; — V. For this, we use the first two points of
(ii). Let's begin by collecting some data.

 The previous step informs us that g; = g;. In fact, because this isomorphism is witnessed by the
projections pr;: g — g; and pr;: g — g, we see that we are granted an isomorphism f: g; — g,
such that pr; = f o pr;.

« We now let [ be a simple Lie algebra isomorphic to both(!) g; and g;. The second point of (ii)
grants isomorphisms f;: [ — g; and f;: [ — g, of Lie algebras and an isomorphism d: V; — V; of
[-representations.

We now construct our isomorphism from d. Because d is only an isomorphism of [-representations,
we are only granted that (X1, ..., X}) € gsatisfies f(X;) = X; and hence

d((fif; " N(Xa)vi) = d (fi (f;F(X) vi)
= [ (F;7 1 F(X0)) d(wi)
= de(vi)
for all v; € V;. We would be done if we could remove the pesky automorphism fifjflf: g; — g;. This
is possible because all automorphisms of g; = [ are inner (!), so one may simply “change bases” to
remove the inner automorphism. Explicitly, find a € GL(V;) such that fifj_lf(X) = aXa! for all
X € g;, and then we define e := d o a. Then we find that any v; € V; has
e(Xv;) =d (aXZ-a_l . av)
=d((fif7 1)(Xi) - av)
= X;d(av)
= X e(v).

3. We complete the proof. The previous step provides a morphism e: V; — V; of g-representations. We

thus note that the composite
D vi-viSvo @V
ieI(l) ireI(r)

is an endomorphism which does not come from the diagonalinclusion of [ [, ;) Endg, (V;). This com-
pletes the proof by showing that the third point of (ii) fails to hold. |
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Remark 1.63. We should remark on some history. Lemma 1.61 is due to Ribet [Rib76, pp. 790-791],
but the given formulation is due to Moonen and Zarhin [MZ95, Lemma 2.14]. In the same lemma,
Moonen and Zarhin prove Lemma 1.62, and they seem to be the first to recognize the utility of this
lemma for computing Hodge groups. For example, Lombardo includes this result in his master’s thesis
[Lom13, Lemma 3.3.1] and includes a generalized version in another paper as [Lom16, Lemma 3.7],
where it is used to compute Hodge groups of certain products of abelian varieties.

Remark 1.64. Let's explain how Lemma 1.62 is typically applied, which is admittedly somewhat differ-
ent from the application used in this thesis. In the generic case, one expects (i), for example if Hg(V) =
Spp(p)° for D of Types |-Ill as in Remark 1.51. In this case, one can also check the first condition of
(i) by a direct computation, the second condition of (ii) has no content, and the third condition of (ii)
comes from Lemma 1.54. For more details, we refer to (for example) the applications given in [Lom13;
Lom16].

1.2.5 The Lefschetz Group

For motivational reasons, we mention the Lefschetz group L(V'), which contains Hg(V') but is more con-
trolled. Here is our definition.

Definition 1.65 (Lefschetz group). Fix a polarizable Hodge structure V' € HSq of pure weight. Then we
define
L(V) :==Spp(p),

where D := Endyg(V'), and ¢ is a polarization.
Thus, Remark 1.53 that Hg(V) C L(V).

Remark 1.66. Let's interpret L(V') geometrically. Roughly speaking, L(V) is a form of Hg(V") which only
keeps track of endomorphisms and the polarization instead of keeping track of all Hodge classes. As
such, we generically expect Hg(V') = L(V) to hold, but we do not expect it to hold always. (Technically,
there are generic cases when we do not expect this equality; for example, if V' is irreducible of Type Il
in ths sense of the Albert classificaiotn Theorem 1.28, then L(V') is not connected, so we cannot have
equality.) Furthermore, when Hg(V') = L(V), we expect to have strong control on the Hodge classes of
V; for example, the Hodge conjecture is known in many such cases [Mur84, Theorem 3.1].

Computationally, one reason why L(V') is more controlled is that it is much easier to compute. For example,
L behaves well in sums.

Lemma 1.67. Fix pairwise non-isomorphic irreducible polarizable Hodge structures Vi, ..., V} of the
same pure weight, and let my, ..., m; > 1 be integers. Then the diagonal embeddings A;: GL(V;) —
GL (V;™) induce an isomorphism

L(V4i) x -+ xL(Vy) > L (V™ & - @ V;2™).

Proof. The main idea is to compute some endomorphism algebras and polarizations. We proceed in steps.
SetV = V™ @ ... & VE™ for brevity.

1. We work with endomorphisms. We may view Hodge structures as S-representations, whereupon we
find that
EndHS (V) — EndHS(‘/l)mq Xmy N EndHS(V]{;)nlk Xm,k.

In particular, we see that any f commuting with Endyg(V') implies that f must preserve each V;
(because there is a separate algebra Endysg (Vi@m") for each 7). Further, f|V_a>m,, must come from the

bm;
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diagonal embedding Endps(V;) — Endps (Vi@m’") because Endpg(V;)™*™ may swap any of the m;
copies of V.

We conclude that f commutes with endomorphisms implies that

f=Afr, . Arfr),

where A;: End(V;) — End (ermi) is the diagonalembedding, and each f; commutes with Endps(V;).
Conversely, the computation of Endyg(V') above allows us to conclude that any f in the above form
commutes with Endyg (V).

2. We work with the polarization. Choose polarizations ¢1,..., ¢, on Vi,..., V, (respectively), and we
note that these polarizations glue into a polarization ¢ on V. With this choice of polarization, we see
that f = (A1 f1,...,Axfx) asin the previous step preserves ¢ if and only if each factor A; f; preserves
the polarization ¢, &=, which is equivalent to f; preserving the polarization ¢;. In total, we thus see

that f € L(V) ifandlonly fi € L(V;) for each 4, so we are done. [ |

Lemma 1.67 tells us that we can always reduce the computation of the Lefschetz group to irreducible com-
ponents. In this way, it now suffices to compute L(V') by working with V" according to the Albert classifi-
cation (Theorem 1.28). All these computations are recorded in [Mil99, Section 2]. Because we will only be
interested in Type IV in the sequel, we will only record the part of this computation we need for complete-
ness.

Lemma 1.68. Fix V' € HSq of pure weight with D := Endys (V) and polarization ¢. Suppose D = F'is a
CM field. Then )
L(V)c = GLjy.5 (C)=ia,

Proof. We proceed in steps. Let Ff C F be the maximal totally real subfield, and choose embeddings
DLy Peg: FT > R, whereeg := %[F : Q. Foreachi, wewilllet o; and 7; be complex conjugate embeddings
F — Crestricting to p;.

1. We begin by explaining the exponent ey = 1[F : Q]. Note V is a free F'T-module of rank [V : F], so V&
is a free module over

€o
Fler=]]F],
i=1
where FpT = R refers to the F' ® R module where F acts by p. The above decomposition of FF @ R
implies a decomposition
VR:‘G@"'@VE(M
where each V; of a vector space over F,L, all the same dimension.

We now understand the effect of endomorphisms and the polariaztion on our decomposition. Thus,
we see that f: Vg — Vg commutes with F* @ R if and only if f preserves each factor V; (due to the
decomposition of FT @ R) and commute with the action of F[L on each V;. Similarly, we see that the
polarization ¢ makes the V;s orthogonal: for each d € F'T, we see that any v; € V; and v; € V; has

pi(d)p(vi,v;) = @(dvy, v;)
90(7)2'78”]')
p(vs, dvy)
= pj(d)p(vi,vj),

so i # jimplies that p(v;,v;) = 0. Thus, we see that ¢ must restrict to non-degenerate skew-
symmetric bilinear forms on each V; individually. In total, f: Vg — Vi preserves ¢ if and only if f|y,
preserves |y, for each i. In total, we see that

L(V)r = Sprg, r(¢lvi) X -+ X Sppg, r(elv.,)-
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2. It remains to show that Sppg, r(¢|v;)c is isomorphic to GLjy.r|(C); here, note [V :F]=[V;: Fl]
For this, we abstract the situation somewhat: suppose that a vector space V over R has been equipped
with an action by C C Endg(V), and furthermore, ¢ is a skew-Hermitian form on V. Then we want to
show Sp¢(p)c = GLy ) (C).

The trick is that we can keep track of commuting with the action of C on V' by merely commuting with
the action of i € C. Thus, let J: V — V be this map, which satisfies J2 = —1. Now, the action of J¢
on V¢ must diagonalize into eigenspaces V; @ V_; with eigenvalues i and —i respectively; note that we
must have dim V; = dim V_; in order for the characateristic polynomial of J to have real coefficients.
The pointis that f € End(V¢) commutes with the action of C if and only if it commutes with the action
of J, which we can see is equivalent to f preserving the decomposition V; & V_,.

We now study the polarization ¢. Note that ¢ vanishes on Vi ; & Vi, forany v, v’ € V;, we see that

+ip(v,v') = p(Jv,v")
= o(v,—Jv)
= Fip(v,v'),
from which p(v,v’) = 0 follows. For example, this implies that any f € End(V¢) commuting with

the J-action will automatically preserve ¢ on V; x V.;. Additionally, we see that ¢ must restrict to a
non-degenerate bilinear formon V; x V_,.

We are now ready to claim that restriction defines an isomorphism Sp¢(¢)c — GL¢(V;). This restric-
tion does actually output to GL¢(V;) because g € Spc(¢)c must preserve the decomposition V; & V_;.
To see the injectivity, we note that preserving ¢ requires

o(v, gw) = ¢ (97 v, w)

forallv € V; and w € V_;; thus, the non-degeneracy of ¢ implies that g € Spe(¢)c is uniquely de-
termined by its action on V;. Conversely, for the surjectivity, we see that we can take any element in
GL(V;) and use the previous sentence to extend it uniquely to an element of Sp¢(¢)c. ]

1.3 Absolute Hodge Classes

We now discuss the main application of Hodge structures: cohomology. This will allow us to discuss abso-
lute Hodge classes. Our exposition an abbreviated form [Del18].

1.3.1 Some Cohomology Theories

In this subsection, we will give a lighting introduction to the cohomology theories that we will use. We begin
with sheaf cohomology.

Definition 1.69 (sheaf cohomology). Fix a topological space X. Then the category Ab(X) of abelian
sheaves on X has enough injectives. Given a sheaf F on X, we then may define the sheaf cohomology
as the abelian groups

HY(X,F) =RT(X,F),

where': Ab(X) — Ab is the global-sections functor. Explicitly, one can compute these cohomology
groups by taking the cohomology of an acyclic resolution of F.

This allows us a quick definition of Betti cohomology.

Definition 1.70 (Betti cohomology). Fix a topological space X and a ring R. Then we define the Betti
cohomology of X with coefficients in R as H*(X, R), where R denotes the constant sheaf R.

It will be helpful to a more geometric description of Hy,.
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Definition 1.71 (singular homology, singular cohomology). Fix a topological space X and aring R. For
eachn > 0, we define the n-simplex A™ C R"*! as the set of points (¢, .. .,%,) C [0, 1]""! summing to
1. Then we define the complex S, (X, R) as having entries which are the free R-module with basis given
by the maps A, — X and boundary morphism given by 9: S,,(X, R) — S,—1(X, R) given by

o~

foro: A, — X, where[0,...,7,...,n] denotes the (n — 1)-simplex with vertices {0, ...,7,...,n}. Then
we define the singular homology HE (X, R) as the homology of this complex. We now define singular
cohomology as the cohomology of the dual cocomplex S*(X, R).

Remark 1.72. The universal coefficient theorem shows that singular homology and cohomology are
dualif Ris a principal ideal domain, such as Z or a field.

Our notation suggests that singular cohomology should be Betti cohomology, so we check this.
Theorem 1.73. Fix a topological manifold X. For any field K, there is a canonical isomorphism

H'(S*(X,K)) —» H (X, K).

Proof. The idea is to replace S*(X, K) with a complex of sheaves §*(X, K), and then one finds that this
complex is an acyclic resolution of K. The requirement that X be a topological manifold helps because it
allows us to reduce local checks on X to the case of a unit ball. |

We now add smoothness to our manifolds, which allows us to define de Rham cohomology.

Definition 1.74 (de Rham cohomology). Fix a smooth manifold X of dimension n. For eachi > 0, we let
QY% __ bethe sheaf of smooth differential n-forms on X. Then we define de Rham cohomology Hij (X, R)
to be the cohomology of the complex

0 d 2 d d
0-Qx —Qx_—- = Q% —0,

where d denotes the de Rham differential.

We once again have a comparison isomorphism.

Theorem 1.75. Fix a smooth manifold X. For each i, there is a functorial perfect paring HE (X, R) x
Hr (X,R) — R given by
(o,w) = / w

We next upgrade to complex Kahler manifolds. For example, one can upgrade our de Rham cohomology
to use holomorphic differential forms instead of smooth differential forms, and the cohomology does not
change. The key benefit of the complex manifold situation is that the de Rham cohomology gains a Hodge
structure.

for each smooth mapo: A? — X.
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Theorem 1.76. Fix a compact complex Kahler manifold X. For each n > 0, there is a decomposition

ir(X.C)= @ HP(X),

pt+g=n

where HPY(X) := HP (X, Q%).

For our last setting, let X be a smooth projective variety over a field K. Here, there are multiple ways to
form Betti cohomology.

Notation 1.77. Fix a smooth projective variety over a field K. For any embedding o: K — C, we define
Betti cohomology relative to o as

Hi (X, R) = Hp(X,(C), R)

forany ring R. Frequently, we will have fixed once and for all an embedding of K into C, so we may
abbreviate H’ (X, R) to just H5 (X, R).

Similarly, one is now able to define de Rham cohomology for X, though we do make a moment to remark
that there is a theory of algebraic de Rham cohomology that is able to work in greater generality.
Working with varieties gives access to the last cohomology theory we will need.

Definition 1.78. Fix a smooth projective variety X over a field K. For some étale sheaf 7, we are able
to define the étale cohomology H?(X, F) in the same way as sheaf cohoomology. In particular, for any
prime ¢ which is nonzero in K, we define the ¢-adic cohomology by

HE (Xpp, Q) = (m Hey (X5, 2/£°2)) €2 Q

Importantly, we note that étale cohomology has the natural action by Gal(K /K). As usual, there is a com-
parison isomorphism.

Theorem 1.79. Fix a smooth projective variety X over C. Then there is a natural isomorphism
Hi (X, Qe) — Hi (X7, Qo).
We may find it convenient to glue our cohomology theories together.

Notation 1.80. Fix a smooth projective variety X over a field K with an embedding o: K < C. Then
we define

Hi(X) = Hg(X,R) x (1& H. (X%, Z/nZ) @z Q> :

We note that there are natural projections ., onto H) (X, R) and 7, onto H, (X7, Q).

Remark 1.81. One can realize this as a restricted direct product
ar(X,R) x | [ (Hé (X7, Qo), Hi (X7, Zo))
¢

which provides some motivation for the A in the notation.

Thus far, we have defined many cohomology theories, so it is worthwhile to explain why one may expect
them to somehow be related to one another. We have already mentioned a few comparison isomorphisms,
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but it also turns out that they all have other properties which tie them together. For example, they all have a
cup product, which turn the collection of cohomology groups H?(X) into a graded commutative ring H*(X).
There is also some functoriality: foramap f: X — Y of spaces, there is always an induced pullback map

fH(Y) = H*(X),

which turns out to be a homomorphism of graded algebras.
As a more complicated example, there is a Kiinneth formula: for any of the above cohomology theories
H defined on a space X and Y/, there is an isomorphism

H'(X xY)= € H(X)aH/(Y).

i+j=n

Of course, it is a major theorem among each of our cohomology theories that the Kiinneth formula is satis-
fied, which we will not prove.
There is also a notion of Poincaré duality. To explain Poincaré duality, we need some twists.

Definition 1.82 (Tate twist). We define our Tate twists as follows.
« If X is a topological manifold, then the Tate twist Qg (1) is the Q-vector space 2miQ.

« If X is a smooth manifold, then the Tate twist Rqg (1) is simply R. It has a Hodge structure of pure
of weight —2 concentrated in bidegree (—1, —1).

« If X isasmooth projective variety over afield K, then the Tate twist Q,(1) forany prime ¢ (nonzero
in K) is the Galois representation (lim ppe ) ®7 Q.

Notation 1.83. For any cohomology theory H defined on a space X, we may write
H'(X)(n) = H'(X) ® T*",

where T denotes the Tate twist, and 7 > 0 and n € Z. If n < 0, then we take the dual.

Now, for any of these cohomology theories H over a field F' defined on a space X of equidimension d,
Poincaré duality provides a perfect pairing

H (X)®H*(X)(d) - F

for each index i. Once again, it is a major theorem among each of our cohomology theories above that
Poincaré duality is satisfied.

1.3.2 Weil Cohomology Theories

It will be worth our time to encode everything we need that the above cohomology theories have in com-
mon. In essence, we are asking for a formalism of a cohomology theory, which is known as a Weil cohomol-
ogy theory. Approximately speaking, a Weil cohomology theory is a cohomology theory with the minimum
amount of data to prove the Lefschetz trace formula without too much pain. Our exposition here follows
[SP, Tag 0FFG]. Throughout, we freely use facts about intersection theory and Chow groups because the
author is too ignorant to provide a suitable review of these notions; everything we need can be found in
[Ful98].

Throughout, we fix a base field K and a coefficient field F'. We require char F' = 0, but we do not require
K to be algebraically closed. These hypotheses will not be repeated!

Notation 1.84. Let P(K) denote the category of smooth projective varieties over K, with morphisms
given by regular maps.

Here is the data we will be working with.
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Definition 1.85 (Weil cohomology datum). A Weil cohomology datum consists of the following data.

« A one-dimensional F'-vector space F(1).

« A contravariant functor H® from P(K) to the category of Z-graded commutative F'-algebras. We
will write the product as a cup U.

« For X € P(K) of equidimension d, there is a trace map [ : H*/(X)(d) — F.

« For X € P(K), there is a cycle class map clx: CH (X) — H%(X)(i), which is required to be a
group homomorphism.

Frequently, we will call H® alone the Weil cohomology datum, leaving the other inputs implied.

In short, F(1) is the Tate twist, H® are the vector spaces one usually remembers with Weil cohomology
theories, [, keeps track of Poincaré duality, and clx relates cohomology to geometry.
In order to keep us thinking “cohomologically,” we use some special notation.

Notation 1.86. Fix a Weil cohomology datum H® over K with coefficients in F.

« Forany F-vector space V, we write V(n) :== V ® F(1)®". Here, negative exponents denote duals.

« If f: X — Y isaregular map, we let f*: H*(Y) — H*(X) denote the induced ring homomor-
phism.

Remark 1.87. In the sequel, we may note that f x (U 8) = f*a U f*8 without comment: indeed, this
follows because f* is aring homomorphism! Similarly, we may use the fact that (go f)* = f*og*, which
follows because the functor H® is contravariant.

Now, a Weil cohomology datum is going to be required to satisfy many axioms. Before going further, let’s
summarize them.

+ We need a Kiinneth formula to ensure that products of varieties go to products in graded algebras.

« We need Poincaré duality, for example to define pushfowards. This adds some coherence to the cycle
class maps.

+ To add some geometric input to the picture, we need some coherence of our cycle class maps.

« Lastly, we will need another axiom to ensure that, for example, H is only supported in nonnegative
indices.

Let's begin with the Kiinneth formula.

Definition 1.88 (Kiinneth formula). Fixa Weil cohomology datum H® over K with coefficientsin F. Then
H* satisfies the Kiinneth formula if and only if it satisfies the following forall X, Y € P(K).

(@) Kiinneth formula: the map
H*(X) ® H*(Y) » H*(X xY)
a®p — pri aUpr; 8

is an isomorphism of graded F'-algebras. We may write « X 3 := pr} o U pr3 3.

(b) Fubini's theorem: if X and Y have equidimension d and ¢, respectively, then

fo@BO= [ ],

forany a € H24(X)(d) and B € H2¢(Y)(e).

34



1.3. ABSOLUTE HODGE CLASSES SATO-TATE GROUPS OF GENERIC CURVES

Remark 1.89. It is worth recalling the grading on the tensor product of two graded vector spaces: if V
and W are Z-graded vector spaces, then (V' ® W) has a grading given by

VeW).= @ VieWw,.

i+j=n
In particular, we see that satisfying the Kiinneth formula implies that there is a canonical isomorphism

P v (X)@H(Y) - H (X xY).

i+j=n
It is worth noting that the Kiinneth formula has good functoriality properties.

Lemma 1.90. Fix a Weil cohomology datum H*® over K with coefficients in F satisfying the Kiinneth
formula. Given morphisms f: X — X’andg: Y — Y’ in P(K), we have

(fxg)=f®g".

Proof. Note that these are both automatically ringmaps H* (X’ xY”’) — H*(X xY'). By the Kiinneth formula,
it is enough to check this on elements of the form oo X 5 = prj o U prj 5, where o € H*(X) and 8 € H*(Y).
Well, we note

(f xg) pria= fra,

and similarly (f x g)* pr 8 = ¢* 8. Combining completes the proof. |
We now move on to Poincaré duality.

Definition 1.91 (Poincaré duality). Fix a Weil cohomology datum H® over K with coefficientsin F. Then
H* satisfies Poincaré duality if and only if it satisfies the following for all X € P(K) of equidimension d.

(a) Finite type: we have dimp HY(X) < oo foralli € Z.
(b) Poincaré duality: for each index ¢, the composite
Hi(X) x H¥1(X)(d) S B24(X)(d) 3 F

is a perfect pairing of vector spaces over F.

Remark 1.92. Notably, our definition allows cohomology to be supported in negative degrees! We will
remedy this later in Lemma 1.117 when we have a full definition of a Weil cohomology theory.

An important feature of Poincaré duality is that it lets us define the pushforward.

Notation 1.93. Fix a Weil cohomology datum H* over K with coefficients in F satisfying Poincaré dual-
ity. If f: X — Y is aregular map of smooth projective varieties of equidimensions d and e respectively,
we define the index-i pushforward

for HXTHX)(d) = H*7H(Y)(e)

as the transpose of the pullback f* under Poincaré duality.
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Remark 1.94. Explicitly, given a € H2?~%(X)(d), then f.a € H2¢~%(X)(e) is defined as the unique ele-

ment such that
[ rsua= [ Buta)
X Y

forall 3 € H(Y). For example, if « € H*¥(X)(d), we may choose 3 = 1to see that [, a = [, f.c.

Remark 1.95. The pushforward construction is functorial: given maps f: X — Yandg: Y — Z, we
checkthat (go f). = g« o fi. Well, we already know that (g o f)* = f* o g* by functoriality of H®, so this
follows by taking the transpose along Poincaré duality.

Remark 1.96. If dim X = dim Y, then f, preserves the grading. Further, we can undo the twisting to
see that f,. becomes a graded linear map f.: H*(X) — H*(Y).

We know that f*(a U 8) = f*a U f*8. We would like a similar way to compute f, on products. This is not
quite possible, but one can do something.

Lemma 1.97 (Projection formula). Fix a Weil cohomology datum H® over K with coefficients in F sat-
isfying Poincaré duality. If f: X — Y is a regular map of smooth projective varieties of equidimensions
d and e respectively, then

f(ffBU@) =BU fia
for each o € H2~#(X)(d) and 8 € HI(Y).

Proof. We unravel the definition, following Remark 1.94. Indeed, for any 3’ € H"=9(X) has
[ rauusua = [ #uEU L
X 1%

by definition of f.a. [ |

Remark 1.98. This projection formula is expected on the level of cycles: fora € CH(X) and g € CH(Y),
one has f.(f*B-«) = B - fraforany propermap f: X —» Y.

Lemma 1.99. Fix a Weil cohomology datum H*® over K with coefficients in F satisfying the Kiinneth
formula and Poincaré duality. Given X,Y € P(K) which are equidimensional of dimensions d and e

respectively, then
proa@p) = ([ )8
X

forany a € H?¥(X)(d) and 8 € H*(Y)(e).

Proof. It is enough to consider the case where 3 is homogeneous, so say 3 € H2¢=7(Y)(e). Then we must

check that
| msuesst [ s u(/Xa)@

forany 8/ € H/(Y). Well, 8/ U (« X 8) = a X ('), so this follows from the Kiinneth formula. [ |

Our last collection of coherence assumptions on H® is for the cycle class maps.
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Definition 1.100 (cycle coherence). Fix a Weil cohomology datum H® over K with coefficients in F sat-
isfying Poincaré duality. Then H® satisfies cycle coherence if and only if it satisfies the following.

(a) Pullbacks: if f: X — Y is aregular map of smooth projective varieties, then clx (f'8) = f* clx(3)
forany g € CH*(Y).

(b) Pushforwards: if f: X — Y isaregular map of smooth equidimensional projective varieties, then
cly (fear) = fuclx(a) forany a € CH®*(X).

(c) Cup products: given o,/ € CH*(X), we have clx(a - ') = clx(a) Uclx(a).

(d) Non-degeneracy: we have [q . clspec i ([Spec K]) = 1.

We now have enough axioms to start proving some results, so let’s give a name for our current stopping
point.

Definition 1.101 (pre-Weil cohomology theory). Fix a Weil cohomology datum H® over K with coef-
ficients in F satisfying Poincaré duality. Then H® is a pre-Weil cohomology theory if and only if H®
satisfies the Kiinneth formula, Poincaré duality, and cycle coherence.

As we start to move into proving things, it is worth keeping track of the following idea.

Idea 1.102. To prove something about all Weil cohomology theories, one proves something “motivic”
(i.e., “geometric”) and then does linear algebra.

We will point out the various places we use motivic input; typically, one can see it as where we apply anything
about cycle class maps. As an example, let's compute the cohomology of the point.

Example 1.103. Fix a pre-Weil cohomology theory H® over K with coefficients in F'. Then the coho-
mology ring H®(Spec K) is supported in degree 0, and

/ : H%(Spec K) — F
Spec K

is an isomorphism of algebras over F.

Proof. Our pieces of motivic input will be that Spec K x Spec K = Spec K and that [Spec K] - [Spec K] =
[Spec K] in CH"(Spec K).

Note Spec K x Spec K 2 Spec K, so dimp H®*(Spec K X Spec K) = dimp H*(Spec K). Thus, the Kiinneth
formula requires dimp H®(Spec K') € {0,1}. However, the non-degeneracy part of cycle coherence forces
H°(Spec K) # 0, so we conclude dimy H®*(Spec K) = 1. Now, Poincaré duality tells us that dimz H*(X) =
dimpr H4(X) foralli € Z, so H®* must be supported in degree 0.

It remains to show that fSpecK: HY(Spec K) — F is an isomorphism of algebras. This map is cer-

tainly an F-linear map of one-dimensional F'-vector spaces, so it takes the form a +— afSpeCK 1 where
1 € H°Spec K) is the unit. It thus suffices to check that fSpecK 1 = 1. Well, cycle coherence requires
fSpecK clgpec K ([Spec K1) = 1, so we would like to show clgpec x ([Spec K]) = 1. For this, we note that

[Spec K] - [Spec K] = [Spec K],

so cycle coherence forces clgpec x ([Spec K]) € {0,1}, and zero it is not permitted by non-degeneracy. [ |

Corollary 1.104. Fix a pre-Weil cohomology theory H® over K with coefficientsin F. If X € P(K), then
cx ([X]) = 1.
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Proof. Letpx: X — Spec K be the structure map. Then we have some motivic input [Y] = p}- ([Spec K]), so
cycle coherence tells us that

cly ([Y]) = py (clspec & ([Spec K1),
from which cly ([Y]) = 1 follows by Example 1.103. |

We can also check that our cohomology is sufficiently nontrivial.

Proposition 1.105. Fix a pre-Weil cohomology theory H® over K with coefficientsin F. If X € P(K) is
nonempty, then H°(X) # 0.

Proof. Throughout, for Y € P(K), the structure morphism is denoted by py : Y — Spec K. The proof has
two steps.

1. We show that H*(X) # 0 if X is nonempty and irreducible. It suffices to show that H® has some
nonzero functional, for which we use points. Because X is smooth, it has a closed point z € X
with residue field k() finite and separable over K; let i: {#} — X denote the inclusion. Then (px o
i): {x} — Spec K is given by the inclusion K < £(z), from which we can compute

(px)«is[2] = [r(2) : K] - [Spec K].

(At the level of intersection theory, one can see this by passing to the algebraic closure, whereupon z
splits into [k(z) : K] distinct geometric points.) This provides our geometric input. Then cycle class
coherence and Corollary 1.104 show that

(Px)«(clx (ix[2])) = [w(2) : K].
Because F has characteristic 0, we see that the right-hand is nonzero, so clx (i.[z]) # 0,so H*(X) # 0.

2. We reduce to the irreducible case. Suppose X is nonempty, and let X’ C X be an irreducible compo-
nent. We would like to show that 1 # 0 in H*(X). Well, there is a ring map H*(X) — H*(X’) given by
the inclusion, so it is actually enough to check that 1 # 0in H*(X”). This has been done in the previous
step. |

Example 1.106. Fix a pre-Weil cohomology theory H® over K with coefficients in F. Then H*(2) = 0.

Proof. Forany X € P(K), our geometricinputis that @ x X = &, from which the Kiinneth formula requires
dimp H* (@) - dimp H*(X) = dimp H*(2).

Now, we choose X to be nonempty of dimension at least 1 (for example, X = PL.), then Proposition 1.105
shows H(X) # 0, from which Poincaré duality yields dim H®(X) > 2. Plugging this in to the above equality
gives H(X) dimr H®* (@) = 0, from which the result follows. ]

In the sequel, we will also want more general control over unions.

Proposition 1.107. Fix a pre-Weil cohomology theory H® over K with coefficients in F. Given X,Y €
P(K),leti;: X - X UY andiz: Y — X UY denote the canonical inclusions. Then the map

H*(X UY) — H*(X) x H*(Y)
v = (i1, 137)

is an isomorphism.
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Proof. If X = g orY = @, then the other inclusion is an isomorphism, and there is nothing to do. Let the
given map be denoted i. Ultimately, the difficulty in this proof arises from the fact that there is no canonical
inverse map, so we will have to apply various tricks to put ourselves in situations where we have approxi-
mations.

Quickly, we note that i is a product of algebra maps and hence an algebra map, so the main content
comes from checking that this is a bijection. We will check injectivity and surjectivity, both in two steps.
Let's start with injectivity.

1. We show that i is injective if X and Y are equidimensional with dim X = dim Y. This hypothesis will
be used to allow us to think of pushforwards along i; and i, at the level of the full graded vector spaces,
asin Remark 1.96. In particular, we will show that

Y = 1]y + d2sisY

forany v € H*(X UY); injectivity follows because this shows that («, 8) U i1« + 2. is a one-sided
inverse for i.

By the projection formula (Lemma 1.97), it is enough to check that
11,1 + g,
from which one can apply v U —. Well, by Corollary 1.104, this is equivalent to asking for
clxuy ([X UY)) = i1, clx ([X]) + d2« cly ([Y]),

We now see that this has motivic input given by the equation [X U Y] = [X] + [Y], from which the
result follows after using cycle coherence.

2. We show that i is injective in the general case. This will require a geometric trick. Given X and a
positive integer d > dim X, we will construct X’ of dimension d for which there is an embedding
jx: X — X’ and a projection gx: X’ — X such that gx o jx = idx. If we choose d to exceed
max{dim X, dim Y} and apply the same construction to Y, then we can conclude as follows. The dia-

grams
XUY ¢+ XY H* (X UY) — H*(X) x H*(Y)
unqu ‘IXT TqY (ax uqy)*l q}l lq;
XUy XY H* (X' UY') — H*(X') x H*(Y")

commute (the right diagram is induced from the left by functoriality), and the bottom row of the right
diagram is injective by the previous step. Now, ¢ 0 ie = id,, SO i} 0 ¢} = id}, meaning that the vertical
gisintheright diagram are allinjective. Thus, the diagonal morphism of the right diagram is injective,
so its top morphism is injective as well.

It remains to construct X’. Decompose X into irreducible components {X1,..., X}, and we note
that the smoothness of X implies that its irreducible components are connected components as well.
Thus, X = X; U --- U X, allowing us to define

X = (X1 X P;lgdimxl) U--U (Xn X Pigdimxn> .
Choosing a point of the projective spaces gives aninclusion X < X’, and thereisan obvious projection
X' — X by getting rid of the projective spaces.

We now turn to the surjectivity. It would be wonderful if the one-sided inverse in the first step also showed
surjectivity (evenin the case dim X = dimY’), but this only works once we know that the maps H*(X UY) —
H*(X)and H*(X LUY) — H*(Y) are surjective. We will have to expend some effort for this.

3. Suppose that there is a morphism f: Y — X. Then we show that the map ij: H*(X UY) — H*(X)
is surjective. Indeed, the inclusion i;: X C X UY admits a sections: X UY — X by sendingallof Y
along f. Thus, s 0 i; = idx, meaning i} o s* = id%, so i} is surjective.
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4. We show that the map i}: H*(X UY) — H*(X) is always surjective. This requires a trick: all objects
among F-vector spaces are faithfully falt, so we may check surjectivity after applying — ® H*(Z) for
any Z. By the Kiinneth formula, we see that we are reduced to checking if

7 HY(X % Z)U (Y x Z)) — H*(X x 2)

is surjective. In light of the previous step, we are tasked with finding Z such that there is a map (Y x
Z) = (X x Z). Well, X is nonempty and smooth, so it has some closed point x € X with separable
residue field x(x); then there is a map Y, ;) — X,(x) given by mapping all of Y to z.

5. We show that the map i is surjective. We are not going to use an assumption like dim X = dimY;
instead, we interface directly with ex = cljxy|([X]) and ey = clixuy([Y]).

By the previous step, the map i{H* (X UY) — H*(X) is surjective, asis i5 by symmetry. Thus, it suffices
to show that i surjects onto elements of the form (i]~,i30). Well, we claim that

’

if(ex Uy +ey Ud) =17,
?

is(ex Uy +ey Ud) =ibd.

Indeed, because i} and i} are ring homomorphisms, it is enough to note that ijex = ex andijey =0
by cycle coherence for the first equality, and isex = 0andi5ey = ey by cycle coherence for the second
equality. |

Remark 1.108. If X and Y are equidimensional with dim X = dim Y, then the first step shows that there
is a canonical inverse given by
(Oé, /6) = Z.1*04 + ZQ*ﬂ

Importantly, these pushforwards really only make sense in the equidimensional case!

Corollary 1.109. Fix a pre-Weil cohomology theory H® over K with coefficients in F'. Suppose X,Y €
P(K) are equidimensional of dimension d. For any o € H?¥(X U Y)(d), we have

/ az/ i*{a—k/i;a.
XUy b'e v

Proof. By Remark 1.108, we see that a = i1.iTa + i2.i5. Thus, for example, we compute fxuy i1l is

/ (1U i) = / (1Uija),
Xuy X

whichiis [ ija. Adding together a similar computation for i3 completes the argument. |

As an application, we can now fairly easily compute the cohomology of multiple points.

Example1.110. Fixa pre-Weil cohomology theory H® over K with coefficientsin F'. Suppose X € P(K)
is zero-dimensional. Then H*(X) is supported in degree 0, and H°(X) is a separable algebra over F of
dimension equal to the degree of X — Spec K. Further, [, : H*(X) — F'is the trace.

Proof. For psychological reasons, we quickly reduce to the case where X is a closed point. By decompos-
ing X into irreducible components (which are connected components by smoothness) and using Proposi-
tion 1.107, it suffices to show the various claims in the case that X is irreducible (indeed, the conclusion is
closed under taking disjoint unions). Thus, we may assume that X is irreducible.

Because X is zero-dimensional, the structure morphism X — Spec K is finite, so X is affine; we write
X = Spec L. Because X is smooth and hence étale, we see that L must be a finite-dimensional separable
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algebra over K. In fact, L must be a field extension of K because X isirreducible. Let M be a Galois closure
of the separable extension L/K. Roughly speaking, the idea of the proof is to run all of our checks after
extending up to M. We proceed in steps.

1. We explain how to base-change to M. Well, there is an isomorphism

L®M— I ™
ocHompg (L,M)
a®b — (o(a)b)s

because L/ K is separable. This translates into the motivicinput X x Spec M = | |, cxyom . (1,ar) SPeC M,
which induces an isomorphism

H*(X) ® H*(Spec M) — H*(Spec M )Homx (L, M)
a® B — (c*aUp),

by the Kiinneth formula and Proposition 1.107.

2. We check that H*(X) is concentrated in degree 0, and H(X) is an algebra over F of dimension equal
to the degree of the structure morphism X — Spec K. (Note that this degree is [L : K].) Well, taking
dimensions on both sides of the last map in step 1 (and noting dimz H*®(Spec M) > dim H°(Spec F) >
0 by Proposition 1.105), we find that

dimp H*(X) = dimp H(X) = [L : K].
The needed claims follow.

3. We check that H(X) is separable over F. Well, H(Y) is faithfully flat over F' because it is a finite-
dimensional separable algebra over F' by what we already know. Further, separability can be checked
after a faithfully flat extension, so checking the separability of H’(X) over F can be seen by checking

the separabiility of
HO(X) ® HO(Y) _ HO(y)HomK(LJM)

over HO(Y), which is now clear.

4. We show that [, : HY(X) — F is the trace. The main point is to compare the traces on X x Spec M
and |, gom e (1, 11y SPec M. Fix some a € H°(X), and we would like to compute [, a. On one hand,

Lemma 1.99 gives [, o = pr,, (X 1), but alternatively one can see via our explicit isomorphism that

pro (aX1) = Z o*a.

oc€Homg (L,M)

Indeed, forany 5 € H*(Spec M), wesee ) fSpeC y(BUo* ) = fXXSpeCM pri BU(aX1), where we have
used Corollary 1.109. It remains to check that a + o*a amounts to the full set of homomorphisms
HY(X) — F. Well, upon choosing some map ¢: H(Spec M) — F, we see that there is an isomorphism

HO(X) ®f_> FHomK(L,M)
a®f = (t(c*a)Up),

. 0 - . . . fHom(HD(X),F) . .
which completes the proof because H°(X) ® F' is supposed to be isomorphic to F' via this

sort of map. [ |

Corollary 1.111. Fix a pre-Weil cohomology theory H® over K with coefficients in F. Given X € P(K)
and some zero-dimensional cycle Z C X, we have

deg[Z] = /X el (|2]).
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Proof. We may adjust Z so that it is smooth divisor. Letting i: Z — X denote the inclusion, we get the
motivic input that [Z] = i.[Z], so clx([Z]) = i.1 by Corollary 1.104 and cycle coherence. It follows that

[ axtizy= [ 1

by Remark 1.94. We now use Example 1.110 to compute the right-hand side: because [, : H*(Z) — F'is
the trace, its evaluation on 1 is the dimension dim H%(Z), which we know to be the degree of Z — Spec K.
This completes the proof. |

Now that we've done work with our pre-Weil cohomology theories, let's introduce our last axiom.

Definition 1.112 (Weil cohomology theory). Fix a pre-Weil cohomology theory H® over K with coeffi-
cientsin F. Then H® is a Weil cohomology theory if and only if the induced map

H°(SpecT'(X, Ox)) — HY(X)

is an isomorphism for all X € P(K).

Remark 1.113. Let's explain where this map comes from. There is a natural map X — SpecI'(X, Ox);
for example, this exists already on the level of locally ringed spaces, though one could alternatively de-
fine it by gluing together maps on affine open subschemes. However, we must check SpecT'(X, Ox) €
P(K): certainly I'(X, Ox) is some finite-dimensional K -algebra, so the issue is separability. For this,
we base-change to K, noting

(X, Ox)x = T'(Xg, Oxy)

because cohomology is stable under base change. The right-hand side is a product of fields because
X is still a proper variety, so it follows that I'(X, Ox ) is separable and hence smooth over K.

It is certainly desirable to have HY(SpecT'(X, Ox)) — H°(X) be an isomorphism. Let’s explain some of its
applications.

Lemma 1.114. Fix a Weil cohomology theory H® over K with coefficients in F. Forany X € P(K) of
equidimension d, the space H2¢(X)(d) is generated by classes of points as an H°(X)-module.

Proof. If X = &, there is nothing to do, so we assume that X is nonempty. By Proposition 1.107, we may
assume that X isirreducible. Define L := I'(X, Ox) for brevity; because X is irreducible, L is a field, and we
know that it is finite separable over K.

Now, for each closed point € X (which we assume to have residue field x(z) to be separable over L),
leti: {z} — X, and we would like to check that the class clx ([z]) € H?¢(X)(d) generates as a module over
HO(X) = H%(Spec L). Quickly, note that clx ([x]) = 4.1 by Corollary 1.104 and cycle coherence. As such, we
want to show that the map H°(X) — H?¢(X)(d) given by a = (U i, 1) is surjective. Now, Lemma 1.97
explains a Ui, 1 = i,i*a, so we might as well show that the map i,.: H*({z}) — H2¢(X)(d) is surjective.

Continuing, it is enough to check that the transpose i*: H°(X) — H°({z}) is injective. Now, let p: X —
Spec L be the canonical projection, and then p*: H(Spec L) — H°(X) is an isomorphism! Thus, it is enough
to show that i*p*: H%(Spec L) — H({x}) is injective. There are a few ways to conclude, but here is one
using Example 1.110: it is enough to check injectivity after faithfully flat base change, so we may check
injectivity after tensoring with the separable K-algebra H°(Spec M), where M is some Galois closure of
Lk(x)/K. Then both H(Spec L) and H?({x}) split up into products of H(Spec M), from which the injectivity
follows. [ |

Remark 1.115. It turns out that the conclusion of the lemma also implies that H?(SpecI'(X, Ox)) —
H°(X) is an isomorphism, but we will not need this. We refer to [SP, Tag 0F10].
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Lemma 1.116. Fix a Weil cohomology theory H® over K with coefficients in F. If f: X — Y is a finite
map of equidimensional varieties of dimension d with Y geometrically irreducible, then f. f* = (deg f).

Proof. We begin with a couple reductions.

« Itis enough to check that f. f* = (deg f) on homogeneous elements of H*(Y'), and in fact, it is enough
to merely check equality of traces on elements in H24~¢(Y))(d). Indeed, to check that £, f*3 = (deg f)3
forany 3 € H2=%(Y')(d), Remark 1.94 explains that it is enough to check

/X FEUfsL /Y 8'U (deg f)B

forall 8 € H(Y). This now follows by applying [, o(f.f*) = (deg f) [, to B/ U B8 € H24(Y)(d); in
particular, recall [, of. = [, by Remark 1.94.

« We show that it is enough to check the equality [ of* = (deg f) [,- on the image of cly : CHYY) —
H24(Y')(d). Because Y is geometrically irreducible, we see that T'(Y, Oy ) = K (this can be checked af-
ter passing to the algebraic closure), so H24(Y')(d) is isomorphic to H(Y') (by Poincaré duality), which
is isomorphic to H(Spec K) (because this is a Weil cohomology theory), which is simply F' (by Exam-
ple 1.103). It is thus enough to check the result at a single vector in H2¢(Y)(d), such as the class of a
point (which is nonzero by Lemma 1.114).

As such, our “motivic” input will come from checking [, of* = (deg f) [, on classes of points: because f is

finite, any ¢ € Y has
Fla= > m-l

pef~1({a})
where m,, is a multiplicity satisfying > m,[r(p) : K] = deg f. Then passing this through clx (and using
cycle coherence), followed by applying [, (and Corollary 1.111) completes this check. |

Lemma 1.117. Fix a Weil cohomology theory H® over K with coefficients in F. Forany X € P(K) of
dimension d, the graded algebra H*(X) is supported in degrees [0, 2d].

Proof. By Proposition 1.107, it is enough to check this in the case that X is irreducible. Then X has equidi-
mension d, so Poincaré duality implies that it is enough to show that H*(X) is supported in nonnegative
degrees.

We will show that H*(X) is supported in nonnegative degrees by an awkward contraposition: we will
show that any pre-Weil cohomology theory H®* admitting some Y € P(Y') with H*(Y") supported at a neg-
ative index must fail to be a Weil cohomology theory. By replacing Y with Y x Y and using the Kiinneth
formula, we may assume that H=2"(Y) # 0 for some n > 0. We now set X := Y x P%, so the Kiinneth
formula gives

H(X) = PH(Y) o H'(PY)
‘€T
For example, H’(X) contains the summands H°(Y) € H°(X) and H=2"(Y) ® H?"(P%), so
dimp H(X) > dimpr HO(Y).

(Note H2"(P%) is nonzero by Proposition 1.105 and Poincaré duality.) However, I'(X, Ox) = T'(Y,Oy): a
global section is a map to A!, and the only maps P% — A! are constants anyway. Thus, it is impossible to
have both H(X) = HY(T'(X, Ox)) and H*(Y) = HY(T'(Y, Oy))! [ |

We have now cobbled together enough of a theory of Weil cohomology. Let's work towards an application:
the Lefschetz trace formula. After everything we've done, this proofis purely formal. Our exposition follows
[Mil13, Section 25].

Givenaregular map f: X — X, the Lefschetz trace formula computes the intersection numberT'; - Aiin
terms of cohomology. Thus, our proof will begin by understanding the graph T';.
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Lemma 1.118. Fix a pre-Weil cohomology theory H® over K with coefficients in F'. For any regular map
f: X = Y of equidimensional projective varieties and 8 € H*(Y'), we have

Pry. (ClXxY([Ff]) U pr; 5) = f*B.

Proof. Our motivic input is that [I'y] = (idx, f).([X]), by definition. Then cycle coherence and Corol-
lary 1.104 shows clx xv ([I'¢]) = (idx, f)«1. Thus, the projection formula (Lemma 1.97) implies

pry. (clxxy ([I's]) Uprs B) = pri.(idx, f)«(idx, f)* pr3 8.
Functoriality reveals this is f*S. |

Lemma1.119. Fixa pre-Weil cohomology theory H® over K with coefficients in F'. For equidimensional
X € P(K) withd := dim X, let {e;; }1<j<p, be a basis of H(X) for each i; further, choose a dual basis
{e3q_; ;h1<j<p, of H*(X)(d) sothat [y (e, , ;Ueij) = 1;-; foreach jand j'. Then any regular map
f: X — X admits a decomposition

clxxx([Ty]) = Z freijReyy ;.
1EZL
1<5<B;

Proof. Note that the ey, , ;s exist by Poincaré duality. Now, the Kiinneth formula tells us that H(X x
X)(d) = @, H(X) @ H¥~(X)(d), so clx x x ([I's]) admits some decomposition
clxxx([I's]) = Z i Mesq_; g,
i€z
1<5<B:

where a;; € H(X) is some class. We would like to show a;; = f*e;;. To extract out the needed coefficients,
we need to cup with a basis vector and apply the pairing. As such, we compute

pri. (cboxx (D) Uprse) = > pro. (o B (g Ues)),
1§ZJ€§251'

which collapses down to «;; by Lemma 1.99 and construction of the ey, ; ;s. We now complete the proof
by recognizing the left-hand side as f*e;; by Lemma 1.118. |

Example 1.120. Taking f = idx shows that the diagonal A C X x X has a decomposition

clxxx([A]) = Z eij ey i ;-
icZ
1<5<B;

Remark 1.121. It may appear that Lemma 1.119 needs some finiteness condition like Lemma 1.117,
but our proof actually shows that all but finitely many of the f*e;; are allowed to vanish.

We are now ready for the proof.

Theorem 1.122 (Lefschetz trace formula). Fix a Weil cohomology theory H® over K with coefficients in
F. For equidimensional X € P(K) and endomorphism f: X — X, we have

2d

deg([Ts] - [A]) = > (—=1)'tr (£ HI(X)).

=0
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Proof. This proof is essentially a direct computation. By Corollary 1.111, we see that

deg([y] - [A]) = / el ex ([T4]) U el x ([A]),

XxX

where we have quietly also used cycle coherence. We now fix a basis {e;;}:; of H*(X) and a dual basis
{e2d—i j}i; of H*47*(X) asin Lemma 1.119. Then Lemma 1.119 (and a reversed Example 1.120) allows us
to compute this as

deg((y)- (@A) = Y [ (FesBely i) U (-1 ehavy Bers ).
iiter XXX
1<5.5' <Bs
By expanding out « X 5 = prj a U pr3 £ and rearranging, we may rewrite the right-hand side as
deg((L7]-[A) = 30 (-0 [ (e Ul ) Bl i By,
ii' €L AxX
1<5,5'<Bi
which by the Kiinneth formula is
deg([Ty]-[A) = D (1) / (f7eij Ueza_irjv) / (€3a—4,7 U €ir j7)-
ii' €z X X
1<5,5'<Bi
Now, the right-hand integral is 1,—,-1;—;. by construction of our dual basis, so we are left with
deg(0)-[A) = 30 [ (e Uetas).

€L
1<5<Bi

Because technically {e;;}; and {(—1)’ey, ; ;}, are the dual bases with [ (e;; U (=1)’egy ; ;) = 1j=j, we

see that the right-hand integral collapses down to (—1) tr(f*; H!(X)). This completes the proof upon using
Lemma 1.117 to restrict the sum to ¢ € [0, 2d]. |

Remark 1.123. Technically, this argument works for pre-Weil cohomology theories, provided we sum
overalli € Zinstead of i € [0, 2d].

Let's apply some of the theory we built to do one last calculation.

Example 1.124. Fix a pre-Weil cohomology theory H® over K with coefficients in F'. Then

F ifi =0,
H'(Pk) =< F(-1) ifi=2,
0 else.

Proof. The main claim is that dimp H®(PL-) = 2. Quickly, let's explain why the main claim completes the
proof. Certainly H?(PL.) # 0 by Proposition 1.105, so H?*(P})(1) # 0 by Poincaré duality as well, which
provides the lower bound dimp H*(P};) > 2. If we were to have equality, then we must have H*(P}.) =
HO(PL) ® H2(PL), and HY(PL,) = F and H2(PL )(1) = F become forced.

We now prove the main claim. It remains to show dimp H*(P},) < 2. Technically, Theorem 1.122 will
not be enough for our purposes because the Euler characteristicincludes a — dim H! (X ) term. Our motivic
input is that the cycle class [A] in Pk x P is equal to pri[oco] + pri[oo], where co € Pl is a point at infinity.
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Indeed, consider the function f: P! x P! — P! given by f(x,y) := 2 — y. Then f has zero-set given by A and

poles given by {oo} x PL and P! x {oo}, so
div f = pri[oo] + prj[oo] — A
must be a trivial divisor class. We conclude that

clp1pr ([A]) = clpr ([o0]) W1+ 1K clps ([o0]).

Now, Example 1.120 shows that the left-hand side has no expression in terms of fewer than dimp H*(X)

total pure tensors, so we concldue that dimp H*(X) < 2!

1.3.3 Tannakian Formalism

It was frequently apparent from our discussion of Weil cohomology theories that proofs frequently have
some geometric component, from which some algebraic calculations derived an interesting result. As such,
we are motivated to look fora conjectural category where we can run such geometric calculations. Of course,
it would be lovely to work directly with P(K) (or P(K)°P) directly, but this is a pretty bad category; for ex-

ample, it is very far from abelian.

Instead, we will attempt to “close up” the category P(K) in various ways to produce a well-behaved

category. In this subsection, we will make rigorous what we mean by “well-behaved”: we are hoping for

(neutral) Tannakian categories. Our exposition follows [DM12] and [And04, Chapters 2 and 6].

Warning 1.125. We will not need any proofs from the theory of Tannakian formalism, so we will not
provide them.

Intuitively, a Tannakian category is one that looks like the category Rep - (G) of finite-dimensional represen-

tations of an affine F'-group G. An important property of Rep(G) is the ability to take tensor products, so

we codify how useful tensor products are.

Definition 1.126 (monoidal). A monoidal category or ® -category is a category C equipped with a bifunc-
tor ®: C x C — C and identity object 1 € C with the following identities.

« Associativity: there is a natural isomorphisma: (@ -)® —) = (- ® (- ® —)).
« Identity: there are natural isomorphisms (1® —) = —and (—® 1) = 1.

These isomorphisms satisfy certain coherence properties ensuring that one can associate and apply
identity naturally in any suitable situation.

In fact, Rep(G) has a symmetry property.

Definition 1.127 (symmetric monoidal). A symmetric monoidal category is a monoidal category C fur-
ther equipped with a symmetry isomorphism (— ® —) = (— ® —) such that the composite

(A®B) = (B® A) - (A® B)
is the identity.

The reason we restricted Rep(G) to finite-dimensional representations is so that we can take duals.

Definition 1.128 (rigid). A rigid symmetric monoidal category is a symmetric monoidal category C fur-
ther equipped with a natural isomorphism (—)V: C — C°P such that each A € C makes (— ® AV) is left
adjoint to (— ® A), and (AY ® —) is right adjoint to (A ® —).
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Remark 1.129. Rigidity allows one to define an internal hom by Hom(X,Y) := XV ® Y. For example,
one may define the trace trx as the composite

End(X)=X"® X — 1,

where the second map is canonically given by the adjunction. With a trace, one can also define a rank
by rank X = trx (idx).

Lastly, Repp(G) has a forgetful functor to Vecy, akin to the forgetful functor Set(G) — Set which appearsin
Grothendieck’s Galois theory (used to define the étale fundamental group).

Definition 1.130 (fiber functor). Fix an abelian rigid symmetric monoidal category C such that F’ :=
End(1) isafield. A fiber functoris a faithful exact ®-functorw: C — Vecp for some finite field extension
Fof F.If F = F’/, then we say that C is neutral Tannakian over F.

What is remarkable is that it turns out that one can recover the affine F-group G from the (forgetful) fiber
functor w: Repp(G) — Vecr as “Aut®(w).” Explicitly, for an F-algebra R, an element of Aut®(w)(R) is
a collection of automorphisms (g9x ) xcrep,.(a) Where gx is an R-linear automorphism of w(X) ®Fr R, and
these automorphisms are naturalin G-linear maps X — Y.

This process can in general recover a group G from a neutral Tannakian category.

Theorem 1.131. Fix a neutral Tannakian category C over a field F equipped with fiber functor w: C —
Vecp.
(a) The functor Aut®(w) (defined analogously as above) is represented by an affine F-group G.

(b) The fiber functor w then upgrades to a ®-equivalence C — Repp(G).

Proof. See [DM12, Theorem 2.11]. [ ]

In fact, a careful review of the proof reveals that one can do away with many hypotheses on C.

Theorem 1.132. Suppose that C is an essentially small F'-linear category equipped with an F-linear
symmetric monoidal functor ®: C x C — C. Further, suppose that there is an exact faithful functor
w: C — Vecp satisfying the following.

(i) WX RY)=wX)w()forall X,Y € C.

(ii) The functor w preserves the commutativity and associativity coherences.
(iii) The functor w sends the unit 1to F' € Vecr, and w preserves the unit coherences.
(iv) Each X € C such that dimp w(X) = 1 has some objectY € Csuchthat X @ Y = 1.

Then C is neutral Tannakian, and w is a fiber functor.

Proof. See [Mil17, Theorem 9.24]. [ ]

Let's see some examples.

Example 1.133. Of course, Repx(G) is a neutral Tannakian category for any affine group G over F,
where the fiber functor is given by the forgetful functor w: Repp(G) — Vecp.
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Example 1.134. For any profinite group G and field F, the category Repy G of continuous representa-
tions of GG succeeds at being neutral Tannakian. The fiber functor is still the forgetful functor.

Example 1.135. The category GrVecr of Z-graded vector spaces is a neutral Tannakian category, where
the fiber functor is the forgetful functor. In fact, by diagonalizing, we can see that a graded vector space
has exactly the same data as a representation of G, r, where the graded piece in degree d € Z corre-
sponds to the eigenvector with eigenvalue 7'+ T

Example 1.136. The category HSg of real Hodge structures is Tannakian. Indeed, Lemma 1.7 explains
that a real Hodge structure corresponds to a representation of the Deligne torus S = Resc/rGm,c-
In fact, one can check (e.g., with Theorem 1.132) that the category HSg of rational Hodge structures
continues to be a Tannakian category.

Example1.137. If Cis a neutral Tannakian category over afield F with fiber functor w, and Dis an abelian
rigid symmetric monoidal category equippd with a faithful exact ®-functor D — C, then the composite
D —C 3 Vecr

becomes a fiber functor for D, thereby making D neutral Tannakian.

For more examples, we pass to subcategories.

Definition 1.138 (®-subcategory). Fix an abelian rigid symmetric monoidal category C. Then the full
®-subcategory generated by a subset S C C of objects, denoted (S)® is the smallest full abelian rigid
monoidal subcategory.

Remark 1.139. One can see (e.g., via Example 1.137) that a fiber functor for C will induce a fiber functor
for a full abelian rigid monoidal subcategory.

Example 1.140. Given a rational Hodge structure V, we claim that the Mumford—-Tate group MT(V) is
exactly the group corresponding to the subcategory (V)® C HSq. Indeed, we can see that (V)® consists
of the Hodge substructures W of large tensors T which look like

T :=

)

N
(V®mi ® (VV)®R1) ’

=1

but Proposition 1.33 explains that W C T'is a rational Hodge substructure if and only if W is a subrep-

resentation of MT(V'). This implies (V)® C Repg(MT(V)), and this embedding is essentially surjec-

tive because all representations of MT (V') can be generated by the (faithful) standard representation V'

[Mill7, Theorem 4.14].

The above example is in fact extremely important: it is the guiding principle behind what a monodromy
group is. In particular, this idea of monodromy group is akin to the definition of a fundamental group as
the automorphism group of the category of covering spaces, and it is akin to defining the étale fundamental
group as the automorphism group of the category of finite étale covering spaces. Let's codify this intuition
into some notation.

Notation 1.141. Fix a neutral Tannakian category C over a field F. Given a fiber functor w: C — Vecp,
we set G, := Aut®w to be the corresponding group. For any subset S C C, we define G, (S) to be the
group corresponding to the tensor subcategory (S)®.
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Remark 1.142. If S C T, then (T)® C (S)®, so we induce a surjection G, (T) — G, (S).

While we're discussing (neutral) Tannakian categories, we take a moment to define some useful language.
Because we will be interested in constructing a useful neutral Tannakian category from the category P(K)°P,
it will be helpful to have a notion of some gradings and “Tate twist” in our category.

Definition 1.143 (grading). Fix a field F'. A Z-grading on an F-linear abelian symmetric monoidal cate-
gory C is a homomorphism G,,, — Aut®(id¢).

Remark 1.144. The data of the homomorphism w: G,, — Aut®(id¢) is equivalent to the data of a ho-
momorphism G,,, — Autc X for each object X € C which is functorial in X and respects tensor prod-
ucts, where the latter means that w(t)(X @ Y) = w(t)(X) ® w(t)(Y) forany t € G,, and X,Y € C. By
diagonalizing the G,,-action in the usual way, we see that this is equivalent to producing a functorial
Z-grading on each object X € C (say, X = @,,.;, X») which also preserves tensor products, in that

(X®Y)h= P XieY,
i+j=n

This particular grading of the tensor product arises from the (diagonalization) identification Repp G,,, =
GrVecpg.

Definition 1.145 (Tate triple). Fix a field F. A Tate tripleis a triple (C,w, T) of a neutral Tannakian cat-
egory C over F, a weight Z-grading w: G,, — Aut®(idc), and an invertible object T € C (called the
Tate twist) whose induced Z-grading is supported in degree —2. A morphism of Tate triples is a tensor
functor preserving the grading and Tate twist.

Notation 1.146. Fix a Tate triple (C,w, T) over a field F. For any object X € C and integer n € Z, we
may write X (n) == X ® T®".

Example 1.147. The category HSq of rational Hodge structures is aready neutral Tannakian. Continu-
ing, we note that all Hodge structures already come with a functorial weight grading which preserves
tensor products. (Explicitly, for a Hodge structure V, the decomposition V¢ = €, ; Vi may define the
grading by V,, :== €, ;_,, V) This becomes a Tate triple after defining the Tate twist T := Q(1).

Remark 1.148. Because T is invertible, we see that (T)® simply has quotients of objects of the form
@, T®"i. Because T has pure nonzero weight, we see that (T)® admits a fully faithful functor to GrVecy
with essential image in fact equivalent to GrVecr. We conclude that G, (T) = G,,.

It is helpful to have some more concrete ways to understand G from its Tannakian category. Here are a few
incarnations of this by “functoriality.”

Proposition 1.149. Fix a morphism f: G — G’ of affine F-groups GG, and let w: Repp(G’) — Repp(G)
be the corresponding functor.

(@) Suppose Repr(G) is semisimple and that F has characteristic 0. Then f is faithfully flat if and only
if the following holds: for given X’ € Rep(G’), every subobject of w(X’) is isomorphic to w(Y”)
for some subobject Y’ of X’.

(b) Then fis a closed embedding if and only if every object X € Repy(G) is isomorphic to a subquo-
tient of w(X’) for some X’ € Rep(G’).
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Proof. Combine [DM12, Remark 2.29] with [DM12, Proposition 2.21]. [ |

Proposition 1.150. Fix an affine F-group G.

(@) Then Gisfiniteif and onlyif thereisan object X such that every object of Rep(G) is a subquotient
of X®" for some nonnegative n.

(b) Then Gisalgebraic (namely, finite type over F) if and only if Rep - (G) equals (X)® for some object
X.

Proof. See [DM12, Proposition 2.20]. [ ]

Proposition 1.151. Fix a field F' of characteristic 0 and an affine F'-group G. Then G° C G is a projective
limit of reductive F'-groups if and only if Rep(G) is semisimple.

Proof. See [DM12, Remark 2.28]. [ ]

Example 1.152. The category of polarizable Hodge structures is semisimple, so its corresponding affine
group is pro-reductive by Proposition 1.151.

1.3.4 Chow Motives

In this subsection, we explain how to (conjecturally!) turn the category P(K)°P into a neutral Tannakian
category. Roughly speaking, we are looking for a graded, neutral Tannakian category M(K) such that each
object X € P(K) gives rise to an object h(X) € M(K). In fact, each h(X) should also spawn objects

RO(X), R} (X),...,h*(X) € M(K),

where d := dim X. Additionally, regular maps f: X — Y should produce pullback maps f*: h(Y) — h(X)
which respect the grading.

However, it turns out to be desirable to have access to more maps than just these pullbacks. A basic
deficiency is that arbitrary regular maps cannot be added together. Here is one incarnation of this: for any
1 € Z, itis natural to expect the composite

h(X) = h'(X) = h(X)

to be an endomorphism of i(X),* but this map cannot come from an endomorphism f: X — X in gen-
eral.

Example 1.153. Fix a Weil cohomology theory H® over K with coefficients in F. Then there is no endo-
morphism f: PL — P such that f*: H*(PL) — H*(PL) equals the composite

H*(PL) - H?(PL) — H*(P)).

Proof. There are two cases for an endomorphism f: PL. — P1..

« If fisaconstant map to a point z € P}, then f factorsintoiop, where p: P1. — {z} is some projection
andi: {x} — P is someinclusion. It follows that f* = p* oi* must factor through H*({z}). However,
H*({x}) is supported in degree 0 by Example 1.110, so the image of f* must also be supported in
degree 0, so we are done.

3 Such an endomorphism is called a “Kiinneth projector.”
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« If fisnon-constant, thenitis a finite map of some degree deg f. Then Lemma 1.116 explains that f, f*
is multiplication by deg f, so it is not possible for f* to be zero in degree 0 and the identity in degree
2. |
To “linearize” our regular maps, we use correspondences.

Definition 1.154 (correspondence). Given X and Y in P(K), we define correspondences as the cycles
in Corr(X,Y) := CH(X x Y). Forvy € Corr(X,Y), we definey*: CH(Y) — CH(X) by

7" (B) = pry, (v pr3 B)
Example 1.155. Let's explain why this is a reasonable definition of v*: if f: X — Y is a regular map,
then [I'] € Corr(X,Y), and Lemma 1.118 shows that our pullback (on cohomology) satisfies

f*B = pri- (L] - pr3 B).-

Thus, we have expanded our regular maps to include sums and differences, but our new expansion needs a
notion of composition.

Definition 1.156. Given XY, Z € P(K)and v € Corr(X,Y)and ¢ € Corr(Y, Z), we define the compos-
ite (0 oy) € Corr(X, Z) by
(6 0) = pryz. (priz v - pras ).

Here are some basic checks.

Notation 1.157. Given y € Corr(X,Y), we define 47 € Corr(Y, X) to be sw* v = sw, 7, wheresw: X x
Y — Y x X is the isomorphism swapping the two coordinates.

Lemma 1.158. Fix a ground field K, and choose W, X, Y, Z € P(K).
(@) The operation o is Z-bilinear.

(b) Associativity: given v € Corr(W, X)and ¢ € Corr(X,Y)ande € Corr(Y, Z), we haveco (0 oy) =
(e0d)0n.

(c) Function composition: giveny € Corr(X,Y)and f: W — X andh: Z — Y, we have
LR oy oLyl = (f, h)™.

(d) Functoriality: giveny € Corr(X,Y") and ¢ € Corr(Y, Z), we have (6 o y)* = v* o §*.

Proof. All these proofs are basically direct computation with the projection formula and base-change of
cycles. Throughout this proof, we may write things like pr,pc 4 OF pr 4 for the projection A x B x C' —
AxC.

(@) Pullbacksare ringhomomorphisms, and multiplication is Z-bilinear, so this follows from the definition
of o.

(b) By adirect expansion, we seethateo (§o07)is
Prwyzw zx« (PT%YZ,WY erXY,WY*(pr?;VXY,WX v prT/VXY,XY d) - prT/VYZ,YZ 8) .

By base-change, we see that priyy , vy Prwxy,wys = Prwxyzwy z« Plivxy z,wxy, SO the projec-
tion formula allows us to collapse the above into

* * *
Prwxyzwzx« (erXYZ,WX Y PlwxyzXxy g Plwxyzyz 5) .
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A symmetric argument shows that this is also equal to (€ 0 §) o 7.

(c) Note that the expression [I']] o v o [I'y] makes sense because we already checked associativity. For
clarity, we will show this in two parts.

» Weshow thaty o [I'f] = (f,idy)*y. Well, [I'¢] = (idw, f)«[W], soy o [['f] is

Pryyys (Priyx (idw, £)«[W] - pricy 7).
Now, base-change implies that PY?ZVXY,WX(idW7 f)« = (idw, f,idy )« priy x w, SO the projection
formula shows that this equals
Prwy s (ldW7 f7 ldY)* (pr*W[W] : (ldWa f7 ldY)* pr;{Y PY)

Functoriality and the fact that [W] is the unit for the intersection product finishes.
+ We show that [I'J] o v = (idx,h)*y. This proof is the same. Note that [I']] = (h,idz).[Z], so
[T]o~is
Prxz. (Prxy 7 - pry z(h,idz).[Z]).
Now, base-change implies that pry , y (h,idz).« = (idx, h,idz). pr 7 7, SO the projection for-
mula shows that this equals
Pryz.(idx, h,idz). ((idx, h,idz)" priy v - pry[Z]) .
The same sort of functoriality and fact that [Z] is the multiplicative unit finishes.

Combining the above two points completes the proof.

(d) Choose a € CH(Z), and we must show that (§ o y)*a = v*6*«.

Onone hand, v*6*a is
Prxy, x« (’Y : prj;(Y,Y erZ,Y*((S : pﬁ/z,z a)) .

Now, base-change gives priy v Pry z v« = Prxy zv« Py 7 vz, SO We may use the projection formula
to collapse the above expression into

Prxyz X« (pri;(YZ,XY v pr;(YZ,YZ g pr;(YZ,Z a)
after a little functoriality.
On the other hand, (§ o v)*«is
Prxz x« (erYZ,XZ*(pr;(YZ,XY’V : pr;(YZA,YZ J) 'Pfﬁ(zﬁz a) .

An application of the projection formula reveals this to be

* * *
Prxy z X« (erYZ,XY Y Pxyzyz g Prxyzz a) )

so we are done. [ |

Example 1.159. Letting v be the diagonal class in (c), we see that f: X — Y andg: Y — Z will have

[CF] o T3] = [Cgoyl-
Thus, P(K) with correspondences for its morphisms produces a Z-linear category. We will not show it
now (because we do not need it), but this category admits sums given by LI, and it is a symmetric monoidal
category where the tensor product is given by x.

Quickly, it is worthwhile to note that we ought to not work with all correspondences for our morphisms
because many “shift degree” in a way that the graph of a regular map would not.
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Notation 1.160. Given X and Y in P(K), subdivide X into |J -, Xa,W here X is the union of d-dimen-
sional irreducible components. For each i € Z, we define B

Corr'(X,Y) = @ CH™ (X4 x Y).
d>0

Example 1.161.If f: Y — X is a regular map and dim X = d, then [I'}] is a class of codimension d in
X x Y. If X is no longer equidimensional, then we still have [I'}] € Corr’(X,Y) by construction.

Remark 1.162. Because pullback preserves codimension, and pushforward preserves dimension, we
see that o defines an operation

o: Corr! (Y, Z) x Corr*(X,Y) — Corr' ™ (X, Z)

foranyi,j € Z. Indeed, by dividing everything into connected components, we may assume that ev-
erything in sight is connected. Then y € Corr’(X,Y) and § € Corr’ (Y, Z) makes pri,y - pri; & have
codimension i + j + dim X + dimY and hence dimension dim Z — (i + j), so the pushforward has
codimension (i + j) + dim X.

Thus, we may want to consider a category Cq(K) where the objects are given by h(X) forany X € P(K),
and the morphisms are given by

More, (1) (h(X), h(Y)) = Cort”(X,Y)q.

(The composition is well-defined by Remark 1.162.) The category Cqo(K) already has some desirable prop-
erties. We know that it is Q-linear (by Lemma 1.158), and there is already a canonical faithful contravariant
functor h: P(K)°P — Cq(K) given by sending X' — h(X) and a morphism f: ¥ — X to [I'}] € Corr’(X,Y)
(by Examples 1.159 and 1.161). Here are two more easy checks.

Lemma 1.163. The category Co(K) is additive. In fact, h(X) x h(Y) = A(X UY).

Proof. The empty productis h(2). As for products of two objects, after undoing the transposition, we need
to show that the inclusions induce a natural isomorphism

Cort’(X LY, —) < Corr’ (X, —) x Cort’(Y, ),
which amounts to checking
P CH" (X UY,) x —) = @) CH(Xy x —) & @D CH(Y. x —),
d,e>0 d>0 e>0

where X is the union of the d-dimensional irreducible components of X (with Y. defined analogously).
Well, (X UY') x —isisomorphicto (X x —) U (Y x —) already as schemes, so this follows because any cycle
on a disjoint union can be uniquely decomposed into a cycle on either part. In other words, we see that the
inclusions induce a natural isomorphism

CH(X x =) x CH(Y x —) = CH((X x —) U (Y x —)),
so we are done after tracking that the codimensions pass through correctly on each irreducible component
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Lemma 1.164. The category Co(K') admits the structure of a symmetric monoidal category with unit
h(pt) and product A(X) @ h(Y) .= h(X x Y).

Proof. Infact, P(K) is already a symmetric monoidal category with unit pt and product x. We already have
commutativity and associativity constraints induced by the universal property of the fiber product, and there
is a canonical isomorphism X x pt — X. The various coherences required for x here are automatically
satisfied by the universal property of the fiber product. |

Thus, we can see that Cg(K) is pretty close to our category of motives, but it has two key failures at being
neutral Tannakian.

+ The category Cg(K) fails to be abelian. Glaringly, there are many correspondences which fail to have
kernels.

+ The category Cg(K) fails to be rigid. Namely, we want to have duals, which by an expected Poincaré
duality axiom, more or less amounts to adding a Tate twist.

We are going to handle each of these concerns individually. To begin, we will not add all kernels and cok-
ernels or even all kernels; it turns out that it will be enough to merely add kernels of idempotents. This is a
rather explicit construction in pure category theory.

Definition 1.165 (Karoubian). A Q-linear category C is Karoubian or pre-abelian if and only ifany X € C
and idempotent p: X — X admits a kernel.

Remark 1.166. Because p: X — X is idempotent, we see that (1 — p): X — X is also an idempotent.
As such, we claim that

X < ker(p) @ ker(1 — p).

Indeed, this follows by writing out what it means to be a direct sum in an additive category and noting
that the relevant equations are satisfied because 1 = p+(1—p) and p(1—p) = (1—p)p = 0. In particular,
we see that p: X — X factors through ker(1 — p), and (1 — p): X — X factors through ker(p).

Lemma 1.167. Fix a Q-linear category C, and define the category Split(C) to be the category whose
objects are pairs (X, p) where X € Candp: X — X is idempotent, and morphisms are given by

Morspiit(c) (X, ), (Y, q)) == g o More (X, Y) o p.

Then Split(C) is Q-linear and Karoubian. Further, any Q-linear functor F': C — D to a Karoubian cate-
gory factors uniquely through Splic(C).

Proof. We have many checks. Intuitively, the point is that (X, p) should be the image of the idempotent of
p: X — X;in particular, because 1 = p + (1 — p), the object (X, p) should be the kernel of the idempotent

(1-p).

1. We check that Split(C) makes sense as an additive Q-linear category. Note Mor((X,p),(Y,q)) is a
Q-subspace of Mor(X,Y’), and with composition defined as usual, we still have identity morphisms
(where p € Mor((X, p), (X, p)) behaves as an identity), and composition is well-defined and Q-bilinear
by construction.

While we're here, we note that there is a Q-linear faithful functor h: C — Split(C) sending objects X
to (X, 1) and morphisms to themselves.
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2. We check that Split(C) is Karoubian. Well, let pfp: (X,p) — (X, p) be some idempotent, and we need
to show that this map has a kernel. For brevity, we ¢ := pfp, and we note that p¢ = ¢ = ¢p because
pis itself idempotent. Now, ¢: X — X is already some endomorphism, and ¢ and hence (1 — ¢) are
idempotent by hypothesis, so (X, 1 — q) is an object in Split(C) which we expect to be the kernel. Note
that there is a canonical map (X,p — ¢) — (X, p) givenby p(p — q) =p — q.

It remains to check that we have actually constructed the kernel. Suppose we have some morphism
pgr: (Z,r) = (X, p) such that pggr = 0. We would like this pgr to factor uniquely through (X, 1 — q).
Namely, we are looking for some unique (p — ¢)¢'r: (Z,r) — (X,p — q) such that

p(p — q)g'r = pgr-

Certainly g = ¢’ works because pggr = 0 by hypothesis; on the other hand, if some other ¢’ has p(1 —
q)g'r = p(1—q)gr, thenwe note that (1—p)(p—q)g’'r = (1—p)(p—q)gr as well because (1—p)(p—q) = 0,
so summing gives (p — q)g'r = (p — q)gr.

3. Supposethat F': C — DisaQ-linear functor to a Karoubian category, which we would like to uniquely
factor through h. Well, we will simply describe how to extend the functor F on C to a functor G on
Split(C). For each (X, p) € Split(C), we must determine G((X, p)) € D; well, G needs to be an additive
functor, so Remark 1.166's decomposition

(X,1) = (X,p) & (X,1-p)

shows that G((X,p)) must be the kernel of F(1 — p): FX — FX (which is equivalently the im-
age of F'p). (This provides uniqueness up to some natural isomorphism.) Continuing, any morphism
qfp: (X,p) — (Y, q) must factor through the aforementioned decompositions,* and therefore must
be sent to the induced map on G(¢fp). Lastly, we ought to check that this functor is well-defined:
well, G sends identities to identities by construction, and the relevant uniqueness in place provides
functoriality. |

Definition 1.168 (Karoubian envelope). Given a Q-linear category C, we define the Q-linear additive
category Split(C) of Lemma 1.167 to be the Karoubian envelope.

Remark 1.169. If C is additive, then Split(C) is also: the direct sum of (X, p) and (Y, ¢) can simply be
given by (X @Y, (p, q)). Indeed, note a pair of morphisms rfp: (X,p) — (Z,r) and rgq: (Y,q) — (Z,r)
amount to the same data as a single morphism (r fp,rgq): (X @Y, (p,q)) — (Z,r).

Remark 1.170. If C admits a symmetric monoidal structure given by ®, then Split(C) does as well, where
we define

(X,p)@(Y,q) = (XaY,peq).
The relevant coherences for ® all lift from C to Split(C).

Example 1.171. Let's exhibit the sort of decompositions we can exhibit in Split(C). Suppose that we
have a “projection” p: X — Y inC with asection s: Y — X, meaning that ps = idy. Then we note that
sp: X — X isan idempotent, and we claim that (X, sp) = (Y,idy ), meaning that Y is not a sub-object
of X in Split(C)! To show this, we note that p = pspis a map (X, sp) — (Y,idy), and s = spsis a map
(Y,idy) — (X, sp), and we know ps = idy and sp = id(x sp)-

Thus, to make Cg(K) more abelian, we can take its Karoubian envelope. This produces the category of ef-
fective Chow motives.

4 Explicitly, the morphism (X, p) — (Y, q) can be expressed as a composite (X,p) < X Ly & (Y, q), whose behavior upon being
passed through G is now forced by F.
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Definition 1.172 (effective Chow motives). Fix a ground field K. The category ChMotg(K) of effective
Chow motives is the Karoubian envelope of Cgp(X).

Remark 1.173. Because Cg(K) is Q-linear, additive, and symmetric monoidal, the same holds for its
Karoubian envelope ChMota(K) (see Remarks 1.169 and 1.170), but effective Chow motives now suc-
ceed at being Karoubian. Notably, the canonical functor h: P(K)°P — Cg(K) extends to ChMotéf(K),
and we may write the effective Chow motive (h(X), p) as simply ph(X).

Example 1.174 (Kiinneth projector). It is a standard conjecture that there is a correspondence h(X) —
h(X) giving rise to the Kiinneth projections, so h?(X) can be defined as the image.

As our standard example, let’s begin computing the motive of P: by Example 1.124, we are expecting h(pt)
and some other piece given by a Tate twist.

Lemma 1.175. Fix a ground field K. Suppose some irreducible X € P(K) has a K -rational point oo €
X (K). Then h(pt) is a sub-object of i (X).

Proof. We use Example 1.171. Consider the structure morphism p: X — ptand the embeddingi: pt — X.
Then pi = idps, 50 h(i) o h(p) = idp(pe) by functoriality, so the result follows. [ ]

Next up, we would like to add in a Tate twist to recover our rigidity. Namely, we would like to have duals.
For example, Lemma 1.175 tells us that h(P') decomposes as

h(P') = h(pt) @ L

for some effective Chow motive L, which is expected to be the dual of the Tate twist by Example 1.124. Thus,
to ensure that L has a dual, we must add in its inverse! Note that once we have Tate twists, Poincaré duality
tells us that we expect all of our Chow motives to have duals. We are now ready to define the category of
Chow motives.

Definition 1.176 (Chow motives). Fix a ground field K. The category ChMotg(K) of Chow motives is
defined as the category of triples (X, p,i) where X € Co(K) and p € Cort’(X, X) is an idempotent and
i € Z, where morphisms are given by

HomChMotQ(K)((X,pv Z)7 (Y7 qa])) =4qo Corrjii(Xa Y)Q op.

For brevity, we define the Tate motive T := (pt, id, 1) and the Lefschetz motive L. := (pt,id, —1).

Remark 1.177. As usual, we remark that composition makes sense by Remark 1.162 and is Q-linear by
Lemma 1.158.

Remark 1.178. The canonical faithful, essentially surjective, Q-linear functor h: P(K)°? — Cqo(K) ex-
tends to ChMotg(K) by X — (X,Ax,0), where Ax C X Xx X is the diagonal. (The idea is that the
“degree-0" part of our Chow motives simply recovers the effective Chow motives.) As such, we may
write the Chow motive (X, p, ) as ph(X)(2).

Remark 1.179. One may alternatively define Chow motives by taking Cq(XK), first adding in Tate twists
by considering pairs (X, i) where ¢ € Z, and then taking the Karoubian envelope. We have not done this
because the intermediate category of pairs (X, 7) is not obviously additive: for example, how should one
add (pt,0) and (pt, 1)?
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Remark 1.180. Note that ChMotq(K) continues to be Karoubian. The point is that an idempotent ¢ of
some triple (X, p, ) will have ¢ € Hom((X, p), (X, p)) anyway, so letting (X, p) = ker(q) @ im(q) be the
sum of Remark 1.166 in the category of effective Chow motives, we see

(X,p,1) = (ker(q),7) @ (im(q),?)

by shifting the Tate twist by i everywhere, so we conclude that (ker(q), %) is the kernel of ¢: (X, p,i) —
(X, p,9).

Here are our basic checks on this category.

Lemma 1.181. The category ChMotg(K') admits the structure of a symmetric monoidal category with
unit ~A(pt)(0).

Proof. Unsurprisingly, we define
(X,p,1) @ (Y, q,j) = (X X Y,p X q,i+j)

Then one can simply repeat the proof of Lemma 1.164, carrying around commutativity and associativity of
addition in Z to upgrade the commutativity and associativity constraints. |

Remark 1.182. This is not actually the correct symmetric monoidal structure! In short, the problem is
the commutativity constraint does not take into account the fact that 2(X') should behavae as a graded
commutative algebra. Explicitly, given any Weil cohomology theory H®, we would like the commuta-
tivity constraint h(X) ® h(Y) — h(Y) ® h(X) to be given by

HY(X)@H*(Y)=H*(X xY)Z H*(Y x X) =H*(Y) ® H*(X).

But sw needs to be anisomorphism of graded commutative rings, so the map H* (X )®H7 (Y) — H/(Y)®
H!(X) needs to have the sign (—1)%.

Example 1.183. We now see that ph(X)(i) = ph(X) ® T¢, thus explaining why we might view the cat-
egory of Chow motives as simply the category of effective Chow motives extended by the Tate twist

T = h(pt)(1).

Example 1.184. Fix a ground field K. Then
h (Pk) = h(pt) ® L.

In particular, L is an effective Chow motive.

Proof. We imitate Example 1.124. For brevity, set X := PL.. Upon choosing a point co € X, we recall from
Example 1.124 that we had a “motivic” input

[Ax] = [oo x X]+ [X x o0],

where Ay C X x X isthe diagonal. Notably, [Ax] = idj(x), so the above is a decomposition of the identity.
In fact, it is a decomposition into idempotents: for example, [co x X|is [['T], wherei: X — X is the constant
map sending all points to oo, so the equality i o i = 7 implies that [[']] is an idempotent by Example 1.159. It
follows that [X X oc] is the orthogonal idempotent.
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Now, Lemma 1.175 tells us that h(pt) is already a sub-object of A(X), and in fact the proof shows that
h(pt) is in fact the image of h(i): h(X) — h(X); in other words, h(pt) is isomorphic to (X, [co x X]). Thus,
it remains to check that ,

L= (X, [X x o))
In fact, we suspect that L should be the image of [X x pt] € Corr’(X, X). Indeed, [X x pt] is an element of

Homcnmoty (i) (X, [X % 00],0), (pt,id, —1)) = CHO(X X pt) o [X X o0

because [X x pt]o[X X co] = [X x pt] by a direct calculation of the composition. On the other hand, [pt x oc]
is an element of

HomChMotQ(K)((ptvidv _1)7 (X7 [X x 00]7 0)) = [X X OO} © CHl(pt X X)

because [X x oo]o[pt x ] = [pt x oo] forany z € X (K). It remains to calculate [X x pt] o [pt X 0o] = [pt X pt]
and [pt x oo] o [X x pt] = [X X oo] are both their respective identities, so we are done. ]

Lemma 1.185. The category ChMotq(K) is additive.

Proof. The empty product is h(&). We exhibit our sums in two steps.

1. Copying the proof of Lemma 1.163 with an appropriate degree change shows ph(X)(i) x gh(Y)(i) =
(pUq)h(XUY)(4), sothe main problem is dealing with degree shifts. (In degree i = 0, we already knew
this from Remark 1.173.) To be slightly more explicit, after decomposing X and Y as X = | |-, X4
andY =[] ., Y into equidimensional pieces, we find

Homcnnotg(r) (X UY,pU g, ), (Z,7,5)) = @ ro CH™ I (XaUYa) x Z) 0 (pUq),
d>0

which then decomposes into cycles on X and Y individually as in the proof of Lemma 1.163.

2. We now reduce to the previous case. For any Chow motives (X, p,i) and (Y, ¢, j), we note that there
is an integer n large enough so that (X, p, i) ® L®™ and (Y, ¢, j) ® L®" are both effective: for example,
(X, p,i—n) becomes effective as soon as i —n is nonpositive, for then we get (X, p,0) @ L=~ which
is effective by Example 1.184. Thus, we may define the sum of (X, p,4) and (Y, ¢, j) as

(X,p,i) @ LE" & (Y, q,j) ® L") @ T®™.
The fact that L and T are inverses shows that this is in fact a valid sum.> [ |

Thus, we have built a Q-linear, additive, and Karoubian category ChMotg(K) of Chow motives. The remain-
ing properties are only conjectural.

Conjecture 1.186 (Grothendieck). The category ChMotg(K) is a semisimple neutral Tannakian cate-
gory.

Remark 1.187. It turns out that any pre-Weil cohomology theory H*: P(K)°® — GrVecp extends to
a unique Q-linear symmetric monoidal functor ChMotg(K) — GrVecp, fulfilling a prophecy from the
start of this subsection. In fact, one expects this functor to be a fiber functor for our neutral Tannakian
category! We will not need this fact, and the proof is rather involved, so we will not prove it. Instead,
we refer to [SP, Proposition 0FHM], and we note that Theorem 1.207 proves a version of this in the next
section.

> One can see that Hom(— ® T, —) ~ Hom(—, — ® L) already on the level of correspondences.
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1.3.5 Motives from Absolute Hodge Cycles

The goal of the present subsection is to build a concrete category Mot (K) of motives which we can prove
satisfies the required properties (namely, it is semisimple neutral Tannakian and lives in a Tate triple) and
is conjecturally equivalent to ChMotg(K'). The idea is to add in more correspondences to Corr(X,Y’). For
example, the previous subsection repeatedly asked for an idempotent A(X) — h(X) whose image is h*(X),
but the existence of such correspondences in Corr?( X, X ) is still conjectural. Thus, we will want the category
Motg(K) to admit such correspondences.

In particular, isntead of having Corr(X,Y’) be made up of algebraic cycle classes, we will use absolute
Hodge classes, following [Del18]. For motivation, we want the Hodge classes on a complex Kéhler manifold
X to be elements of the cohomology group H2% (X, C)(i) of bidegree (0,0) and satisfying some rationality
condition. The definition of an absolute Hodge class comes from trying to be agnostic about the embedding
of the base field of X.

Definition 1.188 (absolute Hodge class). Fix a smooth projective variety X over a field K algebraic over
Q. An absolute Hodge class is an element ¢ of some H2'(X%)(¢) if and only if it satisfies the following
properties.

* Too(t) lives in the component (0, 0) of H3% (X, C).

« For each embeddingo: K < C, the element ¢ is in the image of the embedding H (X, Q)(4) into
HE/(X) ().

We denote the collection of these absolute Hodge classes by C% ; (X7) or C4 1 (X).

Remark 1.189. Deligne [Del18, Section 2] gives a definition for smooth projective varieties defined over
a general field of characteristic 0. The above definition makes sense essentially verbatim for any field K
of characteristic 0 and finite transcendence degree because then one has access to embeddings into C.
For the general case, one must argue that any class with sufficient rationality properties will descend
to a field of finite transcendence degree and that the choice of this descent does not matter.

Example 1.190. Any algebraic class v € CH'(X) produces cycle classes in the various cohomology the-
ories. Because v ought to arise rationally (over K) because it already produces a cycle class in Betti
cohomology, we see that taking the corresponding cycle class in H2!(X)(i) successfully produces an
absolute Hodge class. Note that the Hodge conjecture would imply that all absolute Hodge classes
arise in this way.

Remark 1.191. Here is a notable advantage of working with absolute Hodge classes over typical Hodge
classes: there is an action of Gal(K/K) on H2'(X3)(i) given by the pullback of the action on X%, but
this Galois action may very well permute the image of H¥ (X,Q)(:) for a given o: K — C. Indeed,
7 € Gal(K/K) has 7*H, = H,,. As such, the space of Hodge classes is not obviously a Galois repre-
sentation, but the space of absolute Hodge classes is!

We are ready to (re)define our correspondences in terms of absolute Hodge classes.

Notation 1.192. Fix a field K algebraic over Q. Forany X,Y € P(K), we define
COI‘I‘AH()(7 Y) = CAH(X X Y)

Upon decomposing X into equidimensional components as| | ;-., X4, we may set the degree-i compo-
nent as . . B
Corryy(X,Y) = @D Cil(Xa x V).
d>0
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It is worthwhile to describe these correspondences cohomologically.

Definition 1.193 (absolute Hodge correspondence). Fix a field K algebraic over Q and X, Y € P(K).
Then an absolute Hodge correspondence of degree i is a triple ((f¢)e, far, (fs)o) as follows.

 For each prime /, the element f; is a Galois-invariant graded homomorphism H, (X, Q,) —
H (Yr, Qo) (0)-

+ The element f4r is a graded homomorphism H§y (X, C) — H3y (Y, C)(i) preserving the Hodge
structure.

« For each embedding o: K — C, the element f, is a graded homomorphism H? (X) — H2(Y)(3).
Further, we require f; and fqr to agree with f, after applying the suitable comparison isomor-
phism (Theorems 1.75 and 1.79).

Lemma 1.194. Fix a field K algebraic over Qand X,Y € P(K). The group Corry (X, Y) is isomorphic
to the vector space of absolute Hodge correspondences of degree i.

Proof. This is [DM12, Proposition 6.1]. We go ahead and decompose X = | |,., X4, where X, is equidi-
mensional of dimension d. The point is to describe how a correspondence should give rise to a morphism in
cohomology. To be explicit, our correspondences are just some classes in @, H3 "2%( X x Y) (i + d), which
the Kiinneth formula and Poincaré duality tell us give rise to elements in

HY P Xax Y)(i+d)= €  HL(Xa)(d) ®H(Y)()
p+q=2i+2d

= P HL(Xa)" @ HY(Y)(3)
— Hom (H,(Xa), HL(Y) (7)) -

This explains how Corrf; (X, Y’) embeds into the group of tuples ((f¢), far). (Note that the f, are uniquely
determined if they exist by the nature of the comparison isomorphisms.) It remains to characterize the im-
age, so pick up some f € Corr’y;;(X,Y), and we must describe what the image tuple must look like. Here
are our checks.

« Note f is a Hodge cycle by definition, so it must be in the (0,0) component in all the above equalities,
eventually causing the induced map fqr on de Rham cohomology to preserve the Hodge structures.

« Becauseour f € Corryy(X,Y) isrequired to be absolutely Hodge, it will come from a rational element
fo € H2+24(X x Y)(i) for each embedding o: K — C, from which the above equalities explain how
to produce morphisms f,: H,(X) — H,(X)(7). This explains why the f, exist.

« Lastly, because f arises rationally, it must be a Galois-invariant class, so because the equalities above
are Galois-invariant at each ¢, we conclude that the f;s are Galois-invariant at the end.

Conversely, given an absolute Hodge correspondence ((f¢), far, (f»)s), We may go backwards to produce

fe @, (X, x Y)(i +d), and the above checks are all reversible and thus tell us that the provided f is
an absolute Hodge class. |

Intuitively, if one can canonically produce a class for all of our known cohomology theories, we receive an
absolute Hodge class. Here are a few examples.
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Example 1.195 (Kiinneth projectors). For any pre-Weil cohomology H® and X € P(K) of dimension d
and index i € [0, 2d], the various projections

H*(X) —» H(X) < H*(X)

assemble into an absolute Hodge correspondence. Indeed, this follows from properties of each coho-
mology theory and their comparison isomorphisms. We call this absolute Hodge correspondence 7,
and we may identify it with an element in Corr®(X, X) by Lemma 1.194.

Example 1.196 (Poincaré duality). Fix a field K algebraic over Q and some X € P(K) which is equidi-
mensional of dimension d. Poincaré duality provides a perfect pairing

H3(X x X) = @D HL(X) @ B2 (X) > H2(X) 55 HY (pt) (—d),

which lives in Betti cohomology and is compatible for all of our cohomology theories. Thus, this perfect
pairing arises from some absolute Hodge class 1) € Corr~%(X x X, pt).

Example 1.197 (Hodge involution). Fix a field K algebraic over Q and some X € P(K) which is equidi-
mensional of dimension d. For each index i, there is * € Corran (X, X) such that the degree-(—i) com-
ponent induces an isomorphism

HY (X) — HZ*H(X)(d — 1).

Proof. This is the main content of [DM12, Proposition 6.2]. We use the Hard Lefschetz theorem [GH94,
p.122], whose statement we now recall. Upon choosing a projective embedding for X, we may find a generic
hyperplane whose intersection L with X is smooth of codimension 1. As such, L produces a cycle class
¢ € H2(X)(1). Then the Hard Lefschetz theorem asserts that the cup-product map

£ HEH(X) — HYTH(X) (4)
is an isomorphism for alli < d. As an application, we are able to deduce the Lefschetz decomposition: note
that £/ being an isomorphism implies that ¢! : H{*(X) — H{™2(X)(i + 1) is the first time one can see a
kernel, so we define the primitive cohomology
HY (X)) prim = ker (6771 HEH(X) — HIVP2(X) (i + 1))
as precisely this kernel. We now claim that
HG ™ (0) = B (X prian @ (H () (1)
for eachi < d. Indeed, note the left-exact sequence
0 — HE (X)) prim — HI /(X)) — HIFHH(X) (i + 1)

in fact is surjective on the right due to the Hard Lefschetz theorem providing a splitting map

HOH (X)) (i 4+ 1) & HEH(X)(—1) é Hj ™' (X).

Applying our claim inductively reveals that

HE00 = @ HE (X
>0
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for each i < d. Applying the Hard Lefschetz theorem once more grants the equality
HEP (X) = @ HT ™ (X prim (-,

j=0

but we can synthesize the prior two assertions into the single Lefschetz decomposition
Hi(X) = @ FH (X)prim(—5).
Jj=0

i-2j<d
We are now ready to define our operator *: for z € H! (X), this Lefschetz decomposition lets us expand
x=3 Pajforz; e H'" %7 (X) prim(—7), and then we define

*1' — Z (_1)(i—2j)(i—2j+1)/2£d—i+jxj
Jj>0
i—25<d

sothat*z € Hid_i(X)(d —4). This operator * is defined compatibly for all of our cohomology theories, so it
produces an absolute Hodge correspondence and so comes from an absolute Hodge class by Lemma 1.194.
Additionally, we see that * merely rearranges the Lefschetz decomposition up to a sign, so it is an isomor-
phism. |

Remark 1.198. The Hodge—Riemann relations [GH94, p. 123] show that the induced composite
G, (X) © Hy (X) — Hy(X) @ Hy*7(X)(d — 1) — Ho(pt)(—9)

is a polarization of Hodge structures. We remark that one can sum this polarization over different Xs,
so its existence (coming from an absolute Hodge class) no longer requires that X is equidimensional.

We now repeat the story of the previous section to construct a category of motives from absolute Hodge
classes. Let's take a moment to quickly review the constructions.

+ Pullbacks: any v € Corran(X,Y) gives rise to a morphism v*: Cau(Y) — Can(X) given by

7 (B) = pri.(yUpr; B),
where we are using the U product structure which exists on H{.

« Composition: any v € Corran(X,Y) and § € Corrau(Y, Z) can be composed via

d o7 =Dprig, (prigyUpras o).

The exact same proofasin Lemma 1.158 (replacing the use of the projection formula with Lemma 1.97
and base-change with base-change formulae in our cohomology theories) establishes Q-linearity and
associativity of o and that [['}] o [[']] = [I'] ;]. The same calculation aas in Remark 1.162 shows that o
is in fact a morphism of Z-graded groups.

While we're here, we note that (§ o 7)* = v* o §* allows one to see that we may as well just compose
the corresponding absolute Hodge correspondences.

» We may now define a category Cap (K) whose objects are given by h(X) for X € P(K)and morphisms
given by correspondences in degree 0. Then we still have a faithful, essentially surjective, additive
functor h: P(K)°P — Can(K). The same arguments asin Lemmas 1.163 and 1.164 show that Canu(K)
is additive (with h(X) x h(Y) = h(X UY)) and symmetric monoidal (with A(X) @ h(Y) = h(X ® Y)).

» We are now ready to define the category of effective motives as Mota(K) = Split(Can(K)), which is
now also Karoubian. For example, one can use the idempotents m; from Example 1.195 to define

(X)) = (h(X), ).
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» Lastly, by adding in Tate twists, we may define the category of motives Motg(K') as the category of
triples (X, p, i) where X € P(K)and p € Corrdy (X, X) is an idempotent and i € Z. Here, morphisms
are given by o

HomMot@(K)((vaa i)v (Yv Qaj)) =4qo COH‘]A;IZ(Xv Y) op.

This category is still Q-linear, and the argument of Remark 1.180 shows that it is still Karoubian. We
continue to set T := (pt,id, 1) and L := (pt, id, —1) to be the Tate and Lefschetz motives respectively,
and we remark that the exact same argument as in Example 1.184 shows that L is an effective motive.
As such, the argument of Lemma 1.185 verifies that Motg(K) is additive.

Remark 1.199. Later on, it will be useful to note that any embedding K’ C K’ of fields gives rise to a fully
faithful base-change functor Motg(K) — Motg(K’). To check that this functor is fully faithful, we are
implicitly using Remark 1.189: we need to know that extending K does not actually affect the rational
subspace of absolute Hodge classes. By construction, we can also see that this functor is linear, and it
will preserve the symmetric monoidal structure of Proposition 1.206 once we get there.

Our present goal is to show that Motg(K) is a neutral Tannakian category, for which we will use Theo-
rem 1.132; later, we will also want to place Motg(K) in a Tate triple. Let's begin by showing that Motg (X)
is semisimple abelian. Here is a general test which explains how to do this upgrading.

Lemma 1.200. Let C be a Q-linear, additive, Karoubian category. Suppose that End¢(X) is a finite-
dimensional semisimple algebra for all X € C. Then C is a semisimple abelian category.

Proof. Thisis [Jan92, Lemma 2]. We proceed in steps.

1. We note that any object X € C is a sum of finitely many indecomposable objects. Indeed, End¢(X) is
a semisimple algebra, so Wedderburn's theorem allows us to write it as a product

Ende(X) 2 M,, (A1) x -+ x My, (Ag)

of matrix algebras over division algebras. Expanding End¢(X) out as a product like this produces an
idempotent decomposition of id x, so Remark 1.166 (recall C is Karoubian!) shows

XEX10- & Xy,

where X, is the image of the idempotent in End¢ (X)) which corresponds to the identity in M,,, (A4, ); in
particular, End¢(Xe) = M, (A.). (We can see this on the level of the construction of Split(C), which
must be canonically equivalent to C.) Next, we let Y, be the projection of X, along the idempotent in
M., (As) which is the elementary matrix E1;. The idempotent decomposition 1,,, = E11+ -+ En n,
can be plugged into Remark 1.166 to show

X, 2 Y.
We now have End¢(Y.) = A.. Because 4, is a division algebra, it has no idempotents other than 0 and

1, so Y, must be indecomposable.

2. The main claimis that X 2 Y if and only if Hom¢ (X, Y") # 0 for any indecomposable X, Y € C. Let's
quickly explain why the main claim implies the result.

« We check that every morphism has a kernel and cokernel. Using the previous step, we may sup-
pose that our morphism f is between the objects @], Xi@}“ and @, Xf% for some indecom-
posables X, and sequences k, and ¢, of nonnegative integers. But the hypothesis implies that
the different indecomposables have no interaction with each other, so

Homg (é X Pk é X?fi> = é My, 1, (Ende X;),

=1 i=1 i=1
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so we can realize f as an n-tuple of matrices over division algebras. Doing some row-reduction
(which amounts to changing bases of the X ?*s and X ®“s) lets us put the matrix form of f into a
row-reduced Echelon form, from which one can read off a kernel and cokernel for f as one does
for vector spaces.

« We check that every monomorphism is a kernel; the check that every epimorphism is a coker-
nel is essentially the same. As in the previous point, we may write our morphism f as some map
fr @, XP - @7, X% inamatrixform, which we may put into row-reduced Echelon form.
Note then that all diagonal entries of all matrices must be nonzero, for otherwise f has a non-
trivial kernel, so f will fail to be a monomorphism. It follows from the row-reduced Echelon form
that k; < ¢; for each i, and f is simply embedding X{*** into the first k; coordinates of X®“ . In
particular, f will then be the kernel of projection

=1 =1

away from these coordinates.

« We check that C is semisimple. By the previous step, it is enough to check that every indecom-
posable object X € C is actually simple. Well, any nontrivial map X’ — X must have quotient
0. Indeed, after decomposing X’ into indecomposables, we may assume that X’ is indecompos-
able. But now the main claim implies X’ 2 X, so because End¢(X) is a division algebra (by the
previous step) and so the map X’ — X is an isomorphism.

3. It remains to prove the main claim. Certainly X = Y implies Hom¢(X,Y) # 0, so we merely must
show the converse. As such, suppose that Hom¢ (X, Y") # 0. Observe that we will be done as soon as
we know that thereare f: X — Y andg: Y — X suchthat gf # 0or fg # 0; take gf # 0 because the
other case is similar. Well, because X is indecomposable, End¢(X) is a division algebra (see the first
step), so gf € EndC(X) has aninverse, so f: X — Y has a left inverse given by ¢’ :== (gf)~'g. Thus,
Example 1.171 tells us that Y decomposes into X = im f¢’ plus another object im(1 — f¢’), but then
X 2 Y isforced because Y is indecomposable.

It remains to show that such f: X — Y and g: Y — X exist. This will require a trick. As in the first
step, we may view End¢ (X @ Y') as some algebra 2 x 2 matrices

{ [Z Z] - a € End¢(X),b € Home (Y, X), ¢ € Home (X, Y), Home (Y, Y)} .

Now, consider the subgroup

N ::{[2 8} e Homc(X7Y)}.

This subgroup N is nonzero and nilpotent, so because End¢(X @ Y), it cannot be an ideal! Thus, we
must be able to find morphisms such that

aq bl 0 0 as b3
|:Cl d1:| |:CQ 0:| |:03 dg] ¢ N

A quick calculation shows that this matrix is [Ziiigz Zi‘ézgg |, s0bica # 0 or cobs # 0, as needed. |

Remark 1.201. We needed to assume that C was additive in order to be able to write down the sum
X @Y. This seems to be the only place where we need to use the existence of arbitrary finite sums.

Thus, we would like to check that Endya, (k) (M) is a finite-dimensional semisimple algebra for each M €
Motg(K). Finite-dimensionality is easy.
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Lemma 1.202. Fix a field K algebraic over Q. Forany M € Motg(K), we have

dimg Endpetg (k) (M) < 00.

Proof. Write M = (X, p,4), and then
Endyiorg (1) (M) € Corrfy (X, X)

by construction, so we are reduced to checking that dimg Can(X) < coforany X € P(K). Well, for any fixed
index i and embedding o: K — C, the space Can(X) is contained in the image of HE (X)(4) in H3!(X)(4),
and dimg H% (X)(i) < oo by properties of Hy. [ |

To check that Endyet, (k) (M) is semisimple will require a trick: we will use polarizations.

Lemma 1.203. Fix a Q-algebra A. Suppose that there is an involution (-)f: A°? — A such that aa! # 0
forallnonzero a € A. Then A is semisimple.

Proof. We will show that any nonzero two-sided ideal I C A fails to be nilpotent. Define the function

N: (I\{0}) = (£ \{0}) by
N(a) = aal

We are given that N is well-defined. Note that N(a)l = N(a) for each a, so N becomes squaring on its
image. We conclude that all iterated squares of any b € im N continue to be nonzero, soim N C I'\ {0} fails
to be nilpotent. |

Lemma 1.204. Fix a field K algebraic over Q. For any M € Motq(K), the algebra Endyioty (k) (M) is
semisimple.

Proof. We proceed in steps.

1. Wereduce to the case of M of the form h(X). Indeed, we may write M = (X, p, i), from which we find
that

EndMotQ(K) (M) =po EndMotQ(K)(h(X)) op.

Now, if we know that Endyret, (k) (h(X)) is semisimple, we may use Wedderburn's theorem (finite-
dimensionality follows from Lemma 1.202) to write it as a product

EndMotQ(K)(h(X)) = ]\4711 (Al) X X Mnk (Ak)

of matrix algebras of division algebras. Our idempotent p can now be viewed as some tuple of idem-
potent matrices in the M,,, (A,)s. After base-changing from Q to C, we see that each of these matrices
can be upper-triangularized and is thus diagonalizable with eigenvalues in {0, 1} because pis an idem-
potent; by searching for this eigenbasis over Q, we see that p is still diagonalizable over Q. It follows
that Endyier, (k) (M) is isomorphic to a product of submatrix algebras from the given product, so it
continues to be semisimple.

2. We show that Endyot, (k) (A(X)) = Corr’(X, X) is semisimple. We will use Lemma 1.203. For each i,
let¢); be the polarization of H? (X') defined in Remark 1.198 by using the Hodge involution and Poincaré
duality. Polarizations are perfect pairings, so any v € CorrQ (X, X) induces a pullback map v* €
End(H$ (X)), which then must have a unique transpose map (y')* € End(H$ (X)) satisfying

iy o, Bi) = i (i, (V)" Bi)
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foranyi € Z and a;,3; € Hi(X). The uniqueness (plugged into Lemma 1.194) shows that (y7)*
arises rationally and is compatible with all of our cohomology theories, so it comes from an element
in Corr g (X, X).

The ambient uniqueness shows that v — 7T is Q-linear, involutive, and we can see that (v6)" = §f4f

by a computation with the uniqueness. To apply Lemma 1.203, it remains to check that 4! # 0 for
each nonzero +. It is enough to find «, 8 € H$ (X)) such that

¥ (a, () B) =¥ (v, v B)

is nonzero. It is enough to check this on the de Rham component where i) becomes a polarization,
and then we may as well base-change everything from Q to R. In particular, we may take « # 0 and
B = v/—1la (where v/—1 acts on H, (X)g via the Hodge structure), so the fact that 7%y is a morphism
of Hodge structures shows that the above value will be positive by the positive-definiteness of . W

Proposition 1.205. The category Motg(K) is a Q-linear, semisimple, abelian category.

Proof. The category Motg(K) is already Q-linear, additive, and Karoubian essentially by its construction, so
we may plug Lemmas 1.202 and 1.204 into Lemma 1.200. |

We have completed our first major check leading up to the application of Theorem 1.132 showing that
Motg(K) is a neutral Tannakian category. Next up, we will show that Motg(K) has a symmetric monoidal
structure.

Proposition 1.206. Fix a field K algebraic over Q. The category Motg(K') has a symmetric monoidal
structure.

Proof. Repeating the proof of Lemma 1.181, we may simply define
(X,p,1) © (Y, q,5) = (X XY, p xq,i+j)

For example, we can see that the unit should be given by (pt, id, 0). The associativity coherence will be in-
duced by the associativity of the fiber product (and addition in Z), but Remark 1.182 explains that we should
be slightly careful with the commutativity coherence. Because we have Kiinneth projectors (Example 1.195),
we may expand

ph(X)(i) = @ph"(X)(i)  and  qh(Y)(j) = P " (YV)(),

so we define the commutativity constraint (X, p,?) ® (Y,q,5) = (Y,¢,j) ® (X,p, ) to be the obvious signs
multiplied by the sign (—1)™" on each of the above graded pieces. |

And let's complete the proof.

Theorem 1.207. Fix a field K algebraic over Q. The category Motg(K) is neutral Tannakian. In fact, for
each embedding o: K < C, the Betti cohomology functor H? induces a fiber functor w,.
Proof. We use Theorem 1.132 with w = HY.. Explicitly, H? is extended to Motg(K') by
wg (X, p, 1)) = poHg (X)(i),

where the notation p, comes from viewing p as an absolute Hodge correspondence via Lemma 1.194. Func-
toriality for absolute Hodge correspondences grants functoriality for H¢.°

6 Formally, one ought to appeal to Lemma 1.167 and then explain functoriality with the Tate twist by hand. We will not bother.
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Proposition 1.205 has shown that Motg(K) is already a Q-linear abelian and semisimple category, and
Proposition 1.206 gives it the structure of a symmetric monoidal category. Continuing, we note that the
functor HY is certainly Q-linear and faithful (see Lemma 1.194), and HY, is exact because Motg(K) is already
semisimple and H? preserves sums because it is additive.

We now must check (i)—(iv) of Theorem 1.132. For (i), the Kiinneth formula explains why H? preserves
products. For (ii), the construction of the symmetric monoidal structure explains that H? successfully pre-
serves the commutativity and associativity constraints; we refer to Remark 1.182 to explain why GrAlgg,
requires the sign in the commutativity constraint. Additionally, for (iii), we note H? (pt) = Q, and one can
check that the unit constraints are all preserved by H? because they are all given by the canonical isomor-
phismpr;: X x pt — X.

Lastly, for (iv), it remains to understand the objects (X, p, i) € Motg(K') such that dimg HS. ((X, p,¢)) = 1.
We may as well assume that i = 0 because it will not affect the dimension, and (X, p,0) admits an inverse if
and only if (X, p,i) = (X, p,0) ® T®" admits an inverse. Upon decomposing X into equidimensional pieces
as X =| |, Xqgwhere X is equidimensional of dimension d, we see that Poincaré duality (via Example 1.196)
gives a morphism

h(X) @ @ h(Xa)(d) — pt
d>0
M=
which produces the Poincaré duality pairing upon applying H? (or H?). Now, setting ¢ := 1 — p allows a
decomposition h(X) = ph(X) & gh(X). Letting p’ and ¢’ be the dual maps (on H} or HZs) via Poincaré
duality, we see that they produce absolute Hodge correspondences by the coherences, so we receive a dual
decomposition M' = p’ M’ @& ¢’ M’. Namely, the induced map ph(X)®p’ M’ — pt willinduce a perfect pairing

poH3(X) @ p, HE (M) — Hy (pt).

For example, this implies that dimg p/, HS(M') = 1. Lastly, because H? is faithful, we conclude that the
induced map ph(X) ® p’ M’ — pt is an isomorphism. This completes the check (iv) of Theorem 1.132 and
thus the proof. |

Remark 1.208. The fiber functor w, : Motg(K) in fact factors through HSg. To begin, note p,H? (X)(4)
is arational Hodge structure because H® (X) and T are, and p,, is an endomorphism of Hodge structures
(because pqr is by Lemma 1.194). Furthermore, any morphism f: (X, p,i) — (Y, q, j) of motives arises
from an absolute Hodge correspondence, which does induce a morphism of rational Hodge structures
upon passing through w, because f4r preserves Hodge structuers (by Lemma 1.194).

Remark 1.209. One can repeat this proof for ¢-adic or de Rham cohomology, provided that we base-
change Motg(K) to the corresponding F-linear category Mot ¢ (K), where F'is the coefficient field. In
particular, each prime ¢ has Hg, induce a fiber functor w,: Motg,(K) — Vecg,. But now, w, actually
factors through Repg, Gal(K /K): the proof is the same as in Remark 1.208, where the main point is
that ¢-adic cohomology produces Galois representations, and our absolute Hodge correspondences
specialize to Galois-invariant maps by their definition.

Remark 1.210. We remark that wy is naturally isomorphicto (-)g, ow,. Indeed, this follows from the fact
that the comparisonisomorphism Theorem 1.79 is anisomorphism of Weil cohomology theories, so we
can see (by hand, via the constructions suggested in Theorem 1.207) that the comparison isomorphism
induces a natural isomorphism (-)g, 0 w, = wy.

While we're here, we remark that we can upgrade these things to Tate triples.

Corollary 1.211. Fix a field K algebraic over Q. The Kiinneth decompositions induce a Z-grading w on
Motg(K), thus making (Motg(K), w, T) into a Tate triple.
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Proof. We already know Motg(K) is neutral Tannakian by Theorem 1.207, and we are going put T in weight
—2, so the main content of the argument arises from defining the weight grading. For any effective motive
ph(X) € Motg(K), we claim that
? i
ph(X) £ @ phi(X).
i€z
Indeed, p is induced by an absolute Hodge correspondence h(X) — h(X), so p has degree 0, meaning that
all the induced maps on cohomology preserve the degree. Thus, the map @, , ph*(X) — ph(X) is an iso-
morphism on each of our cohomology theories, so its inverse also succeeds at being an absolute Hodge
correspondence because the uniqueness of the inverse provides the needed compatibility. The equality fol-
lows.
Our weight grading is now given by the decomposition

ph(X)(n) = @ ph™**"(X)(n).
i€z
(In particular, T sits in weight —2.) Here are the needed checks on this grading.

+ Functorial: a morphism ph(X)(n) — g¢h(Y)(m) of motives arises from an absolute Hodge corre-
spondence v of degree m — n. Such an absolute Hodge correspondence arises from graded maps
pH*(X)(n) — gH*(Y)(m) on our cohomology. We conclude that our absolute Hodge correspondences
preserve the Kiinneth projectors (we are implicitly using some functoriality) and thus the gradings.

» Tensor: given two motives ph(X)(n) and ¢h(Y)(m), their tensor product has been given by
ph(X)(n) @ ¢h(Y)(m) = (p x Q)h(X x Y)(n +m).

The Kiinneth isomorphism for our cohomology theories upgrades to an absolute Hodge correspon-
dence by its compatibility, thereby ensuring

ph(X)(n) @ qh(Y)(m) = @phi(X)(n) ® gh? (Y)(m).

Thus, for any k, the degree-k piece on the right-hand side is given by
(Ph(X)(n) @ gh(Y)(m)x = €D ph'**"(X)(n) @ ¢h? ™ (V) (m),
itj=k

as required. |

Remark 1.212. In fact, for any embedding o: K < C, the functor w, is a morphism of Tate triples
(Motg(K),w, T) — (HSg,w, Q(1)). Of course, T goes to Q(1), so it remains to check that w, preserves
the weight gradings. But this is basically by construction: for any motive ph(X)(n), we have

poHS(X)(n) = P poH " (X)(n)
1€EZ

because p,, is a morphism of rational Hodge structures.
Remark 1.213. The category imw; C Repg, Gal(K/K) now has an induced weight grading by simply

porting over the weight grading from Motg(K'). Noting that wy(T) = Q¢(1) by construction of wy, we
find that wy: Motg(K) — im w, upgrades to a morphism of Tate triples.

We have thus completed the main content of the present subsection. Of course, even though we have found
that Motg(K) is neutral Tannakian, this does not make it easy to understand; for example, it is highly non-
obvious what the corresponding affine group should be. We close this section with the easiest nontrivial
subset of this question.
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Definition 1.214 (Artin motive). Fix a field K algebraic over Q. The category Mot&(K) of Artin motives

is the full ®-subcategory
(h(X) : dim X = 0)® .

Example 1.215. Fix a field K algebraic over Q. The functor Mot%(K) — Repg Gal(K/K) defined by
extending h(X) — Mor(X (K), Q) is an equivalence.

Proof. Thisis [DM12, Proposition 6.17]. For brevity, we will set G := Gal(K/K). We proceed in steps.

1. Define the category C%;;(K) as the full subcategory of Can(K) given by 0O-dimensional varieties. Let's
begin by defining a fully faithful functor w: C3(K) — RepgG on objects. Well, for any choice of
embedding o: K < C, we note that

HZ (X) = Mor(X(K),Q),

and this embedding is independent of the choice of o: we are simply getting a copy of Q in degree 0
for each geometric point. Note that the right-hand side is a permutation representation of a quotient
of G (note #X(K) < oo because X is proper and zero-dimensional), so this does in fact produce an
objectin Repg G.

2. We explain why the functor w: C;(K) — RepgG is well-defined and fully faithful. Well, for X,Y" €
€% (K), an absolute Hodge correspondence f in Corr (X, Y) amounts to a special map H% (X) —
H$, (V) satisfying some properties and arising from Betti cohomology. By the previous paragraph, aris-
ing from Betti cohomology is equivalent to saying that f arises from a linear map

r(f): Mor(X(K),Q) — Mor(Y (K),Q).

As for the extra properties, we note that the de Rham part fyr automatically preserves the relevant
Hodge structure because everything is already supported in degree (0,0), and we note that f, being
Galois-invariant is equivalent to r(f) being Galois-invariant. We conclude that r induces an isomor-
phism o o

Corrd g (X,Y) — Morg (Mor(X(K),Q),Mor(Y (K),Q)).

3. Now, Repg G is Karoubian (indeed, it is abelian), so w uniquely extends to the Karoubian envelope
Split (C] 4 (K)) of C{(K). We claim that the essential image imh C Motg(K) of Split (C(K)) is
exactly Mot?Q(K). For this, we should show that im & is already a right abelian symmetric monoidal
subcategory.

Well, the same argument as in Proposition 1.205 explains that Split (C$ (X)) and hence im £ is semi-
simple abelian. Further, the construction of the symmetric monoidal structure in Proposition 1.206
explains that im £ is also closed udner ®. Lastly, the proof of Theorem 1.207 shows that the dual of
h(X)is h(X)(dim X) = h(X) (with the perfect pairing given by Poincaré duality), so im A is rigid.

4. The previous steps have shown that the fiber functor w, of Mot&(K) upgrades to a fully faithful functor
We: Mot&(K) — Repg G. It remains to show that this last functor is essentially surjective.

To begin, we claim that the representation Mor (.S, Q) is in the essential image, for any S € FinSet(G).
Indeed, Grothendieck's theory of the étale fundamental group establishes that 7$t(Spec K) = G (es-
sentially reformulating Galois theory), meaning that taking geometric points produces an equivalence
of categories from the category of finite étale covers of Spec K to the category FinSet(G). Namely,
there is some smooth projective zero-dimensional scheme X over Spec K such that X (K) = S as
G-sets, implying that

wo ((X)) = Mor(S, Q).

Thus, Mor (S, Q) is in our essential image.
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It remains to show that the representations Mor(S,Q) € Repg G generate the category. Indeed, any
representation V of G has an open stabilizer H C G, so V descends to a representaiton of G/H. But
G/H is afinite group, so Repy G/ H is generated by the regular representation, which is a permutation
representation, thereby completing the proof; explicitly, we have V € (Q[G/H])®. [ ]
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CHAPTER 2
ABELIAN VARIETIES

Hold tight to your geometric motivation as you learn the formal
structures which have proved to be so effective in studying
fundamental questions

—Ravi Vakil [Vak23]

In this chapter, we gather together all the results about abelian varieties we need. Many of the results in
the earlier sections discussed here can be found in any reasonable text on abelian varieties such as [Mum74;
Mil08; EGM]. Results in the later sections are more specialized, and we will provide references when appro-
priate. Ultimately, our goal is to define ¢-adic monodromy groups, explain why one might care about them,
and indicate how one might compute them.

2.1 Definitions and Constructions

In this section, we set up the theory of abelian varieties rather quickly. We will usually only indicate proofs
that work in the complex analytic situation because the general theory usually requires intricate algebraic
geometry.

2.1.1 Starting Notions
Let's begin with a definition.
Definition 2.1 (abelian variety). Fix a ground scheme S. An abelian scheme A over S is a smooth pro-

jective geometrically integral group scheme over S. An abelian variety A is an abelian scheme over a
field.

Remark 2.2. Throughout, we will work with abelian varieties instead of abelian schemes as much as
possible. However, one should be aware that many of the results generalize.

Here, a group variety refers to a group object in the category of varieties over K.

71



2.1. DEFINITIONS AND CONSTRUCTIONS SATO-TATE GROUPS OF GENERIC CURVES

Remark 2.3. With quite a bit of work, one can weaken the hypotheses of being an abelian variety quite
significantly. For example, arguments involving group varieties are able to show that being connected
and geometrically reduced implies geometrically integral, and it is a theorem that one can replace pro-
jectivity with properness. See [SP, Remark 0H2U] for details.

Here are the starting examples.

Example 2.4 (elliptic curves). Any (smooth) cubic equation cuts out a genus-1 curve in P2, If the curve
has points defined over K, this defines an elliptic curve, which can be shown to be an abelian variety.
The interesting part comes from defining the group structure. One way to do this is to show that the
map E — PicOE/K given by x — [z] — [c0] is an isomorphism of schemes and then give E the group
structure induced by PicQE/K. (Here, Pic(};/K is the moduli space of line bundles over E of degree 0.
Smoothness of the curve makes this in bijection with divisors of degree 0.)

Example 2.5. Fix a positive integer g > 0. If A C CY is a polarizable sublattice, then C9/A defines an
abelian variety over C. Here, polarizable means that there is an alternating map ¢: A x A — Z such that
the pairing

(z,y) = Yr(z,iy)

on Ag is symmetric and positive-definite. (As worked out in [Mil20b, Section I.2], this is equivalent data
to a polarization on the Hodge structure A = HP(A,Z).) The requirement of polarizability is used to
show that the quotient C9/A is actually projective; see [Mum74, Section 3, Theorem].

It is notable that we have not required our abelian varieties A to actually be abelian even though (notably)
both examples above are abelian. Indeed, abelian varieties are always abelian groups, which follows from
an argument using the Rigidity theorem. We will not give this argument in full because we will not use it,
but we state a useful corollary.

Proposition 2.6. Let ¢: A — B be a smooth map of abelian varieties over a field K. Then ¢ is the
composition of a homomorphism and a translation.

Proof. By composing with a translation, we may assume that ¢(0) = 0. Then one applies the Rigidity theo-
rem to the map ¢: A x A — B defined by

p(a,a’) = pla+d) — p(a) — ¢(a)

to find that ¢ is constantly 0, completing the proof. See [Mil08, Corollary I.1.2] for details. |

Corollary 2.7. The group law on an abelian variety A is commutative.

Proof. Theinversionmapi: A — A onan abelian variety sends the identity to itself, so Proposition 2.6 tells
us that ¢ must be a homomorphism. It follows that the group law is commutative. |

In particular, we find that morphisms between abelian varieties are rather strutured: we are allowed to ba-
sically only ever consider homomorphisms!

It will turn out that considering abelian varieties up to isomorphism is too strong for most purposes, so
we introduce the following definition.
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Definition 2.8 (isogeny). A morphism ¢: A — B of abelian varieties over a field K is an isogeny if and
only if it is a homomorphism satisfying any one of the following equivalent conditions.

(@) ¢ issurjective with finite kernel.

(b) dim A = dim B, and ¢ is surjective.

(c) dim A = dim B, and ¢ has finite kernel.
(d) ¢isfinite, flat, and surjective.

The degree of the isogeny is # ker ¢ (thought of as a group scheme).

Remark 2.9. Let’s briefly indicate why (a)-(d) above are equivalent; see [Mil08, Proposition 7.1] for
details. A spreading out argument combined with the homogeneity of abelian varieties implies that

dim B = dim A + dim o~ ({b})

forany bin the image of ; this gives the equivalence of (a)—(c). Of course (d) implies (a) (one only needs
the finiteness and surjectivity); to show (a) implies (d), we note flatness follows by “miracle flatness”
because all fibers have equal dimension, and finiteness follows because finite kernel upgrades to quasi-
finiteness.

Intuitively, an isogeny is a “squishy isomorphism.”

Example 2.10. Any dominant morphism of elliptic curves sending the identity to the identity is an iso-
geny.

Example 2.11. In the complex analytic setting, an isogeny of two abelian varieties A = C?/A and B =
C?/A’ amounts (up to change of basis) an inclusion of lattices A’ C A.

Example 2.12. Fix any abelian variety A. For any nonzero integer n, the multiplication-by-n endomor-
phism [n]4: A — Aisanisogeny. Tosee this, note thatitis enough to check that A[n| := ker[n] 4 is finite.
In the complex analytic situation where A = C9/A, this follows because 1 A/A is finite; in general, one
must show that A[n] := ker[n] 4 is zero-dimensional, which is somewhat tricky. See [SP, Lemma 0BFG]
for details. We remark that one can compute deg[n]4 = d?>9™4, which is again not so hard to see in the
complex analytic situation.

Motivated by the complex analytic setting (and the “squishy isomorphism” intuition), one might hope that
one can recover weak-ish inverses for isogenies. This turns into an important property of abelian vari-
eties.

Lemma 2.13. Fix an isogeny ¢: A — B of abelian varieties of degree d. Then there exists an “inverse
isogeny” 8: B — A such that

aof=[dBg,
ﬂoa:[d}A.

Proof. By some theory regrading group scheme quotients, it is enough to check that ¢ factors through [d] 4,
which holds because ker ¢ has order d as a group scheme and thus vanishes under [d] 4. |
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Remark 2.14. As usual, we remark that the above lemma is easier to see in the complex analytic situa-
tion, but the key point of trying to factor through [d] 4 remains the same.

Lemma 2.13 motivates the following definition, and it codifies our intuition viewing isogenies as squishy
isomorphisms.

Definition 2.15 (isogeny category). Fix a field K. We define the isogeny category of abelian varieties
over K as having objects which are abelian varieties over K, and a morphism A — B in the isogeny
category is an element of Homg (A4, B)g.

We close our discussion of isogenies with one last remark on the size of kernels.

Remark 2.16. If p: X — Y is a finite separable morphism of varieties, then a spreading out argument
shows that the number of geometric points in a general fiber of ¢ equals the degree of ¢. Applied to
isogenies, the homogeneity of abelian varieties is able to show that the number of geometric points in
the fiber of any separable isogeny equals the degree.

Example 2.17. Here is an application of Remark 2.16: if char K { n, then one can show that A[n] has
n2dimA geometric points. Again, this is not so hard to see in the complex analytic setting. The hypoth-
esis char K t n is needed to show that [n] 4 is separable; in general, the argument is trickier and can (for
example) use some intersection theory [Mil08, Theorem 1.7.2].

Now that we have a reasonable category, one can ask for decompositions. Here is the relevant result and
definition.

Theorem 2.18 (Poincaré reducibility). Fix an abelian subvariety B of an abelian variety A defined over a
field K. Then there is another abelian subvariety B’ C A such that the multiplication map induces an
isogeny B x B’ — A.

Proof. As usual, we argue only in the complex analytic case. Here write A = V/A for complex affine space
V', and we find that B = W/(A N W) for some subspace W C V. Now, the polarization induces a Hermitian
form on V, so we can define W’ := W+ so that B’ := W’/(A N W) will do the trick. For more details, see
[Mil20b, Theorem 2.12] for more details. [ |

Definition 2.19 (simple). Fix a field K. An abelian variety A over K is simpleif and only if it is irreducible
in the isogeny category.

Remark2.20. Theorem 2.18 implies that any abelian variety can be decomposed uniquely into a product
of simple abelian varieties, of course up to isogeny and permutation of factors.

2.1.2 The Jacobian

In this thesis, the abelian varieties of interest to us will be Jacobians. There are a few approaches to their
definition, which we will not show are equivalent, but we refer to [Mil08, Chapter Ill] for details. The most
direct definition is as a moduli space.

Definition 2.21 (Jacobian). Fix a smooth proper curve C over a field K such that C(K) is nonempty.

Then the Jacobian Jac C' is the group variety Pic%/K, where Pic%/K is the moduli space of line bundles
on C with degree 0.
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Remark 2.22. We will not check that we have defined an abelian variety, nor that we have even defined a
scheme. There are interesting questions regarding the representability of moduli spaces, which we are
omitting a discussion of. Milne provides a reasonably direct construction in [Mil08, Section I1l.1], but
we should remark that one expects representability to be true in a broader context. In particular, there
are formal ways to check (say) properness of Pic%/K, from which it does follow that we have defined an
abelian variety.

Remark 2.23. One can actually weaken the smoothness assumption on C' to merely being “compact
type.” This is occasionally helpful when dealing with moduli spaces because it allows us to work a little
within the boundary of the moduli space of curves.

Remark 2.24. Notably, Example 2.4 tells us that the Jacobian of a curve is F itself.

Note that the assumption C'(K) # & allows us to choose some point co € C(K) and then define a map
C(K) — JacC by p — [p] — [cc]. This map turns out to be a regular closed embedding [Mil08, Proposi-
tion 2.3]. It is psychologically grounding to see that this map is universal in some sense.

Proposition 2.25. Fix a smooth proper curve C over a field K such that C'(K) # @. Choose oo € C(K),
and consider the map +: C' — JacC given by «(p) := [p|] — [oc]. For any abelian variety A over K and
smooth map ¢: C — A such that p(c0) = 0, there exists a unique map ¢: JacC — A making the
following diagram commute.

C —— JacC

Sk

A

Proof. We will not need this, so we won't even point in a direction of a proof. We refer to [Mil08, Proposi-
tion 111.6.1]. |

It is worthwhile to provide a complex analytic construction of the Jacobian. Given a curve C, line bundles are
in bijection with divisor classes, and divisor classes of degree 0 can all be written in the form Zle ([P]—1Q4))
for some points P;,Q1,..., P, Qr € C(C). One can take such a divisor and define a linear functional on
H'(C,Qp) by

k P;
W = E / Ww.
=1 g

The construction of this linear functional is not technically well-defined up to divisor class; instead, one can
check that changing the divisor class adjusts the linear functional exactly by the choice of a cycle in HP(C, Z)
embedded into H' (C, Q)" via the integration pairing. In this one way, one finds that

Hl(c Ql)\/
Jac O(C) = G
0= Tc.2)

In particular, we have realized Jac C explicitly as a complex affine space modulo some lattice, exactly as

in Example 2.5. (One sees that rankz HP(C,Z) = dimg H'(C, Q)" by the Betti-to-de Rham comparison
isomorphism.) This construction makes it apparent that

HE(JacC(C),Z) = HE(C, 7).

This is in fact a general property.
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Proposition 2.26. Fix a smooth proper curve C over a field K such that C'(K) # @. Choose oo € C(K),
and consider the map ¢: C' — Jac C given by ¢(p) = [p] — [o0]. Then the induced map

o H (JacC) — HY(C)

is an isomorphism, where H is any of the Weil cohomology theories of section 1.3.1.

Proof. The proof requires analyzing each cohomology theory individually. Above we outlined the proof
when H is Betti cohomology, and we note that the result follows for de Rham cohomology by the com-
parison isomorphism. [ ]

Corollary 2.27. Fix a smooth proper curve C over a field K such that C(K) # @. Then dim Jac C equals
the genus of the curve C.

Proof. Again, this is easy to see in the complex analytic case from the explicit construction. In general, one
can read off the dimension of an abelian variety A from dim H!(A) and then apply Proposition 2.26. [ |

2.1.3 The Dual

Even though we will technically not need it, we take a moment to discuss duality and polarizations of abelian
varieties; we do want to understand these notions so that we can make sense of the Weil pairing. Motivated
by the utility of the Picard group in defining the Jacobian, we make the following definition.

Definition 2.28 (dual abelian variety). Fix an abelian variety A over a field K. Then we define the dual
abelian variety A" as the group scheme Pic, ;- over K.

Remark 2.29. As usual, we will not check that A is an abelian variety or even a scheme, but it is. (The
ingredients that go into these arguments will not be relevant for us.) We refer to [EGM, Chapter 6] for
these arguments, in addition to the useful fact that dim A = dim A".

Remark 2.30. It is worthwhile to note that, in the complex analytic situation, there already is a notion of
a dual abelian variety. If A = V/A is an abelian variety, then AY = V*/A*, where V* is the vector space
of conjugation-semilinear functionals V* — C, and A* consists of the functionals which are integral
on A. ltis rather tricky to explain how this definition relates to the one above, so we will not do so and
instead refer to [Ros86, Section 4].

It is worth our time to explain why this is called duality. To begin, there is a duality for morphisms.

Lemma 2.31. Fix a homomorphism f: A — B of abelian varieties over a field K. Then there is a dual
homomorphism fV: BV — AV,

Proof. We define the homomorphism on geometric points. Then a point ofl.?v(?) isaline bundle £ on B,
which we can pull back to a line bundle f*£ on A, which is a point of A" (K). |

Lemma 2.32. Fix an abelian variety A over a field K. Then there is a canonical isomorphism A — AV,

76



2.1. DEFINITIONS AND CONSTRUCTIONS SATO-TATE GROUPS OF GENERIC CURVES

Proof. We sketch the construction of the map and refer to [EGM, Theorem 7.9] for details. Because AY
is a moduli space of line bundles, there is a universal Poincaré line bundle P4 on A x AV. Unravelling the
definition of A, we see that morphisms S — A" correspond to line bundles on A x S. Turning this around,
we thus see that we can view P4 as a family of line bundles on A parameterized by A and thus providing a
map A — AVV. This map is the required isomorphism. [ |

Most of the utility one achieves from the dual is that it allows us to the complex-analytic notion of a polariza-
tion into algebraic geometry. As in Remark 2.30, we view A = V/A as a complex torus, and the dual abelian
variety AV can be realized concretely as some V*/A*. Now, a polarization of A refers to a polarization of
A = HB(A,Z), which as mentioned in Example 2.5 has equivalent data to an alternating form¢: A@ A — Z
such that the bilinear form

<1’, y> = 1/’]1&(33, Zy)

on Ag is symmetric and positive-definite. But now we see that this choice of ¢) determinesa map 4 — AV
given by v — (v, ).

Thus, we would like our polarizations some kind of map A — AY. However, we need to keep track of
all the adjectives that ¢ had in order to make this an honest definition. For example, perhaps we want to
keep track of the constraint that v is alternating. To do so, we use cohomology. We will shortly explain
in Theorem 2.98 that the cup product provides an isomorphism A2H(A, Z) — H2(A,Z), which induces an
isomorphism

Homy (A%A,Z) = H?*(A,Z)

upon taking duals. Thus, ¢ being an alternating form can be traced backed to it coming from a class in
H2(A,Z).

Continuing, perhaps we want to keep track of the constaint that (-, -) is symmetric. This is equivalent to
having ¢ (iz,iy) = ¥ (x,y), which turns out to be equivalent to ¢c € H2(4, C) livinginthe (1, 1) component.
Well, it turns out that the exponential short exact sequence

0525 0,2 0% =0

induces a (first Chern class) map ¢; : H' (4, O) — H?(A, Z), whichis anisomorphism onto the (1, 1) compo-
nent. Thus, the condition that (-, -) is symmetric can be traced back to ¢c coming from a class in H' (4, O),
which has equivalent data to a line bundle L.

Lastly, it turns out that positive-definiteness of (-,-) corresponds to the £ being ample. On the other
hand, given a line bundle £ on A, we remark that there already is a natural way to constructamap A — AV
from a line bundle. This gives our definition.

Definition 2.33 (polariaztion). Fix an abelian variety A over a field K. A polarization is a morphism
¢: A — AY such that there is an ample line bundle £ on A3 giving the equality

plz)=t; Lo L7

for any z € Ay. We say that ¢ is principal if and only if it is an isomorphism, and we say that A is a
pricipally polarized.

Remark 2.34. It turns out that the construction of the above map does correspond to the map A — AY
defined complex-analytically.

Remark 2.35. It turns out that polarizations are isogenies.
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Remark 2.36. Here is the sort of thing that one can do with this definition. One may also want to define a
Rosati involution on End(A)g, analogous to the Rosati involution on polarized Hodge structures. Well,
given a (principal) polarization p: A — AV, we can define a Rosatiinvolution (-)f on End(4)q by sending
any f € End(4)g to

fl=plofVoo.
If \ is a principal polarization, then this Rosati involution descends to End(A). One can check that ()T

continues to be a positive anti-involution, but it is not easy; see for example [EGM, Theorem 12.26].
This allows us to apply the Albert classification Theorem 1.28 to our situation.

Example 2.37. For any smooth proper curve C such that C(K') # @, it turns out that the Jacobian Jac C
is principally polarized. It is not too hard to describe the line bundle which gives the polarization: let
t: C — Jac(C) be an embedding given be one of the points in C(K), and then the line bundle is given
by the divisor
f(C)+---+ f(O),
g—1

where g is the genus of C. See [EGM, Theorem 14.23] or [Mil08, Theorem 6.6] for more details.

Analogous to the complex-analytic setting A = V/A, we may still want to be able to define an alternating
formon A = HP¥(A,Z). We will achieve a satisfying version of this in Lemma 2.111, but for now, let us
point that this is not immediately obvious how to do this because we currently have no analogue for A in the
general setting. However, we note that the alternating form A is able to induce an alternating form on V,
and we can access a dense subset of V' by taking torsion. Thus, for now, we will aim to provide a pairing

A[n](K*P) x A[n](K**®) — Z/nZ

for each integer n such that char K t n. Unwinding how we took a polarization to a map A — AY, we note
that we may as well define the above map using a polarization ¢: A — AV by instead defining a pairing

A[n](K*P) x AV[n](K**) — Z/nZ

and then pre-composing with A — AV. More generally, given anisogeny f: A — B, we will be able to show
that there is a perfect pairing

(ker f) x (ker f¥) — Gy,

upon which we find the desired pairing by taking f = [n]4 and taking K®°P-points.

Proposition 2.38 (Weil pairing). Fix an isogeny f: A — B of abelian varieties over K. Then there is a
perfect pairing
(ker f) x (ker f¥) — Gp,.

Proof. We provide an explicit construction of the pairing on K*°P-points, but we will not check that it is
perfect, for which we refer to [Ton15, Theorem 8.1.3]. Select z € (ker f)(K>P) and yV € (ker f¥)(K®P).
The pointy¥ corresponds to a line bundle £ on BY..... Beinginthe kernel of f grants atrivializationo: f*£ —
O A esep, Which is unique up to a scalar. Now, note that ¢ f*£ = F L =1L because a € ker f, sothereis
another trivialization of f*£ given by t3: £ — O4,...,- We now define our Weil pairing as t 3 0 371, which
we realize as an element of G,,, (K*°P) by noting that ¢} 80 37! is an automorphism of O 4,..., and is therefore
a scalar. [ ]
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Corollary 2.39. Fix an abelian variety A over a field K, and let ¢: A — AV. For each positive integer n,
there is a Galois-invariant perfect symplectic pairing

e, A[n|(K°P) x An](K5P) — pip.

Furthermore, for any positive integer m, the following diagram commutes.

Alnm](K*®)  x  Afpm](K*) — jiny,

.| o] |
I

A[p)(K*P)  x  An](K*P) —2— u,

Proof. We described above how to construct the pairing from the one given in Proposition 2.38 by setting
f = [n]a and then using the polarization ¢. The remaining properties of e, (such as Galois-invariance) can
be checked using the explicit construction given in Proposition 2.38. |

2.1.4 Applying Hodge Theory

We now explain the utility of chapter 1 to our application. Here is the main result.

Theorem 2.40 (Riemann). The functor A — H} (A4, Q) provides an equivalence of categories between
the isogeny category of abelian varieties defined over C and the category of polarizable Q-Hodge struc-
tures V such that Vp = Vo1 @ V1.0,

Proof. Writing A = C9/A for a polarizable lattice A, we see that the given functor takes A to A ®7 Q. Itis
thus not hard to see that this functor is fully faithful. To see that it is essentially surjective, we begin with any
polarizable Q-Hodge structure V and find a polarizable sublattice A in order to produce the desired abelian
variety A/A. Admittedly, most of the work for this theorem was already done in Example 1.20 when we
showed that the previous sentence actually gives an abelian variety! |

The moral of the story is that we can keep track of abelian varieties A over C by only keeping track of their
Hodge structures H (A4, Q). With this in mind, we allow ourselves the following notation.

Notation 2.41. Fix an abelian variety A over C. Then we define the Mumford—Tate group of A to be
MT(4) = MT (Hj(A,Q)) -

We define Hg(A) and L(A) similarly.

Here is the main corollary of Theorem 2.40 that we will want.

Corollary 2.42. Fix an abelian variety A over C. Then the natural map

MT(A)

Endc(A) ®z Q — Endg (Hj(4,Q))

is an isomorphism.

Proof. By Lemma 1.54, we see that the right-hand side is simply Endps (Hj (A, Q)). The result now follows
from Theorem 2.40. [ |

As another aside, we go ahead and restate the Albert classification (Theorem 1.28) for our abelian vari-
eties.
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Proposition 2.43. Fix a simple abelian variety A of dimension g, defined over a field K of characteristic
0,and set D := Endg(A)g and E := Z(D). Letting (-)' be the Rosati involution on D, we also let ET be
the (-)f-invariants of E. Further, setd := \/[D : E]ande := [E : Q] and e¢g := [E : Q]. Then we have
the following table of restrictions on (g, d, e, e9).

Type e d Restriction
[ ep 1 elyg
[l ep 2 2e|g
1 eo 2 2e|g
v 280 d 60d2 ‘ g

Proof. Recall that D is amenable to the Albert classification as discussed in Remark 2.36. The middle two
columns follow from the discussion of the various types; for example, in Type |, weseed = 1 because D = F,
and e = ej because F is totally real. To receive the dimension restrictions, we note that some descent
argument allows us to reduce to the case where K = C, where we receive an inclusion D C End(H} (4, Q))
by Theorem 2.40.! This is an inclusion of division Q-algebras, so we see that dimg D | 2g; this implies

d’e | 2g,
which rearranges into the required restrictions. |
Remark 2.44. The requirement that char E = 0 is necessary in the table; the restrictions are somewhat
different (and weaker!) in positive characteristic.

While we're here, we state the main theorem of [Del18] on absolutely Hodge cycles.

Theorem 2.45 (Deligne). Fix an abelian vareity A defined over a number field K. Then all Hodge classes
on A are absolutely Hodge.

2.1.5 Complex Multiplication

Even though it is not strictly necessary for our exposition, we take a moment to discuss some theory sur-
rounding complex multiplication. We refer to [Mil20b] throughout for more details. The relevance of this
discussion to us mostly arises because we have defined analogous notions in sections 2.2.2 and 2.2.3.

Intuitively, complex multiplication simply means that an abelian variety has many endomorphisms. To
explain this properly, we note that the endomorphism algebra of a simple abelian variety A is a division Q-
algebra described in Proposition 2.43; if we drop the assumption that A is simple, then it could be a product
of matrix algebras of such division Q-algebras. This motivates the following definition to properly account
for such matrix algebras.

Definition 2.46 (reduced degree). Write a semisimple algebra D overafield K asa product Dy x - - - x Dy,
of simple algebras. Then we define the reduced degree as

k
[D: Klrea =Y _/IDi : Ei] - [D; : K],

=1

where E; := Z(D;) for each i

Lt is still possible to get an inclusion like this in general. It requires a discussion of the £-adic representations, which we engage in
later.
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Remark 2.47. It is not technically obvious that [D; : F;] is a square, but this follows from the theory of
central simple algebras. Roughly speaking, one can show that D; ® D; = M,,(D;) for some n > 0, from
which the result follows; see [Mil20a, Corollary 1V.2.16].

Remark 2.48. Given an inclusion B C Endg (V), one receives a bound
[B: Kliea <[V : K].

Roughly speaking, this follows by breaking up B into simple pieces (which are matrix algebras of division
algebras) and then looking for these pieces in Endk (V). See [Mil20b, Proposition 1.1.2]

In light of the previous remark, we are now able to make a definition.

Definition 2.49 (complex multiplication). Fix an abelian variety A over a field K. Then A has complex
multiplication over K if and only if

[EndK(A)Q 5 Q}rcd = 2dim A.

Namely, we see that 2dim A is as large as possible by Remark 2.48, by taking V to be H! for some Weil
cohomology H.?

Remark 2.50. The key benefit of the reduced degree is that it is additive: given abelian varieties A and
A’, we claim

[End(A® A')g : Qlred = [End(A)g : Qlreq + [End(4)g : Qrea.

Indeed, by breaking everything into simple pieces, we may assume that A and A’ are both powers of
a simple abelian variety. If they are powers of different simple abelian varieties, then this is a direct
computation. Otherwise, they are powers of the same simple abelian variety, in which case all central
simple algebras in sight are matrix algebras over the same division algebra, and the result follows by
another computation.

Remark 2.51. A computation with Proposition 2.43 shows that a simple abelian variety A has complex
multiplication only in Type IV when d = 1; i.e., we require Endx (A) to be a CM field. Combining this
with Remark 2.50, we find that an abelian variety A has complex multiplication if and only if each of its
factors does.

Remark 2.52. If an abelian variety A with complex multiplication is a sum of non-isomorphic simple
abelian varieties, then its endomorphism algebra is simply a product of CM fields. In general, one can
show that it is still the case that any abelian variety A with complex multiplication has a CM algebra of
degree 2dim A contained in its endomorphism algebra. However, this requires a little structure theory
of semisimple algebras; see [Mil20b, Proposition 3.6].

Complex multiplication places strong constraints on the Mumford—Tate group.

Proposition 2.53. Fixan abelian variety A over C. Then A has complex multiplicationifand only if MT(A)
is a torus.

Proof. We show the two implications separately.

2 Qutside the complex-analytic case, it may look like one wants to use the £-adic result Theorem 2.124 over a general field. However,
it turns out to be enough to merely achieve the injectivity of the map Theorem 2.124, which is easier.
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+ Inonedirection, if A has complex multiplication, then Remark 2.52 grantsa CM algebra £ C End¢(A4)g
with[E : Q] = 2dim A. ThenHf; (4, Q) is afree module over E of rank 1, so we see that GLy (Hf (4, Q)
is isomorphicto Tr. We conclude by Lemma 1.45.

« In the other direction, suppose MT(A) is a torus. Find a maximal torus T containing MT(A). Then
Corollary 2.42 tells us that
1 MT(A)
El’ld(c(A)Q = EndQ (HB (A, Q)) 5
which then contains Endg (Hj (4, Q))T. However, the latter is a commutative semisimple Q-algebra
of dimension 2g: it suffices to check this after base-changing to C, whereupon we may identify 7' with
the diagonal torus, from which the claim follows. This completes the proof. [ |

One benefit of complex multiplication is that it lets move difficult geometric questions into combinatorial
ones. To see this, we need to define the following combinatorial gadget.

Definition 2.54. Fix an abelian variety A with complex multiplication defined over C, and set V' :=
Hi (A, Q). Choose a CM algebra E C Endc¢(A)g with dim E = 2dim A. Then we define the CM type
®: ¥ — Z>( of Ato be the CM signature (E, ®) given by

Vil @ c3@.

ocEX R

Note that HL (A, Q) is then a one-dimensional E-vector space, so im ® C {0, 1}, so we can realize ® as
a subset of Hom(E, C).

Remark 2.55. Note that we are not requiring E = Z(End¢(A4)g), though this is automatically the case
when the simple components of A all have multiplicity 1. Of course, there stillis a CM signature coming
from the case £ = Z(Endc(A4)g).

Remark 2.56. There is a still a way to recover the CM type even when A is not defined over C. For
example, one can note that H' is supposed to be the Lie algebra Lie A, so one can instead recover ®
from the E-action on Lie A.

Remark 2.57. One can read the simplicity of A off of the CM type (E, ®). To begin, one needs E tobe a
field for A to be simple. Now that F is a field, we know that A ~ B" where B is an abelian variety with
complx multiplication; say that it has CM type (E’, ®’). Then the Hodge structure on A is determined
by the Hodge structure on B. Tracking this through as in [Lan11, Theorem 3.6] shows that A is simple
if and only if any Galois extension L/Q of E has that

{0 € Gal(L/Q) : Do = ®} = Gal(L/E),
where ® is being suitably thought of as an element of Z[Hom(E, L)].

Remark 2.58. It turns out that there is (essentially) exactly one abelian variety with CM type (E, ®), up
to isogeny over the algebraic closure. See [Mil20b, Proposition 3.12].

Remark 2.58 tells us that we are basically allowed to only pay attention to the CM type in the theory of
complex multiplication.

2.2 TheCenterof MT

In this section, we begin with a computational tool to compute MT(A) for an abelian variety A. This discus-
sion is somewhat involved, so we will spend a full section here.
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Let's begin with some motivation. Fix an abelian variety A. In the application of this thesis, we will use
Lemma 1.62 to compute Hg(A4)%": note Hg(A)%" is semisimple and hence its Lie algebra can be written
as the sum of simple Lie algebras which may be amenable to the lemma. Because Hg(A) is reductive by
Lemma 1.44, it remains to compute the center Z(Hg(A)); recall Hg(A) is connected by Remark 1.40, so we
may as well compute the connected component Z(Hg(A))°. As usual, the same discussion holds for MT(A),
but we note that Z(MT(A))° tends to be nontrivial because usually G,,, o € MT(A) by Example 1.31.

In Proposition 2.67, we find that Z(Hg(A))® is trivial unless A has irreducible factors of Type IV in the
sense of the Albert classification (Theorem 1.28). As such, we spend the rest of the section focusing on
computations in Type IV. Computations are well-understood when V' comes from an abelian variety with
complex multiplication, so the main contribution here is that these arguments generalize with only slight
modifications.

2.2.1 General Comments

In this subsection, we will mostly work with general polarizable Hodge structures V.

Lemma 2.59. Fix V' € HSg of pure weight, and set D := Endyg(V) with E := Z(D). Viewing D as a
Q-group, we have
Z(Hg(V')) € Resg/qg Gm, k>

where Resg/q G,z embeds into GL(V') via the D-actionon V.

Proof. Here, Eis a product of number fields because it is a commutative semisimple Q-algebra. Recall from
Lemma 1.54 that

D = Endg(V)HeV),

which upgrades to an equality of algebraic subgroups of Endg (V') because Q-points are dense in these alge-
braic groups by combining [Mil17, Corollary 17.92] and [Mil17, Definition 12.59]. In particular, we see that
Hg (V) commutes with D*, so the double centralizer theorem enforces Z(Hg(V)) C D* even as algebraic
groups. However, Z(Hg(V')) now commutes fully with D*, so in fact Z(Hg(V')) C Z(D)*, which is what we
wanted. |

Remark 2.60. One also has Z(MT(V')) C Resg;qg Gm, g because MT (V) C G, o Hg(V') by Lemma 1.41,
and the scalars G,, g already live in Resg /g G, E-

Lemma 2.59 is that it places the center Z(Hg(V')) in an explicit torus Resg /g Gm,z. Subgroups of tori are
well-understood by (co)character groups, so this puts us in good shape. This torus will be important enough
to have its own notation.

Notation 2.61. Fix a commutative semisimple Q-algebra E (i.e., a product of number fields). Then we
define the torus
TE = ResE/Q Gm,E~

Remark 2.62. Writing E as a product of number fields E; x --- x Ej, we find
TE:TE1 X"'XTEk

because E = E; X --- x Ey is an equality of Q-algebras.

83



2.2. THECENTER OFMT SATO-TATE GROUPS OF GENERIC CURVES

Remark 2.63. Let's compute the character group X*(Tg). By Remark 2.62, it's enough to do this com-
putation when E is a field. The choice of a primitive element o € E with minimal monic polynomial
f(z) yields an isomorphism E = Q[z]/(f(x)). Upon base-changing to Q, we get a ring isomorphism

ﬁ@

where ay, ..., o, € Qare the roots of f(z) in Q. Each root a; provides a unique embedding E — Q, so
we see that (TE)Q > Gn ! where the n maps (Tg)g — G,, g are given by the embedding o;: £ — Q

defined by 0;(a)) = «;. In total, we find that X*(Tg) is a free Z-module spanned by the embed-
dings ¥p = {017 ...,0n}, and it has the natural Galois action. Dually, X,(Tg) has the dual basis
Xy ={o7,...,0)

rYn

||2

In the light of the above remark, we will want the following notation.

Notation 2.64. Given a number field F, we let ¥z denote the collection of embeddings E — Q. Given
a product of number fields £ := E; X -+ x Ex, wedefineXp =Yg U---UXg,.

The point of the above notation is that X*(Tg) = Z[Xg| as Galois modules.
It is possible to upgrade Lemma 2.59 in the presence of a polarization.

Lemma 2.65. Fix a polarizable V' € HSg of pure weight, and set D := Endus(V') with E := Z(D). Then

Z(Hg(V)) C{geTp:gg' =1},

where (-)' is the Rosati involution.

Proof. As usual, everything in sight upgrades to algebraic groups. Let ¢ be a polarization. Fix some g €
Hg(V); note that Lemma 2.59 implies g € Tg, so it makes sense to write down g.
Now, by the non-degeneracy of ¢, it is enough to show that

¢ (9910 ® w) £ p(v e w)

for any v,w € V. Well, the definition of (-)' tells us that the left-hand side equals ¢ (9'v ® g'w), which
equals p(v ® w) because Hg(V') C Sp(y) by Remark 1.53. [ ]

Once again, this torus is important enough to earn its own notation.

Notation 2.66. Fix a commutative semisimple Q-algebra E with involution (-)f. Then we define the
torus
Ug = {gGTE:xxTzl}.

Here is an application of Lemma 2.65.

Proposition 2.67. Fix polarizable V' € HSq of pure weight. Suppose that V' has no irreducible Hodge
substructures with endomorphism algebra of Type IV in the sense of the Albert classification (Theo-
rem 1.28). Then Z(Hg(V)) is finite, and Hg(V) is semisimple.

Proof. Quickly, recall from Lemma 1.44 that Hg(V) is reductive, so the finitness of Z(Hg(V')) implies that
Z(Hg(V))° = 1 and thus Hg(V) = Hg(V)%, making Hg(V) is semisimple. (See also [Mill7, Proposi-
tion 19.10].) As such, we will focus on the first claim.
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Set D := Endyg (V) with E := Z(D) so that Hg(V') C Ug by Lemma 2.65. Itis therefore enough to check
that Ug is finite. Well, E is a product of number fields, and upon comparing with Theorem 1.28, we see that
avoiding Type IV implies that E is a product of totally real fields. Totally real fields have only two units, so
finiteness of Uy follows. [ |

Thus, we see that we have pretty good control outside of Type IV factors, so we will spend the rest of this
section on Type IV. For some applications outside Type IV, see (for example) [Lom16].

2.2.2 TypelV:The Signature

The arguments in the next two subsections are motivated by the computation of [Yul5, Lemma 4.2] and
[Yan94, Proposition 1.1]. For this subsection, A is an abelian variety over C whose irreducible factors are
of Type IV in the sense of the Albert classification (Theorem 1.28). Note that V' := H}(A, Q) is a Hodge
structure concentrated in V%! and V1.9, so we do so.

By assumption, we know that D := Endpg(V) is a division algebra over its center E := Z(D), where E is
a CM algebra (i.e., a product of CM fields), and the Rosati involution (-)' restricts to complex conjugation on
E. In particular, ET is the product of the maximal totally real subfields of E.

The basic approach of this subsection is that Lemma 2.59 requires Z(Hg(A))° € Tg, and one can com-
pute subtori using the machinery of (co)character groups. In particular, we recall that X*(Xg) = Z[Xg] and
X.(Xg) = Z[X}] as Galois modules. We will need a way to work directly with the Hodge structureon V. It
will be described by the following piece of combinatorial data. Recall that a CM algebra is a product of CM
fields.

Definition 2.68 (signature). Fixa CM algebra E, and recall that Xz is the set of homomorphisms E < Q.
Then a signatureis a function ®: ¥ g — Z>( such that the sum

®(0) + ¢(7)

is constant with respect to 0 € X g; here, & denotes the complex conjugate embedding to o. We may
call the pair (E, ®) a CM signature.

Remark 2.69. One can also view ® as an element of Z[Xg] as

D= Z d(0)o.

oed
Remark 2.70. The case that (o) + ®(7) always equals 1 corresponds to ® being a CM type.

Remark 2.71. If we expand F as a product of CM fields E = E; x --- X E, thenXg =3g U---UXg,.
Thus, we see that a signature of E has only a little more data than a signature on each of the ¥g,s
individually; in particular, one should make sure that ®(¢) + ®(&) remains equal across the different
fields.

The idea is that we can keep track of a signature with a Hodge structure.

Lemma 2.72. Fix an abelian variety A over C such that End(A4) contains a CM algebra E, and define
V = Hi (A, Q). Then the function ®: 5 — Zx( defined by

vit= @ ¢t

oEXE

is a signature, which we will call the induced signature. This is an isomorphism of E-representations,
where C, is a complex E-representation via the embedding o.
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Proof. In short, the condition that ®(c) + ®(7) is constant comes from the condition V%! = V1.0, To see
this, note that V is a free module over F, so V¢ is a free module over E ® C of finite rank. As such, we may
setd = [V : E] sothat V = E? as E-representations, and then we find

Ve = 6}) Cg.

oEXE

Now, Ve = V19 @ V0! and because E acts by endomorphisms of Hodge structures, we get a well-defined
action of E on V19 and V! individually. In particular, the definition of ® also grants

VO,I ~ @ (Cgfé(o’)

oEXE

as E-representations, so
701 d—2(o)
Vol= f co

oEXE

To complete the proof, we note that V%! = V1.0 continues to be true as E-representations, so we must
have (o) = d — ®(7) for all o. The result follows. [ ]

Of course, we cannot expect this signature ® to remember everything about the Hodge structure. For exam-
ple, if End(A) contains a larger CM algebra E’ than E, then the signature induced by E’ knows more about
the Hodge structure than the one induced by E. However, in “generic cases,” this signature is expected to
suffice. For our purposes, we will take generic to mean that there are no more endomorphisms than the
ones promised by F; i.e., this explains why we will assume Z(End(A)) = E in the sequel.

We now relate our signature to cocharacters of Z(Hg(A))°. For this, it will be helpful to realize Z(Hg(A))
as some kind of monodromy group. The trick is to consider the determinant.

Lemma 2.73. Fix an abelian variety A over C such that Z(End(A)) equals an algebra E, and define V' :=
HL(A,Q). Then Z(Hg(A))° equals the largest algebraic Q-subgroup of Ty containing the image of
(detE o h) U — (TE)]R

Proof. The point is that taking the determinant will kill Hg(A)d*" because Hg(A) C GLg(V). There are two
inclusions we must show.

« We show that Z(Hg(A))° contains the image of (det E o hly). Well, Hg(A) contains the image of h|y,
so it is enough to show that Z(Hg(A))° contains the image of detg: Hg(A) — Tg. For this, we recall
that Hg(A) is connected (by Remark 1.40), so

Hg(A) = Z(Hg(A))° Hg(A)*".

Note that det g is simply (-)4m# V on the torus Z(Hg(V))°, so that piece surjects onto Z(Hg(A))°! Thus,
it is enough to check that detp : Hg(A)d°" — T is trivial, which is true by the definition of the derived
subgroup upon noting that det g is a homomorphism with abelian target.

» Suppose that T' C Tg contains the image of (detg o h|y). Then we claim that T contains Z(Hg(A))°.
Let H C GLg(V) be the pre-image of T under detg: GLg(A) — Tg. Then H must contain the
image of h|y, so it contains Hg(A) by defintion. In particular, H contains Z(Hg(A))°! Now, T con-
tains detg(H), so T contains det 5 (Z(Hg(A))®), but the previous point check remarked that this simply
equals Z(Hg(A))°, so we are done. |

Proposition 2.74. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra F, and define
V = HL(A4,Q). Let : X — Z>( be the induced signature. Then the induced representation (detg o
h): U — (Tg)g sends the generator of X, (U) to

— Y (2(0) —2(2))0".

oEXE
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Proof. This boils down to computing the map detg o h|y. We proceed in steps.

1. To set ourselves up, recall that
Uc ={(2,1/2) : z € Gy, c},
so one has an isomorphism cocharacter 2V: G,, ¢ — Uc given by z¥ +— z + (z,1/z). Thus, we have
left to show that )
detgohcoz” = — Z (®(0) — ®(7))0".

cEXE

We may check this equality on geometric points.

2. We describe the map hc: Sc — GL(V)c. By definition, h(z,w) € GL(V) acts by z=! on V1% and by
w~! on V%1, Thus, the definition of ® grants that h(z, w) diagonalizes. To be more explicit, for each
o € g, we define V7 to be the o-eigenspace for the E-action on V77 C Vi.. Then we see that h(z, w)
acts on V¥ by the scalar z=! and on V! by the scalar w=!.

3. We describe the map (detg o he): S¢ — (Tg)c. Realizing geometric points in (Tg)c as tuples in C*=,
we see that det g simply takes the determinant of the matrix h¢(z, w)|y, to the o-componentin (Tg)c.
(One finds this by tracking through the definition of det z as a morphism of algebraic groups.) As such,
we see that

det he(z,w)|y, = 2z~ @y *@
because @ is a signature.

4. We complete the proof. The previous step shows that (detg o hc o 2V)(z) goes to the element

(z—<1>(a)+¢'(5)> cCse,

ocEX(E)

This completes the proof upon noting that the cocharacter ¢¥: G,, ¢ — Tg simply maps into the o-
component of C*# on geometric points. |

Remark 2.75. Notably, the given element sums to 0, which corresponds to the fact that Hg(A) C SL(V)
asseenin Lemma 1.41. Indeed, by diagonalizing the E-action on V, we see that (T g NSL(V'))° consists
of the g € Tg such that the product of the elements in g equals 1.

Proposition 2.74 easily translates into a computation of the cocharacter group X, (Hg(A))°. In the next few
results, saturated simply means that the induced quotient is torsion-free.

Corollary 2.76. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E, and define
V = HL(A4,Q). Let : ¥ — Z>( be the induced signature. Then Z(Hg(A4))° C Tg has cocharacter
group equal to the smallest saturated Galois submodule of X, (Tg) = Z[X},] containing

> (®(0) - 2(@))0".

oEXE

Proof. This is immediate from combining Lemma 2.73 and Proposition 2.74 with the equivalence of cate-
gories X, between algebraic tori and Galois modules. See [Mill7, Theorem 12.23] for the proof that X* is
an equivalence, which is similar. |

Corollary 2.77. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E, and define
V = Hj(A, Q). Let &: X — Z> be the signature defined in Lemma 2.72. Then Z(MT(V))° C Tg has
cocharacter group equal to the smallest saturated Galois submodule of X,.(Tg) = Z[X};] containing

Z d(o)oY.

oEXE
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Proof. This follows from Corollary 2.76. By Lemma 1.41, it is enough to add in the cocharacter given by the
scalars Gy,,0 — Tg, whichis > 5 V. Thus, the fact that @ is a signature implies that

Z ®(0)o”
oEXE
certainly lives in X, (MT(A)) C X.(Tg).
Conversely, if X is some saturated Galois submodule containing > .y, ®(0)o", then we would like
to show that X, (MT(4)) C X. Well, X is a Galois submodule, so it must contain the complex conjugate
element ) ®(7)c". On one hand, this then sums with the given element to produce

ZJVEX

oEXE

oEXE

because X is saturated. On the other hand, we can take a difference to see that

> (®(0) - ®(7))0" € X.

oEXE
We conclude that X contains the cocharacter of the scalars G, 0 € Tg and the cocharacter lattice of
Z(Hg(A))° C Tg, so we conclude that X must also contain the cocharacter lattice of Z(MT(A))°. |

Remark 2.78. One can also prove the above corollary by following the proof of Corollary 2.76. For ex-
ample, this approach provides a monodromy interpretation of Z(MT(A))° analogous to Lemma 2.73.
Here, one replaces the generator of X, (U) with the cocharacter i € X,.(S), and one finds that detz o h¢
sends 1 to Y0 .y, ®(0)oY. One is then able to prove statements analogous to Proposition 2.74 and
Corollary 2.76.

Let's pause for a moment with an explanation of how one can use Corollary 2.77 to compute Z(MT(A))° C
Tg. The approach for Z(Hg(A))® is similar but only a little more complicated.

We will only compute over a Galois extension L/Q containing all factors of E. In this case, the E-action
on V;, diagonalizes, so one can identify (Tg)r, € GL(V)y as the diagonal torus for some basis of V.. In
particular, for each ¢ € X, the cocharacter oV corresponds to one of the standard cocharacters for the
diagonaltorus of GL(V') .. Now, Corollary 2.77 tells us that X, (Z(MT(A))°) C X..(Tg) equals the saturation
of the sublattice spanned by the vectors

o X 0] = X wot
oc¥p LD

where g varies over Gal(L/E). By computing a basis of the saturation of this sublattice, we get a family of
1-parameter subgroups of the diagonal torus of GL(V), which together generate Z(MT(A))°. This more

or less computes Z(MT(A))°.

2.2.3 TypelV: The Reflex

In the sequel, we will be most interested in equations cutting out Z(MT(A))° € Tg. One could imagine
proceeding as above to compute Z(MT(A))° C Tg via 1-parameter subgroups and then afterwards finding
the desired equations. This is somewhat computationally intensive, so instead we will turn our attention to
computing character groups. As in [Yul5, Lemma 4.2], this will require a discussion of the reflex.

Definition 2.79 (reflex signature). Fix CM fields E and E* and CM signatures (E, ®) and (E*, ®*). We
say that these CM signatures are reflex if and only if there is a Galois extension L/Q containing F and
E* such that each o € Gal(L/Q) has

O(o|g) = P* (071

).

In this situation, we may call (E*, ®*) a reflex signature for (E, ®).
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Remark 2.80. We check that (E, ®) and (E*, ®*) does not depend on the choice of Galois extension L.
Indeed, suppose that we have another Galois extension L’ /Q containing E and E*; let L be a Galois
extension containing both L and L’. By symmetry, it is enough to check that (E, ®) are reflex with re-
spect to L if and only if they are reflex with respect to L”. Well, for any o € Gal(L”/Q), we see that
®(o|p) = ©* (o7 !|g~) is equivalent to o[, € Gal(L/Q) satisfying ®(c|.|g) = ®* (o], |g-), so we are
done after remarking that restriction Gal(L"”/Q) — Gal(L/Q) is surjective.

Remark 2.81. We check that reflex signatures certainly exist: one can choose any Galois closure L of E
and then define ®*: Gal(L/Q) — Zx>o by ®*(0) :== ® (67| ).

Remark 2.82. In the theory of abelian varieties with complex multiplication, it is customary to make
E* as small as possible, which makes it unique. This is useful for moduli problems. However, this is
not our current interest, and we are not requiring that the reflex signature be unique because it will be
convenient later to take large extensions.

The point of introducing the reflex is that it provides another monodromy interpretation of Z(MT(A))°. To
achieve this, we need the reflex norm.

Definition 2.83 (reflex norm). Fix CM fields E and E* and reflex CM signatures (E, ®) and (E*, ®*). Then
we define the reflex norm as the map Ng-: E* — Q by

Ng-(x) = H o(z)® @),

oEX g

Note that this is a character in X*(Tg-).

Technically, this definition does not require us to remember that (E*, ®*) is reflex to (E, ®), but we will want
to know this in the following checks.

Lemma 2.84. Fix CM fields E and E* and reflex CM signatures (E, ®) and (E*, ®*).
(@) If (B, ®%) is a CM signature restricting to (E*, ®*), then (E, ®) and (E;, ®7) are still reflex, and

1\I<I>’1K = N<I>* ONET/E*

(b) The image of Ng- landsin E.

Proof. Here, “restricting” simply means that £} contains E* and ®}(0) = ®*(o|g-) forallo € Xg:.

(a) That (E, ®) and (E7, ®7) are still reflex follows from the definition: choose a Galois extension L con-
taining £ and E5, and then each o € Gal(L/Q) has

D(o|g) = D* (0_1
= o7 (0_1

o)

By) -

To check the equality of reflex norms, we extend each 0 € Y- to some & € Gal(Q/Q), and then we
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directly compute

Ng- (Ngy/p-(z)) = H o (Ng: /g~ (33))4)*(0)

cEX gx

= H or(z)® @)

cEXY
T€Hompg= (ET,Q)

= H 57(z)®1")

cEXY
T€Homg= (ET,Q)

= Ngs (),
where the last step holds by noting that & o 7 parameterizes X g-.

(b) We begin by reducing to the case where E*/Q is Galois. Indeed, the previous step tells us that ex-
tending E* merely passes to a norm subgroup of E*, but norm subgroups are Zariski dense in Tg-,
so it suffices to check the result on such norm subgroups. Thus, we may assume that £*/Q is Galois,
contains E, and thus ®*(0) = ® (07 !|g). Now, forany g € Gal(E*/E), we see ®*(c) = ®* (g~ '0), so

gNee@) = [ go@® @

oceGal(E*/Q)

= JI o)

c€Gal(E* /Q)
= N‘b* (l‘)’

as required. |

At long last, we move towards our monodromy interepretation using the reflex. The following argument
generalizes [Yul5, Lemma 4.2].

Lemma 2.85. Fix reflex CM signatures (E, ®) and (E*, ®*). Suppose that E* contains E and is Galois
over Q. For each g € Gal(E*/Q), the reflex norm Ng«: Tg» — Tg sends the cocharacter g¥ € X, (Tg~)

to
X, (Nov) (6¥) = Y ¥(0)(g0)",

oEXE

Proof. Notably, Ng« outputs to T g by Lemma 2.84. To begin, we expand

X: (Ne-) (g¥) = Y @ (0)Xu(0)(g")-

oEY g*
We now check X, (0)(g") = (90_1)v: forany € X*(Tg-), we compute the perfect pairing
<T7 X*(U)(gv)> = <7_0.7g\/>7

which is the indicator function for 7o = g and hence equals <~, (g071)v>_ We are now able to write

X, (Ng=)(g") = > @*(0) (g07")".

TEX g

Replacing o with o', we are done upon recalling ®* (6=!) = ®(o|g) and collecting terms which together
restrict to the same embedding of E. |
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Proposition 2.86. Fix an abelian variety A over C such that Z(End(A)) equals a CM algebra E = F; x
-++ x B, and define V := H (A, Q). Let &: ¥ — Z>( be the induced signature, which we decompose
as® = &, U- - - U Py where (E,, @, ) is a CM signature for all F,. Suppose E* is a CM field equipped with
CM signatures @7, ..., ®; such that (E;, ®;) and (E*, ®}) are reflex for all i. Then Z(MT(A))° C Tgis
the image of

(Nq;.{, - ,N@;)Z T« > Tg.

Proof. Note that norms are surjective on these algebraic tori, so Lemma 2.84 tells us that the image of Ng-
will not change if we pass to an extension of E*. As such, we will go ahead and assume that E* contains £
and is Galois over Q.

In light of Corollary 2.77, it is enough to show that the image of X, (Ng-) (which we note is already a
Galois submodule) has saturation equal to the smallest saturated Galois submodule of X, (T ) containing
> sex, ®(a)a. This follows from the computation of Lemma 2.85 upon letting g vary over Gal(£*/Q). W

Let's explain how Proposition 2.86 is applied to compute equations cutting out Z(MT(A4))° C Tg, where
E = F; X --- X Ey isaCM algebra. As before, we will only compute over an extension L = E* of E which is
Galois over Q; let ®7,. .., @} be the signatures on L making (L, ®}) and (E;, ®;) reflex for each i. Note, we
know that (Tg)r, € GL(V)1, may embed as a diagonal torus.

An equation cutting out Z(MT(A))$ in the (subtorus of the) diagonal torus (Tg)r, € GL(V)L then be-
comes a character of (Tg), which is trivial on Z(MT(A))°. In other words, these equations are given by the
kernel of

X*(Tg) = X*(Z(MT(A))°).
We now use Proposition 2.86. We know that Z(MT(A))° C T is the image of (Ng;,...,Ng:): Tp — Thg,
so the kernel of the above map is the same as the kernel of

To compute this kernel cleanly, note Lemma 2.85 computes X, (Ng-) for each i, so we see X* (Ng-) can
be computed as the transpose of the matrix of X, (Ng-). Attaching these matrices together gives a matrix
representation for the above map, and we get our equations by computing the kernel of this matrix.

Remark 2.87. In practice, one can expand V. = V; & - - - @ V}, into irreducible Hodge substructures and
then work with E := E; x --- X E; where E; := Z(Endgs(V;)) for each i. Technically speaking, E may
only embed into E “diagonally” because some V,s may be isomorphic to each other. However, this does
not really affect anything we do because we may as well work with the image of Z(MT(A))° under the
inclusion Tg C Tg. Working with Tg is more convenient because it can actually be identified with the
diagonal torus of GL(V') g instead of merely a diagonally embedded subtorus.

2.3 The /-Adic Representation

In this subsection, we now define the /-adic representation and give some of its basic properties.

2.3.1 The Cohomology of Abelian Varieties

Fix an abelian variety A over a field K. In this section, we will compute the Weil cohomology ring H*(A4),
for many Weil cohomology theories H* defined over K with coefficients in F. As usual, char F = 0. More
precisely, we will show that dimy H!(A) = 2dim A implies that the cup product defines an isomorphism

ACH'(A) — H*(A).

As is usual with our discussions of Weil cohomology, our argument will have a linear algebraic component
and a motivic component; the “motivic” component will be this equality dimz H!(A) = 2dim A. Our expo-
sition follows [EGM, Corollary 13.32].
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Let's begin with the linear algebraic component. Our exposition follows [Hat01, Section 3.C]. The key
pointis that the group structure on A will endow H®(A4) with extra structure: H*(A) becomes a Hopf algebra.
The following definition is a bit non-standard, but it will suffice for our purposes.

Definition 2.88 (Hopf algebra). Fix a field F'. A graded Hopf algebra H® over F'is a Z>(-graded commu-
tative algebra over F equipped with graded F'-algebra homomorphismse: H® — F'(called the co-unit)
and m: H®* — H*® ® H* (called the co-multiplication). Further, e and m are required to satisfy the fol-
lowing.

(@) Co-identity: (e ® id) om and m o (e ® id) both equal toid: H®* — H®.
(b) Co-associativity: we have (m ® id) om = mo (m ® id) as maps H®* — H®* ® H®* ® H®.

If the structure map F' — H? is an isomorphism, then H*® is connected.

It turns out that we can get by with less information. For our purposes, we will really only need the following
fact about the co-multiplication.

Lemma 2.89. Let H*® be a connected, graded Hopf algebra over a field F'.
(a) The co-unite: H®* — Fistheinverse of F — HY in degree 0 and vanishes in higher degrees.

(b) Foreach a € H™ withn > 0, we have

m(e) - (@@1+10a)c P H @ H.
1,7 >0

Proof. We show each part in separately.

(a) Because eis a homomorphism of graded F'-algebras, e automatically vanishes in positive degrees. As
for degree 0, we already know that the structure map F' — H" is an isomorphism, soe: H® — F must
be its inverse because it maps the “basis vector” 1 € H" backto1 € F.

(b) This follows from the co-identity axiom. To begin, the grading structure on H* ® H*® implies that we
may write

m(a) = Z o ® a,

i,j=0

where «;, o, € H' for each i. Thus, applying (e ® id) to this expression reveals

oo
o= E ap @ o).
j=0

We conclude that o, automatically vanishes except at degree n, where a = apal,. A symmetric ar-
gument (using (id ® e) o m = id) shows that «; vanishes except at degree n, where o« = aja,. We
conclude that

m(a) — (a®@1+1®a)= Zaﬂ@aé,

ij=1
as required. [ |

Here are some basic examples.

Example 2.90. If A® and B* are graded commutative Hopf algebras over F, then A* ® B* is as well.
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Proof. Let ¢4 and m 4 be the co-unit and co-multiplication for A, respectively; define ez and mp analo-
gously for B*. Now, we can definee: A®*® B®* — F byes ® ep, and we define m: (4° ® B®) — (A®* ® B*)®2
on pure homogeneous tensors by m(a @ b) == (—1)de&(®) deg()(4) @ m(b), where we have identified

(A. ® Bo)®2 — (A.)®2 ® (Bo)®2
by swapping the middle two entries. Here are our checks.

« Homomorphisms: note e is a homomorphism because it is the tensor product of two homomorphisms
(ea and eg). Similarly, m is also a tensor product of two homomorphisms (m 4 and mg) but now fol-

lowed up with a swap
B*® A* — A* ® B®,

which we can see is also a homomorphism of graded algebras. (The sign is present to account for
graded commutativity!)

« Co-identity: this follows by taking the tensor product of the co-identity axioms for A and B and then
swapping to correct the order of the factors. We won't write out these manipulations.

» Co-associativity: the same discussion as for co-identity applies. |

Example 2.91. Let V be a graded vector space over F' with char F' # 2, supported in positive degree.

(@) If Vis supported in even degree, then the symmetric algebra S*V is a graded commutative Hopf
algebra.

(b) If V is supported in odd degree, then the exterior algebra A*V is a graded commutative Hopf
algebra.

Proof. In both cases, let the given algebra be A®, and then the co-unit e: A* — F'is defined in degree 0
byid: A — F and vanishing in higher degrees. Additionally, the co-multiplication is defined by m: A®* —
A®* ® A*® is defined by extending m(v) := (1®v)+ (v®1) forany v € V. Notably, given vectors vy,...,v, € V,
we see that we have to define

m(vy ® - ®@uvy) = H(Ui®1—|—1®vi).

=1
It remains to run our checks.
« Connected: because VY = 0, we have A*V = F in both cases.

« Homomorphisms: in both cases, e can be described as the quotient of the functional on the tensor
algebra T*V which just sends all the generators to 0. This functional 7*V — F'is a homomorphism of
graded F'-algebras, so e is as well.

It remains to check that m is a well-defined homomorphism. Once again, m begins its life as a graded
linearmap T*V — T*V ® T*V on the tensor algebra, given by the above formula on pure tensors. We
now go down to A® in cases.

- If V is supported in even degrees, then we consider the quotient map T°V — S°V ® S*V. For
any v,w € V, we can compute that m(v ® w) and m(w ® v) are both equalto 2(vw ® 1 + 1 ® vw)
by commutativity, so we find that this descends to a well-defined graded linear map S*V —
S*V®S*V. Asfor multiplicativity, it is now enough to check multiplicativity on generators, where
it follows by definition.

- If V is supported in odd degrees, then we consider the quotient map T°V — A*V — A®*V. Once
again, forany v € V, we can compute that m(v®wv) = 2(v®wv), which vanishes because (v®1)(1®
v) = —(1®v)(v®1l)forcesv®wv = 0. Thus, we descend to a graded linear map A*V — A*V AV,
and multiplicativity follows because it is true on generators by definition.
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« Co-identity: it is enough to check the equality of two maps A®* — A*® on generators. By symmetry, it
will be enough to check that (e ® id) o m = id. Well, forany v € V, we see that (e ® id)(m(v)) is

(e@id)(v®1+1®0v) =w.

« Co-associativity: again, it is enough to check the equality of two maps 4® — (A®*)®3 on generators. As
such, forany v € V, we compute that (m ® id)(m(v)) is

MmMeid)(1ev+ve])=101v+1ve1l+vR1R1,

which by a similar argument is the same as (id ® m)(m(v)). [ |

Remark 2.92. Fix graded vector spaces V and W supported in odd positive degree. (There is an analo-
gous remark for positive even degree.) Then the inclusions provide a canonical graded linear map

ANV QAW = A(VaW).

(Explicitly, this map sends v ® 1 — vand 1 ® w — w.) If V.and W are finite-dimensional, then one can
see on graded components that this graded linear map restricts to a bijection of bases, so thisis aniso-
morphism. In fact, this map can be quickly checked to be multiplicative, and in fact it is an isomorphism
of graded commutative Hopf algebras.

Unsurprisingly, here is our main example.
Example 2.93. Fix a Weil cohomology theory H® over K with coefficients in F'. For any abelian variety

A, the graded F-algebra H*(A) has the structure of a connected, graded commutative Hopf algebra
over F.

Proof. It suffices to define the co-unit and the co-multiplication, and then we need to check the required
properties. Here is the data.

+ Co-unit: the identity map e: Spec K — A of our abelian variety defines a pullback e*: H*(A) —
H*(Spec K). Because H*(Spec K) = F by Example 1.103, we may let ¢* be our co-unit.

» Co-multiplication: the multiplication mapm: A x A — A defines a pullbackm*: H*(A) — H*(A x A).
This becomes our co-multiplication as soon as we identify H* (A x A) = H*(A) @ H*(A) via the Kiinneth
formula.

And here are our checks.

+ Co-identity: by symmetry, it will be enough to check (e* ® idye(a)) 0o m* = idye(4). This comes from
the identity law on the abelian variety, which tells us m o (e x id4) = id 4. Indeed, this implies that

(e xida)* om* =id} .

We can see that id; = idge(), SO We are done as soon as we note that (e x id4)* = e* ® id; by
Lemma 1.90.

« Co-associativity: this follows from the associativity law on abelian varieties. Indeed, we know that
mo (m xida) =mo (ida x m),

so taking pullbacks gives

*

(mxida)* om* = (ida x m)* om™.

We are done after plugging in Lemma 1.90.
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« Connected: this follows because A is proper and geometrically irreducible. Indeed, this implies that
I'(A4,04) = K, so the fact that H® is a Weil cohomology theory enforces a structure isomorphism
HY(Spec K) — H°(A). But HY(K) = F by Example 1.103, so we are done. [ |

The benefit to having given ourselves extra structure is that it severely cuts down on the possibilities for the
ring structure of H*(A).

Theorem 2.94 (Hopf). Let H® be a connected, graded commutative Hopfalgebra over F', where char F' =
0. Suppose that dimr H® < oo for all i. Then the F-algebra H* is isomorphic to a tensor product of
exterior and symmetric power algebras.

Proof. We follow [Hat01, Theorem 3.C.4]. We proceed in steps.

1. Let's set up some generators. Because dimr H* < oo for all i, we may find a countable list {x1, z2,...}
of generators of H* as an F'-algebra. By decomposing these generators into homogeneous compone-
nents, we may assume that our generators are homogeneous of positive degree. Additionally, the
finite-dimensional constraint implies that we may rearrange our generators so that deg z; < deg o <

2. Our proof is going to proceed by induction, so let's set this up. For each n > 0, set H? to be the
connected, graded commutative F'-algebra generated by the elements {z1, ..., z,}. For example, for
each n, H? has all the needed generators in degree less than deg z,,, so

H,, C Hp,

foreachi < degx,. Quckly, we claim that H? C H* is a Hopf subalgebra. For example, one can simply
restrict the co-identity e to H?, and one can use Lemma 2.89 to see that m also restricts to H>: by
induction, it is enough to check m(x,,) € H?, which is true because m(x,,) only uses the terms x,, and
ones of strictly smaller degree! The co-identity and co-associativity axioms now hold by restriction.

We will use induction to show that H is a tensor product of exterior and symmetric power algebras
for each n > 0. Because H* = |J,, Hy,, the conclusion will then follow for H* because tensor products
commute with colimits. As for our induction, we quickly note that H$ = F, so there is noting to show
for our base case n = 0.

3. We explain the main claim in the inductive step. Suppose H;, is a product of exterior and symmetric
power algebras, and we want to show the same for H . If z,,., € H}, then H}  , = H?, and thereis
nothing to do. Otherwise, we let VV be the one-dimensional vector space spanned by z,, 1. Then there
is a canonical map A*V — H_, of F-algebras, where

AV AV if degw, 1 iseven,
TSV if deg ZTpa1 is 0dd.

Indeed, there is certainly a canonical map 7*V — Hp_, sending 41 +— Zp41, but T°V = S°V, so
we are done in the even-degree case. In the odd-degree case, it remains to note that 22, = 0 if
deg x,,41 is odd, so our map descends to A®V. Now, because H}, , is generated by 4 and z,, {1, there
is a canonical surjection

p: HY ® AV — H .

The main claim of this proof is that this map is injective, hence an isomorphism, which completes the
inductive step and hence the proof.

4. We define a linear map which will help us “take derivatives.” Let I C H;_ , be the ideal generated
by Hy and z2_,, and we will be interested in the map f: H% , — Hp,, @ H5 /I defined by the
composite

H’.

n

+1 = Hpy ®@Hy  — Hy @H) /1.

95



2.3. THE?-ADIC REPRESENTATION SATO-TATE GROUPS OF GENERIC CURVES

For example, any a € H} vanishes in the quotient, so it goes to a ® 1 (where we have quietly used
Lemma 2.89). Also, z,,+1 goesto z,+1®1+1®z,1 because the remaining terms givenin Lemma 2.89
all live in I. We conclude that a generic element >~ «;z?, | of Hy , is mapped to

oo

(e ] o0
Z(ai QD (Tpy1 @1 +1®@2ppr) = Z ozia:il_ﬂ ®1+ Ziozia:ﬁ;ll ® ;.
i=0 i=0 i=1

5. We show that p is injective deg x,, 11 is odd. In this case, a generic element of H? ® A*V looks like
ag ® 1+ a1 ® Tp41 for some ag,aq € Hp. If this element lived in kerp, then oy + 12,41 = 0, and
we will show that ag = a3 = 0. Indeed, passing the relation «g + aj2,4+1 = 0 through f, we find that
a1 =0, so ag = 0 follows.

6. We show that p is surjective when deg x,, 11 is even. In this case, a generic element of H, ® S*V looks
like 8 == Z?:o o; ® ¥ 1. We will show that 3 € ker p implies 8 = 0 by induction on d. Indeed, given
B € ker p, we can pass the equality Z?:o ozl = 0through f to see

d
il — 0
1oy, = 0.
i=1

This is some element with strictly smaller z,, 1 -degree, so we see thatia;; = 0fori € {1,...,d}. Thus,
B = ag, but now oy = p(B) = 0 as well. [ ]

Remark 2.95. This proof does not use the co-associativity axiom anywhere.

Corollary 2.96. Let H*® be a connected, graded commutative Hopf algebra over F', where char FF = 0.
If dimp H®* < oo, then H* is isomorphic (as an F-algebra) to A®V for some graded vector space V
supported in odd degrees.

Proof. Because dimp H® < oo, we see that Theorem 2.94 forces H*® to be a finite tensor product of exte-
rior and symmetric power algebras, but symmetric power algebras are infinite-dimensional and hence also
disallowed. The result now follows from Remark 2.92. |

And here is our application of this linear algebraic input.

Proposition 2.97. Fix a Weil cohomology theory H® over afield K with coefficientsin F. For any abelian
variety A over K, if dimp H!(A) = 2dim 4, then the cup product defines an isomorphism

ACHY(A) — H*(A)

of graded commutative F-algebras.

Proof. We proceed in steps. Set g := dim A for brevity.

1. By Example 2.93, we find that H*(A) is a connected, graded commutative Hopf algebra over F', and
Poincaré duality (and Lemma 1.117) tell us that dimr H®*(A) < oo, so Corollary 2.96 kicks in to provide
with an isomorphism

H*(A) A V1AV ® -

of F-algebras, where V; is some finite-dimensional graded vector space over F supported in degree
i. Because H*(A) is only supported in degrees i € [0, 2g], we see immediately that V; = 0 for i > 2g.
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2. Foreachi, set d; == dimr V;. We provide a relation among the d;s. Indeed, dimz H°(A) = 1 because
A is geometrically irreducible (so that T'(A4, O 4) = K, where we are quietly using Example 1.103), so
dimp H29(A) = 1 as well by Poincaré duality. The only way to get a one-dimesional vector space out
of our tensor product of exterior powers is to have

H29(A) Z AV A - A2t V)
sody + -+ dag—1 = 2g follows.

3. We complete the proof. Because we have assumed d; = 2g, we see that d; = 0 for all other i. Now,
checking degree 1 reveals our isomorphism must send H!(A4) = V!, so inverting this produces our
required isomorphism A*H!(A) — H*(A) of F-algebras. [ ]

Theorem 2.98. Fix a Weil cohomology theory H® over a field K with coefficients in F', among those
defined in section 1.3.1. For any abelian variety A over K, the cup product defines an isomorphism

ACH!(A) — H*(A)

of graded commutative F-algebras.

Proof. By Proposition 2.97, we must show that dimp H(A) = 2g, where g := dim A. We proceed in cases.

« Suppose that A is defined over C, and we show dimg Hj; (A, Q) = 2g; note this gives dimg Hi (4, R) =
2¢g as well by the comparison isomorphism in Theorem 1.75. We proceed as in [Mil20b, Proposi-
tion 2.6]. Write A = C9/A for a lattice A. Fixing some index p, we will show that the cup product
defines an isomorphism

dimg HE (A, Z) = 2g.

Well, we note that A is homeomorphic to (51)29, so the Kiinneth formula allows us to reduce the

question to S, where the result is true by a direct computation.

« It remains to handle ¢-adic cohomology. In this case, we must show that dimg, H, (4, Q,) = 2g. In
the following section, we will show that HZ, (A, Q) is dual to the ¢-adic Tate module Ty A, which can
be directly computed to be 2g-dimensional. |

Remark 2.99. One does have dimr H'(A4) = 2dim A for any Weil cohomology theory H®, but this re-
quires more significant motivic input (and possibly more linear algebraic input) than we would like to
introduce here. We refer to [EGM, Corollary 13.32] for a proof.

Because we are able to prove a theorem for many cohomology theories, it should not be surprising that we
can show a motivic variant as well.

Definition 2.100. Let C be an abelian symmetric monoidal category. For any object X € C and some
n > 0, we consider the natural action of S,, on X®". Then we define Sym” X as the eigenspace of the
trivial character S,, — {£1}. Further, we define Sym*® X = (P, ., A" X provided that this sum exists.

Remark 2.101. Equivalently, if C is Q-linear, we may define A" X as the kernel of the idempotent

% > o eQ[S,)

" oeS,

acting on X. This is a definition which also works for symmetric monoidal, Karoubian categories.
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Example 2.102. If C = Repr(G) for some affine group G over F', then Sym™ V and Sym® V' are exactly
the expected objects forany V' € Repy(G).

Example 2.103. One must be careful with Motg(K) because the symmetric monoidal structure is set
up to be graded commutative. Forany X € P(K), we in fact claim that

H? (Sym® h'(X)) = A®HL(X),

where the right-hand exterior product is the usual exterior power of vector spaces. The point is that the
exterior power of vector spaces will actually be the symmetric power for H! in the category of graded
vector spaces because the grading adds a sign for every transposition. The result follows by properties
of the fiber functor H? (see Theorem 1.207).

Corollary 2.104. Fix an abelian variety A over a field K algebraic over Q. Then the cup product defines
an isomorphism
Sym® h'(A) — h(A)

of motives in Motg (K).

Proof. Quickly, we refer to Example 2.103 to explain why we are taking the symmetric power instead of the
exterior power in the statement. The map A*H!(A4) — H*(A) is defined for any Weil cohomology theory H®,
so upon noting the compatibility of the cup product, Lemma 1.194 explains that there is an absolute Hodge
correspondence giving rise to the map Sym® h'(A) — h(A) which specializes to the cup-product map for
any of our cohomology theories.

To show that this map is an isomorphism on motives, it is enough to explain how to construct the inverse
absolute Hodge correspondence. Well, Theorem 2.98 does promise that the cup-product map does have a
(unique) inverse on each cohomology theory, which will be compatible among our cohomology theories by
the ambient uniqueness, so Lemma 1.194 promises that we have an inverse on the level of absolute Hodge
classes. |

Remark 2.105. As in Remark 2.99, we note that one can actually exhibit this isomorphism on the level
of the Chow motives ChMotg(K'). Once again, this requires more motivic input than we would like to
introduce, so we merely refer to [EGM, Theorem 13.47]. To give a taste for why one might expect this to
be difficult, we note that the statement requires one to define k! (A), so one has to explain why Kiinneth
projectors exist for abelian varieties.

Remark 2.106. Corollary 2.104 explains that the tensor subcategory (h(A4))® C Motg(K) may in fact
merely be generated by h'(A4) and Q(1).

2.3.2 The Construction

A priori, an abelian variety A gives rise to many ¢-adic Galois representations via each of its cohomology
groups Hg, (Ax=er, Q¢). However, by Theorem 2.98, we see that one can understand all cohomology groups
of A by merely understanding H}, (Ax=er, Z¢). Analogous to the complex analytic case, we will be able to
work with the dual "homology group” more concretely.

Let's spend some time giving a more elementary description of H}, (Axser,Z)". We refer to [EGM,
Corollary 10.38] and the surrounding discussion for more details. We will do this by passing to the fun-
damental group. In particular, note that there is a Galois-invariant isomorphism

I‘I1 (AKSCP, Z[) =~ Hom (71'1 (AKscp,a), Z[) s
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where a € A(K®°P) is some basepoint. We will go ahead and choose a = 0.

Remark 2.107. Let’'s take a moment to explain this isomorphism. By taking limits, it is enough to show
this isomorphism with Z, replaced by p,, where char K { n. Then one knows that H! (A ses, pt,) is in
bijection with Galois coverings with Galois group u,, by using the short exact sequence

1= pp =G 3G, — 1.

This completes the proof upon unravelling the definition of 7; on the right-hand side.

We now use the fact that A is an abelian variety to compute 71 (Agser, 0): one can show that any étale cov-
ering of A is still an abelian variety and hence is an isogeny onto A (for suitable choice of group law). Thus,
Lemma 2.13 promises that the multiplication-by-n maps [n]4: A — A provide a cofinal sequence of Galois
étale coverings of A (at least when char K 1 n), allowing us to compute that the ¢-part of 7 (Agser, 0) equals

Jim A [0°] (FC5°P).
In conclusion, we see that H! (A g=es, Z;) is naturally isomorphic to
: . sep v
(tim 4[] (577
as Galois representations. We are now allowed to define the Tate module.

Definition 2.108 (Tate module). Fix an abelian variety A over a field K, and suppose / is a prime such
that char K 1 £. Then we define the ¢-adic Tate module as

TyA = lim A[¢*] (K**P),

and we define the rational £-adic Tate module as V; A := T, A ®7 Q.

Remark 2.1009. Intuitively, Ty A should be thought of as an ¢-adic stand-in for H; (A4).

The discussion above suggests that 7y A should be a free Z,-module of rank 2. Let's check this directly. By
taking limits, it is enough to show the following.

Lemma 2.110. Fix an abelian variety A over a field K, and suppose / is a prime such that char K 1 ¢. For
each v > 0, there is a group isomorphism

A [gu] (Ksep) ~ Z/EQ”dim AZ.

Proof. The two groups have the same size by Example 2.17, so the result follows for v € {0, 1} automati-
cally. For v > 2, we induct using the short exact sequence

0 = A[(KP) — A [ 1] (K*P) L A[e"] (K°P) — 0

and some cardinality arguments. For example, one can finish by applying the classification of finite abelian
groups. ]

One benefit of a more concrete object is that it is easier to work with directly. For example, we can now find
a perfect pairing on H, (A e, Zy).

Lemma 2.111. Fix an abelian variety A over a field K, and suppose ¢ is a prime such that char K 1 /.
Choose a polarization ¢: A — AY. Then the Weil pairing induces a Galois-invariant perfect symplectic
pairing

€p: Hét(AKSeP, Zy) RQ, Hét(AKsep,Zg) — Zo(—1).
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Proof. By taking duals, it is enough to induce a Galois-invariant perfect symplectic pairing
€p: TyA ®q, TrA — Ze(1).

This follows by taking a limit of the Weil pairing given in Corollary 2.39. Recall that Z,(1) is the Galois rep-
resentation I'&nue.. ]

One can also see the Galois action more explicitly: being careful about the Galois action on cohomology and
the Tate module, we see that the induced Galois representation

pe: Gal(KSEp/K) — GL(T/A)

is simply given by the Galois action on the points in the limit A [¢*] (K®°P).

2.3.3 The /-Adic Monodromy Group

Now that we have a representation, we may as well define a monodromy group.

Definition 2.112 (/-adic monodromy group). Fix an abelian A over a field K, and suppose ¢ is a prime
such that char K { £. Then the ¢-adic monodromy group G,(A) is the smallest algebraic Q,-group con-
taining the image of the Galois representation

Gal(K*P/K) — GL (Hi (Ax=er,Qr)) -

Remark 2.113. By taking duals, we see that one produces anisomorphic Galois representation by work-
ing with T, A instead. Note this dual is not very expensive: by using the Weil pairing of Lemma 2.111,
we can remove the dual in exchange for a twist, writing

H (Agser, Zy) = TyA(-1).

Remark 2.114. Unlike MT(A) and Hg(A), we do not expect G;(A) to be connected in general. However,
being an algebraic Q,-group, it will only have finitely many connected components. Thus, we see that
the pre-image of G¢(A)° in Gal(K*°? /K') isan open subgroup of finite index, so there is a unique minimal
field extension K" /K such that G(Ak<enn) = G¢(A)°. Thus, our group becomes connected, only at
the cost of a field extension.

Remark 2.115. For a finite extension K’ of K, Remark 2.114 explains that we may easily have G,(A) #
G¢(Ak+), but we now remark that G;(A)° = Gy(Ak)°. Well,

pu(Gal(K™P /K")) C py(Gal(K*P /K)

is some finite-index subgroup, so Gy(Ak+) C G(A) isafinite-index subgroup (upon taking the closure).
It follows these groups must have the same connected component; for example, one can pass to C and
then see that a closed subgroup of a Lie group with smaller dimension necessarily has infinite index due
to being able to continuously translate the smaller subgroup.

The interesting geometric objects arising from Hodge theory were the Hodge classes, which Remark 1.13
explains were exactly the vectors fixed by the group action. Analagously, we pick up the following defini-
tion.
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Definition 2.116 (Tate class). Fix an abelian A over a field K, and suppose ¢ is a prime such that char K ¢t
£. Then a Tate class is a vector of some tensor construction

k

D HY (Axeen, Q)™ © Hy (Agcsen, Qe) V2™ (py),
=1

where the n.s, mes, and p,s are some nonnegative integers, fixed by the action of Gal(K*P/K)

Remark2.117. We remark as in Proposition 1.33 that a subspace V' as above is fixed by the Galois action
ifand only if it is fixed by the indcued action by G4 (A). Indeed, the subset of GL (H}, (Ax=e», Q)) fixing V/
is some algebraic Q,-subgroup, so if it contains the image of Gal (K*°?/K), then it contains G,(A). We
also take a moment to note that Proposition 1.35 explains that one can now cut out G,(A) by requiring
it to hold all the Tate classes invariant, as discussed in Corollary 1.36.

Remark 2.118. The same argument as in Example 1.140 explains that G¢(A) is the algebraic group cor-
responding to the tensor subcategory
® —
(H& (A%, Qo))~ C Repg, (Gal(K/K)).
Notably, the application of Proposition 1.33 is replaced by the discussion in Remark 2.117.

Analogous to Conjecture 1.15, one has a Tate class, which we will only state for abelian varieties.

Conjecture 2.119 (Tate). Fix an abelian variety A over a number field K, and fix a prime number ¢. Then
any Tate class can be written as a Q,-linear combination of classes arising from algebraic subvarieties
of powers of A.

Remark 2.120. Of course, there are Tate classes and there is a Tate conjecture for more general vari-
eties.

We conclude this section with a few bounds on the ¢-adic monodromy group, analogous to the discussion
for Mumford-Tate groups in section 1.2.3. Let's begin with endomorphisms.

Lemma 2.121. Fix an abelian variety A over a field K, and suppose £ is a prime such that char K { ¢. Set
D :=Endg(A) ®z Q. Then

Ge(A) C {g € GL (H} (Ak=r,Qr)) : god=dogforalld € D}.
Proof. We proceed asin Lemma 1.45. The right-hand group is an algebraic Q,-group, so it suffices to check
that it contains the image of Gal(K*P/K). Well, for any g € Gal(K***/K), we see that
god=doyg
isan equality which holds on the level of endomorphisms of A because d is defined over K (which g fixes). W
Lemma 2.122. Fix an abelian variety A over a field K, and suppose ¢ is a prime such that char K 1 /.
Choose a polarization ¢: A — A. Then there is a perfect symplectic pairing e, such that

G(A) C {g € GL (H};(Axser, Qr)) : ep(gv ® gw) = A(g)e, (v ® w) for fixed A(g) € Q;} .
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Proof. We proceed asin Lemma 1.47. The right-hand group is an algebraic Q,-group, so it suffices to check
that it contains the image of Gal(K®P/K). Well, for any g € Gal(K®°?/K), we see that

e, (gv ® gw) = ge, (v @ w)

by the Galois-invariance of Lemma 2.111. Now, we note that Gal(K*®?/K) acts on Qy(—1) through the
cyclotomic character, so the right-hand side equals a scalar A(g) times e, (v ® w), so we are done. [ |

Remark 2.123. There are of course alternate proofs of Lemmas 2.121 and 2.122 by finding Tate classes
and then appealing to Remark 2.117. One uses the same classes constructed in the alternate proofs of
Lemmas 1.45 and 1.47.

Lastly, we would like to recover the bound of Corollary 2.42 on endomorphisms, sharpening Lemma 2.121.
However, the proofis not so easy: the proof of Corollary 2.42 had to translate endomorphisms of the Hodge
structure back to endomorphisms of the abelian variety via Theorem 2.40. Recovering the equivalence of
Theorem 2.40 is rather difficult: this result is due to Faltings [Fal86, Theorem 3], in his proof of Mordell's
conjecture.

Theorem 2.124 (Faltings). Fixan abelian variety A overa number field K, and suppose £ is a prime. Then
the induced map
EHdK(A) KRz Qg — EndGal(?/K) (Hét(Af, Qg))

is an isomorphism.

We will definitely not attempt to summarize a proof here, but we will remark that it is not even totally obvious
that this map is injective! Speaking from experience, this makes for a reasonable topic for a final term paper
in a first course in algebraic geometry.

Remark 2.125. Via the isomorphism
Endg, (Htlét(Af7 Qf)) = Hét (A?v Q) ® Hét(A?7 QZ)Vv

we see that Theorem 2.124 can be viewed as asserting that all the Tate classes in the above space arise
from endomorphisms of A. This verifies Conjecture 2.119.

Remark 2.126. We have snuck in the hypothesis that K is a number field into the statement of Theo-
rem 2.124. It is also true for finite fields, where it is due to Tate [Tat66]. However, it is not expected to
be true in general!

We are now able to provide a satisfying analogue to Lemma 1.54.

Corollary 2.127. Fix an abelian variety A over a number field K, and suppose ¢ is a prime. Then the
natural map
Endg (4) ®z Q¢ = Endg,(a) (Hé (A, Q)

is an isomorphism.

Proof. Remark 2.125 explains that the endomorphisms of A are exactly the Tate classes, so the result fol-
lows from the discussion in Remark 2.117. [ ]

Remark 2.128. The above corollary allows us to prove the following analogue of Proposition 2.53 (by
the same proof!): A has CM defined over a number field K if and only if G;(A) is a torus.

While we're here, we remark on another property of G;(A) due to Faltings.
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Theorem 2.129 (Faltings). Fixan abelian variety A overa number field K, and suppose £is a prime. Then
G¢(A) is reductive.

Proof. By [Mill7, Corollary 19.18], it is enough to find a faithful semisimple representation of G¢(A). Asin
Lemma 1.44, we see that the inclusion

Ge(4) € GL (Hj (A%, Q0))

is semisimple by [Fal86, Theorem 3], so we are done. [ |

Remark 2.130. Over finite fields, Tate [Tat66] has proven that the Galois representation H})t(AE, Qv)

is semisimple. Because the Galois group is (topologically) generated by the Frobenius, this amounts to
checking that the endomorphism Frob, has semisimple action.

To finish up our discussion of computational tools for G¢(A), we repeat the results Lemmas 1.56 and 1.59
for our new context. Their proofs are exactly the same, replacing U (or S) with Gal(K /K) and then making
the same minimality arguments for our monodromy groups.

Lemma 2.131. Fix abelian varieties A1, ..., A over afield K.

(@) The subgroup
Go(Ar x -+ x Ag) € GL(HE (A1 X -+ x Ay)xser, Q)

is contained in Gy¢(A1) x - - X Gy(Apg).

(b) Foreach i, the projection map pr;: G¢(A; X -+ x Ap) = Go(4;) is surjective.

Lemma 2.132. Fix abelian varieties A;,..., A, over a field K, and let mq,...,m; > 1 be positive in-
tegers. Then the diagonal embeddings A;: GL (H}, (4; g=e»,Q;)) — GL (Hét(AZl;(SQp,Qg)) induce an

isomorphism
Go(Ar x -+ x Ay) —>G4(A;"1 ¢ oo XAZLk)~

2.4 Computational Tools

In this section, we give some tools to compute the ¢-adic representation and the ¢-adic monodromy group
in particular.

2.4.1 The Fundamental Theorem of Complex Multiplication

Before continuing, we give essentially the only class of examples in which one is able to imagine computing
the /-adic representation. For this subsection, we will let A be an abelian variety of dimension g defined
over a number field K with complex multiplication by an order @ of a CM number field E. We let ® denote
the CM type, which we now think of as a subset of X, and we let (E*, ®*) be a reflex CM type; we may as
well descend (E*, ®*) to be as small as possible. Our exposition closely follows [Con04, Section 3]. It is
slightly beyond the scope of our current discussion to give a precise statement of the Fundamental theorem
of complex multiplication; instead, we will work with the following consequence.

Ultimately, we are interested in computing the Galois action of Gal(Q/K) on the Tate module of A. In
order to avoid fixing a prime ¢, we pick up the following notation.
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Notation 2.133. Fix an abelian variety A defined over a field L of characteristic 0. Then we define the
adelic Tate modules Ty (A) := [, T¢:(A) and V;(A) == Tf(A) @z Q.

Remark 2.134. Note that T A is a free Z-module of rank 2g, and V; A is a free Ag_s-module of rank 2g.

Thus, we are interested in the Galois representation
pa: Gal(Q/K) — GL(V;A).

Suitably interpreted, this Galois representation will turn out to be the reflex norm, up to a root of unity.
Because A has complex multiplication by E defined over K, the image of p4 commutes with the action

of K on XA/fA, so p4 actually factors through GL,, 5(V;A). By looking factor-by-factor (on each ¢), we see

that this target is contained in F @z 7 because K is its own commutator. Thus, pa factors as a Galois repre-
sentation N

pa: Gal(Q/K) — (E @z Z)*,
where the embedding £ ®z Z < GL(TA) is given by the action of E on A. We take a moment to note that
this target is (F ®z Z)X = (E®qAq,r)* = Ay ;. Anyway, because the target is now abelian, we see that p4
factors through

pa: Gal(K™/K) — Af .

Artin reciprocity provides a canonical map Artg: A% — Gal(K*’/K), so we may as well work with the
composite p 4

Af — Gal(K*/K) 5 A%,

We take a moment to remark that we may as well work with a quotlnt of Ak.

Remark 2.135. By [NSWO08, Corollary 8.2.2], we note that Art is surjective with kernel containing K *
and Ay  C Ak.Tosee Ag  isinthe kernel, we need to know that K has no real places, which holds
because K contalns the CM field E* because E* is the field of definition for the endomorphisms of A.

For example, this implies that 5, factors through Az — A%
It is this induced map p4 which will essentially turn out to be the reflex norm. Here is our statement of
the Fundamental theorem of complex multiplication, which we will not prove.

Theorem 2.136 (Fundamental). Fix an abelian variety A with complex multiplication by (E, ®) defined
over a number field K. Then there is a continuous homomorphism A: A% kg — E* suchthatanys; €

K’f has
pA(AI“tK Sf) = /\(Sf) N@(NK/E* (Sf))_l'

Here, A is continuous where E* has been given the discrete topology.

Remark 2.137. Technically, the definition of N,z depends on a choice of reflex E* inside K, which
depends on a choice of embedding K < Q. However, it turns out that the composite Ng o Ng /g~ does

not depend on the choice of embedding L — Q. We will not need this, so we will not show it; we remark
that this is essentially shown in Lemma 2.84.

Remark 2.138. Theorem 2.136 is frequently cited as merely a corollary of the Fundamental theorem,
and the Fundamental theorem is indeed a more precise statement about the Galois action on A. How-
ever, the precise statement of the usual Fundamental theorem is rather technical, and we will not need
it, so we will be happy merely using Theorem 2.136 in this article.

Let's give a few properties of this mysterious character \ for future use.
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Proposition 2.139. Fix an abelian variety A with complex multiplication by (E, ®) defined over a number
field K. Define the continuous character \: Af{’f — E* asin Theorem 2.136.

(@) Forsy € Ag ;, the fractional ideal generated by No (Nk /- (1)) is A(sf)Or.
(b) Choose a prime 3 of K. Then A has good reduction at B if and only if A is trivial on O% C AIX(J

(c) Choose a prime 3 of K with uniformizer wy € O%. Suppose A has good reduction at 3. Then
M) € Ok, and it agrees with the gy -Frobenius endomorphism on the reduction A, ) (where

gp = #£(P)).

Proof. We show these parts one at a time. For (b) and (c), it will help to fix a rational prime ¢ not lying under

P.

(a) For each finite prime 8 of K, we must show Ng(Ng g+ (s5)) and A(sy) have the same P-valuations.
Equivalently, we would like to check that

u(sf) = /\(Sf) N¢(NK/E* Sf E HO

Well, by Theorem 2.136, we see that u(sy) acts on the Tate module VfA as pa(Arty, s¢), which is no-

tably an automorphism fixing the integral sublattice ffA C VfA. We conclude that u(sy) is a unit at
all finite places.

(b) We use the Néron—-Ogg-Shafaverich criterion [ST68], which tells us that A has good reduction at ‘p
ifand only if p4: Gal(Q/K) — Vi Alis trivial on the inertia subgroup Iy;. The Artin map Arty : A?(’f —
Gal(Q/K) is surjective, and the image of 05;3 C Af(’f is precisely Iy, so A has good reduction at % if
and only if the composite

Of CAK ;- Gal(K™/K) — A, — A,

is trivial. Well, by Theorem 2.136, we see that this composite is A multiplied by the reflex norm. The
image of the reflexnormon Oy C A% , will land away from Az ¢ C Ag ;i soitdoes not affect whether
this composite is trivial. Thus, we conclude that the composite'is trivial if and only if )\|OX is trivial.

(c) Quickly, observe that A\(wy) € O follows from agreeing with the Frobenius on the reduction. In-
deed, agreeing with the Frobenius on the reduction implies that A(wy) is the root of the characteristic
polynomial of the Frobenius, which is monic with coefficients in Z.

It remains to check agreement with the Frobenius on the reduction. The computation of the compos-
ite used in the proof of (b) explains that the Galois action of Frobyy = Artg(wg) on VyA is given by
Mwsp)e € Ap . Thus, the action of A(cwy) on the Tate module Ty A, (y) of the reduction also agrees
with the action of the Frobenius, which lifts to an equality of actions on the actual reduction A
because passing to the Tate module is faithful (see Remark 2.126).

Remark 2.140. For (c), one may want to say that A(wy) is a characteristic-0 lifting of the Frobenius
endomorphism on the reduction. However, if we do not have O C Endg (A), then we cannot actually
guarantee this lifting.

Here is an example application of Theorem 2.136.
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Proposition 2.141. Fix an abelian variety A over a number field K with complex multiplication by a CM
algebra E = E; X --- X Ej. Let ®: ¥g — Z>¢ be the induced signature, which we decompose as
® =&, U--- LD, where (E,, Do) is a CM signature for all E,. Extend K to be a CM field equipped with
CM signatures @7, ..., ®; such that (E;, ®;) and (K, @) are reflex for all i. Then G¢(A)° C Tg is the
Zariski closure of the image of

(N'I’T""’N‘I’Z): TK — TE.

Proof. We follow [Yul5, Lemma 4.1]. We quickly explain why extending K does not actually affect the con-
clusion. On one hand, G4(A)° is independent of extending K by Remark 2.115; on the other hand, passing
to an extension cannot change the closure of the image of the reflex norms by Lemma 2.84 and the fact that
norms of field extensions have Zariski dense image.

Technically, the rest of this subsection has dealt with simple abelian varieties, so we must do some work
to handle the given CM algebra E. We may decompose A = A; x --- x Ag, where A; is simple and has
complex multiplication by (E;, ®;). Define \; for A; as in Theorem 2.136. Then we see p4 outputs to Ty =
Tg, x--- x Tg,, where the ith component is just given by p4,.

Recall from Remark 2.135 that the Artin map Artg: Ag (/K> — Gal(K®P/K) is surjectve, so it is
enough to compute theimage of p4 s0Artx, where the ¢ signifies that we are working with the /~-component.
In particular, for sy € A , Theorem 2.136 implies that

(pa,.e 0 Artg)(sp) = Ni(sp)(Nax) ™" (s0),

so
(paeo Artr)(sy) = (A(sr)(Nap) ™ (s0), -, Ails5) (Nag) ™ (s0)) -

We may as well compress the right-hand side into A(s;) Ng-(s7), !, where A and Ng- output to k-tuples in
Tg. The above equality explains where the image of the reflex norm is going to come from. We now have
two inclusions; let T C T g denote the Zariski closure of Ng-.

+ Weclaimthat G¢(A)° C T. Noteker A C Ay s isopen by continuity of the A;s, so strong approximation

implies that K" \Ag ./ ker \is finite.®> Thus, im /T is finite, and we conclude that G,(A) is contained
in T multiplied by some finite group im A/T. Finite groups are disconnected, so G;(A)° C T follows.

« We claim that T C G,(A). Again, ker A C Afﬂf is open, so
pAo(Artg (ker X)) = N~ (ker Ap).

Now, ker A, is Zariski dense in Q/, so the right-hand side is Zariski dense in T. The inclusion follows.
[ ]

2.4.2 The Mumford-Tate Conjecture

Over the next few subsections, we will explain some tools used to compute G¢(A). In this subsection, we
will discuss G¢(A)°. Suppose that A is defined a number field K.

A motivic perspective would have us hope that all the monodromy groups attached to A are essentially
the same. However, as explained in Remark 2.114, we only expect G¢(A) to be connected after an exten-
sion K. Thus, for example, one can only hope that MT(A) knows about G,(A)°; this now makes sense be-
cause Gy(A)° is independent of the base field K by Remark 2.115. We may now state the following conjec-
ture.

31n this case, this reduces to finiteness of the class number hx: being open means ker A is commensurable with @IX(, and
K* \A;(vf/é;( is isomorphic to the class group as a pointed set.
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Conjecture 2.142 (Mumford—Tate). Fix an abelian variety A over a number field K. For all primes ¢, we
have

MT(A)q, = G¢(A)°
as subgroups of GL (H}, (A4, Q¢)). Here, MT(A) is embedded into this group by the Betti-to-étale com-
parison isomorphism.

Our work in chapter 1 provides many tools for computing MT(A), so Conjecture 2.142 would allow us to
translate this knowledge into a computation of G¢(A)°.
Even though Conjecture 2.142 is not fully proven, there is a lot known. Let’s review a little.

Example 2.143. If Aisan absolutely simple abelian variety with complex multiplication by a CM algebra
E, then both G¢(A)° and MT(A) equal the Zariski closure of the image of a suitably defined reflex norm
to Tr. For the Mumford—Tate group, this is Proposition 2.86; for the /-adic monodromy group, this is
Proposition 2.141.

Remark 2.144. The Mumford-Tate conjecture for abelian varieties with complex multiplication is quite
old: it is originally due to Pohlmann [Poh68, Theorem 4], but Ribet in [Rib04] has pointed out that the
result is a corollary of results due to Shimura and Tanimaya [ST61], and [Yul5] has recently explicated
this argument.

Let's move on to some more general results. For example, both groups are reductive by Lemma 1.44 and
Theorem 2.129. Additionally, Theorem 2.124 provides a suitable analogue of Theorem 2.40, telling us that
both groups MT(A) and G¢(A) cut out endomorphisms in End(A).

As a philosophical check, one can show that G,(A)° “contains” the Hodge structure morphism; the fol-
lowing result is due to Sen [Sen73, Theorem 1].

Theorem 2.145 (Sen). Fix an abelian variety A over a number field K. Define the operator ® as acting
by mutltiplication-by-i on each eigenspace

H{, (A%, Qe)c, (4),

where the (i)th eigenspace acts by ith power of the cyclotomic character. Then Lie G¢(A)° is the small-
est Lie algebra containing ®.

Continuing, one inclusion of Conjecture 2.142 is known, due to Deligne [Del18, Corollary 6.2].

Theorem 2.146 (Deligne). Fix an abelian variety A over a number field K. For all primes ¢, we have

Ge(A)° € MT(A)g,-

In particular, it becomes enough to compare numerical invariants of the two groups (such as rank) to argue
for an equality. For example, the following independence result is due to Larsen and Pink [LP95, Theo-
rem 4.3].

Theorem 2.147 (Larsen—Pink). Fix an abelian variety A over a number field K. If MT(A)q, = G¢(A)°
holds for any prime ¢, then it holds for all primes /.

One even knows that the centers of the groups coincide, due to Vaisu [Vas07, Theorem 1.3.1].

Theorem 2.148 (Vaisu). Fix an abelian variety A over a number field K. For each prime ¢, we have

Z(MT(A))g, = Z(Ge(A))".
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Vaisu [Vas07] has in fact shown quite a bit about the Mumford-Tate conjecture; see in particular [Vas07,
Theorem 1.3.4].

Much is known about products, especially products with restricted endomorphism types. By combining
[Ich91; Lom16], one is able to compute both MT(A) and G;(A)° for many abelian varieties of Types |-Ill
and control contributions coming from Type IV; this permits a proof of the Mumford—Tate conjecture for
products of abelian varieties of dimension at most 3. More generally, the following result is due to Commelin
[Com18, Theorem 1.2].

Theorem 2.149 (Commelin). Fix abelian varieties A and B over a number field K. If the Mumford-Tate
conjecture holds for both A and B, then it holds for A x B.

To give a taste for how some of these results are proven, we show the following, which follows from [Vas07,
Theorem 1.3.4].

Proposition 2.150. Fix a geometrically simple abelian variety A over a number field K. Suppose that
E = Z(Endg(A)) equals a CM field such that dim A = dim E. Letting ® be the corresponding signature,
we further suppose that ®(¢) = 1 for exactly two o € X . Then we show the Mumford—Tate conjecture
holds for A4, and

MT(A)der = L(A4)der,

Proof. For special ¢, we will actually compute MT(A)4e* and G(A)°4°" “simultaneously” to show that they
are equal to the suitable version of GSp () 4°" or GSp g (e,,)". By adding in what we know about the centers
from Theorem 2.148 (and the independence of £ given in Theorem 2.147), the Mumford—Tate conjecture
follows for A. The outline is to base-change to C, where the Lie algebra of L(A)d" becomes a product of
5l5(C)s, from which we can appeal to Lemma 1.62.

Before beginning the computation, we set up some notation. In practice, it will be convenient to only
write down the computation for MT(A4)49¢, but we will indicate along the way the changes that need to be
made for G(A)>9*. Now, for brevity, set V := H(A, Q) so that Hg(A) = Hg(V) and L(A) = L(V); we
remark that V' is a free module over FE of rank 2.

Continuing with the set-up, we recall some part of the computation from Lemma 1.68. Fix a polarization
pon V. Then let py,...,pe, be the embeddings of Ej into a Galois closure MT, which is the totally real
subfield of the Galois closure M of E. Then we admit a decomposition

Vur =V1@--- @V,
so that
L(V)ut = SpE®p1Mf(90|V1) X X SpE@,JCO mt(#lve, )-

We now also recall from Lemma 1.68 that each Spgg st (¢]v;)m is isomorphic to GL2(M); in particular,
this group is connected. In particular, to achieve this décomposition, we diagonalize the induced action of
M on V; and then projects onto one of the eigenspaces.

Now, we would like to show that the inclusion

Voo )M

Hg(v)?v?r < SPE®lei(‘P|V1)J\4 Xoee X SPE@%E0 i (e

is an isomorphism, where the last group is embedded in GL(V) ;. All groups involved are connected, so we
may check this inclusion on the level of the Lie algebra, so we would like for the inclusion

Lie Hg(V)§f" C SPee,, Mt (Plvi ) X - % SPre,,, it (@lve, )M

is surjective. For this, we use Lemma 1.62. Here are our checks; for brevity, set hg(V') := LieHg(V) s, and
let sl5(M); be the factor Lie Spg, a1 (0 v,)%er, which we note is isomorphic to sly(M).
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(i)

(ii)

We claim that hg(V)4e* surjects onto sly (M );, which we note is nonzero and simple. Because the hg(V)
is semisimple, its image in sly(M); continues to be reductive.

Now, reductive subgroups of sly (M) are either tori of all of sly (M), so we merely need to check that
the image cannot be a torus. If the image in some sly(M); is a torus, then because the Galois ac-
tion Gal(M/Q) permutes the decomposition of V into {V;}; (but will fix Hg(V")), so we see that the
image in sly(M); will continue to be a torus for all 4. Explicitly, we note that the image of Hg(V) in
SPrw,, Mt (¢lv;)m needs to be preserved under Gal(M/Q), so if the projection is commutative in one
factor, then it is commutative in all factors because the Q-points are dense. In particular, Hg(V') must
be a torus, so A has complex multiplication by Proposition 2.53, which is a contradiction to its defini-
tion.

The first point of (ii) is automatic from the construction. The second point follows because all the
slo(M);s include as the standard representation into gl(V;).

For the last point, we use the Galois action together with the hypothesis on the signature. Arguing as
in the proof of Lemma 1.62, it is really enough to check the (V;)ss are non-isomorphic as hg(V)4r-
modules. To make sense of the signature, we choose an embeddinge: M — C, and then Lemma 2.72
grants a signature ®. from the decomposition of V; into E ®. C-eigenspaces: explicitly, for each em-
bedding o € Hom(E, M), we find

® (o) = dim(V,)2°,

where (-)1'0 signifies that we are taking the eigenspace where i € C acts by i~!. However, the choice
of a different embedding e will permute the Vs in sight.

To explain how the signature is now used, we note that if {®.(0),®.(7)} # {P(7),P.(7)} for two
embeddings o, 7 € Hom(E, M) where p; = 0|z and p; = 7|gr, then we must have V; 2 V; as hg(V)der-
modules. Indeed, unwrapping the definition of the signature, we know that the projection of hg(V)g
(where the embedding MT < R is given by the restriction of €) into gl,(R) is

50(®:(0), ©(7)).

To see this, note that this a semisimple algebra of the correct rank, so it is enough remark that the
image of hg(V)4°* must land in the above Lie subalgebra by tracking the action of h(7). (One should use
Theorem 2.145 in the ¢-adic computation.) Thus, we are now able to remark that so(®. (), ®.(7)) %
50(D(7), (7).

To complete the proof, the hypothesis implies there exists exactly one pair {o¢,7(} of embeddings
E — C such that ®.(0¢) = ®.(d9) = 1. Thus, for any two distinct embeddings 0,7 € Hom(E, M), we
can choose ¢ so that e = ¢ but e7 # 0 and apply the previous paragraph. |

Remark 2.151. This argument is inspired by [Zar83, Remark 1.9.4], where “changing the embedding”
is used similarly to conclude that the Hodge group is large.

2.4.3 Computing /-Adic Monodromy

The previous subsection explains that one expects to be able to compute G¢(A4)° = MT(A). We now explain
how to use a computation of G4(A)° to compute Gy(A) in full. The idea is to use the Galois action on Tate
classes. Our exposition follows [GGL24, Sections 8.1-8.2]. We begin with some notation.

Notation 2.152. Fix an abelian variety A defined over a field K, and let ¢ be a prime such that char K 1 /.
We will write V := H}, (A%, Q¢). For eachn > 0, we define W, to be the spce of Tate classes in the nth
tensor power, writing

W, = (Ve g yVen) "

We also write W := €, W, for brevity.
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Remark 2.153. Because A is an abelian variety, one has a polarization V@ V' — Qy(1), so we see that

one can replace W,, with

(V®2n (n)) Gy(A)° )

Roughly speaking, the point is that the spaces W, of Tate classes are able to keep track of G,(A)°.

Lemma 2.154. Fix an abelian variety A defined over a field K, and let £ be a prime such that char K { ¢,
and define V and W, as in Notation 2.152.

(a) If G C GL (H}, (A%, Qv)) fixes W, then G C G,(A)°.

(b) There is a finite-dimensional subspace W’ C W such that G C GL (H}, (A%, Qy)) fixes W if and
only if G C Gy(A)°.

Proof. This essentially follows from Proposition 1.35.

(a) Recall G¢(A)° is reductive by Theorem 2.129. Thus, by Proposition 1.35, we know that if G C GL(V)

fixes every G¢(A)°-invariant in any
k

@ (V®7m ® V\/®ni) ,

i=1
then G C G¢(A)°. However, we claim that all G4(A)°-invariants in the above space can be found in
W, which will complete the proof. Indeed, by Theorem 2.148, we see that the scalars G,, g, can be
found in G¢(A)°; however, these scalars act by the character z — 2™i="i on V®™i @ VVV®ni 5o any
G(A)°-invariant subspace must then have m; = n;.

(b) The above argument provides countably many equations (in the form of invariant tensors) which cut
out G¢(A)°. However, any algebraic subgroup of GL(V') will be cut out by finitely many equations, so
we can choose W’ to be the span of any such subset of finitely many defining equations. |

Remark 2.155. The proof of (b) in fact gives an effective way to compute the subspace W’: simply write
down enough tensor elements to cut out G¢(A)° C GL (V).

We would now like to upgrade from G;(A)° to Gy(A).

Lemma 2.156. Fix an abelian variety A defined over a field K, and let ¢ be a prime such that char K t ¢,
and define V and W, as in Notation 2.152. For each n > 0, the subspace W, is stabilized by G,(A).

Proof. We already know that G,(A)° acts trivially on W,,, so this will follow purely formally from the fact
that G;(A)° is a normal subgroup of G¢(A).

We would like to show that each g € G,(A) stabilizes W,,. Well, W,, exactly consists of the G;(A4)°-
invariants inside V®" @ VV®" so it suffices to show that gW,, is stabilized by G,(A)°. Well, for any gy €
Go(A)°, we see that

909Wn = g9~ 90gWy,
so we conclude by noting that g~ 'gog € G¢(A)° because G((A)° C G(A) is a normal subgroup. |

Combining the above two lemmas, we see that we get a faithful representation
Go(A)/Ge(A)° — GL(W).

This faithful representation allows us to compute G,(A): we are looking for elements of GL (HZ, (A7, Q)
which produce the automorphisms of W seen in the image of the above faithful representation. Tracking
through this sort of reasoning produces our main result.

110



2.4. COMPUTATIONAL TOOLS SATO-TATE GROUPS OF GENERIC CURVES

Proposition 2.157. Fix an abelian variety A defined over afield K, and let ¢ be a prime such that char K ¢t
¢, and define V and W, as in Notation 2.152. Then G,(A) equals the group

U {gEGL(V)Ig‘W:O'|W}.
ocGal(K/K)

In fact, each set in the union is a connected component of G;(A).

Proof. We begin by noting that Gal(K /K) does in fact preserve W: indeed, one has a composite
Gal(K/K) — Gy(A) — GL(W),

where the first map is well-defined by the definition of G¢(A), and the second map is well-defined by sum-
ming Lemma 2.156.
Now, we have two inclusions to show.

« Suppose g € Gy¢(A). Then we must find o € Gal(Q/Q) such that glyy = of|w. Well, G¢(A) is by
definition the Zariski closure of theimage of Gal(K/K) in GL(V'), so the open subset gG;(A)° of G¢(A)
must contain o]y for some o € Gal(K/K). Now, G,(A)° acts trivially on W, so we see that g|w = o|w .

» Suppose g € GL(V) satisfies g|w = o|w. Then we would like to show that g € G(;(A). The argument
in the previous point grants gy € G¢(A) such that go|v = oy, so in particular, gl = go|w- Thus, gg;*
acts trivially on T, so ggy ! € G¢(A)°, so it follows that g € G,(A).

Lastly, it remains to discuss connected components. Well, note that g, g’ € G¢(A) live in the same connected
componentifandonlyif g'g~! € G4(A), whichis equivalentto ¢g’g~! acting trivially on W, which is equivalent
to gGe(A)° = g'Ge(A)°. u

Remark 2.158. A careful reading of the above proof shows that we only needed the following facts
about W: it is stable under G¢(A), and g € GL (V) lives in G¢(A)° if and only if it fixes W. Thus, we see
that we can replace W with any G,(A)-subrepresentation W’ C W which cuts out G;(A)° in the sense
of Lemma 2.156. This allows us to make W' quite small (e.g., finite-dimensional).

Remark 2.159. It is worth comparing Proposition 2.157 with the twisted Lefschetz group, defined in
[BK15, Definition 5.2]. Roughly speaking, the twisted Lefschetz group is simply the construction of
Proposition 2.157 with W replaced by the subspace of W generated by endomorphisms and the polar-
ization; see [GGL24, Remark 8.3.5] for precise discussion of the relation. In this way, one expects the
twisted Lefschetz group to equal G,(A) in generic cases, but Remark 2.158 explains that one may need
to remember more Hodge classes in exceptional cases.

Proposition 2.157 suggests that one can find representatives of each connected component in G¢(A) by
looping over all ¢ € Gal(K/K) and finding some g € GL(V) such that g|lyy = o|w. This is currently not
so computable because Gal(K/K) is an infinite group, and W is an infinite-dimensional vector space. Re-
mark 2.158 explains how to replace W with a finite-dimensional subrepresentation, so it remains to explain
how to reduce Gal(K /K) to a finite quotient.

Definition 2.160 (connected monodromy field). Fix an abelian variety A defined over a field K, and let ¢
be a prime such that char K { £. Then we define the connected monodromy field K" so that the open
subgroup Gal(K /K $"") is the pre-image of the connected component G¢(A)° in the Galois represen-
tation

Gal(K/K) - GL (H} (A Q1)) -
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Remark 2.161. Note that such a field K'5°"" exists and is finite over K by Galois theory: note G,(A)° C
G(A) is afinite-index subgroup (because the quotient is a discrete algebraic group), so the pre-image
U C Gal(K/K) of G¢(A)° similarly must be open and finite index and hence closed and finite index.

Thus, we see that the Galois reprentation to GL(W) factors through the finite group Gal(K™/K). In
this way, we are able to reduce the computation suggested by Proposition 2.157 from the infinite group
Gal(K/K) to the finite quotient Gal(K 5™/ K).

Remark 2.162. Let's describe how one might compute K'§*"" in practice. By combining the definition
of K™ with Lemma 2.154, we see that Gal(K /K™) is the kernel of the representation
Gal(K/K) — GL(W),

so one could imagine computing the open subgroup Gal(K /K5°"™) by computing the above represen-
tation. As usual, we remark that Lemma 2.154 allows us to replace W with a finite-dimensional sub-
representation W’ “cutting out” G,(A)°.

2.4.4 The Motivic Galois Group

In this last subsection, we recast some of our monodromy discussions motivically. The Mumford-Tate con-
jecture is more or less an assertion that there should really only be one monodromy group for an abelian
variety. This indicates that there should be a motivic version of this conjecture. Here is one formulation,
using our category of motives.

Definition 2.163. Fix a motive M over an algebraic extension K of Q.

« Forafixed embeddingo: K < C, we define the Mumford-Tate group MT (M) as the Mumford—
Tate group of the rational Hodge stucture H, (M). (See Remark 1.208.)

» Foreach prime ¢, we define the /-adic monodromy group as the smallest algebraic subgroup con-
taining the image of
Gal(K/K) — GL (we(M)),

where w;: Motg(K) — Repg, Gal(K/K) is given by £-adic cohomology. (See Remark 1.209.)

Remark 2.164. The same arguments as in Example 1.140 and Remark 2.118 show that MT (M) is the
algebraic group attached to the subcategory (H3 (M))® C HSq, and G¢(M) is the algebraic group at-
tached to the subcategory (w¢(M))® C Repg, Gal(K/K).

Example 2.165. Fix an abelian variety A. Because (H2(A))® = (HL

= (A))® (by Theorem 2.98) we see
MT(h(A)) = MT(A). The same argument shows Gy(h(A)) = G¢(A).

Conjecture 2.166 (Motivic Mumford—Tate). Fix a motive M over a number field K. For each prime ¢, we

have
MT(M)qg, = Ge(M)°.

(More precisely, these are isomorphic via the embeddings of Remarks 2.177 and 2.178.)
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Example 2.167. Let's prove the conjecture when M is an Artin motive. On one hand, H3(M3) has
Hodge structure concentrated in bidegree (0, 0), so MT(M) is trivial. On the other hand, G¢(M) is alge-
braic (by its construction) and a quotient of the profinite group Gal(K/K) (by Example 1.215) and thus
finite. We conclude G¢(M)° is trivial and thus agrees with MT(M)q,.

However, a motivic formulation not only tells us what to expect more generally, but it will tell us what the
more general monodromy group attached to a motive should be. Following Remark 2.164, we are motivated
to define a motivic monodromy group as follows.

Definition 2.168 (motivic Galois group). Fix an algebraic extension K of Q.

« Fora set of motives S C Motg(K'), we define the motivic Galois group Gime k (S) to be the alge-
braic group associated with the tensor subcategory (S) C Motg(K).

« If S = {M} is asingleton, we may write Gt x (M).
« Further, if M = h(X), we may write Guot,x (X).

We will omit the subscripted field K from the notation as much as possible. If we want to specify the
fiber functor w, (for an embedding o: K — C) in this notation, we may write G, instead of G-

Example 2.169. Let M be an Artin motive. In this case, Example 1.215 explains that we may identify
M with the Galois representation w,(M). Then the same argument as in Remark 2.118 shows that
Gmot (M) is exactly the image of the structure map

Gal(K/K) — GL(ws (M)).

Remark 2.170. For an abelian variety 4, Remark 2.106 explains why Giot(A) = Got (h'(A)): the ten-
sor categories of these motives are the same!

Remark 2.171. For an abelian variety A of dimension g, we claim that Gt (A) € GLag . Indeed,
choosing an embeddingw: K < C will induce a group homomorphism

M®wg|<h(,4)>® — GL (H},(A))

given by explaining how a given ®-automorphism of w, acts on w, (h*(A)). The corresponding functor
Repg GL (HL(A4)) — (h(A))® simply takes the tensor generator H (A) back to the tensor generator
hl(A), so the above group homomorphism is an embedding by Proposition 1.151.

Remark 2.172. In fact, G0t (A) C GSpy, - For a given polarization A — AV, the induced Weil pair-
ing and polarization on Hodge structures assemble into an absolute Hodge correspondence h'(4) ®
h'(A) — L. Now, each g € Guot(A) must commute with this absolute Hodge correspondence, which
means (on the Betti realization, say) that g preserves the induced perfect pairing on H. (A) up to a scalar
given by the action of g on L.

For example, one expects that Gp,ot (M)° = MT(M) and Gt (M)g, = Ge(M), but we cannot expect to be
able to prove these equalities easily because they together imply the (Motivic) Mumford—Tate conjecture.
Fortunately, we will be able to prove the former equality when M is an abelian variety, and we will then be
able to show that the latter equality is equivalent to the Mumford—Tate conjecture. This is the goal of the
present section.

Let’s begin with the equality G0t (A)° = MT(A).
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Lemma2.173. Let Abeanabelian variety defined overan algebraic extension K of Q. Then Gyt (A%) =
MT(A).

Proof. Thisis [DM12, Proposition 6.22(a)]. Fixan embedding o: K < C. Then Remark 1.208 explains that
the fiber functor w, : Motg(K) — HSg is faithful, but because all Hodge classes on abelian varieties are in
fact absolute Hodge classes, we will be able to show that the restricted functor

wot (R(A))® — HSg

is fully faithful. Indeed, (h(A))® is made of quotients of objects which look like @, h(A)™ & (h(A)Y)™,
but Poincaré duality (in Theorem 1.207) explains A(A)Y = h(A)(dim A), so we may work with quotients of
objects which look like

@ h(A)™ (m; dim A).

But then correspondences between such quotients may as well be lifted up to absolute Hodge classes on
disjoint unions of powers of A, which are the same as Hodge classes by Theorem 2.45, so we may unwind our
correspondences to merely be given by Hodge classes! This shows that w,, is fully faithful on the subcategory
(h(A))®.

To finish the proof, we see that the induced functor

wo: (h(A))® — (H3(A))®

is an equivalence (it is essentially surjective by construction), so the groups given by Tannakian reconstruc-
tion must be isomorphic. |

Remark 2.174. In fact, the proof shows that we expect to have Gt (M7r) = MT(M), but we only know
achieve this once we know that all Hodge classes in (M)® are absolute Hodge. Nonetheless, Proposi-
tion 1.149 explains that the proof may take w, and produce an embedding MT(M) — Gmot (M) for
any motive M.

Lemma 2.175. Fix any set S of motives over an algebraic extension K of Q, and let I" be the Tannakian
group of the category (S)® N Mot(%(K). Then there is an exact sequence

1 = Gmot(Sg) = Gmot(S) =T — 1.

Proof. This is [DM12, Proposition 6.23]. Throughout this argument, we are fixing an algebraic closure K
and K along with a frequently implicit embedding :: K C K. We will also need to choose an embedding
o: K — C. Anyway, we proceed in steps.

1. We describe the left map. There is a natural functor (S)® — (S3)® given by base-changing our mo-
tives (along ¢). By construction, Proposition 1.149 explains that the relevant group homomorphism
P: Gmot (S77) = Gmot(S) is an embedding.

It will be worthwhile to explicate this map somewhat: given some g € Gunot(Sx), we note that g is
really an automorphism of the ®-functor w, on (Sz)®. But then g induces an automorphism on (5)®
(and hence an elementi(g) € Gt (S)) as

Wor (M) = we (M) % we (M) = w,, (M).

Namely, because g is already an automorphism of ®-functors, we see that i(g) is as well.
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2. We describe the right map. There is a fully faithful embedding (S)® N Mot&(K) C (S)®, so our Tan-
nakian formalism (Proposition 1.149) induces an embedding p: Giot(S) — T'. Asinthe previous point,
we may view p as restricting an automorphism of the ®-functor w,, from (M)® to the subcategory
(S)® N Motg(K).

3. The above remarks have already provided exactness of our sequence on the left and right. It remains
to show exactness at Gy,,0t(S). One of these checks is easier: we start by showing that p o i is trivial.
Namely, for any g € Guot(S7), we must show that i(g) fixes wy, (M) for any M € (S)® N Motg(K).
Upon unwinding the definition of i(g), we see that we would like to check that g fixes w, (Mz). It will
be enough to check that any ®-automorphism of w, acting on (Sz)® N Mot%(?) is trivial, but this is
not hard: this category is just (h(Spec K ))®, and any ®-automorphism will fix the unit.

4. We finish showing exactness in the middle. Suppose g € G0t (S) goes to the identity in T', and we
want to show that g € im . The main point is to show that g5, € Autw,, (M) only depends on M.
For a moment, choose two motives M, N € Motg(K), which we will assume to be isomorphic af-
ter base-change to K in a moment. Observe that Homypor, (k) (M7, N%) is some subspace of abso-
lute Hodge classes, so it is a Galois representation by Remark 1.191.% It follows that we may view
Homypot, (1) (M7, Nz) as an Artin motive in Mot%(K) via Example 1.215, so g acts trivially on this mo-
tive. This means that the action of g fixes the relevant absolute Hodge correspondences, which causes
the diagram

wo (M) s wo. (M)
wo. (f) J{wm(f)
Wor (Ng) =2 wo (N
to commute forany f: My — N For example, upon taking f to be an isomorphism, we are left with
the statement that g5, and g, are the same automorphism.
As such, we may define g € Aut®w, by 9n,. = gum, Which the previous paragraph promises is well-
defined. (These motives generate our category, so g can be uniquely extended to kernels and tensor

products because it is already a linear ®-automorphism where it is defined.) Then i(g) = ¢ by con-
struction. |

Proposition 2.176. Fix an abelian variety A over an algebraic extension K of Q. Then

Gmot (A)O = MT(A) .

Proof. Plugging the equality MT(A) = Gmot(A) of Lemma 2.173 into Lemma 2.175 yields the exact se-
quence
1= MT(A) - Gmot(A) =T — 1,

where I' is some quotient of Gal(K/K) by Example 1.215. In particular, I is thus a quotient of a profinite
group and an algebraic group Gt (A) by Proposition 1.150, so I must be finite.

Now, on one hand, MT(A) is connected by Remark 1.30, so MT(A) C G0t (A)° follows. On the other
hand, T"is discrete, so G0t (A)° must be contained in the kernel of the right-hand projection, which is exactly
MT(A) by exactness. The result follows. [ |

Remark 2.177. Continuing from Remark 2.174, we see that this proof shows G, (M)° = MT(M) for
an arbitrary motive as soon as we know that all Hodge classes are absolutely Hodge, and one can always
construct an embedding MT(M) — Gt (M)°.

We now turn to the second equality Gyot(M)g, = Ge¢(M), which is called a "motivic analogue of the Tate
conjecture” in [CC22].

4 Fixing a degree via Tate twists and taking idempotent subspaces are both Galois-invariant operations, so the subspace of absolute
Hodge classes continues to be Galois-invariant.
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Remark 2.178. One can construct a candidate isomorphism for Conjecture 2.179. The comparison iso-
morphism (in the form of Remark 1.210) shows that the fiber functors Motg(K) — Vecg, defined by
M — w,(M)g, and M +— w,(M) are naturally isomorphic. This induces a morphism (M)® — (w,(M))®
of neutral Tannakian categories, which then induces the desired map G¢(M) — Gmot(M). Exam-
ple 1.137 explains that this map is an embedding.

Conjecture 2.179. Fix a motive M over a number field K. For each prime ¢, the canonical map
GZ(M) — Gmot(M)Qe

of Remark 2.178 is an isomorphism.

Example 2.180. Let’s prove the conjecture when M is an Artin motive. Well, the comparison isomor-
phism Remark 1.210 explains that there is an isomorphism w,(M)q, — w¢(M) of Galois representa-
tions, so we are done as soon as we compare Example 2.169 with the definition of G,(M).

Intuitively, one should expect Conjecture 2.179 to follow by independently comparing identity components
and component groups. Proposition 2.176 indicates that comparing the identity components will require
some input from the Mumford-Tate conjecture, but luckily, we can compare the component groups less
conjecturally.

Lemma 2.181. Fix a motive M over a number field K. Then the canonical map G¢(M) — Gmot(M) of
Remark 2.178 induces a surjection

ﬂoGg(M) — WOGmot(M)Ql'

Proof. The idea is that finite groups should correspond to Artin motives, where the conjecture is already
known by Example 2.180. Let’s begin by finding the relevant Artin motive: the quotient map Gt (M) —
ToGmot (M) induces an embedding

Repg m0Gmot (M) < (M)®.

The left-hand category has a tensor generator (e.g., take the regular representation of the finite group
7oGmot (M), so the essential image has a tensor generator N € (M)®. To see that this is an Artin motive,
we note that oGt (M) is a quotient of the motivic Galois group of (M)® N Mot?Q(K) by Lemma 2.175, so
we must have N € Mot(%(K).

Let's explain why N is the Artin motive we are looking for: by the construction of N, the category (N)®
is equivalent to Repg moGmot (M), 50 Grmot (V) = ToGmot (M ). We are now ready to complete the proof: the
commutative diagram

(N)® ——— (M)®

(AJ[J/ J/WZ
(We(N))® > (we(M))®

induces a commutative diagram
Go(M) ———— Gy(N)

[ [

Gmot(M)Qe — Gmot(N)Qz

where the right-hand arrow is in fact an isomorphism by Example 2.180. We conclude that the induced map
Go(M) — moGmot (M) is surjective, so the claim follows. [ ]
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Proposition 2.182. Fi an abelian variety A over a number field K. Then Conjecture 2.179 for A is equiv-
alent to the Mumford-Tate conjecture for A.

Proof. This is part of [CC22, Theorem]. Remark 2.178 induces a morphism

1 —— Go(A)° ——— Gy(A) ———— moG(A) —— 1

l l l

1—— Gmot(A)f@ —— Gmot(A)g, — T0Gmot(4)g, —— 1

of short exact sequences. Quickly, we note that the left map is injective because the middle map is injective,
and the right map is surjective by Lemma 2.181. Additionally, we note that the canonical map MT(4) —
Gmot(A)° is an isomorphism by Proposition 2.176.

Before continuing, we note that the Mumford—-Tate conjecture (in the form Conjecture 2.142) is equiv-
alent to the induced map G¢(A)° — MT(A)q, being an isomorphism. Indeed, perhaps one can be wor-
ried that the map constructed in Conjecture 2.142 is not this map, but it is: the embedding MT(4) —
GL (H}(A)) simply asks how MT(A) should act on the vector space Hj; (A) and thus factors through Gno (A)
by Remarks 2.171 and 2.174. Similarly, the embedding G¢(A) — GL (H}, (A%, Q¢)) again factors through
Gmot (A) via the discussion of Remark 2.178.

We now show both directions of the proposition independently.

» Given the Mumford—Tate conjecture, the snake lemma now implies that the left and right maps being
surjective implies that the middle map is surjective, thereby proving Conjecture 2.179.

+ Given Conjecture 2.179, we see that the left map is an isomorphism because taking identity compo-
nents is functorial. [ |
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CHAPTER 3
THE SATO-TATE CON]ECTURE

Well, there’s only one way I've ever seen something substantial proved
about an arithmetic L-function—and that’s to relate it to automorphic
forms.

—Richard Taylor, [Tay07]

The classical application of monoromy groups is to the Sato—Tate conjecture, which we now discuss.

3.1 The Statement

In this section, we state the Sato—Tate conjecture, and then we explain how it can be numerically verified.

3.1.1 The Weil Conjectures

The Sato—-Tate conjecture is about counting points on an abelian variety A over finite fields F, as ¢ varies. In
this subsection, we will describe the Weil conjectures because they explain why these point-counts ought
to be related to cohomology.

The main character of our story is a zeta function.

Definition 3.1. Fix a variety X over a finite field F,. Then its zeta function is the formal power series

Zx(T) = exp < D #X (Fgm) 1;:)
m=1

Remark 3.2. It is not important why this is the precise definition of the -function, but we remark that
there is a general definition of (x when X is a scheme of finite type over Z, given by

1
()= ]I T-N@)—

closed ze X

where N(x) = #k(x); for example, foranumberfield K, {spec 0, (5) = (x (). A purely formalargument
can verify that (x (s) = Zx (¢~ *). Roughly speaking, one merely has to write log (x (s) out as a sum over
closed points  and then group the terms by N(z).
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The Weil conjectures [Wei49, p. 507], now theorems due to Deligne [Del74; Del80], assert the following
properties for Zx (T') when X is smooth, geometrically irreducible, projective variety over F, of dimension
d.

1. Rationality: Zx(T) € Q(T).

2. Functional equation: there is a sign + such that
Zx () = g2 T 25 (T)
‘T ’

where x is a suitably defined Euler characteristic deg(A - A).
3. Riemann hypothesis: there is a factorization

_ Pi(T)-- Py 1(T)
Zx(T) = Py(T) - Pou(T)

sothat Py (T) = 1—T, Pyy(T) = 1 —¢?T, and each P;(T) has P(0) = 1 and has roots which all take the
form 1/a; where a; is an algebraic integer of magnitude ¢*/2.

4. Betti numbers: if X admits a smooth projective integral model X, then
deg P; = dimg Hp(X(C), Q)
for each i.

All of these conjectures are proven using cohomological methods. We will not explain the proofs of all of
them here, but we will show everything except the Riemann hypothesis. Our exposition follows [Har77,
Appendix C.4].

In short, the proofs we provide will take some cohomological input and then do a little linear algebra to
prove atheorem. For example, to explain how cohomology enters our picture via the Lefschetz trace formula
(Theorem 1.122), we need the following linear algebraic lemma.

Lemma3.3. Let f: V — V be an endomorphism of a vector space. Then there is an equality of formal
power series

Tm

—

—logdet(1 — fT;V) = > tr (f™V)
m=1

Proof. Taking traces and determinants is immune to base-change by a field, so we may assume that V is a
vector space over an algebraically closed field. Then we may choose a basis of V' so that the matrix repre-
senting f is upper-triangular. Now, we set n := dim V, and we let {\, ..., A\, } be the diagonal entries of f.
Then

n

—logdet(l — fT,V) = Z —log (1 - N\T),
i=1

and

tr (f™V) = Z)\im,
i=1

so we conclude the proof using the formal power series expansions —log(1 — \;T) =, -, AT /m. R
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Proposition 3.4. Fix a Weil cohomology theory H*® over F, with coefficients in F. Choose a smooth
projective variety X over a finite field F, of equidimension d. Letting Frob,: X — X be the ¢g-power
(absolute) Frobenius endomorphism, we have

2d
Zx(T) = [ [ det (1 — Frob T; H'(X))'
=0

—1)itt

Proof. We proceed in steps.

1. For expositional reasons, we isolate the “motivic” input in this proof: we claim the diagonal A: X —
X x X and the graphI" of Frob, intersect transversely. Because I"and A have the correct dimensions to
intersect transversely, itis enough to check their Zariski tangent spaces are disjoint on the intersection.
Onone hand, for z € X (F,), we see that

Tem)A ={(v,v) v e T, X}

because A is the image of (idx,idx): X — X x X. On the other hand, the action of Frob,: X — X
on the Zariski cotangent space is an endomorphism d(Frob,), of m,/m2 which can be computed to
vanish: the derivative of the ¢g-power map in positive characteristic will vanish! Thus,

Tizo)l' = {(v,0) :v € T, X'}
because I'is the image of (idx, Frobg): X — X x Y. This tangent spaces are in fact disjoint.

2. We now claim that #X (F,;) = deg(I'- A), where A: X — X x X is the diagonal. To begin, by embed-
ding X into some projective space, where the action of the Frobenius can be seen as taking ¢g-powers
on points, we see that X (IF,,) is exactly the set of (geometric) points fixed by f. However, the set of F-
points fixed by the Frobenius is count is simply I'(F,) N A(F,), whose cardinality will equal deg(T" - A)
because T and A intersect transversely.

3. We are now in a position to use the Lefschetz trace formula, so the remainder of the proof is a calcu-
lation. Indeed, by Theorem 1.122, we may take powers of Frob, in the previous two steps to see that
#X (Fym) equals

2d
deg(A - Trroby) = Y _(—1)" tr ((Frob")*; H' (X)) .
Thus, summing over all m, we see that -
i #X(F m)Tm = il:(—l)i+1 log det(1 — Frob’; H (X))
m=1 m i=0 v
by Lemma 3.3. Taking exponentials completes the proof. |

Remark 3.5 (Betti numbers). In the Riemann hypothesis conjecture, one takes
P;(T) = det (1 — Frob;T; H'(X)) .

Thus, taking H® to be ¢-adic cohomology, the Betti—étale comparison isomorphism Theorem 1.79 es-
tablishes the Betti numbers conjecture.

Example 3.6 (Riemann hypothesis, i = 0). If X is a smooth, geometrically irreducible, projective variety
over F,, thenI'(X, Ox) = F,. (One can check this by base-changing to the algebraic closure.) But now
the ¢g-power Frobenius acts trivially on F,, so we conclude Py(T") should equal

det (1 — Frob; T;H*(X)) =1-T.
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Thus, we see that computing Zx (T) is “as easy as” computing the characteristic polynomial of a Frobe-
nius. At the very least, this perspective will have a lot of theoretical power. Let's start with the rationality
conjecture.

Lemma 3.7. Let F C F’ be a field extension. Then F[[T]| N F'(T) = F(T).

Proof. Of course, F'(T') C F[[T]] N F'(T'), so the difficult inclusion is the reverse.

Suppose f(T) = > 2,a;T"is in F[[T]]. Then f(T) lives in F(T) if and only if one can find a polyno-
mial g(T') € F[T] such that f(T)g(T) € F[T]. In other words, we need to find finitely many coefficients
{bo, ..., b,} such that the coefficient

Z an-—ibi
=0

of TV in f(T) X!, b;T" vanishes for N large enough. However, this is equivalent to the purely linear-
algebraic condition that there is are n, N > 0 for which the subspace

Vo.n =spanp{(a;,...,ai1y) 11 > N}

of F™*! vanishes on a nontrivial functional. In other words, we are asking for some n, N > 0 for which the
inclusion V,, x C F™*lis proper.

However, linear algebraic conditions can be checked after field extensions, so we are basically done.
Indeed, f(T) ¢ F(T) is equivalent to having V,, y = F"*! foralln, N > 0. However, such an equality of
vector spaces can be checked after base-changing to £, so this is equivalent to V,, xy @ F’ = (F’)"*! for
alln, N > 0, which is equivalent to f(T) ¢ F'[[T]] by the previous paragraph! [ |

Theorem 3.8 (Rationality). Suppose there is a Weil cohomology theory H® over F, with coefficients in
F.Then Zx(T) € Q(T) for any smooth projective variety X over F,,.

Proof. By construction, Zx(T') € Q|[[T]], and Proposition 3.4 shows that Zx (T') € F(T), so we are done by
Lemma 3.7. u

Remark 3.9. This proof says nothing about the rationality of the polynomials det(1— f*T'; H* (X)), which
by the Riemann hypothesis (and Remark 3.5) are expected to be rational and with very controlled roots.

We now turn to the functional equation. This will come from “dualizing” Zx (T') via Poincaré duality. As
such, we will want to understand the dual of f*: H*(X) — H*(X) and how this affects characteristic poly-
nomials.

Lemma3.10. Let X be ascheme overF, of finite type and equidimension d. Then the ¢g-power Frobenius
Frob,: X — X is finite of degree ¢“.

Proof. Note that Frob, is finite because it is affine, finite type, universally closed (hence proper), and quasifi-
nite by definition. As for its degree, it is enough to compute the degree affine-locally, so we may assume
that X = Spec A. Now, Noether normalization provides some finite map A — Aféq. Because the Frobenius
Frob, will commute with any morphism over F,, we see that it is then enough to compute the degree of
the Frobenius on Aﬁ%q. But this can be done directly: writing A%q = SpecFy[X1,..., X4, the degree of the
Frobenius equals the degree of the extension

[Fq(le e aXd) : FQ(X{I’ e 7Xg)]’

which is simply ¢°. [ |
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Lemma 3.11. Let V and W be an n-dimensional vector spaces over F equipped with a perfect pairing
(,): V. x W — F. Given endomorphisms f and g of V and W, respectively, satisfying (f(v), g(w)) =
A(v, w) for some nonzero A, we have det(f; V') det(g; W) = A" and

—1)™d VvV
det <1 — )\J;;V> = ())\n#det(l —gT; W).

Proof. Calculation of the characteristic polynomial is invariant under extending F', so we may assume that
F is algebraically closed. Setting n := dimV, we may now choose a basis {v1,...,v,} for V_making the
matrix representing f upper-triangular; then the dual basis {w, ..., w,} of W will make g lower-triangular.
Indeed, we have that (f(v;), w;) = 0fori < j, which implies that (v;, g(w;)) = 0fori < j as well.

In fact, we can relate the diagonal entries of f and g: because f is upper-triangular while g is lower-
triangular, we see that (f(v;), g(w;)) equals

(vi, g(wa))(f (vi), wi)-

Thus, if the diagonal entries of f are {A1,..., A}, then the diagonal entries of g are {\/A1,...,A/\,}. For
example, multiplying together all these entries reveals det(f; V) det(g; W) = A™. Additionally, we see that

det(1 — ¢gT; W) is the product
" AT  (=1)"ArT™ Ai
(-5) =S L0 37)

i=1 1

and now the product on the right-hand side is det(1 — f/AT; V). The result follows after some rearrange-
ment. |

Theorem 3.12 (Functional equation). Suppose there is a Weil cohomology theory H® over F, with coef-
ficients in F'. Choose a smooth, geometrically irreducible, projective variety X over a finite field F, of d.
Then there is a sign + such that

Zx <1> = +q™/2TXZ 4 (T),
q

where x = deg(A - A).

Proof. LetFrob,: X — X denote the g-power Frobenius. The idea is to use Poincaré duality to relate H(X)
with H>?~#(X). By Lemma 3.10, the degree of Frob, is ¢%, so Lemma 1.116 shows that (Frob,),Frob = ¢°.
Unwrapping the definitions, this is saying that

/ (Frobja U Frobja') = qd/ (aUa’)
X X

forany a € HY(X) and o/ € H??~%(X)(d). By Poincaré duality, this trace pairing is perfect, so Lemma 3.11
implies

Froby (—1)% det(Frob’; H! (X)) . »
det (1 - TTQ;H (X)) = qdﬁiT&q det (1 — Frob; T; H*(X)(d)) ,

where 3; := dimp H*(X). Note that the twist (d) will not change the characteristic polynomial, so we may
ignore it. Now, by taking the (signed) product over all 7, we see that

Ze (1) = 1XdXTX2dthb*~HiX )
X(da)—Hq T det (Evob;: Hi(x)) (1),

=0
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where x = Zfio(—l)%’i, whichis x = deg(A - A) by Theorem 1.122. It remains to compute the product on
the right-hand side. Another application of Lemma 3.11 shows

det (Frob}; H'(X)) det (Frob}; H*~#(X)) = ¢%,
so the square of the product is ¢~ 9. Thus, our product is =¢%X/2, and the proof is complete upon plugging

this in. [ |

Remark 3.13. The proof explains that the sign & is (—1)X sgn det (Frob; H*(X)).

Example 3.14 (Riemann hypothesis, i = 2d). The proof shows that P»4(T') = det (1 — Frob; T; H*¥(X))

IS
—1)B1gdBr B 1
det (Frob;; HO(X)) q

Because X is geometrically irreducible, I'(X,Ox) = F,, so H'(X) = F by Example 1.103, so 3; = 1.
Now, Example 3.6 explains that Py(T) = 1 — T, so Po4(T) = 1 — ¢?T follows.

It remains to prove the Riemann hypothesis conjecture. This is much too difficult to be done here in
any amount of detail, but we will mention how one might do this for abelian varieties A over F,. By Theo-
rem 2.98, it really amounts to checking the required properties of the roots of

Py(T) = det (1 — Frob; T; H'(A)) .

Approximately speaking, one wants to find a duality among the roots of P;(T'): for example, if a is a root,
then there should be another root @ with aa = ¢. After some work with linear algebra, this eventually boils
down to the following fact.

Proposition 3.15. Fix an abelian variety A over a finite field F,, and consider the induced Frobenius en-
domorphism Frob,. Then
Frob, o Frobg =[qla.

Proof. We refer to [Mil08, Lemma I11.1.2]. [ |

3.1.2 The Sato-Tate Group

In this section, we will define the Sato—Tate group and state the Sato—Tate conjecture. Our exposition
loosely follows [Sut19]. Fix an abelian variety A defined over a number field K, and choose a prime ¢. We
also let py: Gal(K/K) — GL (H, (A%, Q/)) denote the associated Galois representation.

Intuitively, the Sato—Tate conjecture asserts that the Frobenius elements p,(Frob,) equidistribute in
Gy(A) as p varies over the maximal ideals of Ok. This conjecture does not make sense verbatim, so we
will have to work a bit to write down something formal. Consider the following points.

« To begin, we note that Frob, only makes sense as a conjugacy class, and it only makes sense as a
conjugacy class when py vanishes on the relevant inertia subgroup of Gal(K/K).

Two remarks are thus in order. First, to vanish on the inertia subgroup, we must exclude a finite set
of primes p where A has bad reduction. (We are using the Néron—-Ogg—Shafarevich criterion [BLR90,
Theorem 5].) Second, we will simply regard p,(Frob,) as a conjugacy class as well. Thus, we really
want to say that conjugacy classes equidistribute in a suitable space of conjugacy classes.

« It turns out that p,(Frob,) is not a totally random element of G,(A). Indeed, by Proposition 3.15, we
see that the multiplier of Frob, acting on H}, (A%, Q/) equals N(p). Thus, we would like to rescale Frob,

back down by 1/4/N(p).
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Once again, this requires two remarks. First, after rescaling, we will be working in the smaller sub-
group
Gi(A) = Ge(A) N Sp(ey),

where ¢ is a choice of polarization on A. Second, the rescaling cannot happen in Q, because QQ; does
not have enough square roots. As such, we must choose an embedding ¢: Q, — C, allowing us to

consider the elements I\ll(p) tpe(Froby) in the complex Lie group G} (4),(C).1

 Another piece of structure to keep track of is that py(Frob,) is semisimple (see Remark 2.130). This

means that the subgroup topological generated by \/ﬁbpg(FrObp) (which we now see has all eigen-

values equal to 1 after the normalization in the previous step) will be compact! A standard result in
the structure theory of complex Lie groups is that they have maximal compact subgroups unique up
to conjugacy, so one can find an element in our conjugacy class ﬁbpg(Frobp) in any given maximal
compact subgroup of G}(A),(C).

With the above preparations, we are now ready to state the Sato—Tate conjecture.

Definition 3.16 (Sato—Tate group). Fix an abelian variety A defined over a number field K, and choose
a prime £ and an embedding :: Q;, — C. Then we define the Sato—Tate group ST(A) to be a maximal
compact subgroup of the complex Lie group G} (A),, where G} (A) is the subset of G, (A) with multiplier
equalto 1.

Conjecture 3.17 (Sato—Tate). Fixan abelian variety A defined overa number field K, and choose a prime
£ and an embedding ¢:: Q; — C. For each nonzero prime ideal p of K such that A has good reduction at

p, choose the conjugacy class z, € Conj(ST(A)) containing the conjugacy class \/ﬁLpg(Frobp). Then

the conjugacy classes {z, } equidistribute with respect to the pushforward of the Haar measure along
ST(A) — Conj(ST(A)).

The relevance of the Sato—Tate conjecture for us is that it will let us numerically check that we have the
correct ¢-adic monodromy group; precisely how this is done will be explained in the subsequent subsections.
We will spend the rest of the present subsection making some remarks about Conjecture 3.17.

Remark 3.18. Not much is known about Conjecture 3.17. Roughly speaking, all known proofs prove
something akin to modularity for not just the Galois representation attached to A but also its symmetric
powers (and maybe more!).

« If A has complex multiplication, then this essentially follows from the Fundamental theorem of
complex multiplication.

« For elliptic curves, the state of the art is [Bar+14; Bar+11], where the Sato-Tate conjecture is
proven for elliptic curves over totally real and CM fields.

» These potential automorphy techniques were extended to some classes of abelian varieties by
Johanssonin [Joh17, Theorem 1].

One obnoxious defect of Conjecture 3.17 is that we must make choices regarding £ and «. The choice ¢ is not
so egregious because everything ought to descend to something algebraic, but it is quite unclear that ST(A)
and even G} (A) does not depend crucially on £. One expects G,(A4)° to not depend on ¢ by the Mumford-Tate
conjecture (Conjecture 2.142). The relevant conjecture for the full group G¢(A) is the Algebraic Sato-Tate
conjecture [BK15, Conjecture 2.1].

1 Another reason for passing to C is that groups in C have access to a good measure theory.
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Conjecture 3.19 (Algebraic Sato—Tate). Fix an abelian variety A defined over a number field K. Then
there exists an algerbaic subgroup AST(A4) C GL3,(Q) such that

AST(A)q, = GH(A)

for all primes 2.

This conjecture, being similar in spirit to the Mumford—-Tate conjecture, has quite a bit known. For example,
Banaszak and Kedlaya have shown this conjecture for products of abelian varieties of dimensions at most 3
[BK15, Theorem 6.11]. Roughly speaking, their proof boils down to the fact that one has Hg(A4) = L(A)° in
these small dimensions, which permits a direct computation of AST(A) along the lines of Proposition 2.157
(see Remark 2.158).

Remarkably, Farfan and Commelin have shown that the Algebraic Sato—Tate conjecture is implied by
the Mumford—-Tate conjecture in [CC22]. We will spend the rest of this subsection explaining their proof.
Because we are interested in exhibiting a monodromy group related to all £-adic groups, we are motivated
to relate our conjectural AST to the motivic Galois group. Thus, we want to use a construction from our
Tannakian formalism.

Notation 3.20. Fix a Tate triple (C, w, T) over a field F', and choose a fiber functor w: C — Vecp. If G,
is the corresponding affine group, we let G1, denote the kernel of the canonical map G, —+ G, (T). If
S C Cis a subset, we will write G}, (S) for the image of G, in G,,.

The following lemma aides our computation of Gls.

Lemma 3.21. Fix a Tate triple (C,w, T) over a field F', and choose a fiber functor w: C — Vecp. Given
asubset S C C, let m be the smallest positive integer such that T®™ € (S)® and 0 if there is no such
integer. Then G (9) is the kernel of the canonical map G,,(S) — GL (T®™).

Proof. Thisisin [CC22, Section 2]. Let K denote the kernel of the canonical map GL(S) - G (T®™), which
is faithfully flat by Proposition 1.149. Then K will fit into the following morphism

1 Gl G Go(T) — 1

P |

1—— K —— G,(S) — G, (T®") —— 1

of short exact sequences. Here, the commutativity (and faithfully flatness) of the top-right square can be
seen categorically, from which the left arrow is induced. Similarly, the construction of G1(S) permits the
morphism

1 Gl G Gu(T) ——— 1

| |

1—— GL(S) —— Gu(S) —— G, (9)/GL(S) —— 1
of short exact sequences, where the right arrow is induced.
The main claim is that the surjection

Gy — Gu(T) = G, (8)/GL(S)

in fact factors through G, (T®™). In fact, any g € G,, is the identity on (T®™)® = ($)® N (T)® if and only
if g|(sy= admits an extension to G.,, which is equivalent to g|;sye € GL(S). Thus, we see that the induced
surjection G,,(T®™) — G, (5)/GL(S) is also an embedding and therefore an isomorphism. We conclude
that the kernel K of the surjection G, (S) - G,,(T®™) must in fact by GL(9). ]
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Example 3.22. We show that G}(A) is the kernel of the canonical map G,(A) — G¢(T). (As in Re-
mark 2.172, the polarization realizes T~! as a quotient of h!(A) ® h'(A).) Well, for any g € G4(A), the
argument of Remark 2.172 shows that g preserves a choice of Weil pairing

Hg: (Aze, Qo) ® Hy (Age, Qo) — Qu(-1),
so g has multiplier equal to 1 if and only if g fixes wy (T~1) = Q¢(—1).
We are now ready for our main result.

Theorem 3.23 (Farfan—Commelin). Fix an abelian variety A defined over a number field K. If A satisfies
the Mumford-Tate conjecture (Conjecture 2.142) that G,(A)° = MT(A) forall primes ¢, then A satisfies
the Algebraic Sato—Tate conjecture (Conjecture 3.19). In fact, for all primes ¢,

Graot(A)a, = Gy (A).

Proof. This is part of [CC22, Theorem]; its argument is analogous to Proposition 2.182. The main point is
that Remark 2.178 induces a morphism

1 —— GHA) ———— G(A) ———— Go(T) —— 1

l l

1—— GL (Ao, — Guot(A)g, — Gmot(T)g, —— 1

mot

of short exact sequences, where G, (A) is defined in the obvious way, and the horizontal maps are well-

defined because T € (h(A))® (see Remark 2.172). Indeed, the commutativity of the right square can be seen
categorically on the level of fiber functors, and then the left map is induced.

We now complete the proof. Remark 1.148 explains that Giot(T) = Gy, and G¢(T) = G,y g, simply
by identifying the relevant catregories with GrVec. Thus, the right arrow is an isomorphism, so the middle
arrow is an isomorphism if and only if the left one is. We are now done because the middle arrow being an
isomorphism is equivalent to the Mumford—Tate conjecture for A by Proposition 2.182. |

Remark 3.24. In fact, the proof above shows that the canonical map G}(A) — GL..(A)g, being an
isomrphism is equivalent to the Mumford—Tate conjecture for A. In other words, a sufficiently precise

version of the Algebraic Sato—Tate conjecture is equivalent to the Mumford—Tate conjecture.

3.1.3 Some Examples

In this subsection, we compute some basic Sato—Tate groups. The general outline is to compute the Hodge
or Mumford-Tate groups first, check the Mumford—Tate conjecture to get G7, and then compute some
Galois action to get G;. We begin with some elliptic curves.

Example 3.25 (no complex multiplication). Consider the elliptic curve E: 4% = 23 +xz+1 over Q. One can
compute that End¢(E) = Z, so E does not have complex multiplication. Thus, Hg(E) C SLs g needs
to be a connected reductive subgroup which is not a torus (see Proposition 2.53); however, the only Lie
subalgebras of sl;(C) are either commutative or all of 5l (C), so we conclude that Hg(E) = SL5 g. Thus,
MT(E) = GLyq.

The same computation (with Remark 2.128) allows us to conclude that G¢(E) = GLa g, for all
primes ¢, thus proving the Mumford—Tate conjecture (Conjecture 2.142) in this case. We thus find
G}(E) = SLag,, so upon choosing ¢t: Q, < C, we see that G}(FE), = SLa ¢, so choosing a maximal
compact subgroup finds ST(E) = SUs.
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Example 3.26 (complex multiplication). Consider the elliptic curve E: y2? = 23 + 1 over Q((3). Then we
see that End¢(E) = Z[(3], where (5 acts by (z,y) — ((3z,y), so E has complex multiplication. Thus,
Hg(E) C SLj g(c,) is a torus (by Proposition 2.53), but it cannot be trivial (by Corollary 2.42), so we
conclude that Hg(E) is the diagonal torus of SL; g(¢,)-

For primes ¢ which split completely in Q((3), the same computation (with Remark 2.128 and Corol-
lary 2.127) where £ splits completely in Q, reveals G¢(E) = G}, , equalsthe diagonaltorusin GL; g(c,),
proving the Mumford—Tate conjecture (Conjecture 2.142) in this case. We thus find G}(E) & G, q,,
so upon choosing ¢: Q; < C, we see that G} (E) = G,,, g,, so choosing a maximal compact subgroup
finds ST(F) = U;.

Example 3.27 (potential complex multiplication). Consider the elliptic curve E : 42 = z3+1 but now over
Q. Example 3.26 computed that MT(E) = G,,,,g and G¢(E)° = G, g, (for primes ¢ = 1 (mod 3)). In
this case, we see that there are endomorphisms not defined over Q and hence not fixed by Gal(Q/Q), so
Kgemm #£ Q; instead, these endomorphisms are defined over K§™* = Q((3). We thus see that G¢(E) C
GLg, g, normalizes its index-2 subgroup G,(E)° (which is the diagonal torus), so G,(E) must be the
diagonal torus together with the nontrivial Weyl element in GL3 g,, which we write as G7, , x S2. We
thus find G} (E) & G, g, X S2,50 ST(E) 2 U; x Ss.

Remark 3.28. In the above example, we appealed to the fact that the only elements normalizing the
diagonal torus are the Weyl elements, which is a bit ad-hoc and will not work in higher dimensions.
Roughly speaking, Proposition 2.157 provides the machine which works in higher dimensions, where
we know that the Galois representation now factors through Gal(Q(¢3)/Q), and we are allowed to re-
place W with merely W; & W5, which can be computed to be generated by the endomorphisms and
polarization.

We take a moment to remark that the above examples generalize to work with all elliptic curves, doing case-
work on having no complex multiplication, complex multiplication, and potential complex multiplication.
We now introduce the main example of the present thesis.

Proposition 3.29. Fix A € C\ {0, 1}, and define A to be the Jacobian of the normalization of the proper
curve C with affine chart 4 = z(z — 1)(z — \). If A does not have complex multiplication, then

MT(A)der 2 SL,(C)3
Z(MT(A))2 = G2,.

We use this to compute ST(Ag) if A € K and K contains K™

Proof. We proceed in steps.

1. To begin, we do some prelimarinary algebraic geometry, along the lines of [M0010, Section 1]. The
curve C comes equipped with a naturalmap z: C' — P!, with Galois with cyclic Galois group pg, where
Lo acts on C by multiplication of the y-coordinate. As such, a computation with the Riemann—-Hurwitz
formula reveals that the genusis g = 7, so dim A = 7. From here, we can find the differentials

dr dr dx dxr dr xdr xdx

are all holomorphic on C, and they are linearly independent, so we see that this is a basis of the space
of differentials in H(C, Q¢ ) = H°(4,Q} ). We remark that the above is also an eigenbasis for the
induced pg-action on H(A4, Q) ¢).
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2. We decompose A into pieces. Note that C projects onto the elliptic curve Cy: y3 = x(x — 1)(z — \)
via the map (z,y) — (z,4?), so Cy is a factor of A. One can see that the basis of differentials of Cj is
given by dxz/y?, which pulls back to the differential dz/y° on A. In this way, we see that the quotient
Ay = A/Cy will have H(A;, Q) /) have a basis given by

dr dxr dxr dr xdxr xzdx
A
Note that we do not yet know if A; is simple!

3. We compute some endomorphism algebras. Note Cj has u3 C Aut(Cy) where (3 acts by multiplication
on the y-coordinate, so Cy has complex multiplication by Fj := Q((3).

We conclude this step by showing that A; is simple. This will follow from the fact that A does not
have complex multiplication. Note the pg-action on A fixes Cy (we can be seen on the level of the
Hodge structure), so it must also fix A;, so we see Q({y) € Endc(A;)g. Thus, A; contains an isotypic
component B" (where B is simple) such that

Q(¢) € Ende(B") = M, (Endc(Hg(B,C))).

As such, we set D := End¢(B) and F' := Z(D) sothatd := /[D: F]and e := [F : Q] satisfy 6 | rde
(because Q((o) is contained in a maximal subfield of M,.(D)) and r?d?e < 2dim A; = 12. If we had
r?d?e = 12, then A; would have complex multiplication, which contradicts the fact that A does not have
complex multiplication. Thus, we must instead have rde = r?d?e = 6, which implies thatr = d = 1
and so 4; = B with End¢(A;) given exactly by F7 = Q((o).

4. We compute some signatures. We begin with Cy. Letting 7; € Gal(Q({3)/Q) be given by 7;(¢3) == (&
fori € {1,2}, we see that the signature ®,: Gal(Q({3)/Q) — Z>¢ of Ej is thus given by ®y(11) = 1
and ®y(72) = 0 because the second step provided an (eigen)basis of H'*(Co) = H(Co, Q¢ c)-

We next consider A;. The second step provided a basis of H'*(41) = H%(A1,9Q} /). As such, we

define o; € Gal(Q({)/Q) to be the automorphism given by o;((y) = (§ fori € {1,2,4,5,7,8}, and we
are able to compute that our signature ®;: Gal(Q(¢y)/Q) — Z>¢ is given by

0 ifie{7,8},
®(o;) =41 ifie {45},
2 ifie {1,2}.

5. We compute MT(A)9°; note that this equals Hg(A)°* by Lemma 1.41. By Lemma 1.56, we have an
inclusion

Hg(A) — Hg(Cp) @ Hg(A1)

which surjects onto each factor. Now, Cy has complex multiplication, so Hg(C)) is a torus by Propo-
sition 2.53, so Hg(A)9e" has trivial projection onto Hg(Cp). We conclude that the above inclusion up-
grades into an isomorphism Hg(A)de" — Hg(A;)de.

der

To compute Hg(A1)4°", we use Proposition 2.150 to see that this equals L(4;)9°", so we complete this

step by noting that L(A;)&e" 2 SLy(C)? by the computation in Lemma 1.68.

6. We compute Z(MT(A))%. We use Proposition 2.86 and in particular the discussion following the
proof. Indeed, set L := Q({y), which we note is a Galois extension of Q containing Fy Fy. Then we note
that Z(MT(A))° C Tr, where F := Fy x F} has (Tp), embedded into GL (H} (A, L)) as a subtorus of
the diagonal torus. Explicitly, we can choose an F'-eigenbasis of H5 (A, L) = HL(Co, L) ® Hy (A1, L)
as

! / / ! / /
{Ulau27vla Vy,V2,Vg,V4,Vy, Vs, ’1)5,1)771)7,’08,’[18},
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where the subscript partially indicates the F-eigenvalue. (For technical reasons, we will want to know
that {v;, v}} is a dual basis for {vyg_;, v§_,} according to the polarization.) Then we see that (Tg); C
GL (HE(A, L)) embeds as

{diag(pe1, 2, A1, A1, A2, A2, Mgy Agy As, As, A7, A7, Ag, Ag) < fley Ae € Gy} -

The discussion following Proposition 2.86 explains that equations cutting out Z(MT(A4)) C (Tr)L
can be viewed as elements of the kernel of the map

X* ((N{)S;Ncb{)) : X*(TF) — X*(TL)

Using the established bases for these lattices, we see that our map can be written as the matrix

M1 p2 | A1 A2 A A5 A g
o1 1 0 2 2 1 1 0 0
oD} 0 1 1 2 2 0 0 1
o4 1 0 0 1 2 0 1 2
lors 0 1 2 1 0 2 1 0
o7 1 0 1 0 0 2 2 1
og 0 1 0 0 1 1 2 2

Then one can compute a basis of the kernel of the matrix, which tells us that Z(MT(A))} C (Tr)y is
cut out by the equations

A1Ag = A2z,
A1As = Mg s,
H1p2A7 = A5As,
A AN = Ao A5 As.

Thus, we see that Z(MT(A))g = an,c with isomorphism given by the cocharacters (111, A1, A4, Ag)-

7. We use the previous steps to compute G} (A) when ¢ splits completely in K", Recall we notably
know the Mumford-Tate conjecture that G;(A)° = MT(A)q, by Proposition 2.150. Thus, we choose
£ to split completely in K™ so that Q(¢y9) C Qy, allowing us to engage in the diagonalization of the
previous step. For example, the computation in Lemma 1.68 reveals that the isomorphism between
L(A)dr and SLg is defined over L (indeed, one merely needs to be able to take L-eigenspaces), so we
find that

Ge(A)* = {diag (12,91, 92,94, 92 "+ 92 91 ") : 91.92.93 € SLag, } -

Continuing, we add in the equation det g = 1 to the equations cutting out Z(G¢(AL))° C (Tr)g, given
in the previous step. This reveals that Z (G,}(AL))O C (Tr)q, is cut out by the equations

pipe =1,
Mg = 1,
Aohy = 1,
Mg =1,

Ao = A1y

In particular, we see that Z (G}(4))° = G3, , given by the cocharacters (u1, A1, A4). In total, we find
G}(A) C GLy4 g, equals

{diag (p1, 7", Agr, MAag, Aaga, AL gn TATIAT 9 AT 91 T) ¢ tes Ae € Gy 9o € SLog, -
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8.

At last, we compute ST(Ax) where K contains K. By Theorem 3.23, we see that ST(A) does not
depend on the choice ¢, so we may as well choose ¢ to split completely in K. Then we simply base-
change the result of the previous step to C, and then we may take maximal compact subgroups to see

STis
{diag (p1, p1 ", Argr, AtAagz, Aaga, AL gr AT AT 9 TOAT 9T T) ¢ ey Ae € Ut ga € SUL}.

(It is not too hard to see that the product of maximal compact subgroups continues to be a maximal
compact subgroup.) This completes the computation.

Remark 3.30. Note that MT'(A) # L(A) because the centers are different! This continues to be visible
in the Sato—Tate group: the first four equations p1us = AAs = AaA7 = A5 = 1 can be explained
by the polarization (see Lemma 2.65), but the last equation Ay = A\ A4 corresponds to an exceptional
Hodge class not generated by endomorphisms or the polarization.

Remark 3.31. Up to squaring, one can replace the equation ;s A7 = AsAg with the equation AjA\g =
p3u3, thus making it clear that it arises from the polarization. Note this squaring is not too much of
an issue because we had to take a determinant in Remark 2.78 anyway; in particular, by looking at the
end result of the computation, we do see that MT(A) contains the diagonalizable group cut out by our

equations where we have done the replacement with \; \g = p? 3.

The hypothesis that A fails to have CM is necessary, as we will see in the following two examples.

Proposition 3.32. Define A to be the Jacobian of the proper curve C with affine chart y? = 2% — 1. Then
MT(A)c is a torus isomorphic to an,c- We use this to compute ST(Ax ) where K contains K™

Proof. We proceed in steps, following Proposition 3.29.

1.

To begin, we once again note that C has genus 7, so A has dimension 7, and we have a basis of holo-
morpic differentials given by

dr dx dr dx dr xdx xdx
y Uy S Ty T S

This time around, we see that 3 x g acts on C by coordinate-wise multiplication on (z,y) € C.
We decompose A into pieces.

« Note C projects onto Cy: y* = 23 — 1 by (z,y) — (z, ). (This is the quotient of C by u3 x 1.) We
see that Cj is an elliptic curve, and it has complex multiplicatino by u3; for example, p3 can act by
multiplication on y. One can compute that Cy has a basis of holomorphic differentials given by
dx /y?, which pulls back to the differential dz/y° on C.

« Note C projects onto the proper curve C; with affine chart y° = z3(z — 1) by (z,y) — (23, 2y),
so A has A; = JacC; as a factor.? (This is the quotient of C by u3 C p3 x uy embedded by ¢
(¢,€).) One can compute that C is genus 3 using the Riemann—Hurwitz formula, and then we can
compute that it has a basis of holomorphic differentials given by {z? dx/y®, 2 dz /y", z dz/y°},
which pull back to the differentials {dz/y®, = dz/y", dz/y®} on C (up to a scalar).

Note that Cy has an action by pg by multiplying on the y-coordinate, so Q(¢9) € Endc(A1)g-
However, dim A; = 3, so we see that A; has complex multiplication. We will check that 4; is
simple shortly.

2 Technically, we should take normalizations everywhere. We will omit these normalizations.
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« Note C projects onto the proper curve C, with affine chart y® = 25(z— 1) by (z,y) — (23, 2%y), so
Ahas Ay = Jac Cy as afactor. (Thisis the quotient of C by us C 3 X g embedded by ¢ — (¢, ¢).)
One can compute that C5 has genus 3 using the Riemann—Hurwitz formula, and then we can
compute that it has a basis of holomorphic differentials given by {z° dz/y®, 2* dz/y", x* dz/y*},
which pull back to the differentials {z dz/y®, dz/y", dz/y*} on C (up to a scalar).

Note that C5 has an action by ug by multiplying on the y-coordinate, so Q(¢9) € Endc(As2)g-
However, dim Ay = 3, so we see that Ay has complex multiplication. We will check that A, is
simple shortly.

We spend a moment checking that A is isogenous to Cy x A; x A;. The above computations have
provided a map Cy x A; x Ay — A, soitis enough to check that this is an isomorphism after base-
changing to C. The computations above have shown that this map provides an isomorphism

1 (A2c) 10 (000 ) 10 (48 c) o1 (1202,).

(We take a moment to remark that the right-hand side is even a decomposition of H° (A, Qix/c) into

u3-eigenspaces!) This corresponds to an isomorphism on one piece of the Hodge structure, which
we note upgrades to an isomorphism of Hodge structures because the relevant Hodge structures are
concentrated in (0,1) and (1,0), which are complex conjugates. We conclude that A is isogenous to
Co x A1 x Ag by Theorem 2.40.

3. We compute some signatures. For our notation, we let Fy := Q(({3) have the embeddings {7y, 72},
where 7, € Gal(Fy/Q) sends (5 — (3; similarly, we let F; = F» = Q((9) have the embeddings
{01,02,04,05,07,08} where g, € Gal(Q(¢9)/Q) sends (g > (3. Here are our signatures.

« OnCy, we see that H'% is spanned by dz/y?, so with u3 acting on y, we get the signature & (7)) = 1
and @0(7‘2) =0.

« On (1, we see that H'? has basis given by {z? dz/y®, 2% dz/y", x dz/y® }. Thus, with g acting on
y, we get the signature
0 ifie {578}
B (07) =
(o) {1 ifi e {1,2,4}.

One can check that @, satisfies the check of Remark 2.57, proving that A; is simple.
« On (s, we see that H'? has basis given by {z dz/y®, dz/y", dz/y"}. Thus, with 19 acting on y, we

get the signature
0 ifie{4,7,8},
Dy(0;) =
2(1) {1 ifi e {1,2,5).
One can check that @ satisfies the check of Remark 2.57, proving that A; is simple.

The above computation allows us to conclude that we have decomposed A into simple abelian varieties
with complex multiplication.

4. We compute MT(A)¢. Because A has complex multiplication, we see that MT(A) is a torus by Propo-
sition 2.53 embedded in T, where F' := Fy x F} X F5. As such, we may use Proposition 2.86 and
the surrounding discussion following the proof to compute equations cutting out MT(A) C Tp. In
particular, set L := Q({y), which we note is a Galois extension of Q containing F F F». Then we note
that HL (4, L) = H5(Cy, L) & H5 (A1, L) @ H} (As, L) can be given a basis

{uly u2,v1, V2, V4, Vs, U7, Vg, W1, W2, W4, W5, W7, w8}7

where the subscript partially indicates the F-eigenvalue. Then we see that (Tr), € GL (HE(A, L))
embeds as

{diag(.ulmu’Qv)\1a)‘27>\47)\5a)\7a A87K;hK;27’{47l{57li77l{8) ‘ He, AO,KO S Gm,L} .
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The discussion following Proposition 2.86 explains that equations cutting out Z(MT(A))S C (Tr)L
can be viewed as elements of the kernel of the map

X* ((N@;,N@T,Nq);)) : X*(TF) — X*(TL)

Using the established bases for these lattices, we see that our map can be written as the matrix

M1 p2 | A1 A2 M A5 A7 A | K1 K2 K4 Ks Ky Kg
o1 1 0 1 1 1 0 0 0 1 1 0 1 0 0
o) 0 1 0 1 1 0 0 1 1 1 1 0 0 0
o 1 0 1 1 0 1 0 0 1 0 0 1 1 0
lods 0 1 1 1 0 1 0 0 1 0 0 1 1 0
o7 1 0 1 0 0 1 1 0 0 0 0 1 1 1
og 0 1 0 0 0 1 1 1 0 0 1 0 1 1

Then one can compute a basis of the kernel of the matrix, which tells us that MT(A), C (Tx)y is cut
out by the following equations. To begin, it turns out that (4;); and (A3), are isogenous, which we
can see from the six equations

A1 = Ks,
A2 = K1,
Ay = Ka,
As = k7,
A7 = Kg,
)\g = KR4.

(Namely, these equations imply an isomorphism of MT(A)-representations Hj (A1, L) = H (A, L)
and hence anisomorphism of Hodge structures, which gives the isogeny by Theorem 2.40.) Then there
are the equations given by the polarization (via Lemma 2.65)

H1f2 = K1Ks,
KR1Kg = K2k,

K1Kg = K4Ks5.
Lastly, there is the exceptional equation

H1K7 = K5K8.
In total, we find that MT(A), is a torus isomorphic to an’L via the cocharacters (k1, k2, K4, Kg)-

5. We use the previous step to compute G} (Ax) when ¢ splits completely in K := K. Recall that we
know the Mumford—Tate conjecture that G¢(A)° = MT(A)¢, by Remark 2.144. Thus, we choose ¢ to
split completely in K" so that L C Q, allowing us to engage in the diagonalization of the previous
step. Now, to compute G} (A ) from G¢(Ak), we simply need to add in the equation that the multipler
is 1. This reveals that G (Ax<mn) C (Tr)q, is cut out by the following equations. As before, we have
the six equations

A1 = Ks,
A2 = K1,
Ay = Ka,
As = Kr,
A7 = Kg,
>\8 = R4

132



3.1. THESTATEMENT SATO-TATE GROUPS OF GENERIC CURVES

given by the isogeny (4;1)r, ~ (42)r, and we have the equations given by the polarization

pape =1,
Kikg = 1,
Kokt =1,
Kaks = 1.

Lastly, there is still the exceptional equation
H1KR7 = K5K8.

In total, we find that G (A) is a torus isomorphic to G, ; via the cocharacters (1, k2, £4). In total, we
see G} (Ak)° C GLyyis

. K2  Kikga g -1 -1 -1 -1 -1
{dlag < , JRy LK1, K2, Kg K] K4, K1, K2, K4, Ky, Ky K] ‘e € Gy, ¢ -
Ri1kR4  R2

6. At last, we compute ST(Ax) where K contains K™, By Theorem 3.23, we see that ST does not
depend on the choice of £, so we may as well choose ¢ to split completely in K5°"". Then we may simply
base-change the result of the previous step to C, and then we may take maximal compact subgroups
toseeSTis

. K2  Kika -1 -1 -1 -1 -1
{dlag( y Ty Ry4 ,R1,R2,Rg , Ry ,R4,R1,R2,R4,Ry ;Ko , Ky I Re EUl .
Kikg K2

Once again, we remark that the product of maximal compact subgroups continues to be maximal com-
pact. ]

Proposition 3.33. Define A to be the Jacobian of the proper curve C with affine chart 3 = z (2% +1).
Then MT(A)c is a torus isomorphic to G}, . We use this to compute ST(Ax) where K contains K ™.

Proof. This argument is essentially the same as Proposition 3.32, so we will be a bit briefer.

1. Once again, we see that C has genus 7, so A has dimension 7, and we have a basis of holomorphic
differentials given by

g sy Ty T B
This time around, we see that p15 acts on C by (15 - (z,y) = (—x, —(oy).

{dx dr dr dxr dr xdzx xdz}

2. We decompose A into pieces.

+ As usual, Cy projects onto y* = z (22 4+ 1) by (z,y) — (,5*). (This is the quotient of C by y3.)
The Riemann—Hurwitz formula yields that Cj is an elliptic curve with complex multiplication by
s acting on the y-coordinate. We see that Cj has a basis of holomorphic differentials given by
dx /y*, which pulls back to dz/y° In C.

« Now, C projects onto the proper curve C; with affine chart y* = 2°(z +1) by (z,y) — (22, zy), so
Ahas A; = Jac (i as afactor. (This is the quotient of C by u3.) The Riemann—Hurwitz formula
implies that C; has genus 3, and then we can compute that it has a basis of holomorphic differ-
entials given by {z* dz/y®, 3 dz /y", x* dz /" }, which pulls back to {z dz/y®, dz/y", dz/y®} on C
(up to scalar).

Note that C; has an action by g acting on the y-coordinate, so Q(¢y) € Endc(A41)g. We will
checkin the next step that A; is simple by computing its signature and applying Remark 2.57.
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We can see on the level of differentials that the induced map Cy x A; — Aisinjective, so we let A; be
the cokernel. In terms of Hodge structures, we can see from the computation that

is a decomposition of u15-representations because the left two spaces on the right-hand side are sta-
ble under the u;g-action. We conclude that Q(¢y) € Endc(Asz)g as well.

3. We compute some signatures. As before, we let F := Q((3) have {r, 2} = Gal(Q(Fp)/Q) where
Te: (3 (3,and we let F} = F5 := Q((o) have {01, ...,08} = Gal(Q({y)/Q) has ge: (o > (3.

« On Cy, we look at the pg-eigenbasis of H? to conclude that our signature has ®y(m;) = 1 and
(I)()(TQ).

« On C, we look at the pg-eigenbasis of H' to conclude that our signature is

0 ifie {578},
Oy (07) =
1(03) {1 ifi e {1,2,4}.

One can check that @, satisfies the check of Remark 2.57, proving that A; is simple.

« On A,, we take the remaining differentials from A to find that our signature is

0 ifie {478},
By (07) =
2(04) {1 ifi e {1,2,5).

Again, one checks that ®, satisfies the check of Remark 2.57

4. At this point, we recognize that our signatures are the same as in Proposition 3.32 up to swapping
®; and ®,. Thus, up to some reordering of letters, the exact same computation goes through. Let’s
provide the result.

To be explicit, we give H; (A4, L) = H5(Co, L) & Hi (A1, L) @ HL (A2, L) a basis
{ula u2,v1, V2, V4, Vs, U7, Vg, W1, W2, Wy, W5, W7, w8}7

where the subscript partially indicates the F-eigenvalue, where F' := Fy x F; x F5. Then we set
L :=Q(¢),and we see (Tp), C GL (Hj(A, L)) embeds as

{diag(pi1, p2, A1, A2, Mgy A5, A7, As, K1, Ko, K4, K5, K7, K8) © fles Kes Ao € G} -

With this choice of lettering, the equations that end up cutting out MT(A);, C (Tr)r are exactly the
same, so MT(A) = Gme via the cocharacters (k1, ko, K4, Kg)-

One is now able to compute G} (A) in the case where ¢ splits completely in K := K. One finds the
exact same equations via the same computation, so we find G} (Ax) C GLy4 is given by

. R2  Kikga -1 -1 -1 -1 -1
{dla‘g ( ) 7’4’4 7’€17F‘:27’€2 7”‘31 7l€47’€17l€27l€47l€4 7’62 aﬁjl P Ke € Gm,@g .
Ri1Kk4 K2

Base-changing to C and taking a maximal compact subgroup, we find ST(Afk) is

. K2  Kika -1 -1 -1 -1 -1
{dlag( 5 yRy s R1,R2,Rg KRy ,R4,R1,R2,R4,KRy ,Ro , Ry c Ke EUl )
Kikg K2

as required. |
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3.1.4 Moment Statistics

In this subsection, we explain how to numerically verify the Sato—Tate conjecture (Conjecture 3.19). Fix an
abelianvariety A of dimension g defined overa numberfield K, and choose a prime /and embedding¢: Q; <
C; for example, this allows us to define the usual /-adic representation p;: Gal(K/K) — GL (H} (A%, Q¢)).

The main idea is that the map sending g € ST(A) to the characteristic polynomial of g € GL2,(C) is
well-defined up to conjugacy classes, so it defines a (continuous) map Conj(ST(A)) — C29+!, where C29+!
simply lists out the coefficients of the characteristic polynomial. In this way, we can push the Haar measure
on ST(A) all the way to C29+! to compute what the distribution of the characteristic polynomial will be.

Of course, in practice, it may be difficult to compute the characteristic polynomial of

1
———1p¢(Froby)

) € Conj(ST(A))

for some prime p of K such that A has good reduction at p. For our application, we will only be interested in
superelliptic curves, for which this can be computed in SageMath [Aru+19]. To help out the computation a
bit more, we make two quick remarks.

Remark 3.34. Let P(T') be the characteristic polynomial of Frob, acting on Hét(Aﬂ, Q¢). Then we re-
mark that P(1) has a geometric interpretation as #A(F,).

Remark 3.35. It suffices to only consider primes p which are totally split in K because such primes have
density 1. This is helpful because primes that split p completely have residue fields isomorphic to F,,
where p € Z is the prime sitting below p, so we are frequently able to reduce the computation to some-
thing only involving integral coefficients.

As before, let's begin with some elliptic curve examples. Here, we note that the characteristic polynomial
of ﬁLpg(Fl‘Oer will have degree 2, with leading coefficient 1, and the condition on the multiplier (from

Proposition 3.15) implies that the constant coefficientis 1. Thus, we see that the only interesting coefficient
of the characteristic polynomial is given by the trace.

Lemma 3.36. The map tr: Conj(SUsz) — [—2,2] is a homeomorphism, and the pushforward of the nor-
malized Haar measure of SU; onto Conj(SU,) = [—2, 2] is given by the semicircle measure 5-+v/4 — {2 dt.

Proof. We show the claims separately.

1. Weshowthattr: Conj(SUs) — [—2,2]is awell-defined homeomorphism. Note that tr: Conj(SUs) —
C is continuous, and all spaces in sight are compact and Hausdorff, so it is enough to check that tris a
bijection.

A priori, trisonly definedasamap tr: Conj(SU3) — C. To begin, we note thatany element of SU5 is di-
agonalizable by a unitary matrix, and the corresponding diagonal matrix must then look like diag(\, \)
where [A|* = 1. By writing A = ¢, we see that the trace of this element is 2 cos 6, so we see that
tr: Conj(SUsz) — [—2, 2] is a well-defined surjection.

It remains to check that tr is injective. Because each conjugacy class is represented by a diagonal ma-
trix, it is enough to check that g; := diag(\1, A1) and g» := diag()2, X2) have trg; = tr g» only if g; and
go are conjugate. Well, write A\, = ¢+, and then we see that

2cosf = 2cos b,

which implies that {#6;} = {£65}, s0 {\1,A\1} = {A2, A2}. We now do casework: if \; = A, then we
see that g; = g2 on the nose; otherwise, A\ = )3, and we see that

[—1 1] [Al m] [1 I]ZPQ AJ’
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S0 ¢ is conjugate to go.

2. We now compute the required measures. A linear algebra argument with the condition gg' = 1, shows
that any element of SU; can be written uniquely in the form

o —p

g a
where |a|? + |8]° = 1. In this way, we see that SU, is isomorphic to the unit group of the quaternions
H, so SU, is diffeomorphic to S and inherits a Haar measure by pullback. Explicitly, one finds that

SU, inherits an action on S? by rotations, so the Lebesgue measure on S? is invariant under the group.
Note that we have yet to normalize the Haar mesure on SUs.

We would now like to compute the volume of SU, with given trace ¢. Writing o = a+biand 8 = ¢+ di,
we see that we are forcing a = ¢, which then requires the remaining coordinates to live in a sphere of

radius /1 — %tQ. Thus, we see that our normalized Haar measure is

\/1— $t2dt
J2\ /1= Lezae

A quick substitution with t = 2 cos 6§ in the bottom integral reveals that it equals 7, whereupon we find
that the desired measure is 5-1/4 — 2 dt after some rearranging. |

Remark 3.37. In the sequel, it is occasionally more convenient to identify Con(SU3) with the collection
of diagonal matrices diag (¢?, e =) where 6 € [0, 7). Then we see that the trace is 2 cos 6, so we produce
a measure of 2 sin®§df on [0, 7).

Example 3.38 (no complex multiplication). We continue with the elliptic curve E: y? = 23 + 2 + 1
over Q studied in Example 3.25. Then we recall that ST(E) = SU,, so we may use the computation
of Lemma 3.36 to see that the Sato—Tate conjecture (Conjecture 3.17) implies that the values

1
r ———tp¢(Frob
{t \% N(p) pZ( p)}pprime

equidistribute according to the semicircle measure 5-+v/4 — 2 dt on [-2, 2].

Example 3.39 (complex multiplication). We continue with the elliptic curve E: y? = x3 + 1 over Q((3)
studied in Example 3.26. Then we recall that ST(E) = U; embedded as z — diag(z,z). We may write
Uy as Uy = {e : 0 € [0,2n)}, so we can equip this group with the normalized Haar measure 5- df. (The
map e’ — 6 is a homeomorphism away from a set of measure 0.) Noting the trace of diag (¢, e=*) is

2 cos 0, we see the Sato—Tate conjecture (Conjecture 3.17) implies that the values

1
r ———=1tp¢(Frob
{t v N(p) pZ( p)}pprime

equidistribute according to the measure 1 - \/41_7 dt on [—2,2].
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Example 3.40 (potential complex multiplication). We continue with the elliptic curve E: y? = 23 + 1
over Q((3) studied in Example 3.27. Then we recall that ST(E) = U; x Sz, where U; € GLa is
embedded as z — diag(z,z), and S; = {1,w} acts by switching the coordinates. Again, we give
U, = {eie :0 €0, 27r)} the normalized Haar measure % df, so Uy x Sy gets the normalized Haar mea-
sure .- df. For u = diag (¢, e~"’) € U, we note that the trace of (u, 1) € Uy x S, is simply 2 cos 6 while
the trace of (u, w) € Uy xSy vanishes. Thus, we see the Sato—Tate conjecture (Conjecture 3.17) implies

that the values
1
tr tpe(Froby,) }
{ v N(p) p prime

equidistribute according to the measure ﬁ . \/41_7 dt + %60 dt on [—2,2]. Here, §, refers to the §-
distribution concentrated at 0.

We now return to the Jacobian of (the normalization of the proper curve with affine chart) 3° = z(z — 1)(z —
A). It will be helpful to take products of Haar measures in the sequel. The following result is an easier form
of [DE14, Proposition 1.5.6].

Lemma 3.41. Fix a locally compact topological group G. Choose closed subgroups H, K C G such that
G = HK and K C Cg(H). Letting dh and dg be left Haar measures on H and K, respectively, we find
that dk dh is a left Haar measure on G.

Proof. We are tasked with showing that the integral

/H /K f(hk)dk dh

is left-invariant for G. It is left-invariant for H with no content, so it suffices to show the same for K. This
follows after some manipulation because K commutes with H. |

Remark 3.42. In fact, [DE14, Proposition 1.5.6] shows something much stronger: one can replace the
strong group-theoretic condition that K C Cg(H) with merely that K is compact. In fact, a careful
reading of the proof there reveals that we may even replace the condition that K is compact with merely
having H N K compact and Ag|x = 1, where A is the modular function on G.

Here is our application.

Proposition 3.43. Let A be the Jacobian of the normalization of the proper curve with affine chart y° =
xz(x — 1)(z — \), where X lives in a number field. Suppose that A does not have complex multiplication.
We compute a Haar measure on ST(Ax ) whenever K contains K5™".

Proof. The Sato—Tate computation of Proposition 3.29 (combined with the conjugacy class computation of
Lemma 3.36) reveals that an element of Conj(ST(A)) can be written as

e’i(Xo eia1+i91 e’i(X1+’i(X4+’i02 eia4+i94
diag e—tao | elar—i01 | 1 eion+iag—ifs | 5 elaa—iba |

e—ia4+i94 e—ial—ia4+i92 e—ia1+i01
efioc47i94 ) efiozlfiaélfi@z ’ efialfwl

where a, € [0,27) and 6, € [0, 7). Technically, the map (., 0,): [0,27)* x [0,7)3 — Conj(ST(A)) is the
finite-to-one because Z(ST(A))° N ST(A)4" is finite, but this will make no effect on our computations as
long as we normalize to have total volume 1 and only integrate against genuine functions on Conj(ST(A)).
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Anyway, we see that the trace is given by

2cosag + 2cos(ay + 01) + 2cos(a; — 01) + 2cos(aq + ag + 02) + 2 cos(ag + g — 62)
+ 2cos(ag + 04) + 2 cos(ay — 04).

We finish by remarking that Lemma 3.41 gives our Haar measure as

1
5 dovg doy day - 2sin® 0y - 2sin® 6 - 2sin® 6,) do df dbs,

@ 7 (

which is what we wanted. (Note we used Remark 3.37 for the Haar measure on SU.) [ ]

Proposition 3.44. Let A be the Jacobian of the normalization of the proper curve with affine chart y° =
23 — 1. Suppose that A does not have complex multiplication. We compute a Haar measure on ST(A)
whenever K contains K"

Proof. The Sato—Tate computation of Proposition 3.32 reveals that an element of Conj(ST(A)) can be writ-
tenas

diag (ewéz—lcn—om’ ew¢1+zo¢4—wz2’ 6—10447 el , e’L(XQ,e—QQ’ e Y , 61(14’ ezal’eza27eza4’ e—wc4,e—za27e—za1)
where a, € [0,27). For example, we see that the trace is given by
2coscos(a — ag + ay) +4cosay + 4 cosag + 4cos ay

We finish by remarking that Lemma 3.41 gives our Haar measure as

3 da1 da2 dOZ4,

(2m)?

which is what we wanted. [ ]

Remark 3.45. As remarked at the end of the proof of Proposition 3.33, we can run the exact same com-
putation with working the curve given by y” = z (2% + 1) because the resulting Sato-Tate group is the
same up to reordering the basis.

Remark 3.46. For the previous examples, there are more interesting coefficients in the characteristic
polynomial than merely the trace. Hoever, they are rather lengthy to write down, so we have chosen
not to.

It still remains to explain how we numerically verify the Sato-Tate conjecture. The idea is that we can try to
compute

1
tr ——=tp¢(Frob,)

Vv N(p)

for various primes p and then compare it with what is expected from

/ trgdg,
Conj(ST(A))

where dg refers to the pushforward of the Haar measure from Conj(ST(A)). One usually expects the above
integral to vanish, so one can either look at other coefficients of the characteristic polynomial or at powers
of tr g. In the sequel, we will compute with only powers of tr g for simplicity, but we do remark that one can
typically recover the other coefficients via a combination of Vieta's formulae and Newton’s sums.

As usual, let's begin with elliptic curves. Here, explicit formulae are possible.
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Example 3.47 (no complex multiplication). We continue with the elliptic curve E: 42 = 23 + 2 + 1 over
Q studied in Examples 3.25 and 3.38. Fix some integer m > 0. Using the given Haar measure (from

Remark 3.37), we find that one expects the average of { <tr L__,p,(Frob > } to be
p g \/W ,05( P) » prime

™ 1o (my e
/ (2 cos Q)mg sin2 9 df = { ™/2H1 (m/Q) it mis even,
0 us 0 if m is odd,

where the last equality is verified by expanding 2 cos @ = ¢ + e~ and 4sin? § = 2 — ¥ — =2,

Example 3.48 (complex multiplication). We continue with the elliptic curve E: y? = 2% + 1 over Q((3)
studied in Examples 3.26 and 3.39. Fix some integer m > 0. Using the given Haar measure, we find

~ 1py(Frob )) } to be
N(p) ’ p prime

/%(2 cos g)mi do — (mn/Lg) if m is even,
0 2m

that one expects the average of { (tr

0 if m is odd,

where the last equality is verified by expanding 2 cos = ¢%? + e,

Example 3.49 (complex multiplication). We continue with the elliptic curve E: 32 = 23 + 1 over Q stud-
ied in Examples 3.27 and 3.40. Fix some integer m > 0. Using the given Haar measure, we find that

one expects the average of { <tr \/ﬁLpg(Frobp)) } to be
p prime

/277(2 cos 9)7”i do = %(mﬁz) if m is even,
0 am 0 if 1 is odd,

where the last equality is verified by expanding 2 cos ) = ¢% + =%,

We now return to 4° = z(xz — 1)(x — \). Here, we do not attempt to give explicit formulae, but we list the
first few expected values, which were computed using SageMath.

Example 3.50. Let A be the Jacobian of the normalization of the proper curve with affine chart ¢° =
z(z—1)(z—10). SageMath can verify that A does not have complex multiplication. Form € {0,1,...,6},

we use Proposition 3.43 to find that we expect the aveage of (tr \/%Lpg(FrObp)> as p varies over

primes K (for K containing K°™") to be as follows.

m |0 1 2 3 4 5 6
expected | 1 0 8 0 18 0 7160
actual 1.0 0.0 7.8 0.2 180 16 6400

Here, the “actual” amounts have been rounded to two significant digits, and they were computed by
averaging over primes p < 216289 which were 1 (mod 9); the condition p = 1 (mod 9) corresponds to
splitting completely in Q({y) (see Remark 3.35). These “actual” amounts suggest that K" = Q((o),
a fact which we will verify in the next chapter.
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Example 3.51. Let A be the Jacobian of the normalization of the proper curve with affine chart ¢° =
23 — 1, where ) lives in a number field. For m € {0,1,...,6}, we use Proposition 3.44 to find that we

expect the aveage of (tr \/I\IWLpg(FI‘Obp)> as p varies over primes K (for K containing K¢"") to be

as follows.
m |0 1 2 3 4 5 6
expected | 1 0 26 0 2118 0 239300
actual | 1.0 0.0 25 6.0 2000 890 220000

Here, the “actual” amounts have been rounded to two significant digits, and they were computed by
averaging over primes p < 100000 which were 1 (mod 9); the condition p = 1 (mod 9) corresponds to
splitting completely in Q({g) (see Remark 3.35). These “actual” amounts suggest that K" = Q((o),
a fact which we will verify in the next chapter.

Remark 3.52. If one runs the same computation as in the previous example with y* = z (22 + 1), one
should further restrict primes past p = 1 (mod 9) in order to see the correct moment statistics. This is
because now K" # Q((o).

3.2 The Utility of L-Functions

In this section, we will explain how L-functions are used in analytic number theory. Before delving into the
main content of this section, we give a rough indication of what an L-function is, though we will wait to
explain why we care. One generally expects an L-function to have a Dirichlet series

oo

by,
L(S) = E

n=1

which converges in some region {s € C: Res > o}, where ¢ is a real number. (We may call o the “abscissa”
of convergence.) In this situation, one may find that o to is a pole of L(s) (though not always), but we usually
expect L(s) to admit a meromorphic continuation beyond {s € C: Res > o}.

Another important feature is that L-functions frequently come with “Euler products” that look like

L(s) = [T Lo(s),

where the “Euler factor” L,(s) is a rational function in p~*. We will be mostly interested in non-vanishing
and holomorphy of our L-functions, and these properties tend to be insensitive to adjusting finitely many
Euler factors. Thus, we pick up the following notation.

Notation 3.53. Given two infinite products [, a, and [ [, b,, we write

Hapipr
P p

if and only if the two products are equal up to a finite number of nonzero terms.

3.2.1 The Prime Number Theorem

To prove an equidistribution result, one needs to end up proving some natural density results. For a natural
density result, one needs to be able to count a total in order to estimate the denominator. Thus, for Con-
jecture 3.17, we will need to count the number of primes. As such, in this subsection, we will pick up some
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tools from analytic number theory, and then we will prove the prime number theorem as an application. Our
exposition is very standard; for example, all arguments are results can be found in [Mur08, Chapter 3].
Formally, the prime number theorem states that

x
Zl - logz”

p<z

Now, even though we are interested in counting primes, it is easier to prove a result of the form

Zlogpwas

p<z

because the right-hand side is simpler (roughly speaking). Quickly, we give names to our “prime-counting”
functions of interest.

Definition 3.54. For z > 0, define 7(z) as the number of primes p < z, and define

dla)= Y logp.

p prime, k>0
pF<a

For brevity, we let A(n) be log p if n is a power of a prime p and 0 otherwise; then ¢ (z) = >_, . A(n).

It is easier to estimate ¢ than «, but their estimates can be shown to be equivalent. To explain this, we use
Abel summation.

Proposition 3.55 (Abel summation). Choose a sequence of complex numbers {b,, },>1, and set B(z) =
> <z bn- Forany continuously differentiable f: [0, 00) — C, we have

> buf0) = B@)f@) - [ BOS @

a<n<z

Proof. The main idea is to write b,, = B(n) — B(n — 1), so telescoping shows

Y baf(n)=B(lz)f(lz)) = Y Bm)(f(n+1)— f(n)).

n<x n<|z]

Now, f(n+1) — f(n) = f:h f'(t) dt, so the sum collapses into the integral

lz]
S baf(n) = B(le)f(l2)) ~ [ Bo)f(t)dt.

n<zx 1

It remains to move from |z] to x, for which we note that B(t) = B(|z]) fort € [|z] , ], so

x

B(x)f(z) = B(lz]) f(lz]) = /L J B(t)f'(t) dt,

thereby completing the proof. |

Corollary 3.56. If ¢(z) ~ x, then 7t(z) ~ x/log x.

141



3.2. THEUTILITY OF L-FUNCTIONS SATO-TATE GROUPS OF GENERIC CURVES

Proof. Given i(x) ~ x, we begin by claiming }____logp ~ z. Indeed,

p<z
40 Toer| = X
p<z p prime,k>1
pkgw

We bound this sum unintelligently: it is

log, x

> ) logp < (logy )(vlogz),

k=2 p<gl/k

which is o(z), and the claim follows.
We now show 7r(z) ~ z/logz. This requires Abel summation in the form of Proposition 3.55. Indeed,
we see () equals

1 1 ‘ !
Z Lis prime (1) log - logn - log w leogpr/z (Zlogp) t(log 1) .

n<z <z p<zx

Thus, it remains to show that the integral is o(z/logz). Well, > _, logp ~ z, so it is enough to show that

the intgral [, (log t) =2 dt is o(z/log z). Well, for z large, we see that
Ve T x
——dt ——dt < —_—
L o+ ] e SV g
which is manifestly o(x/ log ). [ |

Remark 3.57. In fact, one can reverse the application of Proposition 3.55 to show the reverse implica-
tion, but we will not need this.

We will spend the rest of our time trying to show that ¥)(x) ~ z. We will use a weak form of the Weiner—
Ikehara theorem to prove this from some analytic properties of the Riemann zeta function. As such, we
spend some time working towards the Weiner—lkehara theorem. Our approach follows [New80] and uses
the following Tauberian theorem.

Theorem 3.58 (Newman). Let f: [0,00) — C be a bounded and piecewise continuous function, and let
F(s) = [p4 f(t)e™*" dt denote the Laplace transform. Suppose that F(s) admits an analytic continua-
tion to the half-plane {s € C: Res > 0}. Then the integral

/R R

converges and equals F'(0).

Proof. In order to estimate with convergent integrals, for any 7' > 0, we define the function Fr: C — C

Fr(s) ::/0 f(t)e st dt.

We quickly remark that F'is analyticon {s € C : Res > 0} for free because boundedness of f implies that
the integral converges in this region; similarly, we note that Frr is automatically entire for any T > 0.

Our goal is to show that Fp(0) — F(0) as T — oo. We will estimate |F/(0) — Fr(0)| via some clever
contour integration. Fix some R > 0, which will eventually tend to co. Then we note that compactness of
theinterval {bi : —R < b < R} implies that there is § > 0 such that the analytic continuation of F' extends to
an open set containing the box {a + bi : « > —d,—R < b < R}. We now let v denote the following contour,
oriented counterclockwise.
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We also let 4 and vy_ denote the parts in the right-half and left-half planes, respectively. Now, the main

trick is to note that (5) 5) )
1 F(s)— Fr(s T s
_ — T (1
R (14 52) as

by the Cauchy integral formula. (The magic will come from the strange factor e*7 (1 + s2/R?).) We now
estimate this integral as (in order) T — 00, § — 0,and R — cc.

+ We estimate the integral on v,.. This can be done directly. On one hand, expanding out the integral

reveals

e—T Res

Res

[F(s) = Fr(s)] < Ifll -
On the other hand, we note s/R is on the unit circle, so
st

e 82 eTRes
i Z_ < . .
- (1 + RQ)‘ < - 2Re(s/R)

Combining estimates, we bound our integral by

which vanishes as R — oo, as required.

« To estimate the integral on v_, we split the integral into a sum of integrals of F' and Fr separately.
In this point, we bound the integral of Fr. Here, Fr is entire, we may replace the contour v_ with a
semicircle of radius R in the left-half plane. Proceeding as in the above point, we note that

e—TRes

by expanding out the integral, and then estimating e** (1 + s?/R?) as before yields

1 Fr(s)  or s? /1]
— ) 14 2 < 1 lleo
2 /7_ s Mm@

— R )
which again vanishes as R — cc.

« It remains to bound the integral of F' over v_. This will require some care. We will split the estimates
into the horizontaland vertical pieces. Throughout, Rand § remain fixed, and we willonly send T" — oc;
in particular, F'is bounded in the region of interest, so we may ignore its contribution.

- On the horizontal pieces, for § > 0 small enough, we may still find that our integrand is on the
order of eT'Res . 2Re s, as in the first point. However, we note that the function z — ze™* on
R™ achieves its maximum at (1,1/e), so with Re s < 0, we see that our integrand is bounded by
e~ 1/T. To complete our estimate, we send T' — oo.
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- Onthe vertical piece, for 6 > 0 small enough, we note

€ST 52 36—5T
1+ = < .
s < + R2>‘ - 0

Sending T' — oo causes this piece to vanish. |

We are now ready to prove our weakened Weiner—lkehara theorem. We follow [Vat15, Theorem 2].

Theorem 3.59 (Weiner-lkehara). Choose a sequence of nonnegative real numbers {b,,},>1, and set
L(s) = 3,51 bpn~" and B(z) :== >, ., bn. Suppose the following.

(i) The series L(s) converges absolutely for Res > 1.

(ii) Thefunction L(s)admitsameromorphic continuationtoRe s = 1and has no poles except possibly
a simple pole at s = 1 with residue c.

(iii) We have B(z) = O(xz).
Then B(z) = cx + o(z).

Proof. There are two steps.
1. By Proposition 3.55, we see that
oo
L(s) = s/ Bt~ dt
1
holds for Re s > 1. Now, the idea is to apply Theorem 3.58 to the integral

o0 £y ot
/ B(e) — ce st gg — L(s+1) ¢
0

et s+1 s

)

where the equality follows from the previous one after the substitutions s —+ s+1andt ~ ef. Notably,
we are allowed to apply Theorem 3.58 because one already knows that the function e *B (e?) — cis
bounded by (iii), and the right-hand side provides the required analytic continuation. Thus, we are told

that , .
/ B(e )t— e / B(t)g— ct it
0 e 1 t

converges.

2. We are now ready to conclude. We must show that B(z)/x — 1asxz — oo. Suppose for the sake of
contradiction this is not the case; then either limsup,,_,., B(z)/x > corliminf, ,. B(z)/x < ¢. We
handle the case limsup,_, ., B(z)/z > c because the other case is similar. In this case, thereis¢ > 0
and an infinite sequence {xz;};>1 tending to infinity such that B(z;)/x; > ¢(1 + ¢) foralli > 1. For any

such z;, we see that
(I+e)z; _ (I+e)z; _
/ m dt > / w dt.
xT t2 xr t2

i T

Upon a change of variables, we see this integral equals f11+5(c(1+€) —ct)t~2 dt, which is some nonzero
constant not depending on z;. Because we can let the z; tend to infinity, we conclude that the integral
[Z(B(t) — ct)t=2 dt cannot converge! This is our required contradiction. |

Remark 3.60. Note that L is by definition real on the real axis (when the series converges), which implies
that the residue ¢ must be real because the residue equals the limit of sL(s) as s — 1.
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Remark 3.61. The hypothesis (c) in the statement of Theorem 3.59 is not necessary, but one requires a
somewhat more technical proof.

We will now apply Theorem 3.59 to show (x) ~ z. Because (iii) of Theorem 3.59 is unrelated to the other
two conditions, we handle it first. The argument is combinatorial.

Lemma 3.62 (Chebychev). We have ¢(z) = O(z).

Proof. Arguing as in Corollary 3.56, it is enough to show that 3 _ logp = O(z). We proceed in steps.

1. Foranyn > 0, we claimthat > _ _, logp < 2nlog2. The idea is to consider (27?) By expanding
out its prime factorization, we note that (27?) has each prime factor p in the rangen < p < 2n, so

log (*") > 3, .,<2n logp. On the other hand, the binomial theorem requires (%) < (1 + 1)*", so

log (*") < 2nlog 2, as required.

2. Foranyv >0, weclaimthat} _,. logp < 2+ 1]og 2. Indeed, this sum is

v—1 v—1
Z ( Z logp> < ZQk'H log 2
k=0

k=0 \ 2k <p<2h+1
by the previous step, from which the claim follows.

3. We complete the proof. Forany z > 1, we may find v > 0 such that 2¥ < z < 2¥*!, Then Zpgz logpis
bounded by 2v*21og 2 by the previous step, but this is in turn bounded by 4z log 2, so we are done. W

For (i) of Theorem 3.59, we must explain the relevance of the Riemann ¢-function to our argument.

Definition 3.63 (Riemann ¢-function). We define the Riemann {-function by

Lemma 3.64. For s such that Re s > 1, we have ((s) # 0 and
¢’ = An
to=-->

n=1

This series also converges absolutely for Re s > 1.

Proof. Unique prime factorization produces the Euler product
C(s) = H _ 1
= ! T

so taking logarithms implies

log ((s) = Z —log (1 —p_s) .

p

Using the Taylor expansion of log(1 — z), we find that

oz C(s) = 33 o

p k=1
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The claimed equality would now follow by taking the derivative with respect to s, but of course, we must
know that log ((s) is an analytic function to be able to do this. Well, we will actually show that the right-
hand side is absolutely convergent, which we note then implies {(s) # 0. To check absolute convergence,
we may rearrange our sum, so we sum over k. The k = 1 term is bounded by ((Re s), which is finite. For the
remaining terms, we bound our sum in magnitude by

The summand is m, so the entire sum converges. |

Thus, the function L(s) arising from trying to show ¢ (x) ~ =z is simply ¢’(s)/¢(s). It remains to show the
required facts about meromorphic continuation for (ii). We begin by showing that ¢ continues.

Lemma 3.65. The function ¢(s) admits a meromorphic continuation to Re s > 0 with no poles except a
simple pole at s = 1 with residue 1.

Proof. We use Abel summation. By Proposition 3.55, we see that

C(s) = s/loo [t] 5t at.

Now, we write [t| =t — {t} to see

() = —s/loo{t}t_s_ldt.

The listed claims will follow once we show that the reminaing integral I(s) is analytic on Re s > 0. Well, we

see o
1 1
101< [ et = e

so the integral is always finite, so the integral is analytic because the integrand is.? |

Thus, the check (ii) of Theorem 3.59 amounts to the following non-vanishing result.

Proposition 3.66. If s € C has Res = 1, then ((s) # 0.

Proof. The following proof is tricky. We proceed in steps, following [Mur08, Section 3.2].

1. Foro > 1landt € R, we claim that

Relog (o + it) = i A(n) cos(tlogn)

n? logn
n=2 &)

Well, the argument of Lemma 3.64 (equivalently, integrating the statement) shows that

log ((s) = ZZ@%

p k=1

3 This point techincally requires some care because one needs to apply some kind of dominated convergence theorem as in [Mat01].
Our proof actually shows that I(s) is analytic on any region {s : Res > o} forany o > 0, from which I(s) being analyticon {s: Re s >
0} follows by taking unions.
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where s = o + it. This sum absolutely converges (as shown in Lemma 3.64), so we may view it as a
sum over prime-powers n = p*, in which case we see that the summand is A(n)n=%/logn. Thus, we
see that

o0

log (s Z log n

We conclude by noting that Ren ™% = cos(tlogn).

2. Foro > 1andt € R, we claim that

2

¢(0)*¢(o +it)*¢(o + 2it)| > 1.

Well, by taking logarithms, it is enough to show that

?
3Relog((o) + 4Relog ((o + it) + Relog ((o + 2it) > 0.
By the previous step, we see that it is enough to check that
3+ 4cosf +cos20 >0

forany 6 € R. This amounts to mimizing the function 4 cos 8 4 cos 26; taking the derivative reveals that
minima will occur when sinz = 0 or cosz = 1, so x is a multiple of 7. Thus, we complete this step by
noting that the above inequality holds when z is a multiple of .

3. We conclude the proof. Fix some nonzero real number ¢, and we would like to show that ¢(1 + it) # 0.
Well, suppose for the sake of contradiction that {(1 + it) = 0. Then

lim ((0)3¢(o 4 it)*¢ (o + 2it) =0

o—1+

because the order of the zero at 0 = O is at least —3 + 4 + 0 > 0. This contradicts the previous step, so
we are done. [ |

We are now ready to prove the Prime number theorem.

Theorem 3.67 (Prime number). We have 7(z) ~ x/ log .

Proof. It only remains to synthesize the discussion from this subsection. By Corollary 3.56, it is enough
to show ¢(z) ~ x. For this, we will use Theorem 3.59 applied to the sequence {A(n)},>1, for which
Lemma 3.64 explains makes the Dirichlet series equal to —('(s)/{(s). It remains to check the three con-
ditions in Theorem 3.59.

(i) The absolute convergence of —('(s)/((s) follows because A(n) = O(n®) forany ¢ > 0, so the series
converges absolutely and uniformly on compacts on any region {s € C : Res > ¢} forany e > 0.

(ii) Because ((s) is nonzero on {s : Res = 1}, we conclude that —(’(s)/{(s) admits a meromorphic con-
tinuation to this line. We already know that we are defined everywhere except at s = 1, and we see
that having ¢ have a simple pole with reside 1 at s = 1 implies the same for —(’(s)/{(s) by expanding
out a Taylor seriesat s = 1.

(iii) Lastly, we see ¢)(z) = O(x) by Lemma 3.62. [ ]
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3.2.2 The Primeldeal Theorem

In the sequel, we will want to count not just rational primes but also for number fields, so we want to extend
Theorem 3.67 to number fields. The method remains the same, though we will not give a complete proof
now because showing the required meromorphic continuation is harder. Our exposition loosely follows
[RV99, Sections 7.4 and 7.7], which in turn follows [Heil0].

Here are our prime-counting functions.

Definition 3.68. Fix a number field K. For z > 0, define mx () as the number of prime ideals p with
Np < z. Now, define Ax as a function on the ideals of Ok by

logNyp ifI =pFfork>1,
0 else,

Ag(I) = {

and we set Yk (z) = 3 n(py<, Ax (D).

This time around, the relevant L-function for the Weiner—lkehara theorem is as follows.

Definition 3.69 (Dedekind zeta function). Fixa number field K. Then we define the Dedekind (-function
as

Remark 3.70. As in Lemma 3.64, we note that one has an Euler product

k()= ]] ﬁp—s

p prime

It will later be convenient to “twist” our Dedekind zeta function slightly.

Definition 3.71 (Hecke L-function). Fix a number field K and a continuous character x: K*\Ajx — C*.
Factoring x = ][, x» as a product over places of K, we define the Hecke L-functionas L(x) == [[,(1 —

Xp(p)) ™', where
Xp(p) — Xp(wp) IfXP|O;< - ]"
0 else,

where w, € pisauniformizer. We may call the former case “unramified” and the latter case “ramified.”
If x is a unitary character (i.e., im x C S*'), then we may also write L(s, x) = L (x |-|*).

Remark 3.72. By expanding out (1 — x,(p)) ™" = Y, Xx»(p)*, we see that one can recover a “Dirichlet
series” expansion for L(s, x) in the form

I
L(SﬂX): Z 1\>I<((I))5

ICOk

for suitably defined x(I) (depending on its prime factorization).

Example 3.73. If x is the trivial character, then we recover the Dedekind ¢-function.
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Example 3.74. Take K = Q. Given a character x: (Z/nZ)* — C*, we abuse notation and lift x to a
character K*\A % — C* via the composition

Q*\Aj = R*xHZX—»HZX (Z/nZ)* % C*.

Upon expanding out the Euler product, we find

_ i x(n)
n
fo=il
We begin by stating part of the required analytic check.

Lemma 3.75. Fix a number field K and a continuous unitary character x: K*\A; — C*. Then L(s, )
converges absolutely and is nonzero for s such that Re s > 1.

Proof. We will instead show that

log L(s,x) = Z —log (1 = Xp(p) Np_s>
p

absolutely converges when Res > 1. (Some formal business involving Euler products can then show that
the Dirichlet series described in Remark 3.72 also converges absolutely.) Using the Taylor expansion, our

sum is
log L(s, x) ZZ

p k>1

kNpk}S

Now, to check absolute convergence, we see that may replace |Xp(p)’“] € {0,1} with 1, essentially reducing
to the case where y = 1.

We now find a way to reduce to the case for K = Q, where the result follows from the argument of
Lemma 3.64. Well, for each prime p, we see that Np > p where p is the prime lying over p. Further, there
are at most [K : Q] primes of K sitting above p, so we see that

‘lOgL(S X | < ZZ kkaes

p k>1

We now have reduced to the situation in Lemma 3.64, so we are done. [ ]

Remark 3.76. Term-by-term differentiation shows that the Dirichlet series defining —L'(s, x)/L(s, x)
continues to be absolutely convergent for s satisfying Re s > 1. In particular, we see that

(s _ x Ax(D)
)~ 2 N

This time around, one lacks the integration trick done in Lemma 3.65. The proof is significantly more in-
volved, so we merely state the result we need.

Theorem 3.77 (Hecke). Fix a number field K and a continuous unitary character x: K*\Ajx — C*.
Then L(s, x) admits a meromorphic continuation to {s : Re s > 0}. Further, L(s, x) has no poles except
a simple pole when y |-|* is trivial on all unramified primes.
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Proof. It is possible to prove an analytic continuation to {s : Res = 1} “combinatorially,” essentially by
counting ideals of bounded norm; for example, see [MEOQ5, Section 11.2]. However, the best proofs of this
result go through Tate’s thesis [Tat10]. See also [RV99, Theorem 7-19]. [ ]

Because it is more within reach (and closer in flavor to the results we are interested in), we will prove the
needed non-vanishing result.

Proposition 3.78. Fix a number field K and a continuous unitary character x: K*\Ax — C*. If s € C
has Res = 1, then L(s, x) # 0.

Proof. Note that L(s +it,x) = L <s, X |~|it), so we may twist y in order to assume that s = 1. Now, if x is

trivial on the finite adeles (A$2)*, then Theorem 3.77 explains that there is a pole, so there is nothing to do.
We now admit two lengthy cases. There are two lengthy cases.

» Suppose that Xf, is nontrivial on some unramified prime p. In this case, we may proceed as in Proposi-
tion 3.66: for 0 > 1, an expansion as in Lemma 3.75 finds that

cos(kfy)

Relog L(o,y) = 3 " ibfa)
P k>1 Ny

0,

where 0, € R is chosen so that x,(p) = €'°». But now the trigonmetric identity 3 + 4 cos 6 + cos 26

proven in Proposition 3.66 verifies that
|L(0,1)°L(0, x) Lo, x*)| > 1,

where the implied constant comes from replacing the Euler product for L(o, 1) with one with the cor-
rect Euler factors at ramified primes. We now send ¢ — 0" and see that having L(o) = 0 would force
the entire quantity to vanish by pole-counting: we have a zero of order at least —3 + 4 + 0 > 0, where
notably, the hypothesis implies that there is no pole at L(1, x?).

« Now suppose that x? is trivial on all unramified primes. The idea is to consider the Dirichlet series
L(s) == Cx (s)L(s, x), for which one can use the Dirichlet convolution to find equals

Ls)= ¥ ( 3 X(B)>N(1[)S,

ICOx \I=AB

for suitably defined x (7). We are going to appeal to some somewhat difficult fact about Dirichlet se-
ries. To this end, we want some input from the coefficient b(1) := >, _ , 5 x(B). Multiplicativity reveals
that

o) =T (14 x(0) + -+ +x(p D),
P

and y outputs to {—1,0, 1}, so we see that b(I) is a nonnegative integer always. Furthermore, b(1)
is nonzero when I is a square (because each factor is nonzero), so we see that L(s) > (x(2s). For
example, the pole at s = 1 for (x(2s) then implies that L(s)’s abscissa of holomorphy cannot go past
{s:Res=1/2}.

Now, because L(s) has all nonnegative coefficients, its abscissa of holomorphy agrees with its abscissa
of absolute convergence [RV99, Lemmas 7-29]. Thus, if L(s, x) has a zero at s = 1, then L(s) will
succeed at being holomorphic at s = 1, so the abscissa of holomorphy for L(s) goes all the way to
Re s = 0 by Theorem 3.77. This contradicts the previous paragraph. |

At long last, we are ready to apply Theorem 3.59.
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Theorem 3.79 (Prime ideal). We have

< ~
{p:Np <z} logx

Proof. Arguing as in Corollary 3.56, it is enough to check that the function

Vi (z) = Z logNp

p prime,k>1
Npk<z

satisfies i (z) ~ z, for which we use Theorem 3.59. Now, Remark 3.76 explains that —(}. /(k is therelevant
Dirichlet series. We are now ready to run the checks of Theorem 3.59.

(i) The absolute convergence of —¢’(s)/{(s) on {s: Res > 1} follows from Lemma 3.75.

(ii) Note that (x(s) continues to {s : Res = 1} by Theorem 3.77, and it is nonvanishing by combining
Lemma 3.75 with Proposition 3.78. Thus, we achieve the continuation of —(}(s)/{k (s), and we can
compute that the residue of its simple poleat s = 1is 1.

(i) To check i (z) = O(z), we claim that

ZAK n< Y IK:Qlogpt.

pprime,k>1
pF<a

Indeed, it is enough to only consider I of the form p¥; summing over the primes p below p, we may
upper- bound Ax (1) by log p* and then maximize the number of terms in the sum by noting that there
are at most [K : Q] primes p above p and bounding N p¥ < pk.

Now, arguing as in Corollary 3.56, one finds that ¥x(2) = O(x) now follows from ¢ (z) = O(x)
Roughly speaking, the size of this sum is dominated by the k = 1 term (what is left is O (y/z(log x)2)
and the k = 1 term is a constant multiple of ¥ (x), so we are done.

3.2.3 Equidistribution

In this subsection, we will prove a few facts about equidistribution, following [Fit15, Section 2] and [Ser98,
Appendix to Chapter I]. Although the term already appeals in the statement of our conjecture (Conjec-
ture 3.17), we go ahead and provide a suitable definition. We will assume some measure theory throughout,
though we remark that our measures p will all be Radon on compact Hausdorff spaces X, so they may be
thought of as continuous linear functionals on C(X) by the Reisz representation theorem [Fol99, Theo-
rem 7.2], where C(X) denotes the space of complex continuous functions on X.

Definition 3.80 (equidistributed). Fix a compact Hausdorff space X with a probability Radon measure
w (namely, u(X) = 1). Then a sequence {z, },>1 is equidistriubted with respect to 4 if and only if any
f € C(X) has

Remark 3.81. One may want to upgrade this definition from f € C(X) to f € L*(X) or similar, but
this is somewhat tricky: functions in L'(X) are well-defined up to a measure-zero subset, and it is
frequently the case that countable subsets of X are measure zero. Concretely, with X = [0, 1], we find
that no countable sequence will equidistribute by testing against the function f which indicates this
sequence!
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The definition has been chosen to be quite strong, but this makes it difficult to check. As such, we pick up
the following lemma.

Lemma 3.82. Fix a compact Hausdorff space X with a probability Radon measure .. The following are
equivalent for a sequence {x,, },,>1.

(i) The sequence {z,},>1 equidistributes.

(i) Suppose that F C C(X) is a subset of functions such that linear combinations of functions in F'
forms a dense subspace of C'(X). Then forany f € F, we have

1l
ngannZIﬂxi):/deu.

Proof. Of course (i) implies (ii) because F C C(X). For the reverse inclusion, let V' C C(X) denote the
subset for which the conclusion holds. We know F C V, and we would like to show that V = L}(X).
Certainly V is a subspace, and by the hypothesis of I, we see that V is a dense subspace of L!(X). Thus, for
any f € C(X), we fixsome e > 0, and we may find g. € V such that || f — g.||., <e. Then

1Y 1y
ngréoNnE:lf(xi)/deu < ng%oN"E:lgs(wi)/ngdu
1 N
+ ngngoﬁnzzjff—ga(zi) +’/X(fgs)du‘-

The rightmost term vanishes because g € V, and the remaining terms are bounded by 2¢, which goes to 0
we sende — 0T, [ ]

In the sequel, we will be interested in the case where X = Conj(G) where G is some compact Hausdorff
topological group; here X is given the quotient topology induced by the canonical projection G - X. We
quickly note that X is certainly compact, and X is Hausdorff because G is normal (and conjugacy classes are
closed because they are images of certain continuous maps G — G). We now note that Fourier analysis can
detect equidistribution.

Lemma 3.83. Fix a compact Hausdorff topological group G with probability Haar measure p, and set
X := Conj(X). The following are equivalent for a sequence {z,,},>1 of X.

(i) The sequence {z,},>1 equidistributes.

(ii) Forany nontrivial finite-dimensional complex irreducible continuous representation p, one has

| X
lim i nz::ltr p(x;) = 0.

Proof. Quickly, we note that (ii) has tr p(x;) well-defined because the character of a representation is well-
defined up to conjugacy. Now (i) implies (ii) is immediate because (tr o p): X — Cis a continuous function.

For (ii) implies (i), we use Lemma 3.82. By (ii) above, we see that the conclusion of (ii) in Lemma 3.82
holds for each of the nontrivial irreducible characters tr o p of G because

/pd,u:()
G

by the nontriviality of p. Additionally, we note that the conclusion of (ii) in Lemma 3.82 also holds for the
trivial character because then everything in sight is 1. Thus, it remains to check that irreducible characters
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of G form a dense subset of C(X). In fact, characters are dense in L?(G) by (a corollary to) the Peter—Weyl
theorem [Fol16, Proposition 5.23], so we are done. [ |

Remark 3.84. Of course, one may replace the application of the Peter—Weyl theorem when it is easier
to prove. For example, if G is a finite abelian group, then the relevant Fourier analysis is much easier to
prove.

Example 3.85. Consider the compact abelian group G = R/Z so that G = X. We claim that the se-
quence {na},>o equidistributes in G for any irrational « € R.

Quickly, we note that the representations of G are one-dimensional because G is abelian. Further,
we claim they all take the form ¢ +— e2™™! for m € Z: indeed, any character of G must lift to a character
R — C*, but it must land in S! because G is compact, so our character further lifts to a homomo-
morphism R — R. Continuous homomomorphisms R — R are just scalars, so the claim follows upon
ensuring that the induced map R — S* has Z in its kernel.

To conclude the proof, it is now enough to compute that any nonzero m makes

N .
- e?ﬂzm(N+1)o¢ -1
e = 00—
Z e2mima _ | ’

which is O,, (1) and hence 0,,,(N).

As in the example, we remark that the condition (ii) may also be read as

N
> trp(w:) = o(N),

soitis the sort of thing that one may hope to prove using the Weiner—Ilkehara theorem (Theorem 3.59). We
explain the application as follows.

Proposition 3.86 (Serre). Fix a compact Hausdorff topological group G with probability Haar measure
w, and set X := Conj(X). Further, fix a number field K, and order the set of finite places p by norm
(breaking ties arbitrarily), and let {z, }, be a sequence in X. Now, for each finite-dimensional complex
continuous representation p of G, define the L-function

1
Lis,p) = 1;[ det (1 — p(xy) Np—s)’

and suppose that L(s, p) admits a non-vanishing holomorphic analytic continuation to the line {s :
Re s = 1} for each nontrivialirreducible p. Then the sequence {xz, }, equidistributes in G.

Proof. We apply Lemma 3.83. Using Theorem 3.79 to count the number of prime ideals p of norm less than

some bound, we see that we need
3 tep(ay) Zop
? \log

Np<z

for all nontrivial irreducible complex representations p of G. We go ahead and fix such a representation p;
set d := dim p for brevity. We proceed in steps.

1. Asin Theorem 3.67, the idea is to apply the Weiner—lkehara theorem to the logarithmic derivative
L(s, p). The correct “twisted” prime-counting function is a little involved, so we postpone its computa-
tion foramoment. Instead, let's go ahead and compute —L/(s, p)/L(s, p). Foreachp, let {\;1,..., A\pa}
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denote the eigenvalues of p(z,) (counted with multiplicity), so we see that

d
log (det (1 — p(z,) Np~*)) = log (1 - ApNp~),

=1

so taking the logarithmic derivative as in Lemma 3.64 of L(s, p) yields

k logNp

Yy e

p k>1i=1

Thus, we see that the correct weights are given by

AT = S, Ak logNyp ifI=pFandk > 1,
o) 0 else.

In particular, —L'(s, p)/L(s,p) = > ;co, Np(1)/N(I)*%; this sumis purely formal, in the sense that one
side makes sense as soon as the other does. Do note that A,(p) = tr p(z,) log Np for each prime p.
Also, note

2. We now see that arguing as in Corollary 3.56 shows that it will be enough to check that

ZA _OP)

ICOk
N(I)<z

This is somewhat involved, so we will provide some detail. Well, we group this sum as

Z A, (p").

p prime,k>1
Npkgm

We now have two observations.

We note we may discard the terms with k > 2. Because G is compact, the eigenvalues \; are
all roots of unity, so the sum Z’;:l Ak is O,(1), so we may ignore its contribution. Now, for each
prime p, we may rudely bound A, (p*) as log p!:@*, where p is the prime under p. On the other

hand, the number of primes p with N p can be naively bounded by [K : Q], so we will do so. Thus,
we see that our contribution totals to

log, x
2y > logp < [K : QP(log, z)(vrlogz)
k=2 p<gl/k

as in Corollary 3.56. We conclude that our hypothesis is equivalent to

S Ap) = 0, (w).

Np<z

We now use Abel summation in the form of Proposition 3.55 to see

1 ’ 1
Z trp(zy) = long%mAp(p)—i—/z (N%m/\p(x)>wdt

Np<z

(Technically, we should stratify the sum over terms of given norm before applying Abel summa-
tion.) The left term in the right-hand side is now o(x/ log x) by the hypothesis, and the right term
is o(xz/log ) as argued in Corollary 3.56.
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3. We are now ready to complete the proof using Theorem 3.59. Here are our checks.

(i) Itis enough to check that
> AolD) = 0,(n)
N(I)=n
for each ¢ > 0. We may assume that I is a prime-power p*. As in the previous step, we see that
the contribution from Zle /\’gi logNpis O,(1) is O,(1), so it has no effect. We now argue as in
Theorem 3.79: the number of I with I = p* is bounded by [K : Q], and they only contribute
logNp = O(log n). The result follows.
(i) This follows immediately from the hypothesis on L(s, p).

(iii) From Theorem 3.79, we already know that

Z Ak (x) = O(x).

N(I)<z

The previous step explains that the contribution Zle )\’gi logNpis O,(1), so we conclude. |

Remark 3.87. Essentially the same proof as in (i) of step 3 above shows that log L(s, p) converges abso-
lutely in the region {s : Res > 1}, so L(s, p) converges absolutely and is nonzero. Indeed, one merely
needs to re-weight the Dirichlet series coefficient } v ;)_,, A,(I) to undo the derivative, effectively re-
moving a log n factor.

3.2.4 The Chebotarev Density Theorem

We now give a standard application of Proposition 3.86, to the Chebotarev desnity theorem. For any Galois
extension L/K of number fields, our goal is to show that the Frobenius conjugacy classes Frob, equidis-
tribute in Conj(Gal(L/K)). In light of Proposition 3.86, we see that we are interested in the following L-
functions.

Definition 3.88 (Artin L-function). For a number field K, let p: Gal(K/K) — GL(V) be a finite-dimen-
sional complex representation. Then we define the Artin L-function

1
L(s, p) = 1;[ det (1 — p(Frob,) Np=s|Viv)’

where I, C Gal(K /K) denotes the inertia subgroup of p.

Remark 3.89. Let us explain this factor. Formally, one should fix a prime 9 of K living above p (al-
ternatively, one could choose a compatible system of primes for every subfield of K), and then I, and
Frob, mean Iy and Frobgy, respectively. Let’s check that this definition is independent of the choice
of B: any other prime living above p looks like g3 for some g € Gal(K/K). Then I;3 = glpg~! and
Frobgy = gFrobgg~!. Thus, we see that v — p(g)v sends V* — V1s% and sends the action of Froby
to the action of Frobyg. As such, the characteristic polynomials must be equal.

Example 3.90. Taking p to be the trivial representation, we find that L(s, 1) and (x(s) are equal to a
finite number of Euler factors. Recall that we may write L(s, 1) = (k(s).

Before going any further, we state some helpful facts about Artin L-functions.
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Lemma 3.91. For a number field K, let p: Gal(K/K) — GL(V) be a finite-dimensional complex rep-
resentation. Then ker p is open, and p has finite image.

Proof. We have two steps.

1. We show the following “no small subgroups” result: we claim that there is an open neighborhood U C
GL(V) of the identity which does not contain any nontrivial subgroup. Indeed, recall thatexp: gl(V) —
GL(V) is a local diffeomorphism; say that it is a diffeomorphism on some bounded open subset U; C
gl(V), and then set U := exp (3U1).

Now, suppose for the sake of contradiction that U contains a subgroup H C GL(V'). Then note that
any exp(z) € H for z € 1U; must have exp(2z) in H and hence in U, so 2z € 1U; as well; this shows
that %Ul is unbounded, which is a contradiction.

2. We complete the proof. Choose an open neighborhood U C GL(V) of the identity as in the previous
step. Then p~1(U) C Gal(K/K) is an open subset, but the profinite topology of Gal(K /K) promises
that this open subset contains an open subgroup H C Gal(K/K). Then p(H) C U is a subgroup, which
must be trivial, so we conclude that H C ker p. Now, H is a subgroup of finite index, so we conclude
the same is true for ker p. |

Lemma 3.92 (additive). For a number field K, let p; and p; be finite-dimensional complex representa-
tions of Gal(K /K). Then L(s, p1 ® p2) = L(s, p1)L(s, p2).

Proof. This follows because, for any g € G, the characteristic polynomial of (p1 @ p2)(g) is the product of
the characteristic polynomials of p;(g) and p2(g). [ |

Lemma 3.93 (induction). Fix a finite extension L/K of number fields. Given a finite-dimensional com-
plex representation p: Gal(K /L) — GL(V), we have

B Gal(R/K)
L(s,p) =1L (S’IndGal(F/L) p) .

Proof. We follow [Neu99, Proposition VII.10.4(iv)]. Once again, we equate Euler factors overa prime p of K.
For psychological reasons, we come down to finite extensions. By Lemma 3.91, we may find a finite Galois
extension M of K extending L such that Gal(M/L) is in the kernel of p. Then we may replace allinstances of
K with M without changing the value of the L-function; for example, p is certainly well-defined throughout.

Now, for brevity, set G := Gal(M/K) and H := Gal(M/L), and let 5 := Ind$, p denote the induction;
further, set V, :== V and V5 := Ind$; V for clarity. We want to show that

1 ? 1
det (1 - ﬁ(Frobp)Np—sW;”) o det (1 - p(Frobq)Nq_S\VpI“) ’

where q varies over primes of L lying over p. Note that these inertia subgroups can now be brought down to
automorphisms of M. We now proceed in steps.

1. We begin with a special case. Suppose that there is a single prime 3 of M above p,and setq =B N L.
In this case, G = Dy, and we would like to show that

det (1 - ﬁ(Frobqs)TIVﬁI‘”) = det (1 —~ p(Frobm)[G:H]T[G:H”VPI"") ,

where T is a formal variable replacing Np—*. (Note that Nq = Npl&#]) Note that we may as well
replace L/ K with M/ L, effectively allowing us to assume that H is trivial.
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For psychological reasons, we explain how to reduce to the case where Iy is trivial by adjusting the

representations. On one hand, we'd like to replace V, with V,,Hm“’”‘. On the other hand, note that
Is
(Indfl p) " can be descended to Ind%ffmw) V,,Hm‘”: a function f: G — V succeeds at being invari-

ant under Iy if and only if it descends to a function on G/ Iy, and we see that we must restrict outputs
to VNI because h € H N Iy will have f(z) = f(zh) = p(h) f(z). Thus, by taking the quotient by Iy
everywhere, we may assume that it is trivial.

Now, Dy has become cyclic of order f := f(93/p) generated by the Frobenius, so we will be able to
compute Ind{ p relatively easily. Indeed, view V; as the vector space V®/ by sending the function f to

the f-tuple (f(Froby))’

. Then we see that Froby acts on V/ by
(Vo, V1, .., V2, V1) = (p(Frobm)fvf,l,vo, c Vo3, vf,g) .

We may now compute the determinant of 1 — p(Frobg; )T by commuting the determinant of the matrix

1 -T 0 -+ 0 0
0 1 =T -~ 0 0
0 0 1 -~ 0 0
0 o 0 - 1 -T
|—p(Frobp)T 0 0 -+ 0 1 |

which we see is det (1 — p(Froby)/T) after some row-reduction.

2. We now return to the general case for the remainder of the proof. All decomposition, inertial, and
Frobenius elements will be taken over p unless otherwise specified. We begin by computing the action
of p. The idea is to use Mackey theory. Indeed, for fixed prime 3 of M above p, we are only interested
in the action of Dy on Ind$, p, so we note there is an isomorphism

”
G G A Dy
Resp,, Indp p = @ Indp ng-15g Po>
gEH\G /Dy

where p, (d) = p (gdg™"). Let's quickly explain this. There is a forward map sending a function f: G —
V to the tuple of functions (f,), where f;: Dy — V is defined by f,(z) = f(zg). Thereis also a
backward map sending the tuple (f;), to the function f: G — V given by f(hgd) := p(h) f4(d). These
maps are G-invariant and can be checked to be Dy -invariant, so we have our isomorphism.

Thus, we see that

det (1 7 (Froby) Np V¥ ) = T det (1~ Frobys Np~*[(Indp? s, 00)"™ ).
gEH\G /Dy

Undoing conjugation by g, we can rewrite this as

~ s s Dy
det (1 — p(Froby)Np |V5q3> = H det (1 — Frobgp Np |(IndDg§nH p)lg‘”> .
geH\G/Dy

3. We translate the product using some group theory. For this, we need to enumerate the primes of
L above p. Note Gal(M/K) acts transitively on the set of primes of M above p, so g — ¢B defines
a bijection from G/Dgy; to this set of primes. Then restricting to L, we see that g — (¢B N L)isa
surjective map from G/ Dy to the set of primes in L above p; this map descends to H\G/Dy, where
we claim that it actually defines a bijection. Indeed, (¢ N L) = (¢"B N L) implies that ¢’ and ¢"P are
both primes of M sitting above the same prime of L, so there is h € Gal(M/L) such tthat hg®3 = ¢33,
which implies hgDy = ¢’ Dy
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Thus, we see that

Hdet (1 — p(Frobg) Nq*S\VPIq) = H det (1 — p(Frobgeg)’s prfgs‘vpfgm) ’
qlp gEH\G /Dy

where f; = f(¢B/(¢B N L)) = [Dgg : Dgz N H] is the required inertial degree.

4. We are now ready to complete the proof. In light of the previous two steps, we would like to show that
any 3’ of M above p has

det (1 — Frobyy T|(Ind )% p)l"r") = det (1 — p(Frobgy )[Pw Dy NH[Dags:D o OH) |V,f"”/) :

where T is a formal variable replacing Np~°. Now, we note that we may define K’ := MP% and
L' :== MP» " \whereupon we see that ' is the only prime above of M the prime p’ := P’ N K’ in
K'. The above equality then follows from the special case in the first step applied to the extension
L'/K'. [ ]

Remark 3.94. Given subgroups D C H C G and a representation p of H, the above proof used the fact
that

G ~
Resg Indy p = @ Indgmn_lHn Indgmn_lH,7 P
ne€H\G/D

where p, (d) :== p(ndn~'). This fact is remarkably useful.

Example 3.95. Let L/ K be a Galois extension of number fields with Galois group G. Then Indg:igﬁ?

is the regular representation of G, so by decomposing the regular representation into irreducible rep-
resentations and using Lemmas 3.92 and 3.93, we find

as) = I Lis.pt™,

p€IrRep(G)

where IrRep(G) refers to the set of irreducible representations of G.

In light of Proposition 3.86, we need to show that nontrivial irreducible p give L(s, p) a non-vanishing holo-
morphic continuation to the line {s : Res = 1}. The rough idea is to use the Brauer induction theorem to
reduce to the abelian case, and then the abelian case can be turned over to Hecke L-functions by class field
theory.

Thus, we begin with the abelian case. As promised, this is essentially class field theory.

Proposition 3.96. Fix a number field K, and let p: Gal(K/K) — C* be a continuous character. Then
there is a continuous unitary character y: K*\A% — C* such that

L(s, p) = L(s, x)

for s such that Res > 1.

Proof. The main point is that global class field theory in the form of [Mil20a, Theorem 5.3] provides an
isomorphism

KA\AL = Gal(K/K)™.

With this in mind as a guide, we construct the character x. Because the target of p is abelian, we see that p
factors through Gal(K /K)*> = Gal(K?"/K). For convenience, we recall from Lemma 3.91 that p descends
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to arepresentation of Gal(L/K) for some minimalfinite Galois extension L/ K, and once again, we find that
Gal(L/K) is abelian. Thus, we may define x as the composite

KX\AY — KX Np g (A)\AR = Gal(L/K) & C*,

where the isomorphism is given by global class field theory [Mil20a, Theorem 5.3]; explicitly, on finite
primes p of K unramified in L, it is trivial on Oy C A} and sends a uniformizer w, € O, to Frob, €
Gal(L/K). By construction, y is a continuous character, and it is unitary because p must output to S* by
the compactness of Gal(K /K).

We now compare the Euler factors of L(s, p) and L(s, x) at a prime p of K. There are two cases.

+ Suppose that p is a prime unramified in L/K. Then we see that
det (1 — p(Froby) Np~* [ C) =1 — xp(ap) Np~°
by construction of x (and properties of the global class field theory map), so we are done.

« Suppose that p is a prime ramified in L/K. On one hand, pis nontrivialon I, C Gal(L/K), so C'» must
be zero-dimensional, so the Euler factor of L(s, p) is 1. On the other hand, we note that N , (A} ) does
not contain O, by a computation of norm subgroups, so x is nontrivial on O, by tracking through the
global class field theory isomorphism, so the Euler factor of L(s, x) is also 1. |

Remark 3.97. Because a Dirichlet series is uniquely determined by its coefficients, we see that the char-
acter y is uniquely determined by p. However, this is not a bijection: the disagreement between the
topologies of K*\A % and Gal(K /K)*" means that there are many more continuous unitary characters
K*\A} — C*.

Corollary 3.98. Fix a number field K, and let p: Gal(K/K) — C* be a nontrivial continuous character.
Then L(s, p) admits a nonvanishing holomorphic continuation to {s : Re s = 1}.

Proof. Note L(s, p) is already holomorphic and nonvanishing on {s : Res > 0} by Remark 3.87. Now,
construct the continuous unitary character x: K*\Aj — C* asin Proposition 3.96 so that L(s, x) = L(s, p).
The nonvanishing now follows from Proposition 3.78. Lastly, the continuation follows from Theorem 3.77
as soon as we check that x || " is never trivial on all unramified primes. This follows by the nontriviality of
p, which requires there to be an unramified prime p where p(Frob, ) # 1; this corresponds to the needed fact
about y. [ |

We are now in a position to prove equidistribution of Frobenius elements in Gal(K*"/K), from which one
can prove the general case by a clever reduction argument. However, we will be honest to our discussion
of equidistribution and prove nonvanishing holomorphic continuation to {s : Res = 1} for L(s, p) for all
nontrivial irreducible continuous representations p.

The idea is to write p as a “linear combination” of inductions of characters. Then the result will follow
from the abelian case combined with our properties about L-functions. One almost achieves the full holo-
morphic nonvanishing as well, but it would be technically possible to see the trivial character in our linear
combination, thus possibly introducing a pole or zero.

Of course, it does not a priori make sense to talk about linear combination of representations, so we
must pass to their linearization: virtual characters. Thus, we will want to define the Artin L-function of a
class function. To motivate, use Lemma 3.91 to descend p to some representation Gal(L/K) — C*. For

some g € Gal(L/K), we let Ay, ..., \q denote the eigenvalues of g (with algebraic multiplicities), so we see
that
@ d
log (det(1 — p(9)T)") = Z —log(1 — A\ T).
i=1
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Now, expanding out the Taylor series reveals that

1 > trp g Tk
det(1 — p(9)T) - <Z k ’

We are now ready to make the following definition.

Definition 3.99 (Artin L-function). Fix a Galois extension L/K of number fields with Galois group G.
For a class function x: G — C, we define the Artin L-function as

F‘robk
= oo (E45)

where the product is taken over primes of K unramified in L.

Example 3.100. The discussion preceding the definition shows that L(s, p) = L(s, tr o p) for any finite-
dimensional complex representation p: Gal(L/K) — GL(V).

Remark 3.101. A notable defect of this definition is that we have not defined our Euler factors at rami-
fied primes. This will cause us to use some =s in the sequel; this is no issue because finitely many Euler
factors will not change holomorphy or nonvanishing.

Here are the standard properties of these L-functions, which are carried over from our previous discus-
sion.

Lemma 3.102. Fix a Galois extension M /K of number fields with Galois group G.

(@) If x: G — Cisa class function, then L(s, x) converges absolutely to a nonvanishing holomorphic
function in the region {s: Res > 1}.

(b) Additive: if x1,x2: G — C are class functions, then L(s, x1 + x2) = L(s, x1)L(s, x2).

(c) Inflation: let L/K be a Galois subextension such that Gal(M/L) = H. If x: G/H — Cisaclass
function, then L(s, x) = L(s, X), where x: G — C is the induced class function.

Proof. Here, (a) follows as in Remark 3.87 by noting that the series expansion for log L(s, x) absolutely con-
verges to a finite value; notably, G is finite, so x is bounded, so it does not meaningfully contribute. Con-
tinuing, (b) follows by a direct expansion of the Euler product, and (c) follows because the Euler factors are
exactly the same for any prime p of K unramified in M (and hence also unramified in K). |

The suitable analogue of Lemma 3.93 on induction remains true, but we will not need it in the full generality
of complex class functions. However, we do need to know how to induct character.

Notation 3.103. Fix a subgroup H of a finite group G. Given a class function x: H — C, define the

induced class function q
Indf x(g) = 0 > x(ngn™).

neG
ngn~'€H

Lemma 3.104. Fix a subgroup H of a finite group G. Given a finite-dimensional representation p: H —
GL(V), then we check that tr o Ind% p = Ind% (tr o p).
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Proof. We will use many of the same tricks appearing in Lemma 3.93. Fix some g € G, and we would like
to check the result at g. We proceed in steps.

1. We begin with the special case where G is cyclic and generated by g. If H = G, there is nothing to do.
Otherwise, if H # G, then Ind%(tr op)(g) is an empty, so we must show tr Indg p(g) vanishes. Well,
view elements Ind%, V as sequences of vectors {vz, } indexed by H\G, and then we see that IndZ p(g)
acts by a (generalized) permutation matrix which is a sum of nontrivial cycles of length [G : H]. Thus,
this operator has no trace.

2. We now show the general case. By Remark 3.94, we see that
G G~ (9)
Resg;y Resyy p = @ Indémn,lH77 Pns
n€H\G/(g)
where p,(¢') == p (ng'n~'). Thus, we see that
trInd$ p(g) = Z tr Indéi;ﬂnlen Py (9)-
n€EH\G/(g)

Now, by the previous case, we see that terms vanish as long as g ¢ n~'Hn; on the other hand, if
g € n~'Hm, then we get a contribution of tr p (ngn~'), so we see

trindf plg) = Y trp(ngn ).
neH\G/{g)
ngn ‘€H
The result now follows by replacing the sum over H\G/(g) with a sum over G. ]

In order to allow us to stop talking about L-functions as quickly as possible, let's go ahead and explicate
the inductive approach to meromorphic continuation via Brauer’s theorem. We begin with the following
non-standard definition.

Definition 3.105 (Brauer). Fix a finite group G. Then G is Brauerif and only if, for any finite-dimensional
complex irreducible representation p, there is a sequence of pairs {(a;, H;,¥;)}?, where a; € Z and
H; C Gisasubgroup and;: H; — C* is a representation such that

n
trop= Zai Indgi P;

=1

as virtual character. A representation of the form Indgi 1); is said to be monomial.

Lemma 3.106. Fix a Galois extension L/K of number fields with Galois group G. Suppose that G is
Brauer. For any finite-dimensional complex representaion p of G, the function L(s, p) admits a mero-
morphic continuation to {s : Re s = 1} with no poles or zeroes except possibly a pole or zero at s = 1.
Further, the order of the poleat s = 1is (tro p, 1).

Proof. By the additivity of Lemma 3.92, we may assume that pisirreducible. By Example 3.100, it is enough
to check the result for L(s, tr o p). Because G is Brauer, we receive an expansiontrop = >"" , a; Indgi 1; of
tr o pinto a Z-linear combination of inductions of characters, which implies that

L(S,tr o p) = ﬁL (S’Indfli 1/Ji)az‘
i=1

by Lemma 3.102. By Example 3.100, we may now think of each L (3, Indgi z/;i) as an Artin L-function of a
representation (up to finitely many Euler factors), so Lemma 3.93 tells us that this L-function is L(s, ¢;).
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The meromorphic continuation now essentially follows from Corollary 3.98, which tells us each non-
trivial ¢; grants a nonvanishing holomorphic continuation of L(s, ;) to {s : Res > 1}. Note the same is
true for trivial ¢; except at the point s = 1 where we find a pole in L(s, ;) because this is a Dedekind (-
function by Example 3.90; see Theorem 3.77 and proposition 3.78. Taking the appropriate product of these
contributions proves the statement.

It remains to prove the last sentence. This will require a trick. On one hand, by the discussion in the
previous paragraph, we see that the order of the pole is

E Q.
1<i<n
Y=g,

On the other hand, we see (tr o p, 1) equals

3

a; <Indgi Wi, 1g> = i a; (Vi, 1m,)
i=1

=1
by Frobenius reciprocity. The last sentence now follows. |

Thus, we will achieve our nonvanishing holomorphi continuation as soon as we check that all finite groups
are Brauer; we will complete the nonvanishing later by a careful analysis of s = 1.

Our current goal is to prove Brauer’s theorem that all finite groups are Brauer; our exposition follows
[Ser77, Chapter 10]. We begin by creating a large supply of Brauer groups.

Lemma 3.107. Let G be a finite nilpotent group. Then G is Brauer.

Proof. We induct on |G|. For our base case, we note that if G is already abelian (for example, |G| = 1), then
there is nothing to do because all irreducible representations are already one-dimensional.

Thus, for ourinduction, we may assume that GG is nonabelian, and we fix some complex irreducible repre-
sentation p: G — GL(V) of G. Because taking induction commutes with taking quotients, we may replace
G with G/ ker p, effectively allowing us to assume that p is injective. We will show directly that p can be
induced from a character, which will complete the proof; we proceed in steps.

1. Weclaimthatthereisanabelian normalsubgroup N C G strictly containing Z(G). This follows quickly
because G is nilpotent: because G is nonabelian and nilpotent, we see that G/Z(G) is nontrivial and
has nontrivial center, so we let N C G be the pre-image of the center. Then N strictly contains Z(G)
and is normal because it is the pre-image of a normal subgroup along a surjective homomorphism.

2. We now decompose Res$ p into irreducibles as

Res$ p = @ VY,
®E€Hom(N,Cx)

where V¥ C V denotes the 1)-eigenvectors of V. (The sum is over the characters of N; this decompo-
sition exists because N is abelian.) Now, because N C G is normal, we know that each of the spaces
p(g)V¥ C V continues to be N-invariant and in fact will be N-isotypic. Thus, we see that G acts on
the collection {V¥},, and it must act transitively because the span of the G-orbit of some V¥ will be
a G-subrepresentation of the irreducible representation p.

3. We claim that Res$ p is not isotypic. This is by the construction of N: this would imply that N acts by
scalars on V, thereby implying that p(IV) commutes with p(G), thereby giving N C Z(G) because p is
faithful. This contradicts the construction of N as strictly containing Z(G).

4. We now complete the proof. Choose some ¢y € Hom (N, C*), and let Gy C G be the stabilizer of the
action giveninthe second step. Then prestricts to arepresentation py: Gy — GL(V;) where V; := V%o,

Now, we claim that p = Indg0 po, Which will complete the proof because G| is a strictly smaller nilpo-
tent group than G. Well, for the isomorphism, view Indg0 po as C[G] ®c|g,] po, and then define the
map Indg(J po — p by sending g ® v to gug. |
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Thus, to show that any group G is Brauer, one may simply show that any virtual character for an irreducible
complex representation is a Z-linear combination of ones induced from nilpotent subgroups. Now that we
are working with virtual characters than one-dimensional ones, we pick up the following notation.

Definition 3.108 (virtual character). Fix a finite group G. Then we let R(G) denote the free Z-module
of class functions G — C generated by the virtual characters tr o p as p varies over finite-dimensional
complex representations of G. One frequently calls R(G) the ring of virtual characters.

Remark 3.109. By taking tensor products of representations, we see that R(G) is a subring of the set
of functions G — C. By induction and restriction of representations, we see that Res% and Ind$ induce
ring homomorphisms R(G) — R(H) and R(H) — R(G), respectively.

Thus, to check that a group G is Brauer, it will be enough to show that the map

Ind: P R(H)— R(G)
HCG
H Brauer
is surjective, for any element of one of the R(H)s can be expanded into a sum of virtual characters induced
from linear characters. For example, we will eventually show that one canrestrict this direct sum to nilpotent
subgroups.

Remark 3.110. While we're here, we remark that one can check the surjectivity of this map after ten-
soring with any free Z-module because this essentially takes both sides to a finite power. In particular,
in the sequel, we will frequently work with R(G)zj¢,; where n = |G|, which is conveneint because the
functions in R(G) output to the ring Z[(,]. (Indeed, forany g € G and representation p, because g" = 1,
the eigenvalues of g are all nth roots of unity, so tr p(g) € Z[(,].)

Most of our work in eventually proving that all finite groups are Brauer will come from a construction of
many virtual characters. We begin with a couple preliminary lemmas.

Lemma 3.111. Fix a finite group G of order n, and choose a class function f: G — Z[(,]. Thennf isin
the image of the map

Ind: @ R(H)zy,) = R(G)zc,)-
HCG

H cyclic
Proof. The proof has two steps.

1. We show that n is in the image of the given map. For each cyclic subgroup H C G, definefg: H — Z
as | H| times the indicator function of generating H. Then we claim that

n= Z Ind$ 0.

HCG
H cyclic

Well, for any g € G, we begin by computing Indg 0r(g) as

1
T Z 0m (ngn™") = |{n € G : ngn~" generates H}|.
G
ng:’eleH

Now, upon summing over all H, we see that each ngn~! surely generates exactly one cyclic subgroup
H, so the claim follows.
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2. We complete the proof. By the previous step, we see that nf equals

( Z IndgGH>f— Z Ind$; (05 f| 1),

HCG HCG
H cyclic H cyclic
so we will be done as soon as we check that 0 f|g € R(H)z,;- Well, because H is cyclic, orthog-
onality of characters permits to merely check that (0 f|m, %) € Z[(,] for any character ¢: H — C*;
however, this follows by a direct expansion of the inner product because ¢ outputs to Z[(,] and f|g
outputs to |H| Z[(,]- [ |

For the next lemma, we need a piece of notation.

Notation 3.112. Fix a finite group G of order n, and fix a prime p. Choose g € G, whose order we write
as ord(g) = mp” where p f m. Then we may find integers = and y such that zm + yp” = 1. Now, for any
g € G, we define g, :== g”™ (which has prime-power order) and g,, := g¥?" (which has order coprime to

p) so that g = g,g,,.

Lemma 3.113. Fix a finite group G of order n. For any class function f: G — Z[(,] in R(G)zc,), we have

f(9) = flg,) (mod pZ[(,])

forany g € G and prime p.

Proof. Because we are only interested in the values of f on powers of g, we may as well work with f|.
Now, because (g), we may write f|, as Z[(,]-linear combination of linear characters (g) — C*. Notably,
the conclusion is Z[(,,]-linear in f, so we may as well assume that f|, is a linear character (g) — C*.

Now, recall that g;, is g”?" where the order of g equals mp” for p { m and z,y € Z satisfy zm + yp” = 1.
Thus, f(g) will be an mp”th root of unity, so it will be enough to check that

¢=¢""  (mod p¢[(]),

where ( is a primitive mp”th root of unity. Well, by the Frobenius automorphism, it is enough to check that
sufficiently large pth powers of both sides are equal. For this, note that p¥ = (1 + y)p” (mod mp”), so it is
enough to take p“th powers. |

Now is as good a time as any to begin our main argument.

Theorem 3.114 (Brauer). Let G be a finite group. Then G is Brauer.

Proof. Let n be the order of n. The idea is to show that the map

Indze,;: @D R(H)ze,) — R(G)z,)

HCG
H nilpotent

is surjective, which completes the proof. Namely, one can undo the base-change by Z[(,] because Z[(,] is
a free Z-algebra of finite rank; then one merely notes that any complex irreducible representation p of G
can be written as a linear combination of inductions R(H) for nilpotent subgroups H C @G, but anything in
R(H) is induced from a linear character by Lemma 3.107. In fact, we will find that we may merely consider
H which are the product of a cyclic group and a p-group.

As always, we proceed in steps.
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1. To ground ourselves, we note that it is enough to check that 1 is in the image of Indg,. Indeed,
it is then enough to check that the image of Indy  is an ideal, for which it is enough to check that
Ind$, R(H) C R(G) is an ideal for any subgroup H C G. Well, forany fy € R(H) and fg € R(G), we
see that fo Ind§; fir = Ind5 (folm/fn)

Our proof will eventually build a small supply of constant functions in the image of Indzj,j, which will
produce the constant function 1 by taking suitable linear combinations.

2. We proceed with the key construction. Fix a prime p, and choose z € G of order coprime to p. Then
we claim that there is f: G — Z in the image of Indgj,) such that f(x) # 0 (mod p) while f(y) = 0 of
y has order coprime to p and is not conjugate to z.

In fact, we will induce f directly from the subgroup H = (z) x P, where P is a Sylow p-subgroup of the
centralizer C(x) C G. (Note that H is nilpotent because it is the product of nilpotent groups. Also, H is
in fact a subgroup because (x) has cardinality coprime to p, thus making the induced map (z) x P — G
an injective homomorphism.) We now define fg: H — G by

jﬁww:{WHWﬂZ%

0 else,

foranyz® € (x) andy € P. We quickly check that f; € R(H): note that f = fropr,, soitisenough
to check that fr| (), which follows from Lemma 3.111

It remains to check that f := Indg fu satisfies the required conditions. For example, of course f is
in the image of Indyc,; and defines a function G — Z. Before doing anything else, we remark on the
condition ngn~! € H for g,n € G. Namely, if g has order coprime to p, then ngn~! € H continues to
have order coprime to p; thus, by writing it out as 2%y fory € P, we find that we must have ngn=! € (z).
In particular, to have fz (ngn=') # 0, we must have ngn~! = x on the nose!

« Using the previous paragraph, we compute f(x) as

1
w2 el

neG
nzn~ =z

This sumis now |C(z)| / | P|, which is coprime to p because P C C(x) is a Sylow p-subgroup.

« Again using the paragraph preceding our checks, we see that any g of order coprime to p must
have g conjugate to z in order for the sum Ind$ fx(g) to have any nonzero terms. We conclude
that f(g) = 0 when g has order coprime to p but is not conjugate to «.

3. Fix a prime p. Then we claim that there is f: G — Z in the image of Indy|, such that p { f(z) for all
x € G. Quickly, we note that Lemma 3.113 allows us to merely check the conclusion for z € G of order
coprime to p.

Now, let X C G be a set of representatives of the conjugacy classes of the elements of G with order
coprime to p. Then for each 2 € X, we construct f,: G — Z in the image of Indy|, via the previous
step. Then we define

f = Z f;v

zeX

We now check that f works. Certainly f is in the image of Indy. ;. Further, the construction of the f,s
means that any y € G of order coprime to p will produce a nonzero contribution (mod p) at exactly
one summand (namely, the z € X conjugate to y).

4. We complete the proof. For each prime p, we factor n = mp” where p { m; then we claim that m is in
the image of Indy., . By letting p vary over the prime factors of n, this allows us to conclude that 1 is
in the image of Indy¢,; by taking Z-linear combinations, thereby completing the proof.

Now fix a prime p. The previous step provides f: G — Z such that f(z) £ 0 (mod p) forall z € G. By
replacing f with a suitably large power (which we may do because the image of Indy¢, ; is anideal), we
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may achieve that f = 1 (mod p¥) forallz € G. Then mf — m is a class function G — Z with values
divisible by n, so Lemma 3.111 tells us it is in the image of Indy, ;. We are now allowed to conclude
m is in the image of Indy. ;. |

At long last, we may prove the Chebotarev density theorem.

Theorem 3.115 (Chebotarev density). Fix a number field K. For each prime p of K, choose a prime
P of K above p, and let x, be the conjugacy class of Froby in Gal(K/K). Then the sequence {z,},
equidistributes in Conj(Gal(K/K)).

Proof. By Proposition 3.86, it is enough to check that the L-functions L(s, p) have nonvanishing holomor-
phic continuation to {s : Res > 1} for each nontrivial complex irreducible representation p of Gal(K/K).
Well, fix some such p. By Lemma 3.91, we can find a finite Galois extension L of K with Galois group G
such that p descends to Gal(L/K). Now, G is Brauer by Theorem 3.114, so Lemma 3.106 provides a mero-
morphic continuation to {s : Res > 1} which is holomorphic and nonvanishing for s # 1. Furthermore,
(tr o p,1) = 0 because p is nontrivial and irreducible, so holomorphy and nonvanishing follows. |

3.2.5 Abelian Varieties with Complex Multiplication

For this subsection, we will let A be an abelian variety of dimension g defined over a number field K with
complex multiplication by an order O of a CM number field E. We will prove the Sato—Tate conjecture for
A.

Lemma 3.116. Fix an abelian variety A over a number field K satisfying Conjecture 3.19. For any rep-
resentation r of ST(A), there is an £ and an algebraic extension 7 to G,;(A) and an integer w € Z such
that 7(¢) = t* (for scalars t) and

1
det (1 — 7 (tpa,e(Frob,) Np—1/2) Np—=)

L(s —w/2,T0pae) = H

b

Proof. Thisis[Joh17, p. 6315]. Note r is a continuous representation of the compact Lie group ST(A), so it
upgrades to an algebraic representation of G} (A4), and hence of G} (A). (This algebraic representation will
descend to Q; for some £.) Now, G;(A) = G, q, - G}(A), so extending r is a matter of making sure 7 is
well-defined on G, g, N G}(A). However, this is some finite subgroup of G,,, g,, say ., so we merely need
to select w € Z so that r({,) = ¢%. The final equality now follows by a direct expansion. |

Theorem 3.117. Let A be an abelian variety over a number field K with complex multiplication by a CM
algebra E. Then the Sato—-Tate conjecture is true for A.

Proof. We proceed in steps.

1. By Proposition 3.86, it is enough to check that

1
]-;‘[ det (1 — 7 (tpa,e(Frob,) Np=1/2) Np—s)
admits a non-vanishing holomorphic analytic continuation to the region {s : Res > 1} for all non-
trivial irreducible representation r of ST(A). Now, Lemma 3.116 allows us to extend r to an algebraic
representation 7 of G;(A) such that there is an integer w € Z for which 7(¢t) = ¢* on scalars. Then
we are tasked with checking that L(s — w/2,7 o p4, ) admits a non-vanishing holomorphic analytic
continuation to the region {s : Res > 1 + w/2}.
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2. Weremark that what makes this case achievable is that Remark 2.128 explains that G,(A) C Ty isjust

atorus, so 7 is just a character Gy(A) — G,,, q,.* Thus, we are interested in finding a Hecke character
which understands p4 ¢. This is necessarily a little tricky because p4 ¢ is £-adic, but Hecke characters
are archimedean.
We will use the Fundamental theorem of complex multiplication, following [Con04, Theorem 3.7].
In particular, we would like to apply Proposition 2.141. Quickly, let's reduce to the case where K is
a CM extension of E. Observe that almost all primes of K are totally split over Q, so the Sato-Tate
conjecture for a subfield of K will imply it for K: indeed, that density-1 subset of totally split primes
does not change Frobenius upon restriction to the smaller field. But now, there is an abelian variety
isogenous to A defined over the reflex field of E, so we may take K to be that CM field. (Note isogenies
induce isomorphisms on the level of the Galois representation.)

We may now apply the proof of Proposition 2.141: Theorem 2.136 provides a continuous character
A AIX(’f — E*, and then we know there is a suitable reflex norm Ng-: T — Tg such that

pa(Artg sy) = A(sg) Ng-=(sp) ™"

forany s; € A% ;. Thisis currently valued in A% ;, so to value it in archimedean places, we define
X:Ag — AE’OO by

X(5) = Alsg) Naw (500) "
Note x is continuous by construction. Further, for ¢ € K*, we already knew that Artyx ¢ = id, so

A(t) = Ng=«(t), so we continue to have K* C ker x. The point is that we have built a Hecke character x
which keeps track of our Galois information in A.

3. With x in hand, we may complete the proof. Importantly, Proposition 2.141 explains that y actu-
ally factors through G¢(A)(Ag), so 7 o x is a well-defined Hecke character K*\A}; — C*. Because
pa(Frob,) will be given by A(p) for almost all p, we further see that this Hecke character 7 o x has

L(s—w/2,Topay) =L (s, wa/z (To X)) .

Quickly, let’s check that the right-hand Hecke character is unitary: it's enough to show that the image
is bounded, which is clearer on the left-hand side because the elements tp 4 ¢(Frob, ) can be placed (up
to conjugacy) in the compact group ST(A).

Thus, Theorem 3.77 tells us that we get a nonvanishing meromorphic continuation, and we have a
pole at a certain value of s = 1 + it if and only if \-|1_w/2+” (7o x) = ||, which is equivalent to

FO X ; |.|w/2+it )

Note that (7 o x) defines an algebraic map Tk (Ag,.«) — Tr(Agw), So it can only ever be integral
powers of ||, meaning we only have to worry about ¢t = 0. But 7o x = |-|“’/2 will go back and imply
that r (1p4,¢(Froby) Np‘l/Q) is trivial for almost all p, which implies that r is trivial because Frobenius
elements are dense in Gal(K /K) by Theorem 3.115. This completes the proof. |

Remark 3.118. In fact, [Joh17, Proposition 16] proves the Sato—Tate conjecture for abelian varieties
with potential complex multiplication.

#We may choose £ favorably because the conjugacy class of p 4 ¢(Froby ) does not depend on £: the Fundamental theorem of complex
multiplication (in the form Proposition 2.139 explains that the Frobenius action must be given by a uniform scalar in E*.
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CHAPTER 4
THE FERMAT CURVE

Usually mathematicians have to shoot somebody to get this much
publicity.

—Thomas R. Nicely

In ths chapter, we will study the Galois representation attached to the projective Q-curve X3, C IF’(b cut
out by the equation
Xn: XN +yN 42N =0,

where N > 3 is some nonnegative integer. For the rest of this chapter, we will fix N and thus denote this
curve by X C ]P’}@.

4.1 Homology and Cohomology

The exposition of this section follows [Ots16, Sections 2 and 3]. We will spend this section setting up some
notation and proving basic facts about how these objects relate to each other.

4.1.1 The Group Action
Throughout, it will be helpful to note that the finite alegbraic Q-group

_ HN X [N X PN

GN . A'u,N

actson X; here, Auy C un X iy X py refers to the diagonally embedded copy of 1. As with X, we will

denote this group by G for the rest of the chapter, and we will let ¢ := (y be a primitive Nth root of unity.
Notably, the action map G x X — X is defined over Q even though G(Q) is trivial. For brevity, we will

denote elements of G by gj...) = [¢" : ¢* : ¢!]. We will also have occasion to study the character group

G = Gy, which we identify with
Gy = {(a,b,c) € (Z/NZ)? :a+b+c=0}.

Explicitly, given a triple (a, b, c), we let a(,5..) denote the corresponding character, which sends gj,....¢) +—
gra+bs+tc.

In the sequel, we will have many vector spaces induced by X via (co)homology, which therefore have a
G-action by functoriality. With this in mind, we make the following definition.
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Definition 4.1. Given a Q(()-vector space H with a G-action, we define
H,={veH:g -v=a(g)v}

to be the a-eigenspace for each a € G.

One inconvenience of this definition is that the vector spaces H of interest are frequently defined over Q, but
H, is not.

Thus, we note that some 7 € Gal(Q/Q) acts on @ as follows: say 7(¢) = ¢* forsomew € (Z/NZ)*, and
then

(ra)(¢ s ¢* ¢ =a (I ¢ e )

so we see that Ta = u~'a, where the multiplication u*@ is understood to happen where « is a triple in
(Z/N7z)3. With this in mind, given o € G, we let [a] C G be the collection of characters of the form ua
asu € (Z/NZ)* varies; for example, —a € [a]. The point of this discussion is that we are able to build a
decomposition

QG = I ),

la]eG/(Z/NZ)>

where Q([a]) is the image of the map Q[G] — C given by the characters in [a]. We are now ready to make
the following definition.

Definition 4.2. Given some Q-vector space H with a G-action, we are now ready to define

Hio = {veH:v@le @(H@QQ)Q}.

BE[a]

The discussion of the Galois action of the previous paragraph implies that Hj,; is a generalized eigenspace
of the G-action on H. In particular, we find that Hj,) ® Q= @ﬁe[a] Hg,soH = @[a] Hiy-

4.1.2 Differential Forms

In this subsection, we will define a few differential forms. A reasonable reference for this subsection is
[Lanll, Section 1.7]. A computation with the Riemann—Hurwitz formula shows that the genus of X is

W, so we know that there are many holomorphic differential forms. On the other hand, we know

that the space of differential forms lives in Hi (X (C), C), which is equipped with a G-action. Anyway, we
are now ready to define our differential form.

Definition 4.3. Fix notation as above. For a € Z/NZ, let [a] be a representative in {0,1,..., N — 1}. For
any a(qp,c) € G, we define the differential form

Wogs .y = 2PN dx

in the affine patch %V + 4™ + 1 = 0 of X. In the sequel, we may also denote this differential form by
W(a,b,c)+
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Remark 4.4. Because zV + 3V + 1 = 0implies V! dz = —yN~! dy, we also see that
al-N, 5 9
W(a,b,c) = —zl] Ny[b] ?

Further, we can pass to the affine patch 1 + v + u®¥ = 0 of X by substituting (z,y) = (1/u,v/u), for
which we note d(1/u)/(1/u) = —du/u so that

N—[a][b],, 6] -~ G

Wia.b = —Uu
(a,bye) "

Remark 4.5. Following [Col87, Section VI], we remark that it will be numerically convenient to work
with a rational multiple of the wes for some computations in the sequel. Namlely, we define v, =
K(a)ws when a = (a, b, ¢) has nonzero entries, where

Nl i [q] + 8] >

N
KW@Q:{1 if [a] + [0] < NV.

From Remark 4.4, we see that w(, ) always succeeds at being meromorphic with poles only at points of the
form [X : Y : 0], and it is closed (i.e., has vanishing residues) if and only if 0 ¢ {a, b, c}. Further, we see that
W(a,b,c) SUCCeeds at being holomorphic provided that we also have [a] 4 [b] < IV, which we note is equivalent
tofa] + [b] + [¢c] = N.

We have now provided W holomorphic differentials of X, so we would like to check that we
have actually found a basis of H’(X (C), Q). Well, these differential forms are nonzero by construction,?
and they are linearly independent because they are all eigenvectors for the G-action.

Lemma 4.6. Fix notation as above. For each a € @, the differential form w, is an eigenvector for the
G-action with eigenvalue «.

Proof. Say a = a(q,) for some a, b, c € Z/NZ. Then for any g;,...q) € G, we note

-~ 4(¢"2)
(Cr)

— Car+bs . x[a]y[b]fN dj

€T

(Gr5:0]) Wape) = (€)1 (¢y)

= Q(a,b,c) (g[r:s:O])w(a,b7c)~

The reason to g[,... in the above computation is that we need the G'-action to stay in the affine patch of
points of the form [X : Y : 1]. |

Remark 4.7. Thus, we see that our differential forms must be linearly independent because they are
eigenvectors with different eigenvalues. As such, we have constructed eigenbases of Hl; (X (C),C)
and H°(X(C), Q% ¢)-

While we're here, we compute the Poincaré pairing of our basis of differential forms.

1 Later, Remark 4.13 will give another way to prove this via periods.
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Lemma 4.8. Fix notation as above. Choose a, o/ € G such that a = (a,b,c) and o/ = (d’,¥, ) have
nonzero entries. Then the Poincaré pairing

P: Hgg (X(C),C) x Hgg (X (C),C) = C
given by (w,n) = 5= [ (w A7) sends (wq, war) to
0 ifa £ —a,

P(waawa’) = .
{(1)NN_[]:]_[b] ifa =—a.

Proof. We use the Poincaré residue, which implies that

where the sum is over poles, and [ w refers to any choice of local primitive for w in the neighborhood of .
To use this, we note that the computation of Remark 4.4 implies that w,, and w,- can only have poles at the
points [1 : —(* : 0] for some s € Z/NZ, and in this neighborhood, we may write

N—[a]—[b],, ] -N DU
u

Wa = —U

and similarly for w,,. In particular, we see that

makes a reasonable primitive for w,, so the Poincaré residue yields

]_ _la]— _ —la' 1= n_ du
P(we,war) = Z Res(_¢s 0 (N—[a]—[b]UN [a]=[bl [l =N,y N=la]= (] V] Nu)'
SEL/NZ

Now, if & # o/, then we see that we are computing the residues of some monomial times du/u, but the
power of u in the monomial is nonzero, so the residues all vanish. Lastly, we need to discuss what happens
with o = —a’, where we see

1 —la]=[b],,[b]— —[—a)—[~b], [~b]—-N du
P(UJa7OJ—o¢) = Z ReS(_Cs,O) <_]V—[a]_[b]’U/N [a) =1 ]’U[ =N, —’LLN [—a]=I ]’U[ =N ;
s€Z/NT

1 d
= Z Res(_¢s,0) (—NuN_["'}_[b]v[b]_N - qlalH I N, — (0] u)

s€EL/NZ — lal - [t] u
= 71 S s U*N d—u
SN 2, e (%)
_ 1 _rs\—N
SN W[ %( <)
N
IR Sk
as desired. [ |
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Remark 4.9. Following Remark 4.5, we see that « € G with nonzero entries will have
P(a,v_o) = (DY

because exactly one of K (a) or K(—«) will absorb the given rational constant. This is essentially the
reason for working with the v,s instead of the w,s.

4.1.3 Some Group Elements

In this subsection, we define a few elements of Q[G] which we will then use in the next subsection. We begin
with the three elements

b= Zg’ V= Z 910:5:0] 5 and h = Z 9[r:0:0]-

geG SE€Z/NT reZ/NZ

We take a moment to note that these elements satisfy the relations tg = gt = t forany g € G,andt = hv =
vh, and v? = Nv and h? = Nh. In the sequel, we will get a lot of mileage out of the idempotent

1
p= m Z (1 - g[r:O:O])(l - g[O:s:O])~

r,s€L/NZ

Let's check that p is idempotent.
Lemma 4.10. Fix notation as above.
(@) Then pisidempotent.

(b) For anyr,s € Z/NZI we have (1 - g[T:O:O])(l - g[O:s:O])p = (1 - g[T:O:O])(l - g[O:s:O])'

Proof. Both claims hinge upon the fact that a direct expansion of (1 — gj,.0:01) (1 — gjo:s:0]) implies

%(NQ—Nh—NvH).

p:N

We now show the claims separately.

(a) Thisis adirect computation: write

2 2
W(N —Nh—Nv+t) (N>~ Nh—Nuv+t)
1
= 1 (N* 4+ N?h? + N*v® + % — 2N3h — 2N3v + 2N?t + N?hv — 2Nht — 2Nvt)
1
=N (N*+ N3h + N3 + N*t — 2N3h — 2N30 + 2N?t + Nt — 2N?t — 2N?t)
1 4 3 3 2

(b) We will compute as in (a): note 2(1 — gjr.0:0) = 0and v(1 — gjo.s:0)) = 0, SO

(1 = gpro:0) (1 = gosio))p = (1 = g0 (1 = Gpoisioy) - % (N? = Nh— Nv+ hv)
N2
= (1= gpro0)(L = go:s:0) - 75 +0+0+0
= (1 = gpr:0:0) (1 = gjo:s:0))>
as required. -
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4.1.4 Homology

In this subsection, we will study HF(X(C), Q). By the end, we will define a 1-cycle v = 7y such that
HB(X(C),Q) = Q[G] - [7]- Morally, this means that we can understand our homology by focusing on this
one cycle.

To begin, we need some path in X(C), so we define §: [0,1] — X (C) by

5(t) = [tl/N C(1— )YV g];] .

Notably, 5(0) = [0 : 1 : Gnland (1) = [1: 0 : {nl, 509 = [¢" : ¢ = 1] has g.6(0) = [0 : ¢* : {p] and
g.0(1) = [¢" : 0 : {;n]- The point of this computation is that we see

(1 — g[r:0:0] — 9[0:5:0] + g[r:s:O])*(s € Z]E(X(C)v Q)
We are now ready to define .
Definition 4.11. Fix notation (and in particular ¢) as above. Then we define
1
V=2 Z (1 = gir0:0) (1 = G[o:5:0))+0-

r,s€EL/NZ

Note v = p.Jd.

The above computation shows that v € ZB(X(C), Q). We will want to know to its periods later. Note that
the following result is essentially a special case of [Del18, Lemma 7.12].

Lemma 4.12. Fix notation as above. Suppose (a, b, ¢) € (Z/NZ)? has no nonzero entries. Then

w

S o

Proof. This is a direct computation. Denote the integral by P(vy,w,)). By adjunction, fp*éw(mb,c) =
J5 P*W(a,p,c)- This allows us to compute

P(% abc) NQ/ Z — 4[r:0:0] (1—9[050]) W(a,b,c)

r SEZ/NZ

:$/5 > (1=¢") (1-¢") Wabe)
— <]$2 >o@-¢) (14”5)) /6w<a7b»c>

r,s€L/NZ

_ (L _ar bey \ A+ BN [T al/N g _ b1 At
—<N22<1<>( c)) JRERCET A

r,s€L/NZ
-1
The last integral (famously) equals the Beta function, and it evaluates to T’ (%) r ([ﬁ) r (W) . We

take a moment to check that )
Z (1 _ Car) (1 o Cbs) = N2.

r,s€EL/NZ
Well, (1 —¢") (1 =¢*) =1 — ¢ — ¢ + (7%, and because a, b # 0, we see that summing over r and s
causes the terms not equal to 1 to vanish. Thus, we are left with N2. |
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Remark 4.13. Because the right-hand side is nonzero, Lemma 4.12 implies that the differential forms
W(a,b,c) @re NONZzero.

Remark 4.14. Following Remark 4.5, it will be helpful to also compute fv V(a,b,c)- We claim that

-1
oy L (o) Wlal+BD /N lal+ B =N <M) r ([b]) - ([a+b]> .
[{V( ,b,c) (=1) GNn N N N

We have two cases. If [a] + [b] < N, then v(440) = Wap,e), SO this is immediate from Lemma 4.12.

Otherwise, if [a] 4[] > N, then v, 40) = Ww(a’b,c), so this follows from Lemma 4.12 as soon as

we compute . .
LR ORION ([a];[b]) [ ([a;b}) |

This follows because T (M;[b]) = [“]J’E\bf]_NF ([a;b]).
We are now ready to show that H? (X (C), Q) = Q[G] - [v].

Lemma 4.15. Fix notation as above. Then HZ (X (C), Q) = Q[G] - [1]-

Proof. Itis enough to show that H®(X(C), C) = C[G] - [y]. Note that there is a canonical pairing

(c,w) — fcw

which is perfect by the de Rham theorem. We already have a basis {w(4,4,¢) }a,b,c20 Of Hi (X(C),C), so we
will find a dual basis for HE(X (C), C) inside C[G] - [y]. Well, for g € G and o € G, we see

*
/ wa:/g Wa
gry il

equals a(g)P(v,ws), where P(y,wy) = fv wq is the (nonzero!) period computed in Lemma 4.12. With this
in mind, we define

1 —1
Co = mga(g) g

foreach a = a4 5,c) with a,b,c # 0. Then we see that fca wp = lo=p by the orthogonality relations, so {c,}
is a dual basis of HE (X (C), C), and it lives in C[G] - [] by its construction. [ |

4.2 Galois Action

We now use the notation set up in the previous section to write out the Galois action on the space of some ab-
solute Hodge cycles attached to X. Roughly speaking, we will be interested in computing ¢£-adic monodromy
groups of (quotients of) X, which requires us to have some understanding of the Galois representation

p: Gal(Q/Q) ~ GL (HL(Xg, Q0))

In particular, we recall from section 2.4.3 that it will really suffice to be able to compute the Galois action on
cetain Tate classes living in

Hét (X@v Q€)®p @ Hét (X@a QZ)V@)p = Hét (X@’ Q£)®2p (p)v
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for some nonnegative index p > 0, which is the main point of this section. In particular, the Kiinneth theorem
tells us that we will be interested in the cohomology group Hzf(X%”, Qe)(p).

Roughly speaking, the outline will be to pass to absolute Hodge cycles. Indeed, by the Mumford-Tate
conjecture, one is able to correspond Tate classes to Hodge classes, and Hodge classes are known to be
absolutely Hodge, and our construction of absolute Hodge cycles makes it clear how they should specialize
to a Tate class. In this way, we find that we can attempt to compute Galois action on Tate classes by instead
computing Galois action on absolute Hodge classes. This is useful because absolute Hodge cycles have a
de Rham component, so we can run our computations on the de Rham component, which is the only place
where we can hope to have a basis.

Throughout this section, p is a nonnegative index. We take a moment to note that the action of G on
X upgrades into an action of G?P on X?P. Our exposition closely follows [GGL24, Subsection 8.5]. As in
section 4.1.1, we will identify G2P with some subset of tuples in (Z/NZ)%?. And for a vector space H defined
over Q(¢) (respectively, Q) and character a € @2”, we define H,, (respectively, Hy,)) as the corresponding
a-eigenspace (respectively, [a]-generalized eigenspace). Then given a vector v € H, we may also write v,
for the component in H,,. R

In the sequel, we will find utility out of the following two subsets of G?7.

Definition 4.16. Fix notation as above.

« We define the subset 2%” to be equal to the subset of o € G2P having nonzero entries as a tuple

in (Z/NZ)Sp.
+ We define the subset 827 to be equal to the subset of & € A?P such that a = (ay, .. ., ag,) satisfies
12
— Z[uai] =3p
N i=1

forallu € (Z/NZ)*.

Morally, the characters in 2l5, correspond to basis vectors of H, (X, Q¢)®?, and the characters in By, cor-
respond to Hodge classes (see Proposition 4.23).

4.2.1 Hodge Cycleson X?7

To understand the geometry of X, we will only be interested in tensor powers of H*(X) (for a choice of
cohomology theory H), which by the Kiinneth formula embed as

H'(X)®% C H? (X?P).

When H is de Rham cohomology Hqgr, we thus see we are interested in when the image of an element in
HJR (X)®P succeeds at being a Hodge cycle. Well, note that the action of G on H}; (X, C) extends to an
action of G?? on H}y; (X, C)®?". This action diagonalizes with one-dimensional eigenspaces by extending
Remark 4.7. We will use properties of the diagonalization to read off when we have an element of bidegree
(p.p) in B2, (X*7,C).

Following [Del18, Proposition 7.6], it will be useful to have the following definition.

Definition 4.17 (weight). Given a function f: Z/NZ — C, we define its weight map as the function
(f): (Z/NZ)* — C defined by
1
(f)(u) = N Z f(ua)lal

a€Z/NZ

For p > 0, we note that we may identify G2 with a tuple in (Z/mZ)?, and then we define the weight
(o) of a character o € G* as (1,)(1), where 1,: Z/NZ — Zis the multiplicity of an element in Z/NZin
the tuple a.
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Remark 4.18. The point of this definition is as follows: given a € G with o = (a, b, c) having nonzero
entries, we note that w, has two possible cases.

« If [a] + [b] + [c] = N so that (a) = 1, then w(, ;.. is holomorphic so that w, € H'Y(X).
o If [a] + [b] + [¢] = 2N so that {a) = 2, then w,, is not holomorphic so that w, € H'(X).

In all cases, we find w,, € H2~(®){®)~1(X),

Remark4.19. If f isinstead a function f: +Z/Z — C, we may similarly define the weight by the formula

(fHw) = > flua)(a),

a€EZ/Z

where (a) now refers to the element in [0, 1) in the class of a.

Remark 4.20. Suppose that o € 2?? has 1,, of constant weight. Then we claim that (o) = 3p. Indeed,
we must have

6p 6p
1 1
N [a;] N [—adl,
i=1 i=1
but [—a;] = N — a; then forces the sum to equal 3p.
We now upgrade Remark 4.18 to H} (X, C)®?.
Notation 4.21. Choose a € G* as a = (o, ..., agp) having nonzero entries. Then we set

Weo = Way ®.'.®w0¢2p'

We define v, similarly.

Lemma 4.22. Choose a € G2 as o = (o1, ...,as,) having nonzero entries (i.e., @ € 2s,). Then w,
embedded in H32 (X?,C) is of bidegree (4p — (a), (a) — 2p).

Proof. Because the Kiinneth isomorphism upgrades to an isomorphism of Hodge structures, it is enough to
note that w,, € H2~{®i):(®)~1 (see Remark 4.18) implies w, has bidegree

<4p =D {ew), Y o) — 2]?)-

i=1 i=1

The lemma follows because weight is additive. |

Proposition 4.23. Choose a € 2%P. Then H;? (X??)
are equivalent.

(o] is one-dimensional over Q([«]), and the following

(a) H? (X?7) (o] (P) consists entirely of Hodge classes.

(b) We have (ua) = 3pforallu € (Z/NZ)*.
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Proof. Expand o = (o, ..., ap). We begin by embedding

HY (X*7,Q),©®C= & HY (X¥.C)
u€(Z/NZ)*

ux

into
HP (X*.C)= P HEEX e - a@HEX,C),
q1;---,92p
q1+-+q2p=2p

where this last equality holds by the Kiinneth isomorphism. Quickly, we reduce to the case wheregq; = -+ - =
q2p = 1: for eachu € (Z/NZ)*, we note that ua has nonzero entries. On the other hand, the G-action on
HY(X) = Cis always trivial, so we note that if any of the ¢,s are not equal to 1, then one of them must equal
0, meaning that

(HgllR(X’ (C) @ ® H?fPf (X’ C)) = HZIR(X, (C)ual Q& HZK(X, C)ua2p

ux

is the zero vector space. Thus, we see that

HZ, (X,C),, = (;%Z) (Hir(X,C)%%), .
u€e x

The comparison isomorphism now implies that H (X?7,Q) (o] has dimension [Q([a]) : Q] over Q and thus

one dimension over Q([«]).
It remains to show that (a) and (b) are equivalent. Well, the Q-vector space HQB” (X2P, Q) (o] (p) will consist

of Hodge classes if and only if (H}y (X, C)¥?") s of bidegree (p,p), which is equivalent to (uc) = 3p by
Lemma 4.22. ' [ |

4.2.2 An Absolute Hodge Cycle

Thus far, we have access to classes w,, and we know how to compute their periods against the Betti cycle
~v. We will be able to compute the Galois action on ~ because it already comes from a Betti cycle, but we
then need to know how to translate this into a Galois action on the w,; importantly, note that w,s have no
obvious Galois action, and indeed, they cannot because they may not even be defined over a number field.
To do this, we need a way to put v and the w,, on the same footing; following [GGL24, Section 8.5], we use
absolute Hodge classes.

For example, the machinery of cohomology tells us how to take v and then apply some cycle class maps
to produce an absolute Hodge class. Let's be more explicit: we may pass the class v?? ® (27i) ~? through the
maps

H3, (X*,C) (—p) = HY (X*,C) (p) € H (X)(p),

where the last map is the cycle class map. In order to ensure that we output an absolute Hodge cycle, we
apply Proposition 4.23: we see that the generalized eigenspace for [a] contains all Hodge classes if and only
if « € B2?, we simply define 7[25] € HE, (X?,Q) to be the projection to the [o]-component, and we now
know that its image fyif] Ap is @ Hodge class, hence an absolute Hodge class by Theorem 2.45.

Remark 4.24. We remark that this last paragraph actually argues that the projection
CRu(X) 0 > Hik (X*,C) (p)pay

is an isomorphism for any o € B2?. In particular, both spaces are 1-dimensional vector spaces over

Q([e)-

Perhaps we should check that 7[25] Ap is nonzero. Roughly speaking, we expect this to hold by the period
computations of Lemma 4.12.
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Proposition 4.25. Choose o € B2P. Then

2p

ST N — lai] — [b4]

Too (,7[25],AH) = Z <(27”) pH N /W(faifbi,fcl-) wg-
Be[a] i=1 Y

B=(a1,b1,c1,...,a2p,bap,c2p)

Proof. We know that the wgs form an eigenbasis of H3% (X?P,C) (p)[a by restricting Remark 4.7 to the [o]-
generalized eigenspace. Thus, we know that 7. (7[4],an) is certainly a linear combination of the wgs, so we
write

2
Too (v[f]yAH) = Z[]Zﬁwﬁa
BEla

and it remains to compute the coefficients z3. For this, we use the computation of the Poincaré pairing
computation from Lemma 4.8 (iterated 2p times), whereupon we see that

2p N
P (7s (7217 w_ ) =z (1) ———————
( [a]’AH) ’ ’ g N — [a;] — [bs]
where 8 = (a1,b1,¢1,. .., azp, bap, c2p). Thus, to get the correct answer for zg, we would like to show that
? N
P (Woo (’YﬁfLAH) 7w—6) = (2mi) p/w—ﬂ-

.
(Note that the sign has disappeared because (—1)"2? = 1.) To compute this Poincaré pairing, we would like
to remember that 7, o comes from a Betti class. As such, we remark that the composite

HE, (X*,C) (~p) = HY (X*,C) (p) C B (X*) (p) — H2j (X*,C)

is just the usual cycle class map from Betti to de Rham cohomology. Thus, we see that the Poincaré pairing
with 7[251 A May be computed as the integration pairing

P (7700 ('7[25],AH) ,w,g) = (2mi)~? [ﬂ” w_g.
[a]

To complete the proof, we note that we may pass from integrating over 7[2(1”] to v%P because the adjunctive

property of the integration pairing allows us to pass the projection onto the [a]-component to —3, but w_g
already lives in the [a]-generalized eigenspace. |

Thus, we see that 4], a1 is nonzero because we have found nonzero coefficients: the integrals are nonzero
by Lemma 4.12. While we're here, we translate this into a statement with v,s.

Corollary 4.26. Choose a € 827, Then
Too (*yifLAH) = Z ((2m’)—p

BE(a]

B:(al7b17017---7a2pab2p702p)

no
S|

/V(—ai,—bi,—c»)’/ﬂ
177

Proof. The same proof as in Proposition 4.25 applies when combined with Remark 4.9. |

Remark 4.27. Following Remark 4.9, it will be computationally helpful to rewrite our formula in terms
of the v,s because this will make the mysterious rational constant disappear.

In order to hide these integrals for now, we introduce the following notation.
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Notation 4.28. For @ € B such that o = (o, ..., asy), we define

2p
Per (v*P,vy) = (2mi) P H/ Ve, -
i=1"7

Note that this number is algebraic by Proposition 4.23 because it is the integral of a differential against
an absolute Hodge class. (See the end of the proof of Proposition 4.25.)

Remark 4.29. In order to compute these integrals, we note Remark 4.14 grants the product of the in-

tegrals equals
= faiba-Np (L@l o (B o (L=ed )
_1)(ail+[b:])/N] plail+1bil— el il =)
Leoereomegieie (5 (7)r (%)

i=1
We quickly note that { [a:]+[bs ]J € {0, 1} equals 0 exactly p times and equals 1 exactly p times because

« € B?P; additionally, ¢, _N 2P — 1, so that power vanishes. Thus, our period equals

g L))

We will also want to express the v,s in terms of .

Corollary 4.30. Choose o € B2P. For any 8 € [a], we have

= ! — *_ 2
vg = #G?P(Q) Per (127, v_) Z Blg)™ - moe (g ’y[,f]yAH)

) gea(Q)

Proof. By the orthogonality of characters applied to Corollary 4.26, we find that

* 2
#Gzp(@ > 8o mae (9797 au) = Per (777, v-a) vaam,
geG??(Q)

so the result follows. [ ]

4.2.3 Computation of the Galois Action

In this subsection, we compute the Galois action on our absolute Hodge cycles. To ground ourselves, we
begin by noting that we are expecting a permutation matrix.

Lemma 4.31. Choose o € %P and a prime ¢ such that £ = 1 (mod N). Given o € Gal(Q/Q) such that
o(Cn) = C} forsome u € (Z/NZ)*, we find that o maps

2 (43.0.), -1 (3.0

ula

Proof. Choosewv € Hif (X%p, Qg) . Then forany g € G?(Qy), we find that

o(g-v) =0o(g)-a(v)
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because the action of G?? is defined over Q and hence Galois-invariant. Rearranging, we see that

(e '9) -0
(e 9)- v)
(@ (079)) -v)
(07 (9) o(v),

where the last equality holds because the Galois action is Q,-linear. A direct computation then shows
a (U‘l(g)) =o0"1(a(g)) and theno=1(a(g)) = (u_la) (9)- [ ]

|
2 a9 a9 9

We now move towards the computation of the Galois action on absolute Hodge classes. This requires a
warning. Our computation will be able to succeed by using de Rham classes as representatives for absolute
Hodge classes. However, de Rham classes have no Galois action: only absolute Hodge classes have Galois
action (through the /-adic components). The key to keeping track of the differences between these elements
is to keep track of our base-changes. In particular, for any prime ¢, we may specify an embedding:: Q, — C
and note the “comparison” isomorphisms

HAR (X, ©) ()l = Chn (X)) @0 C
_ (P 2p
o (X@ )[a] ®q Qe ®, C
= H (X%p, Qtz) (P)ja) ®. C,

where the last isomorphism is given by the Betti-to-étale comparison isomorphism. (We remark that these
identifications are all G?P-invariant.) For example, in the sequel, we may write bizzarre things such as

@1y (X2) 200 o v@1eH (X7,0) 20T
and then pretend that these elements live in the same vector space.

As promised in the previous section, we are able to compute the Galois action on ~. Explicitly, this
amounts to the following.

Lemma 4.32. Choose a € B2P.

(a) There s a function A: Gal(Q@/Q) — Q([a])* such that
7 (vfean) = A1 an
(b) Forany o € Gal(Q/Q) and g € G2#(TQ), we have
o (g*vﬁi’],AH) = A(0) - 3(9)* V] an-
(¢) Forany o € Gal(Q/Q), we compute 1o (A(0)) € Q(Can) as

) (Per (v2%,v-a))
a()‘( ) - Per(*yQP,V_a) :

Proof. Here, (a) follows because C%; (X?7) (a] is a one-dimensional vector space over Q([«]) which is stable

under the Galois action (because its Betti component is defined over Q); thus, we see that 7[25] Ap IS a basis
vector of this space, so (a) follows. Continuing, (b) follows because the action of G on X?7 is defined over
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Q, implying that
* 2 * 2
o (g v[(f]}AH> =o(g)o (V[;’],AH)
= o(0)" (A@1an)
= M0) - 0(9)" ¥ s

where the last equality holds because o(g)* is linear.
Lastly, (c) will require a computation. We will work in the de Rham component; the idea is to project onto
the a-component. Working in C} ; (X?7) ®q C, one has the equalities

(A(U)V{iﬁ,AH ® 1) - (07[25],“1 ® 1) .

We now project onto the a-eigenspace; because the G?P-action is defined over Q, the projection commutes
with the Galois action, leaving us with

(A(O’)FY[%S]’AH ® 1)a -7 (FY[%S]’AH ® 1)a

On one hand, by definition of ¢,,, we see that the left-hand side will equal ¢, (A(o)) (*yif]’AH ® 1); then pro-
jecting onto the de Rham component leaves us with

Too (()\(U)vﬁf]’AH ® 1)a> = \(o) Per (v?P,v_4) Va

by Corollary 4.26. On the other hand, for the right-hand side, we will want to project onto the de Rham
component first (which commutes with Galois action by our identifications). To complete the proof, we
now run computations in Hi’é (X?7,C) = H(Qi’l; (X?7,Q) ®q C, for which we use Corollary 4.26 to see

mo (o (A ®1) ) =7 (m (a0 21), )
=0 (Va ® Per (nyP, l/_a))
=0 (Per (’yzp, V,a)) Ve,

where the last equality holds because the Galois action on Hi% (X?7,Q) is trivial. Comparing the previous
two computations completes the proof. |

We are now ready for our main theorem.

Theorem 4.33. Choose o € B%. For any o € Gal(Q/Q) such that o({n) = (% foru € (Z/NZ)*, we
have
g (Per(72p7 Vfu_la))

Per(/‘y2p7 V—(!)

0(Va®1) =1y-1,®

)

where this Galois action takes place in H3y (X7, Q) (p)(a) ® Q = Chy (X?7) o] $0 Q.

Proof. We combine the computed Galois action in Lemma 4.32 with the change-of-basis results Corollar-
ies 4.26 and 4.30. To begin, Corollary 4.30 lets us write

U(l/a ® 1) = O’< G2p Z g*’yiz;—l ( )Per(l 2p, Va))

QEGZ” @

1
* _2p
G2P Z <g Tan ® g) Per (v?P,v_ ))

. 1
#G2p GZ (g %2*%) (g) Per (v2P,v_4)’
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where the last equality takes place in CX}; (X?7) ®¢ Q so that the Galois action is happening in the left
component. Continuing, Lemma 4.32 tells us that

o (9*7[251,AH) = 0(9)\0) - o(9) Vi an

1]

1
Vo ® 1 )\ *'725 ® .
eV = g ) 2 Mol i ® SR )

(We will wait to evaluate A(o) until the end because a trick is required to move it through the tensor product.)
We now go back to the basis of v,s via Corollary 4.26, writing

a®1) = ——non= Ao) - .
D @, 2 T e
pela]

Now, o(9)*vs ® 1 = 15 ® B(c(g)), where the equality is now taking place in H2% (X?7,Q) ®q Q. Continuing,
wesee 3(o(g9)) = o(8(g9)) = B(g)* because evaluating a characteris Galois-invariant. Rearranging the sums,
we now see that we can isolate the sum

1 3 (uB)(g)
G??(Q _

# @ 9eG?P(Q)

which orthogonality of characters tells us is the indicator for 3 = u~ta. Thus, we are left with

Per(y?P,v_,-14)

a®1)= A w—la
70 S =AM o)

It remains to move A\(o) through the tensor product. Note that this is not totally trivial because the tensor
product only lets us move rational numbers through. Anyway, it is enough to check the required equality in
the de Rham component, allowing us to use the proof of Lemma 4.32 to note

Ao)Vy-14 ® Per (721’, V,u_la) = V14 R0 (Per (72”, V,u_la)) ,

from which the required result follows after some rearranging. |

Remark 4.34. Because the G?P-action commutes with the Galois action, it is not difficult to directly
check that an a-eigenvector should go to a u~'a-eigenvector.

Remark 4.35. As a sanity check, it is not hard to see that Theorem 4.33 actually defines a group repre-
sentation.

Remark 4.36. Following Remark 2.162, one can use Theorem 4.33 allows ons to compute the con-
nected monodromy field K" of the Jacobian A of any quotient C' of the Fermat curve Xy. Indeed,
Remark 2.162 explains that this is essentially a matter of computing enough the field of definition of
enough Tate classes (used to cut out the torus Gj(A)). In particular, we already know that Q({n) C
K™ (because of the endomorphisms), and then Theorem 4.33 explains that ¢ € Gal(Q/Q((w)) fixes
a Tate cycle v, if and only if it fixes the period Per (v, v_,).

Let's see an example.
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Corollary 4.37. Choose o := (a,b,¢) € A', and set o := (a’, ¥, ') to be —a. Then (a,’) € B2, and for
any o € Gal(Q/Q) such that o(¢) = % foru € (Z/NZ)*, we have

U(V(a,a/) (%) 1) = Vy—1(a,a’) ® (_1)(u71a)—(a>-

In particular, o fixes v, oy ® 1 ifand only if u — 1 is divisible by N/ gcd(a, b, c, N).

Proof. To see that (o, ') € B2, we note that any u € (Z/NZ)* still has ua = —ud’, so {{ua), (—ua)} =

{1,2}.
Looking at Theorem 4.33, we see the main part of proof will be computing our periods. The main point
is that the reflection formula for I" (recalled later in Proposition 4.40) reassures us that

() (-

We now combine this with the computation in Remark 4.29 to achieve

(s

™ ) ™ .sm N
s o (bl T
Sin =7 SN

N — —a]+[—b]+[a]+[b
Per (v*P,V_(q,ar)) = —(2mi) " - C£N Jr{=bltal+ b

Note that [a] + [~a] = NN, so the power of (» disappears. Continuing, we expandsinz = & (z + z~!), which

yields
(S5n = Son)
Per 721)’”7 a,a’)) = —a —b) "
) = G G -G
Continuing, we factor 5 /¢ 0" = §2]\§°‘> = (=1)!*, leaving us with

(-G
€ =1 (R -1)

Per (VP V_(a,01)) = —(—1){).

We now plug into Theorem 4.33 to reveal

U(V(a,a’) ® 1) = Vu—1(a,a) 02y

which rearranges into the desired expression because ¢ ((}{,_1> =(N.
It now remains the last sentence. Well, we see that o fixes v(, o if and only if ula = «, which is

equivalent to ua = a. By taking Z-linear combinations, it is equivalent to asking for (v — 1) ged(a, b,¢) = 0
(mod N), from which the claim follows.

4.2.4 Some Examples

We begin with the superelliptic curve C': ¢ = 23 — 1.

Proposition 4.38. Define A to be the Jacobian of the proper curve C with affine chart y? = 23 — 1. Then
we show K™ = Q({y), and we compute ST(A).

Proof. We will freely use the computation executed in Proposition 3.32. Thoughout, A := JacC, and we
recall that we have a decomposition A = Cy x A; X Ay (over Q) into geometrically simple abelian varieties.
We proceed in steps.
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1. Even though this is not a Fermat curve, it is a quotient of the Fermat curve Xy with N := 9: this is
witnessed by the quotient map from the affine patch 2 + 3 + 1 = 0 to C given by ¥/ (z,y) == (-3, y).
Thus, we will be able to use the Galois-invariant embedding +: H}, (Cg, Q) — H}, (X y 5, Qe) to use
Theorem 4.33 by restricting to the Galois submodule. To make this explicit, we recall that we have a
basis

dr dxr dr dr dr zdxr zdz
of H%(C), we see that we can pass this basis through 1* to see that H'?(C') C H!°(X) has basis

{vss1, V342, V333, V324, V315, V621, Ve12} -
Combining with the conjugate differentials yeilds a full basis of H} (C, Q) C Hi (X, Q).

2. We now explain how to pass the étale site. By Conjecture 3.19, which is known in this case by Theo-
rem 3.23, we may choose any ¢, so we choose ¢ so that Q; contains any algebraic numbers we will need
in the sequel (most notably, we want (v and our periods). For each p > 0, we recall that any a € B??
produces idenitifications

Hg (X*,Q) ) ®o C = CRy (X)) ® C = HY (X, Q) (p)fa) @, C,

o]

where 1: Q; — Cis some fixed embedding. In this way, we see that we are allowed to treat an expres-
sion like 1351 ® 1 as an element of Hgf (XQP, Qg) ®, C; for carefully chosen ¢, a Galois descent argument
is even able to reassure us that the basis vectors v, ® 1 produces from the previous step can be found

in HE (X7, Qq) (p)fa)-
Thus, in the notation of Proposition 3.32, we see that ¢* pulls the basis vectors {u; ® 1,v1 ® 1,v3 ®
Lus® 1w ®1L,wy®1,ws ® 1} to

{333 @1, w315 @ 1,621 @ 1,342 @1, w612 ® 1,130 ® 1, 0351 @ 1},
and one can recover ¢* on the rest of the basis by taking conjugates.

3. We are now ready to begin executing Proposition 2.157; for this, Remark 2.158 informs us that we
need to build a space of W’ of Tate classes cutting out G;(A)° C GL14,g,. We begin by adding W7,
made up of the endomorphisms, which ensures (for example) that G¢(A)° is diagonal. Then Proposi-
tion 3.32 computed that we also have the “polarization equations”

H1l2 = K1Ks,
R1KRg = K2k,

K1Kg = KR4Ks,
and the exceptional equation
H1K7 = K5RKsg.

We remark that the polarization equations translate into a Tate class like v(,, o 3,—g) ® 1 understood
asanelementin H}, (X@ Qr)(2) ®gQy, but this Tate class actually already come from a class in W7 (see
Corollary 4.37), so we may safely ignore it. Thus, we only have to translate the exceptional equation
into the tensor

vss3,675,648,612 © 1 € H (X, Qe)(2) ®g Qe
and its Galois orbit.

4. Weclaimthat K" = Q(¢x ). By Remark 2.158, it is enough to know that Gal(Q({x)/Q) is the largest
subgroup of Gal(Q/Q) fixing W’. We already know that our endomorphisms, except the isogeny
(A1)g = (A2)g, are defined over Q(Cn) (see also Corollary 4.37 for these equations and the polar-
ization). The isogeny corresponds to equations k,, = Ag, for each u € (Z/9Z)*, which means that we
would like to check that

Per (’yzp, Vu(612,378))
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isin Q(¢w). Well, by Remark 4.14, this element is

[64] [24] [Bu] [7u]
(—2mi) ! u(6+2+3+7).r( 9 )F( 9 ) .F( 9 >F< 9 )
2N r (M) T (M)
9 9
A quick application of the reflection formula as in Corollary 4.37 shows this is in Q(¢w)-

It remains to check that o € Gal(Q(¢n)/Q) fixes the Galois orbit of v335 675,645,612 @ 1. Well, looking at
Theorem 4.33, it is enough to check that o fixes

4
Per (V >Vu(333,675,648,612))

foranyu € (Z/NZ)*. Well, by Remark 4.14, we see this equals

. () () r($)r (%) £ (2)r(8) r(8)r(s)
(—2mi) 2 u(3+3+6+T+6+4+6+1) ( ) ) ) .

: &) ()

After the dust settles, we are left with

(=2mi)~2-T <Z)2F (g)z.

Now, the reflection formula yields T' (3) ' ($) = ==, so we see that this period lives in Q((x) and
h 3
hence is fixed by ; in fact, it is rational!

5. Choose ¢ € Gal(Q(¢n)/Q) to satisfy o(¢n) = (k. We compute the action of o on W’. For example,
the previous step actually shows that o fixes the Galois orbit of v333 675 648,612 ® 1, so it remains to
compute the action on ;. Note that G acts on the C-vector space, so the action can be diagonalized.
Given some character (a, 8) € 22, we note that (W), g is at most one-dimensional spanned by
V(a,) ® 1, and this element being a Tate class is equivalent to H% (X, Q)(1)(4) has Hodge cycles by the
Mumford-Tate conjecture (known in this case by Remark 2.144), which is equivalent to (o, 3) € B2
by Proposition 4.23. With the aide of a computer, we can enumerate all such («, 8), and we see that
they come in two forms.

« We could have o = (a, b, ¢) and 8 = —«. In this case, Corollary 4.37 explains that

ulay—(a
U(V(Oé’ﬁ) ® 1) = Vy—1(a,8) ® (_1)< )=l

« We could have a = (a,b,¢) and § = (—a,—c,—b). As in Corollary 4.37, the main point is to
compute our periods. Well, by Remark 4.14, we find

Per (Y2, V_(a,p)) = _(Qwi)—lcgj\]{o—[—a]—&-[—b]ﬂc] _ r (H]) r <%) ] r (M) r (%)

which after an appliation of the reflection formula gives

1 [—blt]e T
Per (’YQP,V,(a,g)) = (2mi) 1C£Nb]+[ P

—bl+[c
ot

Cin — Gon
[~b+(cl+a]
— <2N

G
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It will be convenient to write this entirely in terms of (, so we note that N being odd forces
Gy = —CVTY/2 5o this equals (—1)lal+=b+ (e TONTI/2 “The purpose of this rewrite is
that all (s will go away in the computation
o (Per (v, Vu1(0))

Per (27,1 (a,))

O'(V(aﬁ) X 1) = Uy—1(a,B) &®

because o (C}(fl) =1, so we are left with

0(Via,g) ® 1) = Vy-1(a,8) ® (fl)[u_1a]+[*u_1b]+[u_1c]+[a]+[—b]+[c]'
6. Now choose o € Gal(Q((y)/Q) to satisfy o((n) = (R, which we note is a generator. We now compute

{g S GL147QZ : g|W/ = O"W/}.

For this, we recall from Proposition 2.157 that we are looking at the component of G;(A) containing
the image of o. In particular, we know that o is a permutation matrix sending (v, ® 1) — (12, ® 1) (up
to scalar), so we need g to also be a permutation matrix also sending (v, ® 1) — (24 ® 1) (again up
to scalar). Well, for each available a, we will compute relations among scalars { .} defined to satisfy
g(Va ®1) = (V24 ® \y). Because G¢(A)° is a torus of rank 4, we are expecting to be able to write all A¢s
in terms of four of them.

With this in mind, we use the previous step as follows to produce the required relations. For brevity, let
A be the multiplier of g with respect to the pairing induced by the polarization; this multiplier becomes
the action of g on Qy(1).

» We need g to satisfy
90, —) @ 1) = Vaa,—a) @ (1) 07,
SO A A_q = (_1)<204)—<a>)\'
« For available (a, b, c¢), we need g to satisfy

g(y(a,b,c,—a,—c,—b)) = V(2a,2b,20,—2a,—2c,—2b) ® (71)[2a]+[72b]+[2c]+[a]+[7b]+[c]’

SO Ma b N(—a,—e,—b) = A(—1)2al+[=2b+2el+lal+[=bl+lel - For convenience, we note that (mod 2)
computations have
[2a] 4+ [—2b] + [2¢] + [a] + [-b] + [c] = [2a] + [2b] + [2¢] + [a] + [b] + [c] = (2a) — (),
so we are seeing the same sign as before.
+ We need g to fix Vu(333,675,648,612)1 SO )‘u(333)>\u(675))‘u(648)>\u(612) =\

The above points tell us that we can determine g uniquely by choosing (k1, k2, k4) = (X612, A324, A6as)
and \. Explicitly, we get the matrix

[ —FK1K4/ K2
)\Iig//ﬁllﬁ;

)\/HQ
)\/lﬁ4
K1
/\/Kl
Ky
—Ka

—)\/K4
K1
R2
)\/FLQ
)\/I{l

ka4

as representing g.
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Thus, upon enforcing the multiplier to equal 1 and base-changing to C, we see that ST(A) is generated by
ST(A)° (computed in Proposition 3.32) and the matrix

This completes our computation. |

We now use the above computation to compute the Sato—Tate group of some generic superelliptic curves.

Theorem 4.39. For given A € Q(Co) \ {0, 1}, define A to be the Jacobian of the proper curve C with
affine chart ¢ = z(z — 1)(z — \). Suppose that A does not have complex multiplication. Then we show
K™ = Q(¢9), and we compute ST(A).

Proof. As usual, we proceed in steps. Throughout, we freely use the computation of Proposition 3.29.

0. Quickly, we note that we may pass fromy® = z(z—1)(z—A) (for A ¢ {0,1})toy® = (22 + z + 1) (z—A)
(for A ¢ {C3,(3}). Indeed, consider the isomorphism f: P! — P! defined over Q((y) by fixing co and
sending 0 — (3and 1 — (5. Thenthe curves y? = z(z — 1)(z — A) and y° = (z? + = + 1) (z — f(N)) are
isomorphic by an isomorphism of the “ground” P!. Thus, the connected monodromy field over Q({y)
of both curves must be the same. Because K™ for both curves must contain Q((o) anyway (there
are endomorphisms whose field of definition is Q((o) already), we see that this movement must be
harmless!

1. We lift our situation to an abelian scheme. Let S be Ab \ {¢3,(5}, and we let C — S be the curve cut
out by the equation y = (22 + z + 1) (# — \) as A varies over S; then we can normalize and complete
C to produce a family of smooth projective curves C — S. Then A := Pic’ C/S is an abelian scheme
over S. In particular, foreach A € Q \ {(3, (3}, we can specialize to A € S to produce A = A, as the
Jacobian of the curve 5,\ = 5,\.

While we're here, we set up a family of Galois representations. In order to avoid any difficult étale
cohomology, we will do this cheaply using the Tate module. For eachn > 1, we have afinite flat group
scheme A[n] — S, so each A € S(Q) gets a natural Galois-invariant pullback square as follows.

Ax[n] —— Aln]

| |

A—— S

Taking limits over n, we get Galois-invariant inclusions V;A — VA, where VA can be interpreted as
a sheaf with stalks given by 1, A. The moral of the story is that we will be able to use a special point in
S in order to compute the Galois action for generic A € S.

2. Asbefore, we will use Proposition 2.157 in order to compute G¢(A,) when A does not have complex
multiplication. Thus, Remark 2.158 asks us to find a space W’ of Tate classes cutting out G,(A)°.
We may as well work with MT(A) by the Mumford—Tate conjecture, which is known in our case by
Proposition 2.150. As before, we go ahead and add in W, to account for the endomorphisms of A. We
also add the class of the polarization to W’. Thus, our Tate classes so far cut out L(A). The computation
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of Proposition 3.29 tells us that MT(A) is L(A) cut out by one additional equation from the center,
given by
MAAT = A2 A5 As.

Writingg € MT(A) C L(A) asdiag(go, 91, 92, 94, g5, 97, gs) as in Proposition 3.29, we see that the above
equation corresponds to the equation

det g19497 = det g2gsgs,

which we see corresponds to the exceptional Tate class
(v Avy) @ (va Awy) ® (vr Avg) @ 1 € H (Ag, Qe)(3),

where v Av' = £ (v®@v' —v' ®w). Explicitly, the computation of Proposition 3.29 tells us that g € G¢(A)
acts on (v1 A v]) ® (va A v)) ® (v7 A V) by some power of the multiplier, which is then cancelled out
some by the Tate twist.

3. Weclaimthat K" = Q((o) for generic \. Our endomorphisms come from the automorphisms of the
curve, which are all defined over Q(¢y). Additionally, the polarization is certainly defined over Q((y).

It remains to handle the Galois orbit of the exceptional class given in the previous step. By the discus-
sion at the end of the first step, it is enough to compute the Galois action at a single A where this Tate
class can be found. Well, we take A\ = 1 so that we can appeal to the computations of Proposition 4.38.
To explicate our basis, we will take {v1,...,vs} = {v1,...,vs} and {v], ..., vg} = {w1,...,ws}. Unrav-
elling the Tate class, we see that it is a linear combination of the Tate classes given by permuting the
triples in the subscript of the Tate class

V315,612,342,648,378,675-

(We also need to consider 15315 612,342,648,378,675) for the full Galois orbit, but the computation is es-
sentially the same.) We would like to check that this Tate class is defined over Q(¢o). Well, by Theo-
rem 4.33, it is enough to check that the period

6
Per (’Y 7V315,612,342,648,378,675)

lives in Q((o). After expanding the I's, we are eventually left with some power of {4 multiplied by
3
(e (5)r ()

4. We compute Gy(A,) for generic . Above we computed that the Tate classes cutting out G4(A,) for
generic A are a strict subset of those needed for A = 1, so one finds that G¢(A;) C G¢(X) for generic \.
In particular, Proposition 4.38 tells us that G¢(Ax) must contain

which we see is in Q({y).

where we have reordered the basis. However, having K™ = Q((o) implies by Proposition 2.157
that [G4(Ay) : Gi(A)°] = 9, and we can see that the group generated by G;(A)° and the above ma-
trix also has G¢(A,)° as an index-9 subgroup. Thus, we conclude that G;(A)) is generated by G,(A)°
(computed in Proposition 3.29) and the above matrix.

5. We conclude that ST(A) equals is generated by ST(A)° (computed in Proposition 3.29) and the matrix
given in the previous step. This completes the computation. |
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4.3 Calculations of the Periods

Our calculation of the Galois action on absolute Hodge cycles above (Theorem 4.33) found that the main
difficulty reduces to a computation of the periods Per (v?7,v). In general, it is not an easy problem to com-
pute the periods of a variety, even an abelian variety with complex multiplication. However, we have already
put in a lot of work into being able to do this: Remark 4.29 explains that o € B27 will have

e T () T (%)
Per (v?7,v,) = (2mi) ng2N+b F(%) .

It remains to compute these ratios, which comes down to being able to do arithmetic with products of T'-
functions. This is the primary goal of this section.

4.3.1 Propertiesof I

To set ourselves up for the remaining subsections, we will now prove all needed properties of the I"-function

I(s) ::/ tse_t@

R+ 3

from scratch. We will be rather streamlined. Our end goal is to prove the following proposition.

Proposition 4.40. The function I'(s) admits a meromorphic continuation to C with only simple poles at
the nonpositive integers. Further, it satisfies the following properties.

(a) Translation: T'(s 4+ 1) = sI'(s).

(b) Reflection: T'(s)I'(1 — s) = "—.

(c) Multiplication: for any positive integer d,
S $+1 S*l‘(d*l) . (d*l)/2 1/275
r(d)r< . ) I‘< ; >(27T) dY2=5T(s).

Among (a)-(c), only (a) admits a quick proof.

Proof of Proposition 4.40(a). Assuming that the integral form is well-defined, we find that the result holds
by integration by parts.

dt

I'(s+1)= / tstle™t —
R+ t

—- [ rae
teR+

as required. |

Example 4.41. A direct integral computation shows that I'(1) = 1, so we note that we may read the in-
tegration by parts above backwards to see that we have shown that the integral defining I'(n) converges
and equals (n — 1)! for any positive integer n.

189



4.3. CALCULATIONS OF THE PERIODS SATO-TATE GROUPS OF GENERIC CURVES

Now that we have some idea how to bound the integral defining T, we are able to prove the meromorphic
continuation.

Proof of meromorphic continuation of Proposition 4.40. We have two steps.

1. We claim that the integral converges absolutely and uniformly on compacts in the region {s : Res >
0}, which will prove that I"is holomorphic there. Here, we may bound the integral absolutely by

1 e8]
/ toe ™| dtg/ tRes—ldH/ ¢IRes=tle=t gy
R+ 0 1

The left integral equals —1—, so it converges absolutely on compacts. The right integral is bounded
by I'([Re s — 17), which we know by Example 4.41 to converge.

2. We complete the meromorphic continuation. The equation I'(s + 1) = sT'(s) allows us to inductively
holomorphically continue I'(s) to the region C\ {0, —1, -2, .. .}. This equation writtenas I'(s) = 1T'(s+
1) also explains that " admits a simple pole at s = 0, which canthen be inductively continued to produce
simple poles on the nonpositive integers. |

Example 4.42. We compute I'(1/2). The proof above shows that the integral converges, so we would
like to compute [, t=1/2e~t dt. Taking u = /%, we see that 2du = t~1/2 dt, so

r(1/2):/Re*“2 du.

The technique of squaring the integral and passing to polar coordinates shows that the integral equals

N3

We now turn to the reflection formula.

Proof of Proposition 4.40(b). We will have to do some work. The following slick argument is taken from
David Speyer, who credits Paul Monsky [Spe]. We will show that the function f(s) := T'(s)I'(1 — s) sinws is
constant. Note that this will complete the proof because we can compute the constant is 7 by writing

F(1/2) = F(1/2)Qsing

and using Example 4.42. We now proceed in steps. The idea is that the ambient 1-periodicity of f means
that we only have worry about bounds on f(z + iy) as |y| — .

1. We claim that there is a holomorphic function g: C* — C such that f(s) = g (¢2™*). To begin, note
that I'(s) has simple poles at the nonpositive integers, so I'(1 — s) has simple poles at the positive
integers, so f(s) is entire. Furthermore, we claim that f(s + 1) = f(s). By analytic continuation, it
is enough to check this away from the real axis. Because the function sin s satisfies sinw(s + 1) =
—sin s, it is enough to compute

s+ 11— (s+1)) =sl(s)- i1"(1 —3).

We now turn towards defining g. The function s —+ 2™ is an entire surjection C* — C* with non-
vanishing derivative everywhere, so one can at least locally invert it. Thus, we may use a local inverse
suitably composed with f to define g locally. This local definition of g however extends to a definition
onall C* because f(s+ 1) = f(s).
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2. We provide some bounds on the function g. We begin with some boundsonT: ifx € [0,1] and |y| > 1,
then

1
T+ iy
F(z+1)

<
< max I'(z),
z€([1,2]

IT(z +iy)| =

0((z + 1) + iy

which is absolutely bounded by some constant C. Moving to f, we see
[f(z +iy)| < C%e™.

Lastly, moving to g, we see that |g (e2™(**®))| < CZe~™. We evaluate this in two extreme cases:
sending y — oo tells us that |g(q)| < C? |q\1/2 as |w| — oo; on the other hand, sending y — —oo tells
us that |g(q)| < C2 |q|""? as ¢ — 0.

3. Wecomplete the proof. Our goalisto show that f is constant, soitis enough to show that g is constant.
It is enough to show that g(s) and g(1/s) both extend to holomorphic functions at s = 0 because this
will imply that g extendeds to a bounded holomorphic function, which is constant.

It is therefore enough to show the following lemma in complex analysis: suppose g: B(0,1)\ {0} — C

is a holomorphic function such that |g(q)| < |q\71/2 as ¢ — 0. Then we want to show that g extends
to a holomorphic function at 0. Well, the function g1(¢) = ¢g(q) continues to be holomorphic on
B(0,1) \ {0}, but now we see that it has a removable singularity at 0 with gg(¢q) — 0as ¢ — 0, so g1
admits a holomorphic continuation to B(0, 1) by taking g1 (¢) = 0. We may now divide out by the zero
to define g(¢) atg = 0. |

We now turn to the multiplication formula. This will be harder still. We will require two lemmas.

Lemma 4.43 (Stirling’s approximation). As s — oo, we have

I'(s+1)~ (Z)g 27s.

Proof. The following argument is taken from [Con, Section 3]. In order to make the asymptotic terms ap-

t_
/ tse~tdt
R+

pear, we set z := =2 so that
N / (Vow +5) e V) s da

Vs
_\/g .
(@ [, () e

I(3)=

I'(s+1)

It remainsto checkthat I(s) — v/2mas s — co. This will be done using the Dominated convergence theorem.

Define fo: R — Rby fy(z) = (1+ f)sz e " so that I(s) = [, fs(z)dx. (Here, f is defined to be 0 on
(=00, —s].) We have two steps.

1. We claim that f,(z) — e=* /2 as s — oo. It is enough to check equality after taking logs, so we would

like to show that ,

lim <82 log (1 + f) - sm) Z —x—.
s 2

§—00
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Now, log (1 + f) = 21@1 % (f)k, so the Monotone convergence theorem (used for s large) gives

1 sx\*
i (#1068 (1 3) =) = i (#222 (5) -
Jm s og —|—S ST Jm S;k S sT

which evaluates to —z%/2, as needed.

2. Wenow apply the Dominated convergence theoremtoseethat I(s) — [, e="/2 dz, where the integral
equals v/2m as remarked in Example 4.42. In light of the previous step, it remains to find a dominating
function for the fss. We will do this based on sign.

e Forz < 0, we claim that f,(z) < e /2 If s < —x, then fs(z) = 0, so there is nothing to do;
otherwise, we take s > —x. After taking logarithms, we see that we would like to check that the

function )

s?log (1—|—§) —s:v—ﬁ—z—
S 2
is nonpositive for z < 0. This function vanishes at z = 0, so it is enough to check that it is increas-
ing, for which we note its derivative (with respect to x) is
52 1 z2

1+%~g—3+x:8+$,

which is nonnegative for s > —uz.
e Forz > 0(and s > 1), we claimthat fs(z) < fi1(z). After taking logarithms, we see that we would
like to show that .
2 —_— —
(log(1+2z)—x)— (s log (1 + s) 333)

is nonnegative for x > 0. This function vanishes at x = 0, so it is enough to check that it is
increasing, for which we note its derivative (with respect to z) is

() (i) avieem

which is nonnegative for s > 1.

Vo)

Thus, we see that our dominating function may be taken to be e~ /2 inthe negative region and f1(x)
in the positive region. |

Lemma 4.44 (Euler form). If s > 0, then

. nln®

Proof. We evaluate the limit directly, using Lemma 4.43. Manipulating directly, we see the limit is

r 1)n®
[(s) lim M
n—oo I'(s +n+1)

We now see the desired I'(s) term, so we want to show that the remaining limit equals 0. By Lemma 4.43
and taking logarithms, we see that we would like to show that

lim (zlogz —xz + slogx — (s +x)log (s +z) + s+ x) Z0.

n—oo
After some simplification, this limit is seen to equal the limit of s — nlog (1 + £), which can be evaluated to
0 by expanding out the power series for log(1 + x). |
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Remark 4.45. The right-hand side in fact defines a holomorphic function on C \ {0, —1,—2,...}, so the
given equality extends to this region by analytic continuation. This prior claim can be checked by verify-
ing that the right-hand side converges uniformly on compact sets in the region {s : Re s > 0} and also
satisfies the equation I'(s + 1) = sI'(s).

Proof of Proposition 4.40(c). The following argument is taken from [Var]. By analytic continuation, it is
enough to check the identity when s is real and positive. We simply expand out the right-hand side us-
ing the Euler form (Lemma 4.44) and Stirling’s approximation (Lemma 4.43). To avoid off-by-one errors,
we note that

S

nln
I'(s) = 1
() n300 s(s+1)---(s+n)
n!ns—l
lim
n—00 S(S+1)(s+n—1)
me—nnn—&-s—l/Q
= lim

nsoo s(s+1)---(s+n—1)

Namely, the denominator now has precisely n terms. Now,

—-n n+(s+k)/d 1/2

d—1 —
V2
H T S + k — lim H e
n—00 paiird s+k, q+k+d) . (s+k+(n—1)d)

d
i (\/ﬂ)defndnndJr(der(OJr---+(d71)))/d7d/2
= 1nm

( /92 )defndnnd+sfl/2dnd
lim .
n—soo s(s+1)---(s+nd—1)

We would like the Euler form (Lemma 4.44) for I'(s) to come out of this limit, and this will be done by sub-
stituting nd — oo into the limit for the coordinate n — co. With this in mind, we move the strange factors
from the right-hand side of the desired equality in Proposition 4.40 to the left-hand side, writing our limit
as

me—nd<nd>nd+s—1/2

d—1
(2m)~ =g 2 T T STRY _ tim
P d nsoo s(s+ 1) (s+nd—1)

which is indeed the Euler form for I'(s). ]

4.3.2 Unrefined Algebraicity

It will be worthwhile to give ourselves some language to describe the sorts of products we want to evalaute.
A priori, we are basically computing a product which looks like

i\
r(y) -
1EL

where {a;};cz is a sequence of integers arranged so that the above product is finite. (Namely, i/N should
never be in Z< if a; > 0, and only finitely many of the a, should fail to vanish.) However, by using the fact
that I'(s + 1) = sI'(s), we may slide all factors of the product to (0, 1), meaning that we want to compute a

product which looks like
N-1 fG/N)
"(x)
=1

1=

where f: +7Z/7 — 7 is some function.
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Notation 4.46. For any function f: +Z/Z — Z, we define

HF( > (Z/N).

Dually, for any element a € Z [+7/Z], we may write a = %" a; - i/N, and we define I'(a) according

to the function i/N — a;. Note that I'(a) does not admit a value if a is nonzero at 0/N.

Remark4.47. Because we are only interested in computing the periods Per (727, v, ) where a € B, we
may restrict our view to functions a: +Z/Z — Z such that the weight (a): (Z/NZ)* — Z is constant.

Now, Proposition 4.40 gives us two further properties about products of I's we may use. By suitably trans-
lating, we are able to compute products which look like

() o) Tl

a,b € {1,...,N}, and we require d | N and N { da in the second product. Here is some notation to keep
track of this.

Notation 4.48. For a positive divisor d of N and a € Z/NZ, we define the function ey : +Z/Z — Zto
be the characteristic function of the set

N —da a k
(Yotel (e ).
Similarly, for any a € (Z/NZ) \ {0}, we define s,: +Z/Z — Z to be the characteristic function of

{3

Remark 4.49. Abusing notation slightly, we may identify ¢4, and s, with the corresponding elements
inZ[12/2).

The moral is that we can compute I'(4,,) and I'(s, ), so we would like to see which functions +Z/Z — Z
can be written as linear combinations of ¢4 .5 and s,s. Recalling that we are only interested in functions of
constant weight, we pick up the following results in this direction.

Lemma 4.50. For any positive divisor d | N and a € +Z/Z, the weight functions (e4,,) and (s,) are
constant.

Proof. This is [Del79, Example, p. 343]. Note s, = ¢1,, when a # 0, so we are reduced to the considering
€4,0S. Before doing any computation, we note that we will write [g] to be the representative in [0, 1) of an
element ¢ € Q/Z. We now proceed in steps.

1. Foranyu € (Z/NZ)*, we find v such that uv =1 (mod N) and compute

Co (B

be(Z/NZ)

4]l
= (ed

(€d,a)(u)

k=0

va) (1)-

194



4.3. CALCULATIONS OF THE PERIODS SATO-TATE GROUPS OF GENERIC CURVES

Thus, we see that we would like to show that (e4,4)(1) = (€4,ua)(1) forany u € (Z/NZ)*; for example,
there is nothing to show in the case where a = 0.

2. Setting e := N/d, we note that €4, = €44+ pointwise. Thus, we are reduced to the case where
a € [0, e) by shifting a appropriately.

3. Now, forany ¢ € R/Z\ 3Z/Z, we define g4, as the indicator of the set {[—dg]} U {¢ + k/d : k €
{0,1...,d —1}}. We claim that (¢4,4)(1) does not depend on ¢, which will complete the proof in the
cases where a/N = ¢ by the first step. As in the second step, we note that ¢, , only depends on the
class of ¢ in Q/1Z, so we may assume that g € (0,1/d). Now, as in the first step, we compute

which is independent of q. Here, the key equality = holds notably because ¢ € (0,1/d). [ |

Remark 4.51. In fact, the above proof shows that (g4,,) is %% when N ¢ da.
One also has a partial converse.

Proposition 4.52 (Koblitz-Ogus). Let f: +Z/Z — Q be a function of constant weight such that f(0) =
0. Then f is a Q-linear combination of the functions

{€dq :d| N,disprime, N tda}U{s,: N | a}.

Proof. Thisis [Del79, Proposition, p. 344]. Approximately speaking, the idea is that we want to decompose
f into a sum over some cosets, which is a job for Fourier analysis. Before doing anything, we set up some
notation. Let E be the given set of ¢4 ,s. Note that the given statement is one about some functions E in a
vector space spanning the full space, which can be checked by extending scalars, so we go ahead and extend
scalars to C.

Now, for a given function f: +Z/Z — C and a divisor d | N, we define f;: (Z/dZ)* — C by fa(u) =
f(u/d). For example, because f(0) = 0, we see that f; = 0. Continuing, for each function f: +Z/Z — C, we
define d(f) to be the smallest divisor of N such that fy(s) is nonzero, setting d(f) = N if f = 0. Lastly, for
convenience, we also define I; C (Z/NZ)* (for d | N) to be the subgroup of elements u € (Z/NZ)* such

thatu =1 (mod d). Note that there is a short exact sequence
1— 14 C(Z/NZ)* — (Z/dZ)* — 1.
We now proceed in steps.

1. The general approach is to induct on d(f). In particular, if d(f) = 1, then f = 0, so there is nothing
to do. Thus, we may fix a divisor d | N bigger than 1, and we would like to show that any (fixed) f of
constant weight with d(f) = d lives in spang F, assuming this is true for any f" with d(f’) < d(f). As
such, our goalis to find g € spang E such that d(f — g) < d(f).

We need to do something to get ourselves off the ground, so we go ahead and specify some kinds of
functions f with d(f) = d for which we are already able to conclude.

195



4.3. CALCULATIONS OF THE PERIODS SATO-TATE GROUPS OF GENERIC CURVES

(@) Suppose that f; factors through (Z/dZ)* /{+1}. Then fis(—a) = fa(a) for each a, so we may
define

fl=rf—= > fal@)saa

a€(Z/dZ)* [{£1}
By construction, f; = 0 while f. = f. for any other divisore | N, so d(f’) < d(f).

(b) Suppose that f4 factors through (Z/%Z)X for some prime factor p | d. Let I/, 4 be the kernel

of the projection (Z/dZ)* — (Z/%Z)X so that f; is invariant under I/, 4. Now, for each a €
(Z/dZ)*, we note that

i (5o s 0] o

because both sides are simply the elements of the form & where b € (Z/dZ)* hasa = b (mod %).
Thus, as in (a), we may subtract out suitable multiples of ¢, ,s from f to cause f,; to vanish while
not changing f. for any e > d, thereby making d(f) smaller.

In the remaining steps, we will show that any f; is a linear combination of functions of the type de-
scribed in (a) and (b), which completes the induction and thus the proof.

2. The aforementioned goal will be achieved via Fourier analysis. Discrete Fourier analysis allows one to
write fy as a linear combination of characters x: (Z/dZ)* — C*, writing

f= S (fxax

x: (Z/dZ)* —-Cx

Because we want to show f; is a linear combination of functions which factor through (Z/dZ)* /{£1}
or (Z/%Z) ", we may as well show that f; is a linear combination of even and imprimitive characters.

Taking the contraposition, we must show (f4, x4) = 0 for any odd primitive character x4: (Z/dZ)* —
c*.

3. Forget the context of the previous step for a sentence. Continuing with the Fourier analysis, we will
show in the next step that any function f: +-Z/Z — C and any character x: (Z/NZ)* — C* has

()% =Y —L(0,xa) |Ta] (fa> Xa); (4.1)

d|N
5(1‘1,121

where x4: (Z/dZ)* — C* isthe characterinduced from . Let’s explain how this completes the proof,
returning to the context of the previous step.

We apply (4.1) to our f and some character x: (Z/NZ)* — C* induced from a chosen odd primitive
character x4: (Z/dZ)*; we want to show that (f4, x4) = 0. Let's look at both sides of (4.1).

« Because (f) is constant and X is nontrivial, the left-hand side {(f), X) vanishes.

« On the other hand, the right-hand side sees contributions only from divisors e | N for which
I. C kerX. But then the image of I, in (Z/dZ)* will be contained in ker x4, which forces I, C I,
because ker yg is trivial (because y is primitive). Thus, our sum only consider divisors e | d, but
because d(f) = d, we see that f. = 0 whenever e < d. In total, our right-hand side features only

the term —L(0, xa) |1al {fa, xa)-
The above two points combine to imply —L(0, x4) |Za| {fa, xa) = 0, so (f4, xa) = 0 because x4 being

odd and primitive implies L(0, x4) # 0. (Namely, L(0, x4) # 0 by combining the functional equation
for this Dirichlet L-function with the non-vanishing result Proposition 3.78.)

196



4.3. CALCULATIONS OF THE PERIODS SATO-TATE GROUPS OF GENERIC CURVES

4. It remains to check the equality (4.1). This is a direct computation. Expanding everything out, we see

=% X Dr(®)xw
u€(Z/NZ)*
a€Z/NT.

In order to make f;s appear, we stratify the sum over a, writing

(=% S w)falw)xw.

dIN = we(Z/NZ)*
ve(Z/dZ)*

Eventually, the sum over v will turn into a term like (f4, x4), SO we need to get rid of the sum over w.
Let U} C (Z/NZ)* be a set of coset representatives for (Z/NZ)* /1, so that (Z/NZ)* = U}1,. Then
the internal sum over u looks like

> falwd'v)x(ud).
u'eu}
uely

Note fq(uu'v) = fq(u'v), so we may sum X over just u alone. If I; € kery, then this sum over u
vanishes; otherwise, the sum over w is |I|, so the total sumis

> fa@'o)X(W) [Ial = xa(v) | Lal {fa; xa)-

u' €U},

Plugging this back in, we see

(Nx=> ((11 > <U>Xd(v)> [Lal (fa, Xa)-

d|N vE(Z/dZ)*

The claim now follows by [Was12, Proposition 4.1, Theorem 4.2]. [ ]

Corollary 4.53. Let f: +7/Z — Z be a function of constant weight w. Then

= "T'(f) € Q.

Proof. By adding or subtracting 1¢s (which have weight 0), we may assume that f(0) = 0. The hypothesis
and conclusion are Q-linear in f (note that fractional powers are permitted in an algebraicity question), so
Proposition 4.52 tells us that it is enough to check the result for f being one of the ¢4 45 in the statement;
recall from Remark 4.51 that (g4,,) = %51

In fact, for any divisor d | N and choice of a € Z/NZ with N { da, we claim that 7=“T'(e4,) € Q ", where
w= % is the weight. Indeed, by combining the reflection and multiplication formulae (Proposition 4.40),
we see thatI'(gq,4) is

d—1
N —d k _
: ( N ) [Ir (zi + d> =02 (mod @),
k=0
so the result follows. [ ]

4.3.3 The Universal Distribution

This section follows [Kub79b]. We are now permitted to make the following definition.
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Definition 4.54 (distribution). A distribution relation is an element of Z [ 1. Z/Z] of the form

a— E b,
be % Z/7
db=a

where d | N is a positive divisor. A distrubtionis a function f: +Z/Z — Ato an abelian group A whose
natural extension to Z [+Z/Z] vanishes on all distribution relations. A distribution is odd if and only if
it also satisfies f(—a/N) = —f(a/N) for all a.

Example 4.55 (universal). Let Uy be the abelian group given by taking the quotient of Z [I%VZ/Z] by the
subgroup generated by the distribution relations. Then there is a natural inclusion i: Z/Z — Uy,
which we see is a distribution by construction. In fact, we see that every distribution f: +Z/Z — A
factors uniquely through 4, so i is initial in the category of distributions.

Example 4.56. By Proposition 4.40, the function \/%P: Q/Z — C/Qis an odd distribution. Namely, this
function descends to Q/Z by the translation property, it is a distribution by the multiplication formula,
and it is odd by the reflection formula. The Lang—Rohrlich conjecture asserts that \/#271“ is a universal

odd distribution; we refer to [And04, Lemma 24.6.1.1] for some related conjectures.

Example 4.56 explains why we are discussing distributions in this section: products of I's can be tracked
through as satisfying these distribution relations. We also remark that integer-valued functions of constant
weight 0 live a new life here.

Lemma 4.57. Let Dy C Z [+Z/Z] be the Z-module generated by the distribution relations and the
elements @+ —a and 0. After identifying Z [ }-Z/Z] with functions +-Z/Z — Z, we see D}, is generated
by the elements 0 and €4, where d | N is a divisorand a € (Z/NZ).

Proof. For nonzero a, note that ey , is simply the generator /N + —a/N, and ¢4, produces the distribution
relation

da Sa &

—E€d,a t+ €1,da = N Z N + 7

k=0

Thus, up to adding or subtracting some ¢; o, we see that the distribution relations are in bijection with the
£4,05, SO these elements generate the same subgroup of Z [+ Z/Z]. [ |

Remark 4.58. It is not hard to see that one may inductively write ¢4 ,s as a Z-linear combination of ¢, ;s
where p is a prime. (For that matter, one can inductively write distribution relations in terms of ones
where the divisor d | N is prime.) The point is that we really only have to consider ¢, ,s (with p prime)
and €1 45 in Lemma 4.57.

The goal of the present subsection is to show the following structure result [Kub79b, Theorem 1.8].

Theorem 4.59 (Kubert). Leti: +Z/Z — Uy be an initial distribution. Then Uy is a free abelian group of
rank ¢(N).

Proof from Propositions 4.61 and 4.63. We will go ahead and outline the argument, referring forward to
results we will prove in the sequel. There are two main steps.
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1. In Proposition 4.61, we show that any distribution f has (im f) admitting a generating set of ¢(N)
elements.

2. In Proposition 4.63, we exhibit a distribution r with dimg (im)g = ¢(N).

Let’s quickly explain why these two implications allow us to conclude the proof. By the first step, we see that
there is a surjection Z¢(Y) — Uy of abelian groups, and we will be done as soon as we know that this map
is an isomorphism. Well, because i is an initial distribution, we see that the distribution r factors through i,
meaning that there is an induced surjection

7™ Uy — (imr).

However, this composite must become an isomorphism after tensoring with Q (for dimension reasons) by
the second step, so the composite must in particular be injective. We conclude that the map Z#(Y) — Uy is
an isomorphism. |

It remains to provide the proofs of Propositions 4.61 and 4.63. Before going further, we need some nota-
tion.

Notation 4.60. By the Chinese remainder theorem, summation provides an isomorphism

1 1
Zu; WZ/Z — Z/Z.
p

Foranys € +Z/Zandp | N, wedefines, € WZ/Zto be the corresponding p-component. Similarly,
if we have & € LZ/Z, we let % be the p-component.

Because it is faster, we now proceed with Proposition 4.63.

Proposition 4.61. Let f: Z/Z — A be a distribution. Then (im f) admits a generating set of ¢(IN)
elements.

Proof. This result is [Kub79b, Proposition 1.8], though we follow the isomorphic proof given in [Was12,
Proposition 12.10]. The idea is to use the distribution relations to minimize the number of generators. There
are two steps.

1. We claim that the collection
SN = {f (%) tap = 0or ged(ap, p) = 1}
generates (im f). We proceed by induction on the number of primes factors of N, where the statement

has little content if N = 1.

Now, for a given N, choose some a/N € +Z/Z, and we want to show that f(a/N) € (Sy). Quickly, if
ap = 0 for some prime p | N, thenin fact a/N € 7/Z for some divisor d | N with strictly fewer prime
factors, so f(a/N) € (Sq) by the induction.

Thus, we may assume that a, # 0 forallp | N. In this case, we hope to use a distribution relation
to find f(a/N) in (Sy). In particular, note that we can write ¢ = dx where d | N and ged(z, N) = 1:
indeed, simply write £ inreduced termsas £, and thena = % -x is a suitable expansion. (In particular,
eisthe orderof a, sop | eforall primese, so ged(z, e) = 1implies ged(z, N) = 1.) Thus, f(a/N) equals

d—1
T x k
7(a5) :Zf(zvm)’
k=0
and now every term in the right-hand side lives in Sy.
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2. We claim that the collection

Ty = {f (%) tap, =0, ora, # 1and ged(ap, p) = 1}

generates (im f). Once again, we proceed by induction on the number of prime factors of N, where
the statement has little content if N = 1. Note that the previous step tells us that it is enough to check
that Sy C <TN>.

As such, we go ahead and pick up some f(a/N) € Sy, and to show that f(a/N) € (T ). Asin the prior
step, we note that having a,, = 0 for any prime p implies that f(a/N) € S; for some d | N with fewer
prime factors, yielding f(a/N) € (T'x) by the induction. Thus, we may assume that a,, # 0 for all p.

We will induct on the number w(a/N) of primes p such that a, = 1. Of course, if w(a/N) = 0, then
a/N € Ty already, so there is nothing to do. Otherwise, suppose that our a/N has at least one prime
q | N with a; = 1. We now use the distribution relations twice: set

b ap

M '7 Z pl/p(N) ’
p|N
p#q

and then we note that we have two equalities
Vq(N)71
b ! b k
ve(N) ., 2} = A
(e m)= X o ()

k=0
vg(N)=1_q

NG S op(L 2
1 M Mg )

k=0

Both left-hand sides are in (T) by the induction on the number of prime factors. Now, subtracting
these two equations produces the relation

b k
Z f(M‘i‘M) € (In).
k€ (Z/q e N))x

Note & = L + ﬁ is the first term in this sum while the other terms in the sum have strictly smaller
w (because the ¢g-component is not equal to 1), so we are done by the induction.

Note that the second step completes the proof because #Sy equals
X
IT# (toro (2 ™z) "\ (1)),
pIN

which is simply #(Z/NZ)* = ¢(N) by the Chinese remainder theorem. [ ]

Remark 4.62. The proof of Proposition 4.61 actually gives explicit generators of im f. One can unwind
this (and the proof of Theorem 4.59) to give explicit generators of Uy defined in Example 4.55.

We now turn to the construction for Proposition 4.63.

Proposition 4.63. There exists a distribution r: +-Z/Z — A such that dimg(imr)g = ¢(N).

Proof. To understand why this is difficult, we note that we are basically trying to compute the dimension of
the vector space Uy g, where Uy is the rather horrendous abelian group constructed Example 4.55. Tech-
nically, Proposition 4.61 tells us what should be a basis, but this vector space has so many relations that
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it is difficult to determine if these elements are actually linearly independent. The usual proof (in [Was12,
Chapter 12] or [Kub79b, Section 3]) uses cyclotomy theory and some facts about character sums, reducing
the task to a non-vanishing of some special value. These topics are moderately tangential to this thesis, so
we will not discuss them. Instead, we will follow [Kub79b, Section 4] and provide a direct combinatorial
construction.

Ourtarget spacewillbe Ay := Q[(Z/NZ)*], and we note that (Z/NZ)* has a natural permutation action
on Ay. Throughout, ord denotes the additive order of a group element. We require two elements of Ay.

« Fors € £Z/Z, we define

XN(S) = Z Z.

©€(Z/NZ)*
z-N/ord s=Ns

For example, if ords = N, then Xy(s) = {Ns}. In general, if s = a/d where d = ord s so that
ged(a, d) = 1, then the zs take the form (a + kd).

« For prime divisors p | N, we define

Yn(p) = > 7.

YE(Z/NZ)*
py=1 (mod N/p*»N))

Notably, the value of y € (Z/NZ)* only has freedom in the p-component, so Yy (p) has ¢ (p*»("))
elements.

Because Xy (s) and Yy (p) are basically subsets of (Z/NZ)*, we may write #X x(s) or #Yx(p) to mean the
number of their elements. We are now ready to define ry: +Z/Z — Q[(Z/NZ)*] by

_ Xa(®) V)
() ="y 11 (1 #m@))'

plord s
It remains to run many checks on r . They are all some explicit combinatorial manipulations.

1. Forc € (Z/NZ)*, we check that rx(cs) = cry(s). Note that cXn(s) = Xn(cs) because both contain
the z such that cx N/ ord s = Ns. It now suffices to check that

Yy (p) ) ) r ( Yn(p) >
1- X)l=(1- X
’ (( #Yx (p) #v@))
for any prime divisor p | N and X € Q[(Z/NZ)*]. Well, it is enough to check this claim for X €

(Z/NZ)*, whereupon doing some rearragnement shows that it is enough to check that ¢(Yny (p)X) =
Yn(p)(cX), which is true by definition of the (Z/NZ)* -action on Ay.

2. Foranydivisor M | N, we claim that the diagram

W Z/Z " Q[(Z/MZ)*]

" J

NZ/Z —"= Q[(Z/NZ)*]

. . L M _ ..
commutes, where i is given by i(y) = “;((N)) > a=y (mod M) T fOranyy € (Z/MZ)*. Note that i is
injective and Q-linear by construction, butitis not aring map because it does not map 1 — 1. However,

the leading constant is chosen to make ¢ multiplicative: fory,,7, € (Z/MZ)*, we see (7, )i(y,) equals

M)\? M)\?
(w) 2, = Gw) 2
z1=y1 (mod M) z=y1y2 (mod M)
zo=ys (mod M) 2'=1 (mod M)
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where we have substituted (z,2’) = (z122,21/22). We conclude i(7;)i(7,) = i(7,7,), an equation
which extends Q-linearly to all Ay.

The main computation will be to compute i(r(s)) for s € +:Z/Z. Using the multiplicativity of the
previous paragraph, we see

. (X wm(s)) (1 Y (p)
i(ra(s)) = 4<P(M) H (1 #YM(;D)) ’

plord s
We see that we have to compute (X (s)) and i(Yas(p)).

» Note ((N)) i(Xpm(s)) = Xn(s): somex € (Z/NZ)* finds itself in *’( )) i(Xp(s)) if and only if

x - M/ords = Ms, which is equivalent to z - N/ord s = Ns.
« We claim % =1(1) #Y;,Vhf’(’;). Note that the reduction map Yy (p) — Yas(p) is surjective: any y
withpy =1 (mod M /p™/»(M)) may be lifted to a multiplicative inverse of p (mod N/pN/ e (N)),

We thus see that the support of "’(M) i(1)Yas (p) agrees with the support of £ w(M) i(Yar(p)); how-

ever, each element in *D((A]\;)) (Yar(p)) is overcounted by a factor of ¢ (p*»(V)) /o (p*»(M)) because
we already had freedom in the p-component. Adjusting for this completes the claim.

We now see

(M) s #Yn(p)
To get rid of the factor of i(1), we note that i(Xy(s))i(1) = i(X(s)) by the multiplicativity. Lastly,
we may substitute Z(i(”j\x)) = @(A(,)), writing
: Xn(s) ( Yn(p) )
i(ra(s)) = 1-— ,
) =S 1 i

which is indeed rx (s).
3. We claim that ry is a distribution. Namely, for any divisor d | N and s € 1:Z/Z, we must check hat

d—1

rn(ds) =y <5 + 2) .

k=0

We begin with a few reductions. By adjusting s by some k/d, we may assume that ord s is divisible by
d. By inductively applying the distribution relations, we may assume that d is prime. Lastly, because
i+ defined in the previous step is injective, we can pass from rx to ro.q s, allowing us to assume that
ords = N. We now have two cases for the prime divisor d of N.

« Suppose that d? | N. In this case, all primes dividing ord s = N continue to divide ord ds = N/d.
Additionally, s + % always has order N, so

2o (08) = (o () 0 3)

Because s + % has order N, we see Xy (s + %) = N(s+ £). On the other hand, X (ds) consists
of the z for which dz = d(N's), which is equivalent to having 2 = N(s + £). We conclude

A )

p|N

U

el

which is 7y (ds).
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« Suppose d | N while d?> f N. The same computation essentially goes through except for two
caveats: ord ds = N/d has one fewer prime factor, and s + § need not have order N. In particular,
the p-component of s+ % is the same as the same p-component of s, so the order of s+ § is either
N or N/d. Further, and we see that it will be N/d only when s+ § has d-component equal to 0 for
exactly when k; say thatt = s + %’ is this value of k. Then

;N <S+ Z) B so<1N><XN<t> +§XN (” fz) (1 R #Y;/VJ\E?C)Z)) > 1 (l R ﬁfi’é) '

=0 k=1 p|N/d

Comparing this to ry(ds) = ry(dt), we see that we have left to show

d—1

B k Y (d)
Xn(dt) = Xn(t) + ;XN (t—i— d) (1 - #YN(d)) ,
which is equivalent to
d—1 d—1 k
Xy (dt #YN ;XN( > N(d) = Xn(t +;XN <t+d).

We now must compute the various X ys.

- Eacht+ % has order IV by construction of ¢, so Xy (¢ + g) =N(t+ %) As such, multiplying
by Y (d) will leave us with z € (Z/NZ)* suchthatz = & (t + £) (mod N/d), which is equiv-
alenttoz = &t (mod N/d); in particular, the sum on the left-hand side counts all these
elements #Yn(d) = (d — 1) times. On the other hand, Xx(t) consists of the = for which
dz = Nt, which is equivalent to z = &t (mod N/d), so

#YN Z ( ) = Xn(t).

k

- Similarly, dt has order N/d, so Xn(dt) consists of the x € (Z/NZ)* such that dez = Ndt.
Well, this is equivalent to having x = N (¢ + %), so

d—1
k
~ 3" Xy <t + d) .
k=1
Combining the above two points completes the computation.

4. We begin computing (imry)gq. For each prime p | N, define the fractional ideal

) Z[(Z/NZ)*] + (1 - #Y;,VN(Z(?;)> Z.[(Z/NZ)"].

We claim that (imry) equals [ ],  Up. Because ry respects the (Z/NZ)* -action, itis enough to check
that {imry) is given by generators of this ideal. Well, a generic generator of leN U, looks like

o (55 T 56)

ptM p|M

p”P(N)

Up XN(

where M is some divisor of N; in fact, we may as well assume v, (M) € {0, v,(N)} for all primes p. We
claim that the above element is ¢(N)ry(1/M); this claim completes this step. To show the claim, we
note the right product is already seen in 7 (1/M). It thus remains to show that

e (57) 20 (3):

ptM
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Indeed, the left-hand side is made of products [],,, x, where z, - p»(") = p*»(") (mod N), which is
equivalent to a condition on 2, = 1 (mod N/p*»(")). By the Chinese remainder theorem, such prod-
ucts are in bijection with zs such that x =1 (mod N/M), whichis X (1/M).

5. We claim that (U,)qg = Q[(Z/NZ)*]. Because (#Yn(p) — Yn(p)) € U,, it is enough to check that
Yn(p) € Up. In fact, we claim that Yyy(p) is a multiple of Xy (p*»(¥)/N), which will complete the
proof. Well, Y (p) has z such that pz = 1 (mod N/p*»(™)), and Xy (p*»¥)/N) has z such that z = 1
(mod N/p*»(N)) as discussed in the previous step. Thus, we see

, p”p(N)

where p’ € (Z/NZ)* is chosen so that p’ = p (mod N/p*»(M)), and the claim follows.

Thus, we have checked that ry is a distribution, and the last two steps check that (imry)g = An, so
dim(imrn)g = ¢(N) follows. [ ]

4.3.4 Cohomology of the Universal Distribution

Leti: +Z/Z — Uy be the initial distribution of Example 4.55, and further let Uy, be the quotient of Uy
by the elements (@ + —a),c 17/7. The quotient Uy is of interest to us because I' factors through Uy by
combining the reflection formula (Proposition 4.40) with Example 4.56.

We are now ready to state the main result of this subsection.

Theorem 4.64. Let i: +-Z/Z — Uy be the initial distribution of Example 4.55, and further let Uy be the
quotient of Uy by the elements (@ + —a),c 1 7/2-

(a) The torsion subgroup Uy, is 2-torsion.

(b) If N is odd or divisible by 4, then dimgp, UN tors = 2w(N)=1 \where w(N) is the number of distinct
prime factors of N.

Proof from Propositions 4.65 and 4.67. As in the previous subsection, we go ahead and outline the argu-
ment, referring forward to results we will prove in the sequel. There are two steps: in Proposition 4.65, we
show that Uy, . is isomorphic to the cohomology group H2({£1),Uy), thereby proving (a). The dimension
computation for this cohomology group is carried out in Proposition 4.67. |

We now turn our attention to the proofs of Proposition 4.65 and Proposition 4.67.

Proposition 4.65. Let i: ++Z/Z — Uy be the initial distribution of Example 4.55. Further, let Uy be the
quotient by the elements (a + ?a>a€%Z/Z' Then the torsion subgroup of Uy is isomorphic to

H2((+1), Uy).

Proof. This is an application of Theorem 4.59. We follow [GGL24, Proposition 6.3.3]. Note that the action
of (£1) C (Z/NZ)* on +Z/Z extends to Uy. We will actually show that UN tors IS isomorphic to the Tate

cohomology group
B (a1, U) = OV
Nx1)(Un)

which is enough because the group cohomology of a cyclic group is 2-periodic. We have two inclusions.

« On one hand, the denominator of H}((+1),Uy) is basically modding out by the elements @ + —a.
Thus, we have an inclusion Hy.((+1), Uy) C Uy, so Hy.((£1),Un) C Uy, because Tate cohomology
groups are torsion.
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+ On the other hand, choose some f € Uy ., and we would like to check that f € Uf\,il). Well, we

are given that there is some D > 0 such that D f vanishes in Uy, so Df = (1 + —1)g (in Uy) for some
g € Uy. However, this implies that (1 — —1)Df = 0in Uy, which requires (1 — —1)f = 0 because Uy
is torsion-free by Theorem 4.59! We conclude that f € UJ<\,ﬂ>. |

Before proceeding with the long proof of Proposition 4.67, we pick up a group-theoretic lemma.

Lemma 4.66. Fix finite abelian groups G and H. If M is a free Z|G x H]-module, then M# and M /M
are both free Z[G]-modules.

Proof. Because M is a module over G x H, we see that M is still a G-module. Quickly, note that M is a
sum of Z[G x H]s, so because taking (-) and the quotient are both additive functors, it suffices to check the
result for M = Z[G x H]. We now show that M* and M/M" are free independently.

« We show that M is a free Z|G]-module. Indeed, some element 2 (g.h) Ug.h) (g5 1) is H-invariant if
andonly if a¢g )y = a(g, nry always, in which case we see that

Yo agmleh) =) <a<g,1>(971) Z(Lh))

(9,h)eGxH geG heH
Thus, we see that the map Z[G] — Z[G x H|" given by multiplying by 3, (1, k) is an isomorphism.

« We show that M/M* is a free Z[G]-module. Quickly, observe that Z[G x H] is free over Z[G] with a
basis given by {(1, h) }ncx, so we may apply a linear transformation to see that Z[G x H] is free over
Z|G] with basis instead given by

{Z(l, h)} U {(17 h)}h?ﬂ'
h

The first element is a basis of Z[G x H]H over Z|G] by the previous point, so we see that the quotient
is free over Z[G] with basis given by the remaining entries. ]

Proposition 4.67 (Kubert). Fix a positive integer N which is odd or divisible by 4, and leti: +Z/Z — Uy
be the initial distribution of Example 4.55. Then

dimg, H3((£1), Uy) = 2¢(N—1,

where w(N) is the number of distinct prime factors of N.

Proof. Ourargument follows [Kub79a, Section 2]. We continue with the set-up of Proposition 4.63, but we
drop all the subscript Ns because we will work with fixed NV throughout. Thus, we may also set v, := v,(N)
for each prime p. In particular, by the universal property (and as outlined in Theorem 4.59), we see that Uy
is isomorphic to the image of induced map r: Z [+Z/Z] — Q[(Z/NZ)*].

We will need a few other pieces of notation. For bookkeeping reasons, we say that a divisor M | N is
admissible if and only if v,(M) € {0,v,} for all primes p; roughly speaking, M keeps track of a subset of
primes dividing N. For example, for each admissible divisor M | N, we define

UM) =[] U,

p|M

where U, is the ideal defined at the end of the proof of Proposition 4.63; for example, U(1) = Z [(Z/NZ)*]
and U(N) = imr. In short, U(M)s will allow us to make certain inductive arguments.
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Continuing, for each admissible divisor M | N, we define the subgroup C(M) C (Z/NZ)* by
C(M)={a€(Z/NZ)* :a=1 (mod N/M)}.

Thus, C(M) =[], (Z/p"*Z)* isisomorphicto (Z/MZ)*. For example, C(1) = (Z/NZ)* and C(N) = {1}.
Wealso remark that the sum Y (p) is fixed by C'(p*») by contruction (in fact, the set admits a transitive action),
and a quick expansion of the definitions reveals that X (p*» /N) = C(p”?). As usual, we may identify C'(p"»)
with an element of Z [(Z/NZ)*] givenby } ,c o (pv») G-

In the end, we will show that
dimp, H} ((;ﬁ;1>7 U(M)C(N/M)) 2 gw(M)~1

for any admissible divisor M | N bigger than 1, via an induction; taking M = N then produces the desired
result. Our proof now proceeds in many steps. We remark that our first few steps are picking up some
technica tools used later.

1. Lete, € Q[(Z/NZ)*] be the idempotent Wp%) Yacc(pwr) @- Thenwe claim thata € Q[(Z/NZ)*]is
fixed by C(p*») if and only if (1 — €,)x = 0. This is some abstract group theory. In one direction, if z is
fixed by C(p¥?), then

1 1
) 2 = mopm) 2t

aceC(p’p) a€C(p"?)
is simply z. In the other direction, if (1 — ¢,)z = 0, then z = ¢,x; however, ag,, = ¢, foralla € C(p"»)
by a rearrangement of the terms in ¢, so we see that ¢,z is certainly fixed by C(p*»).

2. For an admissible divisor M | N and prime p | (N/M), we claim that (1 — ¢,)U (Mp*?) = (1 — &,)Unm
and

U (Mp) <P 2 ) - UM) + (1 - #Y}E]ZZ)?)> U(M)ee™),

where C(p) refers to the element 3 -, @ by abuse of notation.
For this, we note U (Mp*») = U,U(M) by definition, so

U(Mp*)=C (p*»)U(M) + (1 — #Yé](?;?» U(M).

The first and the second claimed equalities are linked by the previous step, which tells us that we are
interested in the kernel of (1 — ¢,,). As such, let's look at how (1 — ¢,,) behaves on each term.
« Certainly (1 — ¢,,) vanishes on C (p*»), so the left term above lives in the kernel.
« Similarly, Y(p) is fixed by C (p*?), so it is in the kernel of (1 — ¢,), from which one sees (1 —
€p) (1 Y () ) = (1 — ¢,). For example, we see that multiplying by (1 — ¢,) kills the coeffi-

T H#Y ()
cient (1 - #YY(I(’;)). Additionally, the kernel of (1 — ¢,) will simply be the kernel of (1 — ¢,) acting
onU(M).

Combining these two points completes the proof.

3. Suppose that M and M’ are admissible divisors of N such that MM’ | N. Then we claim that U (M) is
freeas a C(M’)-module; further, if MM’ # N, we claim that U(M) is free as a =C'(M’)-module.
For this, we induct on M. If M = 1, then U(M) is free over all subgroups of (Z/NZ)*, so there is
nothing to do. Thus, we focus on the inductive step, so suppose that the statement is true for M, and
we would like to show it for Mp*» for some prime p | (N/M). Then the previous step provides short
exact sequences as follows.

0 —— U(M)CP™) U(M) (1—¢e,)UM) ——0

0 —— U(Mp*»)CC") — 5 U(Mp*r) —— (1 — £,)U(Mp"») —— 0
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The main claimis that U(M)C®™) = U(Mp*»)C®™"), Let's quickly explain why this claim will complete
this step. Fix an admissible divisor M’ | (N/Mp"r), and then there are two things to show.

« We would like to show that U(Mp*») is free over C(M’). By the inductive hypothesis, we know
that U(M) is free over C(M’) and C(p”?) and even over the product of the two groups. Thus,
Lemma 4.66 tells us that U(M)C®™") = U(Mp*»)¢®™) and (1 — £,)U(M) = (1 — &,)U(Mp*»)
are both free over C(M'). Because the right term of the bottom short exact sequence is free, we
conclude that the bottom short exact sequence thus splits, forcing U(Mp*») to be a sum of free
C(M')-modules and hence free.

» Suppose M M'p"» # N. Then we would like to show that U(Mp*?) is free over £C(M"). In this
case, U(M) is free over £C(p*»)C(M’) by the induction, but £C(M’) N C(p*?) is trivial: any ele-
ment a in the intersection hasa =1 (mod N/p*?) and a = +1 (mod N/M’), but the +1 is forced
by having N/(M'p"r) be bigger than 2 by the hypotheses on N. Thus, U(M) is actually free over
+C(M'") x C(p*?), and now the argument can proceed as in the previous step.

It remains to prove the main claim U (M)C®™) = U(Mp*»)C®™"), Well, the previous step grants

U(Mpup)c(pvp) =C(p’)-U(M) + (1 _ Y(p) ) U(M)C(pup).

#Y (p)
By the inductive hypothesis, U is free over C(p*»), so U(M)C®™) = C(p») - U(M). Thus, it is
enough to show that (1 - #Yy(’;)) M)C@™) C U (M)C@™"), Well, Y (p) is stable under C(p*»), so we
can express (1 - Y(p) ) C(p")as (1 —y)-C(p*») forsomey € Y(p), and the result follows because

UM)isa fractlonal |deal forZ [(Z/NZ) -

4. Asalast tool, we show that the induced action of (Z/NZ)* on H® ((£1), U (M) @W/*)) is trivial for any
admissible divisor M | N. In fact, it's enough to check that the action of C'(p*») is trivial because these
subgroups generate (Z/NZ)*. Now, note that U (M )“N/M) automatically has trivial action by C(p*»)
if p4 M, so we now focus on the case p | M.

Well, for a given a € C(p*?), we would like to show that the action of a is trivial, for which it is enough
to show that the action of (1 — a) is zero. Well, we claim that multiplication by (1 — a) factors through
HY. ((£1), U(M/pv»)¢DN/M)) which we note vanishes because U (M /p*»)¢(N/M) is free over (+1) by
the previous step!

Now, to show that multiplication by (1 — ) factors as claimed, it is enough by functoriality to show
that multiplication by (1 — a) on U(M) factors through U (M /p¥?). Well, we see

Y (p)
#Y (p)

Umn=cwmmme+Q— )WMmm.

Note (1 — a)C (p*») = 0, and (1 — a) (1 - #Y;f;)> = (1 — a) because Y (p) is fixed by a. Thus, (1 —
a)U(M) CU(M/p*r), as needed.

5. If M and Mp*» are admissible divisors of N, we claim that there is a short exact sequence
0 - HS, ((il), U(M)CUV/M)) 5 HS ((il), U(Mp”p)CWMP"”)) — HYH ((j:1>, U(M)C(N/M)) 0.

Note that we will have to do something nontrivial (beyond immediately applying a long exact se-
quence) because the middle group has a different invariant subgroup C acting on it. Our extra input
will come from the morphism

(1—ep)

0 —— U(M)CP™) U(M) (1—¢e,)UM) ——0

(-] (1-3%)| |
0 —— UMp*)°0™) — s u(Mp*) T (1 — 2, )U(Mp») —— 0
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of exact sequences discussed in the third step; note that the left arrow is well-defined by the second
step, and right arrow is then induced by the diagram. Before continuing, we make a few simplifiactions
to this diagram.

« In the third step, we showed that U(M)¢®"") = U(Mp*»)C @),

* Recall that Y (p) is fixed by C(p*»), so (1 — ¢,) (1 - #Yy(z();)))) = (1 — &,), thereby implying that the
right arrow is simply the identity. We no longer care about the exact content of this right-hand

term, so we denote it by K := (1 — ¢,)U(M) = (1 — &,)U(Mp*»).

« Using the fact that the set Y(p) has a transitive action by C(p*»), we see that multiplying an el-
ement of U(M)“®™) by Y (p) is the same as multiplying it by any other element. Thus, we go
ahead and fix some element y,, € Y (p), and we see that the left arrow is simply multiplication by

(1 7y;n)-

Our diagram now looks like the following.

0 —— U(M)C@™) U(M) K 0
(1-m)| (1- 22 )J H
0—— UM)CP™) —— U(Mp») —— K —— 0
We now take C'(N/Mp*»)-invariants and (+1)-cohomology to recover the result. Taking C'(N/Mp*»)-

invariants keeps the exactness because U (M) ") is free over C(N/Mp'») by using Lemma 4.66 and
the result in step 3. Thus, our diagram looks like the following.

0 —— U(M)CWN/M) __, [7(M)CWN/Mp*?) K’ 0
()| (1-5)| |
0 —— U(M)CN/M) L g (Mp#»)CN/MP™) |1

Here, K'istheinduced quotient, which we continue to not care about. We now take (4+1)-cohomology.
For brevity, we will set H$.(M’) := H$. (<i1>, U(M’)C(N/M/)> for any admissible divisor M’ | N.

HY (1), K') —— H$(M) 0 HY.((£1), K') —— HYPH (M) —— 0

H (=) l H Ja=u)

(
(1-
HY ! (#1), K) —— B (M) —— By (M) —— Hy (1), K') —— HyH (M)

Here, the 0s arise because U(M)C(V/MP™) is free over (+1) by the third step. We now make a few
simplications.

« The Os in the top row imply that H$.((£1), K’) — H% (M) is an isomorphism.

« By the previous step, we know that the (1 — y,) arrows are the 0 map. Thus, the commutativity of
the diagram implies that the arrows H} (1), K’) — H$.(M) and H}.((£1), K') — H3H (M) in
the bottom row are both the zero map.

The above two observations turns the bottom row into

0 — HY(M) — HW(Mp™») — HH (M) — 0.

6. We now complete the proof by induction. We want to compute dimg, HY. ((£1), U(M)¢N/M)) for any
admissible divisor M | N. The previous step grants an “inductive step” that

dimg, HY. (1), U(Mp) OO ) = 37 dime, Hi (1), U(M)ON/)
1€{0,1}
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whenever M and Mp*? is an admissible divisor of N. For example, we find that
dime, By (1), U(p') O70) = 37 dimg, Wi (1), 0(1) 7))
i€{0,1}

by taking M = 1. But now this dimension is independent of the cohomologicalindex, so we inductively
see that

dimg, H3. ((il>, U(M)C<N/M>) = 22001 3™ dimg, HY (<11>, U(1)C<N>)
1€{0,1}

for any admissible divisor M | N such that M > 1.

The proof will be over as soon as we check
S dimg, Hy ((il),U(l)C(N)) — 1.
i{0,1}

Well, note U(1) = Z[(Z/NZ)*], so the C(N)-fixed points are given by C(N) - Z[(Z/NZ)*] = ZC(N).
This has trivial action by (£1), so we are computing the Tate cohomology of the trivial (+1)-module
Z. Well, one has

HY ((£1), Z) = Z/2Z,
Hy' (1), Z) = 0,

so we see that the sum of the F;-dimensions is in fact 1. [ |

Remark 4.68. Choose admissible divisors M | M’. The fifth step of the argument shows that there is
an inclusion U (M)CWN/M) C U(M')¢N/M') which then induces an inclusion

HY ((il>, U(M)C(N/M)) — HY, ((il), U(MI)C(N/M’))

on (Tate) cohomology. As seen in the fifth step of the argument, these inclusions explain “half” of the
elements of a given H*. (U(M’)C(N/M/)) by taking M | M’ to be M’/p*» for some prime p | M’. The
“other half” arises from a quotient and is thus harder to describe.

Example 4.69. Let's exhibit a nontrivial element in H.((£1), Uy ). Remark 4.68 explains that there is an
inclusion Z[(Z/NZ)*|#/N.)* C Uy which induces an inclusion
HY ((&1), Z[(2/NZ)<|@ND™) € BY (1), Un).

Now, Z[(Z/NZ)*]“/NE" C Uy is isomorphic to Z generated by 3, vz« @. Because this module
has the trivial (+1)-action, we see that this generating element 3, . ; x7)x @ provides a nontrivial class
in H}.((+1), Un).

4.3.5 Refined Algebraicity

The previous subsections (and in particular Theorem 4.64) allows us to upgrade Proposition 4.52.

Lemma4.70. Let f: %Z/Z — Z be a function of constant weight. Then 2 is a Z-linear combination of
the functions 15 and 4, where N 1 da.
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Proof. Thisis [GGL24, Proposition 6.3.6]. By adding or subtracting 1¢s (which have weight 0), we may as-
sume that f(0) = 0. By Proposition 4.52, we know that there is some denominator D > 0 such that Df
is a Z-linear combination of the functions 1y and ¢4, where N { da, and we can see that there are no 1ys
because f(0) = 0. Thus, Lemma 4.57 tells us that D f (up to 1y) vanishes in the group Uy, described in Theo-
rem 4.64. This group is actually 2-torsion by Theorem 4.64, so we conclude that 2 f vanishes in U,. Another
application of Lemma 4.57 tells us that 2f is a Z-linear combination of the g4 ,5. |

Remark 4.71. In fact, once we know that 2 is a Z-linear combination of 15 and the ¢4 45, one can use
some linear algebra to explicitly find this linear combination. We take a moment to note that Re-
mark 4.58 tells us that we are allowed to only use &1 ,s and ¢, ,s where p | N is prime.

Here is the appliation to products of I.

Lemma4.72. Let Ky be the extension of Q((aw, i) generated by the elements 7 =“T'(f), where f: +Z/Z
is a function of constant weight w which is a Z-linear combination of the ¢4 ,5. Then

Ky = Q(i, Gow) ({p?/™ : prime p | N}) .

Proof. Itis enough to handle f which are equalto some ¢4 ,. One can inductively write 4, asa sum of €1 45
and ¢, .S, so we can just handle those. By the reflection formula (Proposition 4.40), I'(e1,4) is in Q(¢an, %), SO
we don't have to worry about these elements.

Continuing, by the multipliation formula (Proposition 4.40), we see

I'(ep,a) - -
y — (27 (p—1)/2,1/2 pa/N.
T (e100) (2m) p

We now have two cases on the parity of p.

« If pis odd, then these elements show p'/2=P¢/N ¢ K. However, p'/? € Q(i, (o) already, so we are
only generating p?/V € Ky.

« Similarly, if p = 2, then these elements show 2'/2.21/2=2/N ¢ K. Thus, we are again only generating
22N € Ky. [

Proposition 4.73. Let Ly be the extension of
Ky = Q(i, (an) ({pp/N :primep | N})

generated by the elements 7=“T(f), where f: +Z/Z — Zis a function of constant weight w. Then the
extension Ly /K is multiquadratic. If N is odd or divisible by 4, the degree is bounded by

logy[Ln : Ky] < 2¢N-1 1,

Proof. We proceed in steps, showing the various claims separately.

1. Tocheck that this extension is multiquadratic, we will actually check that (7=*T'(f))?isin Ky for each
f; note that #=*T'(f) is already algebraic by Corollary 4.53. Now, by Lemma 4.70, we may write 2f as
a Z-linear combination of £,4,,s, so I'(f)? can be written as a product of I'(4,,)s. But up to a power T,
Lemma 4.72 assures us that I'(eg,4) is in K.
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2. Itremains to bound [Ly : Ky] when N is odd. By the previous step and Kummer theory [Lan02, The-
orem VI.8.1], we would like to show that the 2-subgroup T'y C K /K x? generated by the elements
(7=*T(f))? has

?
dimp, [y < 29N~ _ 1,

This bound will come from Theorem 4.64. To be formal, let p: Morcy (+-Z/Z, Z) — K}; be the homo-
morphism taking functions f: +Z/Z — Z of constant weight w to (7 ~“T'(f))? € K. By construction,
we see that this homomorphism sends elements of the form ¢4, to KK,Q, as discussed in Lemma 4.72.
Thus, Lemma 4.57 tells us that ¢ descends to a homomorphism

X
Ky

X2
K

and I'y is the image of this map. Theorem 4.64 explains that the domain Uy,

group and has F,-dimension bounded by 2¢(¥)=1 so we will be done if we can lower the dimension
any further.

is already a 2-torsion

tors

3. We complete the proof by showing that @ has a nontrivial kernel. Indeed, consider the constant func-
tion f; = 1. We have two checks.

« Onone hand, we claim that f; € ker . Then

L(N-1)/2]
fi=lo+lanlie Y, Era

a=1

where 1 and 1/, are indicators. Certainly 1o and 1,5 are in kerp because I'(1p) = I'(11,2) = 1
(see Example 4.42), and the 1 45 are in ker ¥ as already noted. We conclude f; € ker ¢.
+ On the other hand, we claim that f; is a nontrivial element of Uy ... This is a little tricky. Un-

der the isomorphism Uy ... = H}.((£1), Un) of Proposition 4.65, f, corresponds to the (Tate)
cohomology class

Z aEI—I%(<i1>7UN)'
a€(Z/NTZ)

However, this element is nontrivial by Example 4.69!
We conclude that ker % is nontrivial, so I'y = im @ satisfies
dimp, imp < dimg, UIG,tors’

so we are done by Theorem 4.64. |

Remark4.74. Thefirst step of the proof has the pleasant consequence of providing an explicit algorithm
to compute the algebraicnumbers 7 =*T'(f), as discussed in [GGL24, Theorem 6.3.9]. Indeed, it suffices
to compute the square 772*T'(2f). Now, Remark 4.71 says that we can use linear algebra to write
2f as a Z-linear combination of some 4,5, and then we can compute I'(e4,,) using the reflection and
multiplication formulae of Proposition 4.40 (as explained in Corollary 4.53).

Remark 4.75. Whether equality is achieved in Proposition 4.73 is an interesting question. It seems to
be true in small examples; see Remark 4.78.

We now apply our theory to periods of the Fermat curve. To begin, we note that periods of Fermat curves
can handle fairly general functions of constant weight.

211



4.3. CALCULATIONS OF THE PERIODS SATO-TATE GROUPS OF GENERIC CURVES

Lemma 4.76. Let f: 1:7Z/Z — Z be a function of constant weight w such that f(0) = 0. Then there is
some index p > 0and a € B% and alist {a;}?_; C (Z/NZ) such that

n
— E €1,a;-
1=1

Proof. We will actually show that thereisa list {a;}_; suchthat f+3"" | 1 4, equals 1, for some o € B??.
In fact, it is enough to get o € 2??: we already know that f+Y1 1,0, has constant welght by Lemma 4.50,
so the weight will correctly be 3p as soon as this is some suitably o € AP by Remark 4.20. As a last reduction,
we note that we may assume im f C Z>( by adding in suitable 1 ,s.

We now induct on || f||, = >I, f(i/N). Here are some small cases.

e If||f|l; =0, then f =0, and we can take p = 0 and a to be empty.

« Itis not possible for f to be supported on a single nonzero entry because such a function cannot have
constant weight.

+ Suppose || f||; = 2. Because f should not be supported at a single point, we have f = a/N + b/N for
somea,b € Z/NZ. We claim that f = ¢ ,. Well, f needs to have constant weight, so

[a] + [b] = [—a] + [-0].
Thus, [a] + [b] = N, so b = —a, as required.

We now proceed with the induction. Suppose that || f||; > 2. Because f is nonzero, f is supported on at
least two points, which we name a/N and b/N where a,b € (Z/NZ). We have two cases.

 Suppose that b = —a. Then f — &1 , continues to have nonnegative image and constant weight, but
I|f —€1.all; < |Iflly, so we may apply the inductive hypothesis to f — ;1 4 to conclude the proof.

» Suppose that b # —a. Then there is a nonzero ¢ € (Z/NZ) such that a + b + ¢ = 0, and we define
a = (a,b,c) to be inA. We now see that

f - 1a + €l,c
has nonnegative image and constant weight, but || f — 1 +¢1.c[|; < ||f]l;- We now again conclude by

applying the inductive hypothesis. |

Theorem4.77. Let K" be the connected monodromy field of the Jacobian A of the Fermat curve Xy,
and define the field
Kn =Q(, Cn) ({Pp/N :prime p | N}) :

(@) We have K C K™ (i, (an)-
(b) The extension K" (i, (an)/ K n is multiquadratic.

(c) If N is odd or divisible by 4, then
10g2[Kconn( CQN) . KN] S 2w(N)—1 _ 1’

where w(V) is the number of distinct prime factors of N.

Proof. As explaind in Remark 4.36, K°"" is the extension of Q(({x) which contains the periods

[ai] [bi]
Per (7217, Va (2mi)~ H C[‘“ w
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where o € B2 varies. By the reflection formula (Proposition 4.40), this period is in 7= T'(1,)Q(4, Can)-
Now, Lemma 4.76 explains that any function f: %:Z/Z — Z of constant weight can be transformed into
some 1, for & € B at merely the cost of some 1ps and ;1 45, so K" (i, (o) is actually generated by
©~“T'(f), where f may now vary over all functions f: +Z/Z — Z of some constant weight w. Part (a) now
follows from Lemma 4.72, and parts (b) and (c) now follow from Proposition 4.73. [ ]

Remark 4.78. Let A be the Jacobian of the curve y?> = 2V — 1, which is a quotient of the Fermat curve
Xn. In[GGL24, Theorem 7.1.1], it is shown that K°™" is multiquadratic over merely Q(¢y) via some
algebro-geometric arguments. If NV is odd, then Theorem 4.77 shows that

logy[KP™ (4) : Q(i, ()] < 290V 71 — 1.

In particular, note that the p?/N's define odd-degree cyclic extensions of Q(i, (') and hence cannot live
in the multiquadratic extension K™ of Q({n). The above bound agrees with the table in [GGL24,
Example 6.4.10]; in fact, that table suggests that equality may hold without the added is!

Let's see an example computation.

Proposition 4.79. Define A to be the Jacobian of the proper curve C with affine chart y° = z (2% + 1).
Then we show K™ = Q (¢, 2%/3,22/9 . 31/6),

Proof. This computation follows the one in Proposition 4.38. We will freely use the computation executed
in Proposition 3.33. Thoughout, A := Jac C, and we recall that we have a decomposition A = Cy x A; X A
(over Q) into geometrically simple abelian varieties. We proceed in steps.

1. Set N := 18, and we note that there is a quotient map Xy — C from the affine patch 28 4+ y'® +1 =
0 to C given by ¢(z,y) = (2° xy?). Thus, we will be able to use the Galois-invariant embedding
Y Hét(O@, Q) — Hét(XNy@,@() to use Theorem 4.33 by restricting to the Galois submodule. To
make this explicit, we recall that we have a basis

yt Ryt YT sy g8
of H1%(C'), we see that we can pass this basis through ¢* to see that H'°(C) C H!°(X) has basis
{V5,10,3, V4.8,6,V3,6,9,V2,4,12,V1,2,15,V11,4,3, V10,2,6} .
Combining with the conjugate differentials yeilds a full basis of Hi (C, Q) C H} (X, Q).

2. We pass to the étale site in exactly the same way as in Proposition 4.38. In the notation of Proposi-
tion 3.33, we see that ¢* pulls the basis {u; ® 1,11 ® 1,12 @ L, v, ® 1, w1 ® 1, w2 ® 1, w5 ® 1} to

{13690@1, 11026®1,10412@L,486®@1, v1215®1,01143® 1,05103 @ 1}.

3. We are now ready to begin executing Proposition 2.157; for this, Remark 2.158 informs us that we
need to build a space of W’ of Tate classes cutting out G;(A)° C GL14,g,. We begin by adding Wr,
made up of the endomorphisms, which ensures (for example) that G,(A)° is diagonal. Then Proposi-
tion 3.33 computed that we also have the “polarization equations”

Hip2 = K1Kg,
R1Kkg = Rakr,

R1Kg8 = R4Ks5,
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and the exceptional equation

H1KR7 = K5K8.

We remark that the polarization equations translate into a Tate class like v(,, o 3,—3) ® 1 understood
asanelementin Hgt(X@, Qr)(2) ®g Qy, but this Tate class actually already come from a class in W7 (see
Corollary 4.37), so we may safely ignore it. Thus, we only have to translate the exceptional equation
into the tensor

1(3,6,9),(7,14,15),(13,8,15),(1,2,15) ® 1 € Hét(X@7 Qr)(2) ®q Q¢

and its Galois orbit.

4. Arguing as in Remark 4.36, we know that the periods of the Tate classes given in the previous step
generate K'°"", so it remains to compute these periods. We already know that our endomorphisms,
except fortheisogeny (A1)g = (A2)g, are defined over Q((w) (see also Corollary 4.37). We now handle
the remaining cycles.

The isogeny 4; = A, corresponds to equations k,, = Ay, for each u € (Z/18Z)*, which means
that we would like to compute
Per (72p7 Vu(1,2715),u(16,14,6)) .
Well, by Remark 4.14, this element is
[ 24] [16u] [14u]
(—2mi) ! u(142416+14) r (18) F( 18 ) F( 18 )F( 18 )

2N ' 3u ' 12u
@) (@)
One can check that the term on the left is in 7=1Q((y ), so it remains to handle the product of I's.
We handle the case where u = 1 because the others turn out to be essentially Galois conjugates.

(Indeed, Theorem 4.33 explains that the remaining us belong to the same Galois orbit.) Using the
algorithm suggested in Remark 4.74, one finds that this product equals

I'(—e1,8 —€23 — €24 — €26 — €27+ €31 +€32+2e34),
which evaluates to
(=GR + G+ v +1)- (223,
up to a (correct) power of .
It remains to compute
Per (’74a V(3,6,9),(7,14,15),(13,8,15),(1,2,15) @ 1) .
Well, by Remark 4.14, we see this equals

oy 2oy TETE) TERTE) TEITE) TETE)
9 3 3 3
I (1) I (55) I (55) I (5%)
As above, the term on the left belongs to 772Q((x), so it remains to handle the product of T's.
Once again using the algorithm suggested in Remark 4.74, one finds that this product equals

1
r (51,7 —€18 + 519 + €25 — €27 +€E28+ €31 —€33+E34—€35 ),

which evaluates to 4 - 26/18 up to a (correct) power of 7.

Altogether, we can combine these two calculations to show K5 = Q (¢, 2% - 31/) because this
field already contains 2'/3. [ |

Remark 4.80. Perhaps it is notable that the exceptional Hodge class is defined over a smaller field than
the endomorphisms!
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reflex norm, 89
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Rosati involution, 15
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simple, 74

singular homology, 31
symmetric monoidal, 46
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Tate module, 99
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