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THEME 1
PINNING DOWN THE REALS

1.1 August25

Let's go ahead and begin.

1.1.1 Logistics

Email is asharmal8@berkeley.edu. The course website is ocf.berkeley.edu/dsharma/Math104.
Namely, we are not using bCourses. Office hours are (tentatively) 3:15PM-4:45PM in 833 Evans and Sat-
urday 2PM-4PM online. Check the website for the Zoom link.

We're using Elementary Analysis by Ross, and we will follow the book pretty closely. Most of the things
we do will be relatively known, but we will be adding rigor as we go through. For example, the homework is
from the book and largely in order.

Do attempt to turn in the homework nontrivially early due to technical issues. Turning in will be done
completely online. Please put different sections of the homework to different pages. This will help if a
section needs to be moved to a later homework. Also, please take the homework seriously; it will gauge if
you are keeping up with the homework. Similarly, working together is somewhat discouraged if you are not
actually learning.

Rigor will be important in this class. For example, if asked to find the derivative of f(x) = 2 using
the limit definition of the derivative, then one should know the limit definition. These sorts of things are
important in this class.

Example 1.1. We can compute

2
1

/ —dx =log2 —log1 =log2.
1 x

However, we cannot compute ffl 1/x dx because it has problems at 0.

The point of this exampleis that f_21 1/z dx seems like it should be log 2, but this is very false because [ 1/z dx
is an entire class of functions. Definitions are important here.

1.1.2 Foreshadowing

We will be doing induction proofs in this class. Here's a different kind of thing.

Theorem 1.2 (Extreme value theorem). A continuous function f : I — R defined on a closed and
bounded interval I achieves an absolute maximum and minimum.


https://www.ocf.berkeley.edu/~asharma/Math104/
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Explaining why this is true requires some thought. We can show that the image of f is bounded because
the domain is compact, so if it has no maximum, we could create an infinitely ascending sequence with no
bound in the image of f.

This turns out to be quite subtle. Upgrading from closed and bounded intervals is nontrivial because
finding the condition “compact” is quite difficult to do. For example, we cannot set D = Q N [0, 1] because
of something like f(z) = |2 — v/2|, which achieves no absolute minimum on D.

As another kind of example, we can create a function which is nowhere continuous, which is somewhat
nonintuitive given most people’s graphical understanding of functions. For example,

_J0 zeQ,
The main problem here is that

lim f(z)

Tr—rT0o

does not exist here (this requires a §-¢ proof, sadly), so it cannot be continuous by the definition of continu-
ous.

Can we create afunction which is continuous everywhere but somewhere not differentiable? Here f(z) =
|z|. This construction can be generalized to any finite set of points S we want to not be differentiable by

Z|x—a|.

a€sS

Question 1.3. How bad can we make our set of not differentiable points? Can we make our bad points
Q? How about all of R?

Here's another question. Consider the sequence 3,3.1,3.14,3.141, . .., which consists of the truncated
Does this sequence converge? Well, we need a good definition of convergence. Cauchy sequences, for
example, will do the trick here for R, but this does not converge in Q. Does R have this same problem? More
precisely, this is the question we are asking.

Question 1.4. Suppose a sequence in R “converges.” Must it converge to a real number?

Using fancy words, we are asking if R is metrically complete. We could ask the same question for Z.

One issue here is that we don't have a good definition of a limit point without a number we actually
converge to. For example, perhaps we want convergence to means something like “the terms get closer
and closer together,” which is connected to Cauchy sequences.

1.2 August30

We are mostly preluding for the time being, but let's go ahead and jump in with it.

1.2.1 Prelude: Motivating Rigor

Also recall from last time that we can have a sequence of rational numbers which approaches something
rational. However, we seem more dubious to having a sequence of real numbers approach something which
isnotarealnumber. Part of the problem with putting this doubt to rest is that we don’t have a good definition
of “convergence” yet.

As a related idea, suppose we have a sequence {a; }ren of only positive real numbers, then the sum

oo
D> a
k=1

6
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is either convergent or diverges to +o0c. However, if we permit some of these to be negative, then the sum
might just not be well-defined. Viewing the infinite series as a sequence of partial sums, we see that we
are hoping that a sequence of real numbers (the partial sums) to only converge to real numbers when they
converge at all. So if we care about infinite series convergence types, then we must be careful here.

So we hope quite strongly that convergent real sequences only converge to real numbers. This is tied to
completeness, which we will do later.

Recall the following function.

_J0 zeQ,
o -{7 758

This function is not continuous at any single point, though it might not be completely apparent because limit
laws do not help us here. Namely, all of our limits are bad. For example, let's try to think about
223,712

Does this even make sense? How would we go about evalauting this? Our Calculus | and Il tricks do not
really apply here. To make our lives more concrete, let’s imagine something like

1 niseven,
an =
" 0 nisodd.

Now how would we evaluate lim,,_, o, a,,? Does this even make sense?
The correct way to approach this is via a §-¢ proof, which is a bit hard. As an example, how do we prove
something like

lim 22 = 47
r—2

Well, we could “just look at it” so that it's not very interesting. But this rigoris reasonable because of garbage
like lim,,—, oo f(x). We need comfort with §-¢ proofs because we need to be able to use them when we don't
have other options.

There are some other questions we might be interested in.

« Can you make a functoin continuous at only one point?
« Can you make a function continuous at only the rational numbers?
« Can you make a function continuous at onle the irrational numbers?

Note that we really need ¢-¢ for these proofs because what other tools do we have against the pathologies
we need to create?
As another example, recall the Intermediate value theorem.

Theorem 1.5 (Intermediate value). Fix f : [a,b] — R a continuous function. Then, for each y between
f(a)and f(b), there exists an = such that f(z) = y.

Now, can we prove this? Intuitively, this is clear, but that is not a proof. Similarly, how could we prove the
various convergence tests? For example, how could we prove the ratio test? the root test? What would
happen if the limits don’t exist?

The real point of this class is to add rigor to our various intuitions. There are things that we know, such

as the fact that
5
=1 "

diverges, which are somewhat difficult to prove. But if we wanted to do this rigorously, it is not clear how
we could talk about the partial sums of this series. Or, we know that

k:02k‘—|—1 2k +2

7
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will converge by (say) the alternating series test, but what about

o0

Z 1 n 1 _ 1 _ 1 0

—2k+1 2k+2 2k+3  2k+4

This requires some trickery; the trickery here turns out to be that we shold group the terms as given and
then test convergence.

Here is another series.

z?2 23 2t

f(x)za:—g—&-?—Z—F

This series converges at x = 1. However, when we take its derivative, we get
fl@)y=1—a+2® -2+,

which diverges at x = 1. Things are stranger at the ends of its interval of convergence, which is roughly
because we cannot exchange aninfinite sum with an integral whenever we want: the original series is merely
conditionally convergentat z = 1.

Have yet another question. If we have two everywhere differentiable functions f, g : R — R have identi-
cally equal derivateives, must they differ by a constant? Well, sure: § := (f — g) has derivative which vanishes
everywhere, which implies that the function is constant by the Mean value theorem. We could probably do
this by hand with limits if we tried hard enough, but so it goes.

Continuing with our theme, note

T

! 1 "1
/ w?dr=-  and / — dx = diverges.
0 3 0

However, the integral of the product is 1 and notably well-defined. Or even worse, what is the integral of

/01 lo(x) dz?

| think this will turn out to not be well-defined under Riemann integration (though Lebesgue would like
to know your location). In general, it is not clear how we should integrate poorly-behaved functions: the
Fundamental theorem of calculus only tells us what to for continuous functions. In this class, we would like
to build a general criterion for integrable. For example, can we have an integrable function which is nowhere
continuous?

And here is a last example. Imagine the plane R? equipped with its usual (Euclidean) distance. Pick up
two points (x1,y1) and (22, y2) so that the distance between them is

d((z1,1), (22,92)) = V(@1 — 22) + (1 — 92)2.

However, why can’t we define distance more pathologically, by

dtaxicab((xlyyl)v (.Ig,yg)) : +|$2 - J"l| + |y2 - y1|?

This distance function seems fairly nice. But how nice is it? Or what about the lonely, distance, defined by

L (21,91) # (2, 92),

ddiscrete (21, Y1), (22, 42)) = {0 (@1,91) = (22,92)-

There are lots of these things that we could play around with. Now, how do these things change conver-
gence? We would like convergence to mean that “the distance between is going to 0,” but in the discrete
metric, it doesn’t like it's converging. Sadness ensues. In fact, the only convergent sequences in the lonely
metric are eventually constant ones.
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1.2.2 Bring Natural

Let's get started with the book now. Our story begins with the natural numbers N, which consist of the
positive integers in this class.

One property of N we care about is that n € Nimplies n + 1 € N. This appears trivial but is in fact quite
fundamental. For example, there is certainly no largest number. Similarly, this gives us rise to induction: if
S CNwithl e Sandne S = n+1 € S, then we are able to conclude that S = N. Somehow, we've
gotten all natural numbers! More precisely, we have the following.

Axiom 1.6. Suppose that P(n) is a proposition in n € N. If P(1) is true, and P(k) implies P(k + 1) for
any k € N, then P(n) is true foralln € N.

Let's do an example of induction.

Proposition 1.7 (Ross 1.7). We prove that 7" — 6n — 1 is divisible by 36 for alln € N.

Proof. We proceed by induction. Our base case is n = 1, for which the statementreads 7' —6-1—1 =
7—6—-1=0=0-36,sowe are safe.
Now suppose that 36 | 7% — 6k — 1 so that we want to prove 36 | 7**1 — 6(k + 1) — 1. The trick is to write

T 6k +1)—1=7-7T" -6k -7,
=7-(T"—6k—1)+7-6k+T7—6k—T7
=7 (7" — 6k — 1) + 36k,

which is now divisible by 36 by the inductive hypothesis. |
Here is another example.
Proposition 1.8. We prove that 4™ > 3™ + 2" for eachn > 2.

Proof. Our base case is n = 2, for which this reads 16 > 9 + 4 = 13, so we are safe. Now suppose that the
statement is true for n, and we want to show it is true for n + 1. Well, note that

4l =4 4" > 43" +2") =4-3" +4- 2™,
Now the right-hand side is termwise greater than 3"+ + 27*1 so we finish the inductive step. ]

In contrast, how could we go about showing the following?

Proposition 1.9. It is true that 4* > 3% + 2% for real numbers x > 2.
A direct induction won't work here, though an inductive spirit might: for example, if we show that it is true

in [2, 3] to start, then we could do an z — z + 1 move to get all real numbers. The more direct way to do this
is to say that 4 is increasing faster than 2% + 3%, though this is somewhat difficult to rigorize.

1.3 Septemberl

| went to office hours today; it was pretty fun. | exhibited a continuous, surjective function [0,1) — (0,1) and
felt smart.
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1.3.1 Philosophy about Induction

Let's study the sequence
S, = Z sin k.
k=1

We would like to have closed form for this series, but it is not at all obvious how to obtain one. And, for ex-
ample, induction doesn't really help us find such a formula: induction only helps us verify truth, not discover
it. This is important to keep in mind.

1.3.2 More Classes of Numbers

From N, the next class we care aboutisZ := {a—b : a,b € N}. Thenwe have Q := {p/q : p,q € Q}. Formally,

we define
_ {(p.q) € Z*: q # 0}
{(p1,q1) ~ (p2,42) : Je,d : cp1 = cpoand dgy = dgo}

Alternatively, a number is rational if and only if its decimal expansion is eventually periodic.
Then there are numbers which are not rational: for example, v/2 ¢ Q. We would like to prove this; let's
start with a smaller question.

Proposition 1.10. There does not exist an integer n for which n? = 50.

Proof. We can bound 72 < 50 < 82,507 < /50 < 8. [ |

Why can’t we try the same thing for Q? Well, there's just too many (infinitely many) rational numbers be-
tween any given two rational numbers. This is not a finite computation here: Z is nice because it is discrete.
Anyways, let's prove v2 ¢ Q.

Proposition 1.11. We show v/2 ¢ Q.

Proof. Suppose for the sake of contradiction v/2 € Q so that v/2 = p/q such that p, ¢ € Nand ged(p,q) = 1
(the fraction is reduced). Technically, it suffices to assume that at least one of m, n is odd. But now ¢v/2 = p
implies that

p2 — 2q2

Now, p? is even, so p is even, so p = 2py. But then we can rearrange to
25 = ¢,
so ¢2 is even, so q is even. However, this violates our assumption that p and g were both even, which is a

contradiction. [ |

Remark 1.12. The above more or less convinces us that R is a useful thing to look at: it has numbers like
v/2 which we want but are not immediately accessible via Q.

Similar logic could show that /3 or ¥/2 are irrational.
After Q, the next class that we care about is the set of algebraic numbers.

Definition 1.13 (Algebraic). We say that a real number « is algebraic if and only if there exists a polyno-
mial p(z) € Z[x] such that p(«) = 0.

10
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Example 1.14. We see that all rational numbers are algebraic: for a := a/b € Q, we see that a is a root
of p(z) == bx —a € Z[z].

Example 1.15. We see that there are algebraic numbers which are not rational: for o == v/2 ¢ Q, we
see that ais a root of p(z) == 2% — 2 € Z[z].

So we see that Q C A. In fact, most of our friends are algebraic, such as V/6 or / /5 — v/2 similar.

1.3.3 Rational Root Theorem

The super-powered version of Proposition 1.11 is the Rational root theorem, which turns sieving through
Q into a finite computation.

Theorem 1.16 (Rational root). Fix a polynomial
flz) = Z cra® € Z[z]
k=0

with ¢,, # 0and ¢y # 0. Now suppose that ¢ = a/bis a root of f(x), where a,b € Z and ged(a,b) = 1.
Then we claima | ¢, and b | ¢o.

Proof. The main pointis to plugin a/binto f(z). We see that

1]

Now, the idea is to isolate

so it follows b | ¢,,a™. However, ged(a,b) = 1 now forces .

For the other divisibility, we similarly isolate

n
Cob” —q- § :_ckak—lbn—k7
k=1

soa | cob™. But again, ged(a, b) = 1 forces , finishing. [ ]

Corollary 1.17. Suppose a € Q is the root of a monic polynomial f(x) € Z[z]. Then a € Z.

Proof. Writing @ = a/b as a reduced fraction, we see that we must have b | -1 by Theorem 1.16, so b = +1.
Thus, a = +a € Z, finishing. |

This is surprisingly powerful. In particular, the Rational root theorem gives us a way to determine if an alge-
braic integer is rational by turning it into a finite computation: we only have to check the rational numbers
with a bounded numerator or denominator. Here are some examples.

11
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Example 1.18. We show that /6 ¢ Q. Well, it's a root of the monic polynomial
z3 — 6,

so V/6 € Qimplies /6 ¢ Z, which is false because 2 < V/6 < 3.

Corollary 1.19. Suppose thatn € Z has \/n ¢ Z. Then /n ¢ Q.

Proof. We show the contrapositive. Indeed, \/n € Q would imply \/n € Z by Corollary 1.17: \/n is a root of
the monic polynomial 22 — n. [ ]

Example 1.20. We show that a := /2 + v/2 ¢ Q. Note that a? = 2+ v/2, 50 (a? — 2)2 =2.Thus, aisa
root of the (monic) polynomial

f(x):(x2—2)2—2:x4—4:c2—|—2.

By Corollary 1.17, we see that any rational root is in {£1, £2}, but we can check by hand that none of
them work.

Example 1.21. We note that o = /4 + 2v/3 — v/3 looks very irrational, but it’s actually 1. Note that
(1+v3) =4+2V3,50a=(1+V3)—V3=1.

If we wanted to, we could write out a polynomial for the sake of completeness. Note o 4+ /3 =

4+2\/§,50
a?+20V3+3=4+2V3.

Then2v/3(a—1) = 1—a?2, and we can square both sides to get the polynomial 12(a—1)2 — (o — 1)* = 0.

Note that even our attempt to find a polynomial, which comes from trying to show that v/4 + 2v/3 — /3 is
irrational, we can look at the polynomial we created, named

12 — 1)2 = (z — 1),

has a double root of x = 1, so this guides us that maybe the number we were looking at what 1.

1.3.4 Transcendental Talk

People spent a while thinking that Q has everything we could ever want. Now we are brought to place where
A seems to have everything we could ever want. However, there are real numbers which are not algebraic.
The numbers 7 and e are the typical examples, but how about 2V2? This is known as the Gelfond—Schneider
constant, and it turns out to be not algebraic as well.

The simplest example to prove is
(oo}
1

L:ZZW'

k=1

(This is a “Liouville number.”) The problem here is that L has really great rational approximations, even
better than any algebraic number could hope for. This sum even provides us a sequence (via the partial
sums) that are each algebraic (in fact, rational) that converges to a transcendental number.

So it looks like we are repeatedly able to have sequences which seem to converge (in some decimal ex-
pansion sense) but are not converging to a number in our set: it happened for Q, and now it happened for A.
So now we have the real numbers to fix this problem.

12
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Definition 1.22 (Real numbers). We define the real numbers as any decimal expansion.

The point here is that we could define Q as eventually periodic decimals, and then algebraic numbers also
have good decimal expansions (or at least rational approximations), but we hope that adding in all real
numbers—all decimal expansions—we note that all of our sequences which converge (in some decimal
expansion sense) will actually converge to a real number. This is more or less what it means to converge (in
some decimal expansion sense).

Example 1.23. There are a lot of real numbers. For example, 0.1234567891011121314151617...is not a
rational number: its decimal expansion can never repeat. (If it repeated, then the form of our natural
numbers would be too restricted.) However, this number is not very useful.

Example 1.24. Another real number we don’t care about is
50
k;2
— 10

is also irrational because its decimal expansion is again not eventually periodic: for any period length,
we can always find a string of constant zeroes of length twice the period, so the period must only consist
of zeroes, but this number has 1s as far down in the decimal expansion as we please.

Warning 1.25. We make the first homework due on September 12th.

1.4 September8

1.4.1 ConstructingR

Recall the sequence of rationals
1,1.4,1.141,... — V2.

The point here is that we have a sequence of rational numbers which converge but not to a real number.
Similarly, we can see that
9l 914 9l41 _,9V2
200 yee

produces a sequence of algebraic integers which converge to a non-algebraic number. (We are taking on
faith that 2V2 is not algebraic; this is hard to show.) This is sad.

We would like to stop our sequences from producing new numbers. It turns out that this is a reasonable
definition of R.

Definition 1.26 (Reals, I). We can define R as the set of all numbers which have a rational sequence
converging to them.

However, this is not rigorous, and it's not even obvious if R is closed under taking more convergent se-
quences.

Let's begin to add rigor. We start with a field.

Definition 1.27 (Field). A field a set F' together with two operations + and - which can add, subtract,
multiply, and divide in a way that makes sense.

We won't be rigorous about this definition either because this is not an algebra class. It's in the book if you
want it. However, the structure we do care about is that R has an order.

13
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Definition 1.28 (Ordered field). An ordered field is a field F together with a total ordering < which be-
haves nicely with the field operations.

Again, this formal definition is in the book if you want it.

Warning 1.29. There is danger in this definition. For example, we could try to order subsets of (say) R
by containment, but then not all subsets are comparable (e.g., {1} and {2}). Or we could try to order
subsets by cardinality, but then we lose trichotomy (e.g., {1} and {2}).

Remark 1.30. We could view all of this adding structure as “throwing out” fake real numbers. For ex-
ample, there are lots of fields which aren’t R, so if we want to define R, we need more structure. For
example, adding in the structure of being an ordered field prevents us from confusing C (which isn't
ordered) with R.

Remark 1.31. The homework will contain “axiomatic torture.” For example, we will have to prove 0 < 1
from the ordered field axioms. On one hand, this is painful because it looks obvious; on the other hand,
this is necessary because we are trying to be rigorous and hence have to be careful.

1.4.2 Absolute Value

Recall the following definition.

Definition 1.32 (Absolute value). We have that, for z € R,

x x>0,
|z| ==

—x x<0.

We would like to know things about the absolute value, such as |z| > 0 forallz € R. To have tools, we must
prove them; here is one such tool we need.

Proposition 1.33. For a, b € R, we have |a| + |b] > |a + b].

Proof. We seethata < |a|and b < |b| always, so it follows a + b < |a| + |b]. We also know that —a < |a| and
—b < |b|, so it again follows —(a+b) < |a|+]b]. However, |a+b| € {+(a+b)},soweget |a+b| < |a]+|b]. A

Corollary 1.34 (Triangle inequality). Given a, b, ¢ € R, we have that

[z — 2| < |z —y[+ |y — 2]

Proof. Seta =z —yand b = y — z so that the given inequality is equivalent to
?
la+ b < |a| + |b].

This is exactly Proposition 1.33. |

Remark 1.35. The title “triangle inequality” makes this sound geometric, and indeed it is geometric and
will apply in larger contexts.

Let's do an exercise, for fun.

14
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Exercise 1.36 (Ross 3.5). The following are true. Fix a, b € R.
(@) |b| <aifandonlyif —a <b<a.

(b) [la] = [b]] < la —b].

Proof. We take these one at a time.

(@) In one direction, we first assume |b| < a. We use the same trick as in Proposition 1.33. We see that
b < |bl and —b < |b| both, so it follows

b<|b<a and -b< b <a.

The first inequality gives b < a, and the second inequality gives b > —a, from which the result follows.
In the other direction, we first assume —a < b < a. Then it follows b < a and —a < b. This second
inequality yields —b < a, so it follows |b| < a because |b| € {+b}.

(b) Note that |a| < |a — b| + |b] by Proposition 1.33 and |b| < |b — a| + |a| for the same reason. It follows
+(Ja|] — |b]) < |a — b|, which gives the result. |

1.4.3 Talking Bounds

Let's rigorize Definition 1.26. The problem with the rationals and the algebraic numbers is that they have
lots of “gaps.” Well, should R have these gaps? We hope not. Proving this requires some care, and it will be
critical to defining R.

Our story begins by revising the idea of maximum.

Definition 1.37 (Maximum, minimum). Fix A C R a subset.

« We define max A to be an element of A such that a € A implies ¢ < max A.

« We define min A to be an element of A such that a € A implies ¢ > min A.
We can show that every finite set has a well-defined maximum and minimum, say by induction. However,
not all sets have a maximum and/or minimum: for example, A == {z € R : 0 < = < 1} “should” have

0 and 1 as its minimum and maximum respectively, but they are not actually elements of A. To make our
descriptions easier, we take the following definitions.

Definition 1.38 (Interval notation). Given a, b € R, we define

(a,b) ={r €R:a <z <b},
[a,b) ={x € R:a <z <b},
(a,b) ={z €eR:a <z <b},
[a,b] = {z €R:a <z <b}.

There is something different here between Q and R. In Q, the set [0, v/2) has no maximum, and we cannot
add elements of Q to fix its predicament. However, in R, even though [0, v/2) still has no maximum, we see
that we could add just /2 to fix it.

What's going on with R™ := {z € R : 2 > 0}. It has no maximum, but it does have a minimum. The
difference here is boundedness.

15
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Definition 1.39 (Boundedness). Fix a nonempty subset A C R.

o We say that ¢ € R is an upper bound of A if and only if a € A implies a < c. We say that A is
upper-bounded.

« We say that ¢ € R is a lower bound of A if and only if a € A implies ¢ < a. We say that A is
lower-bounded.

We say that A is bounded if it has both a lower bound and an upper bound.

There are lots of bounded sets which don’t have maximum or minimum, but all the bounded sets we can
think of feel like they should.

1.4.4 The Completeness Axiom

Let's think about what “feel like they should” really means. Imagine A is bounded above, so that we want
it to have a maximum or something like it. However, there are lots of upper bounds (if ¢ is an upper bound,
then c+1works), and it’s not clear what is the "best” upper bound in the same way that a maximum is clearly
the “best” upper bound. For now, fix

B :={x € R: zisan upper bound for A}.

How should we choose the best upper bound from B? It doesn’t have a good maximum, but it does look like
it has a minimum!

Example 1.40. For (0,1) or even [0, 1], its upper bounds are [1, c0), which has 1 as its minimum.

Warning 1.41. This is a very special property of R! All we've said is that R is a real number, but (say) Q is
another ordered field, and in Q, the set (0, v/2) has (v/2, 00) as its upper bounds, which has no minimum!

This discussion motivates the following definition.

Definition 1.42 (Supremum, Infimum). Fix a nonempty subset A C R.

o Let U be the set of upper bounds of A. If U has a minimum sup A, then we say that sup A is the
supremum of A.

« Let L be the set of lower bounds of A. If L has a maximum inf A, then we say that inf A4 is the
infimum of A.

Example 1.43. If a set has a maximum, then it has a supremum (which is the maximum).

We suspect that all sets bounded above will have a supremum (and all sets bounded below have an infimum).
We literally don't have the tools to prove this (our only toolis ordered field), so we make it an axiom.

Axiom 1.44 (Completeness). Any nonempty subset of R which is bounded above has a supremum.

As an exercise, we can show that any set bounded below has an infimum. It turns out that Axiom 1.44 is
exactly what we need to pin down our definition of R. For example, we have the following.

Corollary 1.45. An infinite series with positive terms which does not diverge to co must converge.

16
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Proof. For completeness, let {a;}7° , be our sequence of positive terms. The trick is to look at the set of

partial sums
n
S = {Zak:nEN}.

k=1

This set S has a supremum, which is what the series converges to. We cannot make this terribly rigorous
yet because we don’t have a good definition of “converge.” [ |

(After this he started talking philosophy about the Intermediate value theorem, which we're not going to
get to for quite some time. We would like to prove it, but we don’t have a workable definition of continuous

yet.)

1.5 September 13

Alright, take two using VS Code. Hopefully this goes better.

1.5.1 The Archimedean Property

Recall the completeness axiom.

Axiom 1.46 (Completeness). Every set of real numbers bounded above as a supremum.

Recall that this is also equivalent to every set bounded below having an infimum.
Let's relate this to the following.

Proposition 1.47 (Density of Q). Between any two distinct real numbers, there is a rational number.

We would like to know why this is true. This turns out to be related to the following.

Proposition 1.48 (Archimedean). For any a, b positive real numbers, there exists a positive integer n
such that na > b.

In other words, the multiples of a "just keep going.” Let's prove this.
Proof of Proposition 1.48. Suppose for the sake of contradiction that this is false. Then the set
S ={na:n €N}

has b as an upper bound: na < b for each n € N. It follows that S has a supremum, which we name M. In
particular, M — a is not an upper bound for S, so there exists some ny € N such that nga > M — a. But then

M < (np+1)a€s,

which contradicts the fact that M was expected to be an upper bound. |

Warning 1.49. Note that the Archimedean property is not true in all metric spaces. For example, this
fails in Q,.

Now, let's use the Archimedean property to show Proposition 1.47.

Proof of Proposition 1.47. This requires some care. The idea is to “tile” the real numbers by some rational
number less than b — a > 0. Indeed, b — a > 0 implies that there exists some n € N such that n(b —a) > 1.
(Yes,1>0.)

17
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Thus, nb > 1 4+ na. We would like to place an integer between na and nb. Rigorizing this requires some
care, so we will not do so here, but picking up k € Z between na and nb, we see

an < k < bn,
Soa< & <. [

In fact, density of Q gives us the following.

Proposition 1.50. Any real number is the limit of some sequence of rational numbers.

Proof. Fix r our real number. Then, given any positive integer n, we define ¢, as a real number between
r—Landr + L Then we see that

1
[r —gn] < —
n
for each n € N. So this distance goes to 0, yielding convergence. |

This turns out to be quite useful because it gives us some small handle on real numbers: at the very least
they are all the limit of some sequence of rational numbers.

Remark 1.51. Our metric here matters. If we use the lonely metric, where

S

Here, the only convergent sequences are ones which are eventually constant, so Q is not dense in R.
Anyways, let’s do some example problems.

Proposition 1.52 (Ross 4.5). Fix S a nonempty subset of R with sup S € S. Then sup S = max S.

Proof. Note s € S impliesthat s < sup S because sup Sis an upper bound for S. However, sup S € S implies
that sup S = max S as well because maximum is unique. |

Proposition 1.53 (Ross 4.11). Fix a, b € R with a < b. Prove that there are infinitely many rational num-
bersin (a,b).

Proof. Suppose that there are only finitely many rational numbers in (a,b). Surely there is at least one,
named ¢, and surely there are at least two because there is a rational number in (q, q).

Now, because there are only finitely many rational numbers in (a, b), this set of rational numbers has a
minimum, named ¢o. But then we know there is a rational number in (a, go), which violates the minimality
of q0- |

Remark 1.54. We can remove the contradiction by actually exhibiting the sequence of rational numbers
with ¢o € (a,b) and then recursively defining gx+1 € (a, qx).

Proposition 1.55 (Ross 4.15). Suppose thata < b+ 1/n foreachn € N. Thena < b.

Proof. We show the contrapositive: suppose a > b, and we show that there exists n € N such that a <
b+ 1/n. It follows a — b > 0 so that there exists n € N with n(a — b) > 1, which implies a > b + * for some
n € N. |

18
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1.5.2 Talking +o0c0and —co

It's going to be convenient to be able to talk about 400 and —co in this class, mostly for the sake of intervals
and bounding.

Definition 1.56 (Intervals with infinities). We define the interval (a,+00) := {z € R : z > a} and the
other intervals with +00 and —co similarly.

Note that there are dangers here: we cannot really do arithmetic with +co. Sometimes we can (e.g., 2-+oo =
+00), but sometimes we cannot; for example, what is 0 - co?

Warning 1.57. Do not write [5, c0]. You cannot have a closed interval of real numbers actually include
0.

Anyways, what we are getting out of our oo is full completeness.

Definition 1.58 (Supremum and infimum, Il). Fix S a nonempty set of real numbers. If S is bounded
above, we use the definition of sup S from earlier. Otherwise, we define sup S = +oo0.

Similarly, if S is bounded below, we use the definition of inf S from earlier. Otherwise, we define
inf S := —o0.

It follows that every set has a supremum and an infimum.
Something else that +oo does is that it helps us disambiguate what “limit doesn’t exists” means. For
example, being told that a function f(x) has

lim f(z) ¢ R

z—0

could mean all sorts of things: it could be oo, —c0, too oscillatory, etc. Being given this information is just
one way that we can track of this information.
Anyways, let's do some examples.

Proposition 1.59. Given nonempty sets A, B C R, we have that sup(A + B) = sup 4 + sup B, where
A+B:={a+b:a€ Aandb e B}.

Proof. We have to do casework on the supremums being finite or infinite.

+ In one case, suppose that at least one of A or B has infinite supremum. Without loss of generality,
sup A = +o0, which is equivalent to A not being bounded above. We claim that sup(A + B) = +oc as
well.

Well, for any real number » € R, and fixing some b € B, there exists a € A such thata > r — b because
Ais not bounded above. Butthena + b > r,soa + b € A+ B exceeds any finite bound r € R.

» Otherwise, we may fix @ = sup S and 8 = sup S real numbers. Note that a + 3 is an upper bound for
A + B because, foranya € Aandb € B,we havea < aand b < 3 so that

a+b<a+p.

It follows that sup A 4+ sup B > sup(A + B) because sup(A + B) is the least upper bound.

In the other direction, the trick is to show that sup(A + B) — sup A > sup B, for which it suffices to
show that sup(A + B) — sup A is an upper bound for B. Well, forany b € Band a € A, we see that

a+b<sup(A+ B)

definitionally. It follows that sup(A+ B) —bis an upper bound for A always, sosup A < sup(A+ B) —b,
sob < sup(A + B) — sup A. So indeed, sup(A + B) — sup A is an upper bound for B, finishing. [ ]
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Proposition 1.60. Fix S C R a nonempty subset. Then inf S < sup S.

Proof. Fix some s € S. Then we have inf S < s always (even in case of infinities) as well as s < sup S (even
in case of infinities), so inf S < sup S by transitivity (even in case of infinities). We won't rigorize this, but it
would essentially have to be casework. |

1.5.3 Philosophy

The final section of Chapter 1 in Ross is §6. Roughly speaking, it has to do with the construction of R from
Dedekind cuts. Essentially what this does is prove the Completeness axiom for a particular set so that we
can be sure that the real numbers exist, but this confidence will not be relevant to our story. So next class
we are talking about sequences and convergence.
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THEME 2
CONVERGENCE

2.1 September15

2.1.1 Review

We quickly review a proof of the following fact.

Lemma 2.1. Fix A and B nonempty sets bounded above. Then sup(A + B) = sup A + sup B.

Proof. We show that sup(A + B) < sup A 4 sup B and sup(4 + B) > sup A + sup B.

» To show that sup(A + B) < sup A + sup B, we note that a € Aand b € B implies thata + b <
sup A + sup B, so sup A + sup B is an upper bound for A + B.

» Now we show that sup(A + B) < sup A + sup B. Well, fix y := sup(A4 + B) so thaty > a + b for each
a€ Aandb e Band
y—a>b.
It follows y — a is an upper bound for B,soy —a > supB,andsoa < y — sup B, so y — sup B is an
upper bound for A, and sup A < y — sup B, finishing. |

This is essentially the proof | wrote down last class; he had given a different one.

2.1.2 Limits, Informally

To establish we need rigor, consider the following question.

Question 2.2. Are limits unique?

Certainly they should be, but there is something to proven here, and we don't quite know how to prove this
without good definitions.
But before we jump there, let's get comfortable with some of our ideas of limits.

Example 2.3. Fix a,, :=sinn/n. We show a,, — 0as n — oc.
Indeed, an idea is to use the Squeeze theorem. Namely, we can bound

sinn 1
S —
n n

<

Y

S|

so sending n — oo takes sinn/n — 0 because +1/n goes to 0.
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Example 2.4. Fix a,, := 2;:1:;5 Thena, — 2asn — .

Indeed, the trick is to write

iy 27" 245.27"
27 2-m  ]-7.2-7

Gyt

Then we see the numerator goes to 2 and the denominator goes to 1, so we see that a,, — 2/1 = 2.

However, not everything is obvious. Consider the sequence

n .
= i nis Odd7

mn T .
1 n IS even.

Anidea hereisthat, if the total sequence converges, then any subsequence must converge to the same value.
So we can see that the odd case goes to 1, and the even case is 1 as well, so we would like to say thisis 1, but
this is not a proof. Similarly, surely
L nisodd,
bn = ]T-L

n is odd,

does not have a limit, but we need a definition.

2.1.3 Limits, Formally
So we move towards a definition.
Definition 2.5 (Limits). Fix {z; } 22 ; a sequence of R. Then we say that

lim z, =limz, =L €R
n—o0

if and only if, forall e > 0, there exists N € N such thatn > N implies |z, — L| < ¢.

Roughly speaking, we are saying that, for any error bound ¢ (such as, say ¢ = 10~'%"), there is a bound N in
the sequence such that all points after N are e-close to L.
Let’s use this to kill one of our examples.

Exercise 2.6. Fix

n .
. {n+1 n is odd,
n

1 n is even.

Thena,, — 1asn — co.

Proof. We claim that the limitis L := 1. Well, fix any ¢ so that we want NV such that

la, — 1] < e
forn > N. Well, we can compute that
n 1 1
—1 — — < —
[an < n+1 ‘ n+l n

Sowe want = < ¢, for which N > 1/e suffices. We can find an integer N by the Archimedean property. W
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Remark 2.7. To prove that a limit exists, we have to guess its value and then prove it. Namely, it is
hopeless if you guessed the wrong number. Conversely, to prove a limit doesn’t exist, we have to show
that no L can be a limit.

And so let’s kill our other example.
Exercise 2.8. Fix

. 1 nisodd,
"7 )1 nisodd,

Then b,, has no limit.

Proof. Suppose for the sake of contradiction that the limitis L # 1. Thenwe findane = % such thatand
N has n := max{2, 2N} such that
|bp, — L] =1]1—L| > «.

Tracking our quantifiers through, we see that we have shown that the limit of b,, is not 1.
It remains to show that the limit is not 1. Well, fixing e = 1/2, we see thatany N has n = max{3,2N + 1}
such that

1 -1 1
|bn—1|:‘—1’:” -
n n
where the last inequality holds by cross-multiplying. |

Remark 2.9. Intuitively, we can begin to see why 1 is nowhere continuous: no matter how close a
neighborhood we look at a point, there will be rationals and irrationals around.

And with our actual definition, we can answer Question 2.2.

Proposition 2.10. The limit of a sequence a,, as n — oo is unique.

Proof. Suppose that L; and L, are both limits of a,, asn — oo, and suppose L; # L for the sake of contra-
diction. Then set ¢ := @ > 0 so that there exists N; and N, such that

n>N = |a,— L] <e¢ and n> Ny = |a, — La| <e.

Buttakingn > max{Ny, No},weseethat|L;—Ls| < |L1—ayn|+|an—L2| < 2¢ < |L;—Ls|is our contradiction.
In other words, a,, hastobein (L; —e,L; +¢) N (Ls — €, L2 + €), which is empty. [ |

Let's do some more examples, for fun.
1

Exercise 2.11 (Ross 7.5(a)). We compute

lim vVn2+1—n=0.

n—o0

Proof. The trick is to write

241 1
o (V) VLR L
n—oo Vni+1l4n nooy/n24+1+4n

Now the top is 1 and the bottom goes to oo, so the limit vanishes. |
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Exercise 2.12. We prove that
2n—1 2

im = —.
n—oo 3n + 2 3

Proof. We work backwards. The trick is to first study our difference

3n+2 3|

We see that we can bound this by 1 because m < Lisequivalentto7n < 9n+6.So choosing
sothatn > N implies

3(3n+2)

m—1 2| [3@n—1)-2Bn+2)| 7
3(3n+2)

2n—1 2 <1<
n+2 3 n

finishing. [ ]

1

<e,

Remark 2.13 (Philosophy). In some deep sense, the reason that we need the precise definition of the
limit is that things might get more complicated than what, say, limit laws can control. For example,
limits in multiple variables are not really susceptible to limit laws when continuous.

Exercise 2.14 (Ross 8.3). Fix s,, a sequence of nonnegative numbers such that a,, — 0asn — oco. Then
va, — 0asn — oo.

Proof. Well, fix some & > 0 so that we want to find N such that n > N implies that |\/s,,| < e, which is
equivalent to s,, < 2 because s,, is nonnegative.! But s,, — 0, there exists N such that |s,,| < €2 forn > N,
finishing. ]

Remark 2.15. Our N given ¢ is in some sense “less effective” than in previous examples because our
information about s,, is less effective.

Exercise 2.16. We show that

s e () £

Proof. The issue is that our sequence is periodic but nonconstant. Well, the image of the sequence lives in
{£1/2,£1}, so we fix our bad € = 1/5 smaller than the smallest pairwise distance.

Now suppose for the sake of contradiction we have L is our limit. Then thereis N suchthatn > N implies
|cos (%) — L| < e.Butthenallterms past N livein (L —¢, L+¢), which cannot contain all of the {+1/2, +:1}.

Explicitly,
N N
cos (M) — L‘ + ’cos <(6+3)7T> — L' < 2e <2,

2=11--1/<[1—L|+|-1-L| = . .

which is a contradiction. [ |

Remark 2.17. At a high level, what is happening is that the distance between consecutive terms is not
going to 0, and this violating convergence. This idea will return.

1 This equivalence is nontrivial but annoying, so we ignore it.
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2.2 September 20

| skipped a talk on the Riemann hypothesis to come to this class. This had better be good.

2.2.1 LimitLaws

So we can prove nice things with our rigorous definition of a limit, and by “nice” | mean “obvious.” Let's
have an example.

Proposition 2.18. A convergent sequence in R is always bounded.
This is the kind of thing that looks obvious, but proving it formally is annoying

Proof. Fix our sequence {a, },en of real numbers which converges to L. Now, forany (!) € > 0, we have an
N such thatn > N implies

lan, — L| < €.
It follows that L — e < ay < L + ¢ by considering cases. Then consider
M = max{ay,...,an, L +¢}.

Then we claim eachn € Nhas a,, < M. Indeed, if n < N, then n < M because of the maximum. Otherwise
n > N sothata, < L +«. [ ]

Let’s jump into a limit law.

Proposition 2.19. Suppose that the real sequences {s,, } nen and {t,, } nen converge to the real numbers
s and t respectively. Then

lim s,t, = st.
n—oo

Proof. This requires a careful application of the triangle inequality. We show that |s,t, — st| — 0. Then we
write

|Sntn — St| = |Sptn — Spt + Spt — st| < |sptn — Spt| + |snt — st

by the triangle inequality. Then we can bound
[$ntn — st| = |sn| - [tn —t| + |t| - [$n — $]|.

Now, taking everything as n — oo, we have |s,| - |t,, — t| has absolute value bounded by ||s| + 1] - |t, —t| = 0
for sufficiently large n. Similarly, |¢| - |s, — s| will also go to 0.

The end of the proof requires some care, so we will provide a few more details for the first case: we will
show that |s,| - |[t,, — t| — 0 more rigorously. Fixany ¢ > 0. Then there is some N; for which n > N7 implies

e

th —t] < ,
[t | [s] +1

and there is some N, for which n > N, implies |s,,| < |s| + 1. Then N := max{Ny, N2} hasn > N implies

Snl - [tn — 2t < (|s|+1) -
|snl - | | < (sl )|S|Jr1

which is what we wanted. ]
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Remark 2.20. This is essentially the same trick that proves the product rule for derivatives: we write

flz+h)g(x+h) - f(x)g(x)

(f9)'(z) = lim

h—0 h
i SR )~ f@g k) @+ )~ f@)g(a)
" h—0 h h—0 h
= f'(x)g(x) + f(2)g'(z).

Let's do an exercise.

Exercise 2.21. We show that

lim n'/" = 1.
n— oo

In calculus, we might want to take the derivative of the numerator and denominator, but we won't do that
here.

Proof. We consider the sequence s,, = n'/™ — 1: we show that s,, — 0. Note thatn > 1 implies nt/n > 1
implies s, > 0.
Now, the trick is to write, for n > 1, that

—1
n:(1+sn)":1+<T1L>Sn+<g>si+-~-2n(n)si.

It follows that s2 < —2-. However, |/—2; goes to 0 with some effort?, so s,, must also go to 0, finishing. M

2.2.2 Backto+oo

What should it mean for a sequence {s;, } nen to have

lim s, = +00?
n—oo

Note that this definition requires some care. For example, the sequence

0 niseven,
Sp = .
n nisodd,

is mostly increasing and is not bounded above, but it does not go to oc. The rigorous definition is as fol-
lows.

Definition 2.22 (s,, — o0). Fix {s,, }nen @ sequence of real numbers. Then lim s,, = oo if and only if, for
every M, there exists an N such thatn > N implies

Sp > M.

Intuitively, s,, must keep climbing and eventually never go back. Note this does not mean monotonic.

Remark 2.23. The above definition uses an M and not a € because M is not intended to be a small num-
ber; M is supposed to be big. We could use 1/¢ if we wanted, but this is unnecessarily awkward.

2 We will not do this here, but we just have to show that , / % gets arbitrarily small.

26



2.2. SEPTEMBER 20 104: INTRO. TO ANALYSIS

Warning 2.24. To prove

lim s, = 400,
n—oo

do not fixe > 0 and try to find N such that n > N implies |s,, — oo| < . The issue here is that |s,, — 0o
does not

Similarly, we have the following, almost dual definition.

Definition 2.25 (s,, — —o0). Fix {s,, }»en @ sequence of real numbers. Then lim s,, = oo if and only if, for
every M, there exists an N such that n > N implies

Sp < M.

In this definition, M is intended to be a very negative number.
Now that we've added +oo to our vocabulary, we would like to codify this.

Definition 2.26 (Has a limit). Given a sequence {s,, }»en, We say that s,, has a limit if and only if

nl;rrgo Sn € RU {%o00}.

Note that having a limit is not the same as converging; converging excludes +co. Having a limit is more about
excluding sequences which oscillate too much. The language is careful here: converging is synonymous with
the limit existing, which is distinct from the sequence having a limit.

Anyways, let's do some exercises.

Proposition 2.27. Fix {s, },cn a sequence of positive real numbers. Then

1
lim s, =00 <= lim — =0.
n—o00 n—00 Sy,

Proof. Again, this statement is too general for us to be able to do anything other than the formal definition
of a limit. We show the directions one at a time.

» Fix s, with s, — 0o, and fixany e > 0. Then 1/¢ > 0, so there exists N such thatn > N implies
Sn > 1/e > 0.
From this it follows 0 < 1/s,, < &,50|1/s,| < €. So our N witnesses that 1/s,, — 0.

« In the other direction, fix s,, with 1/s,, — 0, and fixany M. If M < 0, then there is some N such that
1/s, < 1lsothats, >1> M.

Otherwise, M > 0,so we can takee = 1/M > 0 and find N so thatn > N implies
1/s, <e.

It follows s,, > 1/ = M, so our N witnesses s,, — co. [ ]

Exercise 2.28. Fix t; = 1 and define {t, } nen recursively by

2 +2
2t,

tn-{-l =

forn > 1. Then, given lim t,, is a real number, we can compute the limit is /2.
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Proof. The point is to take n — oo on both sides of our recursion.

t2 +2
t7z+1 - n2tn . (*)

Now, we can show that
lim t,41 = lim ¢, =t
n—oo n—oo

by shifting over by one (we won't be rigorous here). We would like to use limit laws to finish, but the de-
nominator of (x) has ¢, in it, which we need to verify does not vanish. Well, we claim

th, > 1
by induction. Surely this is true for n = 1; then by induction, we note

24+2 t

+

|
2%, 2t

Ift, > 2, then the first term is at least 1; if 2 > ¢,, > 1, then the sum of the two terms is at least  + 1 = 1.
Now we can use limit laws to note that (*) implies

: 2
nlgr;otn—kZ B 249
lim 2¢, 2t

n—o0

t = lim tn+1 =
n—00

after using limit laws. Solving, we see that 2t = t? 4 2,s0t? = 2,sot € {£v/2}. Then we see t > 1 implies

is forced. [ ]

Remark 2.29. It is a very strong assumption that the limit exists, which is what lets the above argument
function. For example, if we change t; = 1tot; = —1, then the limit “should” be —v/2 (all terms are
negative), but it's not obvious that the limit should converge anymore.

Exercise 2.30 (Ross 9.11(a)). Fix {s }nen and {t, }nen Sequences such that s,, — oo and inf{t,, }neny >
—o00. Then

lim (s, +t,,) = o0.

n— o0

Proof. Fix any lower bound m € R for {¢,},en. Now, fixany M > 0 so that we want to find N such that
n > N implies
Sp +t, > M.

Well, we have that ¢,, > m so that the above condition is equivalent to
Sp > M —m.

To finish, s,, — oo promises us some N such thatn > N implies s,, > M — m, which is exactly what we
wanted. |

Exercise 2.31 (Ross 9.15). Fix a € R a positive real number. Then
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Proof. For brevity, fix d,, :== a™/n!. Consider N € N such that N > 2a; the main idea is that after N, d,, is
being (more than) halved each time and therefore geometrically decreasing. So let's start bounding at dy:

we see
dyop =d “<dk“<dk1—d1k
N+k — NHN_i_K_NHN_ NHE*N 5 .
=1 =1

But now, as k — oo, we have (1/2)F — 0,s0dx(1/2)* — 0as well.® It follows that d,, — 0 by squeezing. B

Remark 2.32. One of the motivations fortaking N > 2ais that, after this point, the sequence is definitely
(monotonically!) decreasing, and being bounded below by 0, we can be fairly confident that the limit
exists. This idea will come up again.

2.3 September 22

Here we go again.

2.3.1 Clarifications

We quickly return to some terminology. For a sequence {ay }xen of real numbers, we say that the sequence
"has a limit" if

lim a, € RU{£o0},

n— oo

and {aj }ren "converges” if
lim a, € R.

n—oo

The ambiguous terminology is what it means for a limit to “exist.” Does "exist” force R or RU{+00}?

Warning 2.33. For this course, we will say that the limit of a sequence {ay, }ren exists if and only if

nl;n;o an, € RU {£o0}.

So this is another thing we have to keep track of. The main distinction here matters most on the homework;
on exams, just ask the professor what is meant.

2.3.2 Monotonic Sequences

The idea here is that sequences whose terms "“get closer” as the sequence goes on should mean that the
sequence should converge in R. However, this is a bit annoying to prove because actually finding the limit is
a bit annoying, and we still need to rigorize “get closer.”

To rigorize “get closer,” we begin by talking about monotonic sequences.

Definition 2.34 (Flavors of monotonic). Fix {ay }ren @ sequence of real numbers.
o We say {a }ren is increasing if ay, < agy; for each k.
o We say {ay }ren is strictly increasing if a, < axy1 for each k.
o We say {a }ren is decreasing if ay, > ay41 for each k.
o We say {ax }ren is strictly decreasing if ay, > a1 for each k.

If any of the above are satisfied, we say that {ay } ,en is monotonic.

3 Itis surprisingly technical to show that (1/2)* — 0, but it can be done.
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Here is an important result.

Theorem 2.35. Any bounded, monotonic sequence in R converges.

Proof. Let's say {ax }ren is bounded and increasing (without loss of generality). Note the sequence is upper-
bounded and hence has a supremum, which we name a. We show that

lim a, L.
n—oo
Well, take any ¢ > 0. Then (a — €, a] must contain some ay, for otherwise ay < a —e¢ < aforeachay,soa—¢
would be a lesser upper bound than a.
Now, for eachn > N, we have
a—e<ay <a, <a,

so it follows that |a,, — a| < €, completing the proof. |

Sothe above result is nice, but it's pretty restricted in scope: most sequences are not going to be monotonic.
Of course, the above logic still works if our sequence is “eventually” monotonic, but still most sequences are
not monotonic.

However, if we expand our view, we can ask if every sequence has some monotonic subsequence, which
would mean that every sequence has some notion of getting close to somewhere. Sure, it's possible that
different subsequences converge to different places, which is annoying, but it's still information. At a high
level, our goal is to describe how sequences approach numbers, and keeping track of multiple limits is one
way this happens.

Remark2.36. Theorem 2.35 failsin Q because we don’t have completeness: 3,3.1,3.14, 3.141 isabounded
sequence of rational numbers which does not converge to a rational number.

Exercise 2.37. Consider the sequence {s; } ren defined recursively by s; = 1 and

Sn41 = V2+ 5,

forn € N. Then we can prove lim s,, = 2.

Proof. The proofis in two steps.
1. We show that the limit exists, also in two steps: we show that {sj }xen is bounded and monotonic.

(@) We claim that 1 < s, < 2 for each n, by induction. Of course this is true for n = 1. Then, if
1<s, <2, itfollows
3<2+s, <4,

SO
1< V3 < 541 <2,

which finishes.

(b) We show that {sy }ren is increasing. The trick is to show that

?
V24+x>x

forany z € [1,2]. Well, this is equivalent to = + 2 > 22, which is equivalent to (z + 1)(z — 2) < 0,
whichistrue onz € [-1,2] because z + 1 > 0and z + 2 < 0 here.

It follows that s,,41 = /2 + s, > s, from the bounding above.
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2. Now let the limit be L because we know it exists. Then taking both sides
Spn4+1 = V 2+ sy
asn — oo,wefindL =2+ L.Thus,0=L? - (2— L) = (L +1)(L — 2),s0 L € {—1,2}. But the sy

arealllargerthan1,so L > 1, so we have . |

Remark 2.38. This is quite remarkable! Actually finding this limit by some explicit formula would be
quite annoying to do, and indeed, we did not have to.

Remark 2.39. Theorem 2.35 kind of shows that all decimal expansions are real numbers. If we accept
that rational numbers are real, then the fact that all bounded, monotonic sequences converge, then
3,3.1,3.14,3.141, . ..

must converge to some real number, no matter the decimals. (In particular, this sequences is increas-
ing.)

Here is the other side of Theorem 2.35.

Proposition 2.40. Any unbounded, increasing sequence must go to occ.

Proof. We show the contrapositive; take {aj }xen Which does not go to oo. Then there exists some M such
that there is no V such that n > N implies
an > M.

In particular, pushing our quantifier exchange through, for all N, there is some n > N such thata,, < M.
However, n > N gives a,, < ay, so for all N, we conclude that ay < M. (Here we used that {a }ren is
increasing!)

Thus, {ax }ken is upper-bounded by M. We can take a; as a lower bound to finish. [ ]

So it follows after some more work that any monotonic sequence “has a limit.”

2.3.3 Introducing limsup and liminf

We hope to use monotone sequences to gain some control on all sequences. Here is one idea: fix {sj }ren @
sequence of real numbers and define
ty =sup{s, :n> N}
Note that it's possible for ¢y to be 0o, and in fact, if one of them is oo, then all of them are co.*
So for now, we fix {sj }ren to be bounded above so that each {s,, : n > N} is also bounded above, so
each ty is areal number. Now we consider

lim tN.
N—o0

This certainly “exists” because {tx} ven is decreasing and hence monotonic: the fact that Ny < N, implies
{sn :n> Ny} C{s, :n> N;}impliesty, <tn, becausety, willupper-bound{s,, : n > Ny}.
This gives us the following definition.

Definition 2.41 (lim sup and lim inf). Fix { sk }ren @ sequence of real numbers. Then we define

limsup s == lim sup{s,:n > N}.
n— o0 N—oo

Similarly,

liminf s := 1 inf o N1,
o e 5y, = Mooy ol (s £ 50 2> A7)

4 Roughly speaking, this is because the “finite truncation” that ¢ ;v does will not mess with the long-term behavior of {54 }xen.
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Warning 2.42. If {sj }ren is not bounded above, then lim sup will be +oc0. If {si}ren is something like
sy = —k, then

Regardless of the above warning, we do know that lim sup and lim inf will always exist from the preceding
discussion.
Let's do an example.

Proposition 2.43. Suppose that {sx }xen is a sequence with s — s as k — oo. Then we claim that

limsup s,, = liminf s,, = s.

Proof. We show thatlim sup s,, = s,and the lim inf argument is similar. We also won't talk about s € {+o0}:
s = +oo just means that s, is not bounded above, and s = —oo can be done with some effort as well.
So let'ssay s € R. Fixanye > 0. Then there is some N for whichn > N implies s — e < s,, < s+ ¢, which
implies that
sup{sp :n >N} € (s—¢,s+¢).

This shows that limpy o sup{s, : n > N} = s. [ |

In fact, the converse is also true.

Proposition 2.44. Suppose that {s; } ren is a sequence with

limsup s, = liminf s, = s.
n—oo n—oo

Then s, — s as well.

Proof. We outline. Again, we ignore +oo, though they are hard. The ideaiis that, for any ¢ > 0, there is some
Nj and Nj such that N > max{Ny, N2} implies

s—e<inf{s,:n >N} <sup{s,:n >N} <s+e.
Thenanyn > N impliess — e < s, < s + € as well, finishing. |
In general, the best we can say is that
inf{s, : n > N} <sup{s, :n > N},

so it follows that lim sup s,, > liminf s,,.

2.3.4 Cauchy Sequences

We are beginning to realize our goal of tracking how sequences converge. For example, if we are told that
{sk}ren has limsup s, = 1 and liminf s, = 0. Then, roughly speaking, {sx}ren should “oscillate” in some
sense between 0 and 1, even in the long term.

So, for example, {si}ren has infinitely many terms at least 3/4 and at most 1/4, so there are infinitely
many pairs with distance at most 1/2.

With this in mind, the next big idea here is that of a Cauchy sequence.

Definition 2.45 (Cauchy sequence). Fix {sk }ren @ sequence of real numbers. We say that {s; }ren is a
Cauchy sequence if and only if, for each € > 0, there exists some N such that n,m > N implies

[$n — sm| < €.
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The advantage here is that Cauchy sequences let us focus locally on the the terms only without having to
“guess” a limit as we've been doing. However, this is somewhat worse because we now have two indices n
and m to keep track of.

We note the following.

Proposition 2.46. Any converging sequence is a Cauchy sequence.

Proof. Suppose that {s }cn convergestosome s € R. Then, forany ¢, there exists some N such thatn > N
implies
[sn — 8| < g/2.

This factor of 1/2 is a trick that will help us momentarily. Indeed, for n, m > N, it follows
e €
|Sn_3m| S |Sn_8|+|8_5m‘ <§—|—7:€’

2

which proves {sy }ren is converging. [ |

Remark 2.47. The above proof does not use the completeness axiom, so this is also true in, say, Q.
What about the converse? Indeed, it is true.

Proposition 2.48. Any Cauchy sequence converges to some real number.

Proof. We outline; fix {s }ren @ Cauchy sequence. The trick is to show that

limsup s, = liminf s,
n—00 n—00

which roughly holds because, after long enough, the sup{s,, : n > N} and inf{s, : n > N} need to get
closer together because of the Cauchy condition. |

Remark2.49. The above proof does use completeness, and itis nottruein Q, using the typical examples.
It is an interesting question which kinds of spaces have that all Cauchy sequences converge.
Let's do an exercise.

Exercise 2.50 (Ross 10.7). Fix S C R a bounded, nonempty subset such that sup .S ¢ S. Then thereisa
sequence {si tren C S which converges to sup S.

Proof. Notethat, foreach k € N, we canfixe = 1/kand find some s;, € S suchthatsup S—1/k < s, because
sup S — 1/k cannot be an upper bound. Then we can show

lim sy =supS
k—oco
in the usual manner. The point is that
S ! < s < S+ !
supS — — < s < su -,
p & k p ©

so we can take N = 1/e in our formal proof. We won't write this out fully. [ |
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Remark 2.51. The above proof is not very interesting, but it's leading towards the following question:
if {sk}ren, can we find a subsequence converging to lim sup s;?

Exercise 2.52 (Ross 10.11). Define the sequence {tx } ey by t1 := 1 and

1
tn+1 = (1 - 4n2) tn

forn € N.

Proof. We can show inductively that this sequence is positive, and it is decreasing because 1 — 25 <1. W

It's aninteresting question to evaluate this limit. | think it turns out to be 2/ due to some kind of Weierstrass
factorization argument.

2.4 September 27

| didn't take notes today because | went to Professor Beneish's talk on arithmetic statistics. It was probably
the most fun I've had all semester, so no, | do not have regrets. Anyways, | am told we covered §11 and §12
during lecture.

2.5 September29

Here we go. We're talking about §13 today. It's optional but important.

2.5.1 Metrics

One of the main idea is to expand the theory we've built over R to work more generally. What is something
nice that R has? Well, R has a good notion of “distance.”

Definition 2.53 (Metric space). Given a set X, we say that a functiond : X2 — Rx is a metricif and only
if it satisfies the following conditions; fixany z,y, 2 € X.

« Distance-zero: d(z,z) = 0,and d(z,y) > 0if x # y. In other words, d(z,y) = 0ifand only if z = y.
o Symmetry: d(z,y) = d(y, x).
« Triangle inequality: d(x, z) < d(z,y) + d(y, 2).

In this case, we call X a metric space.

Warning 2.54. To be a metric, we must satisfy all of the above conditions. They are annoying, but they
are necessary.

A while ago, we defined other distance functions; they were metrics. Recall the following examples.

Example 2.55. On R?, the function

descia((@1,91), (22,42)) = /(@1 — 72)2 + (91 — 93)

is the usual, Euclidean metric.
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Example 2.56. On R?, the function

deaxi ((z1,41), (T2, y2)) = |21 — 2| + |y1 — W2

is called the taxicab metric. Physically speaking, this is the distance we have to go if we can only walk
along “streets” parallel the axes.

Example 2.57. On R?, the function

L (z1,91) # (22, 92),
0 (21,y1) = (72, Y2).

dtele((:v1,y1), (:cg,yQ)) = {

is called the tele-metric. Physically speaking, this is the distance we have to go in the internet: it's all a
click away.

We want these metrics to be nice with each other. For example, if a sequence of points converges to the
origin using dgycid, then does it converge to the origin in diayi? What about diee?
Anyways, let’s do a more nontrivial example.

Exercise 2.58 (Ross 13.3). Let B be the set of bounded sequences in R. Then, given two sequences
{zk Y ren, {Yr}ken € B, we define
d(z,y) = sup |z — yx|

Then d is a metric on B.

Proof. We can check the conditions one at a time.

+ Distance-zero: the only way to make the supremum of the differences zero is to make everything zero,
so all elements are equal.

« Symmetry: the absolute value respects negation.

« Triangle inequality: this is checked by force. |

2.5.2 Convergence Ideas

To answer these questions, we need a good notion of convergence. Recall the definition in R.

Definition 2.59 (Convergence in R). A sequence {z, }nen C R convergesto x € R if and only if, for each
e > 0, there exists N such thatn > N implies

|z — x| < e.

To generalize this to more general metric spaces, we note that |z — x| is really just the distance between z
and x,,. Here is the general notion for metric spaces.

Definition 2.60 (Convergence in metric spaces). Fix X a metric space with metric d. Then a sequence
{Zn}nen € R convergesto x € X if and only if, for each € > 0, there exists N such that n > N implies

d(z,x,) < e.

Note this is essentially the same definition asin R.
How about Cauchy sequences? Here was our definition in R.
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Definition 2.61 (Cauchy in R). A sequence {z, }neny € R is Cauchy if and only if, for each ¢ > 0, there
exists NV such that m,n > N implies
[T — xn| < €.

Again, to generalize, we swap out distance in R with general distance.

Definition 2.62 (Cauchy in metricspaces). A sequence {x, },en C R is Cauchy if and only if, for each
g > 0, there exists N such that m,n > N implies

(T, Tp) < €.

2.5.3 Completeness

Completeness of R was another part of our story here. In some sense, this came down to all Cauchy se-
quences converged, which are notions we have defined. So we have the following.

Definition 2.63 (Complete). A metric space X is complete if every Cauchy sequence converged.

Note that all convergent sequences are Cauchy®, so the reverse direction is the kicker.

Example 2.64. We showed that R was complete, which roughly came from the Completeness axiom.

Non-Example 2.65. We know that Q is not complete: take the sequence {|7mn] /n}en.

Remark 2.66. We can define R as equivalence classes of Cauchy sequences in Q, if we wanted.

What about R? (with the Euclidean metric)? is it complete? In particular, does every Cauchy sequence con-
verge?

Proposition 2.67. Fix D € N. Then R” is a complete metric space.

Proof. Suppose that {z\ }ren is @ Cauchy sequence so that we need to show it converges. For concreteness,
given z;, € RP, we let myz;, be the /th coordinate.
We claim that {m,x }ken is @ Cauchy sequence. Indeed, for any e > 0, we know there is some N so that
n,m > N implies
d(xp, Tm) < €.

But

D
|7T£5En - ’/Tixm| § Z(Trkxm, - ’l'rlcxn)2 = d(xnvan) < g,
k=1

soindeed, |mpxy, — Toxm| < &, making {mexy }reny @ Cauchy sequence.
Now, because each coordinate projects into a Cauchy sequence, each coordinate will converge eventually
because R is complete, so we combine these converging sequences into

Y= (y)ils.

>If an, — a,thenforanye > 0, find N for whichn > N implies |an, — a| < . Thenn, m > N implies |a,, — am| < €.

36



2.5. SEPTEMBER 29 104: INTRO. TO ANALYSIS

where Ty, — yeasn — oo. We claim that z,, — y asn — co. Now, forany e > 0, we know that we can find
an N, for each coordinate such that n > N, implies
13
|Texn — ye| < —=.

VD

Then, for n > max,{N;}, we have

D D - 2 2
d(zn,y) = Z(WZ-%'Z —ye)? < Z (\/5> =1/D- ) =,

k=1 k=1

verifying that x,, — yasn — oo. |

We can also define bounded; we just give the definition.

Definition 2.68 (Bounded). A subset S C X is "bounded” if and only if there exists zp € X andr € R
such that z € S implies d(z, zg) < r. In other words, we can put S in a box.

One important thing we did in R is that every bounded sequence has a convergent subsequence. s this
true in R™? Sure: we can find a convergent subsequence for the first coordinate, then find a convergent
subsequence of that for the second coordinate, and so on. We'll leave this area with a question.

Question 2.69. Is this true for general complete, metric spaces?

The answer turns out to be no; see here. In short, we can use the tele-metric; here the sequence
1,2,3,...

is bounded because all elements of R are a distance of 1 away from (say) 0. However, this sequence does not
converge because it is not Cauchy: for any N, we can find unequal n,m > N so that d(n,m) = 1.

2.5.4 OpenSets

We want to generalize “open” and “closed” intervals in R, which connects much deeper inside topology.
Starting easy, the open interval (—1,1) seems like it should generalize to the unit circle minus the edge in
R2. Explicitly, we want

{z e R? : d(z,0) < 1}.

So now we're using distances instead of order again. So we have the following definition.

Definition 2.70 (Open sphere). Fix X a metric space, and take z € X and » > 0. Then we define the
open sphere centered at z of radius r as

sr(z) ={y € X : d(z,y) <r}.

We are using “sphere” here because we might want to work in very funny metric spaces.
These can be funny. For example, here is a “sphere” in the taxicab metric of R?.

And in the tele-metric, the spheres are points or the full space.
Anyways, we now move towards defining and “open” set.
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Definition 2.71 (Interior). Fix X a metric space. Givenasubset S C X, we saythatz € Sisinthe interior
of S'if and only if there exists r > 0 such that s,.(z) C S. The set of interior points is notated .S°.

And here we are.

Definition 2.72 (Open). Fix X a metric space. Then U is an open set if and only if U is its interior.

Example 2.73. The open interval (0, 1) is open: givenany z € (0,1), we can set 7 := { min{z, 1 — z} so
that s, (r) C (0,1). So each element of (0, 1) is in its interior.

Non-Example 2.74. The interval [0, 1) is not open: there is no r such that s,.(0) C [0, 1).

Let's actually prove something.

Proposition 2.75. Fix X a metric space. Then X and & are both open.

Proof. We do these one at a time.

« Foranyz € X, we note that
si(z)={ye X :d(z,y) <1} C X

by definition. So all points of X are in the interior of X.
« Jis open because all elements of @ are in the interior (and bananas). |

We also have the following, which we don't do in class (as they are homework).

Proposition 2.76. An arbitrary union of open sets is open. A finite intersection of open sets is open.

Proof. This is on the homework. We do remark that intersections are finite because, in some sense, we
want the “smallest” interior sphere over all of our open sets, but we can only take minimums in finite ses.
For example,

() (~1/k.1/k) = {0}

k=1

is not open. |

2.5.5 Closed

Now we can define “closed.”

Definition 2.77 (Closed). Fix a metric space X. Then V' C X is closed if and only if X \ V is open.

Example 2.78. Theinterval [0, 1] is closed because its complement is (—oo, 0)U(1, o), which is the union
of two open intervals and hence is open.

Non-Example 2.79. The interval [0, 1) is not open, from earlier. Also, its complement is (—oo, 0) U[1, 00)
is also not open because of 1. So [0, 1) is neither open nor closed.

While we're here, we note that we can turn around Proposition 2.76.
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Proposition 2.80. Any finite union of closed sets is closed. Any arbitrary intersection of closed sets is
closed.

Proof. Take the complement of the statements in Proposition 2.76. |

In light of the above proposition, we have the following.

Definition 2.81 (Closure). Fix X a metric space and S a subset. Then we define the closure of S to be

8= ﬂV,

SCv

where the intersection is over closed sets V' containing S.

Because thisis an arbitrary intersection of closed sets, S'is closed, and we note that S will contain any closed
setaround S, so S is in some sense the “smallest” closed set around S.
We have the following result.

Proposition 2.82. A subset S C X of a metric space X is closed if and only if S = S.

Proof. We leave this as an exercise. [ |

What happens when there’s some discrepancy between the two?
Definition 2.83 (Boundary). Fix X a metric space and S a subset. Then we define the boundary points
of Sto be B
0S5 =5\ S°.
Example 2.84. If S = (0,1) is closed, 95 = {0, 1}.

Why do we care? We have the following.

Proposition 2.85. Fix X a metric space and S a subset. Then any = € S has a sequence of points in S
converging to z.

Proof. For any ¢, we claim that find y € S such that d(z,y) < e. Indeed, we show that every y € S has
d(z,y) > e, thenz ¢ S. Consider the ball

se(z) ={a' € X :d(z,2") < e}.
By hypothesis, SN s.(z) = &, so0 X \ s.(z) is a closed set containing S. So
S C X\ s.(x),

which does not contain x. So indeed, = ¢ S.
So for each n € N, we can find z,, € S such that

d(z,x,) < 1/n.

Then we can see that the sequence {x, },en converges to z. Indeed, forany ¢ > 0, we canset N := 1/¢ so

thatn > N implies
1

< R
N
which is what we wanted. [ ]

d(l'vmn) < =&

3=
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2.5.6 Compactness

We start with the following assertion.

Proposition 2.86. Fix X a complete metricspace. FixV; 2 V, D - - adescending sequence of nonempty,
bounded, closed sets. Then
V= m V}c
k=1

is also nonempty, bounded, and closed.

Proof. Closed is by arbitrary intersection. Bounded is by taking a bound of V; to bound V.

The meat here is showing that V' is nonempty. Well, find some z;, € V}, for each k. Then {zj }ren lives
in a complete metric space and hence has a convergent subsequence, which by abuse of notation we call
{yr }ren. Say it converges to y.

We claim y € V. The point is that, after long enough, {y; }ren lives completely in any fixed V,, soy € V,
for any fixed V,. Thus, y € V, finishing. |

We now define compact and will return to the above shorty.

Definition 2.87 (Compact). Fix X a metric space and S C X. Then S is compact if and only if, for every
open cover I on top of S, there exists a finite subcover U, which still covers S.

Non-Example 2.88. We have that R is not compact. For example, the open cover
{(-=n,n) : n € N}

has no finite subcover: any finite number will miss sufficiently large real numbers.

Non-Example 2.89. The interval (0, 1) is not compact. For example,
{(1/n,1) : n € N}

has no finite subcover: any finite number will miss sufficiently small real numbers.

Example 2.90. lhe interval [0, 1] is compact. This is deep, and we will not write out the proof here.

Showing that something is compact is quite difficult: we need to deal with all open covers at once, which is
hard to handle. Regardless, there is the following theorem.

Theorem 2.91 (Heine—Borel). In R™, a subset is compact if and only if it is closed and bounded.

This is amazing! Compactness was very hard to handle, but we have good feelings for what closed and
bounded should mean.

2.6 October4

It's october: that unapparent summer air in early fall.
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2.6.1 Infinite Series

Aside from our story into metric spaces, we have been talking about sequences: what can we say about
limits, what can we say about going to infinity, etc.

From talking about sequences, we are now going to talk about infinite series. Per usual, we need to start
by defining what we mean.

Definition 2.92 (Infinite series). Fix {ax } ken @ sequence of real numbers. Define the sequence of partial
sums {s;, tnen by
Sp = Z k.
k=1

Then we write the infinite series
oo
E ar = lim s,
n—oo
k=1

if the s, have a limit. Note we are allowing the series to equal 0.

Warning 2.93. If the partial sums have no limit, then the series simply does not have a meaning. For

example,
i(—l)’“

k=1

is a collection of meaningless symbols.

Defined like this, we see that talking about infinite series is quite similar to talking about sequences. The
challenges are often the same, but our tools for simple sequences tend to be more robust.
At a high level, the issue here is that the partial sums are more or less defined recursively by

Sk+1 = Sk + Qk+1,

and recursive formulae are difficult to work with. For example, recall how much trouble we had showing
that the sequence {ry } e defined by

r=1 and Thal = V2 + 7k

We essentially had to appeal the fact that monotone, bounded sequences converge, which is much harder
than it seems.

Example 2.94. Consider the series

The individual terms {1/k}cn are somewhat simple, but trying to find any kind of explicit formula is
difficult.

Remark 2.95 (Nir). We can estimate the harmonic series pretty well by
Al
> - =0577+log N,
k=1

which is something but not everything.
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2.6.2 Motivation

Let’s start with the ratio test.

Proposition 2.96 (Ratio test, I). Fix {ay }ren @ sequence of real numbers. Further suppose that we can

find

Ant1
ap,

L= lim

n—oo

Then we have the following.
« If L <1, then} a, converges.

e If L > 1, then} a, diverges.

Note that there is a really big hypothesis in this statement: we need the limit for L to exist, which is poten-
tially problematic.

Example 2.97. For example,

. - 2™" nisodd,
" 13" nisodd,

certainly has >_ a,, convergent (it's bounded above by 27 "), but the consecutive terms are quite bouncy.

To motivate our discussion, let's start with the following example: we define {a,, },en by

- {1/n nis odd,

—2™ niseven,
which will still cause Y a,, to diverge because it's mostly (—2)™s, which are huge and negative. Here, both

the ratio test and the root test have limits which do not exist, but this very clearly diverges.

We would like to buf our ratio and root tests to accommodate for this. The trick is to not look at lim but
lim sup and lim inf so that we don’t have non-existence problems. We will hit here later but not quite now;
stay tuned.

2.6.3 Some Tests

Let's start with some basic tests.

Proposition 2.98 (Geometric series). Fix a,r € R. Then
o _a_ <1,
Zark = {é._r I <
P iverges |r| > 1.

Proof. Omitted. The idea is that, for any given N, we have

a(l—rN+h)

N
E ar® = _

1—1r
k=0

from which we can take the explicit formulaas N — co. |
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Proposition 2.99 (Cauchy criterion). Fix {a, }nen. Then the series > a,, converges if and only if, for each
e > 0, there exists N such thatn, m > N implies

[$r, — sml| < &,

where {s;, } nen is the sequence of

Proof. This is equivalent to asserting that the partial sums form a Cauchy sequence, so they converge be-
cause R is complete. [ |

Proposition 2.100 (Divergence test). Fix {ay, }nen. If lim a,, is nonzero, then Y a,, diverges.

Proof. This follows from the Cauchy criterion. Suppose 3} a,, converges to s. Then, for any ¢ > 0, there
exists N such that n,m > N implies
|sn, — sm| < /2.

@D But then [ |
This lets us jump into the comparison test.
Proposition 2.101 (Comparison test). Fix {a,, } necn @ Sequence of nonnegative terms. Then suppose that
x| < a
for each k, eventually.
(@) If>_ a, converges, then > b,, converges.

(b) If > ay, diverges to oo, then 3 b,, diverges to cc.

Proof. Here we go.
(@) We use the Cauchy criterion. Fix any € > 0. Then there exists N such that n > m > N implies

n
= E ap < €.
k=m

n

> a

k=m

Then

n n n
S| <D <D ar<e
k=m k=m k=m

by the triangle inequality, so > by, satisfies the Cauchy criterion as well, so ) b5, converges.

(b) Omitted. [ |

Example 2.102. We know that
— 1
>
k=1

converges. It follows that

e _1)k
;(kz)

also converges by the Comparison test, though we have no idea what the actual sum is.
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Warning 2.103. The above statements are about “eventually” because, in series, we only care about the
long-term behavior. Note that this also means we are by design not caring very much about the actual
value of a series.

This lets us talk about the following.

Definition 2.104 (Absolute convergence). We say that a series }_ a,, is absolutely convergent if and only
if >~ |an| is also convergent.

We can justify the word “convergent” in the above definition because of the following.

Proposition 2.105. Suppose Y |a,| is absolutely convergent, then > a,, also converges.

Proof. Apply the Comparison test with a,, and |a,| so that we need to check |a,| < |a,|, whichis true. W

2.6.4 Ratioand Root Tests

And now we move into the harder tests.

Proposition 2.106. Fix {a,, }»cn @ sequence of real numbers, and define s,, := |an+1/a,|. We have the
following.

« Iflimsups, < 1, then the series is absolutely converging.

« Ifliminf s, > 1, then the series is diverging.

Proof. Omitted. The idea is to compare with a geometric series. |

This covers the case where the limit does not exist: no matter what, we will have values to check because
lim sup and lim inf always exist. However, it is still quite possible that

liminf s, <1 < limsup s,,

in which case we still get no information.

Non-Example 2.107. Consider

o 1/n  nisodd,
"7 1 =2" nisodd.

Then lim inf of the ratios is 0 and lim sup of the ratios is oo, so the Ratio test does not help us here.

Regardless, it's nice to have the stronger conditions so that we can be sure the problem is with the Ratio
test itself and not our application of it.
And here is the buffed version of the Root test.

Proposition 2.108. Fix {a,, },ecn @ sequence of real numbers, and define

o = limsup |a,|*/".

n— o0
Then we have the following.
(@) If @ > 1, then the series Y a,, diverges.

(b) If & < 1, then the series > a,, is absolutely converging.
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Proof. Again omitted. The idea is still to compare with a geometric series. |
This is quite nice because there are no gaps as seen between lim inf and lim sup of the Ratio test.
Example 2.109. Consider
o 1/n  nisodd,
"1 —2" nisodd.

Then limsup |a,|"/™ = 2, s0 3 a,, diverges. Finally we have a proof.

2.6.5 Some Examples
Let's do some examples.

Exercise 2.110 (Ross 14.7). Fix {a, } nen is @ sequence of nonnegative terms with > a,, converging. The,
takingp > 1, the series > a? also converges.

Proof. Use the comparison test. For N large enough, we can say that n > N implies |a,,| < 1. Then, after
this point,
lai| <laxl” <laxl,

so Y aP is eventually smaller than )" a,,. So we are done by the Comparison test. |

The above exercise is a good example of why we want the Comparison test to have the “eventually.” Namely,
we had to wait until a point where the terms are less than 1. For example, it is quite possible for > a? to have
a larger sum:

< 1 > /1\? 13
Sa=2 but }:(%> -3
k=0 k=0

Exercise 2.111 (Ross 14.9). Fix {a,, }nen and {b, }»en are equal aside from finitely many terms. Then
> a, converges if and only if Y b,, converges.

Proof. Use the Cauchy criterion. (Note that we don't use the Comparison test because these need not be
nonnegative.) Namely, if n > N has a,, = b, then }_ a,, satisfies the Cauchy criterion after N if and only if
> b, satisfies the Cauchy criterion after N. [ |

2.6.6 Integral Test

We have the following.

Proposition 2.112. Fix {a, }nen @ decreasing sequence of terms such that f(n) = a, is a decreasing
function. Then > a,, has the same convergence/divergence as

/1 ” fw) do.

Proof. The book has a nice geometric proof. The main idea is that, because f(x) is decreasing, we have

[ rwar<son < [1 s

2
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for n € N. Summing over n € N, we find that
[t <> <+ [ e
1 oy 2

which gives the result after some pushing. |

The prototypical example is the harmonic series.

Example 2.113. The series . 1/n diverges because

o0 1 o0
/ —dx =logx| = 0.
1 T 1
Example 2.114. The series }_ 1/n!°! converges because
o 1 £—0.01 |0
——dx = =100 <
/1 2100 T o1 >

even though the series is very close to the harmonic series. In fact, the value of the integral is a good
first-order approximation of the series.

2.6.7 Logistics

The final exam has the following properties.
« It will be in-class, for 90 minutes.
« It will be six questions. Questions will have one or two parts.

It will cover the section that we have had homework over by the time the exam occurs. Namely, we
will cover Chapters 1 and 2.

It will be completely closed-book.

» Be prepared.

2.7 October6

We're finishing up §15 and §16 today.

2.7.1 IntegralTest

We've probably seen the integral test in other classes. Let’s start with the following example.
Proposition 2.115 (p-series test). The series

>

n=1 nP

ifand only if p > 1.
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Proof. This is done by the integral test. Essentially,

* 1
/ — dx
g P

converges if and only if p > 1. |

Remark 2.116. This result is quite important because they provide nice series to compare to. For ex-
ample, we have some amount of control over any polynomials now.

2.7.2 Alternating Series Test

We start by defining our sequences.

Definition 2.117 (Alternating). A sequence {ay }rcn is alternating if and only if a;41 has a different sign
from ay, for each k € N.

Warning 2.118. Merely having a mix of positive and negative terms is not enough to be alternating. It
must alternate at every integer.

And here is our test.

Proposition 2.119 (Alternating series test). Suppose {a; }ren is @ sequence of nonnegative terms such
that

e a; - 0ask — oo,and
o {as}ren is decreasing.

Then

i(—l)k_lak

k=1

converges.

Note that this is almost as strong as we could want: surely a; — 0 as k — oo is necessary for convergence,
and all extra we have asked for is decreasing. In exchange for this strength, we are

Proof. We use the Cauchy criterion. Fixany e > 0. Now, there is some N for which & > N impliesa;, < ¢
because a;, — 0. Then we claim that n > m > N implies

The point is that an induction can show

foranyn, so

which is what we needed. [ |
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Remark 2.120. The Cauchy criterion is nice here because it provides a somewhat general machinery for
how we could prove similar statements. For example, we could imagine using the same machine to
show

converges when {ay } ke is @ nonnegative, decreasing sequence of real numbers which goes to 0.

As an example, note that the alternating harmonic series

& -1 k—1
y

k=1

converges by the Alternating series test. However, it is possible to rearrange the terms around to make this
diverge to +oo (or anything in R U {00} for that matter). For example, write positive terms ﬁ until we
are above 1, then write down —1/2. Then continue writing down positive terms until we are above 2, and
write down —1/3. Then continue in this matter.

The problem here is that the alternating harmonic series is conditionally convergent.

Definition 2.121 (Conditionally convergent). Fix {ax } rcn @ sequence of real numbers. If > a,, converges
but > |a,| does not converge, then Y a,, is called conditionally convergent.

Itis afact that rearranging the terms in a conditionally convergent series can be rearranged to make the sum
whatever we want. In contrast, absolutely convergent series do not have this problem: any rearrangement
is safe.

Anyways, let’s do an exercise.

Exercise 2.122. The series
> 1
kzzz k(ln k)P

will converge if and only if p > 1.

Proof. We use the integral test because it can cover most p at once. Comparison test might seem viable,
but because we need to cover the entire real spectrum of p, we have to be careful. Set f(z) = m which
is decreasing and hence safe.

We can compute, forp # 1,

o0

/°° dx _/oo du uPtHL
o x(lnz)p  Jpur —p+1
If p > 1, then the exponent is negative, so the series converges. If p < 1, then the exponent is positive, so
the series diverges. And for p = 1, we have

/°° du
— =Inu
In2 ¥

so we diverge again. |

In2

o0

= +OO,
2

Exercise 2.123. Suppose {ay } en is a decreasing sequence with > a; convergent. Then lim na,, = 0.
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Proof. Note that some care is required: doing this by contradiction is difficult because the lim na,, # 0is not
very helpful.

We have a; > 0 for each k because otherwise lim ay, will be less than 0 or nonexistent, breaking the
divergence test. Now, by the Cauchy criterion, for each e > 0, we can find N such thatn > m > N implies

n
Z ap < €.

k=m+1

The point here is that all of these terms are at least a,, because the a, decrease, so (n — m)a, < €. For
example, we may take n = 2m so that mas,, < ¢, which means (2m)as,, < . So this shows that (2m)as,, —
0, which is good enough because the a, are decreasing. |

2.7.3 Talking Reals

Let's talk about §16; it's nice but fairly irrelevant. Namely, it is perhaps not worth studying closely for the
purposes of the class.
We are building the real numbers. Let’s recall some ways to define the rational numbers.

| Definition 2.124. A rational number is the ratio of two integers.

| Definition 2.125. A rational number is an eventually repeating decimal expansion.

Then we can define our real numbers as decimal expansions, using the idea of extending the second defini-
tion. However, this is somewhat subtle: how do we show that this expansion is unique? Well, the answer is
that this is false:

0.09 = 0.10.

To rigorize this, we note that

[e’e} dk;
0.dids ... = Z—k
<10

Then if two decimal expansions 0.d; ... and 0.e; . .. give the same real number, then we have

[eS) dk — e
E =0.
k

P 10

If these aren’t identically equal, then say that the differ first at N. Then

eN—dN - dk—ek
1008 Z 10k

k>N

but this is very restrictive: the sum on the right is at most 3, _ \ 19z = 1ax to begin with, so the only way

forthisto occurisif ey = dy + 1 (where exy > dy) without loss of generality, and dx, — e, = 0 for k > N.
We can also show that rational numbers have eventually repeating decimal expansions. For example,
suppose we are looking at

o = 0d1 e dk—ldk . dn.

Then
B:=10""ta =0.dy...d,.

However, 10" %3 — Bis equaltody ...d, as an integer, so (3 is a rational, so « is a rational.

In the other direction, suppose we have a ratio of integers a/b, and we take ged(b, 10) = 1, for otherwise
we can shift over the decimal expansion by multiplying the fraction by a sufficiently large power of 10. Now
study the sequence of remainders

10*  (mod b)
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for k € Z. This must repeat eventually because there are infinitely many integers and finitely many residues,
so find some k > ¢ for which 10* = 10° (mod b) so thatn := k — £ has 10" = 1 (mod b). But then

10" —1
a_ 4T
b 107 —

is a repeating decimal.
And here is an exercise to round our our discussion.

Exercise 2.126 (Ross 16.13). Suppose that > a and > b both converge with a; < by, for each k and

ap < by, for at least one k. Then
oo oo
o<
k=1 k=1

Proof. We show a kind of contrapositive. Suppose that a;, < b and

L= Zak = Zbk.
k=1 k=1

Combining the convergences, we see that, for any ¢ > 0, there exists some N such thatn > N implies

L—iak L*ibk <eg,
k=1 k=1

bl

which gives

n

> (br —ax)

k=1

< 2¢

by the triangle inequality. But b, > ay, for each k, so we see

Z(bk — ak) < 2e.

k=1

Now, for any particular m € N, we note that, for any ¢ > 0, we have some N such that n > max{m, N}
implies

0< (b —am) <> (br —ax) < 2=.
k=1

So we must have b, = a,, because their difference is smaller than any positive real number 2¢. |

50



THEME 3
CONTINUITY

3.1 October13

So a midterm ocurred. | think it went ok.

3.1.1 Midterm Notes

Here are some general comments about the content.

+ On the first question, many people tried to have lim s,, # —oo imply lims,, € R U {400}, but this is
false. Namely, in all interesting cases the limit should not exist at all.

+ The easiest way to solve the first problem is to note
—oo = limsup s, > liminf s,
and finish because liminf s,, = limsup s,, = —co. | didn’t know if this was something we could cite.

» We have to be somewhat careful with what lim s,, # —oo means. It tells us that there exists some M
for which no N hasn > N implies s,, > M. This is not the same thing as saying there exists some M
for which s,, > M for each n.

« On the second question, we have to be careful with what “A is not open” means. Pushing quantifiers
through, all we get is that there is some a € A for which all 7 > 0 has

{r e X :d(a,z) <r} € A
Here, Z is an annoying symbol to work with.
« The class has the hardest time with number 2.

« For the third question, some people wrote down

oo

>~ 1 1
[ me=Y

n=1
which is untrue. What we know is that they converge together or diverge together.

 Forthefourth question, the class did best. There was some discussion about “solving” for the inductive
step.
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« For the fifth question, the best solution is to make one pair of distinct points have distance 1.
« For the last question, people again did well.

Here are some notes on statistics.
« Class average was about 96 points out of 120, which is about 80%.

« In particular, the curve will likely be minor.

3.1.2 Continuity, Advertisement

As a warning, metric spaces, which people seem to understand only mediocrely, will appear in the future
though not in a major sense. For example, we will be talking about continuity for a little while, and perhaps
this should change along with our metric. So as our metric changes, we might want to be careful with how
our notion of continuity changes.

Anyways, we will work with the normal distance metric on R. Let's imagine we're trying to graph some
function. When things are continuous, we can just guess a few points and connect the dots. For discon-
tinuities, these tend to stand out in the graph: they might look like jumps or asymptotes or oscillations or
similar.

To test for continuity, here is our definition.

Definition 3.1 (Continuity, I). Fixa function f : S — R for some S C R. Then we say that f is continuous
at a if and only if

lim f(z) = f(a)-

T—a

We will skirt around what lim means for real numbers. In practice most of our examples are for piecewise
functions or just actually continuous, so these limits are fine to evaluate. Namely, for most functions we
care about—polynomials, exp, sin, etc.—are all continuous.

But sometimes life is not so good.

Example 3.2. The function

)1 z€Q,
ﬂm—{0x¢Q

is continuous at noa € R.

We will be able to prove this shortly. But the point here is that proving this is somewhat obnoxious without
rigorous definitions of our terms.

3.1.3 Continuity, Rigorously

So here is our real definition of continuity.

Definition 3.3 (Continuity, Il). We say that a function f : R — R is continuous at x = « if and only if, for
each e > 0, there exists § > 0 such that

|z —a| <0 = |f(z) — f(a)| <e.

Geometrically, are imagining that we have a given error bound of € and an open interval (f(a) — ¢, f(a) +¢).
Then we want to find some small open interval given by ¢ for which (a — §, a 4 §) will go into the error bound
interval.

As an aside, this definition is potentially more annoying to work with than it was for convergence in
sequences, but this is because we are now upgrading to reals. Things will get harder; so it goes.

Here is one way to access continuity.
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Proposition 3.4. Suppose that f(x) is continuous at x = a. Then a sequence {ay }rcn converging to a
will have {f(ax)}ren converge to a.

Proof. Fixanye > 0. By continuity of f ata, thereissome § > 0forwhich |z—a| < §implies|f(z)—f(a)| < e.
But because a, — a, there exists N for which

n>N = la, —a| <d = |f(a,) — fa)] <e.
So we see that f(a,) — f(a). [ |

In fact, the converse is also true.

Proposition 3.5. Fix a € R. Suppose that f : R — R has the property that, for each sequence {ax }xen
with a; — a, we have f(ar) — a. Then f is continuous at a.

Proof. We proceed by contraposition. Suppose that f is not continuous at a, and we will exhibit a sequence
a, — a for which f(ay) does not converge to f(a). We know there exists ¢ > 0 for which no ¢ has

|t —a| <0 = |f(x) — f(a)| <e.

In particular, for each n € N, we can find some a,, for which |a,, — a| < 1 while |f(a,) — f(a)| > &.
We claim that this is the sequence that we want. Indeed, we have that a,, — a because, for any ¢y > 0,
we can set N := 1/gp so thatn > N implies

Ay, a n N = £&0-
However, f(a,) does not converge to f(a). Indeed, for the given ¢ > 0, we know there is no N for which
n > N implies |f(a,) — f(a)| < e because |f(ay) — f(a)| > e foreachn € N. |

So Proposition 3.5 tells us that we can reduce study of continuity to study of sequences, but there is still
some amount of cumbersome work because we would have to account for all such sequences; doing single
sequences is not enough.

Example 3.6. The function sin (1) is not continuous at = = 0, but the sequence {51}, _ has values of
only 0s, which do converge.

We remark that the definition of continuity we are working with focuses on differences of absolute values,
which is really just the standard metric in disguise. So let’s try changing the metric.

Example 3.7. In the telemetric (distances between distinct points is always 1), sequences converges if
and only if it is eventually constant. Namely, if a, — a, then take e = 1 so that there is some N for
whichn > N has

1
dtele(aaak) < 57

but this forces ar = a. And conversely, if a sequence is eventually constant, then of course it converges.
But now, all functions are continuous everywhere! Indeed, for any sequence a;, — a, we have f(ax)
will eventually be exclusively terms of f(a), which converges to f(a), as needed.

Things get more complicated, for example, if the domain and range have different metrics and notions of
continuity.

3.2 October18

We continue with our discussion on continuity.
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3.2.1 Talking Continuity

People usually start with a graphical definition of continuity, but we will want something more general. For
example, graphical intuition does not really help define functions which are continuous on R \ @ but not in
Q.

We have given a precise definition of continuity, so we can start talking about some continuity laws. For
example, is the sum of two continuous functions itself continuous?

Proposition 3.8. Fix functions f, g : S — R are continuous at some a € S. Then f + g is continuous at a.

Proof. Fixanye > 0. Thene/2 > 0, so we have some §; > 0 such that

o —al <5 = |f(x) ~ fla)| < 5.

Similarly, we have some ¢, > 0 such that

1
|z —a] <4y = lg(z) —g(a)| < 5e.

But now set ¢ := min{ds,d,} > 0sothatd > 0 has |z — a| < § implies both of the above, so we bound

(7 +9)(@) — (7 +9)(@)] < 17@) ~ F@)] +lg(x) ~ g(@)] < g+ 5= ==
which is what we need. u

Note that we could have just proven the corresponding limit law here using the sequence definition instead
and used the fact that we know limits of sequences decompose.
Andwe canalsodo f - g.

Proposition 3.9. Fix functions f, g : S — R are continuous at some a € S. Then fg is continuous at a.

Proof. The key point is that
|f(@)g(x)—=fla)g(a)| < [f(@)g(x)—f(x)g(a)[+|f(x)g(a)—f(a)g(a)] = | f(x)|-|g(x)—g(a)|+|g(a)|-|f(x)—f(a)l.

Now we can bound this quantity; fixany ¢ > 0. Something annoying here is that we need to bound the | f (z)|
on the outside. So start by fixing some ¢q to get dy so that

|z —al <60 = [f(z) — f(a)] <o
In particular, | f(x)| < |f(a)| + €0 always, so we see that |z — a| < Jp implies
[f(2)g(z) = fla)g(a)] < [If(a)] + eol - |g(x) — g(a)| + lg(a)| - [f(x) — f(a)l-
Now bounding | f(z) — f(a)| and |g(z) — g(a)| we can bound without tricks. Now we can find 6y > 0 such that

€/2
r—al <y = z)— fla)| < ————,
|z —af < df @) = Hol < 2T
and we can find some §, > 0 such that
€/2

v —al <8y = l9(2) = 9(@)l < rrym oy

In particular, 6 := min{dy, d,d,} > 0 will have |z — a| < ¢ imply all of the above so that

F@)g(@) ~ F@)g(a)] < [17(@)] + 2ol - lo(@) — g(a)| + lg(a)] - () ~ F(@)] < 32+ 32 <=,
which is what we wanted. |

Let's do some exercises.
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Exercise 3.10 (Ross 17.5). Fix some m a positive integer. We show that f(xz) = 2™ is continuous for
each real number z.

Proof. Because m is a positive integer, we can do this by induction. Our base case is m = 1, where we say
that each a € R withe > 0 has 6 = ¢ giving

|z —al <e = |f(z) - fla) =[x —a| <d =k,
establishing our continuity. Now, we know that products of continuous functions are continuous, so

—

m

is also continuous. u

Here is a harder example.

Exercise 3.11 (Ross 17.9(a)). We show that f(z) = 22 is continuous at a = 2.

Proof. We use the ¢-4§ definition of continuity. Namely, for each £ > 0, we need to find § > 0 so that
|z —2| < ¢ == |? —4] <e.

But now we see that
|? — 4| = |z — 2| |z + 2.

Provided § < 1, then we see that |z — 2| < §implies |z + 2| < |x — 2| +4 <1+ 4 = 5. Sowesetd =
min{1,e/5} > 0 sothat |z — 2| < ¢ implies

|o* —4| =]z -2 [z +2[<d-5<¢,
which is what we wanted. ]

Notably, we don’t care for the exact value of § that will give the sharpest inequality. We need something to
work; constant factors are inconsequential.

Exercise 3.12 (Ross 17.9(b)). We show that f(z) = \/z is continuous at a = 0.

Proof. Foreache > 0, we need to find 6 such that
|z —0] <& = |Vz| <e.

Well, we can just set § = £2 so that |z| < § implies |\/z| < ¢, which we can show by contraposition: |/z| > ¢
would imply that |z| > 2 by multiplication.

3.2.2 Extreme Value Theorem

So we're actually starting to do some analysis in this class. We recall the following statement.

Theorem 3.13 (Extreme value). Fix f a continuous function on a closed interval. Then f is bounded and
achieves a maximum and minimum.
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Warning 3.14. We have that R = (—o0, ) is closed and an interval, but it is not a closed interval be-
cause it does not contain its endpoints.

Proof. We start by showing that f is bounded. We will show that f is bounded above, and bounded below
is a similar argument; suppose for the sake of contradiction that f is not bounded above, so that we can find
asequence { f(xy)}ren so that f(xy) > k for each k € N. However, the sequence {z } ey is @ sequenceina
bounded set, so it must have a convergent subsequence {z,x }xen givenby o : N — N.

So now say that 2, — x, and we know that z is in the domain of f because the domain of f is closed (!).
But now f(z,x) — f(x), so there is some N for whichn > N implies |f(z,.) — f(z)| < 1 so that

f@)> flagn)—1>ck—1>k—-1

for each f(z). But now we canset x = | f(z)| + 10 to get a contradiction, finishing this.
Now we show that f achieves its maximum, and the minimum is a similar argument. Fix

s = sup{f(2)}.

Now, the supremumiis in the set of subsequential limits, which means we can find {z}, } ren such that f(xy) —
s. But now the {2} ren has a convergent subsequence called {z,« } ey for some strictly increasing o : N —
N.

To finish, we again see that z,; — x for some z in the domain of f because the domain of f is closed.
But now f(z,x) — f(x), and because f(z,1) — s because the limit of the subsequence is the limit of the
sequence when the limit of the sequence is defined. Thus, we have f(z) = s because the limitis unique. W

This is an important idea for calculus when we're trying to find the maximums and minimums of various
functions. Namely, it is not immediately obvious—as the above theorem shows—that these actually exist
at all. Here we see that we get this for all closed intervals (in fact, compact domains in general), but, say,
open intervals are harder.

Remark 3.15. The above proof also works for any closed and bounded set. So, for example, we have an
extreme value theorem on [0, 1] U [2, 3].

We also note that we have some of the tools and thought processes for more general settings. For example,
what if instead of R as our ambient space, we use Q? Well, the function

1
T —2

on the closed interval [0, 5] is not bounded above or below even though it is perfectly well-formed.

As an aside, we note that closed sets in metric spaces and topologies in general have important impli-
cations. Namely, being closed was paramount to the above discussion: everything breaks down on open
intervals because we lost closure. In fact, compactness is an important condition here.

fz) =

Example 3.16. All functions on {1/n},cn are continuous. Roughly speaking, this is due to “discrete-
ness.”

In spite of the above example, it really feels like there should be a constraint on 0, but functions on {1/n},en
cannot “see” 0.

Example 3.17. Not all functions on {1/n},en U {0} are continuous. Namely, we also have to check that
the subsequence 1/n — Qs carried to f(1/n) — f(0).

56



3.2. OCTOBER 18 104: INTRO. TO ANALYSIS

3.2.3 Intermediate Value Theorem

Here is another important result. For example, we used this quite frequently in calculus when doing root-
finding.

Theorem 3.18 (Intermediate value). Fix f a continuous function on the closed interval [a, b]. Then if f
achieves all values between f(a) and f(b).

Proof. We proceed by contradiction. Without loss of generality, we take f(a) < f(b). Suppose that d be-
tween f(a) and f(b) goes is not achieved. However, the idea now is that we can decompose [a, b] into two
disjoint open sets, which is a problem because [a, b] is connected. Indeed, we look at

S ={ze€lab]: f(x) <d}.

Now, there must be a sequence {z } ey such that z;, — sup S, and so it follows sup S € [a, b] by closure. But
now each f(zy) isat most d, so f(sup S) < d.

We very quickly note that sup S ¢ {a,b}. Indeed, f(a) < d < f(b), so certainly f(supS) < d < f(b)
implies sup S # b. On the other hand, sup S = a would force S = {a}, but then 2 > a would have f(z) > d >
f(a),so|f(z) — f(a)| > d, which breaks continuity of f at a by checkinge = d — f(a).

To finish, we note that the complement

S¢={x €a,b]: f(x) >d}
will have a sequence converging down to sup S because all points bigger than sup S are in 5S¢, and such
points exist because sup S ¢ {a, b}. Thus, this downward moving subsequence shows that f(sup .S) > d, so

f(sup S) = d, which is our contradiction as we have a point which goes to d. |

We note that the Intermediate value theorem implies that the output of our continuous function f on the
closed interval must itself be a closed interval.

Corollary 3.19. Suppose that f is a continuous function on the closed interval [a, b]. Then the image of

fisaclosed interval.

Proof. We know that f must achieve its maximum M and minimum m from the Extreme value theorem, say
from x5, and ., respectively. But now the Intermediate value theorem implies that

f([avb]) 2 f([xM7xm] U [xmvxl\f]) 2 [vaL

butf ([a,b]) C [m, M] by definition of the maximum and minimum, so we conclude f([a, b]) = [m, M], which
finishes. |

To continue our story, we pick up the following definition.

Definition 3.20 (Strictly increasing). We say that f(z) is strictly increasing if and only if a < b implies
fla) < f(b).

This is the same idea we had as in sequences.
We have the following result, acting as a partial converse to the Intermediate value theorem.

Proposition 3.21. Fix f a strictly increasing function on some interval. Then if the image of f is also an
interval, then f is continuous.
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Proof. Fix f : Iy — I ourfunction, where f surjects. If I is a point, then f is constant and hence continuous.
Else points in I have nontrivial open neighborhoods.

Now, fix a € I; that we want f to be continuous at. We proceed by force. Choose some ¢ > 0, and then
we observe that

(fla) e, fla) +e)N 12
is some interval because it is the intersection of two intervals, and this interval is nonempty because it con-

tains f(a). So let this interval have [y1, y2] as a closed sub-interval, and then we can pull y; and y» back to z;
and x2 by f. Now finding some open neighborhood around a inside of (x1, x2) gives us our ¢ so that

|t —al <0 = z € (z1,22) = f(x) € (f(a) —e, f(a)+¢).
This finishes the proof. |

This helps us test for function continuity, for example by partitioning a big functioninto smallintervals where
itis strictly increasing or decreasing because we know that the function ought be continuous on each of those
intervals by simply checking what their output through f is.

3.3 October20

Here we go again.

3.3.1 More on Monotonic Functions

Last time we showed that if a strictly increasing function has image an interval on an interval, then the func-
tion is continuous on the domain interval. Of course, the use here is somewhat restricted because because
strictly increasing or decreasing is quite restricted.

By doing some trick, however, sometimes we can get out of a lot of work. For example, if a function is
locally monotone, we might be able to piece together continuity for the full function.

Example 3.22. We show that f(z) = 1/x is continuous on [1, 2]. Well, the function is strictly decreasing,
and it is not too hard to show that the range is [1/2, 1], so the function is continuous.

Continuing our discussion, we have the following definition.

Definition 3.23 (One-to-one). A function f is one-to-one if and only if f(a) = f(b) implies a = b.

Non-Example 3.24. The function f(z) = 22 is not one-to-one on R. For example, f(2) = f(—2).

It feels like functions which are one-to-one and continuous should be strictly increasing or decreasing. Let's
show this.

Proposition 3.25. Suppose f : I — R is continuous and injective, where I is some interval. Then f is
strictly increasing or strictly decreasing.

Proof. Show that if f is continuous and neither strictly increasing nor strictly decreasing, then f is not in-
jective. Indeed, to not be strictly increasing nor decreasing, there must be a < band ¢ < dwith f(a) < f(b)
and f(c) < f(d).

By picking up a suitable subset of our three elements, we can say that either f(a) > f(b) < f(c) or
fla) > f(b) < f(c)fora < b < c. If any of these are equalities, we are done already. So without loss of
generality take f(a) < f(b) > f(c), but then f must hit each value in (max{f(a), f(c)}, f(b)) twice, once in
(a,b) and once more in (b, ¢). So this violates injectivity. [ |

Let's do some exercises.
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Exercise 3.26. We show that ze* = 2 for some z € (0, 1).

Proof. This is by the Intermediate value theorem. Note that ze” is continuous on (0, 1) because it is the
product of two continuous functions. Then it suffices to note that

0=0" <2< 1le! =e.

So the Intermediate value theorem finishes. [ |

Exercise 3.27. Show that any polynomial of odd degree will have a root.

Proof. This is somewhat technical. The main idea is that z — oo makes f(z) — oo and © — —oo makes
f(z) = Foo. So there is some a with f(a) > 0and some b with f(b) < 0, and so there is some x between
them with f(x) = 0 by the Intermediate value theorem.

The technicalities are somewhat annoying, so we will not give them. Roughly speaking, we would have

to fix -
f(z) = Zakxk
k=0
where all but finitely many of the a, are zero. Then we can find some positive and some negative outputs by

hand. [ |

The exercises in this section should not be too challenging.

3.3.2 Uniform Continuity

This is one of our first, new analysis concepts. Here is the motivating example.

Exercise 3.28. We show that f(z) = 22 is continuous at x = 2.

Proof. Foreache > 0, we showed last time that § := 1= was good enough. [ ]

Something funny about this proof is that the constant % was generated off of z = 2. For example, withe = 1,
we can choose § = 1 so that

1
o—2l<z = |2" 4| <1
But now if we chose 100 as our point of interest, then § = £ will no longer work here: (100 + 1—10)2 > 100 +
20 > 100 + 1, so we are out of luck.

The issue we are running into here is that ¢ is highly dependent on our choice of point we are studying.
It does not feel like we can make ¢ independent of this, no matter how small it goes.

Proposition 3.29. Fix f(z) = 22 and e = 1. Then there does not exist § such that, for each a € R and
z € R,
|z —al <6 = |x27a2’ <e.

Proof. Suppose for the sake of contradiction that there is such a §. Then, for any z,y € R, we have that
lx—yl <6 = |2® —y*| <6
But now take z = 2/§ and y = 2/ + §/2. Then these have distance §/2 < §, but

2 6\> o 4
2,2
—t= (24 c) — =l > 1=
g (5 + 2) 1 tEoiee
so we have hit our contradiction by the hypothesis on ¢. |
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So we have the following definition.

Definition 3.30. Fix f : S — R a function. Then we say that f is uniformly continuous on S if and only
if, for each € > 0, we have that there exists a single 6 > 0 such that

[z =yl < = [f(2) - fly)l <e

Example 3.31. Constant functions are uniformly continuous. For each ¢ > 0, take 6 = 1 so that

[z =yl <d = [f(z) - fy)|=0<e

Example 3.32. The identity function is uniformly continuous. For each ¢ > 0, take 0 = € so that

[z —yl <6 = [f(z) - f)l = e -yl <e
Non-Example 3.33. The function f(z) = 22 is not uniformly continuous, as we showed above.

Example 3.34. The function f(z) = e® seems to have the same problems due to it moving at increasing
speeds.

Non-Example 3.35. The function sin (2?) is bounded and continuous, but it is not uniformly continuous.
We note that this is a stronger condition than continuity.

Proposition 3.36. If f : S — R is uniformly continuous, then f is continuous on all of S.

Proof. Fixany a € S. Then for any e > 0, we know there is a ¢ such that

[r—yl <6 = [f(x) - fly)l <e

Plugging in y = a shows that
[z —a] <6 = [f(x) = fa)] <&,

so it follows that f is continuous at a. |

But of course, we showed that the reverse implication is untrue with f(z) = 2.

3.3.3 Properties of Uniform Continuity

We would like to have a more concrete way to test for uniform continuity because the given definition has
quite a few quantifiers to digest. We have the following example.

Exercise 3.37. We show that f(z) = 22 is uniformly continuous on [—4, 10].

Proof. Here we are safe because our “speed” is now bounded, and in fact the condition seems to be the
worst at 10. Fix any € > 0. Then we need to find ¢ so that

lz—y| <6 = |2* —y?| <e.
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Now, we note that
|22 —y?| = |z —yl- |z +yl < |z —y|- (2] + |y]) < |z —y|- 20,
so we may choose ¢ := ¢/20 which gives
lz—yl <6 = |2* — | < |z —y| 20 <206 =e.
This is what we wanted. |

Here is the more general result.

Theorem 3.38. Suppose that f(x) is continuous on a closed interval I. Then f is uniformly continuous.

Proof. We go by contradiction, | guess. Then there is a ¢ > 0 such that each § > 0 has a pair (z, y) with
|z —y| < 0 eventhough |f(z) — f(y)| > e.

We now attack the continuity. For each k£ € N, we may find a; and by with |a;, — bi| < % even though
|f(ar) — f(bg)] > €. Now find a convergent subsequence (!) a,1, which converges to some ¢ in the closed
interval. But now

‘bok - EI < ‘bok - aak| + |a0'k - g‘

willgoto 0as k — oo, so it follows that b, — £.
So we have by continuity that

lim (f(aak) - f(bak)) = f(ﬁ) - f(e) =0,

k—oc0

but this contradicts the assertion that | f(a,x) — f(bsk)| > € always, so we are done here. [ ]

Remark 3.39. The above proof does not work for open intervals because our convergent subsequence
does not need to converge in the interval. As a concrete example, f(z) = 2 on (0, 1) is not uniformly
continuous because of the speediness at 0.

Here is another nice property.

Proposition 3.40. Fix f : S — R a uniformly continuous. Then if {ay }ren is Cauchy, then {fax }ren is
Cauchy.

This is not true for general functions.

Example 3.41. The continuous function f(z) = 1 on (0, 1) has the Cauchy sequence {1/n},cn, which is
not outputted to a Cauchy sequence.

Proof of Proposition 3.40. We do this by hand. Fix some ¢ so that we want N for which
n,m>N == |fan — fam| < e.

But now there exists a ¢ for which |z — y| < § implies |f(x) — f(y)| < &, so we choose N by the Cauchy
condition such that
nm>N = |a, —an| <0 = |f(x) — f(y)| <e,

which finishes. [ ]
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Remark 3.42. We are using Cauchy sequences in the above rather than convergent sequences because
we don't have to worry about the limit being inside of the domain or not. Our example from earlier
exemplified this.

We have the following quick thought.

Proposition 3.43. If f : S — R is uniformly continuous and " C S, then f|r : T — R is uniformly
continuous.

Proof. Fixe > 0. Then on S there is some ¢ for which |z — y| < § implies | f(x) — f(y)| < €, but this same §
also works on T [ ]

Example 3.44. We have that 22 is uniformly continuous on (0, 1) because it is uniformly continuous on
[0, 1].

Non-Example 3.45. We cannot “fix" f(z) = 1/2 on (0, 1) to be uniformly continuous by replacing this
with [0, 1] because there is no way to add a point at 0 to get a continuous function.

Synthesizing the above two examples gives the following result.

Theorem 3.46. Fix (a,b) an open intervaland f : (a,b) — R. Then f is uniformly continuous on (a, b) if
and only if f can be extended to be continuous on [a, b].

Proof. One direction is not so bad: if we can extend f to be continuous on [a, b], then it is uniformly contin-
uous, so it is uniformly continuous on (a, b).

The other direction is a bit trickier, so we won't prove it explicitly; take f uniformly continuous. Then the
point is that f takes Cauchy sequences to Cauchy sequences! So find some Cauchy sequence in (a, b) which
converges to inf(a, b) = a, and then we know that the outputs by f will be another Cauchy sequence. This
converges in R, so say it converges to f(a). Doing similar for f(b) gets us our necessary extension.

There is some trick that we need to do to make sure all sequences converging to a will converge to the
required f(a). Well, if we have another a, such that a, — a as n — oo, we need to show f(a,) — f(a) still.
Well, if it converges to some value b, then the sequence

/ /
ai, ay,0209, . . .

will have output converging to both f(a)and b,sob = f(a) as needed. Regardless, something like this should
finish the proof. |

Here is another result.

Proposition 3.47. Fix f a function defined on aninterval I. If f is differentiable with bounded derivative
on the interior of I, then f is uniformly continuous on I.

Non-Example 3.48. The function f(z)
fails the above, as it should.

L on (0, 1) has derivative approaching —cc as = — 0, and so it

"

Proof. Essentially, the bounded derivative shows that the secant lines have bounded slopes by the Mean
value theorem. We will not say more here. |
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3.3.4 Exercises

And let’s close off with some exercises.

Exercise 3.49 (Ross 19.1(f)). The function f(z) = sin (25 ) is not uniformly continuous on (0,1] .

Proof. The point here is that we cannot extend f to a continuous function on [0, 1]. Namely, we can find
sequences {ag }reny and {bx }r— o0 With ap — 0and by — 0 with f(ax) = 0and f(b;) = 1 (say), so there is no
way to assign some f(0) continuously. |

Exercise 3.50 (Ross 19.1(g)). The function g(z) = z?sin (1) on (0, 1].

xT

Proof. We can extend g to a continuous function on [0, 1] by setting

1
T T 2 . L
¢(0) = lim g(x)—fll_r)%m Sln( ),

x—0 x

which is 0 by the Squeeze theorem. |

Exercise 3.51 (Ross 19.3(a)). We show that f(z) = ;% on [0, 2] by hand.

Proof. Foreache > 0, we need to find § > 0 such that

lz—y|l<d = xiQ_y% <e.
Well, we can massage a bit by writing
r oy ‘: 2(z —y) ‘S 2 |x_y|:1|$_y‘_
r+2 y+2 (z+2)(y+2)| ~ (0+2)(0+2) 2
So we see § = 2¢ so that
lz—y| <0 = xi2—$ <%|J;—y|<%6:€,
which is what we wanted. |

Exercise 3.52. Suppose that f is continuous on [0, c0) an uniformly continuous on some [k, oo) for some
k > 0. Then f is uniformly continuous on [0, ) .
Proof. Fixe > 0. We can find d; so that, for z,y € [k, o0) , we have
[z —y[ <d = [f(z) - fly)l <e
Similarly, we can find 4, so that, for z,y € [0, k + d], we have
lz—yl <61 = [f(z) - fly)l <e
because f is continuous and hence uniformly continuous on [0, k + §]. So taking ¢ := min{dy, é>} has
-yl < = [f(x) = fly)l <e

in all cases, after some care. Indeed, if |z — y| < §, then either z,y € [0,k + ] or z,y € [k, 0). [ ]
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3.4 October25

Let's have some fun today.

3.4.1 Limits

We're going to talk about limits, with many of the same ideas from calculus or sequences. For example, they
prove in the book the limit laws and so on, and we will not do all of these formally. Regardless, here is our
definition.

Definition 3.53 (Limits). Fix f : S — R. We say that the limit of f(x) asx — a is L along S, notated

lim f(z) =L,

z—aS

if and only if for every sequence {a, }nen C S converging to a has f(a,) converge to L.

Note that we have added a subset S to our definition. One reason this is a good thing to do is that it lets us
talk about limits of functions which are not defined over R. For example, it's not that the limit

lim vz

r——00

does not exist—the limit does not even make sense because the interesting values with z — —oc aren't
defined for /z. If we let S := R>, then
lim +x

z——00"
now at least will compile, though —co perhaps doesn’t make sense with this S. Similarly,

. tanx
lim ——
z—ooS (| tanz| + 1)

where S is the domain of tan = will at least make sense and equal 0, though without the S here, things make
less sense.

Remark 3.54. We have that

931~I>I£I+ (x) - z—)lcltglv‘x’) f(m%

so our limits generalize left and right limits. This also explains our notation.

As usual, we can modify our sequences definition of the limit to an £-§ definition.

Proposition 3.55. Fix f : S — R. We have that

lim f(x)=1L

r—aS

if and only if, for each ¢ > 0, there exists § > 0 such that each z € S satisfying |z — a| < § have
f(z) - L] < =.

Proof. We have two implications.
» Suppose that, for each e > 0, there exists 6 > 0 such thatz € S has |x —a| < d implying |f(z) — L| < e.
Now, take any sequence {a,, }»en C S which convergestoa € S.

Then, for any € > 0, there exists ¢ such that z € S has |z — a| < § implying |f(z) — L| < €. However,
thereisan N for which n > N implies |a,, — a| < 4, so this N hasn > N implies |f(a,) — f(a)| < € as
well.
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» Conversely, suppose that there is ¢ > 0 for whichno § > 0 has |z — a| < § implies |f(z) — f(a)] < e.
Then, for each n € N, there is some x,, with |z,, — a| < 1/nand |f(z,) — f(a)] > €.

But now the sequence z,, converges to a while f(x,) never goes within ¢ of f(a), so f(x,) does not
converge to f(a). So it follows lim,_,,s f(x) is not L. ]

As an example, let's show the following.

Proposition 3.56. Fix f : R — R. We have that lim,_,, f(z) = L ifand only if
lim f(z) = lim f(z) = L.
z—a™t T—a—
Proof. We have two implications here.

+ Suppose that lim,_,, f(z) = L. We will show lim,_,,+ f(x) = L, and the other limit is similar. Now,
forany e > 0, there exists 6 > 0 such that z € R has

[r—al <0 = [f(z) - fla)] <e
Then forany a € (a, ), we have |z — a| < § implies | f(z) — f(a)| < e still, finishing.

« Suppose that lim,_,,+ f(z) = lim,_,,- f(z) = L. Then, forany ¢ > 0, there exists 6T > 0 such that
x € (a,00) has
|z —al <67 = |f(x) — f(a)| <e.

Similarly, there exists 6= > 0 such that z € (—o0, a) has the same. Then set § := min{é+,5~}. Then
because z € Rimpliesz = aorx € (a,00) or z € (—00, a), we have in all cases that

|t —a| <0 = |f(z) — f(a)| <e.

This is what we wanted. ]

Remark 3.57. It is possible to do the first implication with ideas from sequences: any sequence ap-
proaching a from the left will be some sequence and hence have the output converging to L.

To finish, let's do an exercise.

Exercise 3.58. Suppose f1, f2, f3 € (a,b) with f1(z) < fa(z) < f5(z) on the domain. Then
lim fi(z) = lim f3(z)=1L
z—a™t rz—at

implies
lim fo(x) = L.

r—at

Proof. There might be ways to do this with sequences, but we can do this with £-¢ style ideas. Fixe > 0 so
that there exists §; > 0 such that z € (a,b) has

|t —a| <61 = |fi(z) - L] <e.
Similarly, there exists d3 > 0 such that z € (a,b) has
|t —a| <6 = |fs(x) — L] <e.
Now, as usual, take § := min{dy,d2}. Then any = € (a, b) will have
—e< filzx)-L<fo(x)-L< f3(z)—L<e

by using our definitions of §; and 5 on the left and right. This finishes. |
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3.4.2 Upgrading to Metric Spaces
Let’s start by moving continuity up to a metric space. The main point is that the condition
[z —a| <6 = [f(x) = fla)| <e

can be moved into a continuity condition by noting that |z — a| is really our distance metric. So here is our
definition.

Definition 3.59 (Continuity for metric spaces). Fix (X, dx) and (Y, dy ) metric spaces. Then a function
f: X = Yiscontinuousata € X if and only if, for each ¢ > 0, we have some § > 0 such that z € X has

dx(z,a) <0 = dy(f(z), f(a)) <e.

Example 3.60. Using the telemetric on R, all functions are continuous. The main point is that for any
e > 0, we can take § = 1/2 so thatdx(x,a) < é implies z = a. Alternatively, any sequence converging
to a must be eventually constant, so it of course lifts to a sequence converging to f(a) upon pushing
through f.

Example 3.61. The taxicab metric on R?, continuity actually looks the same as for Euclidean continuity
R? — R2! Namely, the metrics induce the same topology on R?, though the taxicab metric does look
different.

And we can go to uniformly continuous by moving around our quantifiers, as we did in R.

Definition 3.62 (Uniform continuity for metric spaces). Fix (X, dx) and (Y, dy) metric spaces. Then a
function f : X — Y is uniformly continuous if and only if, for each ¢ > 0, we have § > 0 such that
x,y € X has

dx(z,y) <0 = dy(f(z), f(y)) <e.

Let's build towards a more topological definition of continuity.

Definition 3.63 (Pre-image). Let f : S — T be a function. Then we define the pre-image, for B C T,

fYB)={seS:f(S) e B}

Warning 3.64. This f~! is not the same as an inverse function! Here, f~! : P(T') — P(S) is defined for
arbitrary functions (not necessarily one-to-one).

3.4.3 ABetter Continuity

And here is our topological definition of continuity.

Theorem 3.65. Fix (X, dx) and (Y, dy ) metric spaces. We have that f : X — Y is continuous if and only
if, f~! sends open sets of Y to open sets of X.

Proof. We have two implications.

« Let's start by taking f continuous. Fix U C Y an open set so that we want to show f~1(U) is open.
Well, findany a € f~1(U), and we want to show that a is in the interior of f~1(U).
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Now, f(a) € U isin an open set, so there is a ¢ such that
{yeY dy(y fla)) <e} C U

By the continuity of f, we are promised § > 0 such that dx(x,a) < § implies dy (f(x), f(a)) < e. It
follows that
{x € X :dx(z,a) <6} C{x e X dy(f(zx), f(a) <e} C fHU)

because dy (f(z), f(a)) < e implies f(z) € U. Thus, a is indeed in the interior of f~1(U), finishing.

« Now suppose that f takes open sets to open sets. Take a € X so that we want to show f is continuous
at a. Now, forany ¢ > 0, we note that

B:={yeY :dy(a,y) <e}
is an open set of Y, so it follows that
f74(B)

is also open. Buta € X has f(a) € B,soa € f~1(B)isin the interior of f~!(B), so thereisd > 0 such
that
{r € X :dx(a,z) <3} C fYB).

It follows that dx (a,x) < § implies f(x) € B implies dy (f(a), f(x)) < €, which shows that f is indeed
continuous at z = a. |

Remark 3.66. What is good about this definition is that it works nicely and is quite simple for more
general topological spaces.

Remark 3.67. | think we can actually strengthen the above statement to say that f is continuousatz = a
if and only if each open set Uy C Y containing f(a) has a pre-image f~!(U) containing some open
subset Ux C f~1(U) containing a € Ux. The point is that the above proof is very “local” at a.

Here is an example of something that we get from this characterization of continuity.

Proposition 3.68. Fix f : X — Y a continuous map of metric spaces. Then if X is compact, then f(X)
is compact.

Proof. The idea is that any open cover of f(X) can be pulled back along f to an open cover of X. Then the
open cover of X has a finite subcover, which tells us which sets of the open cover of f(X) we “really need”
to cover.

Formally, suppose that {U, }nex is an open cover of f(X). Then, for each x € X, we have that f(z) € U,
for some a € \, so each z € X belongs to some f~1(U,) for some a. It follows that

Ux = {f'(Ua) : Uy € A}

will fully cover X, and this is in fact an open cover because f is continuous. Now, Ux is an open cover of X,
so compactness of X promises us some sequence {«ay }}_; which is yields a finite subcover of X.

To finish, we claim that the {U,, }}_, fully covers f(X). Indeed, for any y € f(X), there is x such that
f(x) = y. Now, x € f~1(U,,) for some k because the f~1(U,,) fully cover X. Thus, y € f(x) € U,,, so
indeed our finite subcover does cover. [ |

And as usual, we can show the following.
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Proposition 3.69. Fix (X, dx)and (Y, dy ) metric spaces. If X iscompact, andif f : X — Y is continuous,
then f is uniformly continuous.

Proof. Fixe > 0. Now, for each a € X, there is some §, such that
{f(x) €Y :dx(a,z) <} C{y €Y :dy(y,a) <e/2}.

Now set U, = {a € X : dx(a,x) < d4/2}, which is open in X. Then we see thata € U,, so

zeX reX

so the U, provide an open cover of X. But now compactness of X implies that we may choose some finite
subcover {U,, }}_, of X, and because this is finite, we may fix

1
0:=— min 0.
2 1<k<n

Fix a,b € X with dx (a,b) < §. Because of our open cover, we can place x; € Uy, but now
dx (b, z) < d(a,b) +d(b,z) <0+ %&f < g, -
Butalso dx(a,z) < 0,50 we seethatdy (f(a), f(zx)) < e/2and dy (f(b), zx) < /2 by construction of the
U,. It follows dy (f(a), f(b)) < e. |
Remark3.70. Thisis essentially the generalization of the statement that any uniformly continuous func-
tion on a closed interval is uniformly continuous.
Let’s close with some exercises.
Exercise 3.71. Fix (X, d) a metric space, and fix zy € X. Then show f : X — R defined by
f(@) = d(z, x0)

is uniformly continuous.

Proof. Fixe > 0. Then we want to define § > 0 such that
d(z,y) <6 == |d(z, ) — d(y,z0)| <e.

Well, the point is that
d($> .’170) < d(l‘, y) + d(y7 SL’()),

sod(z,zo) — d(y,y0) < d(x,y). Similarly, we see that
d(y, zo) < d(y, x) + d(z, xo),
sod(y,yo) — d(z,xo) < d(x,y). It follows that we can take § := ¢ so that
d(z,y) <6 = |d(z,20) = d(y,yo)| < d(z,y) < <e,

which is exactly what we wanted. n
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Exercise 3.72 (Ross 21.9). Find a continuous, surjective function [0, 1]% — [0, 1].

Proof. Consider the function 7 : [0,1]? — [0, 1] defined by
7(x,y) = .

This is well-defined because the first coordinate does live in [0, 1]. It remains to check continuity; we show
that 7 is uniformly continuous. Fix ¢ > 0. Now, for any two points (x1,%1), (12,%2) € [0,1]? take § == ¢ so
that

V(@ —22)2+ (1 — )2 <d=¢
implies that (z1 — 22)? < & — (y1 — y2)? < €2 implies that |z; — 22| < . [ ]

3.5 October27

Here we go again.

3.5.1 Connectedness

Let's talk about connectedness. It matters later in life. We have the following definition.

Definition 3.73 (Connected, I). A metric space (X, d) is connected if and only if has no proper nonempty
subset which is both open and closed in X. If (X, d) is not connected, then we say that it is disconnected.

Remark 3.74. Of course, both @ and X are

There are some equivalent variations of this definitions. Here is an example.

Definition 3.75 (Connected, Il). A metric space (X, d) is disconnected if and only if we can write X :=
U, U U, for nonempty subsets U; and Us. If this is impossible, we say that X is connected.

With this in mind, we have the following.

Definition 3.76. If some proper nonempty open subset U C X with U both open and closed, then we
say that U disconnects X.

Remark 3.77. This is best seen geometrically: usually what is happening with disconnections is seen
with X == [0, 1] U [2, 3], where the subset [0, 1] is both open and closed.

Example 3.78. In Z, any nonempty proper subset will disconnect Z. Indeed, points are open in Z, so all
subsets are open.

Example 3.79. In QQ, the subset
U={zecQ:z>2}

is open, but its complement is

Ut={zeQ:z<2}
because v2 ¢ Q, so we find that U¢ is also open, making U closed.
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In general, it is much harder to prove that a space is connected than disconnected because disconnection
merely requires us to exhibit the disconnecting subset.
Let’s use this definition for something.

Proposition 3.80. Fix f : X — Y a continuous function between the metric spaces (X, dx) and (Y, dy).
If X is connected, then f(X) is connected.

Proof. We can think about this topologically, similar to the proof that continuity preserves compactness.
Anyways, we show this by contraposition: take f(X) disconnected, and we show that X is disconnected.
This means that we have a proper nonempty subset U C f(X) which is both open and closed so that

F(X)=UUU"

shows that f(X) can be disjointedly decomposed into two nonempty open sets. By continuity, we see that
f~YU) and f~1(U*) are both open. Further, they union to X because each x € X has f(z) in one of U and
U<, so z livesin one of f~1(U) and f~1(U°).

So we see that f~1(U) is both open and closed; it remains to show that f~1(U) is nonempty and proper.
Well, U was nonempty, so takey € U C f(X) so that there exists z € X such that f(z) = y € U. It follows
thatx € f~1(U), so f~1(U) is nonempty. Then because U¢ was nonempty, it follows f~1(U*¢) is nonempty
aswell, so f~1(U) is proper. This finishes. [ ]

Remark 3.81. We can use this as something to determine what continuous functions might look like.
For example, we know immediately that there is no continuous surjection from [0,1] — [0,1] U [2, 3]
once we know that [0, 1] is connected while [0, 1] U [2, 3] is not.

Anyways, we should probably give an example of a nontrivial connected set.

Proposition 3.82. A subset S C R is connected if and only if S is an interval.

Proof. We have two implications.

+ Suppose that Sis notaninterval. This means that there existst € Rwitht ¢ Ssuchthat SN (¢, 00) # @
and SN (—oo,t) # @.1 But now these exact two sets will disconnect S! Indeed, we set

Uy :=5nN(to0) and Uy = SN (—o0,t).

We see that U; U Us = S because t ¢ S, and we know they are both nonempty, so it remains to show
that they are open. This isimmediate by the induced topology, but we can use sphere arguments here:
each point s € Uy will live in the interior of U; by using r :== s — ¢ > 0 as our radius.

Remark 3.83. This is more or less generalizing the proof that Q is disconnected.

« It remains to show that intervals are connected. We start by reducing to the case where interval has
the form [a, b]. Fix I C R an interval, and suppose for the sake of contradiction we can write

I =U,UUs,

where U; and U; are disjoint, nonempty open subsets. Now find a € U; and b € Us, and without loss
of generality we may take a < b. Now we see that

(U1 N [a, b)) U (Uz N [a,b]) = I N [a,b] = [a, b].

1 This seems annoying to show, but | don’t want to think about it.
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Here both of these are open by the indued topology, they are nonempty because a € U; N[a,b]and b €
Us N |[a, b], and these are disjoint because U; and Us are in fact disjoint. Thus, [a, b] is also disconnected.

We now forget what we were doing and show that closed intervals [a, b] are disconnected. Indeed,
suppose that we can write
[a,b] = U1 [ UQ,

where U; and Us are disjoint open sets. Without loss of generality, a € U; and b € Us.

Now we use the order topology on R by applying the pushing trick from showing [0, 1] is compact. We
seethatsup U; > a because thereis a sphere around a inside of Uy, and we see that sup U, < bbecause
there is a sphere around b inside of Us,.

But now we notice that supU; ¢ U; because if so then we could place an open ball around sup U; to
get larger. On the other hand, sup U; ¢ U because if so we could place an open ball around sup U; in
U, to force the elements of U; to be smaller. [ ]

We remark that the Intermediate value theorem follows from this statement: if a continuous function f :

S — R has domain an interval, then its domain is connected, so its image is connected, so its image is an
interval.

Remark 3.84. There is also a notion of path-connectedness mentioned in the book, but we will not care
about it in this class.

Let's do an exercise and then move on.

Exercise 3.85 (Ross 22.3). Fix E C (X, d) a connected subset of a metric space. Show that the closure
Eis also connected.

Proof. We show the contraposition: suppose E is disconnected, and we show FE is disconnected. Then fix
disjoint nonempty open sets Uy, Us C E which union to E. But now we see that

(UlﬂE)U(UgﬂE)ZE

is a disjoint union of open sets in E which union to E.

It remains to show that U; and U, are nonempty. Well, suppose for the sake of contradiction that (say)
U, N E contains E so that U; contains E. But now this implies that U, is a proper closed subset of E which
contains E, which violates the fact that E is the smallest closed set. Rigorizing this would be somewhat
painful (we have to write out E = (1,55 V and talk about that definition). u

3.5.2 Power Series

Let's preview some of chapter 4. Some of this will be review from calculus.
Definition 3.86 (Power series). Given a sequence of real numbers {a,, }52, C R, we define the (formal)

power series
o0
E anx”
n=0

to more or less represents a function R —
RR.

Remark 3.87. | have defined the above formally so that we can plug in values of x and then ask if the
series converges. This prevents us from wondering if the series “exists” at all.
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Intuitively, it might feel like if
> ay - (~100)*
n=0

converges then
o0
Z ag * QOk
k=0

should also converge because the second series seems “uniformly” smaller in magnitude, even though per-
haps the alternating series has an effect. But of course such intuition requires care because these series
potentially feel very different.

In general, a series has a few possibilities.

» The series can converge at x = 0 only. All series must converge here because the series just looks like
ao here.

« The series converges forallz € R.

» The series converges for each |z| < R for some finite R € R, but the series diverges for |z| > R. (The
behavior at z = F R is intentionally unspecified.)

And here are some examples.

Example 3.88. The series

x
k!
k=0

exp(z) =
will converge everywhere. We can kind of feel that the coefficients get really small (smaller than expo-

nential) fast, so the series ought converge.

Example 3.89. The series
i ok® Lk
k=0
will converge nowhere outside of 0. We can show this using the root test because

n

2n?gn| = || - V2 = |z| - 2™ — oo,

so this always diverges for z # 0.

Example 3.90. The series

1 — i
="
k=0
will converge for |z| < 1 and diverge for |z| > 1.

To evaluate the radius of convergence, as in the third case, it is most helpful to use the Root test. The ratio
test is potentially helpful for particular series, but if the a, are poorly behaved locally, then the Ratio test is
also potentially poorly behaved. With this in mind, we have the following definition.
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Definition 3.91 (Radius of convergence). Given a power series
o0
>
k=0
we define the radius of convergence to be
=il
R = (lim sup V/|an, |> .
n—oo

By convention, if the lim sup is 0, we set R := oo.

This behaves like the radius of convergence essentially by the Root test. We will not write out the proof here,
but we will say that the main idea is that

limsup V/|a,z™| = |z| - limsup V/|a,| = m,
n—oo n—oo R

so we converge (absolutely!) for % < 1 and diverge for ‘iR' > 1. Namely, the fact that the Root test is
inconclusive for +1 turns into the fact that we are unsure what happens for z = +R.

3.5.3 Uniform Continuity: A Prelude

We might want to formally integrate and differentiate a power series. For example, with f(z) := arctan z,
we have

/ _ 1 _ 1 _ = 2
f(@) = 12 1= (=22 ];(—l)kx k.

Integrating would tell us that

— (=1)F
_ - 2k+1
xTr) = X .
@ =2 551
k=0
These sorts of tricks are nice; for example, we are able to compute arctan from this, but the series for arcsin
is quite worse.

However, these sorts of ideas require some care. For example, the series

e (71)k+1xk

ln(1+x):Z ’

k=1

will converge at x = 1 because it is the alternating harmonic series, and in fact this converges to In 2. But
when we differentiate this series, we see

k=0

which diverges at z = 1. So we do not get what we want without paying attention. What happened here?
On one hand, this problem will not occur worse: if we consider the series

flx) = Z apzh,
k=0

then we see that

limsup V/|a,| = limsup V/|(n + 1)a,41|

n— oo n—oo

because {/n+1 — 1. Thus, the radii of convergence between f(x) and f’(z) are the same. The point of
this is to say that strengthening our convergence (to absolute) helps here, but absolute convergence is not
actually necessary to make this work. The correct notion is uniform continuity.

Let's do some exercises before we talk more about uniform continuity.
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Exercise 3.92. We find the interval of convergence for

o0
n2z".

n=1

Proof. The main point is to compute
lim sup Vn2.

n—oo

Well, we see that log V'n? = % log n, which goes to 0 as n — co. So we have that

lim Vn?2=e¢l =1,

n—o0

so our radius of convergence is R = 1-! = 1. Alternatively, the book proves n'/* — 1 somewhere, so it
follows n?/™ — 1 follows.
It remains to deal with the endpoints. Well, >~(—1)"n? will always diverge by the Divergence test be-

cause |n?| = n* — oc. So our interval of convergence is| (—1,1) | [ |

Exercise 3.93. We find the interval of convergence of

Proof. The main point is to compute

1\" 1
limsup { (> = limsup — =0,
n

n—00 n—soo N

so the radius of convergence is +00. Thus, our series converges | everywhere |. [ |

Remark 3.94. This makes sense because n~" gets small very fast, faster than for ;.

n

Exercise 3.95. We compute the interval of convergence of

Proof. The main point is to compute

21’L
limsup {/ — =2 limsup n=2m =9,
n—00 n n—00

so our radius of convergence is 1/2. As for the endpoints, we find that
27 (1" =1
>IZG) |-
n=1

n=1
converges, so the series converge absolutely. It follows that our interval of convergenceis|[-1/2,1/2]| R
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Exercise 3.96. We compute the interval of convergence of

>

n=1

. a3 1
imsu — =,
el Vgn T 3

so it follows that our radius of convergence is is 3. The endpoints give > (4:1)"n?3, which fail the divergence

test, so our interval of convergenceis| (—3,3) | |

3.5.4 Uniform Continuity: Another Prelude

‘ 3

3
™.
n

w

Proof. We can see that

Let's see another reason we might want stronger continuity. Fix

fn(z) =2

for f,, : [0,1] = [0,1] and n > 0. But now we see that, for z € [0,1) , we have that

n—oo n—oo
while
lim f,(1)= lim 1=
n—oo n—oo
So we let
1 z=1,
flx) =
0 x#1,

so that f,, — fasn — oo. But now the f, are continuous while converging to a discontinuous function,
which is sad. The problem, again, is that our convergence is somehow “too weak,"” and the stronger form of
convergence—"uniform convergence”—is what we want.

3.6 November1l

Finally done with October. One last push | guess.

3.6.1 Uniform Convergence

Last class we were looking at the sequence of functions

fn(z) =2
for f, : [0,1] — [0, 1]. Then we say that, forz € [0,1) , we see that

g fnl) =0,
but
A fa(1) = 1.
With this in mind, we define
0 0<x<1,
J(@) = {1 z=1

We would like to say that f,, — f asn — oo. This notion is more rigorously called “pointwise” conver-
gence.
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Definition 3.97 (Pointwise convergence). Given a sequence of functions f, : S — R, we say that f,
converges pointwise to to some f : S — R if and only if, for each z € S, we have that f,,(x) — f(z) as
n — OoQ.

This is perhaps the weakest and worst form of convergence. For example, it has the defect that continuous
functions can pointwise converge to a discontinuous function.

Remark3.98. The high-levelreason why this s failing is that our convergence is not very uniform: points
x close to 1 will have f,, () — 0 very slowly.

So we need to strengthen our notion of convergence. This gives uniform convergence.

Definition 3.99 (Uniform convergence). Fix a sequence of functions f,, : S — R. Then f,, — f uniformly
convergesto f : S — Rif and only if, for each e > 0, there is N such that n > N implies

[fn(z) = f@)] <e

foreachz € R.

This is different from pointwise convergence because now ¢ is not allowed to vary with z. This is similar to
uniform continuity in that, again, € was not allowed to depend on which point whose continuity we were
looking at.

Non-Example 3.100. It is not the case that f,(z) := 2™ converges to f(z) = 1,1 uniformly. Well, take
g :=1/2. Then thereis no N such that n > N implies

|z"| < 1/2

foreachz € [0,1) . Indeed, forany N, choose any n > N and then take z := {/2/3 so that |2"| = 2/3 >
1/2.

Anyways, let’s see uniform convergence do something useful.

Proposition 3.101. Suppose that f,, : S — R is a sequence of continuous functions converging uni-
formly to f : S — R. Then f is continuous.

Proof. Fixany a € S so that we want to show f is continuous at a. Well, fixany e > 0. Then there exists N
such thatn > N has

[fulw) = J@)| < 5

for each z € S. Now, fixany n > N. Because f,, is continuous, there exists § such that

v —al <0 = |fal2) = fula) < 5.

The point of these estimates is the following manipulation: for 2 € S with |z — a| < J, we see

[f(@) = fla)] <[f (@) = fu(@)] + [fu(2) = fula)] + [fnla) — f(a)|

cfLE.¢
3 3 3
= 87
which establishes the needed continuity. |
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Remark 3.102. This sort of “double triangle inequality” idea is fairly common. For example, a similar
argument shows that uniformly continuous functions that converge uniformly will converge to a uni-
formly convergent function. (Dropping the “uniformly” in either hypothesis makes this false.)

We quickly remark that we also have the following equivalent definition of uniform convergence.

Proposition 3.103. Fix f,, : S — Rand f : S — R. Then f,, — f converges uniformly if and only if

limsup |f(z) — fu(2)| = 0.

n—o0

Proof. Omitted; see the book. [ |
Let's do some exercises.

Exercise 3.104. We study the sequence of functions f,(z) := H% on [0,0) forn € N.

Proof. We start by evaluating the pointwise limit.

« For0 <z < 1,weseethatz™ — 0,501+ 2" — 1,s0 f,(x) = 1.

« Forz = 1, we see that this is constantly f,,(z) = 3.

« Forz > 1, we see that " — oo, so f,(z) — 0.

So our convergent function is
1 0<z<1,
f@)=11/2 z=1,
0 z > 1.

For example, this implies that f,, — f is not uniform on [0, 1] because f is not continuous on [0, 1].
Explicitly, we fix x € [0,1], and we can evaluate

_xn

fn(z) — f(x) = 1tan

so we see that

sup [ fu(z) = f(z)] =

z€[0,1,)

after doing a bit of legwork. So indeed, f,, — f is not uniform.
How about [0,1/2]? Here we can evaluate

(1/2)"
sup |fn(z) — f(z)| = ——"——
xe[m)l (@) = f(2)| T /2"
because this difference is increasing. So this vanishes as n — oo, and we are safe. |

Remark 3.105. Uniform continuity does not really care for individual points because it is a global con-
cept. For example, f,, — f is not uniform even on [0, 1) , using the same function.
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3.6.2 BeingIntegrable

It feels like there ought to be some property that pointwise convergence preserves. For example, does point-
wise convergence preserve being integrable?

Example 3.106. Consider

on (0, 1). These functions will converge to -~ asn — oo, which is not integrable on (0, 1) (even though
f is not continuous).

Well, what about uniform continuity?

Proposition 3.107. Fix f,, : S — R a sequence of functions converging uniformly to a function f : S —
R. Then f is integrable on bounded domains.

Proof. We take a few properties of integration on faith because we have not defined what it means to be
integrable. Then, if we are integrating of over a bounded domain 7' C S N [-M, M], then, forany e > 0,
there exists N such thatn > N has

Af(m)dx—Afn(x)dx

Sending ¢ — 0 shows that [,. f(z) is well-defined as a real number. [ |

g/T\f(x)—fn(x)\dxg/ cdz = 2Me.

[—M,M]

However, we need to take some care for unbounded domains. I'm honestly not sure what is the case.

3.6.3 Uniformly Cauchy

Here is another notion.

Definition 3.108. A sequence of functions f,, : S — R is uniformly Cauchy if and only if there exists
e > 0suchthat N € Nhasn,m > N implies

|fn(2) = fm(z)| <

foreachz € S.

Remark 3.109. This is essentially asserting that { f, } nen converges in the space of functions R — R.

We would like uniformly Cauchy sequences of functions to converge uniformly to some function. Indeed
this is the case.

Proposition 3.110. A uniformly Cauchy sequence f,, : S — R converges uniformly to a function f : S —
R.

Proof. We start by exhibiting our function f : S — R. We do this pointwise: for each z € S, we see that
{fn(x)}nen is a Cauchy sequence and hence converges to some f(z).
Now we show that f,, — f uniformly. Well, for any ¢ > 0, there exists NV so that n,m > N has

fa@) = fnl@)| < 5
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foreachz € S. Now we notice that each f, (z) is inside of (f,,(z) — 5, fm(2) + £) , so the limit of the f,, must
live inside of this interval as well. In particular, have that our N has m > N implying

(@) = fm(@)] < 5 <<

foreachz € S. [ ]

3.6.4 Series of Functions
Of course, we are really interested in power series. So, for example, does

n
k T
%l T — e
k=0

converge uniformly? More explicitly, we define

| —

z.

fn(x> = Z
k=0

=

We would like this to converge to a real function, and we would also like to know if this converge is uniform.
The answer is no: very negative values can go over the rails, even for large n. But we can save ourselves by
looking at a bounded interval, where our convergence should be better-behaved. We won't write out the
details here.

It turns out that restricting to a bounded interval is also not good enough, however.

Example 3.111. The series
o0 T
—log(l—=z) = g -

will have the partial sums converge but not uniformly.

What about preserving differentiability?

Example 3.112. The series
>, sin (n’z)
o) = 3o 2 le)
k=1
has its partial sums converge uniformly to a continuous function. However, its derivative, taken point-
wise, is

flx) = Zcos (n’z),
k=1

which does not seem to converge anywhere. So this function seems to be continuous everywhere and
differentiable nowhere.

For completeness, here is the graph of the above function.
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Anyways, we would like to talk about series of functions. Here is a good test for this purpose.

Theorem 3.113 (Weierstrass M -test). Fix a sum

> gk(@).
k=1

Suppose that there exists M, > 0 such that |g(z)| < M} for each k while 72, M), converges uni-
formly. Then the partial sums uniformly converge.

Example3.114. We can use the above test to show that ¢* converges uniformly on any bounded interval.
Ik

Essentially, even though 77 might not be bounded on all of R, it is at least bounded on the bounded
interval, which is good enough for the above test.

And here is an exercise to close us out.

Exercise 3.115. Suppose that f,, : S — R is a bounded function converging uniformly to some f : S —
R. Then f is bounded.

Proof. Fixe =1, and then we are promised N such thatn > N has

|fn($) - f($)| <e

for each z € S. Now fix some n > N. We see that f,, is bounded so that f,,(z) € [-M, M] for some M € R.
But now f(z) € [-M — 1, M + 1] for each z € S, so we get that f is bounded. [ |

3.7 November3

So we have a midterm next class.
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3.7.1 Integrating and Differentiating Power Series

Quickly, we recall that, if f,, : [a,b] — Ris a sequence of continuous functions converging uniformly to some
continuous function f, then

lim € f,(z dx—/ f(z

n— oo

Note that the integral on the right-hand side integrand f(z) is integrable because f is continuous.

Remark 3.116. We can imagine changing the closed interval [a, b] to something weaker, but bad things
happen.

Indeed, the above is true essentially because, for any ¢ > 0, we can find N such thatn > N has

A@um— )] da

so taking ¢ — 0 gives what we want.
Now, for our discussion of power series, we start by fixing

oo
E akxk
k=0

some power series with finite radius of convergence R > 0. Let’s say that this function converges to f(x)
pointwise on our interval of convergence. Of course, this need not always uniformly converge.

</\n — f(@)] dz < (b - a),

Example 3.117. The power series

0
D o
k=0

does not uniformly converge to = on its interval of convergence. Intuitively, the problem is that the
power series explodes next to x = 1.

However, we can almost get this.
Proposition 3.118. Fix
o0
=3 at
k=0

some power series converging pointwise to f(z) with finite radius of convergence R > 0. Then for any
r > 0 with r < R, we have that the power series converges uniformly to f(x) on [—r, r].

Proof. We mostly omit this proof. Essentially the point is that the power series geometrically vanishes, we
is fast enough to get our uniform convergence. For concreteness, we use the Weierstrass M -test. The point
is that each summand is bounded above by a;r*, and we know that

o0
E akrk
k=0
converges because r < R. |

For now we are interested in differentiating and integrating a power series. Though we have not formally
defined the derivative nor integration, so we will just do this term by term, taking

= Zakxk d/dg f(z) = Zkakx Z k4 1agpz”
k=0 k=1 k=0
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as an example of our differentiation.
For example, we have the following statement.

Proposition 3.119. If the power series f has radius of convergence R, then f” also has the same radius
of convergence.

Proof. The point is that, when we write

Z akxk d/dl i k+1) akﬂx
k=0

we are interested in evaluating

B == limsup v/|( ) |

n— oo

However, we can remove the {/n + 1, which converges to 1. So it follows that

limsup v/|(n + 1)ags1| = hmsup Vlak+1] = hmsup Y akl,

n— oo

so the reciprocals here give the radius of convergence equal. |

Remark 3.120. Something similar works for integration; we won't show this explicitly here.

Essentially this means that the “worst-case” scenario is that the endpoints change when differentiating.
This can indeed happen.

Example 3.121. The power series
k

OO:,C
2%

has interval of convergence [—1, 1), but the derivative
o0
D o
k=0

has interval of convergence (—1,1).

Of course, we are not totally sure that this kind of term-by-term integration is legal. For example, we might

ask if
oo
-3 ot
k=0

has

i ,rlc+1 T
a - :/ flz)dx
— k+1 0

Well, we do: truncate the power series to the partial sums f,, — f, and then both sides are uniformly con-
verging to the same value, using our discussion from earlier.

3.7.2 Abel's Theorem

There is a last theorem in this section, which is Abel's theorem, but its proof is not very instructive. Regard-
less, here is the statement.
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Theorem 3.122. Fix -
flx) = Z apz”
k=0

a power series with finite radius of convergence R > 0. If f exists at x = R, then f is continuous at
x = R. Similar holds for z = —R.

Example 3.123. Because we know that

oo "L‘k
—log(1—=x) = —
og(l—a) =Y =
k=1
converges at z = —1 even though it has radius of convergence 1, we are still able to conclude
o~ (=DF
—log2 = .
0g2=D

k=1
Anyways, let's do some examples.

Exercise 3.124. We compute

oo
E n2z".
n=0

Proof. The main idea is to differentiate the series

1 o0
_§ n
1l—2 T
n=0

which gives
1 B [e%e] .
T DU

Now we multiply both sides by x and differentiate again, which gives

— 2 n—1 z+1
n°w = —0,
; (1—2x2)3

where | have omitted the computation with the quotient rule. Multiplying through by = once more tells us
that -

3 w2 = z(z +1)

— (1—2x)3
We can also see that our radius of convergence remains 1, and of course we do not converge at the endpoints
(say, by the divergence test), so our interval of convergence is (—1,1). |

Exercise 3.125. We cannot create a power series for ||.

Proof. The point here is that any power series with positive radius of convergence, we were able to take
the derivative termwise, so our power series will be infinitely differentiable (strictly) inside of its radius of
convergence. However, |z| is not even differentiable at z = 0, so we cannot create a power series from
this. |
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3.7.3 Some Closing Remarks

The last section in this chapter shows that any continuous function on a closed interval has a sequence of
polynomials uniformly converge to it. This is fun but not central to the story in this course.

One can ask, if f,, — f is a sequence of integrable functions converging uniformly, then do we have f
integrable? The answer is no.

Exercise 3.126. We exhibit f,, — f converging uniformly on [1, co) such that the f,, are integrable while
fisnot.

Proof. Take the functions f,, : [1,00) defined by

1
Jnl®) = i

This sequence of functions is integrable all over [1, 00) , but the limit function f(x) := 1/x is not. It remains
to show that f,, — f uniformly. Recall that it suffices to look at

nll)n;o sup{[fn(z) — f(z)] : x € [1,00)},

so we are interested in the difference

fn(m)_f<x):$14%m_l

T .

To bound this, we want the maximums and minimums, so we differentiate it, getting

1 145 1 RV
2 r2+1/n T p2+41/n n/)’

We are interested in where this vanishes, which isat z = (1 + %)n . Now note the difference vanishes at
2 = 1landas x — oo, so our only candidate to worry about is our critical point, which gives

1 IR | ( 1 1)
TR N (R L (RN T S
So as n — oo, this approaches 0 because of the second term in the product. In particular, it follows
lim sup{|fu(z) — f(@)] : 2 € [1,00)} =0,

which finishes. [ |
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THEME 4
DIFFERENTIATION

4.1 November10

So a midterm ocurred.

4.1.1 Midterm Housekeeping

Here are some notes.

« Some people tried to use the Ratio test on the first question. It is difficult to make such an argument
rigorous because the

« The check of the endpoint z = —2 on the first question is a bit tricky. The point here is that the subse-

quence
_9\n —1)"
DR e

n odd n odd

actually diverges even though it looks like it converges: the sum is only over a single sign. Addition-
ally, one must keep track of the positive even terms to make sure they do not counteract the negative
divergence.

» People did pretty well on 2(a). On 2(b), many people looked at

lim sup{‘sin (%)‘ cx e |0, 1}}7

n—oo

which is correct. However, some people tried to reverse the limit and the supremum to say that this
goesto0forfree, whichis not correct: such anargument would work for z € R, where the convergence
is not uniform.

+ For the later questions, some people had trouble keeping track of quantifiers, especially upon nega-
tion. For example, the difference between continuity and uniform continuity is subtle but important.

» Professor Sharma expected more people to use sequences on number 3 because this turns disconti-
nuity into a tangible object.

+ Professor Sharma is surprised that people approached (a) and (b) different even though they are the
same question: the telemetric on Z induces the same topology on Z as the usual one.
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« The common idea for number 5 was to do something like
U={(z,y) €Q®:2” <2}

to disconnect Q2. However, some people did not prove that U and Q? \ U are open, which is not com-
pletely obvious. In general, proving a disconnection requires many checks.

» Some people tried to use the fact that the image of a connected set is connected for number 5, which
is difficult to rigorize into a proof.

+ Keeping track of symbols for number 6 was a bit nontrivial. Namely, we need a third symbol in this
proof to make things function, which was not present in all submissions.

This exam was harder than the first one, on average. People had the most trouble with number 5, probably
because connectedness is a weird concept. Last time the average was about 80%; this time it was about
75% (about 89/120). It is likely that there will be some minor curve, though how much there is remains
unclear.

4.1.2 Derivatives
We are talking about derivatives, for now. We'll do integrals as the last part of this class.
Example 4.1. Fix 1o : R — Q the Q-indicator. It's not continuous anywhere, which we had a few ways

of showing. But can we still compute
4
/ f(x)dz?
3

The answer will be no, but it's not obvious why or why not because typical calculus (such as the Funda-
mental theorem of calculus) ideas do not apply.

To attack these kinds of questions, we will need rigor. So that is where we are going.

The first section of chapter 5 reviews derivatives, proving the various derivative rules. The proofs are not
terribly interesting, but they are good to “better understand” the derivative. At the very least they require
technical skill.

Definition 4.2 (Derivative). Fix f : S — R a real-valued function. Then we define the derivative

Fa) o tim TEHD) = S@)

h—0 h

If, given a € S, we have f’(a) € R, then we say that f is differentiable at a.

In practice, the limit definition might be annoying to use, or even infeasible. For example, it is reasonable to
expect
zt+sintz/z x #0,
fa)= 14 fr o7
0 x=0.

We expect that f/(0) = 0, but this is not obvious. If we could show that the derivative is continuous, we could
use the quotient rule and go to 0, but it is not obvious that the derivative is in fact continuous. For a worse
example,

_Ja?sin(l/z) =z #0,
ﬂm—{o e

is differentiable on all of R but not continuously differentiable at z = 0.
Anyways, let’s prove a fairly basic result.
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Proposition 4.3. Fix f : S — R a function which is differentiable at some point a € S. Then f is contin-
uousata € S.

Proof. We are given that the limit

exists and is finite. We want to show that

lim f(z) = f(a).

a—0

Intuitively, if we lose continuity, then the numerator in the limit for f/(a) will not go to 0 even though the
denominator does, which will imply that f/(a) ¢ R. We will not make this more rigorous here. [ |

Of course, there are continuous functions which are not differentiable.

Example 4.4. The function f(x) := |z| is continuous but not differentiable at 0 because the correspond-
ing limit does not exist.

Example 4.5. The function f(z) := &= is continuous but not differentiable at 0 because the correspond-
ing limit is infinite.

4.1.3 Derivative Rules

Here are some derivative rules.

Proposition 4.6. Fix f,g : S — R, and suppose that f and g are both differentiable at a € S. Then
(f + g)'(a) exists and is equal to f'(a) + ¢'(a).

Proof. We see that

() — fim D@D = (F +0)(a)

(f t9 h—0 h
o L =S @) glath) ~ gla)
h—0 h h—0 h
= f'(a) + g'(a),
where the key step was to split up the sum of limits into the individual limits. |

Proposition 4.7. Fix f,g : S — R, and suppose that f and g are both differentiable at a € S. Then
(f + 9)'(a) exists and is equal to f'(a)g(a) + f(a)g'(a).

Proof. We see that

(f9)'(a) = lim (fg)(a+ Z) —(fg)a _ lim fla+h)g(a +hh) — fla)g(a)
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Now, the key point is to add and subtract f(a + h)g(a) in the numerator, as we did for the corresponding
product rule for limits. We get

fla+h)gla+h) = fla+h)g(a) + fla+ h)g(a) — f(a)g(a)
h

(f9)'(a) = lim

h—0

o St Rl th) ~ fat Wgla) | flat Wgla) ~ fla)oo)
T hs0 h h—0 h

o . gla+h)—g(a) _ fla+h)— f(a)

et i T e T

= fla)f'(a) + g(a) f'(a).
Importantly, in the last equality we have used the fact that f is continuous at a, which is true because f is
differentiable at a. [ ]

And here is an exercise.

Exercise 4.8. Fix f a function on an open interval continuous on some a € R. Further, take g defined on
an open interval containing f(a). Then we show g o f is defined on some open interval containing a.

Proof. Without loss of generality, we assert that g is defined on (f(a) — ¢, f(a) + ¢), for some € > 0. Then,
because f is continuous at a, there exists § > 0 such that each 2 € dom f has

|z —a| <0 = |f(z) — fla)] <e.

So we see that z € dom f with z € (a — d,a + d) implies f(x) € (f(a) — ¢, f(a) + €), which implies that
(g o f)(x) is well-defined.

To finish, we know there exists ¢’ such that f is defined on (a — ¢’,a+¢"). Then §”’ := min{4, '} will have
z€(a—0¢",a+?¢") Cdomfandz € (a —d,a+9),soindeed (a — ¢",a+¢") € dom(g o f). |

Remark 4.9. Keeping track of the semantics is annoying but important: it is easy to miss (as | did) the
last step of intersecting the interval inside of dom f with our (a — §,a + §). This is exacerbated by the
fact we usually write continuity omitting the condition = € dom f.

Next time we will talk about the Mean value theorem.

4,2 November 15

| was not present for class due to the Serge Lang lecture and dinner. | am told we covered the Mean value
theorem section and the L'Hépital’s rule section.

4.3 November17

So | am present for class this time.

4.3.1 L'Hopital’s Rule Warnings

Let's talk a little more about L'Hdpital’s rule. Quickly, we recall our indeterminate forms.

Definition 4.10 (Indeterminate forms). Any expression/limit of the form

0 oo

— = —.00, 0%00° 1% 00— 00
07007 b ) b )

are called indeterminate forms.
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Each of the indeterminate forms has a different way of applying L'Hépital’s rule.
« For 2 or 2, we can apply directly.
« For0- oo, we rewrite this as -/, which is now 2.

1/00

« For 0%, 00, 1%, we call the limit L, and then we are able to default to one of the previous cases with
log L.

« For oo — oo, we call the limit L, and then we are able to go to 3 by looking at exp L.

Example 4.11. We have a variety of ways to compute

-1
lim Ve

=1 x—1 "

We could multiply the top and bottom by /2 + 1. But if we change the numerator to something more
complicated, such tricks become difficult; L'Hopital’s rule is the way to finish.

Here are some (non-)examples.

Exercise 4.12. We compute the limit
. T —sinz
lim ——.
T—00 x

Proof. This limit directly goes to 22, so we could try to apply L'Hépital’s rule, but we get

. 1—coszx
lim ——,
T— 00 1

which does not exist. However, the limit does actually exist: we can split up the limit as

lim (1 . Si”) ,
T—00 T

and now thisgoesto1 — 0 :. |

The point of the above discussion is to remind ourselves that L'Hopital’s rule only applies when the latter
limit does not exist.

Exercise 4.13. We compute the limit

] e4x —e 2
lim

r—o00 3T L e2x :

Proof. We could apply L'Hépital’s rule, but it will never terminate. To make this actually possible, we write

T 4z

et — e~

e3w+e2z - 14+e " ’

et —e”

which we can see goes toas:c — 0. |

The point of the above exercise is that sometimes L'Hépital’s rule will not always directly apply.
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Exercise 4.14. We compute

lim :L,sin(l/:v) )
T—00

Proof. Ourindeterminate form is cc?. So we set the limit equal to L, and we find
1
log L = lim sin <) log x.
T—00 €T
We would like to differentiate log z, so we keep it quarantined and move the sin (£) to the denominator,
giving

logz
logL = lim ————.
o8 P 1/sin (1)

Now the form is 22, so we use L'Hbpital’s rule, which gives

log L = lim — 21/36 T .
@20 —1/sin (1) -cos (2) - —1/a?

1 1
log L = lim xsin <) tan (> .
T —00 x T

We could do this by brute force, but it is a bit more efficient to write this as

log L = lim M - tan <1> ,
x

T—00 1/3;'

This collapses down to

which willgot1-0 =0, soL:. |

Exercise 4.15. We compute

lim (1 4 2z)/°.
x—0

Proof. The form here is 1°°, so we set the limit equal to L and compute
log(1+ 2
x—0 €T
Applying L'Hopital’s rule, we get
2 2
14-2x :

log L = lim = lim =
x—0 z—0 1 —+ 2x

So it follows L = . [ ]

As a further remark, we note that applying L'Hopital’s rule to

lim —f(x)

a—a g(x)
needs f and g to be differentiable in a neighborhood around a and ¢’ to be nonzero in a neighborhood around
a. This last condition might appear awkward, but it is necessary. Normally this isn’t a problem due to, say,
smoothness, but it does prevent us from applying the rule for, say,

. T—sinx
lim ——
T —00 €T
as we saw earlier. Essentially these conditions go into the assertion that
I
X
lim f/( )
T—a g (x)

actually exists.
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Exercise 4.16. We set f(x) = 2 + cosz - sinz and g(x) = e f(z). We compute

lim fz)

a—o0 g(x)

Proof. Each of f and g are nonzero in a neighborhood around 0 by, say, continuity. We can also compute
the derivatives as

f'(x) =z +cosx-cosx —sinx -sinz = 2cos’ x

g (z) = ™7 . cosz[2cosx + f()]
after applying some elbow grease. In particular, we see

f'(x) 2e 5% .cosx

g'(x) - 2cosx + f(x)

so that the numerator is bounded and the denominator goes to infinity, giving 0 as ¢ — cc.
However, the original limit is of g = e~ ®"7 5o this limit does not actually exist. What went wrong in the

above example is that the limit of ch—: does not actually exist because ¢’ vanishes arbitrarily close to +oo. So
it goes. |

4.3.2 Taylor's Theorem

Our last topic on derivatives is Taylor's theorem. Again there will be strange convergence issues to keep
track of, so we will want to study this a bit closer. Here is our definition.

Definition 4.17 (Taylor series). Fix f : R — R infinitely differentiable at x = a. Then we define the
infinite Taylor series (formally, say) by

< £ (a)(a
Zf EL')( )(S(}—(l)k.
k=0 )

We also define our remainder term by

Exercise 4.18. We check the remainder for

k=0
Proof. We note that for |z| < 1, we have
R,(z) = i zk =an !
n 1 _ x?
k=n
which will go to 0 as n — o0, as it should |

Most functions that we like will have the Taylor remainder term approach 0 as long as the series converges.
The typical way to check this is as follows.
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Proposition 4.19. Suppose that f : R — R is nth differentiable. Then, fixing some x and ¢, there exists

d between z and c such that
(=0

n!

Rn(x) = ™ (a).

The point here is that oftentimes we can bound f(")(d) in such a way that we can promise n! will domi-
nate.

Example 4.20. For f(z) = €?* take ¢ = 0 and z = 1. Then f("(d) < 2" for all d between  and ¢, so
R, (z) = 0asn — oo, and our Taylor series converges correctly.

And here is the warning to correspond to our hopes.

Exercise 4.21. We consider the Taylor series for

—1/ac2 O,
o={" 2

In particular, the Taylor series does not converge to f for any = # 0.

Proof. We can check that f : R — R is continuous, and it is in fact infinitely differentiable, even at 0. The
main point to differentiability at 0 is that, for each n € N, there exists p,, € Z[z] such that

F™ (@) = pa(1/z)e /",

which we can show by an induction. But this vanishes as z — 0, so f(")(0) = 0 for eachn € N. It follows that
the Taylor series is the zero series, which is not equal to f forany z # 0. |

Remark 4.22. More viscerally, we can see that the derivatives of f at particular values x around 0 are
growing at a factorial rate. Essentially, the p,, (z) willaccumulate leading coefficients at a combinatorial
speed, which is something we can see from direct expansion.

4.3.3 The Binomial Theorem

Let's spend a moment discussing the Binomial theorem. We have the following.

Proposition 4.23. Fix o € R. We claim that, for |z| < 1,

e =3 (2o,

n=0

where

Remark 4.24. It is not hard to verify by hand that o € N causes (%) to match what we want it to. | won't
write this our because it is just a matter of writing down the formula and staring.
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Proof. We can check the convergence of this by the Ratio test. We find that

()7 ah
@~ & "

so we get convergence for |z| < 1. In fact, we observe that this sort of argument can be used to verify that
the remainder term from (1 + x)® vanishes as the number of terms in the series goes to infinity. |

4.3.4 Newton's Method

The idea of Newton's method is to find roots of a differentiable function f, and we want to find a root. So
we start with a guess z(, and to get closer, we draw the tangent line at 0 and find the root. Namely, f is
hopefully locally linear, so we can hope to get close to the root by a linear approximation. Here is the image.

y — f(zo) = f'(m0)(x — o)

Expanding this out by hand, our recursion is

Tn1 = Tp — f’((L’ )
n

This is a recursion we could hopefully do by computer. The rest of §31 can be omitted. It is quite technical
and a lot about approximations, which we tend to not care about in this class.
Anyways, let's do an exercise.

Exercise 4.25 (Ross 31.4(a)). Fix a,b € R such that a < b. Then find f a function infinitely differentiable
so that f(x) =0foraz <0and f(z) > 0forz > 0.

Proof. This is somewhat subtle. For example,
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will not work because this function is not twice-differentiable at 0. So we need a function with lots of van-
ishing derivatives at 0 even though it is not zero, so borrow our sad example from the Taylor series section:

we define
2 [e V/* >0,
f) = {0 x < 0.

The point is that we computed f(™)(0) = 0 foralln € N, even as we approach from the right, so this function
will be differentiable at 0 and hence infinitely differentiable everywhere. |
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THEME 5
INTEGRATION

5.1 November 22

The fun continues.

5.1.1 Darboux Sums

We are going to talk about integration now.

Example 5.1. It is difficult to compute the integral

/23 lo(x) dx.

In fact, it does not exist, but we need to know what the integral means.

The point is that are going to more rigorously define what integration is for these questions to be tractable.
For now, we don't even know what being integrable means, so let's move towards that.

Most of our work will be for bounded functions f defined on a closed interval [a, b]. We have the following
convenient definitions.

Definition 5.2 (Maximum and minimum). Fix f : [a,b] — R a bounded function. Then we define
M(f,S) =sup{f(z):x €S} and m(f,S) = inf{f(x): 2 € S}
forany S C [a, b].

Note that these exist because f is bounded. Now, the idea is to “break” [a, ] into n pieces, for some n €
Zt.

Definition 5.3 (Partition). Fix a,b € R with a < b. Then we define a partition of [a, b] into n pieces to be
any increasing sequence P = {t;}}_, such that ty = a and ¢,, = b so that

a=tg <t < - <tph_1<t,=h

In particular, a partition {¢}}_, of [a, b] creates the union

n—1

[a,b] = U [t thval-

k=0
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This gives us the following definition.

Definition 5.4 (Darboux sums). Fix f : [a,b] — R a bounded function and P = {¢;}}_, some partition of
[a, b]. Then we define the following.

» We define the upper Darboux sum by

Uf,P) =) M(f, [tr—1,tk]) - (tk — tr—1).

>
Il
—

« We define the lower Darboux sum by

n
Zm foltk—1,tk]) - (tk — ti—1).
k=1

Remark 5.5. These are in spirit a generalization of Riemann sums to arbitrary partitions: partition and
then average over values.

Intuitively, the upper Darboux sumis the sum of the “largest possible rectangle” of a corresponding Riemann
sum. Note that U(f, P) is upper-bounded by

P) <D M(f,[a,b]) - (tx — ti-1) = M(f,[a,b]) - (b —a).

k=1

In fact, we can lower-bound this stupidly by

m(f,[a,b]) - (ty —tp—1) = m(f,[a,b]) - (b—a).

M=

Uf,P) >

=~
Il

1

Similarly, L(f,P) is lower-bounded by
[’(fa 73) > Zm(fa [a7b]) : (tk - tk—l) = m(f? [aab]) ' (b - CL),
k=1
and is upper-bounded by

M(f,la,b]) - (tx — tx—1) = M(f,[a,b]) - (b —a).

M:

k=1
This gives us the following definition.
Definition 5.6 (Darboux integrals). Fix f : [a,b] — R a bounded function. Then we define the following.
» The upper Darboux integralis

U(f) = if{U(f,P) : P partitions [a, b] }.

« The lower Darboux integral is

L(f) == sup{L(f,P) : P partitions [a, b]}.

Note that these numbers do exist because we showed that U(f,P) and L(f, P) always live in the interval

[m(f;[a, b])(b — a), M(f,[a = b])(b — a)].
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5.1.2 Darboux Integrability

We would hope that U(f) > L(f). Certainly, because a supremum will be at least an infimum, we can say
thatU(f,P) > L(f,P), but this does not actually imply Z(f) > L(f). This is not obvious. To help with this,
we pick up the following technical lemma.

Lemma5.7. Fix f : [a,b] — R a bounded function. Suppose P C Q are partitions of [a, b]. Then

L(f,P)<L(f,Q) and  U(f,Q) <U(S,P).

Proof. Only the inequalities on the ends require comment, and we will only discuss one on the left because
the right inequality is similar. Intuitively, this is because further subdividing an interval lets us increase an
infimum on one side.

To be explicit, say Q = {tx}}_, so that P = {t,,}}*, for some strictly increasing o with ¢(0) = 0 and
o(m) = n. Then the point is that

o(£+1) o(£+1)
Z m(f, [toestoern))) Eoerr) — toe) > Z m(f, [toes toer1)]) (Eoesr) — tor)
k=o(¢) k=o(¢)
by the same lower Darboux lower-bounding as before. Summing this over all £ gives the result. |

And here is our result.

Proposition 5.8. We have that £(f) < U(f).

Proof. We show that any lower Darboux sum is less or equal to any upper Darboux sum. Indeed, if P and Q
are partitions of [a, b], we get

L(f,P)<L(f,PUQ)<U(f,PUQ)<U(f,Q)
by simply applying the above lemma repeatedly. |

So what about equality?

Definition 5.9 (Integrable). Fix f : [a,b] — R a bounded function. We say that f is Darboux integrable if
and only if L(f) =U(f).

This condition is a bit unwieldy: it's got partitions and supremum and infimum of lots of sets floating around.
Let’s try to reduce the number of quantifiers.

Proposition 5.10. Fix f : [a,b] — R a bounded function. Then f is Darboux integrable if and only if for
alle > 0 there exists a partition P such that

U(f,P)—L(f,P) <e.

Proof. We show the directions one at a time.

» Suppose the conclusion. Then, for any ¢ > 0, we can find a partition P such that
L(f,P) < L(f,P) <U(f) <U(S,P).

Sending ¢ — 0 shows that f is integrable.
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« Otherwise take f integrable. In order to not break the supremum and infimum things, there must be
partitions P and Q such that

ogcqy—aﬁp)<% and 0 <U(f, Q) —U(f) < 2.

Taking P U @, we see, using the technical lemma again,

OS[«(f)_L(f,PUQ)< and 0§U(f,PUQ)—L[(f)<82,

[NCRNO)

so P U Q will be the needed partition. [ ]

We remark that it is general somewhat hard to actually test if a function is Darboux integrable. We have a
definition, but actually computing these various values is difficult because there are so many quantifiers to
keep track of. This might be technically easier to work with, but it is difficult to work with.

Let’s try to make this more computationally feasible.

Definition 5.11. For a partition {¢x}7_, C [a, b], then we define the mesh of {¢;}}_, to be the maximum
of tk+1 — 1.

We have the following result.

Proposition 5.12. Fix f : [a,b] — Rabounded function. Then f isintegrable if and only if, foreach e > 0,
there exists a § > 0 such that any partition P with mesh less than ¢ with

U(f,P)— L(f,P) <e.

Proof. This is technically hard to prove, so we won't give it here. The main point is that, once our partitions
are close enough together, we can make the mesh smaller artificially to get the condition. In the reverse
condition, we can do this by hand. |

5.1.3 Riemann Integrability
Because we should, let's talk about Riemann sums.

Definition 5.13. Fix f : [a,b] — R a bounded function. Then, given a partition {t; }}_, of [a, b], we define
the Riemann sum to be

> F@e) (e — tror),
k=1

where xy, € [tr_1,tx] is any point.

Usually we place some conditions on xj, and tx, but we don't have to. For example, we might require the
[tk—1, tx] to have equal length, but there is no immediate reason to do this. We note quickly that the Riemann
sum will have

m(f, [tk th-1]) < fze) < M(f, [tk th-1]),

so the Riemann sum will be upper-bounded by ¢/( f) and lower-bounded by £(f). So intuitively, it looks like
Darboux integrable will easily imply Riemann integrable.
So let’s define Riemann integrable.

Definition 5.14 (Riemann integrable). Fix f : [a,b] — R a bounded function. Then f is Riemann inte-
grable if and only if, for each € > 0, there exists § > 0 such that each partition P with mesh less than §

has any Riemann sum e-close to some I € R. Note that I € R depends only on f and [a, b].

This happens to be equivalent to Darboux integrable, but we will not show it here in detail.
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Theorem 5.15. Fix f : [a,b] — R a bounded function. Then f is Darboux integrable if and only if it is
Riemann integrable.

Proof. We talk about these one direction at a time.

+ Fix f Darboux integrable. Then we claim that the integral needed is I := U(f) = L(f). Then, for any
Riemann sum

P) < i:f(xk)(tk —tp—1) SU(f,P),

k=1

so sending our mesh to 0 takes L(f,P),U(f,P) — I

+ The reverse direction is annoying; essentially the point is that we can get a Riemann sum arbitrarily
close toany particular L(f, P) orU(f, P) by choosing the z;s to be close to the supremum and infimum
of itsinterval. However, this is annoying because it is possible that the supremum and infimum are not
actually achieved, but it is possible. |

Anyways, let’s do an example.

Exercise 5.16. We show that the function

is not integrable on [0, 1] by computing £(f) and U(f).

Proof. Fix P = {t}}_, to be some partition of [0, 1]. Then we see that
Zm [tr—1,t])(tk — t—1) = 0
k=1

because each interval will have some irrational in it.
The upper Darboux integral is more annoying. We find that

U(f;P):ZM(f,[tk—htk} te — tk—1) Ztk th —tr-1)
k=1

Indeed, that supremum is 7 because this certainly upper-bounds, and it is the least upper bound by taking
some sequence of rationals in [tx_1, tx] approaching t.

The mainidea hereis thatZ/(f, P) is going to have the same upper Darbouxsumas g(x) = 22, but now g is
continuous and hence integrable, so we can compute it directly as, say, fol 22 dr = % Because U(f) # L(f),
this is not integrable. So we are done. |

Remark 5.17. One could also compute the integral of g by hand using some summation.

5.2 November 29

Here we go again.
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5.2.1 Integrability Conditions

We're still studying integrability. Last time we defined integrability and gave some easier conditions for
being integrable without actually computing Darboux integrals, and we will continue with that story to-
day.

Proposition 5.18. Fix f : [a,b] — R is a monotonic function. Then f is integrable on [a, b].

Before we go into proving this, we should point out that monotonic functions are pretty nice. Granted,
they aren’t terrible—a monotonic function will have only many countably many discontinuities. Though
“countably many” is a bit weak of an assertion, for any given countable set has a corresponding monotonic
function with discontinuities on that set.

Proof. We are going to need to somewhat start from scratch. Take f increasing so that our Darboux sums
are, for a given partition P = {t;}7_, C [a, b],

U(f, ZM Foltrots te) (b — teo1) = > f(te)(tk — tea),
k=1

k=1

and

n

n
Zm folte—1, te]) (B — ti—1) thk 1)t — ti—1).
k=1

k=1
Now we notice that .
U(f,P)—L(f,P)= Z (f(tr) = fltr—1))(tx — tx—1).
k=1

Fixe > 0,and set 0 := m so that, if the mesh of P is less than §, we have

= €
, ) < f(t S —
U P) = LU P < () = Flte-0) - 55— 7
where we have telescoped to evaluate the sum. This shows that f is integrable. |

Proposition 5.19. Fix f : [a,b] — R is a continuous function. Then f is integrable on [a, ].

Proof. Take f continuous so that our Darboux sums are, for a given partition P = {t;}}_, C [a,b],
U(f, Py =D M(J [tk tr]) (1 — i),
k=1
and .
L(f,P) =" m(f, [te—r, tx]) (tr — tr—1)-

ES
I
—

Now we notice that
U(f,P) = L(f,P) =Y (M(f, [te-1, tx]) = m(f, [tr—1,te])) (b — tr—1)-
k=1

Fix e > 0, and we would like small mesh to make the above difference less than . Now, f is continuous on
[a, ], so it is uniformly continuous (this is the key trick!), so we may find § > 0 such that

3

[Ty — 22| <6 = |f(x1) — fl22)] < b —a
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In particular, if the mesh of P is less than our 4, we find

€
b—a

M(f, [te—1,tx]) — m(f, [th—1,te] <

because |t — tx—1| < 0, where we are using the fact that f achieves its maximum and minimum at some z;
and z3, so |z — x2| < ¢ gives the result. Thus,

U(f,P ) < Z —tg_1) =€,

where we have telescoped to evaluate the sum. This shows that f is integrable. |

Remark 5.20. Intuitively, thinking of continuous as “locally monotone” and building up continuity from
the monotone result is probably fine. Of course, this is not technically fine because

Remark 5.21. It is somewhat impressive that the notion of uniform continuity came up crucially in the
above proof. Namely, it is explicitly needed because we need the same ¢ to work over the entire interval.

5.2.2 Integral Rules

Let’s talk through some integral rules. Here are the main statements.

Proposition 5.22. Fix f and g integrable functions [a, b)] — R with cR.
(a) f cf(z)dx = cf fz
(b) [(f +9)(@) dv = [} f(x) dv + [} g(z) du

Proof. Omitted. The main idea is to imitate the proof of the corresponding limit laws. |

Similarly, here is a bounding result.

Proposition 5.23. Fix integrable functions f, g : [a,b] — R such that f(z) > g(x) foreach z € [a, b]. Then

/a o2 / e

Proof. The main idea is to compare the Darboux sums by hand. To make this technically easier, we show

that ,
/(f*g)zo

Namely, writing down a Darboux sum, we find that, for a given partition P C [a, b], we find that

U(f—g.P)=> M(f — g, [ther,ta])(tk — te_1) >0,
k=1 5

soitfollows U(f) = infp U(f — g, P) > 0, which is what we need because we know f — gisintegrable. H
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5.2.3 Pushing Integrability

Integrable functions tend to be pretty well-behaved. We have the following definition.

Definition 5.24 (Piecewise continuous). A function f : [a,b] — R is said to be piecewise continuous if
and only if there is a partition {¢}}_, of [a, b] such that f is uniformly continuous (!) on each (tx_1, ).

In theory, we'd like to say that f is continuous on each [t;_1, t;] (giving uniform continuity), but continuity on
two sets implies continuity on their union, so this would make piecewise continuity imply continuity. More
concretely, we would like functions like

f(x):{l x>0,

z =0,

for f : [0,1] — R to be piecewise continuous, but there is no partition of [0, 1] will fix the problem at 0.

As for why we want uniform continuity, the intuition is that it imitates continuity. More formally, we want
f restricted to (tx—1, tx) to extend to a continuous function on [t;_1, t;] to really earn the name “piecewise.”
More concretely, we are trying to prevent infinite discontinuities.

Similarly, we have the following result.

Definition 5.25 (Piecewise montonic). A function f : [a,b] — R is said to be piecewise monotonic if and
only if there is a partition {¢x }}}_, of [a, b] such that f is monotonic on each (t;_1, tx).

Again, we want the open intervals here for approximately the same reason as before: functions such as

f(m):{z z <0,

r+1 x>0,

with bad jumps would not be piecewise monotonic.
Warning 5.26. Piecewise monotonic does not imply bounded. For example, a patched version of tan .

These covers most functions we care about. Of course, it does not cover all of them.

Non-Example 5.27. The function

0 z =0,
@)= {xsin (%) x #0,

is continuous on R but not locally monotone at 0. The function f(z)+ 5 even has f’(z) > 0. The function
fox f(¢t) dt is even continuously differentiable at 0 but not locally monotone.

However, it is true that, if f is continuously differentiable, then f/(z) > 0 (f’(xz) < 0) implies that f is locally
increasing (decreasing) around z. Importantly, this assertion is agnostic about f/(z) = 0, as discussed in the
above example.

Anyways, we have the following result.

Proposition5.28. Fix f : [a,b] — R whichis piecewise continuous or bounded and piecewise monotonic.
Then fisintegrable.

Proof. We take these one at a time.

+ Because f is piecewise continuous, find our partition {t;}}_, such that f is uniformly continuous on
each (ty_1,t;). Then extend f to a continuous function [t;_1,t;], and we note that f is bounded and
hence integrable here automatically. Then taking the union of these integrals will finish.
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+ Because f is piecewise monotonic, find a partition {5 }}_, such that f is monotonic on each (t;_1, tz).
Then extend f to a monotonic function [tx—1, tx] by taking

Flteer) = lim f(t) and  f(tp_y) = lim f(¢)

. ol
t—tf t—ty

Now, we note that f is bounded and hence integrable here automatically. Then taking the union of
these integrals will finish. |

5.2.4 Some ExtraBits

This is a result we might care about.

Theorem 5.29 (Intermediate value for integrals). Fix f continuous on [a, b]. Then there exists ¢ € (a,b)
such that

b
fe) == [ sy

Proof. Roughly speaking, this comes from using the intermediate value theorem on

F(z) = /w flt)dt

to finish. [ ]

Ross also mentions the Dominated convergence theorem, but we don’t care.
Anyways, let's jJump into some exercises.

Definition 5.30 (Step). A function f : [a, b)) — Ris said to be step if and only if there is a partition {¢; }7_,
of [a, b] such that f is constant on each (t;_1, ).

We note that step functions are piecewise monotonic and hence integrable.

5.2.5 Fundamental Theorem of Calculus

Here is the first part.

Theorem 5.31 (Fundamental theorem of calculus, I). Fix f a continuous function on [a, b] which is dif-
ferentiable on (a, b) such that ¢’ is integrable on [a, b]. Then

We remark that the typical requirement is that ¢’ is continuous, but we have weakened it to integrable.
Granted, | am not sure how to create a function whose derivative is bad enough to not be integrable.

Remark 5.32. It is true that an integrable function must be continuous somewhere.

5.3 December1l

5.3.1 Fundamental Theorem of Calculus

Last time we were discussing the Fundamental theorem of calculus; here is the first part.
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Theorem 5.33 (Fundamental theorem of calculus, I). Fix f a continuous function on [a, b] which is dif-
ferentiable on (a, b) such that ¢’ is integrable on [a, b]. Then

b
/ ¢'(@) dz = g(b) — 9(a).

Proof. At the very least we know that
b
I::/ g (z)dr € R.
a

In particular, for any fixed partition P = {t;}}_, C [a,b] with sufficiently small mesh § > 0, we have that
U(g',P)—L(¢',P) < e.
Now, the trick is to apply the Mean value theorem on each [tx_1, t] so that there exists xy € (tx—1,tx)
such that
9(tx) — g(te—1)
Ty — th—1
This is going to be our rigorization of g being “locally linear.” So we see

= g/ ().

n

g(b) = gla) = (g(te) — g(tr-1)) = Y _ g(xx)(tr — tr-1)
k=1

k=1
which is a Riemann sum for g. In particular, we see that
L(g',P) < g(b) — g(a) <U(g", P).
So we find that
e<L(g,P)-U(g,P)<L(g",P) = I < g(b) —g(a) —I <U(g",P) —I <U(g', P) <&,

so sending ¢ to 0 will show the desired equality. |

Remark 5.34. It might appear strange that we are assuming ¢’ is integrable on [a, b], but this is indeed
necessary because there exists functions with derivatives which are not integrable. Concrete examples
are difficult.

And here is the second part of the Fundamental theorem of calculus.

Theorem 5.35 (Fundamental theorem of calculus, II). Fix f : [a,b] — R an integrable function. Then

F(z) = /9«’ flt)dt

is a continuous function [a,b] — R. If f is continuous at some = € (a,b), then F is differentiable at
x € (a,b) with derivative F'(z) = f(x).

Proof. We show the claims one at a time.

» Fixsome zy € [a,b] and some £ > 0. The key is that f is bounded, say by some M € Rso that |f(z)| <
M for each z € [a,b]. In particular, we let § > 0 be some variable to be set later, and we note that

|z — xo| < § implies
/ f(t)dt—/ Of(t)dt’:

by bounding directly. (We are blatantly ignoring some details in these inequalities.) But now we can
set § := 47 to get the result.

|F () = F(zo)| =

/ f(t)dt‘ <z —ao|- M < 6M
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« We omit this proof. [ |

Here is an exercise.

Exercise 5.36 (Ross 34.12). Fix f continuous on [a, b] such that

[ rwear=o

for each continuous function g : [a,b] — R. Then f is zero.

Proof. Fix f a continuous function on [a, b], and we suppose there exists some ¢ € [a, b] for which f(c) # 0,
and we will show there exists a g : [a,b] — R such that

b
[ @@y 2o
Take f(c) > 0 without loss of generality. Now, by continuity, there exists § > 0 such that
C
o—el <8 = [f(&) - f0) < L2

so that |z — ¢| < § implies f(z) > f(c)/2. To make life easy, we fix an interval [ag, bo] C [c — d, ¢ + 0] N [a, b].
The idea, now, is to make g "bump” on [ag, bg] and then be zero everywhere else. We won't write this out
rigorously, but the point is that we will have

b bo c bo
| stz = [ st e > LD [ o) ae

ao

which we can make sure is positive. This finishes. |

5.3.2 Improper Integrals

We are going to skip over the discussion of the Riemann-Stieltjes integral and go straight into the improper
integral.

Our setting for normal integrals was for bounded functions on closed intervals. For improper integrals,
we will relax this condition to functions on open intervals. As an example, we might be tempted to fix

1
I::/ sin <1) dx
0 X

into a proper integral by just setting sin (1) to be something arbitrary at 0, but it is probably more productive
to set u := 1/x to make this into an improper integral

> sinw
3 du.
1 u

This integral is more tractable because its absolute value has

so we have that I will converge.
Another approach to I is to look at

! 1
lim sin () dx,
a—0t J, T
which has the benefit of us not having to do a substitution or even touch 0 directly at all. So here is our actual
definition.
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Definition 5.37 (Improper integral). Fix f : [a,b) — R, where b € R U {oo}. Then, if f is integrable on

each [¢,d] C [a,b), we define
b T
/a f(t)dt = lim / f(t) dt.

There is an analogous definition for f : (a,b] — R (wherea € RU{—oc})andeven f : (a,b) — R (where
a € RU{—oc0c}andb e RU{oco}).

Let’s do some exercises; there honestly is not much theory here.

Exercise 5.38 (Ross 36.3). Fix p > 0. Then

1
/ z Pdx
0

converges ifand only if p < 1.

Proof. We simply do our cases.

o If p #£ 1, then we see
! _ 1—al"?

m ——.
a am0t 1 —p

1 1 21D
/ 2 Pdx = lim z Pdx = lim
0 a—0t a a—>0) - p

Ifp>1,thenl —p<0,s0a'™? +o00asa—0".Ifp>1,thenl —p>0,s0a'? - 0asa — 0F.
o If p=1,then we see
1 1
/ 7l dr = lim r7 dz = lim logl — loga,
0 a—0t J, a—0t

which diverges. ]

/ z Pdx
0

Exercise 5.39. Fixp > 0. Then we claim

always diverges.

Proof. We have problems at 0 and oo, so we are interested in computing

[e’e) 1 [e%e]
/ z Pdr = / xz Pdx+ / z Pdx.
0 0 1

We know the original integral converges if and only if p < 1. The second integral is

b 1—
b P -1
lim z Pdr= lim ——.
b— oo 1 b—oo 1 — p

We are only interested in the case where p < 1, where the term b'=? — oo as b — oo. So this diverges
always. |

o0 2
/ e~ dt < o0.
—0o0
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Proof. It suffices to study

o0 2 -1 2
/ et dt:/ et dt.
1 —00
oo 2 o0
/ et dtg/ e vdt =e! < o0,
1 1

But now we can say that

which finishes.

Remark 5.41. Note that we in fact know that this integral exists because the function

F(x) ::/ et dt
0

annoying to prove.

Remark 5.42. One can actually show that

/ e~ dr = /7.

o0

To see this, take a course in multi-variable calculus.

And that covers the material of the course.
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Sp — —00, 27
Sp — 00, 26

Absolute convergence, 44
Absolute value, 14
Algebraic, 10

Alternating, 47

Boundary, 39
Bounded, 37
Boundedness, 16

CauchyinR, 36

Cauchy in metricspaces, 36
Cauchy sequence, 32

Closed, 38

Closure, 39

Compact, 40

Complete, 36

Conditionally convergent, 48
Connected, |, 69

Connected, Il, 69

Continuity for metric spaces, 66
Continuity, |, 52

Continuity, I, 52

Convergence in R, 35
Convergence in metric spaces, 35

Darboux integrals, 96
Darboux sums, 96
Derivative, 86

Field, 13
Flavors of monotonic, 29

Has a limit, 27

Improper integral, 106
Indeterminate forms, 88
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Infinite series, 41
Integrable, 97

Interior, 38

Interval notation, 15
Intervals with infinities, 19

Limits, 22, 64
lim sup and lim inf, 31

Maximum and minimum, 95
Maximum, minimum, 15
Metric space, 34

One-to-one, 58
Open, 38

Open sphere, 37
Ordered field, 14

Partition, 95

Piecewise continuous, 102
Piecewise montonic, 102
Pointwise convergence, 76
Power series, 71
Pre-image, 66

Radius of convergence, 73
Real numbers, 13

Reals, I, 13

Riemann integrable, 98

Step, 103
Strictly increasing, 57

Supremum and infimum, II, 19

Supremum, Infimum, 16

Taylor series, 91

Uniform continuity for metric spaces, 66

Uniform convergence, 76
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