
174: Category Theory

Nir Elber

Spring 2022

CONTENTS

How strange to actually have to see the path of your journey in order to
make it.

—Neal Shusterman, [Shu16]

Contents 2

1 Basic Definitions 6
1.1 January 19 . 6

1.1.1 Our Definition . 6
1.1.2 Examples . 7
1.1.3 Size Issues . 9
1.1.4 Isomorphism . 9

1.2 January 21 . 10
1.2.1 Groupoids . 10
1.2.2 Arrow Words . 10

1.3 January 24 . 11
1.3.1 Review . 12
1.3.2 Subcategories . 12
1.3.3 Duality . 13
1.3.4 Yoneda Lite . 15

2 Functors and Natural Transformations 16
2.1 January 26 . 16

2.1.1 Functors . 16
2.1.2 More Examples . 17
2.1.3 Categories of Categories . 18
2.1.4 Subcategories. 19

2.2 January 31 . 19
2.2.1 Small Remark . 19
2.2.2 Contravariance . 20
2.2.3 A Lemma . 21
2.2.4 The Hom Bifunctor . 22

2.3 February 2 . 22
2.3.1 Hom Bifunctor . 22

2

CONTENTS 174: CAT. THEORY

2.3.2 Category Isomorphism . 23
2.3.3 Natural Transformation . 24

2.4 February 7 . 26
2.4.1 Examples of Natural Transformations . 26
2.4.2 Yoneda, Contravariant It Is . 27
2.4.3 Categorification . 28
2.4.4 Equivalence: Advertisement . 28

2.5 February 9 . 28
2.5.1 Equivalence . 28
2.5.2 Lazy Equivalence . 30

2.6 February 11 . 31
2.6.1 A Better Equivalence . 31

2.7 February 14 . 33
2.7.1 Using Our Equivalence . 34
2.7.2 Motivating Diagram Chasing . 34
2.7.3 Commutative Diagrams . 35

2.8 February 16 . 37
2.8.1 House-Keeping . 37
2.8.2 Diagram-Chasing Philosophy . 38
2.8.3 Initial and Final Objects . 38
2.8.4 Concrete Categories . 39
2.8.5 Commutative Rectangles . 40

2.9 February 18 . 41
2.9.1 Motivating Horizontal Composition . 41
2.9.2 Whiskering . 42
2.9.3 Horizontal Composition . 42
2.9.4 Horizontal and Vertical Composition . 43

3 Universal Properties 45
3.1 February 23 . 45

3.1.1 A Functorial Initial and Final . 45
3.1.2 Representability . 46

3.2 February 25 . 48
3.2.1 The Yoneda Lemma . 48

3.3 February 28 . 51
3.3.1 Yoneda Lemma Review . 51
3.3.2 Yoneda Embeddings . 52

3.4 March 2 . 53
3.4.1 Unique Representation . 53
3.4.2 Universal Properties . 54

3.5 March 4 . 56
3.5.1 More on Universal Properties . 56
3.5.2 Category of Elements . 57

3.6 March 7 . 59
3.6.1 Housekeeping . 59
3.6.2 A Representability Test . 60
3.6.3 Unique Representation . 60
3.6.4 Typical Universal Properties . 61

3

CONTENTS 174: CAT. THEORY

4 Limits and Colimits 63
4.1 March 9 . 63

4.1.1 Products . 63
4.1.2 Coproducts . 65
4.1.3 More on Products . 66

4.2 March 11 . 66
4.2.1 Cones and Cocones . 66
4.2.2 Limits and Colimits . 67

4.3 March 14 . 70
4.3.1 More Examples . 70
4.3.2 Equalizers . 71
4.3.3 Coequalizers . 72

4.4 March 16 . 73
4.4.1 Limit Review . 73
4.4.2 Pullbacks . 74
4.4.3 Pullbacks as Equalizers . 76
4.4.4 Direct and Inverse Limits . 77

4.5 March 18 . 78
4.5.1 Direct and Inverse Limits . 78
4.5.2 Pushouts . 79
4.5.3 Hom Sets of (Co)products . 80
4.5.4 Surjective Projection Maps . 82

4.6 March 28 . 83
4.6.1 Complete Categories . 84
4.6.2 Limits through Functors . 85

4.7 March 30 . 87
4.7.1 More on Functors through Limits . 87
4.7.2 Limits in Set . 89

4.8 April 1 . 90
4.8.1 Limits through Representable Functors . 90
4.8.2 Computing Limits . 91

4.9 April 4 . 93
4.9.1 Elements in Categories . 93
4.9.2 Sheaves . 94

4.10 April 6 . 96
4.10.1 Limit Functoriality . 96
4.10.2 Limits of Limits . 97

4.11 April 8 . 100
4.11.1 Group Objects . 100

5 Adjoints 103
5.1 April 11 . 103

5.1.1 Introducing Adjunctions . 103
5.1.2 Examples . 104
5.1.3 Units and Counits . 106

5.2 April 13 . 107
5.2.1 More Examples . 107
5.2.2 The Triangle Equations . 108

5.3 April 15 . 109
5.3.1 Units and Counits Speed-run . 109
5.3.2 Morphism of Adjunctions . 111

5.4 April 18 . 112
5.4.1 Contravariant Adjoints . 112
5.4.2 Uniqueness of Adjoints . 113

4

CONTENTS 174: CAT. THEORY

5.4.3 Composing Adjunctions . 114
5.5 April 20 . 116

5.5.1 Adjoints Preserve (Co)limits . 116
5.5.2 Whiskering . 118

5.6 April 22 . 119
5.6.1 . 119
5.6.2 The Category of Categories . 120

6 Kan Extensions 122
6.1 April 25 . 122

6.1.1 Motivation . 122
6.1.2 Kan Extensions . 123

6.2 April 27 . 125
6.2.1 Kan Extensions for Embeddings . 125
6.2.2 Comma Categories, Quickly . 126
6.2.3 Kan Extensions in General . 127
6.2.4 Kan Extension Examples . 127

6.3 April 29 . 129
6.3.1 Ultrafilters . 129
6.3.2 Category Theory via Kan Extensions . 131
6.3.3 The Kan Extension Formula . 132

Bibliography 134

List of Definitions 135

5

THEME 1

BASIC DEFINITIONS

Category theory is much easier once you realize that it is designed to
formalize and abstract things you already know.

—Ravi Vakil, [Vak17]

1.1 January 19
Reportedly there is a lot of material that Bryce would like to cover today.

1.1.1 Our Definition
We’re doing category theory, so let’s define what a category is.

Definition 1.1 (Category). A category C is a pair of objects and morphisms (Ob C,Mor C) satisfying the
following.

• Ob C is a collection of objects. By abuse of notation, when we write c ∈ C

• Mor C is a collection of morphisms. Morphisms might also be called arrows or maps or functions
or continuous functions or similar.
A morphism is written f : x→ y where x, y ∈ Ob C. Here, x is the domain, and y is the codomain.

In the above definition, we have some coherence conditions:

• For each x ∈ C, there is a morphism idx : x→ x.

• Given any pair of morphisms f : x → y and g : y → z, there exists a composition gf : x → z.
Importantly, the codomain of f is the domain of g.

Additionally, morphisms satisfy the following coherence conditions.

• Associativity: for any morphisms f : a→ b and g : b→ c and h : c→ d, we have that h(gf) = (hg)f .

• Identity: given any morphism f : a→ b, we have idb f = f and f ida = f .

6

1.1. JANUARY 19 174: CAT. THEORY

Yes, this is a long definition. For reference, it is on page 3 of Riehl.
The intuition to have here is that we have objects to be thought of as points a bunch of morphisms which

are to be thought of arrows between them. Here is an example of some morphisms in a category.

• •

• •

The loops are identity morphisms. As an aside, it is reasonable to think that definition of a category is overly
abstract. Most of the time we will be thinking about some concrete category.

Before continuing, we bring in the following definition.

Definition 1.2 (Hom-sets). Fix a category C. Then, given objects x, y ∈ C, we write C(x, y) or HomC(x, y)
or Hom(x, y) or Mor(x, y) for the set of morphisms f : x→ y. I personally prefer Mor(x, y).

Note that two objects need not have a morphism between them. For example, the following is a category
even though the two objects have a morphism between them.

• •

As a less contrived example, there is no morphism between F2 and F3 in the category of fields.

1.1.2 Examples
Let’s talk about examples.

Example 1.3. The category Set has objects which are all sets and its morphisms are the functions be-
tween sets.

Example 1.4. The category Grp has objects which are all groups and its morphisms are group homo-
morphisms. Similarly, Ab has abelian groups.

Example 1.5. The category Ring has objects which are all rings (with identity) and its morphisms are
group homomorphisms.

Example 1.6. The category Field has objects which are all fields and its morphisms are field/ring homo-
morphisms.

Example 1.7. The categoryVeck has objects which are allk-vector spaces and its morphisms arek-linear
transformations.

Those are the good examples. We like them because they are with familiar objects.
Here are some weirder examples.

Example 1.8 (Walking arrow). The diagram

• •

induces a category with a single non-identity morphism.

7

1.1. JANUARY 19 174: CAT. THEORY

Note that we will stop writing down all the identity morphisms and all induced morphisms because they’re
annoying to write out.

Example 1.9 (Walking isomorphism). The diagram

• •

induces a category with two non-identity morphisms. We declare that any composition of the two non-
identity morphisms is the identity.

There are also such things as a poset category, but for this we should define a poset first.

Definition 1.10 (Poset). A poset (P,≤) is a setP and a relation≤ onP which satisfies the following; let
a, b, c ∈ P .

• Reflexive: a ≤ a.

• Antisymmetric: a ≤ b and b ≤ a implies a = b.

• Transitive: a ≤ b and b ≤ c implies a ≤ c.

Now, it turns out that all posets induce a category.

Example 1.11 (Poset category). Given any poset (P,≤), we can define the poset category as follows.

• The objects are elements of P .

• For x, y ∈ P , there is a morphism x→ y if and only if x ≤ y, and there is only one morphism.

Checking that the poset category is in fact a category is not very interesting. The identity law comes from
reflexivity, where ida witnesses a ≤ a.

Additionally, transitivity defines our composition: if a ≤ b and b ≤ c, then a ≤ c, and the morphism
representing a ≤ c is unambiguous because there is at most one morphism a→ c. This uniqueness is in fact
crucial for our composition: if f : a → b and g : b → c and h : c → d are morphisms, then h(gf) = (hg)f
because they are both morphisms a→ d, of which there is at most one.

We continue with our examples. We will not check that these are actually categories formally; perhaps
the reader can do the checks on their own time.

Example 1.12 (Groups). Given a groupG, we can define the category BG to have one object ∗ and mor-
phisms g : ∗ → ∗ given by group elements g ∈ G. Composition in the category is group multiplication;
the identity morphism id∗ needed is the identity element of G; and the associativity check comes from
associativity in G.

Example 1.13 (Pointer sets). We define the category of pointed sets Set∗ to consist of objects which
are ordered pairs (X,x) where X is a set and x ∈ X is an element. Then morphism are “based maps”
f : (X,x)→ (Y, y) to consist of the data of a function f : X → Y such that f(x) = y.

Example 1.14. Given any set S, we can define a category consisting of objects which are elements of S
and morphisms which are only the required identity morphisms.

This last example generalizes.

Definition 1.15 (Discrete, indiscrete). Fix a category C. Then C is discrete if and only if the only mor-
phisms are identity morphisms. Additionally, C is indiscrete if and only if Mor(x, y) has exactly one ele-
ment for each pair of objects (x, y).

8

1.1. JANUARY 19 174: CAT. THEORY

1.1.3 Size Issues
Let’s briefly talk about why we are calling Ob C and Mor C “collections.” In short, we cannot have a set that
contains all sets, but we would still like a category which contains all categories. There are a few ways around
this; here are two.

• Grothendieck inaccessible categories: we essentially upper-bound the size of our sets and then let Set
contain all of our sets.

• Proper classes: we add in things called “classes” to foundational mathematics we are allowed to be
bigger than sets.

We will avoid doing anything like this in this course, so here is a definition making our avoidance con-
crete.

Definition 1.16 (Small, locally small). Fix C a category. Then C is small if and only if Mor C is a set. Alter-
natively, C is locally small if and only if Mor(x, y) is a set.

Example 1.17. The category Set is locally small, but it is not small. To see that it is not small, note that
S 7→ Mor({∗}, S) is an injective map, so Mor Set must be at least as big as Set.

It turns out that most of our categories will be locally small. It is a very nice property to have.

1.1.4 Isomorphism
In algebra (e.g., group theory), we are interested in when two objects are the same. In category theory,
we focus on the morphisms between objects, so we need to be careful how we define this. Here is our
definition.

Definition 1.18 (Isomorphism). Fix a category C. Then a morphism f : x → y is an isomorphism if and
only if there is a morphism g : y → x such that fg = idy and gf = idx. We call g the inverse of f and
often notate it f−1.

This is fairly intuitive: isomorphisms are those morphisms with a way to reverse them.
Observe that we called g “the” inverse of f , and we may do so because inverses are unique.

Proposition 1.19. Fix a category C. Inverses of morphisms, if they exist, are unique.

Proof. Fix f : x→ y some isomorphism, and suppose that we have found two inverse morphisms g, h : y →
x. Then

g = g idy = g(fh) = (gf)h = idx h = h,

so indeed the inverse morphisms that we found are the same. ■

Anyways, here are some examples.

Example 1.20. In Set, the isomorphisms are the bijective maps. For this we would have to show that
bijective maps have inverse maps, which is not too hard to show.

Example 1.21. In Grp, the isomorphisms are group isomorphisms. Similarly, isomorphisms in Ring are
ring isomorphisms.

As a warning, we will say now that lots of categories do not have a good categorical notion of injectivity or
surjectivity, so we will not be able to say that isomorphisms are merely “bijective” morphisms.

9

1.2. JANUARY 21 174: CAT. THEORY

1.2 January 21

By the way, this course is being run by Bryce (interested in category theory, homological algebra, and alge-
braic topology) and Chris (interested in representation theory and category theory).

1.2.1 Groupoids

Reportedly, there will usually not be a lecture to begin out our discussion sections, but here is a lecture to
begin out our first discussion section.

Last time we left off talking about indiscrete categories. Here is a nice fact.

Proposition 1.22. Fix C an indiscrete category. Then all maps are isomorphisms.

Proof. Fix any morphism f : x → y. There is also a morphism g : y → x, and we see that gf ∈ Mor(x, x).
But idx ∈ Mor(x, x) as well, so we are forced to have gf = idx by uniqueness of morphisms. Similar shows
that fg = idy, finishing the proof. ■

Remark 1.23. This statement is also true for discrete categories but only because all identity morphisms
are isomorphisms immediately.

The property of the proposition is nice enough to deserve a definition.

Definition 1.24 (Groupoid). A category in which all morphisms are isomorphisms is called a groupoid.

Example 1.25. Viewing groups as one-element categories, we see that groups are groupoids because
all elements (i.e., morphisms of the one-object set) have inverses and hence are isomorphisms.

Intuitively, a groupoid is a group but more “spread out.”

1.2.2 Arrow Words

We close out with some miscellaneous definitions for our morphisms.

Definition 1.26 (Endo-, automorphism). Fix a category C. A morphism f : x→ y is an endomorphism if
and only if x = y. A morphism f : x → y is an automorphism if and only if it is an isomorphism and an
endomorphism.

Example 1.27. In the category of abelian groups, the map Z → Z given by multiplication by 2 is an
endomorphism but not an automorphism.

10

1.3. JANUARY 24 174: CAT. THEORY

Definition 1.28 (Monic, epic). Fix a category C and a morphism f : x→ y.

• We say f is a monomorphism (or is monic) if and only if fg = fh implies g = h for any morphisms
g, h : c→ x. In other words, the map

Mor(c, x)
f◦−→ Mor(c, y)

is injective. (This map is called “post-composition.”) We might write f : x ↪→ y for emphasis.

• We say f is an epimorphism (or is epic) if and only if gf = hf implies g = h for any morphisms
g, h : y → c. In other words, the map

Mor(y, c)
−◦f→ Mor(x, c)

is injective. (This map is called “pre-composition.”) We might write f : x↠ y for emphasis.

Intuitively, the monomorphism condition looks like the injectivity condition (namely, f(x) = f(y) implies
x = y), so monic is supposed to be a generalization for injective.

Example 1.29. In the category of sets, monic is equivalent to injective, and epic is equivalent to surjec-
tive. Then it happens that being monic and epic implies being isomorphic. We will not fill in the details
here.

Warning 1.30. It is not always true that being monic and epic implies being isomorphic. It is true in
Set,Ab,Grp but not in, say, Ring as the below example shows.

Example 1.31. The inclusion f : Z ↪→ Q in Ring is both epic and monic but not an isomorphism. We run
some checks.

• We show monic. Suppose g, h : R → Z are morphisms with fg = fh. We claim g = h. Well,
for any r ∈ R, we see g(r) = f(g(r)) and h(r) = f(h(r)) because f is merely an inclusion, so
g(r) = h(r) follows.

• We show epic. Suppose g, h : Q → R are morphisms with gf = hf . We claim g = h. We start by
noting any m ∈ Z \ {0} and n ∈ Z will have

g (n/m) · g(m) = g(n)

and similar for h. However, g(m) = g(f(m)) = h(f(m)) = h(m) and g(n) = h(n) for the same
reason, so g

(
n
m

)
= g(n)/g(m) = h(n)/h(m) = h

(
n
m

)
, and we are done because any rational can

be expressed as some n
m .

• Lastly, f is not an isomorphism because Z and Q are not isomorphic. For example, 2x − 1 has a
solution in Q but not in Z.

And now discussion begins.

1.3 January 24

Chris is giving the lecture today. Reportedly, it might be rough around the edges, but I have full faith in its
coherence.

11

1.3. JANUARY 24 174: CAT. THEORY

1.3.1 Review
Let’s quickly talk about two fun types of categories.

Definition 1.32 (Slice categories). Fix a category C and an object c ∈ C.

• We define the slice category ⌋/C to have objects which are morphisms f : c→ x for objects x ∈ C.
The morphisms from f : c → x to g : c → y is a morphism h : x → y such that f = gh. Namely,
we require the following triangle to commute.

c

x y

f

h

g

• Dual to this is the slice category C/c where we reverse all the arrows. For example, our objects
are morphisms f : x → c, and morphisms from f : x → c to g : y → c are morphisms f : x → y
such that g = hf .

There are also groupoids, which we have defined previously.

1.3.2 Subcategories
We have the following definition.

Definition 1.33 (Subcategory). A subcategory of a category C is a category D whose objects and mor-
phisms come from C and that the composition law is inherited. Explicitly, we require D to have the
identity morphisms and be closed under composition of C (i.e., if f : x → y and g : y → z are mor-
phisms inD, then gf is also a morphism inD.)

We are going to want ways to generate subcategories. Here is one way.

Definition 1.34 (Full subcategory). Fix a category C. Then we define the full subcategory D of C to be
defined by choosing some objects ObD ⊆ Ob C and then choosing morphisms by taking all of them.
Explicitly, for x, y ∈ ObD, we have

MorD(x, y) = MorC(x, y).

Example 1.35. The category of abelian groups is a full subcategory of the category of groups. Namely,
the category of abelian groups is made of the objects which are abelian groups and all arrows are simply
all group homomorphisms, so no morphisms have been lost in this restriction.

Example 1.36. The category of finite sets is a full subcategory in the category of sets.

Example 1.37. Given a category C, one can take the maximal groupoid of C to be the category whose
objects are the objects of C and whose morphisms are the isomorphisms of C. So as long as C has
morphisms which are not isomorphisms, then the maximal groupoid will not be full.

Example 1.38. The category Rng is a subcategory of Ring, but it is not full. For example, in Ring, the
map Z

×2

Z is not a morphism even though it is a morphism in Rng.

One has to be a bit careful with this, however.

12

1.3. JANUARY 24 174: CAT. THEORY

Non-Example 1.39. The category Grp is not a subcategory of Set because one can endow the same set
with different group structures.

1.3.3 Duality
Here is our main character.

Definition 1.40 (Opposite category). Given a category C, we define the opposite category Cop to have
objects which are objects of C and morphisms fop : y → x of Cop are in one-to-one correspondence
with morphisms f : x → y of C. Lastly, composition is defined by, for fop : y → x and gop : z → y, we
have

fopgop = (gf)op.

In pictures, the composition law reversed the diagram x
f→ y

g→ z to

x
fop

← y
gop← z.

Let’s see some examples.

Example 1.41. Given a partial order (P,≤), the opposite category is by (partial) ordering P simply by
flipping the partial order: b ≤op a if and only if a ≤ b. Namely, the opposite category of a partial order
remains a partial order.

Example 1.42. Fix a group G and form its category BG. Now, when we reverse the arrows (BG)op, we
get a category corresponding to the group law Gop with group law defined by

hopgop = gh.

Namely, the opposite category of a group is still a group.

In fact, we have that BG ∼= (BG)op (for whatever∼= means) by taking making our morphisms perform inver-
sion by φ : g 7→ (gop)−1. This map is bijective, and we can check the composition by writing

φ(gh) = ((gh)op)
−1

= (hopgop)
−1

= (gop)
−1

(hop)
−1

= φ(g)φ(h),

so everything works.

Example 1.43. Algebraic geometry says that CRingop is equivalent to the category of affine schemes
AffSch. The point here is that the opposite category is potentially very different from the original cate-
gory. (Mnemonically, the opposite of algebra is geometry.)

Now, here is the idea of duality.

Idea 1.44.! Theorem statements that hold for categories will need to be true for their opposite category
as well.

As an example, let’s work with monomorphisms and epimorphisms. For example, f : y → z is monic if and
only if the commutativity of the diagram

x y z
g

h f

13

1.3. JANUARY 24 174: CAT. THEORY

forces g = h. Similarly, f : x→ y is epic if and only if the commutativity of the diagram

x y z
g

hf

forces g = h. But notice that flipping the epic diagram notes that epic condition is equivalent to the com-
mutativity of the diagram

x y x
gop

hop fop

forces g = h, which is the same thing as gop = hop. Thus, we have the following lemma.

Lemma 1.45. Fix a category C. Then a morphism f is monic if and only if fop is epic in C.

Proof. This comes from the discussion above. ■

The point is that we can prove theorems about monic and epic maps simultaneously by working with (say)
monomorphisms general categories and then dualizing to get the statement about epimorphisms.

Let’s see this strategy in action. We have the following definition.

Definition 1.46 (Section, retraction). Suppose that s : x → y and r : y → x are morphisms such that
rs = idx; i.e., the composition

x
s→ y

r→ x

is idx. Then we say that s is a section of r, and r is a retraction of s.

Think about these as having a one-sided inverse. We have the following lemma.

Lemma 1.47. A morphism s in C is a section of some morphism if and only if sop is a retraction in C.

Proof. Fix s : x → y. The condition that there exists r so that rs = idx is equivalent to there exists rop such
that soprop = idopx , which translates into the lemma. ■

And now let’s actually see a proof.

Proposition 1.48. A morphism s in C is a section of some morphism implies that s is a monomorphism.

Proof. Suppose that s : x → y is a section for the morphism r : y → x so that rs = idx. Now, suppose that
sg = sh so that we want to show g = h. But we see that

g = idx g = (rs)g = r(sg) = r(sh) = (rs)h = idx h = h,

so we are done. ■

So here is our dual statement, which we get for free.

Proposition 1.49. A morphism r in C is a retraction of some morphism implies that r is an epimorphism.

Proof. We note that r is a retraction inC implies that rop is a section inCop, so by the above, rop is a monomor-
phism in Cop. Thus, it follows that r is an epimorphism in C. ■

We’ve been saying “section of” and “retraction of” a lot, so we optimize out these words in the following
definition.

14

1.3. JANUARY 24 174: CAT. THEORY

Definition 1.50 (Split monorphism, split epimorphism). We say that a morphism f is a split monomor-
phism if and only if it is a section of some morphism. Similarly, we say that f is a split epimorphism if
and only if it is the retraction of some morphism.

So the above statements show that split monomorphisms are in fact monomorphisms, and split epimor-
phisms are in fact epimorphisms.

1.3.4 Yoneda Lite
So far we have said that monic is similar to injective and epic is similar to surjective. We would like to make
these sorts of correspondences a little more concrete, so we add more abstraction.

Definition 1.51 (Post- and pre-composition). Fix a morphism f : x → y of C. Then, given an object
c ∈ C, we define the maps f∗ : Mor(c, x)→ Mor(c, y) and f∗(y, c)→ Mor(x, c) by

f∗(g) := fg andf∗(g) := gf.

The map f∗ is called post-composition because we apply f after; the map f∗ is called pre-composition
because we apply it after.

Note that f∗ and f∗ are nice because they are all real functions of sets (for locally small categories) with
which we can use to understand f . Here are some equivalent conditions.

Proposition 1.52. Fix f a morphism of the category C. Then the following are true.

(a) f is an isomorphism if and only if f∗ is bijective if and only if f∗ is bijective.

(b) f is monic if and only if f∗ is injective.

(c) f is epic if and only if f∗ is injective (!).

(d) f is split monic if and only if f∗ is surjective.

(e) f is split epic if and only if f∗ is surjective.

Proof. We omit most of these; let’s show (b). We have two directions. Suppose that f is monic. Then fix an
object c, and we show that the map

f∗ : Mor(c, x)→ Mor(c, y)

by f∗(g) := fg is injective. But indeed, f∗(g) = f∗(h) implies fg = fh implies g = h by monic, so injectivity
follows.

Conversely, suppose f∗ is monic. Then suppose that fg = fh for some morphisms g, h : c → x, and we
show that g = h. But f∗ is injective! So

f∗(g) = fg = fh = f∗(h)

forces g = h, and we are done. ■

15

THEME 2

FUNCTORS AND NATURAL
TRANSFORMATIONS

Mathematics is the art of giving the same names to different things

—Henri Poincaré

2.1 January 26
We will start on new things.

2.1.1 Functors
In this class, we will repeatedly talk about the following idea.

Idea 2.1.! Everything is a special case of everything else.

In other words, we will want to abstract old ideas from new ones, and this will happen a lot.
The first time we are going to see this is by trying to consider categories of

Remark 2.2. Yes, Russel’s paradox prevents a category of all categories. Nevertheless, we will try. One
way to get around this is to do size declarations: for example, we can consider the category of all small
categories, as we are about to do.

Anyways, we would like to give some categorical structure to (say, small) categories. Well, what will be our
morphisms between categories? They will be “functors.”

Before defining functors, we should describe what a functor F : C → D should do.

• Viewing C as consisting of the data of objects and morphisms, an initial requirement might be that F
takes objects to objects and morphisms to morphisms.

• We would also like F to preserve the “structure” of our categories, which essentially means we want
to preserve composition in our categories. So we will require a “functoriality” condition to preserve
this structure.

16

2.1. JANUARY 26 174: CAT. THEORY

Let’s try to get an intuitive feeling for how functoriality should behave.

Example 2.3. Fix an abelian groupA. Then there is a map Hom(A,−) sending abelian groups Ab to sets
Set. In fact, we get a map of morphisms as well, for a morphism f : X → Y provides a post-composition
mapping

f∗ : Hom(A,X)→ Hom(A, Y)

by φ 7→ fφ. This association has some nice properties. For example, we have the following.

• We see (idX)∗ : Hom(A,X)→ Hom(A,X) sends φ 7→ φ, so (idX)∗ = idHom(A,X).

• Given f : X → Y and g : Y → Z, we have gf : X → Z, and we can see that

(gf)∗(φ) = gfφ = g∗(f∗(φ)) = (g∗f∗)(φ),

so we are “preserving composition” in some sense because we composed before and after.

Example 2.4. Given a topological space X, we can create the fundamental group π1(X). This mapping
is nice because a continuous map f : X → Y will induce a map π(f) : π1(X) → π1(Y), and in fact we
can check that π1(idX) = idπ1(X) as well as preserving composition (f : X → Y and g : Y → Z gives
π1(gf) = π1(g)π1(f)).

With the above motivation, we are now ready to give the definition of a functor.

Definition 2.5 (Functor). Fix categories C and D. Then a functor F : C → D is a pair of “assignments”
Ob C → ObD and Mor C → MorD satisfying the following coherence laws.

• Morphisms make sense: if f : x→ y a morphism in C, thenFf is a morphism with domainFx and
codomain Fy.

• Identity: given an object c ∈ C, we require F (idc) = idF (c).

• Composition: given morphisms f : x→ y and g : y → z in C, we require that F (gf) = F (g)F (f).

2.1.2 More Examples
Let’s do more examples.

Example 2.6 (Forgetful). There is a functor U : Grp → Set which sends a group G to its underlying set
G and a group homomorphism to the underlying function. In other words, we are simply forgetting the
algebraic structure of the group. Because the composition law in groups is composition of functions,
and identities in Grp do nothing like in Set.

Example 2.7 (Forgetful). Here are more forgetful functors.

• Ring→ Grp (by R 7→ R×)

• Field→ Ring

• Ring→ Ab

• Grp→ Set∗ by sending G 7→ (G, eG); namely, we point the set of G by its identity, which must be
fixed by group homomorphisms anyways.

With all of our forgetful functors lying around, we have the following definition.

17

2.1. JANUARY 26 174: CAT. THEORY

Definition 2.8 (Concrete). A category C is concrete if and only if it has a forgetful functor to Set.

This is not terribly formal because we haven’t defined what a forgetful functor means, but hopefully this is
sufficiently intuitive: C should be sets with some extra structure.

Before our next example, we pick up the following example.

Definition 2.9 (Endofunctor). A functor F is an endofunctor of its “domain” and “codomain” categories
are the same category.

Example 2.10. There is an endofunctor P : Set → Set sending a set X to its power set P(X). We send
morphisms f : X → Y to P(f) by sending subsets SX ⊆ X in P(X) to the image f(SX) ∈ P(Y). We
will not check the functoriality conditions, but it can be done without too much effort.

And now for more examples.

Example 2.11. There is a functor Top → Htpy by sending a topological space X to the same space up
to homotopy. Then we send continuous maps to continuous maps, up to homotopy.

Example 2.12. There is a “free” functor Z[−] : Set→ Ab sending a set S to the abelian group

Z[S] =
⊕
s∈S

Zs.

Essentially, this is the free Z-module generated by S; formally, Z[S] is made of finite Z-linear combina-
tions of elements of S.

Then we can take a function f : S → T to a group homomorphism Z[S] → Z[T] because we have
described where to send the “basis elements” of S, and hence this f will uniquely determine the full
map.

Example 2.13. Fix C a locally small category, and fix some x ∈ C. Then there is a functor MorC(x,−) :
C → Set by sending

y 7→ MorC(x, y) and (f : y → z) 7→ f∗ : MorC(x, y)→ MorC(x, z),

where f∗ : φ 7→ fφ is again post-composition.

Example 2.14. There is an endofunctor id : C → C by sending objects and morphisms to themselves.

2.1.3 Categories of Categories
While we’re here, we note that we can create new functors from old ones by “composition.”

Proposition 2.15. Fix F : C → D and G : D → E functors. Then the naturally defined map GF : C → E
is also a functor.

Proof. We do indeed send objects to objects, and a morphism f : x→ y in C will be sent to F (f) : Fx→ Fy
and then

GF (f) : GFx→ GFy.

18

2.2. JANUARY 31 174: CAT. THEORY

Further, we can check that GF (idx) = G(idFx) = idGFx, so GF preserves identities. And then, given f :
x→ y and g : y → z, we see that

GF (gf) = G(F (g)F (f)) = GF (g)GF (f),

which finishes the composition check. ■

The point of the above composition law, is that it lets us form a “category.”

Definition 2.16. We define Cat to be the category of small categories where morphisms are functors.
We define CAT to be the category of locally small categories where morphisms again are functors.

Remark 2.17. Fixing two small categories C andD, a functorF : C → D can be identified with a function
on merely the morphism sets Mor C → MorD, which is itself a set. Thus, Cat is a locally small category:
Cat ∈ CAT.

2.1.4 Subcategories.

To finish out class, we have the following warning.

Warning 2.18. Let F : C → D be a functor. We check that the naturally defined “image” F (C) need not
be a subcategory ofD.

Here is an example. Let C be the following category.

a b

a′ b′

f

f ′

Then letD be the following category.

0 1 2
x y

Now we define F : C → D by Ff = x and Ff ′ = y, which will make a perfectly fine functor. However, the
composition yx : 0→ 2 inD does not live in the image of F , so this image is not a subcategory.

To fix this problem, one often says something like “given a functor F : C → D, consider the full subcat-
egory of F (C)” to mean closing up F (C)’s potentially unclosed composition.

2.2 January 31

So class is in-person today.

2.2.1 Small Remark

A question was asked in the Discord server about dualizing. In theory, dualizing theorems should be very
easy: simply state the theorem in the opposite category, provided we have shown the necessary machinery
to make the theorem dualize as necessary.

19

2.2. JANUARY 31 174: CAT. THEORY

2.2.2 Contravariance

Today we are talking about contravariance. A functor F : C → D is defined so far as what are called “co-
variant” functors. We would like to define contravariant functors. There are lots of equivalent ways to do
this.

Definition 2.19 (Contravariance, I). A contravariant functor F : C → D is a mapping of objects and
morphisms with the following coherence laws.

• If f : a→ b in C, then Ff : Fb→ Fa. (Note the reversal of direction!)

• Identity: F (idc) = idF (c) for each c ∈ C.

• Contravariant (!) composition: if f : a→ b and g : b→ c in C, then F (gf) = F (f)F (g).

This in fact comes from dualizing.

Definition 2.20 (Contravariance, II). A contravariant functorF : C → D is a (covariant) functorF : Cop →
D.

To be explicit, if we are given a functor F : Cop → D, then a morphism f : a → b in C is first taken to a
morphism fop : bop → aop. And if we have another morphism g : b→ c in C, then we see the diagram

a
f→ b

g→ c

becomes

aop
fop

← bop
gop← cop

becomes

Faop
Ffop

← Fbop
Fgop← Fcop,

which gives our composition law.
We can also dualize in the opposite direction.

Definition 2.21 (Contravariance, III). A contravariant functor F : C → D is a (covariant) functor F : C →
Dop.

Warning 2.22. We will use Definition 2.20 as our definition of contravariance.

Example 2.23. We work with Veck the category whose objects are k-vector spaces and morphisms
which are linear maps. Then we have a functor

−∗ : Vecopk → Veck

by taking V 7→ V ∗. (Here, V ∗ := Homk(V, k).) As for morphisms, we need to take f : V → W to some
map f∗ :W ∗ → V ∗, which is

f∗ : φ 7→ φf.

20

2.2. JANUARY 31 174: CAT. THEORY

Example 2.24. We work with Poset the category whose objects are posets and morphisms which are
order-preserving maps. I.e., a map f : P → Q is order-preserving if and only if a ≤ b in P implies
f(a) ≤ f(b) in Q. Now we define the contravariant functorO : Topop → Poset by taking

X 7→ {U : open U ⊆ X},

where the order on the right is by inclusion. Then a continuous map f : X → Y becomes the order-
preserving (!) mapO(f) : O(Y)→ O(X) by

O(f)(UY) := f−1(UY).

Explicitly, open subsets U1 ⊆ U2 of Y have f−1(U1) ⊆ f−1(U2) back in X.

Remark 2.25. We can use the above example to define a presheaf. “Presheaf” can have lots of mean-
ings.

• A “presheaf” can be any contravariant functor.

• A “presheaf” can be any contravariant functor with codomain Set.

• A “presheaf” can be any contravariant functor from O(X)op. It is Set-valued (respectively, C-
valued) if its codomain is Set (respectively, C).

2.2.3 A Lemma
It’s a math class, so we should probably prove something today.

Theorem 2.26. A (covariant) functor F : C → D preserves isomorphisms.

Remark 2.27. By convention, all functors will be covariant, and if we want a contravariant functor, we
will write Cop → D. In other words, I will now stop writing “(covariant).”

Proof. Let f : a→ b be an isomorphism in C with inverse g. We want to show that F (f) is an isomorphism;
we claim that F (g) is its inverse. Indeed,

F (f)F (g) = F (fg) = F (idb) = idF (b) and F (g)F (f) = F (gf) = F (ida) = idF (a),

so indeed, F (g) is an inverse of F (f). So F (f) is an isomorphism, and we are done. ■

This example can do things.

Example 2.28. Fix groups G,H and their one-object categories BG,BH. We claim that functors F :
BG → BG contain exactly the data of a group homomorphism G → H. To see that F induces a group
homomorphism, suppose σ, τ ∈ G, we have by funtoriality

F (στ) = F (σ)F (τ),

which is exactly what we need to be a group homomorphism. Conversely, if f : G → H is a group
homomorphism, then f induces a functor: f(στ) = f(σ)f(τ) by definition, and f(idG) = idH is a result
of group theory.

21

2.3. FEBRUARY 2 174: CAT. THEORY

Example 2.29. A functor F : BG → C is precisely the data of a G-action of an object c ∈ C. We send
the one object ∗ ∈ BG somewhere, say to an object c ∈ C. Then each σ ∈ G goes to some morphism
σ ∈ HomC(c, c) (which is in fact an isomorphism because σ is an isomorphism BG). So in total we get a
map

G→ Aut c,

which is exactly the data of a group action. This unifies group actions on all sorts of structures.

The above definition is special enough to have a name.

Definition 2.30 (Functorial group action). A functorial group action of G on a category C is a functor
BG→ C.

Remark 2.31. Technically we will be viewing these functors as providing left actions. To get a right
action, we want a functor (BG)op → C.

Note, as in the example, the functor contains the same data as a group homomorphismG→ Aut c for some
c ∈ C.

Remark 2.32. Bryce would like to make us aware that writing down G → Aut c as a group homomor-
phism is only legal when C is locally small.

Example 2.33. Given a groupG, aG-representation V ofG is a functor BG→ Veck where ∗ ∈ BG goes
to V ∈ Veck.

2.2.4 The Hom Bifunctor
We have a little time left, so let’s do something fun. Given a (locally small) C and an object x ∈ C, we get two
functors

MorC(x,−) : C → Set and MorC(−, x) : C → Set.

The former functor sends y 7→ MorC(x, y) and φ : y → z to φ∗ : MorC(x, y) → MorC(x, z) to φ∗ : f 7→ φf .
We can check this functor is covariant because

φ∗ψ∗(f) = φψf = (φψ)∗(f).

Now, the latter functor sends y 7→ MorC(y, x) andφ : y → z toφ∗ : MorC(z, x)→ MorC(y, z) byφ∗ : f 7→ φf .
We can check this functor is contravariant because

ψ∗φ∗f = fφψ = (φψ) ∗ f.

2.3 February 2

Today we are talking about product categories and the Hom bifunctor.

2.3.1 Hom Bifunctor
Here is our definition.

22

2.3. FEBRUARY 2 174: CAT. THEORY

Definition 2.34 (Product category). Fix categories C andD. Then we define the product category C ×D
as follows.

• We define Ob C × D to be the collection of ordered pairs (c, d) with c ∈ C and d ∈ D.

• We defineMor((c, d), (c′, d′)) to be the collection of ordered pairs (f, g)with f : c→ c′ a morphism
in C and g : d→ d′ a morphism inD.

Lastly, we define identity to be the identity on each object and composition by composition component-
wise.

From yesterday, we have the following functors.

Definition 2.35 (Functors represented by objects). Fix C a locally small category and x ∈ C an object.
Then we have the functors

MorC(x,−) : C → Set and MorC(−, x) : Cop → Set.

The former functor is the covariant functor represented by x, and the latter is the contravariant functor
represented by x.

We would like to codify the structure that having two functors gives us, so we have the following defini-
tion.

Definition 2.36 (Bifunctor). A bifunctor is a functor whose domain is a product of categories.

In particular, here is our standard example.

Definition 2.37 (Hom bifunntor). Fix C a locally small category. Then Hom bifunctor is the functor given
by the functors representing a particular object x ∈ C. Namely, we have

MorC(−,−) : Cop × C → Set

by taking (x, y) 7→ MorC(x, y).

We will not check that this is actually a functor, but it is.

2.3.2 Category Isomorphism
We would like a notion of two categories being the same, but this is somewhat subtle. Here is a first ap-
proximation.

Definition 2.38 (Isomorphism). A functor F : C → D is an isomorphism of categories if and only if there
is an inverse functor G : D → C so that GF = idC and FG = idD. In this case we say that C and D are
isomorphic.

Remark 2.39. As usual, isomorphisms are unique and whatnot.

Let’s make this definition a little more concrete.

Proposition 2.40. An isomorphism F : C → D descends to a bijective (i.e., injective and surjective) map
Ob C → ObD.

23

2.3. FEBRUARY 2 174: CAT. THEORY

Remark 2.41. We are attempting to care about set-theoretic issues in our phrasing because Bryce cares
about set-theoretic issues.

Proof of Proposition 2.40. Let G be the inverse morphism for F . Then we claim that the induced map G :
ObD → Ob C will be the inverse for the induced map for F . This is clear because GF = idC and FG =
idD. ■

It turns out that isomorphisms are a little too strong: there are categories we want to be the same but are
not actually isomorphic.

Example 2.42. The category
• •

is not isomorphic to
•

because there are a different number of objects, so there is no bijection.

2.3.3 Natural Transformation
To salvage our notion of categorical isomorphism, we need a notion of naturality. Naturality is more of
something that we can feel as mathematicians rather than something we like to formalize.

Example 2.43. Any two trivial groups have a canonical isomorphism between them. In fact, there is only
one homomorphism at all.

Non-Example 2.44. There is no “natural” or “canonical” isomorphism Z/3Z → A3, though the groups
are isomorphic.

Non-Example 2.45. Given a two-dimensional R-vector space named V , there is no canonical isomor-
phism R2 → V .

We would like maps to preserve all the structure we could want. So here is our notion of naturality for
functors.

Definition 2.46 (Natural transformation). Fix functors F,G : C → D. A natural transformation η : F ⇒
G consists of the data of a morphism ηX : Fc → Gc for each c ∈ C such that the following diagram
always commutes for any morphism f : c→ c′ in C.

Fc Gc

Fc′ Gc′

Ff Gf

ηc

ηc′

The maps φc are called the components of φ.

Quote 2.47. Burn this square into your minds. It is the most important square in this class.

As usual, we start with examples.

24

2.3. FEBRUARY 2 174: CAT. THEORY

Exercise 2.48. We work in Veck. Then we consider the functor −∗∗ : Veck → Veck by V 7→ V ∗∗. Then
we claim that there is a natural transformation from−∗∗ to id, using the natural transformation

evV : V → V ∗∗

by evV (x) := (λ ∈ V ∗ 7→ λx).

Proof. We need to check that the following diagram commutes.

V V ∗∗

W W ∗∗

f f∗∗

evV

evW

Very quickly, we recall that f∗∗ : V ∗∗ →W ∗∗ is by

f(φ) = (λ ∈W ∗ 7→ φ(λf)).

Namely, λ :W → k, so λf : V → k lives in V ∗, so φ(λf) ∈ k.
Now we check the commutativity of the square. Fix some x ∈ V and a linear functional λ :W → k. Then

we can carefully compute, after many tears and groans, that

f∗∗(evV (x))(λ) = evV (x)(λf) = λf(x) = evW (f(x))(λ).

Because λ was arbitrary, we see that f∗∗ evV (λ) = evW f(x), which then gives us f∗∗ evV = evW f . ■

We have the following definition.

Definition 2.49 (Natural isomorphism). A natural transformation η : F → C is a natural isomorphism if
and only if its component morphisms are isomorphisms.

Example 2.50. In finVeck, the above ev is a natural isomorphism because evV : V ⇒ V ∗∗ is an isomor-
phism when V is finite-dimensional.

Here is a quick proposition.

Proposition 2.51. Let φ : F ⇒ G be a natural isomorphism. Then the inverse morphisms ψc := φ−1
c

assemble to make a natural transformation ψ : G⇒ F .

Proof. We will be brief. Given a morphism f : x → y, we need to check that the following diagram com-
mutes.

Gx Fx

Gy Fy

Gf Ff

ψx

ψy

In other words, we need to know that ψyFf = Gfψx. Well, we already know that

φyFf = Gfφx

by naturality, so
Ffψx = ψyφyFfψx = ψyGfφxψx = ψyGf

after checking through. ■

25

2.4. FEBRUARY 7 174: CAT. THEORY

2.4 February 7

2.4.1 Examples of Natural Transformations
We’re talking about more natural transformations today. For our first example, consider the covariant power
set functor P : Set→ Set by S 7→ P(S) and f : S → T to P(f)(U) := f(U) for U ⊆ S.

Exercise 2.52. We define a natural transformation η• : idSet ⇒ P a function ηS : S → P(S) by

ηS(x) := {x}

Proof. Fix f : S → T a morphism in Set. After plugging everything in, we need the following diagram to
commute.

S T

P(S) P(T)
P(f)

ηS ηT

f

To see this commutes, fix some x ∈ S, and we run it through the diagram as follows.

x f(x)

{x} {f(x)}

ηS ηT

f

P(f)

So indeed, the diagram does commute. ■

Remark 2.53. We may call the second diagram an “internal” diagram because it is looking internally at
our objects.

For our next example, recall we defined a functorialG-action on some object c ∈ C by a functorF : BG→ C.
Our goal is to define a G-equivariant map between objects.

Exercise 2.54. We track the data between twoG-representations F,G : BG→ Veck by a natural trans-
formation η• : Veck ⇒ Veck.

Proof. Because BG has only one object ∗, we set V := F (∗) and W := G(∗) and need to check the commu-
tativity of the following diagram, for some g : ∗ → ∗ in G.

V V

W W

η∗ η∗

Fg

Fw

Note that the natural transformation η• really only consists of the map η∗, which is a linear map V → W
which respects the group action: η∗(gv) = gη∗(v). ■

These G-equivariant maps can be turned into a category.

Definition 2.55 (G-representations). We define the category of G-representations to be the category
consisting of objects which are functors F : BG→ Veck and morphisms which are natural transforma-
tions between the functors.

26

2.4. FEBRUARY 7 174: CAT. THEORY

Exercise 2.56. We check that there is a category whose objects are functors C → D and whose

Proof. To define our morphisms, suppose F,G,H : C → D with natural transformations η• : F ⇒ G and
ν• : G⇒ H. Lastly, we define our composition by

(νη)X := ηXνX .

To check that (ην)• : F ⇒ H is in fact a natural transformation, we have the following ladder.

Fx Fy

Gx Gy

Hx Hy

ηx

νx

ηy

νy

Ff

Gf

Hf

(νη)x (νη)y

Each square commutes, so the 2× 1 rectangle will also commute. We check associativity by drawing a 3× 1
rectangle and seeing that it commutes.

To define our identity maps for our category, we take (idF)X := idF (x) : Fx → Fx. We can check that
this works with our composition without too many tears. ■

Definition 2.57 (Functor category). The category of the above exercise is the functor category, notated
DC .

Example 2.58. We have that RepG = VecBGk .

2.4.2 Yoneda, Contravariant It Is
For the discussion that follows, we fix C locally small and f : w → x and h : y → z some morphisms in C.
From this we get the following square.

Mor(x, y) Mor(x, z)

Mor(w, y) Mor(w, z)

−f

h−

−f

h−

We can check that this square commutes. Here is the internal square.

g hg

gf hgf

−f

h−

−f

h−

Hooray, it commutes. The point is that h− and −f are going to induce natural transformations of our Mor
functors.

• The functors Mor(x,−),Mor(w,−) : C → Set. Then any morphism f : w → x induces a natural
transformation −f : Mor(x,−) ⇒ Mor(w,−). The naturality check is the commutativity of the above
square.

27

2.5. FEBRUARY 9 174: CAT. THEORY

• Similarly, the functors Mor(−, y),Mor(−, z) : C → Set. Then any morphism h : x→ y induces a natural
transformation h− : Mor(−, y) ⇒ Mor(−, w). The naturality check is again the commutativity of the
above square.

We won’t be more explicit about our squares because my head hurts.

Remark 2.59. Later in life we will talk about the Yoneda embedding, which is essentially about the
embedding Cop → SetC , which takes x 7→ Mor(x,−) and f : x → y to the natural transformation
−f : Mor(x,−)⇒ Mor(y,−). This will turn out to be a functor and very good. We will not say more for
now.

2.4.3 Categorification
The category Set has some nice operations: we can talk about products A × B, disjoint unions A ⊔ B, and
functionsAC = {f : C → A}. Note that these notations are suggestive of multiplication, addition (depend-
ing on whom you talk to), and exponentiation. For example,

#(A×B) = #A×#B, #(A ⊔B) = #A+#B, #
(
AC
)
= #A#C .

This gives us some notion of a “cardinality functor” # : FinSet→ N, which we can check does some things.
This lets us define “categorification.” We will not give a formal definition of this, but here are some

instructive examples.

Example 2.60. The functor # : FinSet → N is a decategorification functor. For example, we can cate-
gorify a× (b+ c) = a× b+ a× c in N to some natural isomorphism

A× (B ⊔ C) ≃ (A×B) ⊔ (A× C).

Example 2.61. There is a decategorification functor dim : fdRepG → N.

2.4.4 Equivalence: Advertisement
Let’s close class by defining an equivalence of categories. Recall that we called a functor F : C → D an
isomorphism if and only if it has an inverse functor G : D → C such that FG = idD and GF = idC .

This is a bad notion of saying two categories are the same.

Example 2.62. The categories of k-matrices and k-vector spaces are not isomorphic (they don’t have
the same), even though we often think about vector spaces as merely being some dimensional space.

Here is the fix

Definition 2.63 (Equivalence). Two categories C and D are equivalent if and only if there exist functors
F : C → D and G : D → C such that FG ≃ idD and GF ≃ idC .

2.5 February 9

2.5.1 Equivalence
We can define a category Matk to have objects which are the natural numbers and morphisms which are
Matk(n,m) equal to them×nmatrices with coefficients in k. In linear algebra, we want to think about each

28

2.5. FEBRUARY 9 174: CAT. THEORY

natural number n as a k-vector space of dimension n, and we want to think about each matrix n → m as a
linear map. In other words, Matk should be “the same” as fdVeck.

However, fdVeck and Matk do not even have the same number of objects, so they cannot be isomorphic.
We still want them to be the same, so we weaken our notion of isomorphism.

Definition 2.64 (Equivalence). Fix categories C and D. Then a functor F : C → D is an equivalence if
there exists a functorG : D → C if and only if FG ≃ idD andGF ≃ idC . If an equivalence between C and
D exists, then C andD are equivalent, denoted C ≃ D.

We should probably start by showing that our notion of equivalence forms what we think of as an equivalence
relation.

Remark 2.65 (Bryce). Equivalence does not form an equivalence relation for size reasons.

Lemma 2.66. Fix categories C,D, E . Then the following hold.

• Reflexive: C ≃ C.

• Symmetric: C ≃ D impliesD ≃ C.

• Transitive: C ≃ D andD ≃ E implies C ≃ E .

Proof. We will be brief.

• We have that idC provides the needed equivalence.

• If F : C → D is an equivalence with G : D → C such that FG ≃ idD and GF ≃ idC , then G witnesses
D ≃ C.

• Fix F : C → D and G : D → C witness C ≃ D, and fix F ′ : D → E and G′ : E → D witness D ≃ E.
In particular, we are promised natural isomorphismsφ : G ≃ idC andψ : FG ≃ idD andφ′ : G′F ′ ≃ idD
andψ′ : F ′G′ ≃ idE . We would likeGG′F ′F ≃ idC , and thenF ′FGG′ ≃ idE will follow in a very similar
way.
Well, for an object c ∈ C, we define our natural transformation η• as having component

ηc := φc ◦Gφ′
Fc,

which takesGG′F ′Fc toGFc to c. We show naturality directly. Fix some morphism f : x→ y in C. We
need the following diagram to commute.

GG′F ′Fx x

GG′F ′Fy y

ηx

GG′F ′Ff f

ηy

To see that this commutes, here is an expanded diagram.

GG′F ′Fx GFx x

GG′F ′Fx GFy y

φxGφ′
Fx

fGFf

Gφ′
Fy

φy

GG′F ′Ff

ηx

ηy

29

2.5. FEBRUARY 9 174: CAT. THEORY

By definition of η•, it now suffices to show that the left and right squares commute. The right square
commutes by naturality of φx. To see that the left square commutes, we note that it is what we get
after applying G to the naturality square for φ′ on the morphism GFf : GFx→ GFy.
Lastly, to see that η is a natural isomorphism, we note that each component ηc = φc◦Gφ′

Fc is the com-
posite of isomorphisms, where we are using that φ and φ′ are natural isomorphisms and that functors
preserve isomorphisms. ■

This is nice because oftentimes showing that two categories are equivalent is easier by showing a chain of
equivalences instead of doing it directly. For example, in our proof thatMatk ≃ fdVeck, we will instead show
that both of these categories are equivalent to fdVecbasisk of vector spaces with given basis.

2.5.2 Lazy Equivalence
We want to provide a tool for constructing equivalences without having to actually write down a natural
transformation. By way of analogy, when showing an “isomorphism of sets” we often show that a given
map is both injective and surjective. We will do something similar.

Definition 2.67 (Adjectives for functors). Fix categories C andD with a functor F : C → D. We consider
the map F ◦ : F : MorC(x, y)→ MorC(Fx, Fy). Then

• F is full if and only if F ◦ is surjective.

• F is faithful if and only if F ◦ is injective.

• F is fully faithful if and only if F is full and faithful.

• F is essentially surjective on objects if and only if each d ∈ D has some c ∈ C such that Fc ∼= d in
D.

• F is an embedding if and only if F is faithful and injective on objects.

• F is a full embedding if and only if F is an embedding and full.

Remark 2.68. Technically we might want to require that C andD be locally small, but there are ways of
stating “surjective” and “injective” to note require the underlying domain and codomain to be sets.

Remark 2.69. Being “essentially surjective” will give problems with the axiom of choice later in life be-
cause we are not requiring any notion of uniqueness.

We note that a functor being “full” or “faithful” are both local conditions on particular sets of morphisms.
For example, if a functor doesn’t even hit an object which is outside the image of F , then we can’t touch
those morphism sets.

Example 2.70. Full and faithful does not imply injective on objects. For example, consider the natural
functor F from the left category to the right category, which causes full-on collisions but not locally on
the morphism sets.

a1 a2 a

b1 b2 b

F

Namely, the maps MorC(a•, b•)→ MorC(a, b).

Let’s finish class by proving something.

30

2.6. FEBRUARY 11 174: CAT. THEORY

Proposition 2.71. The following are closed under composition.

• Full functors.

• Faithful functors.

• Essentially surjective functors.

Proof. We will be very brief.

• Read the proof of the below and replace all instances of the word “surjective” with “injective.”

• Suppose that F : C → D and G : D → E are faithful functors. Then fix x, y ∈ C, and we know that the
induced maps

F ◦ : MorC(x, y)→ MorD(Fx, Fy) and G◦ : MorD(Fx, Fy)→ MorD(GFx,GFy)

are both injective, so their composite is injective. To be explicit, if f and g have (GF)f = (GF)g, then
G(Ff) = G(Fg), so Ff = Fg by injectivity of G◦, so f = g by

• Suppose that F : C → D and G : D → E are essentially surjective functors. Well, fix any e ∈ E , and we
are promised an object d ∈ D such that Gd ∼= e. But now we are promised an object c ∈ C such that
Fc ∼= d, so GFc ∼= Fd ∼= e, which shows that GF is essentially surjective. ■

2.6 February 11

2.6.1 A Better Equivalence
Today we will be talking about the following theorem for our discussion.

Theorem 2.72. Fix F : C → D a functor. Then the following are true.

(a) If F is an equivalence, then F is fully faithful and essentially surjective.

(b) Assuming a strong form of the axiom of choice, the converse holds.

Remark 2.73. The strong form of the Axiom of choice is for, not sets, but classes/categories depending
on how we choose to construct our categories.

Proof of (a) in Theorem 2.72. We will want some lemmas.

Lemma 2.74. Fix a category C. Further, fix a morphism f : c → d and isomorphisms φ : c ∼= c′ and
ψ : d ∼= d′. Then there is a unique morphism f ′ : c′ → d′ such that one (or equivalently, all) of the
following four squares commute.

c′ c

d′ d

f ′
φ

ψ

f

Here, the four squares are achieved by changing the direction of φ and ψ.

Proof. This is on the homework. ■

31

2.6. FEBRUARY 11 174: CAT. THEORY

We now return to the proof of the theorem. In the easier direction, suppose that F is an equivalence with its
inverse equivalence G : D → C, witnessed by natural isomorphisms η• : idC ⇒ GF and ε : GF ⇒ idD. We
have the following checks.

• We show that F is essentially surjective. Indeed, for any object d ∈ D, we set c := Gd. Then we see
FGd ∼= d is witnessed by the component isomorphism εd.

• We show that F is faithful, for which we have to use Lemma 2.74. Indeed, suppose that we have
morphisms f, g : c → d such that Ff = Fg. Then in fact GFf = Gfg, so the following diagrams will
commute.

c d

GFc GFd

f

ηc ηd

GFf=GFg

c d

GFc GFd

g

ηc ηd

GFf=GFg

It follows from Lemma 2.74 that there f and g are uniquely determined, so f = g.

We quickly remark that, by symmetry, G is also faithful.

• We show that F is full, which will use the lemma as well as the fact that G is faithful (!). Well, sup-
pose that we have some morphism g : Fc → Fd. Passing through to G, we get a morphism Gg :
GFg → GFg, so by Lemma 2.74, there is a unique morphism f : c→ d so that the following diagram
commutes.

c GFc

d GFd

f Gg

ηc

ηd

Now, both GFf and Gg make the following diagram commute.

c GFc

d GFd

f Gg,GFf

ηc

ηd

Thus, by Lemma 2.74, we see GFf = Gg, so Ff = g by the faithfulness of G. This finishes. ■

Proof of (b) in Theorem 2.72. Fix F : C → D a fully faithful and essentially surjective functor. We need to
construct a G : D → C with some natural isomorphisms. We do this by hand.

• For each d ∈ D, we callously choose1 Gd to be any c ∈ C together with an isomorphism εd : GFd→ d.
Indeed, such a d with isomorphism εd exists because F is essentially surjective.

• For each f : d → d′ in D, we use Lemma 2.74 to choose h to be the unique morphism making the
following diagram commute.

d FGd

d′ FGd′

hf

εd′

εd

But becauseF is fully faithful, there will be a unique morphism which we callGf such thatF (Gf) = h.

We would like to check that G is in fact our inverse equivalence. However, we don’t even know if G is a
functor yet.

1 Note we are using some fuzzy form of the axiom of choice here. We will not say more about this.

32

2.7. FEBRUARY 14 174: CAT. THEORY

• Fix d ∈ D and we computeG(idd). We run through the definition. Well, we note that idFGd makes the
following diagram commute, so it will be the morphism generated by Lemma 2.74.

d FGd

d FGd′

idFGdidd

εd′

εd

But now we see that F (idGd) = idFGd, so idGd must be the corresponding morphism promised by the
fullness and faithfulness of F . In particular, by definition, G(idd) = idGd.

• Suppose we have f : d → d′ and g : d′ → d′′. We want to show that G(gf) = Gg ◦ Gf . For this, we
have the following very big diagram.

FGd d

FGd′ d′

FGd′′ d′′

FGf

FGg

F (Gf◦Gf)

εd

εd′

εd′′

g

f

gf

This diagram does commute, from which we see that the left arrow can be either F (Gg ◦ Gf) (by
funtoriality of F) or F (G(gf)). So by Lemma 2.74, we have F (Gg ◦Gf) = F (G(gf)), so faithfulness of
F implies Gg ◦Gf = G(gf).

Now we construct our natural isomorphisms.

• By construction of the εs, the following diagram commutes.

FGd d

FGd′ d′

FGf f

εd

εd′

• For the other direction, we note that if Fx ∼= Fy in D, then x ∼= y, which we will prove on the home-
work.2 In particular, to create an isomorphism ηc : c → GFc, it suffices to create an isomorphism
Fc→ FGFc, for which we use Fηc := ε−1

Fc . For naturality, we suppose we have a morphism f : c→ c′,
and we note that the following diagram commutes.

Fc FGFc Fc

Fc′ FGFc′ Fc′

Fηc

Ff

Fηc′

FGFf Ff

εFc

εFc′

Indeed, the outer rectangle commutes by definition of the η•s, and the right square commutes by nat-
urality of the ε•s. Then this forces the left square to commute by an argument by noting

εFc′ ◦ Fηc′ ◦ Ff = εFc′ ◦ FGFf ◦ Fηc

by the commutativity of the outer diagram, so we get the commutativity by inverting along εFc′ . ■

2.7 February 14
Here we go.

2 Yes, I know.

33

2.7. FEBRUARY 14 174: CAT. THEORY

2.7.1 Using Our Equivalence
Last time we proved the following theorem.

Theorem 2.72. Fix F : C → D a functor. Then the following are true.

(a) If F is an equivalence, then F is fully faithful and essentially surjective.

(b) Assuming a strong form of the axiom of choice, the converse holds.

Let’s use this for fun and profit.

Corollary 2.75 (Math 110). The categories Matk and fdVeck are equivalent.

Proof. Fix C := fdVecbasisk to be the category consisting of objects which are ordered pairs (V,B) of vector
space equipped with a given ordered basis and morphisms which are linear transformations. I will call these
based vector spaces because I can.

Observe that we have a functorC → Matk by sending the based vector space (V,B) todimV and the linear
transformation T : (V,B) → (V ′,B′) to the corresponding matrix representation. We run the following
checks.

• The functor F is fully faithful because (based) linear transformations (V,B) → (V ′,B′) are in bijective
correspondence with matrices in kdimV ′×dimV , which is exactly MorMatk

• This is essentially surjective because it is surjective: the vector space kn goes to n ∈ Matk.

Thus, F is an equivalence.
To continue, we use the forgetful functor U : C → fdVeck by simply forgetting the basis. This is fully

faithful because look at it, and it is essentially surjective because it is actually surjective. Thus, U witnesses
C ≃ fdVeck. Applying transitivity, we see

Matk ≃ C ≃ fdVeck,

which finishes. ■

We have the following definition.

Definition 2.76 (Essential image). The essential image of a functor F : C → D is the full subcategory of
D consisting of objects d ∈ D such that d ∼= Fc for some c ∈ C.

We are saying “full subcategory” to just throw in all the morphisms, so we don’t have to worry about poten-
tial composition problems inD.

Corollary 2.77. A fully faithful functor F : C → D induces an equivalence of C onto the essential image
of F .

Proof. Apply Theorem 2.72, where being essentially surjective follows from the definition of the essential
image. ■

2.7.2 Motivating Diagram Chasing
We’re going to be talking about diagram-chasing for a little while. This is the technique by which we extract
large amounts of information from a commutative diagram. Namely, we will get to formally define what a
commutative diagram is and so on. For this, we will want to do a little graph theory.

34

2.7. FEBRUARY 14 174: CAT. THEORY

Definition 2.78 (Path). Fix a category C. Then a path in C is finite sequence of the form

(A1, f1, A2, f2, . . . , An, fn, An+1),

where A1, . . . , An+1 ∈ Ob C and fk ∈ Mor(Ak, Ak+1) for each k.

Remark 2.79. Equivalently, we could encode this path by the sequence of morphism f1, . . . , fn such that
cod fk = dom fk+1.

Let’s see an example of the power of abstracting diagrams.

Definition 2.80 (Monoid). A monoid in the category Set is a set M with morphisms µ : M ×M → M
and η : {∗} →M such that the following diagrams commute.

M ×M ×M M ×M M M ×M M

M ×M M M

µ×idM

µ

µ
idM

idM ×η η×idM

idM

µidM ×µ

Remark 2.81. Our monoid is made by the binary operation ·µ : (a, b) 7→ µ(a, b) and an identity element
e := η(∗). The left-hand diagram gives associativity in our “monoid” where µ is our binary operation: if
a, b, c ∈M , then we have

(a ·µ b) ·µ c = a ·µ (b ·µ c).

The right-hand diagram promises us an identity element e := η(∗): if m ∈M , then

m ·µ e = m = e ·µ m.

Remark 2.82. It is not technically necessary for us to use sets M , but if we don’t, then we need a good
notion of product and one-element set. For example, Top can work instead of Set if we want to keep
track of topologies.

Example 2.83. A unital ringR is a monoid in the category ofAb (where our products are tensor products
and one-element set isZ). Namely, we have morphismsµ : R⊗R→ R and η : Z→ Rwith the following
commutative diagrams.

R⊗R⊗R R⊗R R R⊗R R

R⊗R R R

µ×idR

µ

µ
idR

idR ×η η×idR

idR

µidR ×µ

The left-hand diagram shows that multiplication is an associative bilinear map, and the right-hand di-
agram promises an identity. We will not be more explicit.

2.7.3 Commutative Diagrams
We should probably define a diagram now.

Definition 2.84 (Diagram). Fix J and C categories. A diagram in C indexed by J is a functor F : J → C.

35

2.7. FEBRUARY 14 174: CAT. THEORY

Notably, we are not requiring this functor to be an embedding.

Example 2.85. A diagram of the shape (0 → 1)2 is a commutative square. To be explicit, our index
category is as follows.

(0, 0) (0, 1)

(1, 0) (1, 1)

f×id

id×f

id×f

f×idf×f

Namely, if we send this to C, we some diagram as follows.

c c′

d d′

Because we embedded by a functor, we know that c→ c′ → d′ is the same as c→ d→ d′.

Example 2.86. We can think about triangles as images of squares which collapse a bit, as follows.

• •

• •

Alternatively, we could just set the index category to be • → • → •.

Definition 2.87 (Commutes). A diagram F : J → C commutes if and only if, given k, k′ : i→ j in J has
Fk = Fk′.

The point of this definition is that we don’t want composition to matter too much in our index category. For
example, if we have morphisms 0 → 1 and 1 → 2 in J which go to f : a → b and g : b → c in C, we want to
be sure we have 0→ 2 goes to fg without having to look too hard at J .

Example 2.88. Any diagram over a preorder will commute for free because any two i, j has at most one
element in Mor(i, j).

It’s a math class, so we should probably prove something today.

Proposition 2.89. Functors preserve commutative diagrams.

Proof. Fix J , C,D all diagrams with a commutative diagram K : J → C and a functor F : C → D. Indeed, if
k, k′ : i→ j in J , then Kk = Kk′, so JKk = JKk′, so JK : J → D is indeed a commutative diagram. ■

And here is a nice result on commutative diagrams.

Lemma 2.90. Fix f1, . . . , fm and g1, . . . , gn are paths in C. Then if we have an equality of composites

fkfk−1 · · · fi+1fi = gngn−1 · · · g2g1,

then
fm · · · f1 = fm · · · fkgn · · · g1fi−1 · · · f1.

36

2.8. FEBRUARY 16 174: CAT. THEORY

Here is the image for the above lemma: we are allowed to take either path fromA toB, given that the f-parts
and g-parts are commuting.

•

A • • • • •

• •

• • • • B

•

f1 f2

f3

f4

f5 f6

f7

g1

g2
g3

g4
g5

g6

f8

Proof. Look at it. Namely, we have composition is well-defined, so take the given equality and add the
required compositions on either end. ■

2.8 February 16

Here we go.

2.8.1 House-Keeping
Let’s start with the attendance question from last class because it was a little tricky.

Exercise 2.91. All nonempty indiscrete categories are equivalent.

Proof. The first part of this problem is remembering that indiscrete categories are ones that have all mor-
phism sets are singletons. The second part of the problem is recognizing the following lemma.

Lemma 2.92. Fix C be a nonempty indiscrete category. Then C is equivalent to Be, where e is the single-
element group.

Proof. We use the functor F : C → Be sending all objects to ∗ and all morphisms to id∗. It is surjective on
objects because there is only one object to hit, and C is nonempty. Further, F is fully faithful because, for
any c, c′ ∈ C, the induced map

F : Mor(c, c′)→ Mor(∗, ∗)

is a bijection because both of these are singletons. It follows from Theorem 2.72 thatF is an equivalence. ■

So transitivity promises that all indiscrete categories are equivalent, finishing the proof. ■

Remark 2.93. In fact, one can use essentially the same proof to show that any functor between indis-
crete categories is an equivalence. In particular, the (weak) inverse to the equivalence generated by
Lemma 2.92 is not canonical.

37

2.8. FEBRUARY 16 174: CAT. THEORY

2.8.2 Diagram-Chasing Philosophy
We recall that we proved Lemma 2.90 last time, which philosophically means that we should not try to show
equalities of morphisms where there is some overlap between the morphisms. For example, to compare all
paths in the rectangle

• • •

• • •
above, we merely have to check the commutativity of the squares.

We would like to have some tools to prove that diagrams commute.

Remark 2.94. We remark that the following force commutative diagrams immediately.

• Any diagram indexed by a preorder commutes.

• Any diagram in a preorder commutes because any two morphisms between objects must be equal,
so we get the commuting in the image of the index category.

2.8.3 Initial and Final Objects
Let’s keep building up our theory.

Definition 2.95 (Initial, final). Fix a category C.

• An object i ∈ C is initial if and only if, for every c ∈ C, there is a unique morphism in Mor(i, c).

• The dual notion is that an object t ∈ C is final or terminal if and only if, for every c ∈ C, there is a
unique morphism in Mor(c, t).

Remark 2.96. It is true that initial and final objects are unique up to unique isomorphism. We will not
show this here because it might appear on the homework.

And here are many, many examples.

Example 2.97. We work in Set.

• We have ∅ is initial. Namely, there is only one function ∅→ S for any set S by taking all elements
of ∅ to whatever one’s heart desires in S, and there is only one way to do this because any two
such functions always have the same outputs.

• The singleton set {∗} is final. Indeed, any set S has a unique function S → {∗} by sending all
elements of S to ∗.

Example 2.98. In Top, the initial object is ∅ and the final object is {∗}.

Example 2.99. We work in Set∗, which are ordered pairs (S, s) where s ∈ S. Morphisms (S, s) → (T, t)
are functions f : S → T such that f(s) = t. Singleton sets {∗} is both initial and final. It’s final for the
same reason as in Set, and it is initial because any pointed set (S, s) has the unique morphism ∗ 7→ s.

Example 2.100. We work in Ab or Grp. Then the trivial group 0 is the initial and final object by sending
identities to identities.

38

2.8. FEBRUARY 16 174: CAT. THEORY

Non-Example 2.101. The object Z/2Z is not initial in Ring: there is no morphism Z/2Z → Z. Funnily
enough, there is at most one morphism from Z/2Z to anywhere.

Non-Example 2.102. We work in Ring.

• The object Z is initial by sending 1 7→ 1R (which is forced) for any ring R, and this uniquely deter-
mines the rest of the morphism.

• The zero ring 0 is final in Ring because there is only one function R→ 0 for any ring R, and it is in
fact a ring homomorphism.

Example 2.103. The category Field has no initial or final object. There is no final object because all
morphisms are injections, and we cannot embed all fields into one large field. There is no initial object
because there are no morphisms between fields of different characteristic. (One can fix this problem by
considering the fields of characteristic p, where Fp is the initial object.)

Quote 2.104. I hate this category, and you should too.

Example 2.105. Let P be a preorder category.

• We claim that global minimums are equivalent to initial objects. To be explicit, there is surely at
most one morphism between any two elements, so the objectm ∈ P is an initial object if and only
if there is a morphism m → x for each x ∈ P if and only if m ≤ x for each x if and only if m is a
global minimum.

• Dually, global maximums are equivalent to final objects.

These new definitions give us a quick criterion for diagram-chasing.

Lemma 2.106. Fix f1, . . . , fn and g1, . . . , gm be “parallel” paths in C; i.e., s := dom f1 = dim g1 and t :=
cod fn = cod gm. If s is initial or t is final, then

fn · · · f1 = gm · · · g1.

Proof. We have two cases.

• Take s initial. Then fn · · · f1 and gm · · · g1 are both maps s → t, of which there is a unique map by s
being initial, so these are equal.

• Take t final. Then repeat the above sentence using the fact t is final instead of s being initial. ■

2.8.4 Concrete Categories
We have the following definition.

Definition 2.107 (Concrete). A category C is concrete if and only if there is a fully faithful functor U :
C → Set. We call U the forgetful functor.

For example, this asserts that two morphisms f, g : x → y in C are equal if and only if their “restrictions”
down in Set are equal, for which we can do an element-wise check on elements of sets.

39

2.8. FEBRUARY 16 174: CAT. THEORY

Lemma 2.108. Fix U : C → D be faithful functors. A diagram in C commutes if and only if its image
through U commutes.

Proof. Fix J our index category with the diagram K : J → C. We already know that K commuting implies
that UK commutes by Proposition 2.89.

In the other direction, suppose that UK commutes. Then pick up k, k′ : i→ j in J so that UKk = UKk′,
but then U being faithful forces

Kk = Kk′,

which is exactly what we need to commute. ■

And here is why we care

Corollary 2.109. Commutativity of a diagram in a concrete category can be checked on “elements.”

Proof. Essentially we use the forgetful functor in Lemma 2.108. To be explicit, checking on “elements” is
doing the diagram-chase in Set, which we can then pull back to the original concrete category through the
forgetful functor via Lemma 2.108. ■

In other words, we can diagram-chase by working everything in set.

2.8.5 Commutative Rectangles

We have the following warning.

Warning 2.110. Consider the following rectangle.

• • •

• • •

We know that the squares commuting implies that the rectangle commutes. The converse is not true.

Example 2.111. We work in Ab. The outer rectangle of the diagram

Z Z 0

0 Z Z

will commute, but the inner squares do not. (The zero map is not the identity map.)

We can salvage Warning 2.110 as follows.

40

2.9. FEBRUARY 18 174: CAT. THEORY

Lemma 2.112. Fix a rectangle as follows.

a b c

a′ b′ c′

e

f

k

g h

j m

Suppose the outer rectangle commutes. Then the diagram commutes if

• the right square commutes and m is monic, or

• the left square commutes and e is epic.

Proof. We have separate cases.

• Suppose the right square commutes and m is monic. The right square commutes, so hk = mg. Simi-
larly, the outer rectangle commutes, so hke = mjf . But then

mge = hke = mjf,

so ge = jf because m is monic. This shows the left square commutes, so we are done.

• This holds by running the proof of the above in the opposite category, where the main point is that the
left and right squares flip, and m being monic turns into e being epic. ■

2.9 February 18
Apparently I have to take notes today.

2.9.1 Motivating Horizontal Composition
A while ago we discussed vertical composition of natural transformations: if F,G,H : C → D with natural
transformations α : F ⇒ G and β : G ⇒ H, then we can define a natural transformation (βα) : F ⇒
H by (βα)c := βcαc. To quickly review, the naturality condition can be checked by drawing the following
commutative diagram.

Fc Fd

Gc Gd

Hc Hd

Ff

Gf

Hf

αc αd

βc βd

βcαc βdαd

We are going to discuss horizontal composition because Eckmann–Hamilton would like to know your lo-
cation. The set-up is as follows: suppose that we have functors F,G : C → D with α : F ⇒ G and
F ′, G′ : D → E with β : F ′ ⇒ G′. Here is the diagram.

C D E
F ′F

G′G

βα

Our goal is to define (β ∗ α) : F ′F ⇒ G′G.

41

2.9. FEBRUARY 18 174: CAT. THEORY

2.9.2 Whiskering
To define this horizontal composition, we define “whiskering.” There are two kinds of whiskering.

• Here is the diagram for left whiskering.

C D E
F

H

G

α′

We would like to define αH : FH ⇒ GH. Well, we simply define (αH)c := αHc, which defines a
natural transformation by noting the following diagram commutes for a morphism f : c → d in C by
the naturality of α on Hf : Hc→ Hd. This gives the following commutative naturality square.

FHc FHd

GHc GHd

FHf

GHf

αHc αHd

• There is also a notion of right whiskering. Here is the diagram.

D E X
F

G

H′
α

We defineH ′α : H ′F ⇒ H ′G by (H ′α)d := H ′αd. This is a natural transformation because we can pick
up some morphism f : c → d in D and apply H ′ to the naturality diagram for α, giving the following
commutative naturality square.

H ′Fc H ′Fd

H ′Gc H ′Gd

H′Ff

H′Gf

H′αc H′αd

2.9.3 Horizontal Composition
From whiskering, there are two ways to define horizontal composition. To review, here is our diagram.

C D E
F ′F

G′G

βα

• We start by whiskering on the left and then whisker on the right. So we start by noting we have βF :
F ′F ⇒ G′F induced by whiskering the following diagram.

C D E
F ′F

G′

β

Then we have G′α : G′F ⇒ G′G by whiskering along the following diagram.

C D E
F

G′G

α

In total, we see that (G′α)(βF) : F ′F ⇒ G′G. Note this is a natural transformation by vertical compo-
sition!

42

2.9. FEBRUARY 18 174: CAT. THEORY

• We start by whiskering on the right and then whisker on the left. So we start by noting we have F ′α :
F ′F ⇒ F ′G by whiskering along the following diagram.

C D E
F

G

F ′

α

Then we have βG : F ′G⇒ G′G induced by whiskering along the following diagram.

C D E
G

F ′

G′

β

In total, we see that (βG)(F ′α) : F ′F ⇒ G′G, which is a natural transformation by vertical composi-
tion.

We now claim that the two horizontal compositions that we just defined are the same. We could just track
an element through, or we could simply note that this is the naturality of β applied to the morphism αc :
Fc→ Gc. Indeed, we are showing that the following diagram commutes.

F ′F F ′G

G′F G′G

F ′α

βG

G′α

βF

Now, applying naturality of β to αc : Fc→ Gc, we see that the following diagram commutes.

F ′Fc F ′Gc

G′Fc G′Gc

F ′αc

βGc

G′αc

βFc

But this diagram is exactly what we wanted, so we are done.

2.9.4 Horizontal and Vertical Composition
For our last note, we show that horizontal composition of vertical compositions is the same as vertical com-
position of horizontal compositions. Here is our diagram.

C D EG G′

F F ′

H H′

α′α

β β′

We claim that
(β′α′) ∗ (βα) ?

= (β′ ∗ β)(α′α).

The point is to draw the following giant commuting square. The “morphisms” are induced by various kinds
of whiskering in the diagram, and they all commute by uniqueness of horizontal composition.

F ′F F ′G F ′H

G′F G′G G′H

H ′F H ′G H ′H

F ′α F ′β

α′F α′G α′H

β′F β′G β′H

G′α G′β

H′α H′β

43

2.9. FEBRUARY 18 174: CAT. THEORY

We now follow two paths. Consider the red path below.

F ′F F ′G F ′H

G′F G′G G′H

H ′F H ′G H ′H

F ′α F ′β

α′F α′G α′H

β′F β′G β′H

G′α G′β

H′α H′β

By definition of horizontal composition, this is (β′ ∗ β)(α′ ∗ α). Now consider the different red path below.

F ′F F ′G F ′H

G′F G′G G′H

H ′F H ′G H ′H

F ′α F ′β

α′F α′G α′H

β′F β′G β′H

G′α G′β

H′α H′β

The top leg is βα, and the right leg is β′α′, so this total red path comes out to (β′α′)(βα).
So comparing our two red paths, we see that

(β′α′) ∗ (βα) = (β′ ∗ β)(α′ ∗ α),

which is what we wanted.

44

THEME 3

UNIVERSAL PROPERTIES

The Yoneda embedding, contravariant it is.

—Mike Stay, [Vak17]

3.1 February 23
Today we begin talking about universal properties and associated fun.

Convention 3.1. For today, all of our categories will be locally small. We will not care more about size
issues.

3.1.1 A Functorial Initial and Final
We recall the following definition.

Definition 2.95 (Initial, final). Fix a category C.

• An object i ∈ C is initial if and only if, for every c ∈ C, there is a unique morphism in Mor(i, c).

• The dual notion is that an object t ∈ C is final or terminal if and only if, for every c ∈ C, there is a
unique morphism in Mor(c, t).

The moral of our story is that being initial and terminal will encode our universal properties.
Here is a nice starting proposition and corollary.

Proposition 3.2. An object c ∈ C is initial if and only if #Mor(c, x) = 1 for each x ∈ C. Similarly, c is
terminal if and only if #Mor(x, c) = 1 for each x ∈ C.

Proof. This is a restatement of the definition. For example, #Mor(c, x) = 1 is asserting there is a unique
morphism from c to x for any object x. ■

45

3.1. FEBRUARY 23 174: CAT. THEORY

Corollary 3.3. An object c ∈ C is initial if and only if the functor Mor(c,−) : Cop → Set “represented” by
c is naturally isomorphic to the (contravariant!) constant functor {∗} : Cop → Set sending everyone in C
to {∗}.

To be explicit, the functor {∗} : C → Set sends objects c ∈ C to c 7→ {∗} and sends morphisms f : c → d to
f 7→ id{∗}.

Proof. As before, we see that c is initial if and only if #Mor(c, x) = 1 for each x if and only if

Mor(c, x) ∼= {∗}

because all singletons form an isomorphism class in Set. We label φx to be Mor(c, x) ∼= {∗} ∼= {∗}(x) to be
the unique such isomorphism.

If φx assemble to a natural isomorphism, then we get the reverse direction. For the forwards direction,
we have to check that the following diagram commutes for naturality: suppose f : x → y is a morphism in
C, and we want

Mor(c, x) {∗}(x)

Mor(c, y) {∗}(y)

f◦− id{∗}

φx

φy

to commute. But this commutes for free because {∗}(y) = {∗} is a terminal object, so all morphisms to it
are the same. ■

Corollary 3.4. An object c ∈ C is terminal if and only if the functor Mor(−, c) : C → Set “represented” by
c is naturally isomorphic to the constant functor {∗} : C → Set sending everyone in C to {∗}.

Proof. This is dual to the previous corollary. ■

3.1.2 Representability
Here is our central definition.

Definition 3.5 (Representable). Fix a category C.

• A covariant functor F : C → Set is representable if and only if there exists some c ∈ C such that
F ≃ Mor(c,−).

• A contravariant functor F : Cop → Set is representable if and only if there exists some c ∈ C such
that F ≃ Mor(−, c).

In either case, we call c together with the promised natural isomorphism the representation of F .

Example 3.6. Corollary 3.3 says that c is initial if and only if {∗} : C → Set is represented by c. Similar
holds for the terminal case.

Here is our mantra.

Idea 3.7.! A representable functor encodes a universal property of an object.

46

3.1. FEBRUARY 23 174: CAT. THEORY

Remark 3.8. Bryce would like you to repeat Idea 3.7 every day before you go to sleep. He will know if
you haven’t.

Less formally, Idea 3.7 is saying that a universal property for an object c is a description of Mor(c,−) or
Mor(−, c).

Let’s see some examples.

Exercise 3.9. The identity functor idSet : Set→ Set, is represented by singleton set {∗}.

Proof. To be explicit we would like to show that

Mor({∗}, X) ∼= X

naturally by taking f 7→ f(∗). So we define ηX : Mor({∗}, X) → X by f 7→ f(∗). This is an isomorphism
because we have the inverse morphism η−1

X : x 7→ (∗ 7→ x). This is natural because, with a morphism
h : X → Y , we draw the following diagram.

Mor({∗}, X) X

Mor({∗}, Y) Y

h◦− h

ηX

ηY

This is natural by tracking some f : {∗} → X through: along the top, it goes toh(f(∗)), and along the bottom
it goes to (hf)(∗) = h(f(∗)). ■

Exercise 3.10. The forgetful functor U : Grp→ Set is represented by Z.

Proof. The content is to construct an isomorphism

Mor(Z, G) ∼= G

for any group G. Well, to see this, we send f 7→ f(1) and more or less wave our hands to say that a group
homomorphism Z → G is uniquely determined by where it sends 1 because f(n) = n · f(1), and any such
f(1) is legal because we can set f(n) = n · f(1).

So let ηG : Mor(Z, G) → G be this isomorphism. For naturality, we need to show that the following
diagram commutes for a given group homomorphism ψ : G→ H.

Mor(Z, G) G

Mor(Z, H) H

ψ◦− Uψ

ηX

ηY

Well, along the top, we send f to f(1) to ψ(f(1)). Along the bottom, we send f to ψf to (ψf)(1) to ψ(f(1)).
■

Exercise 3.11. The forgetful functor U : Ring→ Set is represented by Z[x].

Proof. The point is that we have an isomorphism

Mor(Z[x], R) ∼= R

because the image of Z is fixed for any morphismφ : Z[x]→ R, and where we send x is uniquely determined
by a chosen element r ∈ R. ■

47

3.2. FEBRUARY 25 174: CAT. THEORY

Remark 3.12. In some sense, Z and Z[x] are the “free” object in their respective categories.

And now for contravariant representable functors.

Exercise 3.13. The functor P : Setop → Set by sending X 7→ P(X) and f : X → Y to f−1 : P(Y) →
P(X) is represented by Ω = {0, 1}.

Proof. As usual, the content of the proof is our isomorphism

Mor(X,Ω) ∼= P(X).

Namely, we send f : X → Ω to f−1(1). Conversely, given a subset U ⊆ X, we can track it by the morphism
1x∈U : X → Ω. ■

Exercise 3.14. Fix sets A and B. Consider the functor Mor(−× A,B) : Setop → Set. We claim that this
is represented by Mor(A,B).

Proof. Our isomorphism
Mor(Mor(A,B), C) ∼= Mor(C ×A,B)

is given by currying f 7→ ((a, b) 7→ f(a)(b)). The inverse mapping is f 7→ (a 7→ b 7→ f(a, b)). ■

Remark 3.15. Many of the above representatives are “nice” in that it seems like they are unique in some
sense. This will tie into universal properties.

3.2 February 25
We talk about the Yoneda lemma today.

3.2.1 The Yoneda Lemma
Today we discuss the following question.

Question 3.16. What information “goes into” a natural transformation of a representable functor?

Today we will prove the following theorem.

Theorem 3.17 (Yoneda lemma). Fix C a locally small category and F : C → Set a functor. Further, fix
c ∈ C. Then there is a “natural” bijection (natural in both c and F)

φ : Mor(MorC(c,−), F) ∼= Fc.

Here the outer Mor is in the 2-category, talking about natural transformations MorC(c,−)⇒ F .

Natural here is in both c and F : if we fix one of them, then the isomorphism is functorial in the other.

Proof. We take this in parts.

• We construct φ. Suppose that α : MorC(c,−) ⇒ F is a natural transformation. Then we can produce
an element of Fc by noting we have a map αc : MorC(c, c)→ Fc, so we can set

φ(α) := αc(idc) ∈ Fc.

48

3.2. FEBRUARY 25 174: CAT. THEORY

• We construct an inverse ψ : Fc→ Mor(MorC(c,−), F). Well, picking up some x ∈ Fc, then we want a
natural transformation ψ(x) : MorC(c,−)⇒ F . So given another d ∈ C, we want a morphism

ψ(x)d : MorC(c, d)→ Fd.

To do this, we pick up a morphism f : c→ d, and we want an element of Fd. Without any better ideas,
we note we have a morphism Ff : Fc→ Fd, so we define

ψ(x)d(f) := (Ff)(x) .

We now check thatψ(x) is in fact a natural transformation. Well, suppose that we have a map g : d→ e,
we need the following square to commute.

MorC(c, d) Fd

MorC(c, e) Fe

g◦− Fg

ψ(x)d

ψ(x)e

For this, we pick up some morphism f : c→ d.

– Along the top, we go to (Ff)(x) and then (Fg ◦ Ff)(x).
– Along the bottom, we go to gf and then (F (gf))(x) = (Fg ◦ Ff)(x).

• We show that φ ◦ ψ is the identity. Well, pick up some x ∈ Fc. Then

φ(ψ(x)) = ψ(x)c(idc) = (F idc)(x) = idFc(x) = x.

• We show that ψ ◦φ is the identity. Well, pick up some natural transformation α : MorC(c,−)⇒ F and
some object d ∈ C and some morphism f : c→ d, and we compute

ψ(φ(α))d(f) = ψ(αc(idc))d(f) = (Ff)(αc(idc)) = (Ff ◦ αc)(idc).

At this point we look stuck, but naturality of α : MorC(c,−) ⇒ F saves us! We draw the following
diagram.

MorC(c, c) Fc

MorC(c, d) Fd

f◦−

αc

Ff

αd

Thus, we know Ff ◦ αc = αd ◦ (− ◦ f), so the above is

ψ(φ(α))d(f) = (αd ◦ (f ◦ −))(idc) = αd(f ◦ idc) = αd(f).

So ψ(φ(α))d and αd match as functions on MorC(c, d), so they are equal. Thus, ψ(φ(α)) = α as natural
transformations. So we are done.

The above points establish the needed bijection.
It remains to check functoriality.

• We show that φ is functorial in c. We write φc for φ given by c ∈ C. Suppose that we have a morphism
f : c→ c′, and we want to show that the following diagram commutes.

Mor(MorC(c,−), F) Fc

Mor(MorC(c
′,−), F) Fc′

φc

φc′

(∗)

49

3.2. FEBRUARY 25 174: CAT. THEORY

The right arrow is Ff . The left arrow requires some thinking: we pick up some natural transformation
α : MorC(c,−)⇒ F and want to produce a natural transformation MorC(c

′,−)⇒ F . Visually, the map
we want is moving (

(C → Set)→ D
)
→
(
(C → Set)→ D

)
.

Well, given an object d ∈ C and morphism p : c→ d, we can send p′ : c′ → d to

βd(p
′) := αd(p

′f),

which we can type-check actually lives in Fd.
We take a moment to verify that β is a natural transformation. For this, we need to check the naturality
of the following square, for a morphism g : d→ e, that the following diagram commutes.

MorC(c
′, d) Fd

MorC(c
′, e) Fe

g◦− Fg

βd

βe

Well, we pick up a morphism p′ : c′ → d.

– Along the top, we go to (Fg)(βd(p
′)) = (Fg)(αd(p

′f)) = (Fg ◦αd)(p′f). By naturality ofα, we see
Fg ◦ αd = αe ◦ (g ◦ −), so we have αe(gp′f).

– Along the bottom, we go to βe(gp′) = αe(gp
′f).

So indeed, β is a natural transformation.
Finally, we check the naturality of (∗).

– Along the top, we go to φc(α) = αc(idc) and then to (Ff)(αc(idc)) = (Ff ◦αc)(idc). By naturality
of α, we see Ff ◦ αc = αc′(f ◦ −), so we have (Ff ◦ αc)(idc) = αc′(f idc) = αc′(f).

– Along the bottom, we go to

φc
′
(β) = βc′(idc′) = αc′(idc′ f) = αc′(f).

These match, so the diagram commutes.

• We show φ is functorial in F . We write φF for φ given by F : C → Set. Now, suppose that we have
some natural transformation η : F ⇒ G, and we want to show that the following diagram commutes.

Mor(MorC(c,−), F) Fc

Mor(MorC(c,−), G) Gc

φF

φG

The right arrow is ηc. The left arrow requires some thinking, as before. Fix some natural transformation
α : MorC(c,−) ⇒ F , and we produce a natural transformation β : MorC(c,−) ⇒ G. Well, given an
object d and morphism p : c→ d, we are given an element αd(f) ∈ Fd, and we want an element inGd.
So we define

βd(p) := ηd(αd(p)).

We quickly check that this β : MorC(c,−)⇒ G actually assembles into a natural transformation. Given
f : d→ e, we need to check the commutativity of the following diagram.

MorC(c, d) Gd

MorC(c, e) Ge

f◦− Gf

βd

βe

(∗∗)

Well, pick up a morphism p : c→ d.

50

3.3. FEBRUARY 28 174: CAT. THEORY

– Along the top, we go to (Gf)(βd(p)) = (Gf)(ηd(αd(p))). By naturality of η, this is (ηe ◦Fe◦αd)(p).
By naturality of α, this is (ηe ◦ αe ◦ (f ◦ −))(p) = ηe(αe(fp)).

– Along the bottom, we go to βe(fp) = ηe(αe(fp)).

So indeed, β is a natural transformation.
Finally, we check the naturality of (∗∗).

– Along the top, we go to φF (α) = αc(idc) and then to ηc(αc(idc)).
– Along the bottom, we go to φG(β) = βc(idc) = ηc(αc(idc)).

These match, so the diagram commute.

Thus, we have checked thatφ is functorial in both c andF . I have a headache, so we will call it quits there. ■

3.3 February 28
Chris is back!

3.3.1 Yoneda Lemma Review
Today is more Yoneda lemma. We recall the statement.

Theorem 3.17 (Yoneda lemma). Fix C a locally small category and F : C → Set a functor. Further, fix
c ∈ C. Then there is a “natural” bijection (natural in both c and F)

φ : Mor(MorC(c,−), F) ∼= Fc.

Here the outer Mor is in the 2-category, talking about natural transformations MorC(c,−)⇒ F .

As seen in the proof, the bijection is by

φ(η) := ηc(idc) and φ−1(x)d :=
(
(f ∈ Mor(c, d)) 7→ (Ff)(x)

)
.

We quickly remark that we can motivate the definition φ−1 by drawing the following naturality square with
given internal diagram; here f : c→ d is some morphism.

MorC(c, c) MorC(c, d)

Fc Fd

f◦−

φ−1(x)c φ−1(x)d

Ff

Because we want φ−1(x)c(idc) = x, our definition of φ−1(x)d(f) is forced.
As for naturality, we note that we can view Fc as the image of the functor F : C → Set on applying c ∈ C,

or alternatively we could view Fc as the image of the functor evc : SetC → Set on applying F .

Remark 3.18 (Contravariant Yoneda). There is also a contravariant version of the Yoneda lemma as well,
which provides takes a contravariant functor F : Cop → Set a functor and some object c ∈ C. Then there
is a “natural” bijection (natural in both c and F)

φ : Mor(MorC(−, c), F) ∼= Fc.

Again, this bijection is natural in F and c.

51

3.3. FEBRUARY 28 174: CAT. THEORY

3.3.2 Yoneda Embeddings
We are going to describe an embedding

よ : C → SetC
op

This is defined in essentially exactly the way that we want. We defineよ(c) := Mor(−, c) and send mor-
phisms f : c → d to the natural transformationよ(f) : Mor(−, c) → Mor(−, d) byよ(f) : g 7→ fg. It is not
too hard to see thatよ(f) is in fact a natural transformation and composes properly, so we will omit those
checks now.

Anyways, here is our theorem.

Theorem 3.19 (Yoneda embedding). Fix C a category. The Yoneda embeddingよ : C → SetC
op

is a fully
faithful embedding.

Proof. We have the following checks.

• We show thatよ is faithful, so suppose we have objects c, d ∈ C, and we want to show that the map

よ : MorC(c, d)→ Mor(よ(c),よ(d))

is injective. Namely, if f, g : c→ d, thenよ(f) : x 7→ fx andよ(g) : x 7→ gx, soよ(f) =よ(g) forces

f = f idc =よ(f)(idc) =よ(g)(idc) = g idc = g.

• We show thatよ is full. We will actually use Theorem 3.17. Well, suppose that we have a morphism

η : MorC(−, c)⇒ MorC(−, d),

and we want a morphism f : c→ d such thatよ(f) = η. Well, viewing Mor(−, d) as just some functor
F : C → Set, we are promised a bijection (by the contravariant version of Theorem 3.17)

Mor
(
MorC(−, c),MorC(−, d)

)
→ Mor(c, d).

In particular, η under this bijection goes to some map f = ηc(idc) ∈ Mor(c, d). But in factよ(f) = (f◦−)
also has (f ◦ −)(idc) = f , so because the above is a bijection, we have η =よ(f).

• We show thatよ is an embedding. For this, we suppose c ̸= d are distinct objects, and we need to show
that MorC(−, c) ̸= MorC(−, d) as natural transformations. However, morphisms should “remember”
their codomain in the data of a morphism, so MorC(x, c) and MorC(x, d) will be distinct automatically.

■

It might feel like cheating that we are forcing our morphisms to remember their codomain, but it is some-
what necessary: in the indiscrete category, we might accidentally try to force our morphisms to be witnessed
by the same object, but then the above is not actually an embedding because all morphism sets would be
equal.

Just for fun, here is an application.

Corollary 3.20 (Cayley’s theorem). Any group G is isomorphic to a subgroup of Sym(G) = AutSet(G).

Proof. To convert this to category theory, we use the category BG. Well, Theorem 3.19 provides an em-
bedding

よ : BG→ SetBG
op

.

Here, we can think of SetBG
op

as sets equipped with a right G-action: any such functor BGop → Set sends
the object ∗ ∈ BG to a set S ∈ Set as well as morphisms/elements g ∈ G to functions g : S → S satisfying

s · (gh) = (s · g) · h

52

3.4. MARCH 2 174: CAT. THEORY

for s ∈ S and g, h ∈ G.
Now, to useよ, we see that ∗ ∈ BG goes to the functorよ(∗) = Mor(−, ∗) : BGop → Set. Fixing any set

• ∈ BG, we see that we really have the data of a morphism BGop → Mor(•, ∗). In other words, we are giving
Mor(•, ∗) a right G-action: each g ∈ BG and x ∈ Mor(•, ∗) will have a multiplication given by

x · g := gopx,

where we have composition by

(x · g) · h = hopgopx = (gh)opx = x · (gh).

So indeed,よ(∗) is precisely the data of this right G-action on Mor(•, ∗). In other words,よ(∗) is providing
the data of the object Mor(•, ∗) in the category of Gop-sets.

On the other hand, each morphism g : ∗ → ∗ of BG will go toよ(g) : Mor(•, ∗) ⇒ Mor(•, ∗) byよ(g) :
x 7→ gx. To be explicit, our multiplication is by

よ(g)(x) := gx.

In fact, each elementよ(g) is a Gop-equivariant map on Mor(•, ∗), where this object is thought of as a Gop-
set. Indeed,

よ(g)(x · h) = g(xh) = (gx)h = (よ(g)x) · h,

which is what we wanted. In particular,よ injects MorBG(∗, ∗) to “G-equivariant” natural transformations
MorBG(−, ∗)⇒ MorBG(−, ∗).

So to finish up, becauseよ is a fully faithful functor, we see that we are injective on morphism sets, so
we can say

G = MorBG(∗, ∗)
よ
↪→ MorGop-set

(
MorBG(−, ∗),MorBG(−, ∗)

) ∗
= AutGop-set

(
MorBG(−, ∗),MorBG(−, ∗)

)
,

where ∗
= holds because all elements of G are invertible and hence all the morphisms we are looking at are

invertible. Now, we remark that the data of Mor(−, ∗) is really only the data of Mor(∗, ∗) because BG has
only one object, so we actually get to embed

G ↪→ AutGop-set
(
MorBG(∗, ∗),MorBG(∗, ∗)

)
= AutGop-set(G,G).

Lastly, applying the forgetful functor from G-sets to just sets, we have an embedding G ↪→ AutSet(G), so
we are done. ■

3.4 March 2

We continue. Chris did some review that the Yoneda embeddingよ is full, which can be found in our proof
of Theorem 3.19.

3.4.1 Unique Representation
For the attendance question, we have the following.

Proposition 3.21. Fix a category C. Then x ∼= y implies that Mor(x,−) ≃ Mor(y, 0−).

Proof. The point is that the Yoneda embeddingよmust induce an isomorphismよ(f) :よ(x) ∼=よ(y), which
is what we wanted. ■

In fact, the converse is also true. We have the following definition.

53

3.4. MARCH 2 174: CAT. THEORY

Definition 3.22 (Creates, reflects isomorphisms). A functor F reflects isomorphisms if and only if Ff
being an isomorphism implies that f is an isomorphism. Similarly, a functor F creates isomorphisms if
and only if Fx ∼= Fy forces x ∼= y.

Example 3.23. The functor from F : Be + Be → Be sending both points to ∗ will certainly reflect iso-
morphisms because we can only pull back. This F however does not reflect isomorphisms because
Fe1 ∼= Fe2 but e1 is not isomorphic to e2; there are no morphisms between them all.

We have the following result.

Proposition 3.24. If a functor F is fully faithful, then F creates and reflects isomorphisms.

Proof. This was on the homework. ■

Remark 3.25. Thus, noting thatよ is fully faithful, we see that Mor(x,−) ≃ Mor(y,−) forces x ∼= y.

The point of all of our discussion is as follows.

Proposition 3.26. Suppose two objectsx and y represent a functorF : C → Setby natural isomorphisms
η : Mor(x,−)⇒ F and µ : Mor(y,−)⇒ F . Then there is a canonical isomorphism x ∼= y by η−1µ.

Proof. Intuitively, f : x ∼= y induces − ◦ f : Mor(y,−) → Mor(x,−), from we would like the following
diagram to commute.

Mor(x,−)

F

Mor(y,−)

−◦f

η

µ

As such, we see that we want f to induce a natural isomorphism (− ◦ f) = η−1µ : Mor(y,−) ⇒ Mor(x,−),
which we can in fact pull back to f because of Theorem 3.17. ■

Idea 3.27.! Thus, we can say that an object represents a functor is unique up to unique (commuting)
isomorphism.

3.4.2 Universal Properties
With our uniqueness in hand, we are ready to talk about universal properties.

Definition 3.28 (Universal property I, element). A universal property for an object c ∈ C is a repre-
sentable functor F : C ⇒ Set along with an element x ∈ Fc such that x induces (by the Yoneda lemma)
a natural isomorphism Mor(c,−)⇒ F . In such a triplet (c, F, x), we call x the universal element.

To be explicit, x ∈ Fc is inducing a natural transformation Mor(c,−)⇒ F by Theorem 3.17, so the condition
we are requiring is that we have a natural isomorphism.

54

3.4. MARCH 2 174: CAT. THEORY

Exercise 3.29. We discuss Z[x] as the free ring on X.

Proof. We will represent the forgetful functor U : Ring → Set. To start, we need to show that Z[x] does
actually represent U , for which we need a natural isomorphism

η : MorRing(Z[x],−)⇒ U.

In particular, fixing a ring R, we need an isomorphism MorRing(Z[x], R) ⇒ UR, which we do by sending a
morphism f : Z[x] → R to f(x) ∈ UR. This is indeed a bijection because we can uniquely determine a
morphism Z[x]→ R by where we send x.

Lastly, our universal element is x. To see this, we track through Theorem 3.17 to compute

ηZ[x](idZ[x]) = idZx = x,

which is what we wanted. ■

Remark 3.30. In words, the above proof says that Z[x] is the universal ring that has a distinguished
element x. Being the “universal ring” is usually called being the “free ring.”

For our next example, we have the following definition.

Definition 3.31 (Tensor products, I). Fix two k-vector spaces V and W . Then V ⊗W is made of formal
sums

n∑
i=1

vi ⊗ wi

where v1, . . . , vn ∈ V and w1, . . . , wn ∈W . Further, (v, w) 7→ v ⊗ w is k-bilinear.

Exercise 3.32. We discuss V ⊗W by universal property.

Proof. The point is to consider the functor

Bilin(V,W,−) : Veck → Set

taking U 7→ Bilin(V,W,U), where Bilin(V,W,U) consists of the k-bilinear maps V ×W → U . Tensor prod-
ucts are actually intended to represent this functor. So here is a better definition for tensor products.

Definition 3.33 (Tensor products, II). Given vector spaces V andW , we define V ⊗W as the object that
represents Bilin(V,W,−).

We do not actually know if V ⊗W really exists, but we will do so shortly. Our universal element x is intended
to live in Bilin(V,W, V ⊗ W), so we are characterizing V ⊗ W by the bilinear map V × W → V ⊗ W . In
particular, we can now more or less say that V ⊗W is the “universal” vector space with respect to a bilinear
map V ×W → V ⊗W .

Unwinding a bit, we will name the map V ×W → V ⊗W as ⊗. In particular, we are hoping that this
element induces a natural isomorphism

Mor(V ⊗W,−)⇒ Bilin(V,W,−).

In particular, by the Yoneda lemma, we are hoping that bilinear maps V ×W → U are in natural bijection
with linear maps V ⊗W → U . ■

55

3.5. MARCH 4 174: CAT. THEORY

3.5 March 4
Today we’re having both Bryce and Chris lecture today (not in that order). We’re in luck.

3.5.1 More on Universal Properties
We recall our definition.

Definition 3.28 (Universal property I, element). A universal property for an object c ∈ C is a repre-
sentable functor F : C ⇒ Set along with an element x ∈ Fc such that x induces (by the Yoneda lemma)
a natural isomorphism Mor(c,−)⇒ F . In such a triplet (c, F, x), we call x the universal element.

We continue our discussion of Exercise 3.32. Typically, one would think about the universal property as
follows.

Definition 3.34 (Universal property, II). An object c ∈ C satisfies the universal property given by a functor
F : C → Set if we have a universal element x such that (c, F, x) is a universal property.

In particular, last time we talked about having the functor

Bilin(V,W,−) : Veck → Set

which we claim was represented by some object V ⊗W and our universal element ⊗ ∈ Bilin(V,W,−) →
V ⊗W . By Theorem 3.17, we can unwind this to a natural transformation

η : Hom(V ⊗W,−)⇒ Bilin(V,W,−),

which we are claiming is a natural isomorphism to be our universal property. Well, we have our object⊗, so
we now track everything through. Here is our diagram to unwind the isomorphism above for a morphism
f : V ⊗W → U corresponding to the bilinear map f : V ×W → U .

Hom(V ⊗W,V ⊗W) Hom(V ⊗W,U)

Bilin(V,W, V ⊗W) Bilin(V,W,U)

ηV ⊗W

f◦−

ηU

f◦−

So to unwind what ηU means, we plug into idV⊗W . This makes the following diagram.

idV⊗W f

⊗ f

ηV ⊗W

f◦−

ηU

f◦−

Namely, we are told that bilinear maps f : V ×W → U correspond uniquely to a morphism f : V ⊗W → U
(by Theorem 2.72) in such a way that the following diagram commutes.

V ×W V ⊗W

U

⊗

f
f

So this is our usual universal property for the tensor product.

56

3.5. MARCH 4 174: CAT. THEORY

Remark 3.35. We will actually need to construct V ⊗ W , which we did not do, in order to show that
there exists a way to represent the functor

Bilin(V,W,−) : Veck → Set.

However, in practice, we only ever want to pay attention to the above universal property.

3.5.2 Category of Elements
Today’s discussion will not be discussion. Bryce is, reportedly, sorry. For brevity, we will take the following
convention.

Definition 3.36 (Universal). We say that an object c ∈ C is universal if and only if it is either initial or final.

Of course, V ⊗ W will not turn out to be universal in Veck, but if we change our category, then it will be,
which is nice.

With that said, here is our main character for today.

Definition 3.37 (Category of elements). Fix F : C → Set a functor. Then the category of elements of F ,
denoted

∫
F is made of the following data.

• Objects are pairs (c, x) where c ∈ C and x ∈ Fc. In practice, we should think about the object
x ∈ Fc on its own, but we will have to remember which c it comes from.

• Morphisms (c, x) → (d, y) made of morphisms f : c → d which preserve our “base points” as
(Ff)(x) = y. Importantly, we are keeping track of the arrows in C, not in Set; e.g., F might not be
injective on arrows, so we will keep track of these definitions.

• Identities are identities lifted from C.

• Composition is composition in C.

Remark 3.38. There is a natural forgetful functor Π :
∫
F → C by

Π(c, x) := c and Π(f) := f.

We bring this up because this is roughly why we are keeping track of the morphisms in C instead of Set.

There is also a contravariant version.

Definition 3.39 (Category of elements, contravariant). Fix F : Cop → Set a functor. Then the category
of elements of F , denoted

∫
F is made of the following data.

• Objects are pairs (c, x) where c ∈ C and x ∈ Fc.

• Morphisms (c, x) → (d, y) made of morphisms f : c → d which preserve our “base points” as
(Ff)(y) = x. This flips because F is contravariant.

• Identities are identities lifted from C.

• Composition is composition in C.

Let’s see some examples.

57

3.5. MARCH 4 174: CAT. THEORY

Example 3.40. Let C be a concrete category with faithful (forgetful) functor U : C → Set. We work
through

∫
U .

• Objects are pairs (c, x) where x ∈ Uc.

• Morphisms are morphisms f : (c, x)→ (d, y) such that (Uf)(x) = y.

In other words,
∫
U is roughly the objects c ∈ C with an identified base point. Specifically,

∫
(U : Top→

Set) = Top∗.

Example 3.41. Fix C a locally small category, which is how you know Bryce is lecturing, which permits a
functor Mor(c,−) : C ⇒ Set. We discuss

∫
Mor(c,−).

• Objects are pairs (d, f) where f ∈ Hom(c, d). So our objects are morphisms.

• A morphism φ : (d, f)→ (e, g) is a morphism φ : d→ e in C such that φf = (φ ◦ −)(f) = g.

In other words, this gives the category under C, denoted c/C. The contravariant version gives C/c.

Exercise 3.42. Fix F : Cop → Set a contravariant functor. We recover
∫
F as a comma category.

Proof. To set up our discussion, we recall that Theorem 3.17 provides us with a sufficiently natural bijection

ψ : Fc ∼= Mor(MorC(−, c), F).

Now, objects in
∫
F will naturally be objects x ∈ Fc. We would to track morphisms f : (c, x) → (d, y)

through here as well, which means that we are going to need a morphism ψ(x) → ψ(y) in SetC
op

. Roughly
speaking, we are going to want the following diagram to commute.

Mor(−, c) F

Mor(−, d)

(f◦−)

ψ(x)

ψ(y)
(∗)

In particular, Theorem 3.19 tells us that all such morphisms between natural transformations take the form
(f ◦ −) for some morphism f , from which we can track our base point.

The point of all this is that we are going to have a nice correspondence between
∫
F and the comma

category ∫
F ∼=よ ↓ F̃ ,

where F̃ : {∗} → SetC
op

is the constant functor taking ∗ 7→ F . Indeed, to quickly unwind our definition of the
comma category, it is made of triplets (c ∈ C, ∗ ∈ {∗}, f : よ(c) → F (∗)), where morphisms h : (c, ∗, f) →
(c′, ∗, f ′) require the following diagram to commute.

よ(c) F

よ(c′) F

Fh

f

f ′

Notably, we only have to check the idF : F → F morphism because this is the only morphism carried from
F̃ : {∗} → SetC

op

. But this diagram above is exactly the one we asked for in (∗), so we are done. ■

Next time we will discuss the following result.

58

3.6. MARCH 7 174: CAT. THEORY

Proposition 3.43. Fix F : C → Set be a functor. Then
∫
F has an initial object (c, x) if and only if F is

representable by c with universal element x.

Proof of the forwards direction. In one direction, take (c, x) ∈
∫
F initial. We would like a natural isomor-

phism η : Mor(c,−) ⇒ F . Well, by Theorem 3.17, we get some natural transformation η corresponding to
x, where

ηd(f) := (Ff)(x)

by pushing through our definition in Theorem 3.17. For this to be a natural isomorphism, we need the com-
ponents ηd : Mor(c, d)→ Fd to be isomorphisms. In other words, for each d ∈ C and y ∈ Fd, we need some
f : c→ d such that

(Ff)(x) = ηd(f) = y.

Equivalently, there is a unique morphism f : (c, x)→ (d, y) in
∫
F , which is what we wanted. ■

Remark 3.44. In the dual case, F will be contravariant, and our initial object becomes final.

3.6 March 7
We continue.

3.6.1 Housekeeping
We begin by discussing a homework problem. Here is a definition.

Definition 3.45 (Divisible). An abelian group A is divisible if and only if, for each a ∈ A and n ∈ Z \ {0}.

It happens that the category of divisible abelian groups has non-injective monomorphisms. For example,
we have the following.

Exercise 3.46. The map π : Q ↠ Q/Z is a monomorphism.

Proof. Suppose that we have maps f, g : A → Q such that πf = πg. We claim that f = g. Indeed, for any
a ∈ A \ {0}, we need to show that f(a) = g(a), for which so far we know that π(f(a)) = π(f(g)), so there is
an integer n such that

f(a) = g(a) + n.

Suppose for the sake of contradiction that n ̸= 0. Then, becauseA is divisible, there exists an element b ∈ A
such that a = 2nb, so we get to write

2nf(b) = f(2nb) = f(a) = g(a) + n = 2ng(b) + n,

so f(b) = g(b) + 1
2 . Pushing this though π, we get

b = b+
1

2
,

so 1
2 ∈ Z, which is our contradiction. ■

And here is the attendance question.

59

3.6. MARCH 7 174: CAT. THEORY

Exercise 3.47. We describe
∫
F where F : {∗} → Set is some functor.

Proof. Set X := F (∗). The objects in
∫
F are pairs (∗, c) where c ∈ X, and the morphisms are morphisms

f : ∗ → ∗ such that Ff(c) = Ff(d), but only f = id∗ is permitted. So we have objects which are elements of
X and only identities, so this is the discrete category on X. ■

3.6.2 A Representability Test
Last time we were showing the following result.

Proposition 3.43. Fix F : C → Set be a functor. Then
∫
F has an initial object (c, x) if and only if F is

representable by c with universal element x.

Last time we showed the forwards direction.

Proof of the backwards direction. Suppose that we have a natural isomorphism α : Mor(c,−)⇒ F , and we
need an object to be initial in

∫
F . Without much to do, we set

x := αc(idc) ∈ Fc,

and we claim that (c, x) is our desired initial element in
∫
F .

Well, pick up some object (d, y), and we want to show that there is a unique morphism (c, x) → (d, y).
To be explicit, our data consist of d ∈ C and y ∈ Fd. The main claim is that, for any morphism f : c→ d, we
have

αd(f) = (Ff)(f),

as we showed in the Yoneda lemma. Here is the relevant naturality diagram.

Mor(c, c) Fc

Mor(c, d) Fd

αc

αd

Fff◦−

Tracking through idc in the diagram gives the result because αc(idc) was defined to be x. It follows that we
have a morphism f : (c, x) → (d, y) if and only if (Ff)(x) = y if and only if αd(f) = y, which we know to be
unique because αd is an isomorphism. ■

From the way we have proven things, we actually have the following result.

Corollary 3.48. In fact, F is represented by cwith universal element x if and only if (c, x) ∈
∫
F is initial.

Proof. If (c, x) ∈
∫
F is initial, then we showed last time that c represents our functor, and x is actually our

universal property (by staring at our proof). Conversely, if F is represented by c, we conjured our universal
element x := αc(idc) to create our initial element (c, x). ■

3.6.3 Unique Representation
Because the Yoneda embedding (Theorem 3.19) creates isomorphisms, if Mor(c,−) ≃ Mor(c′,−), then c ∼=
c′, so our representing objects are isomorphic. We might hope for something more.

Remark 3.49. There is a technical notion of “evil” that basically says that sometimes in category theory
our notion of equality is too strong. For example, isomorphism of categories is too strong, so we had
equivalence of categories to fix this.

60

3.6. MARCH 7 174: CAT. THEORY

Example 3.50. “Cardinality” of a category is not preserved by equivalence, so it is evil. For example, any
two indiscrete categories are equivalent, but they have different numbers of elements.

Anyways, we have the following result.

Proposition 3.51. For a functor F : C → Set, the full subcategory spanned by its representations in C is
either empty or a contractible groupoid.

Wait, contractible groupoid?

Definition 3.52 (Contractible groupoid). A contractible groupoid is a category where all morphism sets
Mor(c, d) has exactly one element.

Remark 3.53. The idea is that we can “collapse” our category inwards along unique isomorphisms.

We showed back in Exercise 2.91 that all contractible groupoids are equivalent toBe; here is the idea behind
why we are bringing this up.

Idea 3.54.! Unique isomorphisms tend to have contractible groupoids in the background.

So the idea behind introducing Proposition 3.51 is that there will be a unique morphism f : c → d that will
also send the corresponding universal elements correctly in that f : (c, x)→ (d, y). It is a good isomorphism.

Before continuing, here is a lemma.

Lemma 3.55. The full subcategory of C spanned by its final objects is either empty or a contractible
groupoid.

Proof. We will be brief. If it is empty, we are done. Otherwise, for any two final objects t1, t2, there is exactly
one morphism t1 → t2 because t2 is final. So we are done. ■

Remark 3.56. We can dualize the above lemma (by working in Cop) to replace the word “final” with
“initial” everywhere.

And now we prove Proposition 3.51.

Proof of Proposition 3.51. If F is not representable, then
∫
F has no initial objects because initial objects

induce representations. Otherwise,
∫
F will have initial objects, but they form a contractible groupoid by

Remark 3.56. ■

3.6.4 Typical Universal Properties
Because we are feeling benevolent today, here are some examples.

Exercise 3.57. Consider the contravariant functor P : Setop → Set, which sends maps objects by P :
S 7→ P(S) and morphisms by taking f : S → T to f−1 : P(T) → P(S). We discuss Proposition 3.43
with this functor.

Proof. Our objects are pairs (X,A) whereX is a set andA ⊆ X is a subset. Our morphisms (X,A)→ (Y,B)
are maps f : X → Y such that f−1(B) = A.

Now, back in Exercise 3.13, we showed that Ω = {0, 1} represents P with universal element 1. Accord-
ingly, we claim that (Ω, {1}) is final (note P is contravariant) in

∫
F . Indeed, for any pair (X,A), there is a

unique map f : X → Ω such that f−1({1}) = A which describes itself. ■

61

3.6. MARCH 7 174: CAT. THEORY

Exercise 3.58. Consider the functor Bilin(V,W,−) : Veck. We discuss Proposition 3.43.

Proof. To start, we note that our objects of
∫
Bilin(V,W,−) consists of a vector spaceU with a bilinear map

f : V × W → U . A morphism (U, f) → (U ′, f ′) is a linear map g : U → U ′ such that gf = f ′; i.e., the
following diagram should commute.

V ×W U

U ′

f

f ′
g

Explicitly, we want
Bilin(V,W,−)(g)(f) = f ′,

but Bilin(V,W,−)(g) = (g ◦ −) by definition.
On the other hand, we know that V ⊗W represents Bilin(V,W,−) with universal element⊗ : V ×W →

V ⊗W by (v, w) 7→ v ⊗ w. Noting that this means (V ⊗W,⊗) ought to be initial, we are told that whenever
we have a bilinear map V ⊗W → U , there is a unique map V ⊗W → U such that the following diagram
commutes.

V ×W V ⊗W

U ′
f

⊗

This is the typical universal property. ■

Exercise 3.59. Consider the forgetful functor U : Ring→ Set. We discuss Proposition 3.43.

Proof. Our objects in
∫
R consists of pairs (R, r) such that r ∈ R. Our morphisms f : (R, r) → (S, s) is a

morphism f : R→ S such that f(r) = s.
Now, back in Exercise 3.11, we showed that Z[x] should represent this functor with universal element

x, so we want (Z[x], x) to be initial in
∫
F . In other words, for any pair (R, r), there is a unique morphism

Z[x]→ R such that x 7→ r. Indeed, this morphism must take 1 7→ 1, so we are sending

N∑
k=0

akx
k 7−→

N∑
k=0

akr
k,

which finishes. ■

62

THEME 4

LIMITS AND COLIMITS

It’s true that many pieces of categorical terminology do come from
analysis, but maybe all that says is that analysis is an old and venerable

subject.

—Tom Leinster, [Lei09]

4.1 March 9
The fun continues but now in a different form.

4.1.1 Products
Let’s do some examples to start because we are feeling kind today.

Exercise 4.1. We consider products A×B in Set, defined as

A×B := {(a, b) : a ∈ A and b ∈ B}

in a categorical sense.

Remark 4.2. It turns out that products are limits.

Proof. We would like to make this definition more fit for category theory, for which we note that we have
projection maps πA : A×B → A and πB : A×B → B by πA : (a, b) 7→ a and πB : (a, b) 7→ b respectively. In
fact, we are universal in the following sense: for any objectA and maps φA : C → A and φB : C → B, there
is a unique (!) map φ : C → A×B making the following diagram commute.

C

A×B

A B

φA φB

πA πB

φ

63

4.1. MARCH 9 174: CAT. THEORY

To see uniqueness, we note that we must have

πA(φ(c)) := φA(c) and πB(φ(c)) := φB(c),

so we must define our map φ as
φ(c) := (φAc, φBc).

In fact, we can see that this defined map does have πA ◦ φ = φA and πB ◦ φ = φB , so the diagram does
indeed commute. ■

This example should feel similar to universal properties: whenever something occurs in our diagram, we
have some unique induced map. To see this more formally, we have the following auxiliary exercise.

Exercise 4.3. We exhibit the universal property for A×B in the category C := Set.

Proof. We note that we are being granted a bijection between pairs of maps (φA, φB) and our maps φ. In
other words, there is a bijection

Mor(C,A)×Mor(C,B)→ Mor(C,A×B).

To turn this into a universal property, we consider the functor F : Cop → Set by

F : Mor(−, A)×Mor(−, B).

In particular, we send morphisms f : S → T to F (f) : Mor(T,A) ×Mor(T,B) → Mor(S,A) → MOr(S,B)
by

F (f) := (− ◦ f)× (− ◦ f).

We won’t check this is a functor, but you can if you like doing that kind of thing.
Now, we to get our universal property, we need to exhibit our natural isomorphism

η : F ⇒ Mor(−, A×B).

We already gave a bijection of sets in the previous exercise, so we just need to show that it is natural. Well,
pick up some morphism f : T → S, and we have the following diagram to check.

Mor(S,A)×Mor(S,B) Mor(T,A)×Mor(T,B)

Mor(S,A×B) Mor(T,A×B)

ηS ηT

−◦f

(−◦f)×(−◦f)

So now, pick up some pair (h, g) ∈ Mor(S,A) ×Mor(S,B) and track through. Along the bottom, we go to
h× g which then goes to hf × gf . Along the top, we start with (h, g) then go to (hf, gf) which then goes to
hf × gf .

Now let’s compute our universal element. For this, we need to find what we are getting out of Theo-
rem 3.17, which is

η−1
A×B(idA×B) = (πA, πB),

which is fairly intuitive. In particular, we can track ηA×B((πA, πB)) through and get idA×B , which will give
what we want. ■

Here are some generalizing remarks.

Remark 4.4. The universal property of products in Exercise 4.3 did not depend on Set, but the con-
struction did. Products are more of an ambient concept that might or might not happen in some given
category.

64

4.1. MARCH 9 174: CAT. THEORY

Remark 4.5. We could just have easily defined arbitrary products∏
α∈λ

Sα

for some sets {Sα}α∈λ by just increasing the number of terms. For example, our functor we want to
represent is now

F :
∏
α∈λ

Mor(−, Sα).

We can also write out the analogous universal property in terms of Exercise 4.1.

Example 4.6. The product of the one term A equipped with the projection map idA : A → A. Indeed,
for any map C → A, there is a unique map C → A making the following diagram commute.

C A

A

Example 4.7. The product of no terms at all is the final object X. Indeed, whenever we have no mor-
phisms going anywhere, there is a unique map to X making whatever diagram you want commute.

4.1.2 Coproducts
Next let’s discuss coproducts. Let’s just give the universal property.

Definition 4.8 (Coproduct). Given two objects A,B ∈ C, we define the coproduct object A
∐
B to be

equipped with maps ιA : A → A
∐
B and ιB : B → A

∐
B such that, whenever we have an object Z

with maps φA : A → Z and φB : B → Z, there is a unique map A
∐
B → Z making the following

diagram commute.
A B

A
∐
B

Z

ιA ιB

φBφA

Example 4.9. The disjoint union A ⊔B is the coproduct in Set. Indeed, our maps are ιA : a 7→ (a, 0) and
ιB : b 7→ (b, 1). To see the universal property, suppose that we have an object C with maps φA : A→ C
and φB : B → C. To see the uniqueness of φ : A ⊔B → C, we see that we must have

φ(ιAa) = φA(a) and φ(ιBb) = φB(b)

which exhausts all possible cases for elements of A ⊔ B. It is then not too hard to check that this does
satisfy φ ◦ ιA = φA and φ ◦ ιB = φB by construction.

Example 4.10. We can generalize to products with multiple terms. If we have one object, the coproduct
of A is just A. Similarly, if we have no objects, then the coproduct will be an initial object.

65

4.2. MARCH 11 174: CAT. THEORY

4.1.3 More on Products
Now let’s generalize our examples. We begin by making the product even more categorical. At a high level,
we might have lots of objects {Aα}α∈λ, we are given maps πα :

∏
A→ Aα in some universal way.∏

A

Aα · · · Aβ

πα πβ

To make this more in terms of category theory, we note that we can formalize the bottom part of the diagram
as the image of some functor

F : J → C

for some discrete category J . Namely, our objects Aα look like F (α) for various α ∈ J .
To put the product

∏
A on the same footing, we will similarly define the constant functor

Cx : J → C

which sends all objects of J to x and all morphisms to idx.
We would like to create arrows between our diagrams, we are asking for an arrow between our functors,

so we are more or less asking for a natural transformation η : Cx ⇒ F . Namely, the component morphisms
take some α ∈ J , we are being promised a morphism ηα : x→ Aα. If we wanted to check that η is a natural
transformation, we would pick up a morphism idα : α→ α in J , which gives rise to the following diagram.

x x

F (α) F (α)

ηα ηα

idx

idF (α)

Notably, this commutes for free. If we wanted to add more structure to our products, we might want to
change J to be not discrete and have F be a more general diagram. This gives rise to limits.

Definition 4.11 (Cone). Fix an index category J and a category C with an object c ∈ C. Then a cone is a
natural transformation from the constant functor Cc ⇒ F , where F : J → C is some diagram.

The limit will be the object limF ∈ C which is a “universal” cone, in the same way that the product was
universal with respect to a “discrete cone.” We will not discuss this more formally today, but we will discuss
it more next lecture.

4.2 March 11
We do more limits today.

4.2.1 Cones and Cocones
We recall the following definition. For today, we fix J as our index category.

Definition 4.11 (Cone). Fix an index category J and a category C with an object c ∈ C. Then a cone is a
natural transformation from the constant functor Cc ⇒ F , where F : J → C is some diagram.

Definition 4.12 (Apex). A cone over F with summit or apex c is a natural transformation λ : c⇒ F with
components λj : c→ Fj. These components are called legs.

66

4.2. MARCH 11 174: CAT. THEORY

Informally, λ consists of morphisms λj : c → Fj which commute with the morphisms promised by J .
Namely, for any morphism f : i→ j, we have the following naturality square diagram;

c c

F i Fj
Ff

λi λj

Collapsing the top makes this look more like a triangle.

c

Fi Fj

λjλi

Ff

Of course, we also have a dual notion. We have the following definition.

Definition 4.13 (Nadir). A cone under F (or “cocone”) with nadir c is a natural transformation λ : F ⇒ c
with components λj : Fj → c. These components are (still) called legs.

Remark 4.14. We use the word nadir because someone wanted to.

This time our picture looks like the following.

Fi Fj

c

Ff

λi λj

Notably, the nadir c is under F this time.

Example 4.15. Fix our index category J = Z. For a cone F : J → C over c, our diagram looks like the
following.

c

· · · F (−1) F (0) F (1) · · ·

4.2.2 Limits and Colimits
Intuitively, our limits will be the universal apex for a cone. It is the best cone; in some sense, it is the smallest
or “closest” apex to the diagram. The diagram looks like the following.

c′

c

F i Fj
Ff

λi λj

λ′
i

λ′
j

We have the following definition to induce our desired behavior.

67

4.2. MARCH 11 174: CAT. THEORY

Definition 4.16 (Cone functor). Fix a diagram F : J → C.

• We define the functor Cone(−, F) : Cop → Set by

c 7→ Cone(c, F) := HomCat(c, F)

which are the natural transformations λ : c ⇒ F . Then a morphism f : c → d goes to the
morphism F (f) : HomCat(d, F)→ HomCat(c, F) so that a cone λ : d⇒ F gives rise to a cone

F (f)(λ) = λ• ◦ f ∈ HomCat(c, F).

• We define the functor Cone(−, F) : C → Set by

c 7→ Cone(F, c) := HomCat(F, c)

which are the natural transformations λ : c ⇒ F . Then a morphism f : c → d goes to the
morphism F (f) : HomCat(F, c)→ HomCat(F, d) so that a cone λ : F ⇒ c gives rise to a cone

F (f)(λ) = f ◦ λ• ∈ HomCat(F, d).

Here is the image of Cone(f) creating a cone with apex c from a cone to apex d.

d

c

F i Fj
Ff

λi λj

λi◦f λi◦f
f

We will not check the functoriality of this functor, but surely it works: just look at it.
Our functors give the following definitions.

Definition 4.17 (Limit, colimit). A limit of a diagram F : J → C is a representation of Cone(−, F); in
other words, it is a natural isomorphism C(−, c) ≃ Cone(−, F). (Note Cone(−, F) is the contravariant.)
Dually, a colimit is a representation of Cone(F,−).

We will mostly be talking about limits and leave the discussion of colimits to the curious.
Note that, by Theorem 3.17, we see that a natural transformation

α ∈ Hom(C(−, c),Cone(−, F))

corresponds to some literal cone Cone(c, F). From our discussion of the category of elements, we note that
we can also think of a limit in the following way.

Definition 4.18 (Limit, colimit). A limit of a diagram F : J → C is a terminal object in
∫
Cone(−, F).

To review, our objects of
∫
Cone(−, F) look like pairs (c, λ) ∈

∫
Cone(−, F) where λ : c ⇒ F . Then our

morphisms (c, λ)→ (c, µ) have the data f : c→ d such that

Cone(f, F)(µ) = λ.

68

4.2. MARCH 11 174: CAT. THEORY

In other words, we require µ• ◦ f = λ•, which is equivalent to the commutativity of the following diagram.

d

c

F i Fj
Ff

λi λj

µi µj
f

Thus, (c, λ) being terminal in
∫
Cone(−, F) means that any pair of objects (d, µ) will have the morphism f be

unique.
At this point, we can see that our limits are indeed unique up to unique isomorphism because our terminal

objects are unique up to unique isomorphism. Alternatively, we can give the following argument.

Proposition 4.19. The limit of a diagram F : J → C is unique up to unique isomorphism.

Proof. The point is to stack our limits on top of each other. So that (c, λ) and (c′, λ′) are both limits of F .
Then we place them in the following diagram and note that we have unique maps f and g induced by the
diagram above.

c

c′

c

F i Fj
Ff

λi λj

λ′
i

λ′
j

f

λi λj

g

By uniqueness, we see that f ◦ g must be the identity (there is only one such morphism from c → c making
the diagram commute, and idc works), so f and g are must be inverses by redoing the stacking with f to
show g ◦ f = idd. ■

Notation 4.20. From now on, we will write limF for the limit of F and colimF for F .

Remark 4.21. Not all categories have all their limits and colimits. For example, Field does not have an
initial object (we cannot inject into both F2 and F3), so Field is missing the limit of the diagram from the
empty category.

We close with an example.

Exercise 4.22. We show that product are limits from the discrete category.

Proof. Fix our functor F : J → C with apex (P, π), which means that we have morphisms πj : P → Fj.
Note that we have no commutativity among the j ∈ J because J has no non-identity morphisms.

69

4.3. MARCH 14 174: CAT. THEORY

To translate the universal property, we see that whenever we have another apex (c, λ), there is a unique
morphism f : c→ P making the following diagram commute.

c

P

Fi Fj
Ff

πi πj

λi λj

f

This is what we wrote down in Exercise 4.3. ■

4.3 March 14

The fun, as they say, never stops.

4.3.1 More Examples
Chris is back, so today is just examples.

Exercise 4.23. We discuss the limit of the diagram

A
f→ B.

Proof. The limit will be an objectX with a map ι : X → A such that, for any object Y , there is a unique map
Y → X making the following diagram commute.

Y X

A B
f

φ

Well, we simply set X := A with X → A simply as the identity map idA : X → A. Then we are forced to
have Y → X be φ by the diagram commuting, which finishes. ■

Exercise 4.24. We exhibit a product where the projection maps are not epimorphisms.

Proof. This is somewhat hard because faithful functors preserve epimorphisms, so concrete categories
won’t work here. So we consider the following category.

B

A C D

It is not too hard to see thatB is the product ofA andC (the only object with map to bothA andC isB itself,
so it is our only object to check), but the map B → C is not an epimorphism because of the problems with
C → D. ■

70

4.3. MARCH 14 174: CAT. THEORY

4.3.2 Equalizers

Definition 4.25 (Equalizer). An equalizer is a limit of the following diagram.

A B
g

f

We denote this by eq(f, g).

More concretely, we set up our diagram as follows.

E

A B
g

f

e e′

By commutativity of the diagram, we want fe = ge = e′, so we will ignore the morphism e′ entirely: it’s
induced by the rest of the diagram.

Now, forE to be universal, we are saying that, for any morphism h : X → A, there is a unique morphism
X → E making the following diagram commute.

X

E A B
g

f
e

h
φ

This is not an obvious limit; here is an example.

Exercise 4.26. We compute equalizers in Set.

Proof. As a starting example, we note that we do have a “trivial” cone with X = ∅. This does not use the
other information of our limit, so we simply define

E := {a ∈ A : f(a) = g(a)}

with inclusion morphism ι : E ⊆ A. Certainly fι = gι by construction.
Now, to show the universal property, any other objectX with a morphism h : X → A such that fh = gh,

we see that h(x) ∈ E for each x ∈ X. Thus, h does map into E, so we have our induced map

h̃ : X → E

by simply restricting the codomain. This morphism is unique because any such morphism h̃must have ιh̃ =

h, so h̃(x) = h(x) for each x ∈ X. ■

Remark 4.27. I think the same construction will work for equalizers in any concrete category.

Exercise 4.28. Working in Ab, we consider the equalizer of the following diagram, where f : A → B is
some morphism.

A B
0

f

In particular, we claim that the equalizer is the kernel.

71

4.3. MARCH 14 174: CAT. THEORY

Proof. By essentially doing the same proof as in Set, the equalizer will be the set

E := {a ∈ A : f(a) = 0(a) = 0},

which is ker f . ■

Remark 4.29. It follows that eq(f, g) = eq(f − g, 0) = ker(f − g) by tracking through what we need for
our diagrams to commute.

Here is a nice result on equalizers.

Proposition 4.30. Given two morphisms f, g : A → B and an equalizer e : E → A, the map e is always
monic

Proof. Fix two maps h, k : X → E such that eh = ek. This has the following diagram.

X E A B
g

f
eh

k

Then we see that eh and ek both have f(eh) = f(ek) = g(eh) = g(ek), so there is a unique map x : X → E
such that ex = eh = ek. But then we see that h and k both work, so h = k is forced. ■

Remark 4.31. This is notably different from projections failing to be epic because we are really only told
that pAf = pBf or pBf = pBg when looking at just one projection. However, we need both of these for
f = g.

4.3.3 Coequalizers
Of course, there is also a dual notion of an equalizer.

Definition 4.32 (Coequalizer). A coequalizer is a colimit of the following diagram.

A B
g

f

We denote this by coeq(f, g).

From essentially the same discussion as before, the only data we need for a cocone of the diagram

A B
g

f

is an object Q with a morphism q : B → Q. The universal property is saying that any object X with a
morphism φ : B → X has a unique induced morphism as follows.

A B Q

X

g

f q

φ

And now for examples.

72

4.4. MARCH 16 174: CAT. THEORY

Exercise 4.33. We compute coequalizers in Set.

Proof. The “dual” to a subset is a quotient, so we have reason to believe that the coequalizer should be a
quotient. Thus, we define the equivalence relation∼ inB generated by f(a) ∼ g(a).1 It will happen that the
canonical projection map B ↠ B/ ∼ is our coequalizer. ■

4.4 March 16
These notes were transcribed from Rhea’s notes. Thank you, Rhea!

4.4.1 Limit Review
Let’s review the kinds of limits we can do.

• The limit of an empty set is the final object.

• The limit of a discrete category is a product.

• The limit of the arrow
A B

is A.

• The limit of the diagram
• •

is the equalizer.

We continue our discussion with diagrams of three points.

Exercise 4.34. We show that limit of the triangle

A B

C

f

g
h

is A.

Proof. Any apex L for the diagram will consist of maps ιA : L → A and ιB : L → B and ι : L → C so that
the following diagram commutes.

L

A B

C

f

g
h

ιB
ιA

ιC (∗)

However, we note that ιB = fιA and ιC = hιA by the commutativity of the diagram, so in fact, we can make
the cone by only specifying ιA.

And in fact, for any choice ιA : L→ A, we can induce the above diagram to commute by forcing ιB := fιA
and ιC : hιA, which will cause (∗) to commute because all the internal triangles commute.

1 For example, we can take the intersection of all equivalence relations B×B which contain the requirements f(a) ∼ g(a) for each
a ∈ A.

73

4.4. MARCH 16 174: CAT. THEORY

We thus claim thatA equipped with idA : A→ A is our limit. This means that we want a unique induced
arrow φ : L→ A making the following diagram commute.

L A

A B

C

f

g
h

ιA idA

φ

Well, any such arrow φ : L→ A must satisfy φ = idA φ = ιA, so φ is forced. And indeed, φ = ιA causes the
necessary triangle to commute, we are done. ■

Remark 4.35. At a high level, what is causing this diagram to commute is that we are reducing this limit
to a limit on a one-object category, which we know how to do.

4.4.2 Pullbacks
For our next limit, we have the following definition.

Definition 4.36 (Cospan). A cospan is a diagram of the following form.

A B C

Equivalently, a cospan is a diagram indexed by the following category.

• • •

As with equalizers, we can decrease the number of arrows we have to keep track of in a cone over a cospan.
Indeed, an apex L over a cospan is equipped with maps φA : L → A and φB : L → B and φC : L → C such
that the following diagram commutes.

L C

A B

g

f

φC

φA φB

Now, the commutativity diagram now forces φB = fφA = gφC , so we can simply induce φB from the rest
of the diagram. As such, we decrease the data of a cone over a cospan as merely consisting of the maps
φA : L→ A and φC : L→ C forcing fφA = gφC ; i.e., we require the following diagram to commute.

L C

A B

g

f

φC

φA

Of course, a cone will induce a diagram of the above form by forgetting the morphism φB . Conversely,
a diagram of the above form makes a cone by setting φB := fφA = gφC , which will satisfy the needed
commutativity to be a cone by construction.

Anyways, here is our limit.

74

4.4. MARCH 16 174: CAT. THEORY

Definition 4.37 (Pullback). A pullback A×B C is the limit of a cospan, labeled as follows.

A×B C C

A B

g

f

πC

πA

⌟

The right angle next to A×B C is how we diagrammatically notate pullbacks.

Warning 4.38. The pullback A×B C also depends on the chosen maps f : A→ B and g : C → B, even
though these maps are not included in the notation.

It turns out that pullbacks are actually nontrivial limits, so we will need to fix our category to compute
them. Here’s an example.

Exercise 4.39. We compute pullbacks in Set.

Proof. Fix our diagram as follows.
L X

Y Z

f

g

πX

πY

⌟

As a first attempt, we might try L = X × Y with πX and πY being the usual projection. But this does not
work because the diagram might not commute: there is no reason to have

f(x) = f(πX(x, y)) = (fπX)(x, y) = (gπY)(x, y) = g(πY (x, y)) = g(y)

for each x ∈ X and y ∈ Y . However, without much better to do, we force this condition in the rudest way
possible: we simply restrict our product to be

X ×Z Y := {(x, y) ∈ X × Y : f(x) = g(y)},

where πX : (x, y) 7→ x and πY : (x, y) 7→ y are the usual projections. This does indeed make a valid cone
because any (x, y) ∈ X × Y will have

(fπX)(x, y) = f(πX(x, y)) = f(x) = g(y) = g(πY (x, y)) = (gπY)(x, y),

so fπX = gπY .
It remains to show that this X ×Z Y creates the universal cone. Well, fix a set W with morphisms φX :

W → X and φY :W → Y so that the following diagram commutes.

W

X ×Z Y X

Y Z

f

g

πX

πY

φY

φX

φ

We need to show that there is a unique arrow φ. To show that it is unique, note that we need

πX(φ(w)) = (πXφ)(w) = φX(w) and πY (φ(w)) = (πY φ)(w) = φY (w)

75

4.4. MARCH 16 174: CAT. THEORY

by the commutativity of the diagram. It follows that we are forced to have

φ(w) := (φXw,φY w).

We now show that this works. Note that this φ is well-defined because each w ∈W has

f(φXw) = (fφX)(w) = (gφY)(w) = g(φY w),

so (φXw,φY w) ∈ X ×Z Y . Then we have πXφ = φX and πY φ = φY by construction, forcing the diagram to
commute for free. ■

4.4.3 Pullbacks as Equalizers
It is perhaps not too surprising that we ended up with something that looks like a product, with some equal-
izing condition. In fact, we can realize pullbacks as an equalized product.

Proposition 4.40. Work in some category C. Fix morphisms f : X → Z and g : Y → Z in some category.
Further, assume thatX×Y exists with the canonical projections πX : X×Y → X and πY : X×Y → Y .
If eq(fπX , gπY) exists, then it is equal to X ×Z Y .

Proof. Set E := eq(fπX , gπY) with equalizing map e : E → X × Y . Our required map E → X will be πXe;
similarly, the required map E → Y will be πY e. Now, we see that E with πXe : E → X and πY e : E → Y
makes the following diagram commute.

E X

Y Z

f

g

πXe

πY e

Indeed, we have
f(πXe) = (fπX)e

∗
= (gπY)e = g(πY e),

where ∗
= is by construction of the equalizer.

It remains to show that E is universal. Well, pick up some object W with maps φX : W → X and
φY :W → Y such that fφX = gφY . We then claim that there is a unique morphism φ causing the following
diagram to commute.

W

E X

Y Z

f

g

πXe

πY e

φX

φY

φ

We start with the existence of the map φ. For this, we expand the diagram as follows.

W E X × Y X

Y Z

f

g

πX

πY

e

φX

φY

φ

Note that the square does not commute anymore. We have two steps.

• We use the universal property of X × Y . The maps φX and φY induce a unique map ψ : W → X × Y
such that πXψ = φX and πY ψ = φY .

76

4.4. MARCH 16 174: CAT. THEORY

• We use the universal property of E. By construction,

(fπX)ψ = f(πXψ) = fφX = gφY = g(πY ψ) = (gπY)ψ,

soψ equalizes fπX and gπY . As such, there is a unique mapφ :W → E such that eφ = ψ. In particular,
we see that

(πXe)φ = πX(eφ) = πXψ = φX and (πY e)φ = πY (eφ) = πY ψ = φY ,

so the required diagram commutes.

It remains to show that the map φ : E → X is unique. Suppose that we have two such maps φ1 and φ2. We
again proceed in two steps.

• We use the universal property of X × Y . Note that

φX = (πXe)φ• = πX(eφ•) andφY = (πY e)φ• = πY (eφ•),

so both morphisms eφ• are the needed unique morphism W → X × Y . So we see eφ1 = eφ2.

• We use the universal property of E. Note that

(fπX)(eφ•) = f(πXeφ•) = fφX = gφY = g(πY eφ•) = (gπY)(eφ•),

so the universal property of E forces there to be a unique map φ such eφ = eφ1 = eφ2. But of course,
φ1 and φ2 are such maps φ, so φ1 = φ2 follows.

This finishes checking that E is universal. ■

Remark 4.41 (Bryce). As Bryce would like to point out, the existence proof might look like it shows that
φ is unique immediately—we did use two uniqueness results, after all—but some care is required.
Namely, we only know that the morphism φ is the unique morphism commuting with ψ and then hap-
pens to make the diagram commute, so φ might not be unique making the diagram commute.

Remark 4.42 (Bryce). It will turn out that all limits can be realized as equalizers of products.

4.4.4 Direct and Inverse Limits
We close lecture with two definitions.

Definition 4.43 (Direct limit). A direct limit is a colimit of the poset category N. In other words, a direct
limit is a colimit of a diagram of the following form.

A0 A1 A2 · · ·

Intuitively, we can think of direct limits as ascending unions.

Definition 4.44 (Inverse limit). An inverse limit is a limit of the poset category Nop. In other words, an
inverse limit is a limit of a diagram of the following form.

A0 A1 A2 · · ·

Dually, we can intuitively think of inverse limits as a descending intersection.

77

4.5. MARCH 18 174: CAT. THEORY

4.5 March 18
Once again, these notes were transcribed from Rhea’s notes. Thank you, Rhea!

4.5.1 Direct and Inverse Limits
We continue where we left off with direct and inverse limits. We recall our definitions.

Definition 4.43 (Direct limit). A direct limit is a colimit of the poset category N. In other words, a direct
limit is a colimit of a diagram of the following form.

A0 A1 A2 · · ·

Definition 4.44 (Inverse limit). An inverse limit is a limit of the poset category Nop. In other words, an
inverse limit is a limit of a diagram of the following form.

A0 A1 A2 · · ·

It is reasonable to ask why, say, we take the colimit over N instead of the limit. Here is why.

Exercise 4.45. Fix a functorF : N→ C. Then the limit of the diagramF isF0, where the mapsF0→ Fn
are the induced ones.

Proof. For concreteness, we will let the morphism i → j in N be denoted (i → j). As usual, we begin
by restating what it means for a cone to have apex c over our diagram F . In particular, the cone has data
consisting of the object L and morphisms φn : c→ F (n) such that the following diagram commutes.

c

F0 F1 F2 · · ·

φ0 φ1
φ2 (∗)

In other words, we require that
φn = F (0→ n)φ0

for each n ∈ N. Thus, we can retrieve the data of φn from merely knowing φ0, and these data are unique
determined. And conversely, from merely knowing φ0, we can set φn := F (0 → n)φ0 to get over F with
apex c because (∗) commutes for free.

As such, we claim that the limit of this diagram is F0, with φ0 := idF0. Indeed, suppose that we have
some cone overF with apex c, and we need to induce a unique morphismφ : c→ F0 such that the following
diagram commutes.

c

F0

F0 F1 F2 · · ·

φ0

φ

Well, for the diagram to commute, we need idF0 φ = φ0, soφ = φ0 is forced. And certainlyφ = φ0 will work
because it has

φn = F (0→ n)φ0 = F (0→ n)φ

for any n ∈ N, which is what we wanted. This finishes. ■

So limits over N are not very interesting, but colimits under N (i.e., direct limits) are, which are why they get
a fancy name.

78

4.5. MARCH 18 174: CAT. THEORY

4.5.2 Pushouts
We are obligated to spend a few words saying that there is a dual to Definition 4.37.

Definition 4.46 (Span). A span is a diagram of the following form.

A B C

Equivalently, a span is the image of the following index category.

• • •

Definition 4.47 (Pushout, fibered coproduct). A pushout is a colimit of a span, labeled as follows.

A C

B B ⊕A C

f

g

ιC

ιB

⌟

The right angle next to B ⊕A C signifies that this is a pushout.

As before, we have a warning that B ⊕A C depends on the morphisms f and g, even though these are not
communicated in the definition.

The story for pushouts is exactly dual to the story for pullbacks, simply by placing everything in the op-
posite category. For example, as suggested, a cone under a span with nadir X merely needs the data of
φC : C → X and φB : B → C with the coherence condition

φBf = φCg

because this morphism should be equal to φA and will cause the needed diagram

A C

B X

f

g

φC

φB

φA

to commute. This explains why we only drew two arrows in Definition 4.47.
As such, we can provide a wordier version of the universal property for pushouts via the universal prop-

erty for colimits: fix any object X with morphisms φB : B → X and φC : C → X such that the following
diagram commutes.

A C

B X

f

g

φB

φC

Then there is a unique morphism φ : B ⊕A C → X which makes the following diagram commute.

A C

B B ⊕A C

X

f

g

φC

φB

ιC

ιB

φ

79

4.5. MARCH 18 174: CAT. THEORY

Remark 4.48. It is possible to have both a pullback and a pushout in the same square. For example,
consider the following diagram in Set.

A ∩B B

A A ∪B

πB

ιA

ιBπA ⌟

⌟

Now, we see that A ∩ B is the pullback in this diagram via our computation in Exercise 4.39. We will
not show that A ∪ B is in fact the pushout of this diagram, but it is true; roughly speaking, this is the
coproduct A ⊔B modded out by identifying ιAπA = ιBπB .

Example 4.49. We work in Ab. Then, working in the standard pushout diagram, we set

B ⊕A C ∼=
B ⊕ C

⟨(f(a), 0)− (0, g(a)) : a ∈ A⟩
.

Then this is our pushout, as in the following diagram.

A C

B B ⊕A C

f

g

ιC

ιB

This diagram commutes essentially by construction, and it is universal basically because we have mod-
ded out by the smallest amount possible in order to make this diagram commute.

4.5.3 Hom Sets of (Co)products
Fix I some discrete category andA : I → C some functor. As we discussed when talking about coproducts,
a cone under A with nadir X will contain the data of morphisms

fi : Ai → X

for each i ∈ I, and there are no commutativity conditions here because I has no non-identity morphisms.
Now, suppose that we have a coproduct object

∐
i∈I Ai equipped with ιj : Aj →

∐
i∈I Ai. Then, given

an object X with a morphism f :
∐
i∈I Ai, we can generate a tuple of morphisms

f ∈ Mor

(∐
i∈I

Ai, X

)
7→ {fιi : Ai → X}i∈I ∈

∏
i∈I

Mor(Ai, X).

However, because of the data of the morphisms fi : Ai → X makes a cone under A, it seems like we can
reverse the map.

Proposition 4.50. Fix a discrete category I and a diagram A : I → C. Further, let
∐
i∈I Ai be the co-

product of A equipped with inclusions ιj : Aj →
∐
i∈I Ai.

Then there is a (canonical) isomorphism

Mor

(∐
i∈I

Ai, X

)
∼=
∏
i∈I

Mor(Ai, X).

80

4.5. MARCH 18 174: CAT. THEORY

Proof. The forwards map is f 7→ {fιi}i∈I , as discussed preceding the statement. We call this map φ.
To show that φ is an isomorphism, we give it an explicit inverse. Well, given some tuple {fi}i∈I ∈∏

i∈I Mor(Ai, X) provides the data of a cone under A with nadir X: indeed, we only need the morphisms
fi : Ai → X to have a cone. Then the universal property of the coproduct (!) promises a (unique) morphism
f :
∐
i∈I → X making the following diagram commute.

Aj

∐
i∈I

Ai X

ιj
fj

f

(∗)

So we have generated a morphism f :
∐
i∈I Ai → X. We call this map ψ ({fi}i∈I).

It remains to show that φ and ψ are mutually inverse. We run the checks independently.

• We show φψ is the identity. Well, we start with {fi}i∈I ∈
∏
i∈I Mor(Ai, X). Then f := ψ ({fi}i∈I) is

chosen to make (∗) commute. In particular, we are told that

φ(f) = {fιi}i∈I = {fi}i∈I

by construction of f . This finishes.

• We show ψφ is the identity. This time we start with f :
∐
i∈I Ai → X. Then ψ(φ(f)) is the unique

morphism g such that
gιi = φ(f)i = fιi

for each i ∈ I. But we see that f will work here, so g = f follows, finishing.

The above checks do witness φ and ψ to be isomorphisms. ■

Remark 4.51. In fact, the isomorphism in Proposition 4.50 is natural in X as well as A, for suitably de-
fined notions of natural.

Of course, there is also an analogous story for products, by reversing all of our arrows.

Proposition 4.52. Fix a discrete category I and a diagram A : I → C. Further, let
∏
i∈I Ai be the co-

product of A equipped with projections πj :
∐
i∈I Ai → Aj .

Then there is a (canonical) isomorphism

Mor

(
X,
∏
i∈I

Ai

)
∼=
∏
i∈I

Mor(X,Ai).

Proof. We argue by duality. Moving all objects into Cop turns the product into a coproduct, so we are looking
for an isomorphism

Mor

(∐
i∈I

Aop
i , X

op

)
∼=
∏
i∈I

Mor(Aop
i , X

op),

which is exactly Proposition 4.50. Then, from this isomorphism, we merely have to push back from Cop to C
to get the result.

We spend a moment to unravel this isomorphism. Note that(∏
i∈I

Ai

)op

∼=
∐
i∈I

Aop
i ,

81

4.5. MARCH 18 174: CAT. THEORY

where our new inclusion morphisms are πop
j : Aop

j →
∐
i∈I A

op
i . Now, given f : X →

∏
i∈I Ai, the isomor-

phism in Proposition 4.50 yields

{fopπop
i }i∈I ∈

∏
i∈I

Mor(Xop, Aop
i),

which then comes back to
{πif}i∈I ∈

∏
i∈I

Mor(Ai, X).

This finishes. We quickly remark that we could also just use the above mapping to argue more directly by
the universal property of products, merely imitating the proof of Proposition 4.50. ■

4.5.4 Surjective Projection Maps
We close lecture with an application of the ideas in the previous subsection.

Theorem 4.53. Fix C be a category such that Mor(A,B) ̸= ∅ for each A,B ∈ C. Further, fix a discrete
category I and a diagramA : I → C, and suppose that we have a product

∏
i∈I Ai with projection maps

πj :
∏
i∈I

Ai → Aj .

Then these morphisms πj are split epimorphisms.

Proof. Fix some j ∈ J , and we show that πj is a split epimorphism. The point is to manually create a lifting
morphism from Aj to

∏
i∈I Ai.

Well, for each k ∈ J , we find some ηk ∈ Mor(Aj , Ak) (which exists by hypothesis on C), and we will
further require that ηj := idAj . The point is that we are promised that the following diagram commutes, for
any k ∈ I.

Aj
∏
i∈I

Ai

Ak

πk

η

ηk

Thus, as shown in the above diagram, we are promised some morphism η :
∏
i∈I Ai → Aj such that ηπk = ηk

for each k ∈ J . In particular, we see that
ηπj = ηj = idAj

,

so we have manually split πj . ■

Remark 4.54 (Nir). I am under the impression that we needed some strong form of choice to choose all
the morphisms ηj .

Remark 4.55. Arguing by duality, Theorem 4.53 tells us that the inclusion morphisms of a coproduct
are split monomorphisms.

The condition that all morphism sets are nonempty is not actually very strong.

Example 4.56. The category Set̸=∅ of nonempty sets has all nonempty morphism sets. Thus, the pro-
jection maps from a product of nonempty sets will all be split epimorphisms.

82

4.6. MARCH 28 174: CAT. THEORY

Example 4.57. Similarly, the category Grp has all morphism sets nonempty because any two groups G
and H have the trivial morphism φ : G→ H by φ : g 7→ eH .

Corollary 4.58. Fix C a concrete category with faithful functor U : C → Set. Further, fix a diagram
A : I → C over a discrete category I with a product

∏
i∈I Ai with projection maps

πj :
∏
i∈I

Ai → Aj .

If UAi ̸= ∅ for each i, then the maps πj are epimorphisms.

Proof. Fix some index j ∈ I. Because all the Ai have UAi ̸= ∅, we see that the induced map

Uπj :
∏
i∈I

UAi → UAj

is a split epimorphism (and in particular, an epimorphism) by Example 4.56.
So to finish, it suffices to show that faithful functor will pull back epimorphisms to epimorphisms, which

we siphon off to the following lemma.

Lemma 4.59. Fix U : C → D a faithful functor. If π : A → B is a morphism in C such that Uπ is an
epimorphism (or monomorphism), then π is also an epimorphism (or monomorphism).

Proof. We show thatπ is an epimorphism; the other case follows similarly or by arguing by duality. Suppose
that we have an object X with morphisms f, g : B → X. We want to show that fπ = gπ implies f = g. But
now, we see that

U(f)U(π) = U(fπ) = U(gπ) = U(g)U(π),

so because Uπ is an epimorphism, Uf = Ug follows. However, U is faithful, so we get f = g, finishing. ■

Remark 4.60 (Nir). I do not think that we can strengthen Lemma 4.59 to making π a split epimorphism
if Uπ is an epimorphism. For example, the subcategory C

{1, 2} {1}π

of Set will embed via a faithful functor U : C → Set, upon which Uπ will be a split epimorphism. How-
ever, π itself is not a split epimorphism because this category has no morphism {1} → {1, 2} at all!

The above lemma finishes the proof. ■

In other words, we see that, in concrete categories, products of nonempty objects will have surjective projec-
tion maps. Arguing by duality, we also see that coproducts of nonempty objects will have injective inclusion
maps.

4.6 March 28

Welcome back from spring break. We are still doing limits.

83

4.6. MARCH 28 174: CAT. THEORY

4.6.1 Complete Categories
To talk about limits more concretely, we will want to make our categories nicer.

Definition 4.61 (Complete). A category C is complete (cocomplete) if and only if C has all small limits.
In other words, each diagram F : J → C for J small has a (co)limit.

Remark 4.62. One can more generally talk about diagrams with index category that is not small.

The reason we are asking for only small (co)limits is for moral size reasons.

Theorem 4.63. A category C with products indexed by Mor C is a preorder.

Proof. Fix any two morphisms f, g : a → b in C. We would like to show that f = g, so suppose for the sake
of contradiction that f ̸= g. Well, we are granted a product

p :=
∏

h∈Mor C

b

in C, with projection maps πh : p→ b.
But now consider morphisms from a to p. The issue here is that

Mor

(
a,

∏
h∈Mor C

b

)
∼=

∏
h∈Mor C

Mor(a, b).

Comparing sizes, there are at most Mor Cmorphisms on the left and at least 2Mor C morphisms on the right.
So the right is strictly larger than the left, finishing. ■

Remark 4.64. It is not obvious that Mor C is strictly smaller than 2Mor C because Mor C might not be a
set, but such is life. Bryce muttered something about inaccessible cardinals, but I am not a set theorist
and therefore did not record it.

Corollary 4.65. All complete small categories are preorders.

Proof. This follows from the preceding theorem and the definition of complete. ■

Let’s try to give a more nontrivial example.

Proposition 4.66. The category Set is complete.

Proof. Fix a diagram F : J → Set. For our limit, we will simply define

L := Cone(∗, F)

to be the set of cones overF with apex ∗; note that there are no size issues because this is a subset of product
of all Mor(∗, F i) for all i ∈ J , which is okay because J is small.

For our projection maps, we define λj : L→ Fj by

λj(µ) := µj(∗),

where this makes sense because µ : ∗ ⇒ F has µj : ∗ → Fj, so we can extract out our element by µj(∗).

84

4.6. MARCH 28 174: CAT. THEORY

Quickly, we verify that we have defined a cone λ : L⇒ F . Namely, for any morphism f : i→ j, we need
to show that the following commutes.

L

Fi Fj

λi λj

Ff

For this, we diagram-chase on our elements. Namely, we compute

(Ff)λi(µ) = (Ff)µi(∗) = µj(∗)

because the µ we picked up is a cone already. But now this right-hand side is (Ff)λj(µ) by hypothesis.
We now show that λ : L⇒ F is our limit cone. Well, pick up any cone η : X ⇒ F , and we need to induce

a unique morphism φ : X → L making the following diagram commute.

X

L

Fi Fj
Ff

λi λj

ηi ηj (1)

Well, given x ∈ X, we need to defineφ(x) to be a cone, which means that given j ∈ J , we need a morphism
φ(x)j : ∗ → Fj. Looking around, the only morphism of this form that we have is

φ(x)j(∗) := ηj(x).

To check that φ is a cone, we need to run the check, for any f : i→ j in J , we have

(Ff)φ(x)i(∗) = (Ff)ηi(x) = ηj(x) = φ(x)j(∗)

by using the fact that η is already cone.
We now show that the diagram (1) commutes. Well, we have, for any x ∈ X,

λjφ(x) = φ(x)j(∗) = ηj(x)

by definition of λj and φ(x).
It remains to show that φ is unique. Well, suppose that we have a morphism ψ : X → L making (1)

commutes so that λjψ = ηj everywhere. Well, for any x ∈ X, we need to verify that ψ(x) = φ(x), which
means that for any j ∈ J , we need to verify that

ψ(x)j(∗) = φ(x)j

because ψ(x)j , φ(x)j : ∗ → Fj. However, by hypothesis, we have

ψ(x)j(∗) = λjψ(x) = ηj(x)

by hypothesis on our commuting, so we see that ψ is in fact forced. ■

4.6.2 Limits through Functors
It’s definition time!

85

4.6. MARCH 28 174: CAT. THEORY

Definition 4.67 (Preserves, reflects limits). Fix a diagramK : J → C and a functor F : C → D.

• The functor F preserves limits if and only if a limit cone λ : L ⇒ K in C gives another limit cone
Fλ : FL→ FK inD.

• The functor F reflects limits if and only if a limit cone Fλ : FL→ FK inD promises another limit
cone λ : L⇒ K in C.

Here is the image for these two properties.

C D

L FL

Ki Kj FKi FKj
Kf

λi λj

F

FKf

Fλi Fλj

preserves

reflects

And here is one more definition.

Definition 4.68 (Create limits). Fix a diagramK : J → C and a functor F : C → D. Then F creates limits
if and only if F already reflects limits and any a limit η : d⇒ FK inD induces a limit λ : L⇒ K in C such
that Fλ = η.

Essentially, having a limit in D allows us to bring the limit upwards to C. This is different from reflecting
limits because reflecting limits already assumed that we had the objects present in C already while creating
limits conjures the objects for us.

Remark 4.69. There are also dual notions for all the above definitions by adding the prefix co- every-
where.

Here is a quick result to get some practice with these words.

Proposition 4.70. Fix a functor F : C → Dwhich creates limits for some class of diagrams in C. Further,
suppose thatD has limits for these diagrams. Then C has limits for these diagrams, and F will preserve
these limits.

Proof. Fix a diagramK : J → C. Then FK has a limit η : d⇒ FK, which because F creates limits will go up
to a limit λ : c⇒ K in C.

It remains to show that F preserves the limit of K. We already know that F will preserve the limit λ
because we lifted by hand (and so λwill go down to η), so suppose that we have some perhaps distinct limit
µ : c′ ⇒ K in C. Then the uniqueness of limits promises us a unique isomorphism c ∼= c′ which commutes
with the various legs in λ and µ, so it follows

Fµ ≃ Fλ = η,

so F still preserved our limit µ going to η. ■

We close by stating a few results.

Proposition 4.71. Fully faithful functors reflect limits and colimits.

Proof. This is supposedly on the homework. ■

86

4.7. MARCH 30 174: CAT. THEORY

Remark 4.72. The functor need not create limits or colimits. Intuitively, this is because a fully faithful
functor is merely an embedding, so the codomain category might have lots of space elsewhere for limits
that our embedding does not hit.

Proposition 4.73. Equivalences preserve, reflect, and create all limits and colimits.

Proof. We leave this as an exercise. ■

Remark 4.74. Philosophically, this is good because we expect equivalent categories to be “the same”
and so they should have the same limits and colimits, for a good notion of same.

4.7 March 30
We continue rolling.

4.7.1 More on Functors through Limits
We add a new definition.

Definition 4.75 (Strictly creates limits). A functor F : C → D strictly creates limits for some class K of
diagrams if and only if a diagram K : J → C inKwith limit cone µ : d⇒ FK inD has the following.

• There is a unique lift of µ to C to a cone overK in C.

• The lift of µ is a limit cone.

This is different from merely creating limits because of the uniqueness.
And now a result.

Quote 4.76 (Bryce). Any time I use the word “small,” it’s kinda sloppy.

Proposition 4.77. FixA a small category and some category C. The forgetful functor

U : Fun(A, C)→ Fun(ObA, C)

strictly creates all limits and colimits that C admits. In fact, the lifts are computed pointwise: given
a ∈ A, then eva : Fun(A, C)→ C sending F 7→ Fa preserves limits and colimits.

To elaborate, ObA ⊆ A is the subcategory of A where we have forgotten about all the non-identity mor-
phisms.

Proof. We kinda just do it. We note that

Fun(ObA, C) ∼=
∏
ObA

C

in the nicest possible way because we are approximately thinking about a functor from a discrete set of C as
just a ObA-indexed tuple of things in C. These are pretty much literally equal. Here are our projection maps
πa are pretty much evaluating the functor eva along ObA.

87

4.7. MARCH 30 174: CAT. THEORY

Now, fix a diagramK : J → Fun(A, C) such that evaK : J → C has a limit for each a ∈ A. In other words,
we are working in the context of the limits that C admits. As such, we get lots of limit cones. Type-checking
everything through, we have a diagram that looks like the following.

lim evaK

evaKi evaKj

λa
i

λa
j

Namely, this is a limit taking place in C that we asserted C should admit. We want to lift this upwards to get
a limit for K. Namely, we want a functor

limK : A → C.

Well, we simply define our behavior on objects by hand as

(limK)(a) := lim evaK.

This verifies that we are lifting pointwise because (limK)(a) = eva(limK), so we are really just concerned
with showing the uniqueness of our lift.

To continue assembling our data, for f : a→ b inA, we need

(limK)(f) : (limK)(a)→ (limK)(b).

In particular, we are exhibiting a morphism as follows.

lim evaK lim evbK

evaKj evbKj

λa
j λb

j

Kj(f)

We can exhibit a map along the bottom objects because evaKj = Kj(a) and evbKj = Kj(b), so we have
some morphism of Kj(f) of the bottom objects. Then this will induce a unique map upstairs

lim evaK → lim evbK

by the universal property of our limits. We call this map (limK)(f), and it will turn out to be functorial. To
be more explicit, the composite maps

lim evaK
λa
j→ lim evaKj Kj (f)→ lim evbKj

make a cone, which will induce the desired morphism.
For a taste, let’s show that (limK)(ida) is still the identity. The main point is that the following diagram

commutes.

lim evaK lim evaK

evaKj evaKj

idlim eva K

λa
j λb

j

Kj(ida)=idKj(a)

In particular, the bottom objects are pretty much equal because their morphisms are the identities. Thus,
the map above lim evaK → lim evaK is unique, and idlim evaK works, so we are done.

Lastly, we talk about uniqueness. Essentially, by the uniqueness of the rest of our universal properties,
we can back-solve for what our functor limK should have been the entire time. ■

88

4.7. MARCH 30 174: CAT. THEORY

4.7.2 Limits in Set
We continue.

Theorem 4.78. Fix any diagram F : J → C. Then we claim there is a natural isomorphism

Mor(x, lim
J
F) ∼= lim

J
Mor(x, F)

in Set.

Roughly speaking, this is a superpowered version of Proposition 4.52.

Proof. Back in Proposition 4.66, we showed that we can construct a limit of a diagram K : I → Set by

lim
I
K = Cone(∗,K).

In particular, we have a natural isomorphism

lim
J

Mor(x, F) ∼= Cone(∗,Mor(x, F)).

As such, we claim that
Cone(∗,Mor(x, F)) ∼= Cone(x, F).

For this, we take a cone λ : ∗ ⇒ Cone(∗,Mor(x, F)) and recover a morphism λj(∗) : x→ Fj, which we claim
will assemble to a cone in Cone(x, F). To check the coherence, we pick up a morphism f : i → j and check
the naturality square as

(Ff)λi(∗)
?
= λj(∗),

which is true because λ was already a cone.
In the other direction, we take a cone µ : x⇒ F . We can then define the cone

µ′ : ∗ ⇒ Mor(x, F)

by sending µ′
j(∗) := µj . These maps will be inverses, and we will get naturality by elbow grease.

Synthesizing, we now have an isomorphism

lim
J

Mor(x, F) ∼= Cone(x, F).

But now this is isomorphic to
Mor(x, lim

J
F)

because morphisms from x to the diagram to F are the same as morphisms from x to limJ F . ■

Remark 4.79. We cannot talk very well about

Mor(lim
J
F, x)

because it is hard to map out of limits. On the other hand, it is true that

Mor(colimJ F, y) ∼= lim
J

Mor(F, y)

by believing very hard.

And now let’s see an example because Bryce is feeling benevolent.

89

4.8. APRIL 1 174: CAT. THEORY

Example 4.80. Iterated products of an element a ∈ C are called powers. The above fact gives

Mor

(
X,
∏
I
A

)
∼=
∏
I

Mor(X,A).

We close with a last result.

Corollary 4.81. The covariant representable functors Mor(X,−) : C → Set in C.

Proof. This follows directly from the previous result, where preservation of limits requires some notion of
naturality given in the previous proposition. ■

4.8 April 1
Unsurprisingly, we are not having discussion today.

Exercise 4.82. In Set, we provide a nice isomorphism Mor(A,B ∩ C) and Mor(A,B) ∩Mor(A,C).

Proof. Note that we have a pull-back square as follows.

B ∩ C C

B B ∪ C

⌟

Passing through Mor(A,−), we have the following diagram, which is still a pull-back diagram by Theo-
rem 4.78.

Mor(A,B ∩ C) Mor(A,C)

Mor(A,B) Mor(A,B ∪ C)

⌟

As such, we get a more or less canonical isomorphism

Mor(A,B ∩ C) ∼= Mor(A,B) ∩Mor(A,C).

■

4.8.1 Limits through Representable Functors
Last time we were talking about the following result, which we restate and add to.

Theorem 4.83. Fix a locally small category C.

(a) Covariant representable functors preserve limits.

(b) The (covariant) Yoneda embeddingよ : C → Fun(Cop,Set) preserves and reflects limits.

Proof. Note that (a) is essentially Theorem 4.78. It remains to show (b). For one side, note thatよ reflects
limits because it is an embedding.

90

4.8. APRIL 1 174: CAT. THEORY

It remains to preserve limits. Suppose that we have a diagram F : J → C with a limit in C. We need to
show that

よ(lim
J
F) ∼= lim

J
よ(F).

We provide an isomorphism on the corresponding diagrams. So we pick up n objectX ∈ C, and we see that

よ(lim
J
F)(X) = Mor(X, lim

J
F)

by tracking through Theorem 3.19 through. Now, by part (a), we see

Mor(X, lim
J
F) ∼= lim

J
Mor(X,F) = lim

J
((よ(F))(X)).

However, we showed that limits are computed pointwise back in Proposition 4.77, so

lim
J

((よ(F))(X)) ∼= (lim
J
よF)(X).

This completes checking our isomorphisms of objects. Tracking through the naturality everywhere, we get
to say the same thing for morphisms, finishing. ■

Quote 4.84 (Bryce). Can I say the whole thing is trivial? No, part of it is trivial.

As usual, there is a dual story. Namely, we have

Mor(colim
J

F,X) ∼= Cone(F,X)

by the universal property of colimits. However, working in Set, we can take opposites to get

lim
J op

Mpr(F,X) = Cone(∗,Mor(F,X)) ∼= Cone(F,C).

This is not quite the colimit we want because the colimit wants to work with cocones, not with cones, so
flipping J is not doing the right flip.

Anyway, working with the dual gives us the following statement, which is completely dual.

Theorem 4.85. Fix a locally small category C.

(a) Contravariant representable functors preserve colimits.

(b) The (contravariant) Yoneda embeddingよ : C → Fun(C,Set) preserves and reflects limits in Cop.

Note that we are talking about limits in Cop because of the flipping of the diagram we just described.

4.8.2 Computing Limits
We would like to compute limits. So let’s compute limits.

Theorem 4.86. Fix a diagram F : J → C. Then limJ F exists if and only if the equalizer of c and d in the
diagram

F (codh)

E
∏
j∈J

Fj
∏

f∈MorJ

F (cod f)

F (domh) F (codh)

πh
πcodh

c

d

πdomh πf

Fh

exists, in which case the limit is this equalizer. Here, c is induced as a map from the top product diagram,
and d is induced as a map from the bottom product diagram.

91

4.8. APRIL 1 174: CAT. THEORY

Remark 4.87. Thus, checking if a category is complete reduces to checking that we have (small) products
and equalizers.

Proof. We first show this in Set. By tracking the diagram through, we have

c(xj)j∈J = (xcodf)f∈MorJ ,

by looking at what we should do with πf and tracking the commutativity of the diagram. Similarly,

d(xj)j∈J = (Ff(xdom f))f∈MorJ ,

which we can again track through some particular πf projection map. Now, we can compute

lim
J
F = Cone(∗, F) = {λ : ∗ ⇒ F}.

In particular, we are dealing with some subset of
∏
j∈J Fj, which we want to track through to be an equal-

izer. So in one direction, let χ : ∗ ⇒ F be a cone; then f ∈ MorJ will need to have

Ff(xdomf) = xcodf ,

which is exactly the equalizing condition we need because of our construction of c and d. We can track this
backwards to describe a cone from this equalizing condition, so we are done with this case in Set.

We now show the general case. In one direction, suppose that an equalizer E of our diagram exists.
Applying the covariant Yoneda embeddingよ : C → Fun(Cop,Set). In particular, pushing throughMor(−, E),
the fact that we preserve limits gives us the following diagram.

Mor(−, E) Mor

(
−,
∏
j∈J

Fj

)
Mor

(
−,

∏
f∈MorJ

F (cod f)

)
c

d

Pulling out the products, we get a diagram that looks like the following.

Mor(−, E)
∏
j∈J

Mor

(
−, F j

) ∏
f∈MorJ

Mor

(
−, F (cod f)

)
c

d

Drawing in the big diagram, our c and dmorphisms which we induced are precisely the c and dwe need from
the case of Set. In particular, becauseよ reflects limits, this last limit is

lim
J
よF,

which is what we wanted after pulling theよ outside and using the fact that we have an embedding.
For the other direction, we just run the entire argument in reverse, starting with the limit, pushing it

throughよ, viewing that as the equalizer in Set, using the fact thatよ reflects limits to pull back the equalizer
to the original category, finishing. I will not write this out because I only understood it for the five seconds
after Bryce explained it. ■

There is also a dual story, as follows.

Theorem 4.88. Fix a diagram F : J → C. Then colimJ F exists if and only if the coequalizer of c and d
in the diagram ∐

f∈MorJ

F (cod f)
∐
j∈J

Fj E
c

d

exists, in which case the limit is this equalizer. Here, c and d are induced analogously as previously.

Proof. Duality. ■

92

4.9. APRIL 4 174: CAT. THEORY

Corollary 4.89. The categories Set and Grp and Ab and Top and Veck are all complete and cocomplete.

Proof. We run down.

• Set is complete because it has products (products) and equalizers (equalizers).

• Set is cocomplete because it has coproducts (disjoint union) and equalizers (take a quotient).

• Grp is complete because it has products (products) and equalizers (weird kernel things).

• Grp is cocomplete because it has coproducts (free products) and coequalizers (weird quotient things).

• Ab is complete because it has products (products) and coequalizers (quotient things).

• Ab is cocomplete because it has coproducts (direct sums) and coequalizers (kernel things).

• The story for Vec is the same as Ab.

• Top is complete because it is pretty much the same as Set.

This finishes. ■

4.9 April 4

Chris is back!

4.9.1 Elements in Categories
Fix a concrete category C with its forgetful functor U : C → Set.

Example 4.90. In Set, we can view elements x ∈ X for a set X as morphisms from {∗} to X.

Example 4.91. In Grp, we can view elements g ∈ G for a groupG as morphisms from Z toG, by essen-
tially tracking where 1 goes.

Can we work more generally?

Non-Example 4.92. In FinGrp, there is no way for this to occur. Roughly speaking, we are asking for
Mor(T,−) ≃ U , but this functor U need not be representable.

It turns out that there is no way to make this precise for general categories. As such, we have the following
definition.

Definition 4.93 (Generalized element). Fix a terminal objectT in a categoryC. Then we call a generalized
element of an objectX to be a morphismT → X. More generally, a generalized element of shapeY ∈ C
is a morphism Y → X.

It turns out that arguments about elements can often be (philosophically) transformed into arguments about
generalized elements.

We are feeling benevolent, so here are some examples.

93

4.9. APRIL 4 174: CAT. THEORY

Example 4.94. Fix morphisms f, g : A→ B. We can translate the statement

f = g ⇐⇒ f(x) = g(x) for all a ∈ A

into asserting that
f = g ⇐⇒ fx = gx for all x : X → A.

To see this that this is true, we note the forward direction is by substitution, and the reverse direction
is by setting X = A and x = idA so that we are told f = fx = gx = g.

Example 4.95. A morphism f : A → B is a monomorphism if and only if, for each object X, we have
fg = fh for g, h : X → A implies g = h. This is merely saying that fg = fh for “generalized elements,”
which correctly generalizes our notion of injectivity.

Non-Example 4.96. A morphism f : A→ B is an epimorphism if and only if, for each objectX, we have
gf = hf for g, h : B → X implies g = h. This does not look like surjectivity for sets: we would be asking
that any morphism g : X → B has a morphism h : X → A making the following diagram commute.

A B

X

f

g
h

This is a fairly strong condition.

4.9.2 Sheaves
For our next example, we define a sheaf.

Definition 4.97 (Presheaf). Fix a category C. AD-valued presheaf on C is a contravariant functor Cop →
Set. IfD is omitted, we will assume thatD = Set.

To define a sheaf, we need to talk about topological spaces, which is made of a set X and a topology T .
Then we have a category O(X), which is a preorder by the containment of open sets; i.e., we have exactly
one morphism U → V for open sets U, V ⊆ X if and only if U ⊆ V .

In particular, given a presheafF : O(X)op → Set, we see thatU ⊆ V induces a morphismF(V)→ F(U),
which we call restriction because we will think about this as restriction of functions. We will denote f ∈ F(V)
as going to f |U ∈ F(U); there is no ambiguity to the morphismF(V)→ F(U)because the morphismU → V
is unique.

Now, here is our definition.

Definition 4.98 (Sheaf). Fix a topological space (X,T) to pick up a presheaf F : O(X)op → Set. Then F
is a (Set-valued) sheaf if and only if it satisfies the following extra conditions.

• Locality: fix an open set U and an open cover {Uα}α∈λ. If f |Uα
= g|Uα

for all α, we have f = g.

• Gluing: fix an open set U and an open cover {Uα}α∈λ. If we have local elements fα ∈ O(Uα) such
that fα|Uα∩Uβ

= fβ |Uα∩Uβ
for all α, β ∈ λ, then there is a global element f ∈ O(U) such that

f |Uα
= fα for each α.

Visually, locality is saying that an open cover of an open set U can completely determine an element of V .
Here is the image.

94

4.9. APRIL 4 174: CAT. THEORY

Now, if we have two elements f and g we are equal on the entire open set, then locality requires that f = g.
Gluing is roughly saying that if we have a family {fα}α∈λ on our open cover in such a way that we restrict
properly to intersections, then we can glue our elements together.

Example 4.99. Given topological spacesX and Y , we can define the sheaf of continuous functionsX →
Y by taking an open set U ⊆ X to the set of continuous functions O(U) from U to Y . This satisfies
locality and gluing somewhat intuitively.

• Locality: if two continuous functions are equal when restricted to an open cover, then they are
equal as functions: simply track where all the elements go.

• Gluing: continuous functions can be built up from local functions if they agree on intersection.
This is called the pasting lemma.

Here is an alternate definition of sheaves.

Definition 4.100 (Sheaf). Fix a topological space (X,T) to pick up a C-valued presheaf F : O(X)op →
Set. For any open set U ⊆ X with open cover {Uα}α∈λ, the morphism

F(U)→
∏
α∈λ

F(Uα)

can be induced (component-wise) by the restriction morphismsF(U)→ F(Uα). By restricting further,
we can build two maps

πresα, πres β
∏
α∈λ

F(Uα)→
∏
α∈λ

∏
β∈λ

F(Uα ∩ Uβ)

by taking {fα}α∈λ by either going to πresα : {fα}α∈λ 7→ fα|Uα∩Uβ
or πresα : {fα}α∈λ 7→ fβ |Uα∩Uβ

. Now,
F is a sheaf if and only if

F(U)
∏
α∈λ

F(Uα)
∏
α∈λ

∏
β∈λ

F(Uα ∩ Uβ)
resα

res β

is an equalizer diagram.

We would like to show that our second definition correctly generalizes the first definition in the case where
C = Set.

Indeed, suppose that F : O(X)op → Set is a sheaf in the first notion. Then, to show that we have an
equalizer diagram, we first show that the following diagram commutes.

F(U)
∏
α∈λ

F(Uα)
∏
α∈λ

∏
β∈λ

F(Uα ∩ Uβ)
resα

res β

In the case of functions, pick up some f ∈ F(U), and which goes to

{f |Uα
}α∈λ

95

4.10. APRIL 6 174: CAT. THEORY

in the middle. Then tracking through resα and resβ, we are asking for

f |Uα |Uα∩Uβ
= f |Uβ

|Uα∩Uβ
.

However, this is true by functoriality. This kind of argument holds more generally, even if we are not talking
about a specific function f ∈ F(U).

We now show that we have an equalizer diagram.

X

F(U)
∏
α∈λ

F(Uα)
∏
α∈λ

∏
β∈λ

F(Uα ∩ Uβ)ι
resα

res β

In particular, we are more or less granted an infinite tuple of morphisms {fα}α∈λ from fα : X → F(Uα).
The gluing axiom, now, looks like the existence of the induced map above. In particular, requiring that
fα|Uα∩Uβ

= fβ |Uα∩Uβ
, which is the hypothesis for gluing, and then we get a full f : X → F(U) such that

ι(f) = {f |Uα}α∈λ restricts as fα = f |Uα .
The locality axiom is the uniqueness in the equalizer diagram. Namely, if we have two such morphisms

f, g : X → F(U) such that ιf = ιg, then the uniqueness of the diagram forces f = g. This translates
precisely into saying that f |Uα

= g|Uα
for any α and β forces f = g, which is what locality wants.

4.10 April 6
Today is almost the last day of discussing limits.

4.10.1 Limit Functoriality
We begin by talking about functoriality of limits.

Proposition 4.101. Fix a category C with all limits of shape J . Upon choosing a limit and associated
limit cone for each diagram J → C defines the action of objects of a functor

lim
J

: Fun(J , C)→ C.

Proof. As promised, for each F : J → C, we choose the limit cone λ : limJ F ⇒ F . For the resulting
argument, we need three diagrams F,G,H with cones λ, µ, η over F,G,H respectively.

We know limJ is supposed to do on objects, so we pick up a morphism α : F ⇒ G and take it to a
morphism of limit objects. Well, note that we can consider the composite of natural transformations

lim
J
F

λ⇒ F
α⇒ G.

In particular, this cone over G induces a unique arrow

lim
J
F → lim

J
,

which we suggestively call limJ α. It remains to run our functoriality checks.

• Identity: we check limJ idF = idlimJ F . We have the following diagram.

lim
J
F lim

J
F

F F
idF

λ λ

96

4.10. APRIL 6 174: CAT. THEORY

If we place idlimJ F on the top arrow, then the diagram commutes, so we conclude that

lim
J

idF = idlimJ F

by uniqueness.

• Associativity: given morphisms α : F ⇒ G and β : G⇒ H, which looks like the following diagram.

lim
J
F lim

J
G lim

J
H

F G Hα

λ µ

β

η

This diagram commutes, so the arrow limJ F → limJ H can be made (limJ β)(limJ α) or (limJ βα),
so they are the same by uniqueness.

This finishes our functoriality check. ■

Remark 4.102. We might be able to have limJ output into cones instead of C, but we won’t bother.

Remark 4.103. We have to choose all the limit cones in advance, which is somewhat annoying.

4.10.2 Limits of Limits
We also talk a little about limits of limits. Note that a functor F : I × J → C more or less induces two
different functors

F : I → Fun(J , C)

by taking i ∈ I to the functor j 7→ F (i, j). If we wanted to be careful, we would note that we should send
morphisms f : j → j′ to F (idi, f).

Remark 4.104. Formally speaking, we are kind of saying that

Fun2(I × J) ≃ Fun2(I,Fun(J , C)).

So the category of categories is Cartesian-closed. I only wrote down that sentence for its meme value.

Anyway, here is our statement.

Theorem 4.105. Fix a locally small category C. If the limits

lim
i∈I

lim
j∈J

F (i, j) and lim
j∈J

lim
i∈I

F (i, j)

exist, then they isomorphic and isomorphic to limI×J F .

Formally, we are viewing the limit
lim
i∈I

lim
j∈J

F (i, j)

as first taking the limit of F over J (viewing F as a functor from J to Fun(I, C) and then taking the limit
resulting limit over I.

We start with some motivating exercise.

97

4.10. APRIL 6 174: CAT. THEORY

Exercise 4.106. We draw the diagrams for equalizers commuting with pullbacks.

Proof. Consider the following two categories.

I • •

J • • •

Then the product can be realized as follows.

•

• • •

• •

There are a few ways to compute this limit.

• We might take the limit over the two copies ofJ first (i.e., take the pullbacks first), which with our two
limits will end up looking like the following.

•

•

Then we can compute the limit over this diagram.

• We might take the limit over each of the three copies of I first (i.e., take the equalizers first), which
will give us a diagram that looks like the following.

•

• •

Then we can compute the pullbacks here.

The theorem is saying that the two ways to compute the limit actually coincide. ■

Anyway, here is the proof of our theorem.

Proof of Theorem 4.105. By Theorem 3.19, it suffices to show that

Mor

(
X, lim

I
lim
J
F

)
∼= Mor

(
X, lim

I×J
F

)
naturally. We will show the left isomorphism, and the other one follows by symmetry.

Further, taking the limits out of the morphism sets, we can assume that everything is in set, where we
know how to compute limits already. In particular, using the construction in Proposition 4.66, we have

lim
I×J

F = Cone(∗, F) and lim
I

lim
J
F = Cone

(
∗, lim
j∈J

F (−, j)
)
,

where the second is by tracking what F means in this case. Explicitly, limj∈J F (−, j) is a functor I → C. We
construct these isomorphisms by hand.

98

4.10. APRIL 6 174: CAT. THEORY

• We construct a morphism

φ : Cone(∗, F)→ Cone

(
∗, lim
j∈J

F (−, j)
)
.

Well, picking up a cone λ : ∗ ⇒ F , we see we are asking for a collection of morphisms

φ(λ)i : ∗ → lim
j∈J

F (i, j)

for each i ∈ I. As such, fix some i ∈ I. Now, the cone λ promises us morphisms λi,j : ∗ → F (i, j). In
particular, j 7→ λ(i,j) gives us a cone which looks like the following.

∗ lim
j∈J

F (i, j)

F (i, j)

λi,j

Notably, the above diagram has j be variable. We now defineφ(λ)i to be the induced map in the above
diagram.
We now check that φ(λ) is really a cone. Well, set f : i → i′ to be a morphism in I. Thus, we need to
check

lim j ∈ JF (f, idj) ◦ φ(λ)i
?
= φ(λ)i′ .

To check this, we draw the following associated diagram.

∗ lim
j∈J

F (i, j) lim
j∈J

F (i′, j)

F (i, j) F (i′, j)
F (f,idj)

φ(λi)

λi,j

Now, our functoriality is giving the map on the top right as limJ F (f, idj). The triangle and the square
both commute by construction of each, so the full diagram commutes, but then we see that φ(λ)i′ is
the only map from ∗ to limJ F (i

′, j) making the diagram commute, so we get

lim j ∈ JF (f, idj) ◦ φ(λ)i
?
= φ(λ)i′ .

• We construct a morphism

ψ : Cone

(
∗, lim

J
F (−, j)

)
→ Cone(∗, F).

This is somewhat hard. Let µ : ∗ ⇒ limJ F (−, j) be some cone so that we want a morphism

ψ(µ)i,j : ∗ → F (i, j).

As such, we let ρi,j : limj∈J F (i, j)→ F (i, j) be the canonical projection. As such, we define

ψ(µ)i,j := ρi,jµi

by simply composing our two cones.
It remains to show that we actually have a cone. Well, pick up (f, g) : (i, j)→ (i′, j′) some morphism.
Then we compute

F (f, g)ψ(µ)i,j = F (f, idj′)F (idi′ , g)ρi,jµi

99

4.11. APRIL 8 174: CAT. THEORY

by moving around our definitions. Now, F (idi′ , g)ρi,j = ρi,j′ because ρ is a cone. So we so far are
dealing with

F (f, idj′)ρi,j′µi.

For this, we draw the following diagram.

∗

limJ F (i, j) limJ F (i
′, j)

F (i, j′) F (i′, j′)

µi µi′

ρi′,j′ρi,j′

limJ F (f,idj)

F (f,idj′)

The top triangle commutes because µ is a cone, and the bottom square commutes by definition of the
top map of the square. As such, we see that

F (f, idj′)ρi,j′µi = ρi′,j′µi′ = ψ(µ)i′,j′

by the commutativity of the diagram. This finishes showing that ψ(µ) assembles into a cone.

It remains to check that φ and ψ are mutually inverse and natural, but we won’t bother proving these. ■

4.11 April 8
Today we began with review, which was not recorded.

4.11.1 Group Objects
The main idea is as follows.

Idea 4.107.! We want to talk about “groups in a category C.”

One way to do this is to simply require a functor BG → C, but we would like to have an object in C into a
group, on its own.

As such, here is our definition. Fix a category C with finite products (and hence a terminal object T). Then
a group object G in C has the following data.

• G ∈ ob C.

• We have a morphism∇ : G×G→ C for our operation.

• We have an identity element η : T → G (via the morphisms-as-elements philosophy).

• Lastly, there is an inverse map s : G→ G.

We also require the following diagrams to commute.

• Associativity.

G×G×G G×G

G×G G

∇×idG

idG ×∇ ∇

∇

(Ass)

This is intended to say that (ab)c = a(bc) for a, b, c ∈ G.

100

4.11. APRIL 8 174: CAT. THEORY

• Left identity.

T ×G G×G

G

η×idG

∇
πG

(LId)

This is intended to say that 1 · g = g for any g ∈ G.

• Right identity.

G×G G× T

G

∇

idG ×η

πG

(RId)

This is intended to say that g · 1 = g for any g ∈ G.

The data so far assemble into a monoid object. To create a group, we introduce the canonical map ε : G→ T
(the “counit” map) and the diagonal map ∆ : G→ G×G by idG× idG. So here is our last diagram.

• Inverse.
G×G G×G

G T G

G×G G×G

ηε

∇∆

s×idG

∇∆

idG ×s

(Inv)

The top diagram takes g ∈ G and asserts that g−1 · g is equal to the identity element as required by T .
The bottom diagram is doing the same for g · g−1.

So we now state our definition.

Definition 4.108 (Group object). Fix a category C with finite products (and hence a terminal object T).
Then a group object G in C has the following data.

• G ∈ ob C.

• We have a morphism∇ : G×G→ C for our operation.

• We have an identity element η : T → G (via the morphisms-as-elements philosophy).

• Lastly, there is an inverse map s : G→ G.

We also require (Ass), (LId), (RId), and (Inv) to all commute.

Example 4.109. A group object in Set is a group.

Example 4.110. A group object in Grp is an abelian group. This is by the Eckmann–Hamilton argument
because we have made the groupG a monoid in two different ways, and we get told that these monoid
structures must coincide. However, we have also required that the inverse map s : G→ G to be a group
homomorphism. The fact that this inverse map is a group homomorphism requires G to be abelian.

We quickly outline the Eckmann–Hamilton argument. Because η : {e} → G is a group homomorphism, we
do indeed realize η as the actual identity forG. It remains to show that the∇map is correct, so suppose we
have a second morphism∇′ : G×G→ G.

101

4.11. APRIL 8 174: CAT. THEORY

Well, we note that a group homomorphism f : G → H consists of the data of the following data com-
muting.

G×G G

H ×H H

f×f f

∇G

∇H

In particular, idG : G→ G will provide the following data.

(G×G)× (G×G) G×G

G×G G

∇×∇

∇′×∇′

∇

∇′

Tracking through ((x, 1), (1, y)) ∈ G×G shows that∇′(x, y) = xy, which is what we wanted.

102

THEME 5

ADJOINTS

Right foot, let’s stomp. Left foot, let’s stomp. Cha cha real smooth.

—DJ Casper, [Cas09]

5.1 April 11
We finally begin our discussion of adjoints.

Remark 5.1. Being shocked for thirty minutes after lecturing is strongly cringe.

5.1.1 Introducing Adjunctions
Given two categories C andD, we can ask for the following relations, listed in order of strength.

• We can ask for categories to be equal. This is very strong.

• We can ask for categories to be isomorphic. This is evil.

• We can ask for categories to be equivalent. This is a good notion, but it is also somewhat strong.

For example, we might want to think of Set and Grp to be related. Of course, they are not equivalent (for
example, Grp has a zero object {e}while Set does not).

The goal for today is to talk about a weaker notion than equivalence (so that we have lots of interesting
examples) that is still powerful enough to be useful. Here is our definition.

Definition 5.2 (Adjunction). Fix two categories C and D. An adjunction is a pair of functors F : C → D
and G : D → C with isomorphisms (of sets)

MorD(Fc, d) ∼= MorC(c,Gd)

natural in both arguments. We will call F a left adjoint to G and G a right adjoint to F , notated F ⊣ G.

Notation 5.3. We will write the pair of functors F : C → D and G : D → C as F : C ⇌ D : G.

103

5.1. APRIL 11 174: CAT. THEORY

Remark 5.4. It turns out that adjoints are unique up to some notion of isomorphism, so we may write
“the” adjoint. However, we will not prove this uniqueness for a while.

Let’s actually write out our naturality square. For c, if f : c → c′ is a morphism, we need the following
diagram to commute.

MorD(Fc
′, d) MorC(c

′, Gd)

MorD(Fc, d) MorC(c,Gd)

−◦Ff −◦f

∼=

∼=

And here is the other naturality square, for a morphism g : d→ d′.

MorD(Fc, d) MorC(c,Gd)

MorD(Fc, d
′) MorC(c,Gd

′)

g◦− Gg◦−

∼=

∼=

Here is one last piece of notation.

Notation 5.5. We will notate f ♯ : Fc→ d being “adjoint” or “transpose” to the morphism f ♭ : c→ Gd,
by the isomorphism promised by the adjunction.

Let’s make the naturality a little faster; it turns out that the naturality is equivalent to having a natural iso-
morphism as follows.

Cop ×D Set

D(F−,−)

C(−,G−)

∼=

Take a moment to verify that the functors actually type-check.
Here is another way to promote the efficiency.

Lemma 5.6. Fix functors F : C ⇌ D : G with given isomorphisms D(Fc, d) ∼= C(c,Gd) for c ∈ C and
d ∈ D. Then, naturality is equivalent to the following: one of the squares below commutes if and only if
the other does, for any morphisms making the diagrams well-defined.

Fc d c Gd

Fc′ d′ c′ Gd′

f♯

g♯

Fh k h

f♭

g♭

Gk

Proof. This is supposedly on the homework. ■

In general, the above condition is better to check than naturality.

5.1.2 Examples
We are feeling kind today, so let’s see some examples.

Exercise 5.7. The functor F : Set→ Grp sending a group X to the free group on X is left adjoint to the
forgetful functor U : Grp→ Set.

104

5.1. APRIL 11 174: CAT. THEORY

Proof. The point is that, given a setX and groupG, a morphism FX → G is in some sense the “same data”
as a morphism X → FG. For example, given a morphism f ♭ : X → UG, we define f ♯ : FX → G by

f ♯(x1x2 · · ·xn) = f ♭(x1)f
♭(x2) · · · f ♭(xn).

This turns out to be an isomorphism, and it turns out that we can show naturality everywhere, but we will
not bother. ■

Remark 5.8. There are many examples of “free-forgetful” adjunctions.

Remark 5.9. Philosophically, a right adjoint poses a question which the left adjoint answers. For exam-
ple, U : Grp → Set is asking how to get maps of groups from sets, which the free functor tells us how
to do.

Exercise 5.10. The functor F : Set → Top taking a set X to the topological space X equipped with the
discrete topology is left adjoint to the forgetful functor U : Top→ Set.

Similarly, the functor G : Set → Top taking a set X to the topological space X equipped with the
indiscrete topology is right adjoint to U .

Proof. For the first claim, we are saying that, given a set X and a topological space T , continuous maps
FX → T have the same data as X → UT . However, all maps (of sets) FX → T are continuous for free
because FX has the discrete topology.

On the other hand, for the second claim, we are saying that, given a set X and a topological space T ,
maps (of spaces) UT → X have the same data as continuous maps T → GX. This is true because all maps
T → GX are automatically continuous because we are asking for the preimages of ∅ and GX to be open,
which are true for free. ■

Exercise 5.11. We give the embedding functor between the poset categories ι : (Z,≤)→ (R,≤) a right
adjoint.

Proof. We claim that the right adjoint is r 7→ ⌊r⌋. This is well-defined and does give a functor. To get a right
adjoint, we are saying that ιn ≤ r if and only if n ≤ ⌊r⌋, which is true by some analysis. Notably, we only care
about the existence of morphisms to get our bijections because we are working in poset categories. ■

Remark 5.12. Of course, ι also has a left adjoint as ⌈·⌉.

Exercise 5.13. We give the embedding functor ι : Groupoids→ Cat a left and right adjoint.

Proof. Recall that a groupoid is a category where all morphisms are isomorphisms. There are two ways to
do this.

• We can construct the “maximal subgroupoid” max C by merely taking C and throwing out all mor-
phisms which are not isomorphisms. This turns out to be a right adjoint.

• We can force all morphisms to be isomorphisms by adding in all the necessary inverses and quotient
out by what we need to remain a category; this process is called “localization,” in analogy with local-
izing a ring. This turns out to be a left adjoint.

We won’t actually check that these are adjoints (because the checks are painful), so we will declare that we
are done. ■

105

5.1. APRIL 11 174: CAT. THEORY

5.1.3 Units and Counits
We are now done talking about examples. As such, have a lemma.

Lemma 5.14. Fix adjunctions F : C ⇌ D : G. Then there exists a natural transformation η : idC ⇒ GF ,
where ηc : c→ GFc is defined as the transpose of idFc : Fc→ Fc along the isomorphism

MorD(Fc, Fc) ∼= MorC(c,GFc)

promised by the adjunction.

Proof. We only have to check naturality. As such, fix some morphism f : c→ c′, and we need the following
diagram to commute.

c GFc

c′ GFc′

f GFf

ηc

ηc′

Note that idc is the f ♭ of idFc, so by Lemma 5.6, it suffices to check that the following diagram commutes.

Fc Fc

Fc′ Fc′

idFc

idFc′

Ff Ff

This commutes because look at it. ■

The η in the lemma is special.

Definition 5.15 (Unit). Work in the context of Lemma 5.14. Then η is called the unit.

Our lemma also has the following dual.

Lemma 5.16. Fix adjunctions F : C ⇌ D : G. Then there exists a natural transformation ε : FG⇒ idD,
where εd : FGd→ d is defined as the transpose of idGd : Gd→ Gd along the isomorphism

MorD(FGd, d) ∼= MorC(Gd,Gd)

promised by the adjunction.

Proof. Duality. ■

And here is our corresponding word.

Definition 5.17 (Counit). Work in the context of Lemma 5.16. Then ε is called the counit.

We close class with an example.

Exercise 5.18. We compute units and counits for the free-forgetful adjoints between Set and Grp.

Proof. Our unit ηX : X → UFX sends an element x ∈ X to x ∈ UFX, the length-one word. On the other
hand, counit εG : FUG → G sends an element g1 · · · gn ∈ FUG made of letters of G to its evaluation in
G. ■

106

5.2. APRIL 13 174: CAT. THEORY

5.2 April 13
We continue talking about adjoints.

5.2.1 More Examples
We recall the following definition.

Definition 5.2 (Adjunction). Fix two categories C and D. An adjunction is a pair of functors F : C → D
and G : D → C with isomorphisms (of sets)

MorD(Fc, d) ∼= MorC(c,Gd)

natural in both arguments. We will call F a left adjoint to G and G a right adjoint to F , notated F ⊣ G.

From here we were able to define the unit and counit. Another way to view our construction last time is to
apply the Yoneda lemma to the natural isomorphism

MorD(Fc,−) ∼= MorC(c,G−)

of functors D → Set. In particular, Theorem 3.17 grants us an object ηc : MorC(c,GFc) representing this
isomorphism, which assembles into our unit η : idC ⇒ GF .

Let’s see some more examples.

Exercise 5.19. We discuss the product–hom adjunction in Set.

Proof. The point is that there is a natural bijection

Mor(X × Y,Z) ∼= Mor(X,Mor(Y, Z)) (∗)

by taking the function f : X × Y → Z to the function f̃ defined by x 7→ (y 7→ f(x, y)). To see that this is a
bijection, there is an inverse taking g ∈ Mor(X,Mor(Y,Z)) by ĝ(x, y) := g(x)(y), and we can check that these
are inverses by hand.

This will assemble into an adjunction of the functors F := −×Y andG := Mor(Y,−). Thus, (∗) turns into
a natural isomorphism

Mor(FX,Z) ∼= Mor(X,GY),

which is what we need for F ⊣ G.
We close our discussion by tracking through our unit and counit.

• For the unit, we need to transpose idFc through MorD(Fc, Fc) ∼= Mor(c,GFc). In particular, we are
tracking through idX×Y through

Mor(X × Y,X × Y) ∼= Mor(X,Mor(Y,X × Y)).

Thus, ηX(x)(y) should be ηX(x)(y) = idX×Y (x, y) := (x, y) after moving everything through.

• For the counit, we need to transpose idGd through MorD(FGd, d) ∼= Mor(Gd,Gd). In particular, we are
tracking through idMod(Y,Z) through

Mor(Mod(Y, Z)× Y,Z) ∼= Mor(Mod(Y, Z),Mod(Y,Z)).

Thus, we can find εZ(f, y) := f(y), which finishes.

This finishes our discussion. ■

107

5.2. APRIL 13 174: CAT. THEORY

Exercise 5.20. We discuss the hom–tensor adjunction for k-vector spaces.

Proof. It is false that
Hom(V ×W,U) ∼= Hom(V,Hom(W,U)).

This does not make sense because we don’t really want to talk about linear maps V ×W → U but rather
being bilinear in both arguments, so we want an isomorphism

Bilin(V ×W,U) ∼= Hom(V,Hom(W,U))

instead. Thus, using the universal property for tensor products, we would have

Hom(V ⊗W,U) ∼= Hom(V,Hom(W,U)).

We can compute that the unit is still εU (f ⊗ w) := f(w). Chris does not remember the counit precisely. ■

5.2.2 The Triangle Equations
We should probably prove something today, so let’s prove something.

Proposition 5.21. Fix adjoint functors F ⊣ G between categories C andDwith unit η and counit ε. Then
we have the triangle equations.

F FGF G GFG

F G

Fη

εF
idF

ηG

Gε
idG

Proof. Expanding out on objects, our first triangle takes some c ∈ C and writes down the following.

Fc FGFc

Fc

F (ηc)

εFc

idFc

(1)

Namely, the top arrow is a whiskering. Similarly, the other triangle looks like the following on some d ∈ D.

Gd GFGd

Gd
idGd

ηGd

G(εd) (2)

To prove the result, we recall the following lemma.

Lemma 5.6. Fix functors F : C ⇌ D : G with given isomorphisms D(Fc, d) ∼= C(c,Gd) for c ∈ C and
d ∈ D. Then, naturality is equivalent to the following: one of the squares below commutes if and only if
the other does, for any morphisms making the diagrams well-defined.

Fc d c Gd

Fc′ d′ c′ Gd′

f♯

g♯

Fh k h

f♭

g♭

Gk

108

5.3. APRIL 15 174: CAT. THEORY

As such, we start with the following diagram. Note that the following diagram commutes because look at
it.

c GFc

GFc GFc

ηc

ηc

idGFc

idGFc

Thus, Lemma 5.6 tells us that the following diagram commutes.

Fc Fc

FGFc Fc

idFc

idFc

εFc

Fηc

This is (1).
For the other one, we start with the following square which commutes because look at it.

FGd FGd

FGd d

idFGd

idFGd

εd

εd

Again applying Lemma 5.6, we get the following commutative diagram.

FGd GFGd

FGd Gd

ηGd

idGd

idGd

G(εd)

This is (2). This finishes the proof. ■

As such, we have the following nice result for adjoints.

Theorem 5.22. Fix functorsF : C ⇌ D : Gwith natural transformations η : idC ⇒ GF and ε : FG⇒ idD
satisfying the triangles in Proposition 5.21. Then F ⊣ G.

Proof. Given some f ♯ in C, we set f ♭ equal to Gf ♯ ◦ ηc; conversely, we send g♭ in D to g♯ equal to εd ◦ Fg♭.
The point of showing that these commute is by drawing the following diagram.

Fc FGFc FGd d

Fc
idFc

εFc

f♯

Fηc FGf♯ εd

This diagram commutes by some effort, which will give the inverse conditions.
We can show that these are mutually inverse, and then they are natural in both arguments because of

course they are. ■

5.3 April 15

5.3.1 Units and Counits Speed-run
We quickly recall that the transpose of f : Fc→ d is Gf ◦ ηc, and the transpose of g : c→ Gd is εd ◦ Fg.

We now continue the proof from last class.

109

5.3. APRIL 15 174: CAT. THEORY

Theorem 5.22. Fix functorsF : C ⇌ D : Gwith natural transformations η : idC ⇒ GF and ε : FG⇒ idD
satisfying the triangles in Proposition 5.21. Then F ⊣ G.

Proof. Suppose that we have functors F : C ⇌ D : G with η and ε satisfying the needed triangle equations.
We now define our adjunction by hand. Namely, we define

φ : MorD(Fc, d)→ MorC(c,Gd)

by sending f to Gf ◦ ηc by hand. Similarly, we define

ψ : MorC(c,Gd)→ MorD(Gc, d)

by ψ : g 7→ εd ◦ Fg. To check that these are inverses, we see that

ψφ(f) = ψ(Gf ◦ ηc) = εd ◦ FGf ◦ Fηc.

Computing, we push εd through via the following triangle.

FGFc FGd

Fc d

FGf

εdεFc

f

This commutes by naturality. As such, we find that

ψφ(f) = f ◦ εFc ◦ Fηc = f,

where in the last equality we have used the triangle equations.
For the other inverse, we compute

φψ(g) = φ(εd ◦ Fg) = Gεd ◦GFGg ◦ ηc.

As such, we draw the following naturality square to push out η.

c Gd

GFc GFGd

ηGdηc

g

GFg

Thus, we compute
φψ(g) = Gεd ◦ ηGd ◦ g = g,

where we once again finished by the triangle equations.
It remains to check naturality. We use Lemma 5.6, of which we show the other direction. Namely, we

show that the left square below makes the right square commutes.

Fc d c Gd

Fc′ d′ c′ Gd′

f

g

Fh k h

φf

φg

Gk

The left square commuting gives kf = gFf , so

Gk ◦Gg ◦ ηc = Gg ◦GFh ◦ ηc (∗)

110

5.3. APRIL 15 174: CAT. THEORY

by throwing through G and putting ηc on the right. The left-hand side is now Gk ◦ φ(f). On the other side,
we draw the following naturality square.

c GFc

c′ GFc′

h GFh

ηc

ηc′

As such, our right-hand side of (∗) becomes

Gk ◦ φ(f) = φ(g) ◦ h,

which gives the commutativity of the desired square. ■

5.3.2 Morphism of Adjunctions
We now begin discussion. We start with the following definition.

Definition 5.23 (Morphism of adjunctions). A morphism of adjunctions from F ⊣ G to F ′ ⊣ G′ is a pair
of functors H : C → C′ and K : D → mcD′ so that the following two diagrams commute.

C C′ C C′

D D′ D D′

F

H

F ′

K

H

G G′

K

Additionally, we require one of the following (equivalent) conditions.

(a) Hη = η′H.

(b) Kε = ε′K.

(c) The following diagram commutes.

MorD(Fc, d) MorC(c,Gd)

MorD′(KFc,Kd) MorC′(Hc,HGd)

MorD′(F ′Hc,Kd) MorC′(Hc,G′Kd)

K H

Here, ε, η are the unit/counit for F ⊣ G and similar for ε′, η′.

We start by showing (a) implies (b). For this, we want to show Kεd = ε′Kd for any d ∈ D. We will show that

(Kεd)
♯ ?
= (ε′Kd)

♯ = idG′Kd,

where we are transposing through F ′ ⊣ G′. On the other hand, pushing through the sharp on the left-hand
side, we note

(Kεd)
♯ = G′(Kεd) ◦ η′G′Kd = G′Kεd ◦ η′HGd

∗
= HGεd ◦HηGd = H(Gεd ◦ ηGd),

which is what we want after applying the triangle inequality and using the naturality ofH; notably, we used
Hη = η′H in ∗

=.

111

5.4. APRIL 18 174: CAT. THEORY

We now show (b) implies (c). Suppose Kε = ε′K, and we want our rectangle to commute. We simply
diagram-chase in Set: pick up some f : Fc→ d. Along the top, we track the following.

f Gf ◦ ηc

H(Gf ◦ ηc)

ε′Kd ◦ F ′H(Gf ◦ ηc) H(Gf ◦ ηc)

So we would like
Kf

?
= ε′Kd ◦ F ′H(Gf ◦ ηc).

Well, we can compute

ε′Kd ◦ F ′H(Gf ◦ ηc) = Kεd ◦KF (Gf ◦ ηc)
= K(εd ◦Gf) ◦KFηc
= K(f ◦ εFc) ◦KFηc,

where in the last equality we used the naturality of ε as follows.

FGFc FGd

Fc d
f

FGf

εdεFc

Continuing to rearrange, we see that we have

Kf ◦K(εFc ◦ Fηc) = Kf,

where we have used the triangle equalities.

5.4 April 18
Bryce’s advisor will be giving next week’s lectures. So it’s time to speed-run adjunctions.

5.4.1 Contravariant Adjoints
Let’s discuss trying to use contravariant functors to make adjunctions. We might start with two contravari-
ant functors F : Cop → D and G : Dop → C, but these are not compatible because they don’t go both ways
properly. As such, we want to turn G into a functor

D → Cop.

Indeed, functorsA → B can become functorsAop → Bop by just reversing all the arrows, so we can indeed
view G as a functor G : D → Cop, as desired.

Now, to make out adjoint, we might just try to require the isomorphism

MorD(Fc, d) ∼= MoropC (c,Gd) = MorC(Gd, c),

but now both functors are on the left side, so this is a little weird. Nonetheless, we have the following
definition.

112

5.4. APRIL 18 174: CAT. THEORY

Definition 5.24 (Mutually adjoint). Two contravariant functors F : Cop → D and G : Dop → C (thought
of as a functorD → Cop) are mutually left adjoint if and only if there are natural isomorphisms

MorD(Fc, d) ∼= MorC(Gd, c).

They are mutually right adjoint if and only if there are natural isomorphisms

MorD(d, Fc) ∼= MorC(c,Gd).

Exercise 5.25. Fix P : Setop → Set sending A 7→ P(A) and f 7→ f−1. We claim that P is mutually right
adjoint with itself.

Proof. We are requiring a natural isomorphism

MorSet(Y,PX)
?∼= MorSet(X,PY).

The main point is that Set is Cartesian-closed, roughly meaning that we can curry as

MorSet(X × Y,Z) ∼= MorSet(X,Mor(Y,Z)).

Now, recall that P is represented by Ω := {T,F}, in that P ∼= MorSet(−,Ω). Thus,

MorSet(X,PY) ∼= MorSet(X,Mor(Y,Ω))
∼= MorSet(X × Y,Ω)
∼= MorSet(Y ×X,Ω)

MorSet(Y,Mor(X,Ω))

MorSet(Y,PX),

and everything is natural, so we are done. ■

5.4.2 Uniqueness of Adjoints
We take a moment clean up after ourselves and quickly justify why we have been saying “the adjoint.”

Proposition 5.26. Fix functors F, F ′ which are both left adjoint to G. Then there is a unique natural
isomorphism θ : F ∼= F such that the following two triangles commute.

idC GF FG idD

GF ′ F ′G

η

Gθ
η′

θG

ε

ε′

Proof. We start by exhibiting θ, which we do by hand. As such, we define

θ := εF ′ ◦ Fη′ and θ′ := ε′F ◦ F ′η.

We show that these are inverse by hand; note that they are natural transformations as composition and
whiskering of natural transformations. We can type-check that Fη′ : F ⇒ FGF and then εF ′ : FGF ′ ⇒ F ′

and similar for θ′.
To show these are inverse, we show that

θ′θ
?
= idF ,

113

5.4. APRIL 18 174: CAT. THEORY

which we do on components as
(θ′θ)c = idc

for some object c. To do this, we show that the transposes are equal, for which we compute the transpose
(θ′θ)c as

G(θ′θ) ◦ ηc = Gε′F ◦GF ′η ◦GεF ′ ◦GFη′ ◦ η,

where we have dropped the c out of laziness. We now use naturality. Namely, we see

idC GF

GF ′ GFGF ′

η′

η

GFη′

ηGF ′

gives
Gε′F ◦GF ′η ◦GεF ′ ◦ (GFη′ ◦ η) = Gε′F ◦GF ′η ◦GεF ′ ◦ ηGF ′ ◦ η′.

Using the triangle equalities, we note that GεF ′ ◦ ηGF ′ = (Gε ◦ ηG)F ′ vanishes,1 so we are left with

Gε′F ◦GF ′η ◦ η′.

Using naturality in the same way as last time but changing the primes around, we get

Gε′F ◦GF ′η ◦ η,

which again by the triangle equalities simply vanishes into η. So indeed, the transpose of (θ′θ)c is ηc, which
is the transpose of idc.

We now show that our triangles commute as needed. For the left triangle, we compute

Gθ ◦ η = G(εF ′ ◦ Fη′) ◦ η = GεF ′ ◦GFη′ ◦ η.

By the naturality from before, we have GFη′ ◦ η = ηGF ′ ◦ η′, which gives

GεF ′ ◦ ηGF ′ ◦ η′ = (Gε ◦ ηG) ◦ η′ = η′

where we have used the triangle equalities. The other triangle follows similarly, which we omit.
It remains to show uniqueness of θ. Pick up an object c, and we show that θc : Fc→ F ′c is unique. Well,

to make the left triangle commute, we need the following triangle to commute.

c GFc

GF ′c

ηc

Gθc
η′c

Now, we can compute the transpose of θc : Fc → F ′c (through F ⊣ G) as Gθc ◦ ηc, which is η′c from the
above triangle. As such, θc must be the transpose of η′c, which is exactly how we constructed θ to begin with
anyway. ■

5.4.3 Composing Adjunctions
Adjunctions can also create more adjunctions, provided they cohere.

1 Namely, GεF ′ ◦ ηG is an identity natural transformation, so whiskering with F ′ on the right gives the morphism idF ′(−), which
does indeed vanish

114

5.4. APRIL 18 174: CAT. THEORY

Proposition 5.27. Fix F ⊣ G and F ′ ⊣ G′ in the following diagram.

C D E
G

F ′

G′

F⊣ ⊣

Then F ′F ⊣ GG′.

Proof. We compute

MorE(F
′Fc, e) ∼= MorD(Fc,G

′e)
∼= MorC(c,GG

′e)

by tracking through our various adjunctions. This finishes. ■

And here is the last thing we will prove today.

Proposition 5.28. Fix an equivalence of categories F : C ≃ D : G with its promised natural isomor-
phisms η : idC ⇒ GF and ε : idD ⇒ FG. We can replace these with an adjoint equivalence by modifying
either one of δ or ε (notably not changing F and G!).

Proof. This proof is, reportedly, a little long. Fix η and we modify ε. (For the other result, swap F andG and
ε and η.) Now, we fix

γ := Gε ◦ ηG

which is a natural transformation from G⇒ G (namely, ηG : G⇒ GFG and Gε : GFG⇒ G). Notably, this
is a natural isomorphism because Gε and ηG are both isomorphisms at each unit.

Our goal is to kill γ to fix our triangle equalities. As such, we set

ε′ := ε ◦ Fγ−1,

which is now a natural isomorphism FG ∼= idD by a similar computation to before: we send FG ⇒ FG ⇒
idD.

We now check our triangle equalities. Note that the following diagram commutes.

G GFG

G GFG

G

GFγ−1γ−1

ηG

Gε
γ

ηG

The bottom triangle commutes by definition of γ, and the square commutes by naturality of ηG—simply
chase an element all the way through. As such, we can collapse this diagram down to the following.

G GFG

G

ηG

Gε′

γ◦γ−1

This is our first triangle inequality, so we are done.

115

5.5. APRIL 20 174: CAT. THEORY

For the second triangle inequality, we draw the following huge diagram.

F FGF F

FGF FGFGF FGF

FGF F
ε′F

ε′FFGε′F

Fη ε′F

FηFη

FηGF

FGFη

ε′FGF

We quickly review why this diagram commutes.

• The top-left square commutes by the naturality of η applied to a square of Fs.

• The top-right square commutes by naturality of ε′ applied to a square of Fs.

• The bottom-right square commutes by the naturality of ε′ applied to a square of Fs.

• The bottom-left triangle commutes by the triangle equality we showed for ε′ already.

This diagram now collapses to
(ε′F ◦ Fη)2 = ε′F ◦ Fη,

which forces ε′F ◦ Fη = id because these are isomorphisms, which is what we wanted. ■

5.5 April 20
Chris is back, for the last time.

5.5.1 Adjoints Preserve (Co)limits
Here is a theorem.

Theorem 5.29. Fix a category C.

• C admits all limits of shapeJ if and only if the diagonal functor ∆: C → CJ admits a right adjoint.
Here, the right adjoint is the lim functor.

• Dually, C admits all colimits of shapeJ if and only if the diagonal functor ∆: C → CJ admits a left
adjoint. Here, the left adjoint is the colim functor.

Proof. Here is the image.

C CJ∆

colim

lim

⊣
⊣

We now recall the following theorem.

Proposition 4.101. Fix a category C with all limits of shape J . Upon choosing a limit and associated
limit cone for each diagram J → C defines the action of objects of a functor

lim
J

: Fun(J , C)→ C.

116

5.5. APRIL 20 174: CAT. THEORY

As such, we start by proving the forward direction of our theorem. Namely, we are promised a functor

lim: CJ → C.

We check that this is the right adjoint of ∆: we merely have to exhibit isomorphisms

MorC (c, limF)
?∼= MorCJ (∆c, F).

Now, MorCJ (∆c, F) denotes natural transformations from c to F , which are just cones over F with apex c.
As such, we have

MorC (c, limF)
∗∼= Cone(c, F) ∼= MorCJ (∆c, F),

where
∗∼= is because limF represents the functor Cone(−, F). This is natural because look at it.

Now work in the other direction. Suppose that R : CJ → C is right adjoint to ∆. But then

Mor(c,RF) ∼= Cone(c, F)

naturally, so RF represents Cone(c−, F), so RF will be a limit of the diagram F . In fact, we can see that R
must now be the limit functor because we showed the limit functor was a right adjoint, and we know limits
are unique. ■

Here is our main theorem.

Theorem 5.30. Right adjoints preserve limits.

Proof by diagrams. More rigorously, suppose that F ⊣ G are functors F : C → D and G : D → C. Then, for
a diagram K : K → D, if the limit limK exists, then

G(limK) = limGK.

We will do a proof by diagrams. To be explicit, we pick our limit cone λ : limK ⇒ K. Hitting everything
with G, we have the following diagram.

limK G lim k

K GK

G

In particular, our legs λi : limK → Ki become Gλi : G limK → GKi, which assembles into a cone Gλ :
G limK ⇒ GK by whiskering.

We claim that Gλ is a limit cone. As such, we pick up a cone µ : c ⇒ GK, and we want a unique map
c→ G limK commuting with our legs. To use our adjoint, we transpose everything.

Quote 5.31. It’s good notation. Fuck you.

In particular, we hope that we have cones as follows.

limK Fc

K

µ♯
j

!

In particular, we will now check that µ♯ : : Fc ⇒ K is actually a cone. To check this, we invoke Lemma 5.6.
Indeed, because Gλ : G limK → GK is a cone, the following diagram commutes.

c c

GKi GKi′

idc

GKf

µi µi′

117

5.5. APRIL 20 174: CAT. THEORY

Transposing, the following diagram commutes.

Fc Fc

Ki Ki′

idFc

Kf

µ♯
i

µ♯

i′

So indeed, µ♯ is a cone, so we have a unique map τ : Fc → limK commuting with our cones. So we get a
map

τ ♭c→ : G limK.

Everything commutes because we can transpose triangles back as squares (using Lemma 5.6: do the above
diagram argument in reverse), so we have indeed constructed the needed map.

It remains to show that our τ ♭ is unique. Well, given any σ : c→ G limK, we can transpose back to show
σ♯ must match up with τ , which we then bring back to say σ = τ ♭. This finishes. ■

Proof by Yoneda. We can also the Yoneda lemma as follows. Write

MorC(c,G lim
J
K) ∼= MorC(Fc, lim

J
K)

∗∼= lim
J

MorD(Fc,K)

∼= lim
J

MorC(c,GK)

∼= MorC(c, limGK),

which finishes. Notably,
∗∼= is the universal property of the limit; this is how limits behave in Set. ■

We also have the following result.

Corollary 5.32. Left adjoints preserve colimits.

Proof. Duality. ■

Quote 5.33. I only lecture properly when I am harassed.

5.5.2 Whiskering
We close class with the following result.

Theorem 5.34. Fix an adjunction F ⊣ G. IfJ is small and E is locally small, then we have adjunctions as
follows.

CJ DJ EC ED
F◦−

G◦−

−◦F

−◦G

⊣⊣

Proof. We will show one of these. We start by writing out the triangle identities as follows.

F FGF G GFG

F G

Fη

εF

εG

Gη

As such, we can build units and counits by hand. Indeed, we set η̂ : idDJ : (G ◦ −)(F ◦ −) by sending K to
ηK. Similarly, we set ε̂ : (F ◦ −)(G ◦ −) ⇒ idCJ by K → εK. Drawing the internal diagram for one of the
triangle identities shows that they commute. ■

118

5.6. APRIL 22 174: CAT. THEORY

5.6 April 22
It’s time to get started, but it is discussion section, for some definition of discussion.

5.6.1
We pick up the following lemma.

Lemma 5.35. LetF ⊣ Gbe an adjunction between categories C andD, with unit η and counit ε. ThenG is
faithful/full/both if and only if each d ∈ D has εd is an epimorphism/split monomorphism/isomorphism.

Proof. We go one at a time.

(i) Fix d, d′ ∈ D with parallel morphisms f, g : d→ d′. The main point is to look at

f ◦ εd, g ◦ εd.

Passing to the transpose, we go to (fεd)
♯ = G(fεd)ηGd by our discussion of units and things. Dis-

tributing this is
(fεd)

♯ = Gf

by applying the triangle equalities. Similarly, (gεd)♯ = Gg, so fεd = gεd if and only if Gf = Gg. Thus,
if εd is an epimorphism, this means f = g if and only if Gf = Gg. Similarly, if G is faithful, then f = g
if and only if Gf = Gg if and only if fεd = gεd, so εd is an epimorphism.

(ii) We proceed by force. Suppose G is full. We would like εd : FGd → d to be a split monomorphism, so
we need a retraction r : d→ FGd so that rε)d = idFGd.
As such, we simply pick up ηGd : Gd → GFGd, but G is full, so we can lift this to some morphism
r : d→ FGd so that Gr = ηGd. We now show

rεd = idFGd .

Taking the transpose, we are showing

(rεd)
♭ = G(rεd)ηGd

∗
= Gr = ηGd

where we are as usual using the triangle inequalities in ∗
=. Transposing back finishes.

In the other direction, suppose that each of the εd are split monomorphisms. For each d ∈ D, we are
promised a retraction rd : d→ FGd so that rdεd = idFGd.
We now lift by hand: fix d, d′ ∈ D with f : Gd→ Gd′, and we want to lift it by hand. Namely, define

g := f ♯rd = εd ◦ Ff ◦ rd,

which we can see is a map d→ d′. We don’t want to hit this withGdirectly becauseGFf is sad; roughly
speaking, we want to put εd on the other side of Ff . As such, we compute

(Gg)♯ = εd′ ◦ FGg = εd′ ◦ FGεd′ ◦ FGFf ◦ FGrd.

Now, we use the naturality of the following square.

FGFGd FGd′

FGd′ d′

εFGd′

FGεd′

εd′

εd′

119

5.6. APRIL 22 174: CAT. THEORY

This gives us
εd′ ◦ εFGd′ ◦ FGFf ◦ FGrd.

Next, we use naturality of another square, as follows.

FGFGd FGFGd′

FGd FGd′

εFGd

FGFf

Ff

εFGd

This gives
εd ◦ Ff ◦ εFGd ◦ FGrd.

Moving things over, we want to put the retraction on the other side, so we draw the following naturality
square.

FGd FGFGd

d FGdrd

FGrd

εd εFGd

In total, we are left with
εd′ ◦ Ff ◦ rd ◦ εd

which retracts properly to f ♯

(iii) This follows from adding together (i) and (ii) because isomorphisms are the same as being epic and
split monic. ■

Remark 5.36. There is also the following dual statement for F . Namely, F is faithful/full/both if and
only if each d ∈ D has εd is a monomorphism/split epimorphism/isomorphism. In particular, we can
pass to the opposite category to change our adjoints.

5.6.2 The Category of Categories
We would like to understand the category of (small) categories. We pick up the following definition.

Definition 5.37. A reflective subcategory C is a full subcategory D of C such that there is a left adjoint
L : C → D of the embedding C ↪→ D. This L is called the reflector or the localization.

The point is that we have a reflector L which gives us a fairly natural way to fixD: the embedding C ↪→ D is
fully faithful, so each of the counit morphisms εd : Lid → d are all isomorphisms. In other words, for each
d ∈ D, we essentially have

Ld ∼= idD

by viewing d ∈ C via the embedding.

Example 5.38. The embedding ι : Ab→ Grp gives a full subcategory. This is reflective, with its reflector
L taking a groupG to its abelianizationG/[G,G]. We won’t check that this is a left adjoint, but it follows
because mapping into an abelian group is the same thing as mapping from the abelianization.

Example 5.39. The embedding Sh(X) ↪→ PSh(X) gives a full subcategory, and its reflector is sheafifi-
cation.

120

5.6. APRIL 22 174: CAT. THEORY

Exercise 5.40. There is an embedding ofN : Cat ↪→ sSet. Here, sSet is the set of presheaves on∆, where
∆ is the “simplex” category with the following data.

• The objects of ∆ are sets [n] := {0, 1, 2, . . . , n}.

• The morphisms of ∆ are non-decreasing maps [n]→ [m].

Approximately speaking, the objects of ∆ look like n-splices. This embedding makes a reflective sub-
category.

Proof. We first describe the embedding. Fix a category C. For notation, given an objectX• : ∆
op → Set and

let Xn := X([n]). The way that we are going to embed is by

N(C)n := Fun([n], C).

The point is that we have a left adjoint h : sSet → Cat by just restricting down to the 0th component for
objects and the 1st component for morphisms. ■

As such, we have the following result.

Proposition 5.41. Suppose that we have an inclusion ι : D → C makingD a reflective subcategory.

(i) The inclusion ι creates limits (that C admits).

(ii) D has all colimits that C admits by applying the reflector.

The point is that understanding C will give us understanding ofD.

Proof. We proceed as follows.

(i) This follows by muttering something about monads.

(ii) We will actually show this. Let F : J → D be a diagram such that C has colimits of shape J . Now, let
λ : ιF ⇒ c be a colimit cone in C, and we note that Lλ : LιF ⇒ Lc is a colimit cone in D because left
adjoints preserve colimits. However, LιF ∼= F , so we have found our colimit. ■

Corollary 5.42. The category Cat is complete and cocomplete.

Proof. By synthesizing the above discussion, we see that it suffices to show that

sSet = Psh(∆) = Fun(∆op,Set)

is complete and cocomplete. However, Set is complete and cocomplete, and we know how to compute limits
and colimits in functor categories (namely, pointwise) pulling from their codomain. This finishes. ■

121

THEME 6

KAN EXTENSIONS

I felt profoundly stupid in that moment and he has a PhD in SYNTAX

—Beth Piatote, [Pia]

6.1 April 25
My computer charge is low, so let’s see how far we go.

Remark 6.1. Peter Haine took the class when Professor Riehl was writing the book.

6.1.1 Motivation
We are doing an invitation to Kan extensions.

Roughly speaking, fix a functor K : C → D and another category E . Then the precomposition functor

(− ◦K) : Fun(D, E)→ Fun(C, E)

preserves all co/limits admitted by Fun(D, E). Namely, if E has all limits and colimits, then (− ◦ K) will
preserve them. As such, here is our idea.

Idea 6.2.! If E above has all limits and colimits, then we expect the functor (−◦K) to have both left and
right adjoints.

One can often check this by hand, but the point of this week’s lecture is to discuss if or when the above is
true and to be able to describe the adjoints.

Exercise 6.3. Fix a group G and subgroup H ⊆ G; let BG and BH be the one-object categories for G
and H, respectively. Then we fix a field K and set

RepK(G) := Fun(BG,VecK)

to be the K-representations of the group G; define RepK(H) similarly. We talk through Idea 6.2 here.

122

6.1. APRIL 25 174: CAT. THEORY

Proof. The inclusion ι : BH → BG gives the map

resGH : RepK(G)→ RepK(H)

by precomposition. The adjoints are as follows.

RepK(G) RepK(H)

IndG
H

CoindG
H

⊢
⊣

These have names from algebra, but that is all that we will say. ■

Anyway, let’s say explicitly what we are doing for the rest of the week.
1. We will work through Idea 6.2.

2. We will discuss Kan extensions, which answer Idea 6.2 and in particular give formulae for the inverses.

3. Then we will explain that all concepts are Kan extensions.

4. And lastly, we will get some fun theorems.
For fun, let’s give a theorem to whet our appetite.

Theorem 6.4 (Universal property of presheaves). Fix a small category C so that we can fix the presheaf
category PSh(C) := Func(Cop,Set); further, take a category E with all colimits. Then the restriction of
よ : C → PSh(C) defines an equivalence

(− ◦よ) : Funcolim(PSh(C), E) ≃ Fun(C, E).

Namely, a functor from C to E has the same data as a functor fromPSh(C) to E which preserves colimits.

Intuitively, what is happening is that PSh(C) is the “free category” preserving colimits. To see this, note
that the free-forgetful adjunction from, say, Ab to Set says that

MorAb(Z[S], G) ∼= MorSet(S,G),

so now the analogy is a bit clearer.
With all that motivation said, here is what we will do for the rest of the week.
• Today we will introduce Kan extensions.

• On Wednesday, we will talk through the formula for computations involving Kan extensions.

• On Friday, we will explain why all concepts are Kan extensions.

6.1.2 Kan Extensions
So let’s talk about Kan extensions. Here is our motivating question.

Question 6.5. Given a functor K : C → D, how can extend K (covariantly) to PSh(C)?

Here is the image for this.
C D

PSh(C) PSh(D)

よC よD

K

We would like to draw in the dashed arrow. In general, there need not be a good way to do this, and it need
not be unique—in fact, we will have a handedness to our choice of arrow.

As such, here is our definition.

123

6.1. APRIL 25 174: CAT. THEORY

Definition 6.6 (Kan extension). Fix functors K : C → D and F : C → E . A left Kan extension of F along
K is a functor LanK F : D → E and a natural transformation η : F ⇒ LanK F ◦K. We also require the
data to be “initial” in the following sense: for any other pair (G : D → E , γ : F ⇒ GK), we require γ to
factor uniquely through η, as follows.

C E

D

F

K

LanK F

G

η

!

A right Kan extension is the same, flipping all the natural transformation arrows: our data are the ter-
minal pair (RanK F : D → E , η : (LanKF)K ⇒ F).

Let’s see an example.

Exercise 6.7. Fix an object c ∈ C to make the pair of functors c : 1 → C and ∗ : 1 → Set. We describe
Lanc ∗ using the Yoneda lemma.

Proof. The main point is that, given a functor G : C → Set, Theorem 3.17 gives us a bijection

ψ• : Fc ∼= Fun(MorC(c,−), F).

In particular, a natural transformation from ∗ : 1 → Set to Fc : 1 → Set consists exactly of the data of a
natural transformation from MorC(c,−) to F . In total, we are promised a unique natural transformation ψc
to make the following diagram commute.

1 Set

C

∗

c

MorC(c,−)

F

idc

ψc

Thus, Lanc ∗ is MorC(c,−). ■

Anyway, it’s a math class, so let’s prove something today.

Proposition 6.8. Fix a functor K : C → D and category E . If all functors F : C → E have Kan extensions,
then LanK(−) is a left adjoint of (− ◦K).

Fun(C, E) Fun(D, E)
(−◦K)

LanK(−)⊣

124

6.2. APRIL 27 174: CAT. THEORY

Proof. It suffices to provide the natural bijection

Mor(F,GK)
?∼= Mor(LanK F,G).

Well, by the universal property of LanK F , natural transformations γ : F ⇒ GK are in bijection with natural
transformations γ′ : LanK F ⇒ G such that

γ = γ′η,

where η : F ⇒ LanK F . From this bijection one can turn LanK(−) into a functor by extending the action on
objects. ■

Next class we will attempt to discuss when we can remove the seemingly strong condition on having all Kan
extensions.

6.2 April 27
We continue our discussion of Kan extensions.

6.2.1 Kan Extensions for Embeddings
Our goal for today is to give a formula for Kan extensions (to be able to determine when they exist), which
we saw utility for last class.

Exercise 6.9. There is an order-preserving map/functor between the poset categories

2• : Q→ R.

We extend this functor to all of R by continuity. Namely, we want to induce the dashed arrow in the
following diagram.

Q R

R

2•

Proof. Intuitively, we want to write
2x := lim

q→x
2q,

where the limit is over q ∈ Q. To make this rigorous, we can define this in two ways.

• On the left, we can write
2x := sup

q∈Q
q≤x

2q.

• On the right, we can write
2x := inf

q∈Q
q≥x

2q.

These fit into our context of category theory because the supremum is the colimit in the slice category of
objects q ∈ Q under x; i.e., we want the objects q ∈ Q with a map to x, which is equivalent to q ≤ x. So we
can reframe our two stories as follows.

• On the left, we can write
sup
q∈Q
q≤x

2q = colim
(
Q/x→ Q 2•→ R

)
.

125

6.2. APRIL 27 174: CAT. THEORY

• On the right, we can write
inf
q∈Q
q≥x

2q = lim
(
x/Q→ Q 2•→ R

)
.

As such, we have a purely categorical extension of 2• : Q → R to all of R. It turns out that these are the left
and right Kan extensions for 2• : Q→ R, but we will not check this now. ■

More generally, suppose that we have some embedding K : C → D with a functor F : C → E . Then our
story of Kan extensions will again be about trying to “extend” F to all ofD. Namely, we want to induce the
following arrow.

C E

D

F

K

Drawing motivation for example, we would like to define

(LanK F)(d)
?∼= colim
c∈C/d

F (c).

Here, C/d refers to the subcategory of D/d where we are restricting to imK; i.e., this category consists of
objects which are morphisms Kc→ d and morphisms which are triangles commuting under d.

Approximately speaking, we are trying to understand LanK F to be approximating F from below, which
is reasonable because defining as a colimit will still be able to have maps out of it for our initial universal
property later. Similarly, we might hope

(RanK F)(d)
?∼= lim
c∈d/C

F (c).

Before continuing, we want to remove the condition that F is an embedding.

6.2.2 Comma Categories, Quickly
We take a moment to talk about comma categories. Suppose that we have the following set-up, where
X,Y, Z are categories with F,G functors.

Y

X Z
F

G

Then we want to define the comma category to be universal with respect to the following diagram.

X×⃗ZY Y

X Z
F

G

In particular, we define X×⃗ZY as having objects which are morphisms Fx → Gy (for x ∈ X and y ∈ Y).
Then out morphisms are commuting squares (made of a pair of morphisms x → x′ and y → y′) so that the
following diagram commutes.

f(x) g(y)

f(x′) g(y′)

Ff Gg

126

6.2. APRIL 27 174: CAT. THEORY

6.2.3 Kan Extensions in General
In particular, with our functor K : C → D, we can more concretely describe

C×⃗Dd := C×⃗Z{d}.

Namely, its objects has the data of c ∈ C, the fixed d ∈ D and a morphismKc→ d; we may ignore the data of
d. Continuing, our morphisms (c, f)→ (c′, f ′) condition is asking for morphisms k : Kc→ d and k′ : Kc′ → d
so that the following diagram commutes.

Kc d

Kc′ d

Kf

k

k′

Notably, the two vertices on the right collapse, so this is really a commuting triangle “under” d.
This now lets us generalize our Kan extensions.

Theorem 6.10. Fix K : C → D and F : C → E as usual. If the colimit

ℓK(F)(d) := colim
(
C×⃗Dd→ C

F→ E
)

exists, then it defines the action of LanK F on objects d ∈ D; the action on morphisms is induced by
action of colim on morphisms along with the functoriality of the construction of C×⃗Dd in d.

Proof. This is long and therefore omitted. ■

Nonetheless, let’s see some corollaries.

Corollary 6.11. Fix a functor K : C → D from a small category C to a locally small category D. If E is
cocomplete, and we have a functor F : C → E , then LanK F exists by Theorem 6.10.

Proof. Our limit exists because E has all colimits and C is a fine index category because it is small by hypoth-
esis. ■

Corollary 6.12. Fix a functor K : C → D from a small category C to a locally small category D. If E is
cocomplete, then the functor

(− ◦K) : Fun(D, E)→ Fun(C, E)

has a left adjoint, namely LanK(−).

Proof. The Kan extension exists by Corollary 6.11. ■

6.2.4 Kan Extension Examples
We close class with some examples.

Exercise 6.13. Fix a small categoryC and a cocomplete categoryE with a functorF : C → E . We compute
the left Kan extension.

127

6.2. APRIL 27 174: CAT. THEORY

Proof. Then Corollary 6.11 gives us a Kan extension from the following diagram.

C E

PSh(C)

F

よ
Lanよ(F)

In particular, Theorem 6.10 promises that we can compute

LanK X = colim
よc→X

Fc.

As an aside, ifX =よc, then our diagram above is indexed over a category (namely, E) with a terminal object,
so we can find its colimit c′ in there to be able to say

colim
よc→X

Fc = Fc′.

So this is nice. ■

As a corollary of the previous exercise, we have proven the following theorem from yesterday.

Theorem 6.4 (Universal property of presheaves). Fix a small category C so that we can fix the presheaf
category PSh(C) := Func(Cop,Set); further, take a category E with all colimits. Then the restriction of
よ : C → PSh(C) defines an equivalence

(− ◦よ) : Funcolim(PSh(C), E) ≃ Fun(C, E).

Namely, a functor from C to E has the same data as a functor fromPSh(C) to E which preserves colimits.

Namely, the inverse mapping is given by taking F : C → E to Lanよ F .

Exercise 6.14. Fix a group G and subgroup H ⊆ G and a complete and cocomplete category C. Then
Corollary 6.11 grants us the following left and right Kan extensions.

RepK(G) RepK(H)

IndG
H

CoindG
H

⊢
⊣

We compute these.

Proof. On the left, we begin by needing to compute

BH×⃗BG∗,

which has objects which are morphisms in BG (namely, we only have to care about our single object ∗ here)
and hence in bijection with G. Then the morphisms g → g′ are elements h ∈ H with g′h = g by tracking
through our diagram. Notably, we can forget about g′ (and recover it as gh−1).

From these computations, we can actually write out indGH(X) (forX : BG→ C) as the coequalizer (given
at the right) of the following diagram.∐

G×H
X

∐
G

X
∐
G/H

X

One has to be a little careful about how our actions of G on the objects are as well as what precisely these
morphisms are. There is a similar formula for right Kan extensions. ■

128

6.3. APRIL 29 174: CAT. THEORY

And so we end with the following theorem.

Theorem 6.15 (Frobenius reciprocity). In the previous example, set C := Veck and assume that [G : H] <
∞. Then the functors

indGH , coind
G
H : RepK H → RepK(G)

are naturally isomorphic.

Proof. The point is that we computed these as some products and coproducts, which are equal when finite
(which is true because G/H is finite). ■

6.3 April 29
Welcome to the last day of class.

6.3.1 Ultrafilters
Last time we were able to write down Kan extensions for the diagram

C E

D

F

K

by writing down
(LanK F)(d) := colim

(
C×⃗Dd→ C

F→ E
)
.

Let’s see another example: we’re going to talk about ultrafilters.

Definition 6.16 (Ultrafilter). Fix a set S. An ultrafilter on S is a collection U ⊆ P(S) with the following
coherence conditions.

(a) ∅ /∈ U .

(b) Upwards closed: if A,B ∈ P(S), then A ∈ U and A ⊆ B implies B ∈ U .

(c) Intersection: A,B ∈ P(S) implies A ∩B ∈ P(S).

(d) For each A ∈ P(S), exactly one of A ∈ U or (S \A) ∈ U is true.

We let β(S) denote the set of all ultrafilters on S.

Remark 6.17. Note that, if we threw out the first condition, then ∅ ∈ U would imply ∅ ⊆ S ⊆ S, thus
giving S ∈ U , violating the last condition. So we can actually derive ∅ /∈ U from the other three.

Ultrafilters are important for point-set topology, for various reasons; it turns out that they are the correct
indexing set.

Example 6.18. Given s ∈ S, then we can build

δs := {A ⊆ S : s ∈ A},

which is an ultrafilter.

It happens that the map s 7→ δs is a bijection if S → β(S) when S is finite. However, when S is infinite, there
might be other ultrafilters, but the axiom of choice is needed in their construction.

129

6.3. APRIL 29 174: CAT. THEORY

Remark 6.19. Here are some use cases for ultrafilters.

• Logic, as in Łoś’s theorem.

• Topology, as for limits.

• And more: geometric group theory, dynamics, and so on.

There is also a functoriality of ultrafilters.

Proposition 6.20. Fix a function f : S → T , there is a map f∗ : β(S)→ β(T) by

U 7→
{
β ⊆ T : f−1(B) ∈ U

}
Proof. Note that f−1 is closed under intersection and unions, so we can just check the axioms one by one.

■

So we have a functoriality and can now do category theory.

Theorem 6.21. The diagram
finSet Set

Set
β

makes β a right Kan extension.

Proof. The point is to check
β(S) = lim

S→F
F,

where we have interpreted S → F in the correct way. ■

Now, having a right Kan extension tells us lots of things by abstract nonsense. For example, by using the
functor id : Set→ Set, the universal property gives us a natural transformation

η : id⇒ β.

In the same way, there is also a natural transformation

µ : β2 ⇒ β.

Having these two notions lets us write down strange commutative diagrams, like the following.

β3 β2

β2 β

µβ

µ

µ

βµ

Observe that this would be essentially impossible to verify by hand (or at least very annoying), but it follows
directly from uniqueness of the natural transformation β3 ⇒ β by universal property.

Remark 6.22. It turns out that η and µ will specify the data of a monad.

130

6.3. APRIL 29 174: CAT. THEORY

6.3.2 Category Theory via Kan Extensions
Today, we will explain why all concepts are Kan extensions.1 Namely, we are going to reinterpret many
concepts in category theory as Kan extensions. But for now, we will talk about ultrafilters.

Let’s see an example concept.

Proposition 6.23. Fix a functor F : C → D.

1. The colimit colimF exists if and only if the left Kan extension of ! : C → 1 exists.

2. Under the hypothesis of (a), Lan! F ∼= colimF .

Proof. Let’s talk about why we might expect (a) to be true. Namely, we are looking for functors d : 1⇒ D is
asking for the following diagram.

C D

1
! d

F

γ

However, this is equivalent data to a cone γ : F ⇒ d. If we have a left Kan extension, then this is again
equivalent data to natural transformations Lan! F ⇒ d.

But because we are doing everything over 1, this is the same data as a morphism MorD(Lan! F, d). So
Lan! F will exactly represent Cone(F,−), meaning that colimits and the left Kan extension have exactly the
same data.

This proof technically gives us (b) for free because we showed that we have the same data from both
objects, but we can also write down the formula

Lan! F ∼= colim
(
C×⃗1{∗}

F→ D
)
,

but of course C×⃗1{∗} has is the same data as C. ■

Remark 6.24. We can also interpret limits as right Kan extensions, by flipping the arrows.

Next let’s see adjoints.

Proposition 6.25. The data of an adjunction F ⊣ Gwith unit η : idC ⇒ GF and counit ε : FG⇒ idD has
the same data of left and right Kan extensions of the following two diagrams, respectively.

C C D D

D C

F
G

G
F

η ε

In particular, the right adjointG is the left Kan extension LanF idC , and the left adjointF is the right Kan
extension RanG idD.

Proof. We will only show one direction; suppose F ⊣ G. The main point is that we get an adjunction

Fun(D, C) Fun(C, C)
−◦F

G◦−⊣

1 Alternatively, “all Kancepts are Kan extensions.”

131

6.3. APRIL 29 174: CAT. THEORY

from Theorem 5.34. However, the uniqueness of adjoints combined with what we already know about the
adjoint of (− ◦ F) from Corollary 6.12, we are able to conclude

LanF (−) ⊣ (− ◦ F).

In particular, LanF idC ∼= G∗(idC) = G, so we are done. ■

6.3.3 The Kan Extension Formula
To set up our discussion, fix F : C → D such thatD has all colimits and that C is small. Then, by the formula
in Corollary 6.11, we know that we can extend F as in the following Kan extension diagram.

C D

C

F

However, this extension somewhat clearly should be F , so the formula in Corollary 6.11 tells us

Fc ∼= colim
(
C ×⃗ Cc→ C

F→ D
)

Here are some consequences.

Theorem 6.26 (Co-Yoneda lemma). Fix everything as above. Then we can the diagram∐
y→x→c

F (y)
∐
x→c

Fx Fc

is a coequalizer diagram; here one of the maps being coequalized is the inclusion fromFy, and the other
is the inclusion from Fx.

Theorem 6.27 (Density, I). Fix a functor F : C → Set from a small category C. Then F is the colimit of
the diagram (∫

C
F

)op

→ Cop
よ
↪→ Fun(C,Set).

Dually, a functor F : Cop → Set is the colimit of the diagram∫
Cop

F → C よ→ PSh(C).

Proof. This follows quickly from the Co-Yoneda lemma, with a little elbow grease. ■

Theorem 6.28 (Density, II). The diagram

C PSh C

PSh C

よ

よ

gives a left Kan extension.

132

6.3. APRIL 29 174: CAT. THEORY

Proof. Using the formula, we can just compute

(Lanよよ)(F) ∼= colim

(
C ×⃗ PSh CF → C

よ
↪→ PSh C

)
.

However, C ×⃗ PSh CF is
∫
Cop F , so the previous density theorem tells us that we get F out of this colimit. ■

133

BIBLIOGRAPHY

[Cas09] DJ Casper. Cha Cha Slide. 2009. URL:https://www.youtube.com/watch?v=EWBLyKB9Ok8.
[Lei09] Tom Leinster. Terminology in category theory. MathOverflow. URL:https://mathoverflow.net/q/6564

(version: 2017-04-13). 2009. eprint: https://mathoverflow.net/q/6564. URL: https:
//mathoverflow.net/q/6564.

[Shu16] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.
[Vak17] Ravi Vakil. The Rising Sea: Foundations of Algebraic Geometry. 2017. URL: http://math.

stanford.edu/˜vakil/216blog/FOAGnov1817public.pdf.
[Pia] Beth Piatote. ku’nu.

134

https://www.youtube.com/watch?v=EWBLyKB9Ok8
https://mathoverflow.net/q/6564
https://mathoverflow.net/q/6564
https://mathoverflow.net/q/6564
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf
http://math.stanford.edu/~vakil/216blog/FOAGnov1817public.pdf

LIST OF DEFINITIONS

Adjectives for functors, 30
Adjunction, 103
Apex, 66

Bifunctor, 23

Category, 6
Category of elements, 57
Category of elements, contravariant, 57
Coequalizer, 72
Commutes, 36
Complete, 84
Concrete, 18, 39
Cone functor, 68
Contractible groupoid, 61
Contravariance, I, 20
Contravariance, II, 20
Contravariance, III, 20
Coproduct, 65
Cospan, 74
Counit, 106
Create limits, 86
Creates, reflects isomorphisms, 54

Diagram, 35
Direct limit, 77
Discrete, indiscrete, 8
Divisible, 59

Endo-, automorphism, 10
Endofunctor, 18
Equalizer, 71
Equivalence, 28, 29
Essential image, 34

Full subcategory, 12
Functor, 17
Functor category, 27

Functorial group action, 22
Functors represented by objects, 23

G-representation, 26
Generalized element, 93
Group object, 101
Groupoid, 10

Hom bifunctor, 23
Hom-sets, 7

Initial, final, 38
Inverse limit, 77
Isomorphism, 9, 23

Kan extension, 124

Limit, colimit, 68, 68

Monic, epic, 11
Monoid, 35
Morphism of adjunctions, 111
Mutually adjoint, 113

Nadir, 67
Natural isomorphism, 25
Natural transformation, 24

Opposite category, 13

Path, 35
Poset, 8
Post- and pre-composition, 15
Preserves, reflects limits, 86
Presheaf, 94
Product category, 23
Pullback, 75
Pushout, fibered coproduct, 79

Representable, 46

135

LIST OF DEFINITIONS 174: CAT. THEORY

Section, retraction, 14
Sheaf, 94, 95
Slice categories, 12
Small, locally small, 9
Span, 79
Split monorphism, split epimorphism, 15
Strictly creates limits, 87
Subcategory, 12

Tensor products, I, 55
Tensor products, II, 55

Ultrafilter, 129
Unit, 106
Universal, 57
Universal property I, element, 54
Universal property, II, 56

136

	Contents
	Basic Definitions
	January 19
	Our Definition
	Examples
	Size Issues
	Isomorphism

	January 21
	Groupoids
	Arrow Words

	January 24
	Review
	Subcategories
	Duality
	Yoneda Lite

	Functors and Natural Transformations
	January 26
	Functors
	More Examples
	Categories of Categories
	Subcategories.

	January 31
	Small Remark
	Contravariance
	A Lemma
	The Hom Bifunctor

	February 2
	Hom Bifunctor
	Category Isomorphism
	Natural Transformation

	February 7
	Examples of Natural Transformations
	Yoneda, Contravariant It Is
	Categorification
	Equivalence: Advertisement

	February 9
	Equivalence
	Lazy Equivalence

	February 11
	A Better Equivalence

	February 14
	Using Our Equivalence
	Motivating Diagram Chasing
	Commutative Diagrams

	February 16
	House-Keeping
	Diagram-Chasing Philosophy
	Initial and Final Objects
	Concrete Categories
	Commutative Rectangles

	February 18
	Motivating Horizontal Composition
	Whiskering
	Horizontal Composition
	Horizontal and Vertical Composition

	Universal Properties
	February 23
	A Functorial Initial and Final
	Representability

	February 25
	The Yoneda Lemma

	February 28
	Yoneda Lemma Review
	Yoneda Embeddings

	March 2
	Unique Representation
	Universal Properties

	March 4
	More on Universal Properties
	Category of Elements

	March 7
	Housekeeping
	A Representability Test
	Unique Representation
	Typical Universal Properties

	Limits and Colimits
	March 9
	Products
	Coproducts
	More on Products

	March 11
	Cones and Cocones
	Limits and Colimits

	March 14
	More Examples
	Equalizers
	Coequalizers

	March 16
	Limit Review
	Pullbacks
	Pullbacks as Equalizers
	Direct and Inverse Limits

	March 18
	Direct and Inverse Limits
	Pushouts
	Hom Sets of (Co)products
	Surjective Projection Maps

	March 28
	Complete Categories
	Limits through Functors

	March 30
	More on Functors through Limits
	Limits in Set

	April 1
	Limits through Representable Functors
	Computing Limits

	April 4
	Elements in Categories
	Sheaves

	April 6
	Limit Functoriality
	Limits of Limits

	April 8
	Group Objects

	Adjoints
	April 11
	Introducing Adjunctions
	Examples
	Units and Counits

	April 13
	More Examples
	The Triangle Equations

	April 15
	Units and Counits Speed-run
	Morphism of Adjunctions

	April 18
	Contravariant Adjoints
	Uniqueness of Adjoints
	Composing Adjunctions

	April 20
	Adjoints Preserve (Co)limits
	Whiskering

	April 22
	
	The Category of Categories

	Kan Extensions
	April 25
	Motivation
	Kan Extensions

	April 27
	Kan Extensions for Embeddings
	Comma Categories, Quickly
	Kan Extensions in General
	Kan Extension Examples

	April 29
	Ultrafilters
	Category Theory via Kan Extensions
	The Kan Extension Formula

	Bibliography
	List of Definitions

