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THEME 1
INTRODUCTION

Our reality isn't about what'’s real, it's about what we pay attention to.

—Hank Green, [Gre20]

1.1 January19

It is reportedly close enough to start.

1.1.1 Logistics

We are online for the first two weeks, as with the rest of Berkeley. We will be using bCourses a lot, so
check it frequently. There is also a website. There is a homework due on Friday, but do not worry about it.
Here are some syllabus things.

« Our main text is Complex Variables and Applications, 8th Edition because it is the version that Profes-
sor Morrow used. There is a free copy online.

« The homework consists of readings (for each course day) and weekly problem sets. Late homework is
never accepted.

» Lowest two homework scores are dropped.

« Therearetwo midtermsand afinal. The finalis cumulative, as usual. The final can replace one midterm
if the score is higher.

» Regrade requests can be made in GradeScope within one week of being graded.
« The class is curved but usually only curved at the end. The average on exams is expected to be 80% -

83%.

1.1.2 Complex Numbers

Welcome to complex analysis. What does that mean?
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Idea 1.1. In complex analysis, we study functions f: C — C, usually analytic to some extent.

There are two pieces here: we should study C in themselves, and then we will study the functions.

Definition 1.2 (Complex numbers). The set of complex numbers C is {a + bi : a,b € R}, where i®> = —1.

Hopefully R is familiar from real analysis. As an aside, we see R C C because a = a + 0i € C for each a € R.
The complex numbers have an inherent geometry as a two-dimensional plane.

R
I I I I I I
U |
R O T
I I I I 12 49
R S A
I I I I I I
| | | | | |
T3 T2 =170 T T2 73
I I I I I I
S R e Th R
I I I I I I
I I I I I I
| R B i i

R A
I I I I I I
] )

—31

The point is that C looks like the real plane R%. More precisely, C = R? as an R-vector space, where our
basisis {1,i}.
We would like to understand C geometrically, “as a space.” The first step here is to create a notion of
size.
Definition 1.3 (Norm on C). We define the norm map| - | : C — R>¢ by |z| := v/2Z. In other words,

la + bi| == v/ a2 + b2.

Note that this agrees with the absolute value on R: for a € R, we have va? = |a|.
Norm functions, as in the real case, give us a notion of distance.

Definition 1.4 (Metric on C). We define the metric on C to be d¢ (21, 22) = |21 — 22|
One can check that this is in fact a metric, but we will not do so here.

Remark 1.5. The distance in C is defined to match the distance in R? under the basis {1,}.

Again as we discussed in real analysis, having a metric gives us a metric topology by open balls. Lastly it is
this topology that our geometry will follow from: we have turned C into a topological space.

1.1.3 Complex Functions

There are lots of functions on C, and lots of them are terrible. So we would like to focus on functions with
some structure. We'll start with continuous functions, which are more or less the functions that respect
topology.

Then from continuous functions, we will be able to define holomorphic functions, which are complex
differentiable. This intended to be similar to being real differentiable, but complex differentiable turns out
to be a very strong condition. Nevertheless, everyone's favorite functions are holomorphic.
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Example 1.6. Polynomials, exp, sin, and cos are all holomorphic.

To make concrete that complex differentiability is stronger than real differentiability, the Cauchy—Riemann
equations which provides a partial differential equation to test complex differentiability.
From here we define analytic functions, which essentially are defined as taking the form

f(z) = Z apz".
k=0

Analytic functions are super nice in that we have an ability to physically write them down, so the following
theorem is amazing.

Theorem 1.7. Holomorphic functions on C are analytic.

To prove this, we will need the following result, which is what Professor Morrow calls the most fundamental
result in complex analysis, the Cauchy integral formula.

In short, the Cauchy integral formula lets us talk about the value of holomorphic functions (and deriva-
tives) at a point in terms of integrals around the point. This will essentially let us build the power series for a
holomorphic function by hand. But as described, we will need a notion of complex (path) integration to even
be able to talk about the Cauchy integral formula.

The Cauchy integral formula has lots of applications; for example, Liouville’s theorem on holomorphic
functions and the Fundamental theorem of algebra.

Remark 1.8. It is very hard to spell Liouville.

Additionally, we remark that our study of holomorphic functions, via the Cauchy integral formula, will boil
down to a study of complex path integrals. So we will finish out our story with the Residue theorem, which
provides a very convenient way to compute such integrals.

Then as a fun addendum, we talk about automorphisms of the complex numbers.

Definition 1.9 (Automorphisms of C). A function f: C — Cis an automorphism of C if it is bijective and
both f and f~! are holomorphic.

What is amazing is that all of these functions have a concrete description in terms of Mébius transforma-
tions.

1.1.4 WhyCare?

Whenever taking a class, it is appropriate to ask why one should care. Here are some reasons to care.
« Algebraic geometry in its study of complex analytic spaces uses complex analysis.
+ Analytic number theory (e.g., the Prime number theorem) makes heavy use of complex analysis.
« Combinatorics via generating functions can use complex analysis.
+ Physics uses complex analysis.

The first two Professor Morrow is more familiar with, the last two less so.

1.2 January21

We're reviewing set theory today.
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1.2.1 Set Theory Notation

We have the following definitions.
« @ means the empty set.
« a € X means that a is an element of the set X.
« A C B meansthat Ais asubset of B.
+ A C B meansthat Aisa proper subset of B.
« AU B consists of the elements which are in at least one of A or B.
« AN B consists of the elements which are in both A and B.
« A\ B consists of the elements of A which are notin B.
« Two sets A and B are disjointifand onlyif AN B = 2.
» Given aset X, we define P(X) to be the set of all subsets of X.
« | X| = #X is the cardinality of X, or (roughly speaking) the number of elements of X.

As an example of unwinding notation, we have the following.

Proposition 1.10 (De Morgan'’s Laws). Fix S C P(X) a collection of subsets of a set X. Then

\ﬂs— (X\S) and X\ [JS=[]X\9).

Ses Ses Ses Ses

Proof. We take these one at a time.

» Notea € X \((Sifandonlyifa € X anda ¢ (S. However, a ¢ (S is merely saying that a is not in
allthe sets S € S, which is equivalent to saying a ¢ S for one of the S € S.

Thus, this is equivalent to saying a € X while a ¢ S for some S € S, which is equivalent to a €
Uses(X\5).

e Notea € X \|JSifandonlyifa € X anda ¢ |JS. However, a ¢ | JS is merely saying that a is not in
any of the sets S € S, which is equivalent to saying a ¢ S for each of the S € S.

Thus, this is equivalent to saying a € X while a ¢ S for each S € S, which is equivalent to a €
Nges(X\S). ]

1.2.2 Some Conventions
In this class, we take the following names of standard sets.
« N=1{0,1,2,...} is the set of natural numbers. Importantly, 0 € N.
« NT ={1,2,3,...} is the set of positive integers.
« Z=4...,-2,-1,0,1,2,...} is the set of integers.
« Q={p/q:p,q € Zand q #} is the set of rationals.
» Ris the set of real numbers. We will not specify a construction here; see any real analysis class.
+« R* = {z € R: z #} is the nonzero real numbers.

« RT = {z € R: x> 0} is the positive real numbers.

9



1.2. JANUARY 21 185: INTRO. TO COMPLEX ANALYSIS

* R>o = {z € R:z > 0} is the nonnegative real numbers.
e R<p = {z € R: 2z <0} isthe nonpositive real numbers.
» Cisthe complex numbers.

+« C* ={z € C:z#0}isthe set of nonzero complex numbers.

1.2.3 Relations

Let's review some set theory definitions.

Definition 1.11 (Cartesian product). Given two sets A and B, we define the Cartesian product A x B to
be the set of ordered pairs (a,b) such thata € Aand b € B.

Definition 1.12 (Binary relation). A binary relation on A is any subset R C A% := A x A. We may some-
times notate (z,y) € R by xRy, read as “z is related to y."

Example 1.13. Equality is a binary relation on any set A; namely, it is the subset {(a,a) : a € A}.

The best relations are equivalence relations.

Definition 1.14 (Equivalence relation). An equivalence relation on A is a binary relation R satisfying the
following three conditions.

« Reflexive: each z € A has (z,z) € R.
« Symmetric: each z,y € A has (z,y) € Rimplies (y,z) € R.

« Transitive: each z,y,z € A has (z,y) € Rand (y,z) € Rimplies (z, z) € R.

Equivalence relations are nice because they allow us to partition the set into “equivalence classes.”

Definition 1.15 (Equivalence class). Fix A a set and R C A? an equivalence relation. Then, for given
z € A, we define
[2]r ={y € A: (z,y) € R}

to be the equivalence class of z.

The hope is that equivalence classes partition the set. What is a partition?

Definition 1.16 (Parition). A partition of a set A is a collection of nonempty subsets S C P(A) of A such
that any two distinct S, S» € S are disjoint while A = (Jg.5 S.

And now let’'s manifest our hope.

Lemma 1.17. Equivalence relations are in one-to-one correspondence with partitions of A.

Proof. Given an equivalence relation R, we define the collection
S(R) ={[z]r : x € A}.
We claim that R — S(R) is our needed bijection. We have the following checks.

10
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» Well-defined: observe that S(R) does partition A: if we have [z]g, [y]g € S, then [z]r N [y]lr # @
implies there is some z with (z,z) € Rand (z,y) € R, sox € [y]g and then [z]g C [y]r follows. So by
symmetry, [y]r C [z]r as well, so we finish the disjointness check.

Further, we see that

A=J{rc Jllrc A

z€A T€A
because = € [z]g, so indeed the equivalence classes cover A.
« Injective: suppose R; and Ry have S(R;) = S(R2). We show that Ry C Ry, and Ry C Ry will follow by
symmetry, finishing.
We notice that, for any S partitioning A, being a partition, will have exactly one subset which contains

x. But for S(R) for an equivalence relation R, we see x € [z]r € S(R), so this equivalence class must
be the one.

So because [z]g, and [z]g, are the only subsets of S(R;) and S(R3) containing z (respectively), we
must have [x]g, = [%]Rr,. Thus, (z,y) € Ry impliesy € [z]r, = [z]Rr, implies (z,y) € R,.

« Surjective: suppose that S is a partition of A. As noted above, each 2 € A is a member of exactly one
set S € S, which we call [z]. Then we define R C A% by (z,y) € Rifand only if y € [z]. One can check
that this is an equivalence relation, which we will not do here in detail.?

The point is that
[zlr ={y: (z,y) € R} ={y :y € [z]} = [1],
so S(R) = S. So our mapping is surjective. |
We continue our discussion.

Definition 1.18 (Quotient set). Given an equivalence relation R C A?, we define the quotient set A/R
is the set of equivalence classes of R. In other words,

A/R = {[z]r:x € A}.

Intuitively, the quotient set is the set where we have gone ahead and identified the elements which are
“similar” or “related.”
We would like a more concrete way to talk about equivalence classes, for which we have the follow-

ing.

Definition 1.19 (Representatives). Given an equivalence relation R C A?, we say that C C A is a set of
representatives of R-equivalence classes of A if and only if C consists of exactly one element from each
equivalence class in A/R.

1.2.4 Functions
To finish off, we discuss functions.
Definition 1.20 (Functions). A function f: X — Y isarelation f C X x Y satisfying the following.
« Foreachz € X, thereissomey € Y suchthat (z,y) € f. Intuitively, each z € X goes somewhere.

« For each z € X and given some y;,y2 € Y such that (z, 1), (x,y2) € f, then y; = yo. Intuitively,
each z € X goes to at most one place.

We will write f(x) = y as notational sugar for (x,y) € f. Note this equality is legal because the value y
with (z,y) € fis uniquely given.

1 Note = € [] by definition of [z]. If y € [z], then note y € [y] as well, so [x] = [y] is forced by uniqueness, so x € [y]. If y € [z] and
z € |y], then again by uniqueness [z] = [y] = [z], so z € [z] follows.

11
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We would like to create new functions from old. Here are two ways to do this.

Definition 1.21 (Restriction). Given a function f: X — Y and a subset A C X, we define
fla={(v,y) e f:ax e A} CAXY
to be afunction f|4: A =Y.

We will not check that f| 4 is actually a function; it is, roughly speaking inherited from f.

Definition 1.22. Given two functions f: X — Y andg: Y — Z, we define the composition of f and g to
be some function g o f: X — Z defined by

(9o f)(z) = g(f ().

Again, we will not check that this makes a function; it is.
Functions can also help create new sets.

Definition 1.23 (Image). Given a function f: X — Y, we define the image of f to be
im f = f(X):={y €Y : thereisz € X such that f(z)y}.

Namely, im f consists of all elements hit by someone in X hit by f.

Definition 1.24 (Fiber, pre-image). Given a function f: X — Y and some y € Y, we define the fiber of
f overyto be
fFlly)={reX: flz) =y} C X,

In general, we define the pre-image of a subset A C X to be

FFllA ) ={zcA: f@) e A} = | J{z e A: fa) =a} = | f'(a).

a€A a€EA
Some functions have nicer properties than others.
Definition 1.25 (Inj-, sur-, bijective). Fix a function f: X — Y. We have the following.

« Then f is injective or one-to-one if and only if, given 21,22 € X, f(x1) = f(x2) implies z; = x4.

« Then f is surjective or onto if and only if im f = Y. In other words, for each y € Y, there exists
x € X with f(z) = y.

« Then f is bijective if and only if it is both injective and surjective.
Here is an example.

Definition 1.26 (Identity). For a given set X, the functionidx: X — X defined by idx (z) := « is called
the identity function.

For completeness, here are the checks that idx is bijective.
« Injective: given z1, 29 € X, we seeidx(x1) = idx(x2) implies 21 = idx (z1) = idx (z2) = 2.
« Surjective: given x € X, we see that x € imidx because z = idx.

We leave with some lemmas, to be proven once in one’s life.

12
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Lemma 1.27. Fix finite sets X and Y such that #X = #Y. Then afunction f: X — Y is bijective if and

Proof. Certainly if f is bijective, then it is both injective and surjective, so there is nothing to say.
Thereverse direction is harder. We proceed by inductionon #X = #Y.If #X = #Y =0,then X =Y =
@, and all functions f: @ — @ are vacuously bijective: for injective, note that any z1, xo € & have x1 = xs;
for surjective, note that any z € @ has f(z) = =.
Otherwise, #X = #Y > 0. We have two cases.

« Take f injective; we show f is surjective. In this case, #X > 0, so choosesomea € X. Notethatz € X
with © # a will have f(x) # f(a) by injectivity, so we may define the restriction

flxvtay s X\ {a} = Y\ {f(a)}.

Observe that f|x\ (4} is injective because f is: if 71,20 € X \ {a} have

flx1) = f\X\{a}(fﬁ) = f|X\{a}($2) = f(z2),
then z; = z, follows.

Now, #(X \ {a}) = #(Y \ {f(a)}) = #X — 1, so by induction f|x\ (4} Will be bijective because it is
injective. In particular, f by way of f|x\ (4 fully hits Y\ {f(a)} inits image, so because f(a) € im f as
well, we conclude im f =Y. So f is surjective.

« Take f surjective; we show f is injective. Define a function g: Y — X as follows: for each y € Y/, the
surjectivity of f promises some z € X such that f(z) = y, so choose any such = and define g(y) = .2
Observe that f(g(y)) = y by construction.

Now, we notice that g is injective: if y1, y2 € Y have g(y1) = g(y2), thenyr = f(g(y1)) = f(9(y2)) = yo.
So the previous case tells us that g is in fact bijective.

So now choose any z1, x5 € X such that f(z1) = f(z2). The surjectivity of f promises some y;,y2 € Y
such that g(y1) = x1 and g(y2) = z2, so we see that

21 = g(y1) = 9(f(9(y1))) = 9(f(21)) = 9(f(22)) = 9(f(9(v2))) = 9(y2) = 22,

proving our injectivity. |

Lemma 1.28. Fix f: X — Y a bijective function. Then there is a unique function g: Y — X such that
fog=idyandgo f =idx.

Proof. We show existence and uniqueness separately.

« We show existence. Note that, because f: X — Y is surjective, eachy € Y has some x € X such that
f(z) = y. Infact, this x € X is uniquely defined because f(z1) = f(z2) implies z; = x5, so we may
define g(y) as the value z for which f(z) = y.

By construction, f(g(y)) = v, so f o g = idy. Additionally, we note that, given any z € X, the value xg
for which f(z) = f(zo) is x = x¢ by the injectivity, so g(f(x)) = . Thus, g o f = idx, as claimed.

« We show uniqueness. Suppose that we have two functions g1, go: Y — X which satisfy
fogi=foga=idy and giof=gsof=idx.
Then we see that
gr=gqioidy =g10(fogs)=(g10f)0gs=idx ogs = g,

where we have used the fact that function composition associates. This finishes. |

2 Technically we are using the Axiom of Choice here. One can remove this with an induction because all sets are finite, but | won't
bother.
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THEME 2
COMPLEX NUMBERS AND THEIR TOPOLOGY

This somewhat laborious proof could have been avoided if one had
defined a complex analytic structure

—Jean-Pierre Serre, [Ser12]

2.1 January 24

Good morning everyone.

2.1.1 Algebraic Structure

Today we are reviewing the complex numbers (reportedly, “some basics”). Or at least it is hopefully mostly
review. Here is our main character this semester.

Definition 2.1 (Complex numbers). The set C of complex numbers is
C:={a+bi:a,beR}
Here i is some symbol such that ;2 = —1 formally.

In particular, two complex numbers a; + b17 and ay + boi are equal if and only if a; = as and by = bs.
The complex numbers also have some algebraic structure.

Definition 2.2 (Plus and times in C). Given complex numbers a; + b1, as + bei € C, we define
(a1 + bll) —+ (CLQ + bQZ) = (a1 —+ ag) + (bl —+ bg)i,

and
(a1 4+ b1i) + (a2 + bai) = (a1az — b1bs) + (a1ba + a2b1)i,

defined essentially by direct expansion, upon recalling i = —1.

Here is the corresponding algebraic structure.

14
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Proposition 2.3. The set C with the above operations is a two-dimensional R-vector space with basis

{1,}.

Proof. The elements {1,i} span C because all complex numbers in C can be writtenasa +bi =a-1+b-4
by definition.

To see that these elements are linearly independent, suppose a + bi = 0. If b = 0, then a = 0 follows,
and we are done. Otherwise, take b # 0, but then we see (—a/b) = 4, so

(—a/b)* = -1 <0,

which does not make sense for real numbers. This finishes. [ |

Proposition 2.4. The set C with the above operations is a field.

Proof. We have the following checks.

» The element 0 + 0: is our additive identity. Indeed, one can check that (0 + 0¢) + (a + bi) = (a + bi) +
(0 + 0i) = a + bi.

» The element 1 + 0: is our multiplicative identity. Indeed, one can check that (1 + 0i)(a + bi) = (a +
bi)(1 + 0i) = a + bi.

« Commutativity of addition and multiplication follow from by expansion.

The distributive laws can again be checked by expansion.

The additive inverse of a + bi is (—a) + (—b)i.

The multiplicative inverse of a + bi can be found by wishing really hard and writing
1 1 a—bi a b

a+bi atbi a—bi a>+b2 a2+b21'
Then one can check this works. |

Sometimes we would like to extract our coefficients from our basis.
Definition 2.5 (Real, imaginary parts). Given z := a + bi € C, we define the operations
Rez:=a and Imz :=b.

Importantly, Re: C - RandIm : C — R.

Because we are merely doing basis extraction, it makes sense that these operations will preserve some (ad-
ditive) structure.

Proposition 2.6. Fix z = a + bi and w = ¢ + di. Then the following.
(@) Re(z +w) = Rez + Rew.

(b) Im(z + w) =Imz + Imw.

Proof. We proceed by direct expansion. Observe
Re(z+w) =Re((a+c¢)+ (b+d)i) =a+c=Rez+Rew,

and
Im(z+w)=Im((a+¢)+ (b+d)i)=b+d=Imz+ Imw.

This finishes. [ ]

15
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It also turns out that the complex numbers have a very special transformation.

Definition 2.7 (Conjugate). Given z := a+bi € C, we define the complex conjugatetobez := a—bi € C.
We promised conjugation would be special, so here are some special things.
Proposition 2.8. Fix z = a + bi € C. Then the following.

(@) z+z=2Rez.

(b) 2z —z=2iIm 2.

(€) Z ==z

Proof. We take these one at a time.
(a) Writea +bi+a+bi =a+bi +a— bi = 2a.

(b) Writea+bi —a+bi =a+bi — (a — bi) = 2bi.

(c) Writea +bi =a— bt = a + bi. [ ]

In fact, more is true.

Proposition 2.9. Fix z = a + bi € Cand w = ¢+ di € C. Then the following.
(@ z+w=z+w.

(b) zw =7 -w.

Proof. We take these one at a time.

» Write
z+w=(a+c)— (b+d)i=(a—0bi)+ (c—di)=Z+w.
» Write
zZ-w = (a — bi)(c— di)
= (ac — bd) — (ad + bc)i
= (ac — bd) + (ad + bc)i
= ZWw
This finishes. [ |

2.1.2 Defining Distance

Complex conjugation actually gives rise to a notion of size.

Definition 2.10 (Norm on C). Given z := a + bi, we define the norm function on C by
|z] == Va? + b2.
Size actually gives distance.

16
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Definition 2.11 (Distance on C). Given complex numbers z = a + bi and w = ¢ + di, we define the
distance between z and w to be

|z —w| = +/(a—c)2 + (b—d)2.

Here are some examples.

Im
Tl+2i
1 /)Il+i
0 a i Re

One can ask what is the distance between 0+ 0i and 1+ 14, and we can compute directly that thisis /1 + 1 =
/2. Similarly, the distance between 1 4+ 2iand 1 + i is (1 + 2i) — (1 + )| = |i| = 1. It should agree with our
geometric intuition.

We mentioned complex conjugation is involved here, so we have the following lemma.

Lemma 2.12. Fix z, w € C. The following are true.
(@) |z|? = 2z
(b) |Rez| < |2 and |Im 2| < [2].
© lol =z = | - 2.
(d) |z] =0ifand onlyif z = 0.

(€) zw] = [2] - |wl].

Proof. We take these one at atime. Set z = a + bi.

(a) We have
|2> = a® + b = (a + bi)(a — bi) = 2Z.

Here we have used subtraction of two squares, which one can see when writing a? + b? = a2 — (ib)2.

(b) We have a? < a? + b? and b? < a? + b by the Trivial inequality, so

|Rez| = |a| < Va2 + b = |z,

and similarly,

[Im z| = |b] < Va? +b% = |z|.

(c) Note

2] = la — bi| = /a? + (=b)% = Va? + 1% = |2,

and

| =zl =1-a—bil = V(=a)> + (=b)? = Va? + b = |z|.
(d) From (b), we know that | Re z|, | Im z| < |z|, but |z] = 0 then forcesRez =Imz =0, so z = 0.

17
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(e) From (a), we can write |zw|? = zw - zw, which will expand out into
Z-w-Z-W.
We can collect this into 2% - ww = |z|?|w|?. Thus, by (a) again, |zw|? = |z|?|w|?. But because all norms
must be nonnegative real numbers, we may take square roots to conclude |zw| = |z] - |w|. [ |
Remark 2.13. Norms are actually more general constructions. For example, the requirement |zw| =
|z| - Jlw| makes | - | into a “multiplicative” norm.

To finish off, we actually show that our distance function is good: we show the triangle inequality.

Lemma 2.14 (Triangle inequality). For every z,y, z € C, we claim

|z —a| < |z =yl + |y — 2|

This claim should be familiar from real analysis. Intuitively, it means that travelling between z and x cannot
be made into a shorter trip by taking a detour to some other point y first.

Proof. Leta =z —yandb:=y — zsothata+ b= z — x. Thus, we are showing that

?
|la + 0] < a] + 0],

which is nicer because it only has two letters. For this, because everything is a nonnegative real numbers, it
suffices to show the square of this requirement; i.e., we show

?
(la| + b)) = |a +b]*> > 0.

Fully expanding, it suffices to show

2
la]? + b + 2|a| - |b] — |a +b]* > 0.

Expanding out |w|? = ww for w € C, we are showing

?

ad + bb + 2lal - |b] — (a4 b)(@+b) >0

This is nice because the expansion of the rightmost term will induce some cancellation: it expands into aa +
ab + ab + bb, so we are left with showing

_ ?
2|a| - |b] — (ab+ ba) > 0.
Note that @ = ab, so we can collect the final term as 2 Re(ab). Similarly, we can write |a| - [b| = |a| - |5 = |ab),

so we are showing
2|ab| — 2 Re(ab) > 0,

which is true because the real part does exceed the norm. This finishes. |

2.2 January 26

In-person class should start on Monday. Homework #2 will be released on Friday.
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2.2.1 GeometryonC
So let's try to build a topology on C today. We pick up the following definition.

Definition 2.15 (Convex). A subset X C C is convex if and only if, for every z,w € X and ¢t € [0, 1], we
have that w + t(z — w) € X.

Intuitively, “convex” means that X contains the line segment of any two pointsin X.

Example 2.16. The disk is convex: any line with endpoints in the circle lives in the circle.

More explicitly, given z,w € B(zp,r) forr > 0, we see thatany ¢ € [0, 1] will have
|lw+t(z—w)—z20| = [(1 —t)(w—20) +t{t —20)| < (1 —t)|Jw— 20| + (1 —¢t)|]z — 20| = (L = t)r +tr =1,

sow + t(z — w) € B(zg,r). Replacing the < with < shows that B(zg, ) is convex.

Non-Example 2.17. The star-shape is not convex: the given line goes outside the star.

To define our open sets, we will define balls first.

Definition 2.18 (Open ball). Given some zy € C, then open ball centered at 2z, with radiusr > 0 is
B(zp,7) ={2€C: |z — 2| <1}
Observe zy € B(z, 7).

Open balls let us define all sorts of properties.

Definition 2.19 (Isolated). Fix X C C. A point z € X isisolated in X if and only if there exists » > 0 such
that
B(z,r)NX = {z}.

Definition 2.20 (Discrete). A subset X C C is discrete if and only if every point is isolated.

Example 2.21. Any finite subset of X C C is discrete. Namely, any point z € X can take

1
r=—- min |z—uz|
2 wex\{z}
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Example 2.22. The subset Z C Cis isolated. Namely, take r = % for any given point.

Definition 2.23 (Bounded). A subset X C C is bounded if and only if there is an M such that X C
B(0, M).

Example 2.24. The star from earlier fits into a large circle and is therefore bounded.

And here is our fundamental definition for our topology.

Definition 2.25 (Open). A subset X C C is open if and only if, for each z € X, there exists r > 0 such
that B(z,r) C X.

Remark 2.26 (Nir). We should probably show that open balls are open; let B(z, ) be an open ball. Well,
forany w € B(z,r), setr, := r — |z — w|, which is positive because w € B(z,r) requires |z — w| < r.
Now, w’ € B(w, r,,) implies that |w — w’| < r — |z — w|, so by the triangle inequality,

|z —w'| < |z—w|+|w—-w| <,
sow’ € B(z,r) follows. So indeed, each w € B(z,r) has B(w,r,,) C B(z,r).

Open lets us define closed.

Definition 2.27 (Closed). A subset X C C is closed if and only if C \ X is open.

Warning 2.28. Sets are not doors: a set can be both open and closed.

2.2.2 Unions and Intersections

Here are some basic properties of our topology.

Lemma 2.29. The subsets @ and C are open and closed in C.

Proof. It suffices to show that @ and C are both open, by definition of closed. That @ is open holds vacuously
because one cannot find any z € @ anyways. That C is open holds because open balls are subsets of C, so
any z € C can take r = 1 so that

B(z,r) CC.

So we are done. [ |
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Lemma 2.30. Fixing some z € C, the set {z} is closed.

Proof. We show that U := C\ {z} is open. Well, fixany w € U, and because w # z, we note |z — w| > 0, so
we setr := £|z — w|. It follows that

z ¢ B(w,r)

because |z — w| > r. But this is equivalent to B(w,r) C C\ {z} = U, so we are done. ]

We would like to make new open and closed subsets from old ones. Here is one way to do so.

Lemma 2.31. The following are true.
(a) Arbitrary union: if // is any collection of open subsets of C, then the union | J;;,, U is also open.

(b) Arbitrary intersection: if V is any collection of closed subsets of C, then intersection (., V is
also closed.

Proof. We take these one at a time.
(a) Fixz € Uygy U- We need to show there is some r > 0 such that
?
B(z,r) C U U.
Ueu

Well, we know there must be some U, € U such that z € U, by definition of the union. But now U, is
open, and therefore we are promised an r > 0 such that

B(z,r)cU.C |J U,
veu

so we are done.

(b) FixV a collection of closed subsets of C. We want to show that

c\ﬂv

is open, which by de Morgan’s law is equivalent to

e\

vey

being open. However, each V € Vis closed, so C \ V will be open, so we are done by (a). |

Lemma 2.32. The following are true.

(a) Finite intersection: if {Uy}}7_, is a finite collection of open subsets of C, then the intersection
Ni—, Uk is also open.

(b) Finite union: if {V}}}_, is a finite collection of closed subsets of C, then | J;:_, Vi is also closed.

Proof. We take these one at a time.
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(a) Fix z € (;_, Uy so that we need to find > 0 such that

cn
B(z,r) Uk:l Us.
Well, z € Uy, for each k, and each Uy, is open, so thereisan r; > 0such that B(z,r;) C Uy. Thus, we set

r = ming{ry }; because there are only finitely many r;, we are assured that » > 0. Now, we observe
that

B(Z,T) Q B(Z,’I“k) g Uk.

(Explicitly, jw — z| < r implies |w — z| < r because r < r.) Thus, it follows that
B(z,1) C ﬂ Uk,
k=1

as desired.

(b) We use de Morgan’s laws. We want to show that
C\UW
k=1
is open, which by de Morgan'’s laws is the same thing as showing that
(N (C\ Vi)
k=1

is open. However, each C\ V}, is open by hypothesis on the V4, so the full intersection is open by (a).
This finishes. |

Remark 2.33. The finiteness is in fact necessary. For example,

() B(0,1/n) = {0}.

neN

Then one can check that each open ball is open while singletons in C are not.

2.2.3 Interior, Closure

Let's see more definitions.

Definition 2.34 (Interior). Given a subset X C C, we define the interior X° of X to be the union of all
open sets contained in X (which will be open by Lemma 2.31).

Remark 2.35. In fact, X° is the largest open subset of X, for any open subset Uy C C contained in X
will have
e |J v=x
openUCX

It follows X is openif and only if X = X°:if X = X°, then X is open because X° is open; if X is open,
then X is the largest open subset of C contained in X, so X = X°.
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Definition 2.36 (Closure). Given a subset X C C, we define the closure X of X to be the intersection of
all closed sets containing X (which will be closed by Lemma 2.31).

Remark 2.37. In fact, X° is the smallest closed set containing X, for any closed subset V5 C C contain-
ing X will have
w2 (| V=X
open VO X
It follows X is closed if and only if X = X: if X = X, then X is open because X is closed; if X is closed,
then X is the smallest closed subset of C containing X, so X = X.

By the above definitions, it is not too hard to see that X° C X C X.
The interior and closure also let us define the boundary.

Definition 2.38 (Frontier, boundary). Given a subset X C C, we define the frontier or boundary 9X of
X tobe X \ X°.
2.2.4 Connectivity

Definition 2.39 (Disconnected). A subset X C C is disconnected if and only if there exists nonempty

disjoint open subsets U; and U, such that X C U; U U and X N Uy, XAUs # @. (In other words, the

subspace of X C C is (topologically) disconnected.) In this case, we say that U; and U disconnect X.
Lastly, we say X is connected if and only if it is not disconnected.

Example 2.40. The set & is connected because it is impossible for U N & # & for any open set U of C.

Example 2.41. Any singleton {z} is connected. In fact, one cannot decompose {z} into two disjoint sets
at all, much less into disjoint sets of the form U N {«} with U open.

Example 2.42. Any open ball B(z,r) is connected. This is surprisingly annoying to check. We will show
this shortly by showing that B(z, r) is path-connected.

Example 2.43. The set {1, 2} is disconnected by U; = B(1,1/2) and Uy = B(2,1/2).
Connectivity plays nicely with the rest of our definitions as well.

Lemma 2.44. A given subset X C C is connected if and only if the only subsets of X which are both
open and closed (in the subspace topology) are @ and X.

Proof. We take the directions independently. For the forwards direction, take X connected, and suppose
that U C X is open and closed. In the subspace topology, we get that X \ U will also be open, and then the
subsets U and X \ U are both open, disjoint and have

X=UU(X\U).
Thus, werequireU = @or X \U =@,soU € {@, X}.
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We leave the reverse direction as an exercise. Suppose that X is disconnected, and we show that there
is a nonempty proper closed and open subset of X. Well, because X is disconnected, we have disjoint open
sets U; and Us of Csuchthat X N U1, X NU; # @ and X C U; U Us. It follows that

X=(UNnX)U(UnNX). (*)

However, now consider the open subset U := U; N X of X. We note that (U1 N X) N (U N X) = &, so by (x)
weseethatU; N X = X \ (U2 N X),soU; N X is closed as well.

To finish, we note that U # & is nonempty, and its complement is X \ U = U, N X is also nonempty, so
U # X is proper. Thus, U is a proper nonempty closed and open subset of X. This finishes. |

Remark 2.45 (Nir). It is actually important that the open subsets in the above lemma are in the subspace
topology and are not required to be C-open. For example, X = {1,2} is disconnected, but it has no
nonempty C-open subsets to witness this.

Lemma 2.46. Fix S a collection of connected subsets of C. If (g S is nonempty, then (Jg.s S will be
connected.

Proof. Suppose|Jq.g S is contained in the disjoint open subsets Uy and U, of C; we claim U1 N (Uges S) = @
or Uz N (Uges S) = @, which will finish.
Pick up some

z € ﬂS,

Ses

which exists because the intersection is nonempty. Without loss of generality, we may assume that z € Uj.
Now, z € Sforeach S € §,soweseeU; NS # &, so because (U; N S)U (Uz N S) = S, we see that
Us NS = @ by hypothesis on S’s connectivity. Thus, taking the union overthe Us N S = &,

U2ﬂ<U s)—@,

Ses

which finishes the proof. [ |

Remark 2.47. The condition with nonempty intersection is necessary: {0} and {1} are connected, but
{0} U {1}is not.

2.3 January 28

Hopefully we'll be in-person on Monday. Homework 2 will be released later today, due next Friday.

2.3.1 Sequences

Today we're talking about sequences, building towards a theory of sequences and series. Next week we will
begin studying holomorphic functions and actually doing complex analysis.
Anyways, here is a series of definitions.

Definition 2.48 (Sequence). A sequence of complex numbers is a function f: N — C. Often we will
notate this by {z, }»en Where z,, :== f(n).

By convention, all of our sequences will be sequences of complex numbers unless otherwise stated.
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Definition 2.49 (Subsequence). A sequence {wy, }»en C Cis a subsequence of a sequence {z, }neny C C
if and only if there is some strictly increasing function g: N — N such that w,, = zy(,).

Definition 2.50 (Bounded). A sequence {z, }nen C Cis bounded if and only if there exists a positive real
number M > 0 such that

{zn}nen € B(0, M).

In other words, |z,| < M for eachn € N.
We are in particular interested in convergence in analysis.

Definition 2.51 (Converges). A sequence {z, }nen € C converges to some z € C if and only if, for each
¢ > 0, there exists some N such that n > N implies

|z — 2| < e.

We will notate this by z,, — z or lim,, ;o 2, = 2.

Note that the definition of the limit above says that

lim z, =2 < lim |z, — 2| =0.
n— oo n— oo

Intuitively, the distance between the z,, and the z has to “narrow in” on z.
We would like some real-analytic tools for our complex analysis. Here is a convergence lemma.

Lemma 2.52. Fix {2z, }nen € C a sequence. Then, letting z,, = z,, + y,i, we have that z,, — z where
z=ux+yiifandonlyifz, - zandy, — y.

Proof. This is essentially by definition of the metric on C. We take the directions one at a time.

» Suppose that z,, — zin C. Then we claim that Rez,, —+ Rez and Im z, — Im z, in R. Indeed, for any
e > 0, thereis N such that
n>N = |z—z,| <e.

But now we see that | Re z, — Re z|, | Im 2, — Im 2| < y/(Re 2, — Re2)2 + (Im z,, — Im 2)2, so it follows
n>N = |Rez, —Rez|,|Imz, —Imz| <e¢,
finishing.

» Suppose that Re z,, — x and Im z,, — y. We claim that z,, — x + yi. Indeed, for any e > 0, there exists
N, such that

n>N, = |Rez, —z| <¢e/2
and N, such that

n>N, = |[Imz, —y| <eg/2.
It follows that

2 2
n > max(Ny. Ny} = |z — e+ 3] = IRez, —aP + Tz — 5P </ (5) + (5)" <=

This finishes. [ |

Essentially, this means that checking convergence of complex numbers is the same as checking real and
imaginary parts individually, so we can turn convergence questions into ones from real analysis.
We also have the following basic properties about convergence.

25



2.3. JANUARY 28 185: INTRO. TO COMPLEX ANALYSIS

Proposition 2.53. Fix {z, }nen C C a convergent sequence. The following are true.
(@) {zn}nen is bounded.
(b) The limit of {2, }nen is unique.

(c) Every subsequence of {z, } ,en converges to z.

Proof. We take the claims one at a time. Let z € C be so that z,, — z.

(a) Fixe =1 so that there exists N so thatn > N implies |z, — z| < 1. Now set
M =max({|zn| +1:n < N}U{|z| + 1}).
We claim that |z,| < M for each n € N. We have two cases.

o Ifn < N, then|z,| < |z| +1 < M.

« Otherwise, n > N so that
|2n| < zn — 2|+ |2l < |2| +1 < M,

so we are done.

(b) Suppose that z, — 2’ for some 2z’ € C, and we show z = 2’. Indeed, if z = 2/, then we are done, so
suppose that z # 2’ so that |z — 2’| # 0. Then we set e := 1|z — 2/| > 0, and we are promised some

N, N’ such that
€

n>N — |z—zn|<% and n>N = |z’—zn|<2

In particular, we see that, for n > max{N, N'}, we have

€ € 1
|z—z’\§\z—zn|—|—|zn—z’|<§—|—§:g:§|z—z’|.

But because 0 < |z — 2’|, we see that this forces |z — 2’| = 0, so z = 2’ follows. (Technically we have
hit contradiction, but we do not need to use this.)

(c) Note that subsequences can be characterized by choosing a strictly increasing function f: N — N so
that we want to show z;(,,) — z. Indeed, forany ¢ > 0, we are promised some N so that

n>N = |z—2z,| <e.
Now, for each n € N, we have! f(n) > n, so we see that
n>N = f(n)>N = |z —z2ppn)| <e,
which finishes. [ |

Sequences themselves have an arithmetic.

Proposition 2.54. Fix {z, }nen, {wn}nen € C sequences such that z, — z and w, — w. Then the
following hold.

(@) z, +w, — z+w.
(b) znw, — zw.

(c) If w # 0and w, # 0 foreachn € N, then - —

1
ol

1 We can show this by induction on n, for £(0) > 0and f(n + 1) > f(n) forces f(n +1) > f(n) + 1.
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Proof. We take these one at a time, essentially borrowing the proof from metric spaces.

(a)

Fix some e > 0. We can find some N, such that
n>N, = |z—2z,| <g/2

and some N, such that
n>N, = |w—w,| <e/2.

Now, taking N := max{N,, N,, } so that the triangle inequality gives
n>N = [(z4+w) — (2n +wn)| < |2 — 20| + |w—wy| <k,
which finishes.

We have to use the fact that the sequences are bounded here. Because w, — w, the sequence is
bounded, so there is an M so that |w,| < M for each n € N. Now, the key inequality is that

|znwn, — zw| < |zpwy, — 2wy | + 2w, — z2w| < M|z, — 2] + |2] - |w, — w). (*)

So with this in mind, fix any e > 0, and we see that we are promised N, such that

€
n>N, = |Z”_Z|<W
and some N, such that
13
n>N, = |w, —w| < ——
2|2|

so that (x) implies
n > max{N,, Ny} = |zpw, — 2w| < &,

finishing.
We begin with some motivating arithmetic. Observe that

o |w, —w|

1 1
w Wy

We can upper-bound the numerator without tears, so we see the main difficulty is lower-bounding
the denominator. Well, because w # 0, we can set ¢ = |w|/2 so that there exists N, such that

n> Ny = |w, —w| < |w|/2.

In particular, it follows that |w,| > |w| — |w — w,| = |w|/2 for n > Njy.

With this in mind, fixany e > 0. Then we are promised some N; such that
n>N = |w, —w|<|w’/2
so that we see

1

Wn,

|w, —w |w|?e/2

)

1
n > max{No, N1} = ’ -
w

wl - fwa] 7wl - fwl/2
finishing. |
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2.3.2 LimitPoints

Here is our main character.
Definition 2.55 (Limit point). Fix X C C and some z € C. Then we say that z is a limit point if and only

if there exists some sequence {z, }»en € X such that z, — z.

Definition 2.56 (Accumulation point). Fix X € Cand some z € C. Then we say that z is an accumulation
point if and only if there exists some sequence {z,, }nen € X \ {2} such that z,, — z.

Essentially accumulation points do not allow isolated points while limit points do.
The above essentially gives a more directly topological definition of “closed set.” It also gives us a more
directly topological definition of the closure.

Lemma 2.57. Fix X C Cand z € C. The following are equivalent.
(a) We have that z € X.
(b) Foralle > 0, we have B(z,e) N X # &.

(c) There exists {2, }nen € X such that z, — z.

Proof. We show our directions one at a time.

« We show (a) implies (b). Suppose z € X, and for the sake of contradiction suppose we have ¢ > 0 such
that B(z,e) N X = @. In particular, z ¢ X.

Now, z € X implies that z is contained in every closed set containing X by definition of X. But because
B(z,¢) is open and is disjoint from X, we see

z€ X CC\ B(z,¢),
which is a contradiction.

« We show (b) implies (c). For each n € N, we know that B(z,1/n) N X # &, so we find some z, €
B(z,1/n). Now, forany e > 0, choose N :=1/¢ so that

1 1
n>N = |z, — 2| < — < = =¢,

n N
soindeed z,, — z.

« We show (b) implies (a). We proceed by contraposition. Suppose that z ¢ X. It follows that z € C\ X,
which is open, so there exists an r > 0 such that

B(z,r) CC\ X CC\ X.
It follows that B(z,r) N X = @.

+ We show (c) implies (b). Suppose {z, }nen € X has z,, — z for some z € C. Forany e > 0, there exists
N such that

n>N = |z, — 2| <e¢,
soin particular, choosingany n := [N] + 1 has 2z, € B(z,6) N X,s0 B(z,e) N X # @. |

The above discussion can give us a more directly topological definition of “closed.”
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Lemma 2.58. A subset X C Cis closed in C if and only if X contains all of its limit points.

Proof. By the previous lemma, we see that z € X if and only if z is a limit point of X, so X is the set of limit
points of X. Now, X is closed if and only if X = X, so X is closed if and only if all limit points of X are
in fact points of X. (Note that all points of X are automatically limit points essentially because X C X for
free.) [ |

While we're here, we can pick up a nice topological result.

Lemma 2.59. Fix X C C a connected subset. Then X is also connected.

Proof. This argument is purely topological. We proceed by contraposition: suppose X is disconnected by
U;,U; C C. We claim that Uy, U, disconnect X. Well, we already know that A C A C U; U Us, and we
already know that U; and Us are disjoint.

We claim that, for U C C an open subset, if U N X # @, then U N X # @ as well. Indeed, we proceed by

contraposition: if UN X = &, then X C C\ U, but C\ U is closed, so

X CC\U,
soXNU = @. B B
Thus, it follows from Uy N X, U; N X # @ that Uy N X, Us N X # &. This finishes the proof that U; and
U, disconnect X. Indeed, [ |

2.3.3 Cauchy Sequences

Just like in real analysis, we will be interested in Cauchy sequences.

Definition 2.60 (Cauchy sequence). A sequence {z,}n,en C Cis a Cauchy sequence if and only if, for
each e > 0, there exists an N such that

n,m>N = |z, — 2| <e.
We have the following results on Cauchy sequences.

Proposition 2.61. Fix {z, },en C C a sequence. If {z, },en converges, it is Cauchy.

Proof. This proof uses no special properties of C. If z,, — z, then for a given € > 0, there exists N such that
n>N = |z, — 2| <¢/2.
It follows that
n,m>N = |z, — 2| <|2n — 2|+ |2m — 2| <&,
finishing. ]

Proposition 2.62. Every Cauchy sequence in C converges.

Proof. If {z, }nen is Cauchy, then we claim {Re z,, }neny and {Im z, },cn are Cauchy sequences. Indeed, for
any e > 0, there exists N so that
n,m>N = |z, — 2| <&,

butthen|Re z,—Re z;| < |zn—2m|and | Im z,,—Im 2., | < |2, —2m|, SO the same N witnesses that {Re z, }nen
and {Im z,, } nen are Cauchy in R.

Now, Cauchy sequences in R converge, so there are reals z,y € R such that Re z,, — x and Im z,, — w.
It follows that z, — x + yi, finishing. |
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2.3.4 ALittle More Topology

We close with one more topological definition.
Definition 2.63 (Sequentially compact). A subset X C C is sequentially compact if and only if every

{#zn}tnen € X has a convergent subsequence which converges in X.

Remark 2.64. This happens to be equivalent to X is compact because C = R? satisfies the fact that all
compact sets are closed and bounded.

Example 2.65. Every finite set is compact.

And here is a last definition.

Definition 2.66 (Tends to infinity). A sequence {z,}n,en C C tends to infinity (notated z,, — oo) if and
only if each M > 0 has some N € N such that

n>N = |z,| > M.

Essentially the points of {z, },,cn wander infinitely away.

2.4 January31l

So we are lecturing in-person today. Good morning everyone.
Quote 2.67. If | don't fall off the stage, | will consider it a major accomplishment.

Homework 2 is due Friday, the 4th of February. Office hours will occur at the usual times, but they will now
occur in-person at Evans 749.

2.4.1 Series

Today we're mostly talking about series, and on Friday we'll talk about continuous functions.

Definition 2.68 (Series). An infinite series over C is an infinite sum

S = i Zn
n=1

where {2z, }nen € Cis a sequence of complex numbers.

With respect to series, we really want to know when various series converge so that the series is well-
defined.

Definition 2.69 (Converge, diverge). Fix a sequence {z,}nen C C of complex numbers, we define the
mth partial sum to be
Sy = Z Zm-
n=0

Then we say that the infinite series convergesif and only if the sequence {5, } of partial sums converges.
Otherwise, we say that S is divergent.

As usual, we start with some basic examples.
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Exercise 2.70. Fix some z € C with |z| < 1, we define z,, := z". Then we have

S:izkzliz.

=0

Proof. Fix some partial sum
N

SN :sz:1+z+z2++ZN
k=0
Multiplying by z, we see that
28y =24+ 22 4+ 4 2N 4 N

It follows that
SN — ZSN =1- ZN+1.
Because |z| < 1, we have z # 1, so we may write
1 AR
Sy = -
A TV >

However, we may note that as N — oo, the bad term zV*! will have size

|ZN+1| _ |Z|N+1,

which goes to 0 (because || < 1).? It follows that

1
lim Sy = ——,
N—o00 1—=2

which is what we wanted. [ |

Anyways, here are some basic lemmas.

Lemma 2.71 (Divergence test). Suppose that { z,, }.en is a sequence of complex numbers such that } " z,
converges. Then z, — 0asn — oc.

Proof. Let S,, be the nth partial sum so that we are given S,, — L for some L € C. But now we see that
N+1 N
Zn+4+1 = (Z Zk) - (Z Zk) = Sn+1 — Sh.
k=0 k=0
Using limit laws, we see that
lim z,4+; = lim S,41 — lim S, =L—-L=0.
n—oo n—oo n—oo

Shifting the indices back gives z,, -+ 0as N — oc. |

Here is an important example of a divergent series.

2 This is surprisingly annoying to rigorize with an -8 proof, so we won't do so here. The interested can try to use induction to
manually bound |z|” by £ for some c.
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Exercise 2.72. We claim that

x| =

k=1

does not converge.

Proof. We will show that the sequence of partial sums {5,,}22, is not Cauchy, which will show that the

series diverges. Well, observe that
gn+1

1
52n+1 — SQn = Z E
k=2n41
after cancelling out all of our terms. However, each term in the sum is at least -+, so we bound

(2n+1 _ 2n) — 1

SQnJrl - SQn > 2

= on+1
We now show that the partial sums are not Cauchy. Fix e. Supposing for the sake of contradiction that the
sequence is Cauchy, there exists N so that n,m > N has

1
|Sn — S| < 7

However, we can find some power of 2 named 2" which exceeds N, in which case we find 2”1, 2" > N and

1

[Sarn = S| > 3,

which is our contradiction. ]

Remark 2.73. Because a sequence will converge if and only if its real and imaginary parts do, we can
turn a convergence test into a real-number test by taking the real and imaginary parts of the sum.

2.4.2 The Comparison Test

Recall the comparison test in R.

Theorem 2.74 (Comparison test). Fix {z,, }nen, {yn }nen € R sequences of real numbers. Further, sup-
pose that we there exists a positive constant ¢ > 0 such that 0 < z,, < ¢y,,. Then the following hold.

« If >y, converges, then >" z,, converges as well.

« If >, diverges, then ) y,, diverges as well.

Proof. We appeal to real analysis. The interested can see Theorem 2.1.21 in Eterovi¢. The main point is to
use the Monotone sequence theorem. |

Here is an example.

Exercise 2.75. Fix s > 1 an integer. Then the series
oo
1
S = —
Z ks
k=1

converges.
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Proof. Because s is an integer, we have s > 2. Namely, = < 5, so by the comparison test it suffices to just
show the convergence of
— 1
/. E
S - ﬁ.

k=1

For this, we apply some trickery. In particular, for k£ > 1, we bound

1t 11
k2 T k(k—1) k-1 Kk

In particular,
= 1 - 1 1
=1 — <1 ).
sy m ey (75 1)
k=2 k=2
Thus, by the comparison test, it suffices to show the convergence of
> 1 1
T := — = —].
(5i%)
k=2

But the nth partial sum will telescope, giving

soT, — lasn — oo, and T = 1. It follows that S’ is upper-bounded by 1 + T" < 2. [ |

2.4.3 Absolute Convergence

The following kind of convergence is nontrivially stronger, but that makes it better.

Definition 2.76 (Absolute convergence). Fix a sequence {z, }nen C C of complex numbers. Then the
sum S = > z, converges absolutely if and only if the series

o0
n=0
also converges. In other words, the partial sums of the above series converges.

We have the following quick lemma to justify naming this “convergence.”

Lemma 2.77. If a series converges absolutely, then the series also converges.

Proof. The idea is to use the triangle inequality. Fix our series

S = i Zn
n=0
for which
T = Z |20 |
n=0

converges. Let S, be the nth partial sum of S and T,, the n the partial sum of T'.
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Our goal is to show that {S,, },en is Cauchy. Observe {T, } ,cn is an increasing sequence of real numbers
because |z| > 0 always. To start off our arithmetic, we note that, for n,m € N with n > mn, we have

n

>

k=m+1

|Sn - Sm| =

)

which by the triangle inequality can be bounded by

n

S = Sml < D |2kl =T — T
k=m+1

But now we can use the fact that {7}, },,en must be Cauchy to finish: for any ¢ > 0, there exists some N such
thatn > m > N implies T,,, — T,, < . But then this same N promisesn > m > N implies

|Sn — S| < T — T < e,
which is what we wanted. [ |

Here is a surprise tool that will help us later.

Lemma 2.78. Fix a sequence {a, }nen € C of nonzero complex numbers. Further, suppose that the
sequence {a, }»en tends to infinity (i.e., |a,| — oo asn — o), then for any positive real numberr € RY,

the series
fo’e) k
3 <7“>
|ak|

k=0
converges.

Proof. We need the a,, to be nonzero in order to allow division, so the real puzzle is to determine how to use
the fact |a,| — co. Well, there exists some N such that n > N has

|an| > 2r.

But then ‘aT < % for eachn > N, so we can use the comparison test as follows: observe that
=1
>3
k=0

will converge, and there will exist some ¢ > 1 so that

ro_c
lag| 2%

for0 < k < N;and then forn > N, we get the above inequality anyways as discussed earlier (observe we
took ¢ > 1). [ ]

Quote 2.79. | can't break math on the first day of class. | can do it later on.

Lemma 2.80. Suppose that we have two series S := Y, -z and T := }_, . wy are both absolutely
convergent. Then the sum

k=0 \i+j=k

is absolutely convergent as well. In fact, P will converge to ST.
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Proof. We sketch the result, and the remaining details are in Eterovic. As usual, consider the partial sums

n n
Ap=) lz] and By =) |wkl,
k=0 k=0

both of which will converge as n — oco. Brazenly multiplying these together, we see that

n n
A, B, = Z |ziw;| = Z Z |ziw;| + Z Z |zw; .
1,7=0 k=0 itj=k k>n itj=k
0<i,j<n 0<i,j<n

In the first sum, observe that any time i + j = k, we will automatically have i, j < k < n. It follows that

n

k=0 \i+j=k i+j>n
0<i,j<n

—_———
Ry

The key claim is that R,, — 0. The mainideaisthati+j > nimpliesthati > n/2orj > n/2, so we can write

n n n n n n n n
RI<S S e 3 z|zz-wj|=(zzi|) S ot (S0 ) (3w
i=0 j=0

1=0 j=n/2 i=n/2 j=0 j=n/2 i=n/2

Now, fixanye > 0, and we show there exists X sothatn > X has|R,| < e. Note A =" |zx|and B := ) |wy]|
both converge and hence have Cauchy partial sums. Because the partial sums are increasing, we bound

Rl <AL D lwyl | +B( > Il

j=n/2 i=n/2
So there exists N such thatn > m > N has
S Jal < o
. 2B
i=m-+1

Similarly there exists M so thatn > m > M has

n

> lwil< i,

j=m+1

from which it follows that n > n/2 > max{N, M } will have

9] &
Rl<A = 1B. 5 _¢
(Bl <A+ Brgp=¢

which finishes.
Now, because R,, — 0, we see

n
lim E g |zi| - Jw;| | = lim A, B, — lim R,,
n—oo n—oo n—oo
k=0 \i+j=k
which does indeed converge, so indeed the series
o0
> | D il -yl
k=0 \itj=k
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will converge. By the comparison test (using the triangle inequality), it follows that

will also absolutely converge.
To show that P converges to ST, we observe that the difference of the nth partial sum is

n n n

P, — SnTn = Z Z Ziw; | — Z Ziw; = Z Z Ziwj | — Z Z ZiW; + Z ZiWj,

k=0 \i+j=k 4,7=0 k=0 \i+j=k k=0 \i+j=k 0<i,5<n
i+j<n

SO
Pn - SnTn = Z ZiWyj.

0<i,j<n
i+j<n

But by the triangle inequality, we see |P, — S, T,,| < R,, so P, — S, T,, — 0asn — oo. It follows P,, and
S, T,, have the same limit as n — oo (which exists because S,, and T}, have a limit). Soindeed, P =ST7. N

2.5 February2

Good morning everyone. Here is some house-keeping.
« Homework #2 is due on Friday at 11:59, on GradeScope. The assignment has just been added.

« There are office hours to talk about the homework. Please come if you have questions.

2.5.1 Summation Review

Today we finish our discussion of series, for now. We quickly recall the definitions.

Definition 2.68 (Series). An infinite series over C is an infinite sum

8 = i Zn
n=1

where {z, }nen C Cis a sequence of complex numbers.

Definition 2.69 (Converge, diverge). Fix a sequence {z,}nen C C of complex numbers, we define the
mth partial sum to be
Sy = Z Zm-
n=0

Then we say that the infinite series convergesif and only if the sequence {S,,, } of partial sums converges.
Otherwise, we say that S is divergent.

Today we are building towards proving Dirichlet’s convergence theorem. We pick up the following lem-
mas.
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Lemma 2.81. Fix sequences {z ¢}« ¢cen @ collection of complex numbers satisfying the following con-
ditions.

« Fixing any k, the sum ;2 |zx,¢| converges.
« Thesum >°77 ) Y02, |2k,¢| converges.
Then the following are true.
(@) Fixany ¢, thesum >";7 , |zx.¢| converges; i.e., the terms in the left sum below are well-defined.

(b) We have that

oo o0

% =303 wn

=0 k=0 k=0 £=0

and both sums converge.

Intuitively, the first condition is requiring that the series horizontally does not grow too fast. The second
condition is requiring an absolute convergence condition. Then the first conclusion says we can sum verti-
cally instead, and the second conclusion says that we can move around the order of summation.

Proof. We will sketch this proof; we prove (a) and (b) more or less simultaneously. To turn the infinite double
sum into something we can consider finite partial sums of, we set, for each natural NV,

n

> k-

0 ¢=0

Sn =

NE

ES
Il

The main claim is that
” oo oo
T 523
k=0 £=0
Indeed, fixany e > 0. Because the latter sum converges, there exists some natural A such that

Z Z |Z}€,g| < g

k>A £=0

Further, there exists some natural By, such that

9
Z |2.e] < 54

{>By,

for each k € N. Take B := maxo<i<a Bi. Now, we set N := max{A, B}. To start off our inequalities, we

note that . Y . -
Sn=> 3 1zl <D kel <D0 ke
k=0 ¢=0

k=0 £=0 k=0 £=0
so we know the sign of our difference. In particular, forany n > N, we see that

)

K L
S, = ZZ |2k.0| > ZZ |2k,

k=0 ¢=0 k=0 ¢=0

N
Thus,

oo 00 oo 0o K L 0 K
0D > anel =Sn <D D lamel = DD amel = D0 > lzeel + DD lznel
k=0 ¢=0

k=0 ¢=0 k=0 ¢=0 k>K £=0 k=0¢>L

after some cancellation. But we can upper-bound the last quantity by § + K - 5% = ¢, so we are done.
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The main point of the above lemma is that we are told each £ > 0 has some N so thatn > N implies

SRS
ZZ|Zk,Z|7Sn: Z |Z]§7g| < E.

k=0 ¢=0 (k,0)ez?
k>noré>n

We now take the two parts in sequence.

(a) Fix an index ¢'; we show absolute convergence by showing that the partial sums of Z;O:o |zk,0r| a@re
Cauchy. Indeed, fix some ¢ > 0, and we know there exists N so that eachn > N has

oo o
ZZ|Z/€,[| - Sn <E.

k=0 £=0
Now, we see thatanyn > m > N will have

n

N o] ) o) N 00
Z |2,0r] < Z Z|Zk,é|§ Z Z|Zk,e|+z Z |2k¢] <e,

k=m+1 k=m+1 {=0 k=N+1 ¢=0 k=0(=N+1

so we are done.

(b) Asabove, fix some e > 0, and we are promised N so that

Z |2k.0| <€/2.

(k,0)€Z?
k>N or £>N
Observe, for K, L > N, we have by the triangle inequality that
L K
ZZ'ZI‘VZ —Sn| <e/2.
£=0 k=0

This bounds holds forany K, so we can send K arbitrarily large; that inner sum will converge, so in fact
we can send K to oo without ill effect. (Formally, the inner term is an increasing sequence bounded
above, so it will converge as K — oc.) This gives
L oo

Zzzk,e - SN

£=0 k=0

<eg/2.

Again, the inner term is an increasing sequence as L — oo but still bounded above as /2, so the inner
sum will converge as L — oo and still give the inequality

oo oo
ZZ”ZW — Sy| <e.
£=0 k=0
Now as we send ¢ — 0, we see that limy oo SN = > pog D peo 2k, Which finishes. [ |

2.5.2 Dirichlet Test

We now go directly for the Dirichlet test for convergence.
Lemma 2.82 (Summation by parts). Fix sequences {a, } nen and {b, }nen sequences of complex num-

bers. Then we define N
B, = Z bn,

k=0

and B_; = 0 to be the empty sum. It follows that, for any n, m € Nwithn > m,

n—1

Z arby = anBp — @y By + Z Bi(ar — ag+1)-
k=m k=m
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Proof. This comes down to a direct computation. The main point is that b, = By — By_1, which even works
with k = 0. Indeed,

Z apby, = Z ar(Byr — Bi—1)

=m
n
= E ax By — E axBr—1
k=m k=m
n—1
*
:anB + § akBk am m—1 — § ak+1Bk
k=m
n—1
:aan_amBmfl"'_ E Bk(ak_akJrl)a
k=m

which is what we wanted. The important step to pay attention to is the rearrangement we did in = in order
to message the sums together. |

And here is our theorem.

Theorem 2.83 (Dirichlet’s test). Fix {a, }nen € R a sequence of real numbers and {b,,}nen C C a se-
quence of complex numbers satisfying the following conditions.

« The sequence {a, } nen is decreasing.
 We havea,, - 0asn — oc.

» Bounded partial sums: there exists a positive real number M such that

foreachn € N.

Then we claim that
o]
> i
k=0

converges.

Proof. As usual, fix our partial sums

Sn = zn:akbk and Bn = Zbk
k=0

k=0
We are given that the By, are bounded, so we are going to want to use Lemma 2.82, which tells us that

n—1

Sp = anBpn + Z By (ar — ag41).
k=0

We examine the convergence of these terms individually.

» For the sum, we will show that it absolutely converges. We are given that the partial sums B,, are
bounded by M, so we note |By(ar — ax+1)| < Mlar — ag+1|, so it suffices to show that

n—1
MY Jay — ap|

k=0
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converges as n — oo. It would be great if this would telescope, and indeed it does! Because the a;, are
decreasing,

oo oo

> lak = argr| =Y (ak — ari1) = ao — ang1.

k=0 k=0

Because a,, — 0asn — oo, we see that this sum will converge to ag. It follows that
oo
> |Bilar — ag1)]
k=0
will converge by the Comparison test, so
o0
Z Bri(ar — ak+1)
k=0

converges by absolute convergence.

» Note that the B,, are bounded in norm by M, so |a,, B,,| < M|ay|, but |a,| — 0asn — oo, so |a,B,| —
0. |

Eterovic has lots of different convergence tests in his notes, but we don't care about most of them. Here is
one that we do care about.

Theorem 2.84 (Integral test). Fix a decreasing function f : [1,00) — R and for which

/:+1 -

always exists. Then the sequence of integrals I,, := [ f(x) dz converges if and only if the summation

> f(k)

k=1

converges.

Proof. We omit this proof; it's a reasonably standard real-analytic test. |

2.6 February4

Today we are talking about continuity.

@ Warning 2.85. The first half of this lecture was transcribed from Professor Morrow's notes because |
had to miss class for a job interview

2.6.1 Limits

Before defining continuity, we have the following definitions.
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Definition 2.86 (Limit). Fix f: X — C a function and 2y € X. Then we say the limit of f(z) as z ap-

proaches zy equals w, denoted
lim f(z) = w,
Z—20

if and only if, for each ¢ > 0, there exists § > 0 such that

|z =20l <6 = |f(2) —w|<e

forz € X.

This is the standard e-§ definition.
We also pick up the following convention as a surprise tool that may help us later.

Definition 2.87 (Infinite limits). Fix f: X — C a function. Then we say the limit of f(z) as z tends to

infinity equals w, denoted
lim f(z) = w,

Z—>00
if and only if, for each ¢ > 0, there exists N > 0 such that
|z2| > N = |f(z) —w|<e
forz e X.

As inreal analysis, the -6 definition of a limit can be translated to a statement about sequences.

Proposition 2.88. Fix a € X. Then lim,_,, f(z) = w if and only if, for each {z,}neny € X such that
zn — aasn — oo, we have f(z,) = wasn — oo.

Proof. In the forwards direction, fix {2z, }neny € X such that z, — «, and we show that f(z,) — w. Well, for
any e > 0, there exists 6 > 0 such that

|z —al <d = |f(z) = f(o)] <&,
where z € X. But for this § > 0, there exists N such that
n>N = |z, —a|<d = |f(zn) — fla)] <e.

Soindeed, f(z,) — f(«).

In the reverse direction, suppose that f(z) does not approach w as z — a. Then, there exists ey > 0 such
that, forany § > 0, thereis z € X such that |z — | < § while |f(z) — w| > g¢. Well, for any n € N, taking
d=1/(n+1), we are promised z, € X such that

1
|z, — ] < mqquadand |f(zn) —w| > ep.

So to finish, we claim that z,, — awas n — oo, but f(z,,) does not approach w as n — cc.

« Foranye > 0, we note that NV := 1/c hasn > N implies
1 1 1

< —==¢g,

‘z”_a‘<n+1<N+1 N

soindeed z,, -+ vas N — oo.

» We note that g > 0 satisfies that
|f(zn) —w| > €0

foranyn € N, so no N will have n > N implies |f(z,) — w| < €¢. Thus, f(z,) does not approach w as
n — 0Q.
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The sequence {z;, } neny Now completes the proof by showing the reverse direction by contraposition. |

While we're here, we pick up the following definitions.

Definition 2.89 (Bounded). A function f: X — C is bounded if there exists R > 0 such that im f C
B(0, R).

Definition 2.90 (Bounded near). Fix a nonempty open subset Q C Cand zg € Q. Then f: Q\ {20} = C
is bounded near z if and only if

lim (z — 29)f(2) = 0.

Z—20

2.6.2 Continuity

And here is our central definition for today.

Definition 2.91 (Continuous). A function f: X — Cis continuous at z; € X if and only if, for each e > 0,
there exists § > 0 such that

|z — 20| <0 = |f(2) — f(20)| <6,

where z € X. Further, f is continuous on X if and only if f is continuous at each 2y € X.

We have the following lemma of equivalent definitions.

Lemma 2.92. Suppose that f: X — C.

(@) Then fis continuous at w if and only if every sequence {z,} C X suchthat z,, — zimplies f(z,) —

f(2).
(b) We have that f is continuous on X if and only if every open set U C C has f~!(U) openin X.
(c) We have that f is continuous on X if and only if each closed set V C X has f~1(V) closed in X.

(d) Lastly, we have that f is continuous at if and only if, for each e > 0 and z € C, we have that
f~1(B(z,¢))isopenin X.

Proof. We take the parts one at a time.

(a) We could use Proposition 2.88, but we will just do this by hand. For the forwards direction, suppose

that {z, }nen € X converges to some w. Then let ¢ > 0. By assumption, there exists some ¢ > 0 such
that

[z —w|<d§d = |f(x) — f(w)| <e.
It follows from z,, — w that there exists some N such that
n>N = |z, —w| <0 = |f(zn) — f(2)] <e,

so it follows that f(z,) — f(2).

In the reverse direction, take f not continuous at w, so there exists ¢ > 0 so that foralln € N, there
exists some chosen z,, with

on— w0 <8 = [f(20) = fw)| > .

But as z, — w, we see that f(z,) does not approach f(w), so we are done.
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(b) In the forwards direction, suppose that U C C is open, and we show that f~1(U) is open in X. Well,
suppose that z € f~1(U), and we will find 6 > 0 such that B(z,§) C f~1(U).

Well, f(z) € U, so there exists ¢ > 0 such that B(f(z),e) C U. Thus, continuity of f requires some
0 > 0 such that

lw—z2<d = [f(w) - f(z)| <e,
which implies f(w) € B(f(z),e) C U impliesw € f~1(U). Soindeed, B(z,6) C f~1(U).
In the reverse direction, suppose that each open U C C has f~1(U) is open. Now fix any z € X and
e > 0. The set B(f(z),¢) is open, so

FUB(f(2),9)

is open. But z € f~1(B(f(2),¢)), so we can find § > 0 such that B(z,8) C f~'(B(f(z),¢)). Thus,
lw— 2| < §impliesw € f~Y(B(f(2)),e) implies f(w) € B(f(2),e) implies |f(w) — f(2)| < ¢, finishing.

(c) In the forwards direction, suppose f is continuous so that U C C open implies f~*(U) C X is open.
But then, if V C C is closed, then C \ V is open, so>

FFHCAV) = fTHONFTH (V) =X\ V)
is open, so f~1(V) is closed.

In the backwards direction, suppose f~! preserves closed sets. Then, if U C Cis open, C\ U is closed,
so

FTHCNU) = FHONfHU) =X\ 1)
is closed, so f~1(U) is open. Thus, f~! preserves open sets, so f must be continuous.
(d) Inthe forwards direction, fixe > 0and z € C, so B(z,¢) isopen, so f~1(B(z,¢)) is openin X, finishing.

In the other direction fix e > 0 and z € C to consider B(f(z),e) C U. Thus, continuity of f requires
some ¢ > 0 such that

lw—z <6 = [f(w) - f(z)| <e,
which implies f(w) € B(f(z),e) C U impliesw € f~1(U). Soindeed, B(z,4) C f~Y(U).

In the reverse direction, fix U open, and we show that f~(U) is open. Well, each z € U has some ¢,
such that B(z,e,) C U. But f~(B(z,¢.)) is open by hypothesis, so

Uy =t (U B(z,sz)> = U 1 (B(z.e2))

zeU zeU
is an arbitrary union of open sets and hence open. |

And here are some special examples.

Example 2.93. Fix some 2y € C. Then f(z) := |z — 2¢| is continuous on C. Indeed, fix any w € C. Then
foranye > 0, we set § .= e sothat |z — w| < § implies

1£(2) = f(w)| = ||z — 20| = |w = 20]| < |z —w| < d =e.
Example 2.94. The functions Re and Im is continuous. Indeed, fix any w € C. Then, for any e > 0, take
0 :=esothat |z —w| < d implies
|Rez —Rew| =|Re(z —w)| < |z —w| < =¢,

and similarly,

[Imz — Imw| = |Im(z —w)| < |z —w| < J =¢,

Continuous functions also have some arithmetic.

3Tosee f~1(A\B) = f~1(A)\ f~1(B), notethatz € f~1(A\ B)ifandonlyif f(z) € A\ Bifand onlyif f(z) € Abut f(z) ¢ B
ifandonlyifz € f~1(A) butz ¢ f~1(B).
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Proposition2.95. Fix f, g: X — Ctofunctions continuousatzy € X. Then f+g, f-gare both continuous
at zp € X, and f/g is continuous at 2 provided g(zg) # 0.

Proof. The point is to appeal to the corresponding results on convergence of sequences. In particular, we
use the idea that f is continuous at 2 if and only if each sequence z,, — 2o in X has f(z,) — f(20). We omit
the details because they are essentially the same as in a real analysis class. |

Corollary 2.96. Every polynomial in one variable is a continuous function X — C forany X C C.

Proof. Note that  — =z is continuous, so by induction 2z — 2™ is continuous for each n € N. Taking a
C-linear combination gives arbitrary polynomials. |

Here is another sort of arithmetic.

Lemma 2.97. The composition of two continuous functions is continuous.

Proof. Omitted. [ |

2.6.3 Connectedness

We want to build towards a particular type of continuous function.

Proposition 2.98. Fix X C C a connected subset. Then a continuous function f: X — C has connected
image f(X).

Proof. The main point is to use the topological characterization of continuity. In particular, suppose that
f(X)isdisconnected, and we show that X is disconnected. In particular, suppose that U; and U; disconnect
f(X), and we have that f~1(U;) and f~1(Uz) disconnect X. We will not run all the checks here; the main
pointis that f~(Uy) and f~1(Us) are open because f is continuous. [ ]

Definition 2.99 (Path). A pathin C is a continuous function v: [a, b] — C where a < b are real numbers.

Definition 2.100. We say that a path v is closed if and only if yv(a) = (b). We say that v is simple if and
only if v: (a,b) — Cis injective.

Remark 2.101. The point of restricting - to the open interval at the end so that closed, simple paths are
allowed to exist.

Example 2.102. Here is a path.

44



2.6. FEBRUARY 4 185: INTRO. TO COMPLEX ANALYSIS

Example 2.103. Here is a closed path.

Example 2.104. Here is a simple path.

Example 2.105. Here is a closed, simple path, also called a loop.

Definition 2.106 (Concatenation). Fix v1: [a,b] — C and ~3: [¢,d] paths in C such that v1(b) = 72(c).
Then we define the concatenation of 4, and 5 to be

)@ t € la,b],
(n*72)(8) = {'yg(t—b+c) teb,d—ctb)

The main point is that we are doing one path after the other.

Example 2.107. The following shows an example concatenation of ; * 2, where v, v2: [0,1] — C.

t=2

t=1 Yo

The entire path is v1 * vo.
Paths give us the following notion.

Definition 2.108 (Path-connected). A subset X C Cis path connectedif and only if, for any two zg, z; €
X, there exists a path v: [0, 1] — X such that 4(0) = z¢ and (1) = 2.

Lemma 2.109. The open ball B(z,r) and closed ball B(z,r) are both path-connected.

Proof. The pointis that B(z,r) and B(z,r) are both convex, so the path
~¥(t) == 2o + t(21 — 20)
will work. [ ]

Here is the basic result.
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Proposition 2.110. A space X is path-connected implies that X is connected. If X is open and con-
nected, then X is path-connected.

Proof. We will show this next class. [ ]

2.7 February7

Good morning everyone. A few announcements.
« Homework #3 is due on Friday.
» There will be no in-person class on Wednesday or Friday.

« Office hours this week are today (1:00PM-2:30PM) and tomorrow (2:00PM-3:30PM).

2.7.1 Connectedness

Today we're going to talk more about continuous functions.
Last time we ended with the following proposition.

Proposition 2.110. A space X is path-connected implies that X is connected. If X is open and con-
nected, then X is path-connected.

Proof. We do these separately.

» Suppose that X = U; U Us is disconnected, and we show that X is not path-connected. Namely,
we have Uy, U; C X open subsets (in X) which are disjoint and nonempty. Because U; and U, are
nonempty, find x; € Uy and x5 € Us.

However, we claim there is no continuous path «: [0,1] — X with v(0) = z; and (1) = 2. Indeed,
the image of ([0, 1]) must be connected, but then we can disconnect v([0, 1]) by U; and Us: ([0, 1]) C
Uy UUyand ze € U, ﬁv([O, 1]) andU;NU, = @.

At a high level, here is the image that a disconnected X cannot have a path between any two pair
points: there is no possible red path below which stays in the gray region.

Us
« Suppose we have a point z € X, and we set

C(z) = {w € X : there s a path from z to w}.

We claim that C(z) is closed and open in X, which will force C'(z) = X because X is connected and
C(z) is nonempty (z € C(z) by the trivial path v: ¢t — 2).

We start by showing C(z) is open: because X is open, there exists » > 0 such that B(w,r) C X. But
with w € C(z), there will be a path between any pointin p € B(w, r) and w, so there is a path from z
to w to p. Here is the image.
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Now we show that C(z) is closed. Suppose that w € X \ C(z), and we have to show that there is an
open ball around w in X \ C(z). To see this, fix an open ball B(w,r) C X for r > 0, but now there
can be no path from z to anywhere in B(w, '), for then we could just run the above argument again to
show that w € C(z). [ |

Remark 2.111. The proof for the second part merely needs X to be locally path-connected, not a metric
space.

Corollary 2.112. We have that C is path-connected and therefore connected.

Proof. Given any two points z, w € C, we choose the path ~v: [0,1] — C by
v(t) =tz + (1 —t)w.

Indeed, v(0) = wand (1) = z,and v is somewhat clearly continuous by, say, checking component-wise. W

2.7.2 Compactness

Let's do compactness better this time.

Lemma 2.113. Fix X C C (sequentially) compact. Then X is both closed and bounded.

Proof. We start by showing X is closed. For this, we show that X contains all of its limit points.

Well, suppose that z € X is a limit point so that we have a sequence {z, }»en € X such that z, — z. But
by the (sequential) compactness of X, this sequence has a convergent subsequence {z,, }»en Which does
converge in X. But any subsequence will converge to the same limit (!), so z,, — zaswell, so z € X is
forced.

We now show that X is bounded. We proceed by contraposition: if X is unbounded, then foranyn € N,
thenwe can findsome z,, € X\ B(0,n). But then we can check that {2, },,en has no convergent subsequence,
essentially because it tends off to infinity. [ |

Our goal for the rest of class is to prove the following two results.

Proposition 2.114. A subset X C Cis (sequentially) compact if and only if it is closed and bounded.

Theorem 2.115 (Heine—Borel). A subset X C Cis (sequentially) compact if and only if every open cover
of X has a finite subcover.

On the homework, we showed the backward direction of Theorem 2.115.
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Remark 2.116. Our hope is to have lots of equivalent characterizations of compactness so that we can
have easier proofs of statements about compact sets.

To start off, here are some lemmas we will need.

Lemma 2.117. Fix X C C (sequentially) compact. For any e > 0, there exist only finitely many points
21,...,2n € X such that

X ¢ |J B(zr,e).
k=1

Proof. The point is to build some inductive argument: one fixes an ¢ > 0 and then continues choosing
random points out of X until we cover X. Indeed, if the process does not terminate, then the sequence we
generate has no convergent subsequence.

Rigorously, if X is empty, then just choose no points at all and be done. Otherwise, we can find some
z1 € X. Inductively, suppose we have a sequence {z1,..., zm }. If

s

XQ B(Zk,é‘),

k

1

then we are done. Otherwise, we can find 2,11 € X \ Up_, B(zk, ).
If the above inductive process terminates, then we get the result. Otherwise, thereis a sequence {z;, } nen

such that
Zn+1 € X\ U B(Zk,E).
k=1

We claim that {z,, } nen has subsequence converging in X . Indeed, suppose for the sake of contradiction that
zon — z for some strictly increasing o and z € X. Then there exists N such that n > N implies

|2on — 2] < €/2.
But then, finding some n + 1,n > N, we have

‘Za(n+1) - Zan| < |Z(T(n+1) - Z‘ + |Zan - Z| <g,

o)
o(n+1)—1
Zo(nt1) € U B(zk,¢),
k=1
which is our contradiction to the construction of z,. [ ]

Lemma 2.118. Fix X C C (sequentially) compact with some open cover i of X. Then thereisane > 0
such that, for every z € X, thereis U € U such that B(z,¢) C U.

Proof. Suppose that, forall e > 0, there exists some z € X suchthatnoU € U has B(z,e) C U. We
construct a sequence in X with no subsequence converging in X. Indeed, foranyn € N, we find z,, € X
such thatno U € U has B(z,,1/n) C U. We claim that {z,, },en has no subsequence converging in X.

Indeed, suppose that we have z € X and strictly increasingo: N — Nsuch that z,,, — z. We will then be
able to find some z,, such that B(z,,,1/n) C U for some U € U, which will be a contradiction. Indeed, z € X,
and U covers z, so thereis some U € U with z € U. In fact, U is open, so there isan e > 0 such that

B(z,e) CU.
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Now, there is N such that for n > N, we can guarantee that |z — z,| < /2. Further, forn > 2/¢, we have
1/n < e/2.Son > max{N,2/e} will have on > max{N, 2/c}, implying

lw—2,] <1/n<e/2 = |w—z|<|w—2z,]+ |z —2,] =6 = w e B(z,¢) CT,
so B(zn,1/n) C U. This contradiction finishes. |

This is saying that there is a universal e that we can find for our open cover.

Lemma 2.119. Fix X a bounded set. Then, for any ¢ > 0, there exist finitely many points zy, . .., z, such
that

C s

X C B(zg,€).

k=1

Proof. The point is to reduce this to the case of [ M, M]? which can cover X because X is bounded, and
then we can create the cover for X by hand. |

Now let's attack one of our equivalent conditions for compactness.

Proposition 2.114. A subset X C C is (sequentially) compact if and only if it is closed and bounded.

Proof. The forwards direction we have already done.
In the backwards direction, suppose that {z, },eny C X is some sequence. Our main goal is to construct
a convergent subsequence. Because X is bounded, we can choose wy 1, ..., w; ¢, such that

15

X ¢ | B(wix,1/2).
k=1

Now, because {z, } nen is infinite, there must be some index wy = wy x, such that
Li={neN:z, € Bwi,1/2)}

is infinite. The important point is that {z, },c, has formed a subsequence which lives inside a ball of radius
1/2. We can continue this process: again using our bounded condition, we can find some ws 1, ..., w2, €
B(w1 k,,1/2) such that

£2
B(wi k,,1/2) € | Blwak, 1/4).
k=1

Then we can choose L, from here by choosing one of the ws ;, with infinitely many indices. Continuing this
process forces our sequence to converge.
To more explicitly appeal to choice, we note that we can always find some sequence {wy;} C X such

that
¢

X ¢ | Blwg,i,1/29),
k=1

but L;_ is infinite, so there is a specific wy, := wy, ; such that
L; = {TL e L 1: |Zn — wk‘ < 27]6}

is infinite. To actually construct our sequence from these infinite subsets, we define a choice function over
ourindices: define p: N — Nsuch that p(n+1) is the smallest number exceeding ¢(n) with p(n+1) € L, 4.
Then we know that

|Z¢(n) — wk| <2 "
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foreach1 < k <n. Thus, forn > m > N, we have

12p(n) = Zpm)| < [2p(n) = Wm| + [2p(n) — wm| <227 < 27N,

so forany e > 0, we can choose N := 1 — log, ¢ sufficiently large so that n,m > N implies

|Z¢(ﬂ,) — Zgo(m)‘ < 27N+ — ¢,

It follows that the subsequence defined by ¢ is Cauchy and hence converges. But because X is closed, any
convergent sequence in X will be in X, so our sequence in X has a convergent subsequence. |

2.8 February9

2.8.1 More Compactness

To wrap up from last class, we show the following.

Theorem 2.115 (Heine—Borel). A subset X C Cis (sequentially) compact if and only if every open cover
of X has a finite subcover.

Proof. The direction that sequentially compact implies closed and bounded was done on the homework.

We focus on the other direction. Fix &/ an open cover of X. By Lemma 2.118, we know there exists
e > 0 such that, for each z € X, there is some U € U such that B(z,e) C U. Butin fact, with thise > 0,
Lemma 2.119 tells us that there exists finitely many points z1, . .., z, such that

14

X C U B(zg,€).
k=1

But now, finding Uy, such that B(zx,e) C Uy (possible by construction of €), we see that {Uk}f;:l will be our
finite subcover. [ ]

Remark 2.120. The conclusion of the above theorem is the usual notion of compactness, so | will stop
writing “(sequentially)” whenever | say “compact.”

Let’s see a use for our definitions of compactness.

Corollary 2.121. Let X C C be a compact space and f: X — C continuous. Then f(X) is compact.

Proof. Give f(X) some open cover . Because f is continuous, we see that

{7 W}ye

is an open cover for X. But X is compact, so we can find some finite subcover {U;}7_; C U so that
{f‘l(Uk)}::1 covers X. But then the {U; }7_, will cover X by taking the union over our open subcover. W

2.8.2 Uniform Continuity
The point of uniform convergence is to make fewer choices in our notion of continuity.

Definition 2.122 (Uniform continuity). Fix X C C a nonempty subset. Then a function f: X — Ciis
uniformly continuous if and only if, for each ¢ > 0, there exists a single § > 0 so that z,w € X have

2 —w|<d§d = |f(2) — f(w)]| <e.

Importantly, this definition has 6 not depend on either z nor w, where continuity would allow  to depend on
one of them.
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Example 2.123. The functions id¢ and z — % are both uniformly continuous on C. Letting f be either of
these functions, we see that, for any ¢ > 0, we may take |z — w| < € to imply

1f(2) = f(w)| = |z —w| <e.
Here is a nice result.

Proposition 2.124. Fix X a nonempty, compact subset. Then any continuous function f: X — Cis
uniformly continuous.

Proof. The pointis to let § — 0 until we can fit some prescribed ¢ bound. Choose § = 1/n as n varies over
positive integers, and we imagine fixing sequences {z, }5; and {w, }32, such that

|2, — wp| < 1/n.

Now we use the sequential compactness of X, which forces {z,,}22 ; to have a convergent subsequence, so
we conjure « € X and a strictly increasing o : N — Nsuch that z,,, = @asn — oc.
We now claim that w,, — « aswell. In particular, forany § > 0, there is some N; so thatn > Ny implies

|2om — ] < d/2.
Choosing N to be larger than N7 and 2/6, we see that n > N will have

| 1< |+] L 81 0 0,0
Won — O] X [Zon — Wo Zon — & — - < — — — - =0,
" " " " on 2=n 2°27 2

so indeed w,,, — aasn — oo.

Only now we suppose for the sake of contradiction we have some ¢ > 0 such that any 6 > 0 has some z
and w such that |z —w| < d actually has | f(z) — f(w)| > e. Taking ¢ := 1/n, we are promised some sequences
{zn}52; and {w,, }52; so that

|2n, — wy| < and |f (zn) — fwy)] > e.
Using the above machinery, we see that z,,, - aand w,, — a force f(z,,,) — f(a) and f(wen) — f(a) by
continuity of f, but the sequences f(z,5) and f(w,,) are supposed to be ¢ far apart! Explicitly, we can find

sufficiently large Ny and N5 such that

n> N = |f(zon) — o] <e/4,
n> Ny = ‘f(wan)_a|<5/47

which by the triangle inequality means that any n > max{Ny, N2} will give
e ¢
‘f(zon) - f(wan)| < ‘f(zan) - a| + |f(won) - 04| < Z + Z <g,

which is a contradiction to the construction of z,,, and wg,. [ |

2.8.3 Uniform Convergence

We next talk about uniform convergence for functions. Here is our starter pack.

Definition 2.125 (Sequence of functions). Fix X C C a nonempty subset. Then a sequence of functions
{fn}nenisafunction p: N — (X — C). Namely, for each n € N, we are given a function ¢(n): X — C.
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Definition 2.126 (Pointwise convergence). Fix {f,}»en @ sequence of functions X — C. Then {f,}
converges to some g: X — C pointwise if and only if, for each z € X, we have f,,(z) — g(z) asn — oc.
We write this as f,, — g¢.

This is called pointwise convergence because we are only checking convergence at each individual point
z € X, without caring about the larger structure of the function. This will cause problems later but not
now.

Definition 2.127 (Bounded). We say that a function f: X — C is bounded if and only if f(X) C Cis
bounded. In other words, there is some M > 0 so that f(X) C B(0, M).

Definition 2.128 (Uniform convergence). Fix { f, }nen @ sequence of functions X — C. Then {f,} con-
verges to some g: X — C pointwise if and only if, for each ¢ > 0, there is some N so that

n>N = |fu(2) —g(2)l <&

foreach z € X.

The uniformity here is that the value of N is no longer allowed to depend on z. Here is an alternate defini-
tion.

Proposition 2.129. Fix { f,, }»en @ sequence of functions X — Cand g: X — C some function. Then
{fn}nen converges uniformly to g if and only if

lim sup{|f,(z) = g()[} = 0.
W=D Z2K
Proof. We take the directions independently.

« In the forward direction, we know that there is an N; so that n > N; implies each z € X has

[fn(2) —9(z)| < 1.

In particular, forn > Ny, the set {|f.(z) — g(2)| : z € X} is bounded above by 1, so the supremum will
exist; set y,, = sup{|fn(2) — g(2)| : z € X} so that we want to show y,, — 0asn — cc.

More generally, for any € > 0, there exists some N so that n > N implies

lfn(2) —g(2)| <e/2.

So n > max{Ny, N1}, we will have that y,, = sup{|f.(z) — g(2)| : z € X} both exists and has y,, <
€/2 <e.Sowedogety, — 0asn — oo.

+ In the reverse direction, set y,, := sup{|fn.(z) — g(z)| : € X} so that y,, — 0asn — oco. Namely, for
each e > 0, there exists some N so thatn > N hasy, < e. In particular, we see n > N has

[fn(@0) = g(wo)| < sup{[fn(z) —g(2)] : x € X} = yn <e

foreach zy € X. Soindeed, f,, converges to g uniformly. [ ]

2.8.4 Distances Between Functions

Later in life it will be nice to view functions as forming a metricunder d(f, g) := sup{|f(z) — g(x)|}. However,
this supremum need not only exist; here is one condition in which it does.
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Lemma 2.130. Fix f, g: X — C bounded functions. Then sup{|f(z) — g(z)| : € X} exists.

Proof. Because f is bounded, there exists My so that each z € X has |f(z)| < My. Similarly, because g is
bounded, there exists M, so that each z € X has |g(z)| < M,. It follows that, for each z € X,

[f(x) = g(2)| < [f(2)| + |g(2)| < My + My,

so the set {|f(z) — g(x)| : = € X} is bounded above and in particular has a supremum. |

Proposition 2.131. Fix f, g, h: X — C all bounded functions. Then

jlelg{lf(w) — h(2)[} < jgg{\f(w) —g(@)} + jlelg{Ig(m) — h(z)[}-

Note that all the suprema above exist by Lemma 2.130

Proof. The point is to reduce to the typical triangle inequality. Indeed, for any 2 € X, we see that

|f(x) = h(@)] < |f(x) — g(x)] + |g(x) — h(z)|.
Thus,
sup{|f(z) = h(z)[} < sup{|f(z) — g(z)| + |g(x) — h(z)[}
zeX zeX
< sup{[f(z) — g(2)[} + sup{|g(x) — h(z)[},
zeX rzeX
which is what we wanted. We have used the fact that sup(4 + B) < sup A + sup B for A, B C R, which

is not hard to show: ifa +b € A+ B,thena < supAandb < supB,soa + b < sup A + sup B; thus,
sup(A + B) < sup A + sup B.* [ ]

Remark2.132(Nir). Viewing Lemma 2.130 as providing a distance metric on the space of bounded func-
tions X — C, the above proposition proves the triangle inequality for this metric. The other checks as
follows; fix two bounded functions f,g: X — C.

» Note that sup{|f(z) — g(z)| : « € X} = 0ifand onlyif |f(z) — g(z)| = 0 forallz € X if and only if
f=g9

« Notethat |f(x) —g(z)| = |g(x) — f(z)|foreachz € X, so{|f(x)—g(z)| : z € X} = {|g(x) — f(z)| :
x € X}, so they also have equal suprema.

We can also build a Cauchy criterion for uniform convergence.

Proposition 2.133. A sequence of functions {f, }nen @ sequence of functions X — C. Then {f, }nen
converges to some function uniformly if and only if the quantity sup, ¢ x { f(2) — fm(x)} exists and, for
any € > 0, there exists some N so thatn,m > N implies

sup{|fn(z) — fm ()|} <e
zeX

foranyz € X.

#Infact, sup A+sup B < sup(A+B) aswell. We show sup A < sup(A+B)—sup B. Fixinga € A, weneeda < sup(A+B)—sup B,
so we show sup B < sup(A + B) — a. Fixingb € B, we need b < sup(A + B) — a, which is clear.
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We note that the hypothesis that the supremum exists can be removed if the functions are presupposed to
be bounded.

Proof. We again take the directions independently.

» Suppose that the sequence of functions {f,, },en converges to a function g uniformly. Then, for any
¢ > 0, we are promised some N so thatn > N will have

[ful(z) — g(z)] <e/4
forany z € X. In particular, forany n,m > N, we see

[Fa(@) = Fan@)] < [Fa(@) = 9@)] + [fun(@) — g(@)| < T+ = 5,

SO c
sup{|fn(z) = fm(2)[} = 5 <&,
reX

which is what we wanted.
« There are two steps.

- We begin by constructing g. Well, for each z € X, we note that any £ > 0 will have some N so
that n,m > N implies

[fn(2) = fm(2)] < jlelg{Ifn(x) — fm(2)[} <,

so the sequence {f,(x)}ncn is @ Cauchy sequence and hence converges in C. We define g(z) to
be the limit of f,,(x) asn — occ.

- Next we show the uniform convergence. Fix some & > 0. Then we are promised some N so that
n,m > N has

sup{|fn(z) = fm(z)[} <e.
reX
In particular, foranyxz € X

fu(x) —g(z) = lim (fu(z) — fm(z)),

m—r o0

so because z — |z| is continuous, any n > N will have
[fa(2) = g(@)] = lim |fn(z) = fm(@)] < lim sup{[fn(2) = fn(2)]} < lim e=e,
m (oo} m OQZGX m—ro0

where the last inequality holds by taking m sufficiently large (that is, m > N). So we have been
provided uniform convergence. [ |

Remark 2.134 (Nir). In the language of metric topology, the above proposition asserts that the space
of (bounded) functions is metrically complete. For this, one must technically show that { f,,},.cn being
bounded implies that the convergent g is bounded, but this is not hard: there is N so that n > N has
|fn(x) —g(x)] < 1foreachz € X.

Remark 2.135. In lecture, Professor Morrow asserted that we require these functions to be bounded. |
do not think this is the case; indeed, the above proof never uses this hypothesis.

We close with one result which shows that uniform continuity is nice.
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Proposition 2.136. Fix { f,, } ey @ sequence of functions X — Callcontinuousatsomez € X. If { f, }nen
converges uniformly to some function g: X — C, then g is also continuous.

Proof. The idea is to well-approximate g by f,;s. Fix any e > 0. By the uniform convergence, there will be
some N so that

|fn(2) —9(2)| <¢/3

foranyn > N and z € X; fixsomen > N. Because f, is continuous, we are promised some ¢ > 0 (allowed
to vary with our chosen z € X) so that

[z —2| <6 = |fu(2) = fu(z)| <&/3

forany z € X. Well, if |z — z| < §, then the triangle inequality gives

9 3 9

1902) = 9@ < 19(2) = Fal2) + £a2) = Fal@)] +fule) — () < S+ 2+ 5 =,

which is what we needed. [ |

Remark 2.137 (Nir). In fact, if the { f,, } nen are uniformly continuous, then g will also be uniformly con-
tinuous. The argument is similar.
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THEME 3
DIFFERENTIATION

| turn with terror and horror from this lamentable scourge of
continuous functions with no derivatives.

—Charles Hermite

3.1 February11

The wheel of time marches on. Today, we actually start talking about complex analysis.

3.1.1 Differentiability

We are going to talk about holomorphic functions.

Convention 3.1. We set Q) to be some open subset of C.

This gives the following definition.

Definition 3.2 (Differentiable). Fix an open subset Q € C and f: Q — C a function. Then f is complex
differentiable at zy, € Q with derivative o € C if and only if
f(20 + ) — f(20)

lim =a.
h—0 h

We write this as f/(z9) = «.

If /" is itself a differentiable function, then f would be “twice” differentiable, and we denote this function by
f”. In general, if f can be differentiated n times, we denote the corresponding function by f().

@ Warning 3.3. In the definition of complex differentiability, we are taking the limit with i € C, not h € R.
This will make complex differentiability significantly more structured.

Differentiability gives rise to the following definition.
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Definition 3.4 (Holomorphic, entire). Fix an open subset @ C Cand f: Q — C a function. Then f is
holomorphic on Q if and only if f is complex differentiable at each z5 € C. If Q = C, then we say f is
entire.

Here is a small usual lemma.

Lemma 3.5. Fix an open subset Q C Cand f: Q@ — C a function. Then if f is differentiable at 2y € Q,
then f is continuous at z; € C.

Proof. We compute that

Jim, () = Seo) = Jig =T o)
* }11_)0 f(ZO + h]F)L - f(ZO) 215120(2 _ ZO)
= f'(20)- 0

It follows by rearrangement that lim,_,., f(z) = f(z), which is what we wanted. Notably, = sets h =
Z — 20. |
3.1.2 Basic Properties

As usual, differentiable functions have an arithmetic.

Proposition 3.6. Fix an open subset 2 C Cand f, g: Q — C functions differentiable at zy € C.
(@) We have that (af + bg)' (20) = af'(20) + bg'(20), where a,b € C.
(b) We have that (fg)'(20) = f'(20)9(20) + f(20)g’(20)-

(c) If ¢’(20) # 0, then
f'(20)9(20) — f(Zo)gl(Zo).

(f/g)/(ZO) = g(zo)g

Proof. We copy the proofs from real analysis.
(a) We check that

im (@f H09)(0 +h) + (af +b9)(z0) _ o Flzo+h) 4 F20) g
h—0 h h—0 h h—0

=a- f'(z0) +b-9'(20),

9(20 + h) — g(20)
h

which is what we wanted.
(b) The key idea is to add and subtract f(z¢)g(z¢ + h). Indeed, we see
(f9)(z0+h) — (f9)(20) _ lim f(z0+h)g(z0 + h) — f(20)g(20 + h)

illli% h h—0 h
4 1im f(20)g(20 + h) — f(20)g(20)
h—0 h

- <}111L% flzo + h})L — f(20) (%i_%g(zo + h))
T fz0) (%ii% sleo + ) - g(z@)

= f'(20)9(20) + f(20)g' (20);
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which is what we wanted.

(c) This will follow from applying the product rule to f - %, where we can compute the derivative of é by
the chain rule. We refer to Eterovic's notes for the details. |

Remark 3.7 (Nir). Technically part (c) will require us to compute the derivative of f(z) := % for z # 0 to

finish the proof. Well, forany z € C\ {0}, we see that ’

f+h)—f(2) Zm—3 z-(z+h) 1

h h hz(z+h)  z(z+h)

Taking h — 0 reveals that the derivative is in fact f/(2) = — 2.

22
Let's give some examples of entire functions.

Exercise 3.8. Fix n some positive integer. We show that the function f(z) := 2™ is entire with derivative
f(z) = nz""L.

Proof. We employ the usual proof involving the binomial theorem. Note that

fe+h)=(z+n)" = Z (Z)anhk

k=0
so
F+R) = f(2) =P ok
= ; i Z"TRRET
where notably the & = 0 term was killed by the —f(z). Thus,
. flz+h)—f(z) ol 0 Y N ST

but all terms except & = 1 will now vanish as h — 0, so we are left with nz"~! as our limit. |

Remark 3.9 (Nir). One could also show this by induction, using the product rule.

Corollary 3.10. Any polynomial function is entire.

Proof. Polynomials are (finite) linear combinations of the monomials f,,(z) := 2", so this follows from com-
bining the above two results. |

3.1.3 Advanced Properties

We also have a notion of L'Hépital’s rule.

Proposition 3.11 (L'Hopital’s rule). Fix Q C C an open subset with f, g: Q — C holomorphic functions.
Then, given zo € Q with f(z9) = g(z0) = 0 while ¢'(z0) # 0, we have that

1) _ f'(z)

1m .
2=z g(z)  g'(z0)
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Proof. Note that, because f(z9) = g(z0) = 0, we see that

f'(20) = lim @) and  ¢'(20) = lim M
z2—20 Z — 20 Z7zZ0 2 — 20

Dividing, we see that
oSG FEG=z0) P )

)

=20 g(2) 2o 9(2)/(2 = 20)  ==w0g'(20) 9 (20)

which is what we wanted. [ |

Remark 3.12 (Nir). The above proof technically does not work because we have not ruled out the possi-
bility that ¢ might vanish arbitrarily close to zy, thus making the limits not actually make sense. We will
not fix this problem, but we will remark that a holomorphic function will only have finitely many zeroes
on a compact set, which we could use to create a neighborhood for z5 on which g doesn’t vanish.

And here is our chain rule.
Proposition 3.13 (Chain rule). Fix Q and U open subsets of C with functions f: Q@ — Uand g: U — C.

Further, suppose that f is differentiable at zg € Q and that g is differentiable at f(z9) € U. Then (g o f)
is differentiable at zy with derivative

(g0 ) (20) = g'(f(20))f"(20)-

Proof. This proof is long, so we will try to be brief. The main idea is to consider the auxiliary function r: U\
{f(20)} — C defined by

() = g(w) = g(f(20))
' w — f(20)

We extend r to f(zp) by setting r(f(20)) := 0. Now, the differentiability of g at f(zo) implies that

lim 9) —9(f(20))

220 Z— 20

—9'(f(20))-

= gl(f(zo)),

so in particular rearranging implies that r is continuous on at f(z) € U.
The reason we used the letter r is that we should think of r as a remainder term. Indeed, we see

g(w) = 9(f(20)) = ¢'(f(20))(w = f(20)) + r(w)(w = f(20))-
Plugging inw = f(z), we get

9(f(2)) = 9(f(20)) = ¢'(f(20))(f (2) = [ (20)) + r(f(2))(f(2) = [ (20));

so
9(f(2)) —9(f(20)) _ §(f(z0)) - f(z) = f(=0) L r(f(2)) - f(z) = f(z0)

Z— 20 Z— 20 Z— 20

Sending z — z¢p makes the rightmost term vanish by continuity because r(f(z0)) = 0 and the limitis f'(zo),
so we are left with

(g0 f) (20) = ¢'(f(20))f'(20),

which is what we wanted. [ ]
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Remark 3.14 (Nir). Let's complete the proof of quotient rule. Note that the derivative of ﬁ will be, by
the chain rule, —— L5 - ¢/(2). Thus, the derivative of £} = f(2) - > will be
1 9'(z) _ ['(2)g9(2) — f(2)9'(2)
"(2) - — — f(z =
P& 5@ 19 g o

And we finish with a result which is less common in real analysis, essentially saying that differentiable func-
tions are "approximately” linear.

Proposition 3.15 (Carathéodory). Fix Q C C an open subset with a function f:  — C and point 2y € Q.
Then f is differentiable at 2, if and only if there exists a function h: @ — C which is continuous at z
such that

f(2) = f(z0) = h(2)(z = 20).

In particular, h(z9) = f'(20)-

Proof. We show the directions independently.

« Suppose [ is differentiable at z5. We construct the function 4 manually. We define

1 (20) z = zp.

h@%:{uwwwuwww—%>zeﬂ\wd,

In particular, we note that & is continuous at zy because h(z) — f/(z0) as z — zg by differentiability of

f.

« Suppose his such a function. Then

lim f2) = F(z0) = lim h(z) = h(zp)

Z—20 zZ— 20 zZ—20

by continuity. Formally, the first equality is holding for the limitin Q \ {20}, and the second equality is
continuity for Ao\ (2,}-

To finish, we note that the second part shows that h(zg) = f/(20)- |
3.2 February14
Happy Valentine's Day, | suppose. Homework #4 is due on Sunday. Homework #5 will be released on Friday.

3.2.1 Motivating Cauchy-Riemann Equations

Today we're talking about the Cauchy—Riemann equations.

Idea 3.16. The Cauchy—Riemann equations are necessary conditions for a function to be holomorphic.

@

In fact, they will be sufficient as well, but we will only see this next class.

Throughout today’s class, we will fix Q@ C Ca nonempty open subset. We recall that a function f: Q@ — C
is “differentiable” at some zy € Q if and only if the limit

lim flzo+h) = fz0) _ lim f(2) = f(20)

h—0 z=zo 2 — 2
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exists. If it exists, we denoted it by f/(zy), though we will not assume it exists yet. If we fix Az := z — 2y, then

we can write the above as

z—z0 Az

Now, to motivate our discussion, we recall that under the isomorphism C = R? with basis {1,i}, we can
define u(x,y) == Re f(z + yi) and v(z,y) = Im f(x + yi) where u,v: R? — R so that

[z +yi) = u(x,y) +iv(z,y).

The point of this is to encode some geometry directly into our set-up.

Example 3.17. Given f(z) = 22, we can plug in

fla+yi)=(@+yi)® =2 -y’ +i 22y
—_ =~

u v

Now that we're moving things to R?, we will fix zg = z¢ + yoi for 2g,y0 € R with z = 2 + yi so that
Az = (x— o) + (y — yo)i = Az + iAy. And for a little more convenience, we fix Aw == f(zo + 2) — f(20) so

that A
#'(20) = lim 2w

zZ—2z0 AZ’
if the limit exists. Expanding out f into real and imaginary parts, we find
Aw = (u(wo + Az, yo + Ay) — u(wo,y0)) + i(v(zo + Az, yo + Ay) — v(w0, Y0))-

Now assume that f is inf act differentiable at 2 so that f/(zo) will actually exist. Our key idea to continue is
to split up the limit into real and imaginary parts because it will exist if and only if the limits of the real and
imaginary parts exist. So we note

Aw
/ — -
f (ZO) o AI;%O Az

Aw Aw

= i —)+i Im ( =—

(Am,lAIS)HO Re < Az > T (Am,lAIS)HO o ( Az ) ()
We will now compute this limit in two ways to get the Cauchy—Riemann equations, as follows.
ABY

Axr =0

These are probably the easiest two limits that we could think of, so it's nice that they will be so useful.
Anyways, here is our working out.

+ Weset Ay = 0so that Az = Ax. This gives

Aw  u(zo + Az, y0) — u(wo, yo) s v(zo + Az, y0) — v(xo, Yo)

Ax Ax Az
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On one hand, we can use (x) to show the real part comes out to

A A _
RC f/(ZO) = hm RC ( w) = hm U(,IO + ) yO) ’LL(J,‘O7 yO)
(Az,Ay)—0

Az

Az—0 Az

This limit must exist because f is differentiable at 2z, and when this limit exists, the rightmost limit is
called the partial derivative u;(zo, yo)-

On the other hand, the imaginary part comes out to

. Aw . v(xo + Az, y0) — v(zo, Yo)
Imf'(z0) = lim Im(°—]=1 : :
m f*(zo) (Aw A0 (Am) Arso Az ’

which comes out to v,.(zg, yo) because we know that the limit exists.

Soin total, we see f'(z0) = uz(T0,y0) + 7 - vo(T0, Yo)-

« We set Az = 0 so that Az = iAy. Be warned that an unexpected sign is about to appear from this i.
This time we get
Aw _ u(zo,yo + Ay) —u(zo,y0) | . v(Zo, Y0 + Ay) — v(zo,Y0)

Ar iAy Tt iny

To “rationalize” the deminators, we write

Aw v(@o, Yo + Ay) — v(zo,%0) i u(zo, yo + Ay) — u(zo, yo)
Az Ay Ay 7

where we are using 1/i = —i. Note that the us and vs have swapped from the last computation!
We now compute our limits. On one hand,

. Aw . v(zo, Yo + Ay) — v(wo,Y0)
Ref'(z) = 1 Re(——)=1 : ’
ef(z0) = Jlim  Re ( AZ) AyS0 Ay ’

which is vy (9, yo) because the limit exists. On the other hand,

. Aw . u(zo, Yo + Ay) — u(xo, yo)
Im f = 1 Im{— ] = lim — : :
m f'(29) ( 17112) o ( z) 11! o ” ,

which is —u, (29, yo) because the limit exists.

Soin total, we see f’(Z()) = Uy ((E(), y()) — Z’LLy (.’ﬂo, y()).

Remark 3.18. Either equation itself is pretty useful to actually compute formulae for the derivatives.

Synthesizing, we see
f(20) = uz (20, y0) + i - va (w0, 90) = vy (w0, Yo) — ity (T0,Yo)-

Comparing real and imaginary parts, we get the following.

Theorem 3.19 (Cauchy—Riemann). Fix 2 C C a nonempty open subset and f:  — C a function differ-
entiable at some zy = g + yoi € C. If we write f(x + yi) = u(x, y) + i(x,y), then

ua:(x()ayo) = Uy(l'OuyO)a
vac(x()ayo) = 7uy(x07y0)'

In fact, f'(20) = uaz(z0,%0) + 1vz(z0,Y0) = vy(x0, Yo) — tuy(zo,Yo)-

Proof. This follows from the above discussion. [ ]
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3.2.2 Examples

Let's see some examples to be convinced of the utility of Theorem 3.19. Let's start by checking that some-
thing is differentiable.

Example 3.20. Take f(z) = 22 so that
(z +yi) = (z+yi)* = (2° — y?) +i(22y)

so that u(z,y) = 22 — y? and v(z, y) = 2xy has f(x + yi) = u(x,y) + iv(z,y). We know that f is entire
(it's impossible), so picking up any z = = + yi € C, we compute

Uz (T, y) = 22 = vy(x,y) and ve(z,y) = 2y = —(—2y) = —uy(zo, Yo),
verifying Theorem 3.19. In fact, we can see that f'(z) = uy(z,y) + v (z,y) = 22 + 2yi = 2z.
And now let's see something which isn't differentiable.

Example 3.21. Take f(z) = |z|? so that
fla+yi) = e +yil* = (z +yi) (e - yi) = 2* + 97,

which only hasareal part! Namely, we have u(z, y) = 22+y? andv(z,y) = 0to make f(z+yi) = u(x,y)+
iv(z,y). Now suppose for the sake of contradiction that f were differentiable at some z = z + yi € C.
Then we are forced into

2z = ux(x,y) = vp(z,y) =0 and 0=v,(z,y) = —uy(z,y) = —2y,

which means z = y = 0. So f is differentiable at nowhere outside C \ {0}.

Observe that the above example does not show that f is differentiable at 0 € C, though this is true. To be
explicit, Theorem 3.19 does not tell us that satisfying the Cauchy—Riemann equations implies differentia-
bility.

Remark 3.22. Extending Example 3.21, we can show that the only entire real-valued function is con-
stant.

Let's also close with an application of Theorem 3.19.

Corollary 3.23. Fix Q2 C C a connected nonempty open subset and f: @ — C a function differentiable
onall of Q so that f/(z) = 0forall z € Q. Then f is constant.

Proof. By Theorem 3.19, we see that, for any z = = + yi, we see
ug(,y) = vy(z,y) = Re f'(2) =0 and vy (z,y) = —uy(z,y) = Im f'(2) = 0.

In particular, for some function g: C — R for some C' C R? connected and open, having g, = 0 forces g
to be constant as a function of = on any connected horizontal line, and g, = 0 forces g to be constant as a
function of y.

Now, because any path between two points in an open subset can be approximated by vertical and hori-
zontal line segments contained in neighborhoods of points, we see that the endpoints of any path in C must
have the same value.? But C is open and connected and hence path-connected, so C any two points can be
connected by path, so g must be constant on all of C.

Returning to f, we see that u and v will be constant on the embedding of Q into R? (recall that C = R?
topologically, so Q C R? remains open and connected), so f is constant on €. This is what we wanted. W

1 Please don't ask me to rigorize this.
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Remark 3.24. We do need the connected hypothesis: we could take 2 = C \ R and with f(z) = 1ge.>0-

3.3 February 16

We talk more about the Cauchy—Riemann equations today. For our announcements, Homework #4 is due
on Sunday. There is a midterm next Friday; we will get a review sheet and some practice problems in the
next few days. There will be no homework, and there will be extra office hours.

3.3.1 Introducing Sufficient Conditions

The slogan for today as follows.
Idea 3.25. The Cauchy—Riemann equations provide a sufficient condition for differentiability.

Recall our theorem.

Theorem 3.19 (Cauchy—Riemann). Fix @ C C a nonempty open subset and f: Q — C a function differ-
entiable at some zy = g + yoi € C. If we write f(x + yi) = u(z, y) + i(x,y), then

uz (20, Y0) = vy(To, Yo),
vm(wo,yo) = —Uy(ﬂﬂmyo)-

Infact, f'(20) = uz (20, yo) + e (0, Yo) = vy(To, Yo) — iuy (20, Yo)-

These are sufficient conditions for differentiability. Today we are discussing necessary conditions for differ-
entiability.

Theorem 3.26. Fix 2 C C a nonempty open subset and f: Q@ — C a function. Writing f(z + yi) =
u(z,y) + iv(z,y) and fixing some zy = zo + yoi, then suppose we have the following.
» We have u,, uy, v, v, all exist and are continuous (!).

+ We have
ux(x07y0) = vy(an yO)v
Ux(xoayo) = _“y($07y0)~

Then f is differentiable at 2.

Remark 3.27. It is possible to construct functions which are differentiable at zq but do not have contin-
uous first partial derivatives.

Let's do some examples of Theorem 3.26 to see its utility.

Example 3.28. Fix f(z + yi) = 2> +y+i (y® — z). Here, u(z,y) = * + y and v(z,y) = y*> — 7, so we see

uz(x,y) =2z, uy(z,y) =1, vy(zr,y)=-1, and wvy(z,y)=2y.

So all first partial derivatives are continuous. To satisfy the Cauchy—Riemann equations, we see that we
need u, = v, and u, = —v,, whichis equivalentto 2z = 2yand 1 = — —1. It follows from Theorem 3.26
that f is differentiable on the line y = x, and f is not differentiable anywhere else by Theorem 3.19.
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Remark 3.29. Another type of question is to be given u(x, y) and be asked for what v(z, y) might be.

3.3.2 Proving Sufficient Conditions
Let's go ahead and prove Theorem 3.26.

Proof of Theorem 3.26. As with last time, we fix Az := z — zg and Az = x — zg and Ay = y — yg so that our
difference quotient is
f(z0+Az) — f(z0) _ ulo + Az, yo + Ay) — u(zo,%0) 4i. v(wo + Az, yo + Ay) — v(w0, Yo)

Az Az Az
Au/Az:= Av/Az=

So our goal is to show that

exists and is equal to u, (xg, yo) + v (20, yo). So we need to force our first partial derivatives into the limit.
We start with Au/Az. To make our partial derivatives appear, we write

Au  u(zo + Az, yo + Ay) — u(Zo, yo)
Az Az
u(zg + Az, yo + Ay) — ul(zo, yo + Ay)  ul(zo, yo + Ay) — u(zo, yo)
_|_
Az Az

To get our partial derivatives, we apply the Mean value theorem (!): define

F(z) = u(x,yo + Ay) and  F(y) = u(wzo,y).
We do our applications one at a time.

» Note that F'(z) is differentiable everywhere from z( to xg + Az, so the Mean value theorem provides
some z{; between zp and zp + Ax such that

F(zo+ Az) — F(x) = F'(z§)Aw.

« Similarly, F(y) is differentiable everywhere from g to yo + Ay, so the Mean value theorem provides
some y; between yo and yo + Ay such that

F(yo + Az) — F(yo) = F'(y5)Ay.

Synthesizing and plugging in, we get

Az Az Az

We now use continuity of our first partial derivative. Our hope is that sending Az — 0 will send u, (x§, yo) —
Uz (o, o) and u — y(zo, y§) — uy (o, Yo). To show this, we show the difference will be small. We write

Au_ ug(0,y0) A " ty (w0, yo) A
Az Az Az

Y 4 Bup + Euy.

where A A
* z *
By, = (Ux(anyO) - UI(IOJJO))KZ and Euy = (uy(x07y0) - uy(anyO))Iz-

We now remark that we can repeat the entire above argument for %. Namely, running the above machinery

lets us write
Av vy (xo,y0)Az N vy (20, Yo) A

Y
- E'UZL‘ E'U b)
Az Az Az + + By
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where
Eyp = (ua (@8, y0) — ux(xo,yo))% and By = (uy(zo,y5") — uy(IanO))%-
We now show that the various FE, terms vanish as Az — 0. Note that, as Az — 0, the following happen.
+ Because z{j and z{* are bounded between z and ¢ + Az, they will approach z,.
« Because y§ and y§* are bounded between yy and yo + Ay, they will approach yy.
« Wewillhave ]%] < land ’%’ < 1by direct expansion of the normbecause Re Az = AzandIm Az =
Ay.

It follows that each of the E, do indeed vanish as Az — 0. For example,

A
(%(3337 yo) - U;c(l‘o, yo)) Ii

< g (25, 90) — e (0, 90) |

will go to 0 as Az — 0 by the continuity of u, at (xq, yo)-
Now we return to our difference quotient. We see

. flzo+Az) = f(z0) . Au . Av
Alggo Az n Alirgo Az T Az
L Uz (20, Y0)Ax  uy(z0,y0)Ay | . ve(To,y0)Az . vy(T0,y0)AY
= < Az * Az ! Az o Az

lim FE lim FE lim FE lim F
* Ay e * ArSg Uy + ArSg v + Ao Y

. Uz (20, Y0) Az uy (0, y0)Ay . ve(Zo,y0)Az . vy(xo,y0)Ay
= 1 . .
Ao ( Az + Az t Az t Az ’

using the fact that our error terms all vanish. At this point we use the Cauchy—Riemann equations. We see

. flzo+Az2) = f(z0) . Uy (20,Y0) AT V2 (20,%0)AY | . vi(To,¥0)Ar . uL(T0,y0) Ay
Alggo Az n Al,};go Az B Az i Az T Az
_ Az +ilAy\ | . Az +iAy
= Aligo <ux($o7yo) : Az) ti- lim <U:z(3307y0) AL )
which finishes after evaluating our first partial derivatives. |

3.4 February18

Good morning everyone. Here are some announcements.
« Homework #4 is due on Sunday.

« Next Friday is our midterm. A review sheet has been posted. Some practice problems and a practice
midterm will be released today or tomorrow.

» Next week will have office hours every day.

+ Next Wednesday will be a review class.

3.4.1 Power Series

Today we are building towards a discussion of analytic functions. We won't actually define what “analytic”
means, but it will be important, so we will spend today setting up the definitions and results.
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Definition 3.30 (Complex power series). A complex power series is a formal expression of the form

S(z) = Z apa®
k=0

where {a; }ren € Cand z is a (formal) variable taking complex values.
Our main goal for today is to be able to answer the following question.
Question 3.31. For which z will S(z) converge?
The answer to this is essentially the same as for real analysis: it's the radius of convergence.

Definition 3.32 (Radius of convergence). The radius of convergence of a complex power series S(z) =
> reo axz® is defined to be equal to the radius of convergence of the real power series

n
T(x) = Z |ag|zF.
k=0

Concretely, we define
R: !

. lim sup,,_, «"/|an|'

We should probably check convergence in the radius of convergence.

Proposition 3.33. Fix a complex power series S(z) = Y., ax2" with radius of convergence R. Then
the following hold.

(a) The sequence of partial sums Y} |ax2*| converge for any z with |z| < R. In other words, S(2)
converges absolutely.

(b) The series S(z) will diverge for z with |z| > R.

Proof. We take these one at a time. The point is to imitate the proofs from real analysis.

(@) We note that, if R = 0, there is nothing to prove here. Otherwise, fix z with |z| < R so that there exists
some p € Rwith |z| < p < R. For example, p := EIE will do.

2

Now, because p < R, we see that % > limsup,,_, ., 1/|an| (thisis legal because R # 0), so there exists
some N for which any fixed n > N has

. 1
sup v/ |ag| < —.
p

>n
In particular, each & > N will have ¢/]ax| < 1/p, so |ax|p* < 1. So, setting
M =max ({1} U{|ax| : K < N}),

we see that |ax|p* < M foreach k € N.
But because |z| < p, we note that |z|/p < 1, so we bound

o] = Jawgt| - |52 < ar |2

ZTL
g
However, |z/p| < 1, so the series ;= |z/p|* will converge as a geometric series, so we are done by
the comparison test.
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(b) We proceed by contraposition. Suppose that S(z) converges, so by Lemma 2.71, a2 — 0ask — .
We show that |z| < R. If z = 0, there is nothing to say; otherwise, it will suffice to show that

1 7
— > limsup {/|a|.
For this, fixe = 1, so we are granted some N for which k¥ > N has
‘akzk’ < 1.
In particular, this rearranges into 1/|z| > {/|ax|. So foreachn > N, wesee 1/|z| > {/|ay| for k > n,
so1/|z| > sup{/|ak| : k > n}, so

1
— > hm sup{\/|ak k> n} = hmsup Vlanl,

2|

which is what we wanted. ]

Remark 3.34 (Nir). The proof of (b) might feel weird because we are not using the full power of S(z)
converging, just that its terms go to 0. However, a power series will "essentially” converge whenever
its terms go to 0 (aside from boundary cases), so it is not too surprising that this is all that we need.

We have the following warning.

Warning 3.35. Proposition 3.33 is agnostic to the case of |z| =

In general, the behavior need not be uniform, as with 377 /2% = L.

3.4.2 Series of Functions
We will be interested in series of functions, which generalize power series.

Definition 3.36 (Series of functions). Fix X C C a nonempty set and {fx}xen @ sequence of functions
X — C. Then we define the series of functions

S(z)=)_ fi(2)
k=0
foreach z € C.
Observe that the partial sums of some S(z) = >, fx(z) will look like some finite sum

which defines a sequence of functions { S, }men Where S,,,: X — C. We are interested in the convergence
of S as a function.

Definition 2.69 (Converge, diverge). Fix a sequence {z, }nen C C of complex numbers, we define the
mth partial sum to be
-3
n=0

Then we say that theinfinite series convergesifand only if the sequence {S,,, } of partial sums converges.
Otherwise, we say that S is divergent.

Uniform convergence will be nice because (say) it will preserve continuity, but before talking about utility,
we discuss a way to check uniform convergence.
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Theorem 3.37 (Weierstrass M -test). Fix X C Canonempty subsetand { f }ren @ sequence of functions
X — C defining a series of functions S(z) = >_;—, fx(2). Further, suppose that, for each k € N, there
exists some M, such that

|fe(2)] < My

foreach z € X. If Y7 | M}, converges, then S(z) converges uniformly.

In other words, we can determine uniform convergence of a series of functions by bounding the functions
individually.

Proof of Theorem 3.37. This is not as hard as it looks. Let S,, denote the mth partial sum. By Proposi-
tion 2.133, it suffices to show that, for each ¢ > 0, there exists some N such thatn > m > N implies

sup{|Sn(z) — Sm(2)|} < e.
rzeX

Well, we know that the series Y~ , M}, converges, so its partial sums are Cauchy, so there exists some N
such thatn > m > N implies
n
Z My < e,

k=m-+1

where the left-hand side is the difference between the nth and mth partial sums. So now we bound

> hl2)

k=m+1

n

< 3 RGEIs Y M,

k=m+1 k=m+1

1Sn(2) = Sm(2)| =

forany z € X. Thus,

sup{[Sn(2) = Sm(2)} < > My <e.
ze€X k—m1

This finishes the proof. |

And now let’s apply the Weierstrass M -test to power series.
Corollary 3.38. Fix S(z) = Y-, axz" a power series with positive radius of convergence R > 0. We
have the following.
(@) Foranyrsuchthat0 < r < R, the power series S(z) converges uniformly in B(0, ).

(b) The power series S(z) is continuous on B(0, r).

Proof. Most of our work will be done in (a), which comes from the Weierstrass M -test.

(a) Fix some r with 0 < r < R. Note that S(r) converges absolutely by Proposition 3.33. To use the
Weierstrass M -test, we set fi,(2) := a2" with M}, := |ax|r* so that |z| < rimplies

[fr(2)] = |an2®| = laxl - |2]* < |ax|r*.

But we know that S(r) converges absolutely, so

oo oo
D Janrt| =3 M
k=0 k=0

converges, so now Theorem 3.37 promises that S(z) will converge uniformly for each z € B(0, r).
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k

(b) Notethat, forevery k, the function fj(z) = ax2" isa polynomialand hence entire and hence continuous

on B(0, R).
The trick is to apply (a) by starting with a fixed zo € B(0, R) with r such that |zg| < < R. In particular,
by restriction, it suffices to show that S|z, is continuous at zy. (For example, r = Iz(’lT*R will work.)

So now we note that the continuous partial sums of S(z) converge uniformly to S(z) on B(0, ) by (a),
so Proposition 2.136 forces S(z) itself to be continuous on B(0, ). This finishes. ]

We remark that the restriction to S| z(o,,) only works because B(0,7) is an open set. Here is the exact lemma
we just used.

Lemma3.39. Fix f: X — CafunctionandU C Canopensubset X withz € UNX. Then fis continuous
at z if and only if the restriction f|y~x : U N X — Cis continuous at x.

An alternate way to give the hypothesis on U is that U N X is an open subset of X.

Proof. We show the directions independently.

« Suppose that f is continuous at z. We show that f|y~x is continuous at z. Well, for any e > 0, we are
promised some § > 0 so thatany z € X has

lz—z|<d = |f(2) — f(z)] <e.
In particular, any z € X N U has

|z —2| < = |f|UmX(Z) - f|UmX(x)| =f(z) = f(z)| <e.

+ Suppose that f|ynx is continuous at z. Fixany ¢ > 0. Because x € U and U is open, there exists r > 0
such that B(z,r) C U. Because f|ynx is continuous at z, there exists some dy > 0 such that

|z —a| <o = [f(2) = f(@)] = [funx (2) = funx ()] <e

for z € U N X. However, taking 6 := min{r,d}, we see that any z € X with |z — z| < ¢ will have
z € B(z,0) CU,soz e UnN X automatically. So |z — x| < ¢ will stillimply

1f(2) = f2)] <&,

and we are done. [ |

Remark 3.40 (Nir). More generally, if we have a sequence of continuous functions f: X — C such that
the series S(z) :== >, fx(z) converges uniformly on X, then S is a continuous function on X. Indeed,
fix some zg € X and € > 0. We have the following.

» Thereis N sothatn > N has |S(z) — f.(z)| < e/3forz € X. Fixsomen > N.
e Thereisd > 0sothat |z — zg| < 0 has |f.(z) — fn(z0)| < &/3.

Thus, |z — 29| < 0 will have

1S(2) = S(20)| < 18(2) = Fal2)| +1Fa(2) = faleo)] + falz0) = S(z0)| < S+ 5 + 2 = .

3.5 February23

Good morning everyone. We are doing review today.
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3.5.1 Review Highlights

Here are some of the answers to questions asked in class.
« The midterm will be like the practice midterm.
+ You do not need to be stressed about the midterm.
« Things proven in class we will not be asked to prove on the midterm.
« We will probably will not be asked to do anything involving summation by parts.
+ Professor Morrow will not curve downward.
+ Please write more on the exam for the sake of partial credit.

» For words with multiple definitions (like continuity and compactness), the first definition is preferred,
though other definitions will likely be accepted.

» We may cite facts from real analysis, which is a requirement for this class; e.g., [0, 1] is compact.

« Lemmas elided from class we will not be responsible for. Essentially, please know the things on the
review.

+ Please know the definitions of things is important. They will be graded fairly harshly because these
are critical to know to going forwards.

Let's do a practice problem.

Exercise 3.41. Find the possible functions v(z,y): R? — R such that

f(z) = f(z +iy) = 2 -y + iv(z,y)

is entire and f(0) = 0.

Proof 1. The point is to use the Cauchy—Riemann equations. We set u(x,y) = 22 — y? so that f(z + yi) =
u(z,y) + tw(z, y). If we want this to be differentiable, we want

u.’r(l’7y) = 21’ = Uy(xa y)
by Theorem 3.19. This means that v(z,y) = 2zy + h(z) for some function h(x): R — R. Again, we note
uy(xay) = 72y = *Ux(l’,y) = 72y - h/(‘r)v

sowe want //(x) = 0. So h is a constant function, so we set i(z) = ¢ for some c € R.
It remains to determine c. Well, so far the story is that

flx+iy) =2® —y* +i(2zy + ).

Plugging in z = y = 0 forces ¢ = 0, so we see that we get‘ flx+iy) =2® —y? —i-2zy | [ |

Remark 3.42. The current form of the answer is fine: we do not have to simplify in terms of z or some-
thing. More generally, we will not have to spend large amounts of time simplifying on the exam.

Let's present another proof.
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Proof 2. The point is to use the z information to fully piece together f'(z). As before, set, u(x,y) = 22 — y>.
Namely, the Cauchy—Riemann equations promise

f'(2) = (@ + yi) = ua(2,y) +ive(2,y) = ua(z, y) — iuy(z,y).
Taking partial derivatives of u implies that
f(z) =2z —i(-2y) =2z +i -2y =2(z + yi) = 2z.

So from here, we can take the “antiderivative” (i.e., guess) that f(z) = 22 + c. Lastly, plugging in f(0) = 0,

we getc =0, so m

Remark 3.43. We can rigorize that this is the only possible solution because any other solution g(z)
must have g(z) — 22 with constant derivative 0, from which we can argue that g(z) — 2% is constant using
the Cauchy—Riemann equations and the fact that C is path-connected. To be explicit, we are using
Corollary 3.23.

3.6 February 25

There was no lecture today because we had a midterm.

3.7 February28

Good morning, everyone. Here are some announcements.
« Midterm grades will be posted today or tomorrow, on bCourses.

+ Class on Wednesday will be a recording. Professor Morrow will be giving a talk, at 9AM as decided by
the powers that be.

+ There is no homework due Friday because we haven’t covered anything since the midterm.

3.7.1 Holomorphic Power Series

Today we actually talk about analytic functions. Professor Morrow promises that it is actually complex anal-
ysis today, and once we talk about analytic functions and path integration, we will prove the Cauchy integral
formula, which is one of the major results of the course.

We recall the following definition.

Definition 3.30 (Complex power series). A complex power series is a formal expression of the form

S(z) = Z apa”
k=0

where {a; }ren € Cand z is a (formal) variable taking complex values.

So far we've talked about the radius of convergence of a power series as well as some properties of series
of functions in general (e.g., the Weierstrass M -test).
Today we are showing the following result.
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Proposition 3.44. Fix S(z) = Y ;- arz" a (complex) power series with radius of convergence R > 0.
Then S(z) is holomorphic on B(0, R) with derivative

S'(z) = Z kapz"~1.
k=1

Further, S’(z) also has radius of convergence R.

Note that this derivative is essentially the “term-wise” derivative of S(z), so it is more or less the best thing
that we could want.

Proof. We will symbolically define
S'(2) = Zkakzk_l
k=1

and show that it is equal to the requested derivative. We start by noting the radius of convergence of S’ is

1 1 1
limp oo &/](k + Dag]  limp_oe VE  limg_oo ¥/]ar]

=1-R=R,

so at the very least our radius of convergence matches, as claimed.

Fix 0 < r < R areal number (i.e., we don’t want to deal with R = +c0), so that it suffices to show S
is holomorphic with the given derivative on B(0,r). (Namely, for a given w € B(0, R), choose any r with
lw| <r < R.)

Indeed, given w € B(0,r), it suffices to show that S is differentiable at w with the requested derivative,

for which we claim
(lim S(z) = S(w) SW)) — S (w) £ 0,
Z—w Z—w

where S’(z) is the claimed derivative. To set up our computation, we fix a positive integer m and work with
the mth partial sum, computing

oW k=0 w k=1
m k k
= (ap — ap) + Zak (Z —w" kwkl)
P Z—w
m
= Z ay ( 2w® — wk1>
k=1 a+b=k—1 a+b=k—1
m
:Zak ( (zbwafwk 1))
k=1 a+b=k—1
m
:Zak ( w® (zb—wb)>
k=1 a+b=k—1
With this in mind, we set
hi(z) = w® (2" —wh),
a+b=k—1

which we note is a polynomialin z € B(0,r) because we fixed w to be constant. In particular, we have
— Sy, (w) =Y arhi(2).
k=1
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We now show that this series converges uniformly as m — oo; we will use Theorem 3.37. For this, we bound
|hi(2)| = Z w® (2 —wh)| < Z |w]® (|z\b + |w|b) < Z r* (r® +1%) = 2(k — 1)r 1,
a+b=k—1 a+b=k—1 a+b=k—1
so we bound |ahy(2)| < |ak| - 2(k — 1)r*~1. Namely, by Theorem 3.37, it suffices to show that the series
22 — 1)]ag|rt~
k=1
converges. Well, Y77 | 2(k — 1)]ay|z*~1 is a power series with radius of convergence

1 1

1
limyg 00 (\/k 2k - {/ |ak+1|) limgee V2 limgo Vlak1]

:‘R7

so indeed the power series > ;- | 2(k — 1)|ag|z*~! convergesatz = r < R.
Soin total, we see that the series of functions

Z arhi(2)
k=1

uniformly converges as m — oo. Because each component function aihy(z) is continuous, we see that the
entire series will converge to a continuous function by Remark 3.40. In other words, we can evaluate

. . Sm(2) = Sm(w) /
t i, (SR 1 00) < iy S uet2) = St

But now we notice that hy(w) = 0 for each Ay, so this sum does indeed vanish.
We are now essentially done. We compute

iy SIS0 _ py (SD=50) ) 4y 0

z—w zZ—w Z—w z—w

<hmm—>oo Sm(z) - hmm—>oo Sm(w) o hm S/ ( )> +Sl(w)

zZ—w m— 00

= lim
Z—w

Sm(2) = Sp(w)

zZ—w

= lim lim (

Z—rwW m—r 00

- S(w) +5'(w)
= S5'(w),
so we are done. [ |

So indeed, power series are holomorphic. Here is nice application of this fact.

Corollary 3.45. Fix
g) = Zakzk and T(z) = Zbkzk
k=0 k=0

two complex power series with radius of convergence R > 0. If S(z) = T'(z) forall z € B(0, R), then
ay = by, for each k.

Proof. We proceed inductively, in spirit. For example ap = S(0) = T(0) = b, so these are equal as our base
case. Further, we could take one derivative to see that

()= karz"tand  T'(2) = Y kb2t
k=1 k=1
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soa; = S'(0) = T'(0) = b;. More generally, setting S(™) to be the mth derivative, we can see that

(m) Zk -1 (k- m+1)agzb"™ and (m)—ij -1 (k- m—l—l)akz -m.

k=m

and both of these have the same radius of convergence. So now a,, = #S(m)(()) %T(m)(o) = by [ ]

3.7.2 Analytic Functions
To define analytic, we need one more definition.
Definition 3.46 (Power series expansion). Fix X C Canonempty opensubsetand f: X — Cafunction.

We say that f has a power series expansion centered at zo € X if and only if there is a positive real
number r such that B(zg,7) C X and further there is a power series defined by {ax } ke Which has

oo
= Z ak(z — zo)k
k=0

foreach z € B(z, 7).
And here is our definition.
Definition 3.47 (Analytic). Fix X C C a nonempty open subset and f: X — C a function. Then f is

analytic at zo € Cif and only if f has a power series expansion at zg. Explicitly, there is a power series
S(z) =Y 7, axz" and positive real number r > 0 (less than the radius of convergence) such that

f(Z) Z*Zo Zak zfzo

forany z € B(zp,r). Then f is analyticif and only if it is analytic at each 2z, € C.
Here is the idea.

Idea 3.48. Analytic functions are locally power series.

Being analytic is a very nice condition. For example, we have the following.

Proposition 3.49. Analytic functions are holomorphic on their domain.

Proof. Fix f: X — C an analytic function. For each z € X, we note that f is locally equal to a power
series at z (i.e., f|p(,r) is @ power series), which is holomorphic by Proposition 3.44. Because f is locally
differentiable at each point, f will be actually differentiable at each point. |

Remark 3.50. It will turn out that the converse is also true, but this is a pretty deep result. We will prove
it from the Cauchy integral formula. The main obstacle is how we should construct the power series,
which the Cauchy integral formula will tell us how to do.

Anyways, let’s prove something of substance.

Lemma 3.51. Fix X C C a nonempty open subset and f: X — C an analytic function. Then f’ is also
analytic.
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Proof. Fix zg € X. Because f is analytic, there is a positive real number » > 0 and power series S(z) =
Yoo ar(z — z0)" (with radius of convergence at least r) such that

f(Z) Z*Zo Zak zfzo

k=0

for each z € B(z, ). By Proposition 3.44, we see that
ﬂ)M%oZm%%l

foreach z € B(0,r). So we see that f’ has a power series expansion at our arbitrarily chosen 2y € X, so f’is
analytic at each zp € X, so f’ is analytic. |

Remark 3.52. We can iterate the above lemma to show that an analytic function is infinitely differen-
tiable.

Remark 3.53. In fact, because analytic will turn out to be equivalent to holomorphic, we will see that
being once differentiable implies being analytic implies being infinitely differentiable. This is pretty
nice.

Next class we will start talking about the exponential function, a very important analytic function.

3.8 March?2

This lecture was recorded.

3.8.1 Definition of the Exponential

For the next couple lectures we will be discussing the very special functions exp and log. For now, we will
focus on exp, defined as follows.

Definition 3.54 (exp). We define the complex exponentialexp: C — C by the power series
= Z
eXp = kg ?

In particular, we are going to be building our exponentiation from scratch. Nevertheless, we promise that it
will work fine.
As such, we have the following checks.

Lemma 3.55. We have that exp is analytic and entire with derivative exp’(z) = exp(z).

Proof. Very quickly, we note that the radius of convergence of exp is lower-bounded by
1 -1 1
(Jim, /I/mT) = (Jim a2 = (i n7t2) = o

so our radius of convergence is actually co. As such Proposition 3.44 tells us that exp is holomorphic on
B(0,00) = C (i.e., entire) with derivative

oo

k > 1 _ =z
exp’( ;E kz::l(k_l)!zk IZZH’
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where we have shifted indices in the last step. So indeed, exp’(z) = exp(z).
Lastly, to show that exp is analytic, we need to show that exp can be locally expanded as a power series.
For this, we appeal to the following lemma.

Lemma 3.56. Fix S(z) = > p—, axz" a power series with radius of convergence R > 0. Then S(z) is
analytic on B(0, R).

Proof. There is actually something to show here: given zy € C, we need to expand S(z) locally at a power
series at zg. In particular, we need to be able to write

o0

S(z) = Z br(z — 20)",

k=0

where the series on the right converges for any z € B(zg, r) for some r > 0. For this, we expand
z + zo Z ak z+ ZO R

under the assumption z, zg, z+ 20, | 2| + 20| € B(0, R). (We will discuss how to ensure these conditions later.)
The short version of what we are about to do is that we will expand out this power series in terms of z and
then collect terms of the same degree. Making this rigorous requires some care to the uniform convergence,
but everything is okay because we converge absolutely.
Heuristically, we have

et = (3 (Do) (5 (ot )
n=0 n=0 \k+l=n k=0 \¢=0
where = is the equality which requires attention. To rigorize =, we use Lemma 2.81.? Indeed, to make the

application clearer, we set
(k)anzkzg k< n,
Anp | =
" 0 k>n

so that we are interested in exchanging the order of the summation

iﬂ( > (7)o z0> S s

k+l=n n=0 k=0

Well, for fixed n, we see that Y7 , |a, x| is a finite sum and hence converges. And further, we see that

- - n ; n—=k = n
=2 (Z (k;)anZI"IZoI ") = an(lz] + |20))" = S(I2] + |z0l),
n=0 \k=0 n=0

which converges because |z| + |z9| € B(0, R). As such, Lemma 2.81 tells us that

S(z+ 20) ZZake—ZZakz—Zz<>an2kz6‘ k.

n=0 k=0 k=0n=0 k=0n=k

n=0 k=0

The inner sums we may simplify as 3207, (7)an2"zy " = 2% 372 (7)anz§, so we do indeed find that

S(z+ 2) = i (2 (Z) an,zg> "

k=0

2Yes, |, too, am impressed that this lemma is seeing use.
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forany z € C. In particular, plugging in z — z tells us that
o0 o0 n
S(z) = anzt | (z - 2 k.
@) ;(;(k) o>< 5

which gives us our power series expansion at z.

It remains to show the power series expansion will hold in some neighborhood B(zy, ). Translating back,
we need to know that the power series expansion for S(z + zg) will hold in some neighborhood S(0,r). To
review, our hypotheses were that

z, 20,2 + 20, |2| + |20] € B(0, R).
Recalling that zg € B(0, R) automatically, we set r :== R — |z9| > 0. Thenr < R, so z € B(0, R). Similarly,
|z 4+ 20| < |z + |20 < 7+ |20| = R,

so we get z + 29, |z| + |20] € B(0, R) as well. So we have constructed our neighborhood and have verified
that S(z) is analytic at z. [ |

Thus, because we defined exp as a power series with infinite radius of convergence, we see that exp is analytic

everywhere on C. |

3.8.2 Basic Properties of the Exponential

Now that we know exp’(z) = exp(z), we can begin actually building some theory. We pick up the following
nice properties of exp.

Proposition 3.57. Fix z, w € C.
(@) We have that exp(z + w) = exp(z) exp(w).
(b) We have that exp(z) # 0.
(c) We have that exp(—z) = 1/ exp(z).

Proof. Parts (b)and (c) will follow from (a), so we will focus our attention on (a). Fixing some « € C, the trick
is to consider

f(2) = exp(z) exp(a — 2).

Observe that z — z and so a — z are entire, so the chain rule promises each factor of f is entire, so f is entire
by the product rule. Tracking all this through, we can compute the derivative as

f'(2) = exp/(2) exp(a — 2) + exp(2) exp' (e — 2) - (—1)
= exp(z) exp(a — z) — exp(z) exp(a — 2)
=0.

Thus, [’ is constantly 0 everywhere (and C is connected by Corollary 2.112), so f is constant on C by Corol-
lary 3.23. However, we can plug in z = a into f to see that

fla) = exp(a) - exp(0) = exp(a),
where exp(0) = 1 by construction of exp. In particular, we see that
exp(2) exp(a — 2) = exp(a)
forany z,« € C. Setting a :== w + z recovers exp(z + w) = exp(z) exp(w), which is part (a).
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We now show (b) and (c). Setting z = —w € Cin (a), we see that
1 =exp(0) = exp(z + —z) = exp(z) exp(—=z).

Thus, because Cis an integral domain, we see that exp(z) # 0 automatically, which is (b). So, using the field
structure of C to divide by exp(z), we conclude that

exp(—2z) = 1/ exp(2),

which proves (c). [ |

Remark 3.58 (Nir). In other words, exp: C — C* is a homomorphism: exp does map to C* by (c) of the
proposition, and exp satisfies the needed homomorphism property by (a).

In fact, exp will behave with our complex analytic structure.

Lemma 3.59. Fixany z € C. Then

exp(z) = exp(z).

Proof. The main pointis that z — Z is continuous on C, say by Example 2.123. Thus, we compute

— . - 2k, . = zk . = zk _
p(z) = lim DG =t D gy = lim D gy = ew(3),
k=0 k=0 k=0
where we have used the continuity of z — Zin =. In particular, the point is that the sequence of partial sums
Sn = > 1o %’: approach exp(z), so by continuity, S,, (which goes to exp(z) definitionally) must approach
exp(Z). |

Our next goal is to study certain outputs of exp. Like a good algebraist, we will particularly be interested
in the “kernel” of exp (as a homomorphism). For now, we will avoid saying the word “kernel” and instead
simply solve for the output 1.

Lemma 3.60. Fixany ¢ € R. Then | exp(it)| = 1.

Proof. Note that
exp(it) = exp(it) = exp(—it) = 1/ exp(it),

where we have used Lemma 3.59 followed by Proposition 3.57. Thus,

|exp(it)|* = exp(it) - exp(it) = 1,
so |exp(it)| = 1 follows because the norm is always a positive real number. |

In fact, we can do better than the above.

Corollary 3.61. Fixany z € C. Then |exp(z)| = 1 ifand only if Re(z) = 0.

Proof. We show our implications separately.

+ Suppose that Re(z) = 0. Then we can write z = it for some ¢ € R, from which Lemma 3.60 tells us
that | exp(z)| = |exp(it)| = 1 for free.
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» Suppose that | exp(z)| = 1. Writing z = = + yi with x,y € R, we compute

exp(z) = exp(z) exp(iy) = exp(x),

where we have used Proposition 3.57 and Lemma 3.60. Now, taking norms, we see that | exp(z)| =
|exp(2)] = 1.

However, exp g is a strictly increasing function: it is differentiable with continuous nonzero derivative
(using Proposition 3.57), so the Intermediate value theorem implies that the derivative must stay the
same sign for all zy € R. So noting exp(0) = 1 is enough to conclude exp’(zy) > 0 forany zy € R, so
exp is strictly increasing from a Mean value theorem argument.?

Thus, if z < 0, then |exp(z)| = exp(x) < 1,and if 0 < z, then 1 < exp(z) = |exp(z)|. So we see that
x = 0 with |exp(z)| = 1 is our only way to hit 1, so Re z = 2 = 0 follows. |

So far we understand | exp(z)| pretty well. It is time to turn to exp.
Definition 3.62 (Kernel of exp). We define the kernel of exp as
kerexp := {z € C: exp(z) = 1}.
Remark 3.63. This is intended to align with abstract algebra: viewing exp: C — C* as a homomor-
phism, we see that we are asking for the values of z € C which go to the identity of C*, whichis 1.
Example 3.64. We have that exp(0) = 1, so 0 € ker exp.
To better access the kernel, we will want to talk about the real and imaginary parts of exp(it).
Definition 3.65 (Sine, cosine). Given z € C, we define the (complex) sin and cos functions as

cos 2 exp(iz) + exp(—iz) and siny exp(iz) — exp(fzz).

2 2

We can see pretty directly that

exp(iz) +exp(—iz) exp(iz) — exp(—iz)
2 2

cosz +isinz = = exp(iz).
In the case where z is real, we get to say a little more.

Remark 3.66. Using Proposition 2.8 with Lemma 3.59, we see that, for when ¢t € R,

cost = exp(it) +2€Xp(_lt) = i) —;—exp(zt) = Reexp(it),

and

it) — exp(—it it) — exp(it
sint — <20 ;Xp( it) _ el )Q‘GXp(l ) _ Im exp(it).
2 2

In particular exp(it) = cost + isint is our decomposition into real and imaginary parts.

3.8.3 Some Trigonometry

Before we go any further, we do some trigonometry. We want to establish that exp(it) is periodic, but this
requires a little effort; we follow sx63102.

31f a < b, then use the Mean value theorem to find = € (a, b) with f(b) — f(a) = (b —a)f'(x) > 0,50 f(a) < f(b).
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Lemma 3.67. For each z € C, we have cos? z + sin? z = 1.

Proof. We directly compute

cos? >+ sin? » — exp(iz)? + 2 exp(iz) pr(—iz) + exp(—iz)? n exp(iz)? — 2 exp(iz) ezp(—iz) + exp(—iz)? .

After the dust settles, we are left with
cos? z + sin? z = exp(iz) exp(—iz),
which is 1 by Proposition 3.57. |

More or less by just staring at cos and sin, we can see that they are entire.

Lemma 3.68. For each z € C, we have £ cos z = —sin z and 4 sin z = cos z.

Proof. We directly compute
d exp(iz) +exp(—iz) _ iexp(iz) —iexp(iz) exp(iz) — exp(—iz)

e 5 = 5 = 5 = —sinz,
and
d exp(iz) — exp(—iz) _ iexp(iz) +iexp(iz) _ exp(iz) + exp(—iz) ~ coss
dz 2 2 2 ’
which is what we wanted. u

Lemma 3.69. For z € C, we have

_ — (—D* 5 d o oo — (—1)F! 2k+1
cosz—kzz;) ) z an sz_,;mz )

Proof. We directly compute, forany z € C, we have

1 , . [k, (=), 1= iF 4 (—i)F
cosz = 5(exp(zz)+exp(—zz)) =3 (kz_o Pk —|—ZTZ = isz )

k=0 k=0

Here, we were allowed to merge the two sums because they are just limits which converge. Now, we note
that

2 k=0 (mod4),
F+(=)* =20 k=1 (mod?2),
-2 k=2 (mod 4),

so all the odd terms vanish, leaving us with

L2 g m (EDF
cosz =3 2k~ =2 (k) E

k=0 k=0

which is what we wanted.
On the other hand, we note that cos z is an entire function, and its power series will converge everywhere
because the power series for exp also converges everywhere. In particular, Proposition 3.44 tells us that

: _ d _ - (_1)k2k 2k—1 __ = (_1)k 2k—1
sz = %COSZ—’;W,Z —;mz y

which gives the power series for sin after shifting over our indices. Notably, Proposition 3.44 assures us that
this also has infinite radius of convergence. |
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To continue, we have to do a little real analysis.

Lemma 3.70. There exists the smallest positive real number 8 such that cos§ = 0.

Proof. On one hand, note cos0 = 1. On the other hand, using the Alternating series bound, we note

= (=DF 4 16 1
2= L R e ]
o8 ];) (2k)! sl=gt =350

Thus, there certainly exists some ¢ € [0, 2] such that cost = 0, so we define
0 = inf{t > 0 : cost = 0}.

Because cos is continuous, we note that the set {t : cost = 0} will be closed and hence contain all of its limit
points, so we do have cos = 0.

Further, cos0 = 1 implies there is some § such that |¢| < § has |cost — 1| < 1, meaning there is an open
neighborhood around 0 for which cost # 0. In particular, we must have § > § > 0, so 0 is a positive real
number. So lastly, we note that any ¢ > 0 for which cost = 0 must have ¢ > 6 by construction, so 6 is indeed
the smallest positive real number with cos 6 = 0. |

And now we get to define .

Definition 3.71 (7). We define 7 € R so that 7/2 is the smallest positive real number such that cos 7/2 =
0.

And now let's show our periodicity.

Lemma 3.72. We have that exp(z + 27i) = exp(z) for any z € C. In fact, 27 is the smallest positive real
number 6 such that exp(if) = 1 = exp0.

Proof. We start with the second sentence. We are given that cos /2 = 0 already, and 7/2 is the smallest
such positive real number. From Lemma 3.67, we see that this requires sinw/2 € {£1}. However,

—gint = cost

dt

must be positive in the interval (0, 7/2) because cos0 = 1 > 0 and cos is nonzero on (0, 7/2). In particular, a
Mean value theorem argument tells us that sin is strictly increasing on (0, 7/2), so we have

sinm/2 > sin0 = 0,
sosinm/2 = 1. Plugging into Remark 3.66, we get that exp(im/2) = i, so
exp(2mi) = exp(4 - in/2) = exp(in/2)* = i* = 1.

It remains to show that 2 is the smallest such positive real number. Well, suppose that§ > 0 hasexp(6i) = 1
and is the smallest such positive real number; we get for free that § < 27 by the above. On the other hand,
we compute
exp(0/4 - i)* = exp(0i) = 1,
butwe canfactorz*—1 = (2—1)(2+1)(2—i)(z+1), soexp(0/4-i) € {£1, +i}. Certainly ifexp(6/4-i) € {£1},
then exp(0/2 - i) = exp(0/4 -i)? = 1, but §/2 < 6/4, so this cannot be. So instead, we have that
exp(6/4 1) = +1,

so in particular, Remark 3.66 tells us that cos(8/4) = Reexp(6/4 - i) = 0. Thus, 6/4 > 7 /2 by the definition
of m,s0 0 > 2. It follows 6 = 27.
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We now show the first sentence. By Proposition 3.57, we merely have to compute
exp(z + 2mi) = exp(z) exp(27i) = exp z,
so we are done. [ |

While we're here, we note that also get access to the kernel from our work.

Proposition 3.73. We have that kerexp = {27in : n € Z}.

Proof. In one direction, certainly
exp(2min) = exp(2mi)" =1

by Lemma 3.72. In the other direction, suppose exp z = 1. Then Corollary 3.61 forces Re z = 0, so we can
write z = it. By the division algorithm, we can write

t=2mq+r,
where ¢ € Z and r € [0, 27), from which we see
1 =expz = exp(it) = exp(2miq + ir) = exp(2wiq) exp(ir) = exp(ir).
However, r < 27 is smaller than the smallest positive real number for which exp(ir) = 1, so r cannot be a
positive real number at all. But we do know r > 0, so r = 0 is forced. Thus, t = 27iq, as needed. |
Remark 3.74 (Nir). As a last remark, it would be a crime to note say that exp(im) = —1. Indeed,
exp(im)? = exp(2mi) = 1,

but we can factor 2> — 1 = (2 + 1)(z — 1), sexp(im) € {£1}. But ™ < 27, so we cannot have exp(in) = 1,
so exp(im) = —1is forced.

3.8.4 Polar Coordinates

We would like to talk about polar coordinates, so for this we would like to access the arctangent function.
This requires a little care.

Lemma 3.75. We have that cos(—z) = cosz and sin(—z) = —sin z forany z € C.

Proof. This comes down to computing

exp(i(—z)) + exp(—i(—z))  exp(iz) + exp(—iz)

cos(—z) = 5 = 5 = cos 2.
Similarly,
sin(—z) == exp(i(—2)) ;?Xp(—l(—z)) _ _exp(iz) —;xp(—zz) ~ i
t )
which is what we wanted. m

So now we note that cos is, by definition of /2, nonzero on [0,7/2). The above lemma lets us extend this
nonzero region to (—7 /2, w/2), permitting the following definition.

Definition 3.76. Given a real number ¢ € (—/2,7/2), we define tant := 2! Note that this definition
is legal because cost # 0 for (=7 /2, 7/2).
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Lemma 3.77. The function tan is real differentiable and strictly increasing.

Proof. That tan is real differentiable follows from the quotient rule, which applies because the denominator
cos is nonzero on all of (—7/2,7/2).* In fact, we can compute the derivative as

d d sint  (cost)(cost) — (sint)(—sint)

—tant = — = ,

dt dt cost (cost)?
where we have used Lemma 3.68. So from Lemma 3.67, we see that % tant = m, which is positive for
real numbers t. Thus, tant is in fact strictly increasing. |

We would like to show that tan surjects onto R. To start, we note tan 0 = sin0/ cos0 = 0/1 = 0.

Lemma3.78. Fort € (—n/2,m/2), we have that tan(—z) = — tan z.

Proof. By brute force, Lemma 3.75 tells us that

sin(—t)  —sint
tan(—t) = = = tant,
cos(—t) cost

which is what we wanted. |
Lemma 3.79. The function tan: (—7/2,7/2) — R is a bijection.

Proof. We already know that tan is injective because it is strictly increasing by Lemma 3.77, so we have left
to show the surjection. Additionally, Lemma 3.78 implies that we merely have to show that tan surjects onto
R>¢, and because tan 0 = 0, we merely have to show that tan surjects onto R*.

Now, tan is continuous (by Lemma 3.77), so the Intermediate value theorem means that we merely need
to show tan takes on arbitrarily large values in R™. For this, we claim that

lim tant = oo,
t—m/2

which will be enough. So fixany M > 0. Well, because cos is continuous, we see that

lim cost =cosmw/2=0.
t—mw/2

Thus, fore = 1/(2M), there exists some §; > 0 sothat 7/2 — §; < ¢t < w/2 will have cost < ¢. Because cos
must be positive for ¢t < 7/2, we actually have 0 < cost < e. Additionally, because sin is continuous, we see

that
lim sint =sinw/2 = 1.
t—m/2

Thus, there exists some d2 > 0so that 7/2 — 2 < ¢t < «/2 will have sint > 1/2. In particular, setting
§ = min{d1, 2}, we see /2 — § < t < /2 implies that

int 1/2 1
sint 121y
cost € 2e

This finishes. [ |

tant =

The above check permits the following definition.

4 Technically, we should extend tan to a small open strip around (—=/2, 7/2) in order to make the complex quotient rule work and
then restrict tan afterwards. We will settle for merely saying that we should do this instead of actually doing it.
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Definition 3.80 (Arctangent). We define arctan: R — (—7/2,7/2) to be the inverse function of tan.

Note that the above definition makes sense because tan is a bijection (—7/2,7/2) — R. In fact, the proof of
Lemma 3.79 lets us say

t—o00

In fact, we see tan(—t) - —7w/2ast — oo, so

. T
lim arctant = 5"

. T
lim arctant = ——.
t——o0 2

We are now ready to give polar form.
Remark 3.81. Very quickly, we note that arctan is a continuous function. This is true because it is strictly

increasing (it is the inverse function of the strictly increasing function tan) and it satisfies the interme-
diate value property (arctan is in fact bijective because it is an inverse function).

Proposition 3.82 (Polar form). For any z € C*, there exist unique real numbersr > 0and § € [—m,7)
such that z = r exp(i6).

Proof. We start by showing uniqueness because it is easier: if 71 exp(if1) = r9 exp(if2), then taking magni-
tudes tells us that

Iri| = |r1exp(ib1)| = [r2 exp(ib2)| = [r2|,
where we have used Corollary 3.61. Because r; and ry are positive real numbers, we conclude r; = r3. So
now

exp(i(0; — 02)) = exp(iby)/ exp(ibs) =1
using Proposition 3.57. By Proposition 3.73, this forces 6; — 05 € 27miZ. However, —m < 61,05 < 7 implies
that

2T < bf— 05 < 2,
sof; — 0y = 0is forced, so 0; = 0,.
We now show that the r and 6 actually exist forany z € C*. As above, we take r = |z|, so we need to set

6. Well, we see that Remark 3.66 gives

rexp(if) = rcosf + irsin6.

So we want a value 6 € [—7, m) such that Re z = rcosf and Im z = rsin §. Noting that z # 0 implies r # 0,
we want to choose 6 such that )

(cosf,sinf) = (Rez/r,Im z/r).
In particular, we set a :== Re z/r and b := Im z/r so that a? + b? = WI. So, given (a,b) € R? such
that a2 4+ b? = 1, we need to find 4 such that

(cos B, sin6) < (a,b).
We set 6 by hand. We do casework.
« Ifa = 0,thencosf = 0and b = £1. Well, forb = £1, we set § = £7 so that cos+7 = cos § and
sin+£7% = +sin § = £1 by Lemma 3.75.
« If a > 0, then we choose 6 = arctan(b/a) € (—/2,7/2). In particular, we see that tanf = 2, so we
have the system of equations
sinf b

4 2 M2
gy Tl and (cos0)” + (sinh)” = 1.

In particular, sin6 = £ cos 6, so (1 + Z—i) (cosf)? = 1,s0cos = +abecause a®+b2. But cos @ is positive

on (—m/2,m/2), so we see that cos § = a, from which we can read sin§ = 3 -a=b.
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+ If a < 0, we note —a > 0, so we use the above argument to choose v = arctan(b/ — a) € (—7/2,7/2)
so that
cosy = —a and siny = b.

In particular, we see that — has

exp(i(—7)) = exp(iy) = —a + bi = —a — bi.
In particular, multiplying this through by exp(iw) = —1, we see that exp(i(m — 7)) = a + bi, giving
cos(m — ) = aand sin(m — ) = b.

It remains to force m — 7y into [—m, 7). However, exp(it) is periodic with period 27, so we can callously
shift 2 — v into [0, 27) via the division algorithm and then subtract « to get a representative of # — ~
in [—m, ). This finishes. |

Example 3.83. We take z = —1 — 4. Here, |2| = /1 + 1 = v/2; further Re z < 0, so we compute

W—arctan(—l/—(—l))ZW——% 1

sowe take § = —37/4 after shifting. So the above argument assures us that z = /2 exp(—i-37/4). Here

is the image.

A

1 AN o,

3.9 March4

Good morning everyone. Today's lecture was not recorded.
« Homework #5 will be uploaded today, due next Friday.

« The class average on the midterm was a 74; it might have been a little long. There will probably be
something approximately equal to a 6-point curve.

Before continuing, we make some remarks, as a review from real analysis.

Remark 3.84 (Nir). Today, we will want to pick up some properties of the real logarithm. We define
log: Rt — R as the inverse of exp: R — R, for which we need to know exp: R — RT is a bijection.

« Note expr > 0 for r > 0 by the power series, and exp(r) = 1/exp(—r) > 0forr < 0. Thus,
exp’(r) = exp(r) > 0 everywhere, so exp is strictly increasing and therefore injective.

« For surjective, by continuity and exp(—r) = 1/ exp(r), we need expr — oo as r — oo, for which
we note exp(1) > exp(0) = 1 gives exp(1) > 1 + e forsomee > 0, soexp(n) > (1 +¢&)” > 1+ ne.
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Remark 3.85 (Nir). We will also want to know that log: RT — R is continuous. Well, z < y if and only
if exp(z) < exp(y) implies that z < y requires log x < logy, so log is strictly increasing. Thus, it suffices
to show that log satisfies the intermediate value property, but log is surjective (it's the inverse function
of a bijection and hence a bijection), so we are done.

3.9.1 Arguments

Today we talk more about the exponential function. Last time we proved the following.

Proposition 3.82 (Polar form). For any z € C*, there exist unique real numbersr > 0and § € [, 7)
such that z = r exp(if).

As a brief review, we recall that we took r = |z|, and we computed 6 in terms of some arctans. Essentially,
this means that we can effectively compute polar form without tears.

Remark 3.86. The interval [—, 7) is somewhat arbitrary; we can choose any set of representatives for
R/27Z. To see this, we note that the unique § € [—x, 7) will have a unique representative in any set
of representatives for R/27Z and vice versa. For example, any half-open interval of length 27 (such as
[0, 27)) will do the trick. To see this,

We canin fact use polar form to talk about the exponential map.

Corollary 3.87. For any z € C*, there exists some w € C such that exp(w) = z.

Proof. To start, we know that we can write z = r exp(i) by Proposition 3.82. So, using real analysis, we set
w = logr + 16,
where log: R* — Ris the real logarithm. Thus,
z = rexp(if) = exp(logr) exp(if) = exp(logr + if) = exp(w),
which is what we wanted. |

Continuing to talk about polar form, we have the following definition.

Definition 3.88 (Argument). Given a complex number z € C*, we define the principal argument arg z €
[—7, ) by writing z := |z] exp(if) (using Proposition 3.82) and taking arg z := 6. More generally, for any
n € R, we define

arg,: C* — [n,n + 2m)

by arg, (z) = argz + 7 + 1.

Remark 3.89 (Nir). By definition, we see that |z|exp(i arg z) = =.

Example 3.90. We have that arg_ . = arg.
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3.9.2 Branches of the Complex Logarithm

The logarithm is somewhat subtle, so we have to be careful. We take the following definition.

Definition 3.91 (Branch of the logarithm). Fix 2 C C\ {0} an open, connected subset. A branch of the
logarithmis a continuous function f: Q — C such that

exp(f(2)) = 2.

Intuitively, f will “look like” an inverse for exp.
Nevertheless, there is a fairly standard choice of branch.

Definition 3.92 (Log). Taking © := C\ R<q, we define the principal branch of the logarithm as Log: © —
C by
z +— log|z| +iarg z.

Remark 3.93. It is not too hard to check that C\ R<q is connected. Indeed, it is path-connected: for any
a+bie (C\Rgo,wedefine'y: [0,1] —)(C\RSO by

v(#) = (1 —t)(a+ bi) + t.
Notably, Imy(¢t) = (1 — t)b, so y(t) € R<o would imply that Im~(¢t) = Osothatt = 1orb = 0.

We cannot have t = 0 because (1) = 1; we cannot have b = 0 because b = 0 requires a > 0, so
Rev(t) = (1 — t)a+t > 0 always.

Remark 3.94. We can check directly that exp Log z = z for z € C \ R<q. In particular, Remark 3.89 lets
us write

exp Log z = exp(log |z| + i arg z) = exp(log |z|) exp(i arg z) = |z| exp(iarg z) = z.
We will check that Log is actually a continuous later, in Corollary 3.98.

Remark3.95. Again, log: RT™ — R hereis the real logarithm, which is legal because z # 0 so that|z| > 0.

In particular, we are essentially using the construction from back in Corollary 3.87.

As some brief geometric commentary, we are calling these “branches” our open sets (2 are typically C
minus a single line, and the subtlety of why we have to do this is to make the logarithm continuous. For
example, in the principal branch, we deleted R<(, which has the following image.

Im
A

We should probably check that Log is actually well-formed; namely, it turns out that we had some choice in
our construction of Log.

Lemma 3.96. Fix z,w € C such that exp(z) € C\ R<p and Logexp(z) = w. Then thereisa k € Z such
that z = w + 2wik.
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Proof. Write z = x+iy so thatexp z = exp(x) exp(iy). Now, we know that exp(a) = Oifand only if a € 27iZ,
so for example, we can write

exp(yi + 2min) = exp(iy)

foranyn € Z. So, by the division algorithm, we choose a k € Z so that

y=y+2nk
has y € [—m, 7). But now, because exp(z) ¢ R>(, we see that we cannot have § = —7 because this would
make exp(iy) = —1 and therefore exp z = — exp(z) € R<y.

The point of choosing this ¥ is that we still have exp(z) = exp(x) exp(iy) = exp(x) = exp(i¥y), but now
y € (—m, ), so we are assured

argexp(z) = y.
At this point, we just write out
w = Logexp(z) = Logexp(x + iy) = log(| exp(x) exp(it)|) + i argexp(z) = x + iy.

So now we can write w = x + iy — 2wik, which is what we wanted. [ ]

Let’s return to our discussion of branches. There are a few reasons why we want “branches” for Log. Roughly
speaking, here is the reasoning.

« The function exp is not injective: it has kernel ker exp = 27iZ. In particular, if we wanted to define Log
on 1 € C, then we need to make a choice among the representatives in 27iZ.

« In order to avoid having to make a choice, we chose Log to have imaginary part in [—7, ) always (in
fact, —m is illegal because Log doesn’t take inputs in R<q).

+ But making this choice makes Log not continuous at values in R<( because (notably!) arg z is not con-
tinuous on R<g. In particular, z — —1 from above gives argz — 7 while z — —1 from below gives
arg z — —.

+ So the point of introducing the branch is to simply throw out the R<( and recover our continuity.

3.9.3 ThePrincipal Branch

We now finish the checks that Log is actually a branch of the logarithm. For this, it remains to check that Log
is continuous; in fact, we will extend and show that Log is holomorphic. As discussed when we were talking
about branches, the issue with extending the continuity of Log to all of C is arg, so we pay arg some special
attention.

Lemma 3.97. The restricted argument function arg: C \ R<¢ — [, 7) is continuous.

Proof. Fixsome z € C\ R<(, and we show that arg z is continuous at z. We do casework because we have
to back-track through the definition of arg and therefore back through Proposition 3.82

» Suppose Rez > 0. Then it suffices to show that arg is continuous on B(z,Rez) C {w : Rew > 0}.
Well, on this region we defined arg w by

<Imw>
argw = arctan | —— | .
Rew

On{w : Rew > 0}, we see that Rew # 0, so the continuity of Re and Im promise that Imw/Rew is
continuous. So because arctan is continuous, we conclude arctan(Im w/ Re w) is continuous at z.
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» Suppose Rez < 0and Im z > 0. Then it suffices to show that arg is continuous on
B(z,min{—Rez,Imz}) C {w: Rew < 0,Im z > 0}.

Here, we defined arg z by shifting 7 — arctan(Imw/ — Rew) into [—, 7). But now, Imw/Rew > 0, so
arctan(Imw/ — Rew) € (0,7/2), so

argw = 7 — arctan(Imw/ — Rew) € [—m, 7).

The function arctan(Im w/ Re w) is continuous for the same reasons as before, so the total function is
continuous at z.

» Suppose Rez < 0andIm z < 0. Then it suffices to show that arg is continuous on
B(z,min{—Rez,—Imz}) C {w:Rew < 0,Imz < 0}.

On this region, we defined arg z by shifting 7 — arctan(Im w/ — Re w) into [—, 7). However, Imw/ —
Rew < 0, so arctan(Imw/ — Rew) € (—7/2,0), so

argw = —7 — arctan(Imw/ — Rew) € [—m, 7).

The function arctan(Im w/ Re w) is continuous for the same reasons as before, so the total function is
continuous at z.

» Suppose Rez = 0and Im z > 0. Then we defined arg z = Z. To check continuity here, we note that it

5
suffices to look in the ball B(0,Im z) C {w : Imw > 0}. Then

. . mw . m
lim argw = lim arctan = lim arctanz = —
w—z w—z ew T—00 2
Rew>0,Imw>0 Rew>0,Imw>0
while
. . mw . s s
lim argw = lim T — arctan =x— lim arctanx =7 — — = —,
w—z w—z — Rew T—00 2 2
Rew<0,Imw>0 Rew<0,Imw>0

which both match arg z. So, fixing some ¢ > 0, we can use the two limits above to find suitable §;, d-
in each region, and then we take § := min{d;, d2}.

* Suppose Rez = 0 and Im z < 0. We repeat the previous argument. Then we defined arg z = — 7. To
check continuity here, we note that it suffices to look in the ball B(0,Im z) C {w : Imw < 0}. Then

. . Imw . T
lim argw = lim arctan [ —— | = lim arctanz = ——
w2z w—z Rew T——00 2
Re w>0,Im w<0 Rew>0,Im w>0
while
. . Im w . T 0
lim argw = lim —m — arctan =—7m7— lim arctanz=-n1+—-=——,
wW—z wW—rz — Rew T——00 2 2
Re w<0,Im w<0 Re w<0,Im w<0

which both match with arg z. So, fixing some ¢ > 0, we can use the two limits above to find suitable
d1, 02 in each region, and then we take ¢ := min{d, d2}.

The above casework finishes the proof. |

Corollary 3.98. The function Log: C\ R<g — Cis continuous.
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Proof. Well, we write
Log z = log |z| 4+ i arg z,

and we now know that each component is continuous, so the total function is continuous. To be explicit, the
function log |z| is the composite of two continuous functions and is therefore continuous; the function arg z
is continuous by the previous lemma. So we may finish by Proposition 2.95. |

In fact, we get that Log is holomorphic, essentially inherited from exp.

Lemma 3.99. Fix Q1,95 C C connected and open subsets. Further, suppose we have a continuous
function f: Q; — Q9 and a holomorphic function g: Q2 — €; such that g(f(z)) = z and ¢'(z) # 0 for
each z € Q. Then f is holomorphic on ; with derivative

Proof. We quickly observe that f isinjective: if z, w € ; have f(z) = f(w), thenz = g(f(2)) = g(f(w)) = w.
Now, the trick is that, for distinct z, w € £, we may write

9(f(2)) = 9(f(w)) _ 9(f(2)) —g(f(w)) [(z) = f(w)

Z-w f(z) = f(w) z-w

In particular, note z # w implies f(z) # f(w) because f is injective. We see that the left-hand side is merely
1 because g o f = idg,. In particular, we may write

f2) = flw) 1
Nm == = I e aen
F)=f(w)

Notably, the denominator here is legal because z # w implies f(z) # f(w) and g(f(z)) # g(f(w)).
To finish, imagine some sequence {z;, }neny C Q1 \ {w} such that z,, — w. By continuity of f, we see that
f(zn) = f(w). However, we know that

lim —F——"
z' = f(w) z — f(w)

so f(zn) — f(w) tells us that % — ¢'(f(2)). Because our sequence {z, } ,en Was arbitrary, we
may conclude

1

i FO S0 1 1 B
zow - zow 9 () =9(f(2) 4 9(f(2))=9(f(2)) / :
= z—w ~w D=L lim. w0 =55 =0 g (f(2))

This finishes. .

Proposition 3.100. The function Log is holomorphic on C \ R<( with derivative

d 1
—L = -,
dz 082 z

Proof. We simply apply Lemma 3.99 with Q; = C\ R<gand Q; = Cand f = Log and g = exp. We quickly
check the hypotheses.

» Note Qs is connected and open, as discussed before.
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» Note Q; is connected by Remark 3.93 and open because
O ={2€C:Rez>0}U{zeC:Imz#} =Re *(Rso) UIm *(R\ {0})

is the union of two open sets by the continuity of Re and Im.

The function f is continuous by Corollary 3.98.

+ The function g is holomorphic on Q5 by Lemma 3.55.

» We have g(f(z)) = z, essentially by construction; see Remark 3.94.

» The function ¢’ = exp is nonzero everywhere on ), because exp(z) exp(—z) = 1 for z # 0.
Now, applying Lemma 3.99, we see that

1 1 1

d
—L = = S
dz 08¢ exp’(Logz) exp(Logz) 2’

where we have used the facts that exp’ = exp by Lemma 3.55 and that exp(Log z) = z as shown above. N
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THEME 4
INTEGRATION

Every person believes that he knows what a curve is until he has
learned so much mathematics that the countless possible
abnormalities confuse him.

—Felix Klein, [Kle16]

4,1 March7

Good morning everyone.

4.1.1 Smooth Paths

Today we are going to build some theory of paths. We recall the definition.
Definition 2.99 (Path). A pathin C is a continuous function v: [a, b] — C where a < b are real numbers.
Now that we have access to some differentiation, we can talk about the smoothness of our paths.

Definition 4.1 (Differentiable for paths). Fix [a,b] C R. A path v: [a,b] — C is differentiable if and only
if the limit
() —(to)
t—to t—1to

exists. If the limit exists, we set it equal to +/(t) and call it the derivative. Further, v is differentiable if
and only if v is differentiable at all points ¢ € [a, b].

Remark 4.2. When computing 7/ (a) and +/(b), the above limit is one-sided.

There are still going to be some pathological paths that are differentiable, so we add more smoothness
conditions.

Definition 4.3 (C''). Fix [a,b] C R. A path v: [a,b] — Cis C' or smooth if and only if « is differentiable
and v/ is continuous.
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This is perhaps a little too strong, but it is the correct notion. Here is a slightly weaker version.

Definition 4.4 (Piecewise C!). Fix [a,b] C R. A path ~: [a,b] — C is piecewise C" if and only if there
exists a sequence {ay}}_, with ag = a and a,, = b such that

7|[ak7ak+1]

is C! foreach 0 < k < n.

The point is that we are going to want to glue C! paths together in the future, and the resulting path need
not be C!.
This is a math class, so we should probably prove something today, so have some lemmas.

Lemma 4.5. Fix s: [a,b] — [c, d] a function differentiable at ¢y € [a, b]. Further, if v: [¢,d] — Cis differ-
entiable at v(ty), then v o s is differentiable at ¢, with

(7 05)(to) =7/ (s(t))s' (to)-

Proof. As usual with compositions, we consider the difference quotient v: [¢,d] — C defined as

[l —(s(ty)) t# s(to),

v(z) = )
0 x = s(to)-
Now, by definition of the differentiability of v at s(ty), we know that v(z) — 0asa — s(to). Rearranging, we
see that
(@) = (s(t0)) = (z — 5(t0)) - (7' (s(to)) + v(2))
forall z € [c,d], so plugging in s(t) € [c, d], we see that
Y(5(t)) = (s(to)) = (s(t) — s(ta)) - (7' (s(t0)) + v(s(t)))-

So now we rearrange backwards to see

V(s(t)) —¥(s(to)) _ s(t) —s(to) (7' (s(t0)) + v(s(t))).

t—to t—1o

Upon taking the limit as ¢t — ¢, the differentiability of s at ¢y assures us that

20 = el) _ (py, o=l |

lim
t—to t—to t—to

t—to

nmvwmwwwm)=ﬂm¢wmy

Notably, we are using the fact that v o s is continuous at ¢y because s is continuous and v is continuous at

Lemma 4.6. Fix v: [a,b] — C a path differentiable at ¢ € (a,b). Then 7 is differentiable on C with
derivative v/(¢).

Proof. Note that the function z — Z is continuous, so we compute

lim M = lim (M> — lim =+/(c),
t—c t—c t—c t—c t—c t—rc
which is what we wanted. |

94



4.1. MARCH7 185: INTRO. TO COMPLEX ANALYSIS

Remark 4.7. Lemma 4.6 might seem surprising because conjugation itself is usually not complex dif-
ferentiable. However, this is okay because we are only really taking limits in R, so the extra dimension
of C does not impede us.

As a side remark, we note the following: we can approximate any path reasonably well.

Theorem 4.8. For any path 7: [a,b] — C, there exists a sequence of piecewise C! paths {v; }ren such
that v, — ~ uniformly.

Proof. The main point is to use the Stone—Weierstrass theorem. We will not prove this in class, for it would
sidetrack us somewhat significantly. |

The reason why we bring up the above result is that we can, roughly speaking, understand paths (and
integration on paths) by reducing them to piecewise C! paths and then studying the C* paths individually.

4.1.2 Reparameterization

We are going to want to adjust our “speed” along a path, for which we have the following definition.

Definition 4.9 (Reparameterization). Fix s: [a,b] — [c,d] a continuously differentiable function with
s(a) = cand s(b) = d. Then, given a path y: [¢,d] — C be a C* path. Then the path

v :=vo0s:[a,b - C
is again a C'! path. We call 5 a reparameterization of .
Remark 4.10. We can also check that, in the context of the above definition, imy = im~. Indeed, it
suffices to show that ¢ is surjective, for which we note v(a) = cand v(b) = d gives us surjectivity onto
[c, d] by the Intermediate value theorem.
Reparameterization allows us a notion of equivalence.
Definition 4.11 (Equivalent). Two paths 71 : [a,b] — C and 72: [¢,d] — C are equivalent if and only if
there is a continuously differentiable, bijective function s: [a,b] — [¢,d] such thats’ > 0andy; =y 0.
We denote this by v ~, 72

One can check that ~, defined above is an equivalence relation.

Lemma 4.12. The relation ~. defined on paths is an equivalence relation.

Proof. We have the following checks.

« Reflexive: given a path v: [a,b] — C, we show v ~. 7. Indeed, the function s: [a,b] — [a, b] defined by
s(x) == x is bijective and continuously differentiable (with constant derivative 1) and v(¢) = y(s(t)). So
s witnesses y ~ .

» Symmetric: fix paths 1 : [a,b] = Cand y2: [¢,d] — C with y; ~, 72; i.e., we are given a bijective and
continuously differentiable s: [a, b] — [¢,d] suchthaty; =42 0s.

Because s is bijective, it has an inverse function r: [¢,d] — [a,b], which we can check is also con-
tinuously differentiable by real analysis; the idea is to copy the proof of Lemma 3.99 to show that
r'(t) = % which is continuously differentiable (using the condition s’ > 0).

Thus, 71 = 72 0 simplies y5 = 71 07, SO Y2 ~¢ 1.
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« Transitive: fix paths~v;: [a,b] = Candyy: [¢,d] = Cand~s: [e, f] = Csuchthaty; ~. y2andys ~c 7s;
i.e., we have bijective, continuously differentiable functions r: [a,b] — [¢,d] and s: [¢,d] — e, f] such
thatr’, s’ > 0 and

Y1 =17208 and Yo =730T.

But then we see r o s is bijective and continuously differentiable (by the chain rule) with (r o s)’ > 0, so
v1 = 30 (r o s) witnesses y; ~¢ 3.

The above sketchy checks finish the proof. |

Definition 4.13 (Oriented curve). An equivalence class [y]. of paths is an oriented curve.
Here are two basic curves.

Example 4.14. Given zy € C, the set of constant paths v: [a,b] — C by v = 2 is an oriented curve.

Example 4.15. Given «, 8 € C, we define the line segment v: [0,1] — C by

y(t) = (1 —t)a + 8,

which we can check is differentiable with constant derivative (—a + §) and is therefore continuously
differentiable.

There might not be a nice, canonical way to define a curve. Here are two circles.

Example 4.16. Fix zg € C and r € R+ (. Then we define the circle of radius r centered at 2y by the path
~:[0,27] — C by the path
v(t) == zo + 7 exp(it).

Here is the image.

Example 4.17. Fix zp € Cand r € R-(. Then we define the circle of radius r centered at zy by the path
~: [0,27] — C by the path
Yo(t) == zo + rexp(—it).

Here is the image.

We can generalize the above example.
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Definition 4.18 (Opposite path). Given a path 7: [a,b] — C, we define the opposite path~y~: [a,b] — C
by vy~ (t) = v(b+a—t).

4.1.3 Conformal Maps

We close with the following theorem.

Theorem 4.19. Fix2 C Can open and connected subset. Further, fixtwo paths 1,72 : [a,b] — Ctwo C*
paths and some holomorphic function f: & — C. Now, suppose that t1,t2 € [a,b] have zg == 1 (t1) =

Y2(t2) # O with 1 (t1),72(t2) # 0and f'(20) # 0. Then
7))  (fom) (1)

Y(ta)  (fora)(ta)

Proof. The main tool that we need is a version of Lemma 4.5 to deal with composition.

Lemma 4.20. Fix v: [a,b] — C a path differentiable at ¢y € [a,b]. Further, set a nonempty open subset
Q C Cwithim~y C Q with a function f: [¢,d] — C differentiable at y(¢o). Then f o v is differentiable at
to with

(f o) (to) = f'((t0))¥' (to)-

Proof. We repeat the proof of Lemma 4.5. We consider the difference quotient v: [c,d] — C defined as

v(z) = %Ezo()to)) = f'(s(to)) = #~(to),
0 z = 7(to).

Now, by definition of the differentiability of f at s(to), we know that v(z) — 0as z — ~(¢o). Rearranging, we
see that

F(2) = f(r(to)) = (2 = ¥(t0)) - (f'(v(to)) +v(2))
forall z € Q, so plugging in y(t) € Q, we see that

FO (1) = f(y(t)) = (v(t) = (ko)) - (' (7(to)) + v(7(1))).-

So now we rearrange backwards to see

fwug:ip@w>2761:$“>.g%wm»+vwa»»

Upon taking the limit as ¢t — t¢, the differentiability of v at tq assures us that

iy L0 =00 _ (1, 20 =00 (

t—to t—to t—to

hmf@%»+wwm)—w%w%mw>

t—to

Notably, we are using the fact that v o v is continuous at ¢y because ~ is continuous and v is continuous at
v(to)- u

Using the above lemma, we can compute

(fon)'(t) _ () () _ 7'(hh)

(Fora)(t) ~ Pyt (02) — 7/(t2)
Note that we have successfully used the hypotheses that f/(zg) # 0and v5(¢2) # 0; the last hypothesis that
~1(t1) # 0 is added for aesthetic reasons. |

We should probably explain why we named this subsection “conformal maps.” We pick up the following
corollary.
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Corollary 4.21. In the context of the Theorem 4.19, we have that

arg vy (t1) — argys(t2) = arg(f o) (t1) — arg(f 0 72)'(t2) (mod 2m)

Proof. Everything involved is nonzero by hypothesis; this time 1 (¢1) # 0 is not aesthetic. By taking arg of
both sides of the conclusion of Theorem 4.19, we see that it will suffice to show

arg(z/w) — arg z + argw =) (mod 27)
for z,w € C* after some rearranging. Well, we write z = r exp(ia) and w = sexp(if) so that
2/w = (r/s) expli(a — B))
using Proposition 3.57. In particular, & = arg z and § = arg w, so
arg(z/w) =a— B =argz —argw (mod 27),
which is what we wanted. u

Now, we recall that arg z is intended to be the (counterclockwise) angle from the real axis to a complex
number z. As such, arg z—arg w should be the (counterclockwise) angle from w := sexp(if) to z := rexp(ic),
as in the following diagram.

Thus, Corollary 4.21 is saying that, at a point 2o € C, the angle between two tangent vectors ~{(¢1) and
~4(t2) remains the same if we pass the tangent vectors through f. This angle-preserving property is called
being “conformal.”

It would be a crime to give this description and then not actually show this for some holomorphic func-

tion, so we pass two rays from z := 1 + i through f(z) := 22.

A

=)

la%

/1

Indeed, we can check visually that it looks like the angle got preserved (even though lengths are quite scaled).

4.2 March9

Here we go.
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4.2.1 Integrals from the Reals

Today we start talking about path integration.

Definition 4.22 (Integrable). Fix ¢ : [a,b] — C a function (such as a path) with ¢(t) = u(t) + iv(¢), where

u,v: R = R. Then ¢ is integrable over [a, b] if and only if « and v are both integrable over [a, b] (as real
functions!). In this case, we define

/abz/J(t)dt = /abu(t)dt—ki/abv(t)dt.

We have the following sanity checks.

Lemma 4.23. Fix 91,15 [a,b] — C integrable functions with ay, s € C. Then

b b b
/ (o1 (1) + ctha(t)) dt = an / a(t) dt + 0 / olt) dt.

Proof. This is by brute force. Let oy = 21 + y1iand ag = a2 + yoi and ¥y (t) = uqi(t) + dv1(¢) and o(t) =
uz(t) + iva(t). Then we see that

11 () 4+ oo (t) = (21 + y19) (ur (t) + ivi(t)) + (22 + y21) (uz(t) 4 iva(t))
= (xlul(t) —+ QZ‘QUQ(t) — Y11 (t) — yg’l)g(t)) + i(xlvl (t) + xQ'UQ(t) + ylul(t) + y2u2(t))

has integrable components because u1, v1, us, v are all integrable by hypothesis, and the components are
just R-linear combinations of these. Doing a lot of expansion, the fact that linear combinations of real-valued
integrals is legal, we see

/ o (1) + (1) d = / orur (4) + 222(8) — yaon (8) — yaua(t)) d
Jri/ab(xlvl (t) + zov2(t) + yrur (t) + yaua(t)) dt
:xlLbul(t)dt+x2/abu2(t)dt—yl/abvl(t)dt—yg/abvz(t)dt
+ iz /abvl(t)dwrmg/abvz(t)dtﬂ'yl /abul(t)dt—l—iyg/abug(t)dt

b b
= (z1 + y19) (/ w1 (t) dt-l—i/ vy (t) dt)
+ (1’2 +y2i) (/b’LLQ(t) dt+i/b 'Ug(t) dt)

b b
:al/ Lbl(t)dt-l-OéQ/ wg(t)dt,

which is what we wanted. [ |
Lemma 4.24. Fix ¢ : [a,b] — Canintegral function. Then

/ ) de| < / (o) dt.
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Proof. There is approximately one idea to this proof: the point is to create a real-valued integral equal to

the norm. Note that f;w(t) dt = 0 means we are done for free. Thus, we can put ffw(t) dt = 0 into polar
form as

b
rexp(if) :/ P(t)dt

forr > 0. We would like to factor out a exp(i) from this integral, so we compute (using cos(—6) = cos 6 and
sin(—6) = —sin 6 from Lemma 3.75) that

P(t) exp(—if) = (u(t) + tv(t))(cos(—0) + isin(—0))
= (u(t) + iv(t))(cos O — isin )
= (u(t) cos 8 + v(t) sinB) +i - (v(t) cos  — u(t) sin b)
a(t) B(t)

In particular, a, 3: R — R, and so by Proposition 3.57, we write

P(t) = a(t) exp(if) + if(t) exp(if) = exp(if)(a(t) +iB(t)).

Thus, we can write

b b b
r exp(if) = / W(t) dt = / exp(if) (a(t) + iB(t)) dt = exp(if) / (alt) + iB(1)) dt.

Upon cancelling out the exp(if), we see that

b b b
r:/ (a(t)Jriﬂ(t))dt:/ a(t)dt+i/ B(t) dt.

Because s still a real function, that integral evaluates to a real number, but because we have no imaginary

part, we conclude
b
T :/ a(t) dt.

:r:/aboz(t)dtg /ab (1) dt,

So now we appeal to real analysis. We see

b
| vt
where a(t) < |[¢(t)| is because
a(t) = Retp(t) exp(—if) < [(t)] - [exp(—if)| = [(t)],
where | exp(—if)| = 1 by Corollary 3.61. |

4.2.2 Path Integration

We have the following definition.

Definition 4.25 (Integration). Fix 2 C C an open and connected subset with a C! path v: [a,b] — €.
Now, given a continuous function f: Q@ — C, we define the integral

b
/ f(2)dz = / SO (1) dt,

if the integral exists.
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Lemma 4.26. Under the hypotheses of Definition 4.25, the integral fv f(2) dz actually exists.

Proof. Note that f and v are both continuous, so f o~ is continuous. Similarly, 7' is continuous because v is
C*. In total, we can expand

Fy@)y' (1)

to be a product of continuous functions and therefore must be continuous. It follows that Re(f(~(t))7'(t))
and Im(f(y(¢))v'(t)) is also a continuous function, so these components are integrable, so the total integral

b
/ Fr ) (8) dt
exists. [ ]

Our goal is to show that the integral itself only depends on the equivalence class of ~.
We can extend this definition a little to piecewise C* paths.

Definition 4.27 (Integration). Fix©2 C C an open and connected subset with a piecewise C* path~: [a, b] —
2, where we have the strictly increasing sequence {ay }7_, suchthata = apand b = a,, and 7|4, a, ., are
C'. Then, given a continuous function f: Q — C, we define the integral

/f(Z) dz = i /ak+1 f(fy(t))’Y/(t) dt.
Y k0 7 ax

Note that this integral exists because each component integral exists because 7|4, 4, ] is in fact C'.

Example 4.28. Fix f: C\ {0} — Cby f(z) == I and v: [0,27] — C by ~(t) = exp(it) so that 7/(t) =

iexp(it). It follows
27 1 27
zdz=/ <‘-iex it)dt:/ idt = 2mit.
A 1)z = [ (o el /

Now let’s show that the integral does not change on reparameterization.

Lemma 4.29. Fix v, : [a,b] — Q and y2: [¢,d] — € two equivalent piecewise C! paths. Then, for any
continuous function f: Q — C,

/71 feydz= [ 1z

Proof. By equivalence, we are promised a function s: [¢,d] — [a,b] which is continuously differentiable,
bijection, and has positive derivative everywhere such that y5 = v, o s.
We willin the case where v; is C!, and the general case will follow. Then we compute

d
f(2)dz = / Fon(s(8)(m 0 8)'(£) dt.

Applying Lemma 4.5, we see

/ f(2) dz = / FOn (s (s()s' (1) dt
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By applying a u-substitution along s (notably, this is now an integral from a real variable!),* we see

b
fGa: = [ fonids= [ f)dz,

V2 71

which is what we wanted. [ |

4.2.3 Path Arithmetic

Let's blast through some lemmas.

Warning 4.30. In the following statements, we will merely require our paths to be piecewise C*, but
the proofs will deal with the C! case. This can be amended by partitioning all the intervals to make
everything C!, but we will not write this out formally.

Lemma 4.31. Fix an open subset Q C C. If y: [a,b] — Qs a piecewise C*! pathand f,g: Q — C are
continuous functions and o, 8 € C, then we have

A(af(z) + Bg(2))dz = a/

~

f(z)dz +B/g(z) dz.

~

Proof. We write

b
/ (af(2) + Bo(z)) dz = / (af(1(D)) + Ba(v(E)Y' (1) dt

by definition, which expands by Lemma 4.23 into

b b
o / Fo@) (6 dt + 8 / g(Y (D) () dt = a / F(z)dz + 8 / £(2) dz,

which is what we wanted. [ |

Lemma 4.32. Fix an open subset ) C C. Further, fix v: [a,b] — Q is a piecewise C! path with vy~ (t) =
~v(b+ a — t) the opposite path. Then, for f: & — C a continuous function,

[{f(z)dz: —/7_ f(z)d=.

Proof. The point is to do a u-substitution ¢ — b + a — t. Indeed, we compute

b a
/ f(z)dz = / F ) () dt = /b FOY(b+a— )y (b+a—tydt,

where in the last step we have applied our u-substitution, legal from real analysis because our integral is
from a real variable.”? However, we see y(b+a —t) = vy~ (b+a — t), so the right-hand integral is the desired
one; notably, (v7)'(t) = —y(b+a—t), but this inherited minus sign reverses the order of the time to be from
t=atot =0, asitshould be. |

1 Technically, we should expand out this integral into real and imaginary parts and then apply the u-substitution. Please don’t make
me do this.
2 Again, to be formal, we should expand this into real and imaginary parts and then apply the u-substitution, but we won't bother.
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Lemma 4.33. Fix an open subset 2 C C. Further, fixv: [a,b] — Qand7: [c,d] — Qto be a piecewise C*
paths such that (b) = n(c). Then, for a continuous function f: 2 — C, we have

[W]f(z)dz:Lf(z)dz+[’f(z)dz

Proof. Note that

b+d—c b+d—c
ra= [ s @a= [ saoroas [T e v ome v

T*N

This is what we want as soon as we apply the change of variablest — b + ¢ — . |

For our last lemma, we have the following definition.

Definition 4.34 (Length). Fixa C* path «: [a,b] — C. Then we define the length of v as

b
— / (1) dt.

More generally, if v is piecewise C', then we are promised a strictly increasing sequence {ay }_, where
ap = aand a,, = bsuch that y|(,, a,.,] is C*. So we define the length as

Z /

Let's use this definition a little.

Proposition 4.35. Fix an open and connected subset Q) C C. Then, fory: [a,b] — C a piecewise C'! path
and a continuous function f, g: Q2 — C, we have the following. Then we have

z)dz| < sup {[f(v(®)I} - €(v)-

t€la,b]

Proof. By composition, |f o 7| is a continuous function. In particular, because [a, b] is a compact set, the
supremum will actually exist, thus bounding f on v([a, b]). Now, estimating, we see

/ PG ()] de.

By real analysis, we bound this last integral (from real analysis) as

z)dz

sup {|f(y I}/Iv ) dt,

t€la,b]
which is what we wanted. [ |

We close with a definition, to advertise the fundamental theorem of calculus.

Definition 4.36 (Primitive). Fix a nonempty, open subset 2 C C. Then, given two continuous functions
F, f: Q — C, we say that F'is a primitive on f if and only if F'is holomorphicon Q and F' = f.
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4.3 March1l

Good morning everyone.

4.3.1 The Fundamental Theorem of Calculus

Today we continue talking about path integration. We want to talk about a Fundamental theorem of calcu-
lus, so we pick up the following definition.

Definition 4.36 (Primitive). Fix a nonempty, open subset 2 C C. Then, given two continuous functions
F, f: Q — C, we say that F'is a primitive on f if and only if F' is holomorphicon Qand F’ = f.

As promised, we have the following statement.

Theorem 4.37 (Fundamental theorem of calculus). Fix an open, connected, nonempty subset 2 C C
with continuous functions F, f: Q — C such that F is a primitive of f. If y: [a,b] — C is piecewise C1,
then we can compute

/ £(2)dz = F(3(b)) — F(v(a)).

Proof. We proceed by force. Write

d

b b
[ #era= [ fo@y@d = [ GFG@)d=FO®) - o),

where the last step is separating out F'o+y into real and imaginary parts and using the Fundamental theorem
of calculus from R. ]

Remark4.38. Importantly, Theorem 4.37 asserts that the exact path v does not matter to this integral—
only its endpoints!

Corollary4.39. Fixan open, connected, nonempty subset 2 C C with continuous functions F, f:  — C
such that F'is a primitive of f. If v: [a,b] — Cis a closed path, then

L F(2)dz = 0.

Proof. We compute

which is what we wanted. |
Example 4.40. The function f(z) = 1 does not have a primitive on C \ {0}, which we can see formally
because )
/ —dz = 2mi,
v z
for v: [0, 27 defined by v(¢) = €. Less formally, we would like f(z) = 1 to have primitive given by
Log z, but Log z is only defined on C \ R.

So we would like to determine when a function has a primitive root.
To start our discussion, we have the following technical result.
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Lemma 4.41. Fix a nonempty, open, and connected subset Q2 C C. Then any two points in C are con-
nected by a piecewise C! path contained in Q.

Proof. The idea is to build path-connected components as in Proposition 2.110, but this time, we force our
paths to be piecewise C*.

Fix z € Q,and let U C ) denote the set of points w € Q such that there exists a piecewise C* path from
z to w contained in Q2. We want to show U = Q. The key is the following lemma.

Lemma 4.42. Fix everything as above. If X C Qis convex with X NU # &, then X C U.

Proof. Fixany w € X NU so that we want to show X C U. In other words, for any p € X, we want to show
p € U. The point, like with Proposition 2.110, is the following image.

Indeed, because w € U, there exists a piecewise C! path v: [a,b] — Q from 2 to w. To finish, we set
n: [0,1] - B(w,r) to be

n(t) =w+t(p — w)
so that n(0) = wand n(1) = pand n/(t) = p — wis a constant function and therefore continuous. Because X
is convex, we see that ) lives in X and therefore in Q.

Thus, nisa C! path from w to p, so v * 1 is a piecewise C'! path from z to w to p.> Because v and 7 both
output to 2, we see that v x  does as well, so p € U follows. |

We now have the following checks on U.

+ We see that U is nonempty because z € U. Namely, the path ~,: [0,1] — Q by

V() =2
has derivative 7. () = 0, which is constant and hence continuous. Thus, 7, is a C! path from z to 2.

+ We show that U is open in Q. Indeed, suppose that w € U. We need to find an open neighborhood
around w which lives in U; well, Q is open, so there exists some r > 0 such that B(w, r) C €.

But now, B(w, ) is convex (by Example 2.16) and intersects U nontrivially at w € U, so B(w,r) C U
by Lemma 4.42, so we are done.

+ We show that U is closed in Q. For this, we show that Q \ U is open in Q. Well, given w € Q\ U, we
need to find an open neighborhood around w contained in 2 \ U; because Q) is open, we certainly may
find some r > 0 such that B(w,r) C .

So we claim that B(w,r) € Q\ U or equivalently that B(w,r) N U = @. Well, supposing for the
sake of contradiction that we can find p € B(w,r) N U, we see that B(w, r) is convex by Example 2.16
and intersects U nontrivially at U, so B(w,r) C U and w € U will follow by Lemma 4.42. But this
contradicts the construction of w, so we are done.

3 Technically, we should provide a partition for y*1: [a,b+1] — Q. Well, partition [a, b] by the partition for , and then take [b, b+ 1]
to be the last portion.
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Thus, U is a nonempty closed and open subset of 2, so because (2 is connected, we must have U = Q: we
seethat Q = U U (2\ U) is a disjoint union into open sets, so because U is nonempty, we must have Q \ U
be empty, so U = Q. But this is exactly what we wanted, so we are done. |

Remark 4.43. We can strengthen this to having a C* path, with a little more technical care.
As such, we have the following.

Theorem 4.44. Fix a nonempty, open, and connected subset 2 C C. Further, fix a continuous function

f: Q — Csuch that
/f(z)dz =0
~

for all closed paths «. Then f admits a primitive F'.

Proof. We construct our primitive F' by hand. Fix zg € Q. Then, for any z € Q, we choose some piecewise
C* path v: [a,b] — C with y(a) = 2z and v(b) = 2 so that we can define

F(z) = L £(2) d=.

Of course, it is not immediately obvious that ' does not depend on the exact choice of path ~, but it does
not: suppose 71 : [a,b] = Cand y3: [¢,d] = C have v1(a) = Y2(c) = 29 and 1 (b) = 72(d) = z. Now, the key
observation is that

Y= Y2k
which we can see is well-defined because ~; (b) = zp and y2(c) = zo as well. Further, v is closed because
v1 (a) = z while v2(d) = z, so we see that

5 f(z)dz/ﬂy1 f(z)dz= 5 f(z)der[Yl_ f(z)dz = [m*%— f(z)dz =0,

where we have used (in order) Lemma 4.32 and Lemma 4.33 and the hypothesis.
It remains to show that F'is holomorphic on Cwith F' = f. Well, fixw € Qand e > 0 such that B(w,e) C
Q, which is legal because Q is open. Now, we are promised a piecewise C! path «: [a, b] — Q such that

v(a) = 2o and ~(b) = w.

Now, forany z; € B(w,e), we set s1: [0,1] — B(w, ) be the line segment connecting w to z;; explicitly, we
have
s1(t) = w+t(z1 — w).

Then, we define y3% = 7 * s1, a path from 2o to w to z;. In particular, we find
Fa) - Fw) = [ f@)de- [ )= [ 1o
Y1 Y2 S1

where we have used Lemma 4.33 again. In particular, for z; # w, we find

21) — w !
‘F()_F()f(w)‘ i / f(w+t(zlw))(21w)dtf(w)’
z21— W 21— W Jo
1
- /0 flw+t(z1 —w))dt — f(w)’ :
By Proposition 4.35, we see

‘F(Zl)—F(w)

zZ1 —w

—fwﬁ<aawsw{um+am—w»—ﬂM}

tefo,1]
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We now need to show that this values goes to 0 as e > 0 goes to 0. Well, for some ¢’ > 0, thereisad > 0
such that |z — w| < ¢ for which
|z —w| <d = |f(z) = f(w)] < €.

In particular, we see that |z; — w| < ¢’ implies that

/

[lw+t(z1 —w) —w|=[t(z1 —w)| = |21 —w| < § = |f(w+t(z1 —w)) — f(w)| <€,

so
sup {[f(w +t(z1 —w)) — f(w)[} <€
te0,1]
Putting this together, we see that
Flw) = tim 2 ZF00) _ p)
zZ1—w Z1—w
so we are done. |

Remark 4.45. This criterion might appear useless, but we promise that it isn't. It will turn out that we
don't really have to check all paths.

4.3.2 Winding Numbers
We start with a continuous version of the polar form of a complex number. This will be the major technical

step in our construction of the winding number.

Lemma 4.46. Fixy: [0,1] — C\ {0} a path. Then there is a continuous function 6., : [0,1] — R such that

V() = [y (®)] exp(2mibly (£)).

Furthermore, if we have two such functions 6., and v, then 6., — 1, differ by a constant integer.

Proof. The point s to choose 6, with various branches of Log. We proceed with the following steps.

1. For psychological reasons, we replace ~(¢) with % so that |y(¢)| = 1, and we are looking for a func-
tiond: [0,1] — R so that
~v(t) = exp(27i0(t)).

2. We now temper the speed of by partitioning its interval [0, 1]. Because [0, 1] is compact v is continu-
ous, v is in fact, uniformly continuous by Proposition 2.124. So, for example, we can find some § > 0
such that s, ¢ € [0,1] has

s —t]| <6 = |y(s) = ()| < 1.

As such, we set some n € N exceeding § and partition [0, 1] by {a)}}_, defined by a; := k/n (note
ap =0anda,, = 1)sothat |ax11 —ag| = % < 6. The pointis that our partition {a; }_,, forces ~ to move
at a reasonable pace.

3. We now define @ piecewise by 0 : [ax,ar,1] — C by

gk(t) _ argy(ax) + z;rfh(t)/ﬂak))

Notably, |y(¢) —v(ax)| < 1/2 implies that v(¢) /v(ax) cannot be in R because ~ lives on the unit circle
in C, so y(t)/v(ar) € Reg would imply that v(t)/v(ax) = —1 and so |y(t) — v(ax)| = |1 — =1| = 2.
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Thus, 0, defined above is in fact a continuous function by Lemma 3.97 because it is the composite of
continuous functions.

Importantly, we can check that i argy(ax) = Log~(ax) because |y(ax)|, so we see

exp(2mify(t)) = exp(iargy(ax) + i arg(y(t)/y(ax)))
= exp(Log v(ax)) exp(Log ~(t)/7(ax))
= y(ag) - v(t)/v(ar) = ~(t),

so our 6}, is chosen correctly.
4. Next we glue our 6, functions. Fixing some a,, for 0 < m < n, we see
exp(2mil,,—1(am)) = exp(2mil,, (am)),

50 271 (0, (@) — Om—1(am)) € kerexp by Proposition 3.57, 50 0, (@) = Sm + Om—1(a.m,) for some
sm € 7 by Proposition 3.73. As such, we define

m

0(t) = 0,,(t) + Z Sk where t € [am, mi1],
k=1

where t € [ay,,am+1]. Note that this function is well-defined on the endpoints a,, for0 < m < n
because 0,,(am) + $m = 0m—1(am). On one hand,

exp(27if(t)) = exp(27if,,(t)) exp <2m' . Z sk> =7(t) -1 =~(¢t)
k=1

as we showed above (using Proposition 3.57 and Proposition 3.73), so we see that this 6 satisfies the
needed equation.

Lastly, to see that 8 is continuous, we note that @ is continuous within each interval (a,,, a,,+1) because
this turns into a shifted version of 6,,, which we know is continuous by construction. Then at each
endpoint the well-definedness check shows that we can glue these intervals together.

Thus, we have exhibited our continuous function 6. It remains to show that this 6 is unique up to shifting by
an integer. Well, suppose 6 and 1 both satisfy

V() = Iy(@)] exp(2mib(t)) = [v(£)] exp(2mity())-

Using Proposition 3.57, we see that

exp (2mi(8(t) — 7(1))) = L,

so0(t) —~(t) € Z by Proposition 3.73. However, ¢t — 6(t) —y(t) is a continuous function from the connected
set [0, 1] to the set Z, but because the image must be connected by Proposition 2.98, so the image must be
a single point.* Thus,

foranyt € [0, 1] for some fixed integer n. [ |

This gives us the winding number.

4 Any connected subset S C Z containing a point a € Z cannot be disconnected by the open sets (a — 1/2,a + 1/2) N Z and
(—00,a —1/2) U (a + 1/2,00) N Z, so the latter set must be empty, so S C (a —1/2,a+1/2),s0 S = {a}.
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Definition 4.47 (Winding number). Fixy: [0,1] — C\ {0} a closed pathand ¢, : [0, 1] — R such that

Y(t) = |y(t)] exp(2mif (t)).
Then we define the winding number of -y around 0 by

0(1) — 6,(0)
I o JNSY RNEY

el 0 omi
More generally, for a given path v: [0,1] — C\ {20}, the winding number of v around zj is

Ind(v, 1) :== Ind(y — 21, 0).

Remark 4.48. Because 7 is closed, we see that exp(6(0)) = exp(6,(1)), s0 6,(0) = 6,(1) (mod 27i), so
the winding number is in fact an integer. In fact, the winding number is independent of the chosen 6,
because any two such functions differ by a constant integer, by Lemma 4.46.

Pictorially, the winding number of v: [0, 1] — C\ {0} isintended to be the number of times v “winds" around
0. We have the following examples, which we will not justify formally.

Example 4.49. The following path has winding number 0.

~

Example 4.50. The following path has winding number 1.

Example 4.51. The following path has winding number —1.

Example 4.52. The following path has winding number 2.
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4.4 March14

Good morning everyone. It's = day. Here are some house-keeping notes.

» Homework #6 is due on Friday, at midnight.
« Class on Friday will be recorded.

« Next week is spring break!

4.4.1 Winding Numbers by Integrals

Today we finish our discussion of path integration; soon we will transition over to the Cauchy integral for-
mula. We recall the following lemma.

Lemma4.46. Fixv: [0,1] — C\ {0} a path. Then there is a continuous function 6, : [0,1] — R such that
V(1) = [y(t)] exp (20, (t)).

Furthermore, if we have two such functions 6, and v, then 6., — 1, differ by a constant integer.

We quickly recall that the function 6, in the statement is, roughly speaking, the composition of (¢) (nor-
malized) with a suitably chosen branch of the logarithm.
This gave us the following definition.

Definition 4.47 (Winding number). Fixy: [0,1] — C\ {0} a closed path and 6, : [0, 1] — R such that

V() = [y (®)] exp(2mibly (£))-

Then we define the winding number of -y around 0 by

Ind(~y,0) = HW(U%W

More generally, for a given path : [0,1] — C\ {20}, the winding number of v around zy is
Ind(7, 21) :== Ind(y — 21, 0).

Remark 4.53. It is advisable to not really care about the definition given in Lemma 4.46 because we are
about to give a more computational view of it. To be more explicit, Lemma 4.46 is bad for computation.

Here's a better way to compute the winding number.

Lemma 4.54. Fixy: [0,1] — C a closed, piecewise C! path. Further, fix zg € C \ im~. Then

1 1
Ind(vy, z9) = 2—7”?{ P dz.
2l

Here are some example.

Example 4.55. Fix v: [0, 1] — C by 7(t) := exp(2wit) to be the unit circle. We can compute that

1 ' 2mi exp(2mit
(e LB oy
v 2 o 2exp(2mit)

so the winding number of v around zy = 0is 1.
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Example 4.56. Fix v: [0,1] — C by v(¢) := exp(—2wit) to be the clockwise unit circle. We can then

compute that
1 b _2mi exp(—2mit
}{fdz:/ miexp(=2mit) gy oy
y 2 0 exp(—2mit)

so the winding number of v around zp = 0is —1.

And here is our proof.

Proof of Lemma 4.54. This proof is a little slick. The point is to write a(¢) in terms of a branch of the loga-
rithm. As from Lemma 4.46, we have that

~v(t) = 20 + r(t) exp(2mia(t))
where r(t) := |y(t) — 20| and a(¢): [0,1] — R is a continuous function.
Fix some ¢y € [0, 1]. The idea is to show that everything in sight is differentiable. Because v(tq) # 2o and

~ is continuous, we can find some § > 0 and a suitable branch of the logarithm Log so that Log(y(t) — 2¢) is
defined on all B(y(to), d). Here, we can compute

r(0) = exp (3108 (1) ~ s0)30) - ).

Notably, this is the real-valued logarithm, so all of our standard logarithm rules apply (i.e., we are allowed
to move the % outside without concern). Thus, we see that r is a composite of continuous functions and
therefore continuous here. Now, by the continuity of r(¢), we can build a branch of the logarithm so that

Log (W(t)_zo) is defined near (). Because

r(t)
exp (Log (W(;))) — exp(2mia(t)),

we conclude from Proposition 3.73 that

1 ~(t) — 2o
) - — .2
O e )

isalways anintegerforeacht € [0, 1]. But because [0, 1] is connected and Z is discrete, this must be constant,
so there is a fixed integer n € Z such that

alt) = 1 y(t) — =0

T omi r(t) .

Now we integrate. We see that

SN ! AV L L (r/(t) + 2mir(t)d (1)) exp(2mit)
ﬁ = /0 7 de= /0 dt

z— 29 t) — 2o r(t) exp(2mit)

At this point, we notice that the exponential functions cancel, so we have that

f; R /01 r() 4+ 2mir(a'(t) /01 "®) o /Ola,(t) "

z— 29 r(t) r(t)

Now these integrals are completely real-valued. So we compute

1 T/(t) - logr -
/0 0 dt =logr(l) —logr(0) =0

because (1) = v(0) (it's a closed path). Thus, we are left with

1 Mt L B
j{/ e dz = 27m/0 a'(t) dt = 2mi(a(l) — a(0)),

so the conclusion follows. [ |

Here are some corollaries.
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Corollary 4.57. Fix a closed piecewise C! path v: [0,1] — Cand zp € C \ im~. Then Ind(y~, 29) =
—Ind(~, 20)-

Proof. Applying Lemma 4.32 to Lemma 4.54, we get

Ind(y™, 20) = %

Y

1 1
7dZ = —% 7dZ = _Ind(’ywz())v
4 'YZ

which is what we wanted. [ |

Corollary 4.58. Fix closed piecewise C! paths «,7: [0,1] — C such that (1) = n(0), and pick up some
20 € C\ (im~vyUimn). Then Ind(y * 7, z9) = Int(7, 20) + Ind(n, 2¢)-

Proof. Applying Lemma 4.33 to Lemma 4.54, we get
1 1 1
Ind(y *n,29) = 7{ —dz = 7{ —dz + j{ —dz =Ind(y, 20) + Ind(n, 20),
yan # v % n %

which is what we wanted. [ |

4.4.2 More General Indices
We will want a slightly more general version of the winding number for where we're going.

Definition 4.59 (Index). Fixan open and connected subset ) C C and a closed piecewise C! path~: [a, b] —
Q. Given a function f: Q — C which is continuous on im ~y, we define

1 f(z
Ind(y,w) = — zfzu
%

dz

Remark 4.60. This integral is equal to
b
fO@®)
SR dt,
e

which is now more obviously well-defined. In particular, the inner function is piecewise continuous, so
its real and imaginary parts are integrable.

Proposition 4.61. Fix an open and connected subset 2 C C and a closed, piecewise C! path v: [a, b] —
2. Given a function f: © — C a function continuous on im+, the function Ind¢ (v, —) is analytic (!) at w
with power series around zy given by

Ind; (7, 20) = i (217” ]2 (z_fizinﬂ dz) (2 — 20)"

n=0

This is our first major step towards showing that all holomorphic functions are analytic: here we have been
granted a way to conjure some magical power series.
For Proposition 4.61, we will need the following lemma.
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Lemma 4.62. Fix Q2 and v as in Proposition 4.61. Given a sequence of continuous functions {f}7
which uniformly converge to f onim~, then f is integrable and

lim fn ) dz —j{f
n—oo

Proof. Roughly speaking, the point is to look at

73 (f = fu)(2) dz

and use Proposition 4.35 and uniform convergence to show that this vanishes as n — oc.
Let’s be a little more precise. We need to show that

lim ¢ (f(2) — fu(z)) dz = 0.

n—00
Y

By Proposition 4.35, we can say

f (F(2) = ful2)) ds| < sup {|F(Y(1)) — Fulr (D)} - £(7).

te(a,b]

If ¢(v) = 0, there is nothing to say. Otherwise, we setany ¢ > 0 and note that uniform convergence of f,, — f
promises us some N for whichn > N has

3
20(7)

1f(2) = fn(2)] <

forall z € im~. In particular, we find that

f(f(Z) — Ja(2)) dz| < sup {|F(7(1)) = fa(y ()} - €(7) < 5

t€la,b]
so we have established the needed limit. [ ]
And here is our proof.

Proof of Proposition 4.61. Fix zy € C\ im~. For psychological reasons, we translate our path and {2 so that
zo = 0. Now, [a, b] is compact, so y([a, b]) is compact and therefore closed, so C\ im v is open, so we can find
anr > 0suchthat B(0,2r) C C\ im~.

Now, forany w € B(0,r) and z € im~, we have |w| < r and |z|2r, so we have |w/z| < 1/2. Continuing
with our estimation, we set

M = sup {|f(v(t))[}
t€la,b]
which exists because [a, b] is compact (namely, real-valued continuous functions always maximums on com-
pact sets). Thus, we bound
f(z ‘ f(z

w|n M 1\"
15 =50 (5) (+)
z 2r 2
Noting that |w/z| < 1, it follows that

S0 _ 16, 1_w/z Zf 4y’ Z (2,

Zn+l

by how we sum geometric series. In fact, by the Weierstrass M-test, this sum converges uniformly: by (x),

we can write - -
M 1\"
S en () <=
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Thus, Lemma 4.62 tells us that

L@ [ (S (1[G Y
2 _wd%]{(Z e )dz(zﬂ}{N’)“’

v n=0 n=0

which gives the desired power series expansion. |

4,5 March16

Good morning everyone. Here are some house-keeping notes.
« Homework #6 is still due Friday.

» Class on Friday will be recorded.

4.5.1 Cauchy Integral Formula Primer

Today we're start with the Cauchy integral formula. Here's the statement.

Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset 2 C C and some 2y € 2 with
r > 0 such that B(z,r) C Q. Further, fix the path v: [0, 1] — Q given by

v(t) == zo + r exp(2mit).
Then, if f: Q — Cis holomorphic, then any w € B(zg, r) has

fw) = 5 § T

211 v 2w

dz = Ind (7, w).

Namely, evaluating a holomorphic function f at a point w can be determined only from the value of f on
the path 4!
Here is a nice consequence.

Corollary 4.64. Holomorphic functions are analytic.

Proof. Use Theorem 4.63 to show that any function f differentiable at a point in an open set is equal to
Ind(w, ) locally, from which Proposition 4.61 provides the local power series expansion. |

4.5.2 The Cauchy-Goursat Theorem

To prove Theorem 4.63, we will proceed in steps. Here is one major step.

Theorem 4.65 (Cauchy—Goursat). Fix an open, connected subset 2 C C and T a triangle in Q (i.e., a
closed path defined as the concatenation of three segments). If f: Q — Cis holomorphic, then

ﬁf(z) dz = 0.

Proof. Suppose for the sake of contradiction that the integral is nonzero. Set

}éf(z) dz

Here is the image. The idea is to subdivide our triangle T := T° by midpoints.

1= # 0.
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By orienting everything properly, we get cancellation along the overlapped regions, so

ﬁf(z) dz = éﬁ? f(z)dz.

Because the norm here is nonzero, there is an index ¢ such that

I
Z<
1S

)

f(z)dz
T?

so we set T := T?. Then we can repeat the process inductively to T"; here is the iterated image for 7",
working with 7! = T9.

This gives a sequence of nested triangles 79, T, . .. such that

ﬁk f(z)dz

As another bound, we note that ¢ (T*) = 27%¢(T') by essentially geometry of midpoint triangles.
The idea, now, is to find a point contained in all of our triangles. Let V* be the region enclosed by T* (i.e.,
the convex hull). Thus, we have a descending sequence of nested closed sets

Ik =

Vioviovio....

Each of the V* is closed and bounded and therefore compact, so it follows that the intersection in total is
nonempty from the following lemma.
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Lemma 4.66. Fix a descending chain
Vo2Vi2dVe 2.

of nonempty compact subsets of C. Then the intersection is nonempty.

Proof. Suppose for the sake of contradiction that

ﬂ V,=o.
i=0
Then we can write - -
%=%\HW=UWM%)
i=0 i=0

In particular, V5 \ V; = VoN(C\ V;) is openin 1}, so the above provides an open cover of V. By compactness,
this has a finite subcover {V;, }7_,, so

%zU%Hmz%\ﬂwm

k=1

so we see that
n

n
@ = ﬂ ‘/;k 2 m Vmaxk ik = Vl‘ﬂan ik
k=1 k=1
must be empty, which is a contradiction to the construction of the V;. |

Now, put zg in the intersection of our descending chain. Now, f is holomorphic and in particular complex
differentiable at 2y, so Proposition 3.15 promises us a continuous function h: 2 — C continuous at z such
that

f(z) = f(20) + h(2)(z — 20).

Quickly, we expand

7{ (R(2) = f'(20))(z — 20) dz = f(z)dz — f(z0)dz — I (20)(2 — 20) dz.
Tk Tk Tk

Tk

Now, the constant function z — f(zo) has f(z0)z as a primitive, and f'(z)(z — 20) has @(2 — 20)% as
a primitive, so Corollary 4.39 tells us that the two right-hand integrals vanish. Thus, we can estimate (by
Proposition 4.35)

I, =

() = o)) o= 20)

< iu§k{|h(2) — ['(z0)l - |z = 20|} - € (T")
< sup {|A(2) = f'(20)[} - sup {|z = zo[} - € (T").
zEVE zeVE

Now, sup, ¢y« {|z — 20|} is less than the largest length in V*, which we define to be diam (V*). Re-expanding
out to T', we see diam (V*) = 27 % diam(V?) and ¢ (T*) < ¢(T?), so we get to bound

IF <47k seuvpk{m(z) — f"(20)]} - diam(V') - £(T).

We now take a moment to acknowledge that the point zj is the unique point in the intersection of the V*
because diam (V*) = 27% diam (V) goes to 0, zeroing in on z.
As such, we now take z — zg and then & — oo. In particular, the continuity of & requires

451, < sup {|h(z) — f'(20)}
z€VE
togoto0ask — oco. But now, I < 4*I, so I = 0isforced, which is our final contradiction. [ ]
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4.5.3 Not Just Triangles

Triangles are a nice starting point for Theorem 4.65, but most sets we deal with will not be triangles. Here's
a more general definition to help us.

Definition 4.67 (Star-like). A subset X C C is star-like with respect to zg € X ifand only if eachw € X
has a line segment to zy contained in X.

Example 4.68. Any convex set X is star-like, for any point in its interior. To be explicit, fix any 2o € X.
Then, forany z € X, the line segment connecting 2y and z lives in X, thus finishing. Here's the image.

Example 4.69. The star is star-like with respect to its center. Here is the image.

So here is our associated statement.

Theorem 4.70. Fix an open, connected, star-like subset 2 C C with respect to z,. Further, fix a closed,
piecewise C! path v: [0,1] — Q. Then, if f: Q — C is holomorphic,

ﬂé F(z)dz =0,

Proof. The point is to construct a primitive for f by hand, similar to Theorem 4.44, using Theorem 4.65
instead of the listed condition. In particular, note that if we give f a primitive on , then the conclusion will
follow by Corollary 4.39.

We imitate the construction from Theorem 4.44. Indeed, we would like to integrate over a path to create
our primitive, so we will use the star-like condition to get the desired path: for w € , the star-like condition
on ) promises us the line segment ~,,: [0, 1] — © from 2, to w, defined by

Y (t) = (1 = t)zo + tw.

As such, we set

We now claim that F' is our primitive, for which we have to show F/(z1) = f(z1) forany z; € Q.
For psychological reasons, we start by placing z; € Q inside some open ball B(z1,7) C Q. We would like
to control the value of F' inside B(z1, 7). Well, for any w in B(z1,r), we have the following image.
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In words, we have the triangle

Tzo,w,zl = Yw KN 7;1

contained in Q, wheren(t) := (1 —t)w+tz is the line segment connecting w to z;. In particular, v,,(1) = w =
n(0) and n(1) = z1 = 7, (1), so we may concatenate these segments into a triangle. Further, this triangle
lives in Q because im+,, C Q and im~,, C Q by hypothesis on 2, and imn C B(z,r) C Q because B(z1,r)
is convex.

Thus, by Theorem 4.65, we get to write

Ozﬁ | f(z)dz

20w,z

f(z)dz—k/f(z)dz—k/% f(z)dz

Yw

f(z dz+/f dzf/ f(z)dz
Yuw

= F(w F(z) /f

We are now ready to bound our difference quotient: by Proposition 4.35, we see

F(z1) = F(w)

Z1—w

zZ1 —w

_ / f( 1—tw+tz1)'(zl_w)dt_f(zl)

=|[ st -t - sean
= sup {|f((1—tyw+tz)— f(z1)|}-

te[0,1]

—ﬂaﬂz ey RGN

Now, as w — z1, we see that f((1 — t)w + tz1) will be forced to approach f(z;) by continuity of f, bounded
uniformly by w, so the quantity approaches 0. More rigorously, foranye > 0, choose é < rsothat |z’ —z1| < ¢
implies |f(2') — f(z1)] < e. Then any w with |w — 21| < § will have |(1 — t)w + tz1 — 21| < § as well, so

t:l[épl {!f (1-tw+tz)— (zl)‘} <e
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by taking the supremum everywhere. Sending ¢ — 0 gives the result. |

4.6 March18

This lecture was recorded.

4.6.1 Proving the Cauchy Integral Formula

Today we finish the proof of the Cauchy integral formula. Recall the statement.

Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset 2 C C and some zy € 2 with
r > 0 such that B(z,7) C Q. Further, fix the path v: [0,1] — Q given by

~v(t) == 2o + r exp(2mit).

Then, if f: Q — Cis holomorphic, then any w € B(zg, r) has

flw) = %j{ 1) dz = Inds(vy,w).

Z—w

Proof. Asneeded, choose w € B(z, r), which is open, so we choose any ¢ > 0 such that B(w, e) C B(z,r).
As such, we set
Cy = 0B(zg,r) = im~y and Cy = OB(w,¢).

Now, the main trick in the proof will be the following image, which will turn the integral around « into a more
controlled (and small!) square.

Clzfl*Fg

We will not spend the time to rigorously define what the various paths are, but we will list their properties.
» The concatenation I'; * I's fully covers the circle C.

» The concatenation Ay * A, creates a square around w whose vertices are {w — e, w +ie,w + ¢, w —ic},
in that order.
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« The segments s; and ss are parallel to the real axis such that s; intersects C; (“on the left”) and w — e.
Similarly, s, intersects Cy (“on the right”) and w + €.

» The path I'; starts where s, ends and ends where s; begins. Similarly, the path I's starts where s;
begins and ends where s, ends.

Now, as promised, we move from an integralaround v to anintegralaround the square Ay *As. In particular,
weset7: [0,1] — Qto be areparameterization of (A x Ag)~, and we will transfer the integral around «y into
anintegral around 7.

For this, we use the work we did last class. Recall the following statement.

Theorem 4.70. Fix an open, connected, star-like subset Q C C with respect to zq. Further, fix a closed,
piecewise C! pathv: [0,1] — Q. Then, if f: Q — C is holomorphic,

7{ f(z)dz =

With this in mind, we set
v1 =11 % 81 % Aq * 89 and Yo i=Tg %85 * Agx8]
to be closed paths, more or less representing the green and blue halves of our drawn contours. (These con-

catenations are well-defined and are closed by the chosen orientations of our paths.) In particular, applying
our rules from Lemma 4.33 and Lemma 4.32, we see that

%7f(2)dz+ EICRpAIY o iC d+/f A e Oh d+/f
’le_w ,YZZ—’UJ r, #-w A R

(I B (R G (O I B (O}
Iy 2= W s, W Ay Z2—W s W
:/ f(2) dz+/ f2) .
sy # — W ArxAgy Z — W
1) 4. 16, )
,YZ*’LU o %T,ZU) % ()

where in the last step we have reparameterized (twice), as in Lemma 4.29. The negative sign in front of 3%
occurs because 7 is a reparameterization of (A; x Ag)~; pictorially, 7 is counterclockwise.

We now finish by brute force. Note that the function fﬁ—z) is a quotient of holomorphic functions on
0\ {w} is holomorphic itself. Even though we cannot immediately apply Theorem 4.70 to 2 \ {w}, we can
apply it to the regions interior to v; and v9; i.e., the top and bottom parts of B(zp,r) \ B(w, ), respectively.
Both of these regions are star-like” (as witnessed by w + ie and w — ¢, respectively) because s; and s are
collinear and on opposite sides of our square, so Theorem 4.70 implies

G, S

ot o 2T

jq{ f(2) dz:jz{@dz.

So we have indeed transformed our integral around + into an integral around a square 7. Observe that we
can even make € > 0 smaller and maintain the above equality.

dz=04+0=0.

As such, (1) tells us that

> Technically, we should expand out the regions by a very small amount § in order to make these regions also open and containing
~1 and ~y2, but we will not bother to do this in any rigorous way.
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We now run our computation of the integral around the square. We see

L) £(2) = fw) Flw
27 ;z—me% —w ?{ —
— gL )_i 4z + f(w) Ind(7, w)
_ fz) AP (2)
Z—w

where we have computed the winding number as in Lemma 4.54. Notably, our winding number is +1, per-
haps by plugging into the definition via Lemma 4.46 because the normalized version of 7 is just a circle, so
the corresponding 65 can be set to 6 + 27t for some starting value 6. We will not make this more rigorous
because look at it.

We now send ¢ — 0, which will send W — f(w) by definition of the derivative. More rigorously,
foranyeg > 0, there exists ¢ > 0 so that |z — w| < ¢ implies

‘f<2>—f<w> —f’(w)‘ <eo,

so Proposition 4.35 tells us that

3% ( w)| + &o) - 27,

where in the last step we have bounded both the difference quotient and ¥ by the circumference of the
circumscribed circle. Thus, sending ¢ — 0 will force the entire integral to vanish, so we find from (2) that

— 1(z) dz = lim L /(z) dz = lim — % f(z dz + f(w) = f(w),
211 y W e—0 277 5Z—Ww e—0 271
which is what we wanted. [ ]

4.6.2 Applications of the Cauchy Integral Formula

As a first application, we extend Corollary 4.64.

Corollary 4.71. Fix an open, connected subset Q@ C C and f: Q — C some holomorphic function. Then
fisanalyticatany zp € Q. Infact, forany r > 0 such that B(zp,r) C , the path

~(t) == zo + 7 exp(2mit)
gives

£ o) = g § L

2mi

Proof. By Theorem 4.63, we know that
f(w) = Indg(y,w),
forany w € B(zp,7). Now, applying Proposition 4.61, we see that

J(2) = i (2; f (_f(§+) (2 — )"
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for z in some open ball around zy, which is our local power series expansion. Now, inductively throwing
Proposition 3.44 at this power series, we see that

f(n)(zo) _ n! % f(z) dz

T omi ), (2 — )t
which is what we wanted. ]

And here is another one.

Theorem 4.72 (Morera). Fix an open, connected subset 2 C C such that f: Q — C is continuous. Fur-
ther, suppose that every closed, piecewise C! path v: [a,b] — Q has

7{ F(2)dz = 0.

Then f is holomorphic.

Proof. By Theorem 4.44 tells us that f has a primitive F' on Q. In particular, F' is holomorphic on Q (with
F’' = f)and therefore F is analytic by Corollary 4.71, so f = F” is analytic by Lemma 3.51 and therefore
holomorphic by Proposition 3.49. |

Remark 4.73. | think a strengthening of Theorem 4.44 can show that we merely need to check

ﬁf(z)dZZO

for C! paths .

4.6.3 Primitive Domains

To close our lecture, we build a little theory on domains.

Definition 4.74 (Domain). A subset Q2 C Cis a domain if and only if {2 is open and connected.

Definition 4.75 (Primitive domain). A domain  C C is a primitive domain if and only if every holomor-
phic function f: Q — C admits a primitive.

Example 4.76. Star-like domains are primitive because we constructed a primitive for each holomor-
phic f:  — C by hand in the proof of Theorem 4.70. Alternatively, we can more directly just apply
Theorem 4.70 and then Theorem 4.44 backwards to get our primitive.

Here is a quick reason why we might care about this definition.

Lemma 4.77. Fix a primitive domain 2 C C and some holomorphic function f: @ — C. Then, given a
closed, piecewise C* path v: [a,b] — C, we have

ﬂé F(z)dz = 0.

Proof. Because Q) is a primitive domain, f admits a primitive. Then Corollary 4.39 finishes. |

And here is the technical result we will need.
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Lemma 4.78. Fix primitive domains 1, Qs C C. Further, suppose that ; N Q5 is nonempty and con-
nected. Then Q; U Q5 is a primitive domain.

Proof. By Lemma 2.46, we see that 2; U, is connected, and because both these sets are open, we see that
Q1 UQyisinfact a domain as well.

It remains to show that Q2; U is in fact a primitive domain. Well, fix any holomorphic function f: (Q; U
Qy) — C. Forbrevity, set f1 = f|qo, and fa :== f|q, sothat fi: Q; — Cand f2: Qo — Care both holomorphic
by restriction.

Thus, because ©; and Q; are both primitive domains, we are promised primitives F; and F; for f; and fs
respectively. In particular,

F{:fl and Fé:fg

It remains to stitch these together to create a single primitive for f. Well, ;N5 is also open and connected
(as the intersection of open and connected sets) and hence a domain, and we note

(F1 = Fy)'(2) = F{(2) = F5(2) = f(2) = f(2) = 0

forany z € Q1 NQ,. In particular, F; — F5 is constant on Q; N Qs by Lemma 2.46; note that here is where we
use the condition that 21 N Qs is connected! So we set (F} — F»)(z) =: ¢ for some ¢ € C.
We now note that F5 + ¢ will be a primitive for f on Q5 because

(Fy+c) =Fy+c = f.

With this in mind, we define F': (2; U Q) — C by

. Fl(Z) S Ql,
F(Z) o {FQ(Z) +c z€ QQ.

Note this is well-defined because z € Q1 N Qy has Fy(z) = F(z) + ¢. We can then check that
(Flo,)'=F{=f and  (Flo,)’ = (F2+c) =,
which is what we wanted. ]

After spring break, we prove some more consequences of the Cauchy integral formula.

4,7 March28

Welcome back from spring break, everybody. Homework #7 has been released and is due on Sunday.

4.7.1 Liouville’s Theorem

Today we are discussing consequences of the Cauchy integral formula. Here is the statement.

Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset 2 C C and some 2y € 2 with
r > 0 such that B(z,r) C Q. Further, fix the path v: [0,1] — Q given by

v(t) = 2o + 7 exp(2mit).
Then, if f: Q@ — Cis holomorphic, then any w € B(zg, r) has

fw) = o § 12

211 N 2w

dz = Indf (7, w).
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Remark 4.79. There are two ways to read this: we could either try to evaluate f at w via the integral,
or we could be handed an integral that looks something like the right-hand side and then compute by
evaluating f at w.

As one immediate consequence, we showed that holomorphic functions are analytic.
Let’s see another consequence.

Theorem 4.80 (Liouville's). Fix an entire function f: C — C. If f is bounded, then f is constant.

Proof. Thisisn'ttoo hard. Because f is bounded, we are promised a real number M € R* such that |f(z)| <
M forall z € C. Fixsome w € C, and choose any r so that » > |w|. The idea is to take r very large in the
Cauchy integral formula to show that f(w) = f(0); for now, we innocently define v,.: [0,1] — C by

~-(0) == rexp(2mit)
as tracing the boundary of B(0,r). In particular, our w € C with |w| < r (i.e., w € B(0,r)) will have
|2 = w| > [r — |wl|

forany z € im~,.> We will show that f(w) = f(0) by the Cauchy integral formula: by Theorem 4.63, we

have
=10 =5 § (25 -12) o
1

3t sw {|EL

s zZ€im v, Z(Z - w)

IN

where we have applied Proposition 4.35 in the last step. Further, ¢(v,.) = 271 because we are tracking out a
circle. And lastly, we note that any z € im ~, will have

wf(z) |w| - M
2(z—w)| = r-(r—|w])’
> 1 wl- M JulM
w| - w| -
_ < . . = .

Now, taking r — oo will have

ol - M _

r—lwl 7
so f(w) = f(0) follows. Thus, f is indeed constant. [ |

And now we can use Liouville’'s theorem for fun and profit.

Theorem 4.81 (Fundamental theorem of algebra). Fix a polynomial p(z) € C|z] of degree n > 0. Then p
has arootin C.

Proof. Let our polynomial be
p(z) = Zakzk.
k=0

6 This is from the triangle inequality: note |z — w| + |w| > |z| = rand |w — 2| + 7 > |w].
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Note that p(w) = 0if and only if ip(w) = 0, so for psychological reasons, we will replace p(z) with ip(z).
In other words, we will simply assume that a,, = 1 and set

n—1
q(z) = Z apz"
k=0

sothat p(z) = 2™ + q(2).
Now, suppose that p has no roots, and we will show that p is constant via Theorem 4.80; i.e., p(z) # 0 for
1

any z € C. Then Proposition 3.6 tells us that f(z) := 7o i holomorphic no C (i.e., entire). We claim that f

is bounded on C. Well, by the triangle inequality again, we see
12" = la(2) < [p(2)];

SO

1
A T e

But now, by sending |z| — oo, we may assume that z # 0 for |z| sufficiently large, so

1
(2)/z»= M|

which goes to 0 as |z| — co. As such, f(z) is bounded and hence constant by Theorem 4.80, so p(z) = 7

is also bounded and hence constant. Note f(z) # 0 because f(z) = ﬁ everywhere. |

) <

Remark 4.82. This proof is somewhat non-constructive, in that we have no idea what the root is.

Remark 4.83. By inducting, we can show that p has exactly n roots, counted with multiplicity.

4.7.2 Polesand Zeroes Preview

Here is another result.

Theorem 4.84 (Riemann removable singularity). Fix an open and connected subset Q2 C C, and pick up
somezp € Q. If f: Q\ {20} — Cis holomorphic and bounded near zg, then f extends to a holomorphic
function on Q.

Proof. We will construct f(z) explicitly by starting with a function fully holomorphic on €, which we will
then use to derive f(zp). In particular, we define h: Q@ — C by

m@_{@—m%u>z#m

0 z = 2.

Quickly, we claim that is holomorphicon Q. Because hq\ 1,1 (2) = (2—20)? f(2) isa product of holomorphic
functions, we conclude that his holomorphicon Q\ {2y }. Thus, we merely have to check that i is holomorphic
at zg. In particular, we compute

Z—r20 z — ZO Z—20 z — ZO Z—r20

where the last step is because f is bounded near z.
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Now, h is holomorphic on €2, so & is analytic on Q by Corollary 4.71, so we are promised a local power
series expansion at zg: there are coefficients {aj }ren C C withanr > 0such that z € B(zg,r) will have

h(z) = Zak(z —z)".
k=0

Quickly, we see that ap = h(0) = 0and a; = h’/(0) = 0 (by Corollary 4.71). Thus, we may write

Py = S (e — )t (4
k=0

(z — 20)?

forany z € B(zo,r) \ {20}. However, if we define f: Q= Chby

~ L a9 zZ = Zp,
Je)= {f(Z) 2% %

then fis holomorphic on 2\ {2} by restriction and analytic at z; by (%), so fis the holomorphic extension
of fto Q. [ |

We close with one more statement.

Proposition 4.85. Fix an open, connected subset 2 C C and a holomorphic function f: @ — C. Further,
define Z := f=1({0}).

(@) If zp € Z, then either zg is isolated, or there is some open neighborhood of zy in Z.

(b) If zg isisolated, then thereis a unique integer n and holomorphic function g: 2 — Cwith g(z¢) # 0
such that

f(2) = (z = 20)"9(2)

forz e Q.

Proof. We will prove this next class. |
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THEME 5
SMOOTHING OVER

What we didn’t do is make the construction at all usable in practice!
This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

5.1 March30

Good morning everyone.
« Homework #7 is due on Sunday just before midnight.

» There will be office hours tomorrow from 2PM to 3:30PM, as usual.

5.1.1 Moreon Zeroes

We are talking about more consequences of the Cauchy integral formula. For example, last time we showed
Liouville's theorem, the Fundamental theorem of algebra, and the Riemann removable singularity theorem.
We are also about to show the following result.

Proposition 4.85. Fix an open, connected subset 2 C C and a holomorphic function f: Q — C. Further,
define Z := f=1({0}).

(@) If 29 € Z, then either 2, is isolated, or there is some open neighborhood of 2 in Z.

(b) If zg isisolated, then there is a unique integer n.and holomorphic function g: & — Cwith g(zg) # 0
such that

f(2) = (z = 20)"9(2)

forz € Q.

Proof. Fix some zg € Z. Now, because f is holomorphic, f is analytic at zg (by Corollary 4.71), so we have
some r > 0 such that B(zp, ) C Q with

f2) = ar(z — 2)" (+)
k=0

127



5.1. MARCH 30 185: INTRO. TO COMPLEX ANALYSIS

forany z € B(zp,r). Itis technically possible for a;, = 0 forall & € N. But now, f is zero on all of B(z, ),
which is one possibility for part (a). This is all we are going to say about this case.
Otherwise, let n be the minimum natural number such that a,, # 0. As such, we simply define g: Q@ — C

as
o) = {f(z)/(zz@ 2 # 2,

Qn z = 2.

This function is at least holomorphic at all points away from zg as the quotient of two holomorphic functions
(by Proposition 3.6), so we merely need to check that g is holomorphic at z;. However, on B(zy, ), we see
that z # zo will have
f(z) c- "
Z)=—"— = ag(z — 2
916) = g = 2 vl = 20)

by (x). But of course, this also works at g(zp) = a,, so we see that the above power series expansion works
forall z € B(zp,7). So g isin fact analytic at zp and hence holomorphic at 2z by (x).

We now show that z is an isolated point of Z. Well, g(zo) # 0 and g is continuous (in fact holomorphic),
we are promised some ¢ > 0 such that

9(2) = g(20)| > lg(20)|

forall z € B(zg,¢), soin particular g(z) # 0 here. Thus, when we write

f(z) = (2 = 20)"9(2),

the only time we can have f(z) = 0 for z € B(zp,¢) is at z = zy because z # z, implies (z — z9)" # 0 and

g9(z) #0.

Lastly, we get the uniqueness of the integer n follows from its minimality. [ |

To use the above result, we show one of my personal favorite results from complex analysis.

Theorem 5.1 (Identity). Fixan open, connected subset 2 C Cwith two holomorphicfunctions fi, fo: Q —
C. Further, set

Z={z€Q: fi(z) = fa(2)}.

If Z contains an accumulation point, then fy = f5 on Q.

Proof. For psychological reasons, we set f(z) := f1(z) — fa(z) sothat z € Z ifand only if f1(2) = fa(2) if
and only if f(2) = 0.So Z = f~1({0}), and we are ripe to apply the previous result.

Now, we are granted an accumulation point w € Z, so we have some sequence {zj }reny C Z \ {w} such
that z; — n. In particular, w is not isolated: for every open neighborhood B(w, €) around w, the fact that
zi, — m promises that B(w,e) N (Z \ {w}) # @.

Thus, Proposition 4.85 kicks in, so there exists some r > 0 such that f(z) = 0forall B(w, ), so B(w,r) C
Z. In other words, every accumulation point of Z is contained in the interior of Z, which we will denote Z°.

As such, we claim that Z° is closed. Quickly, note that Z = f~1({0}) is the pre-image of a closed set and
hence closed by Lemma 2.92 because f is continuous. In particular, if « is any limit point of Z°, then «is an
accumulation point of Z (because Z is closed), so o € Z°.

Thus, Z° is indeed closed. But it is also open, so the connectivity of {2 forces Z° = @ or Z° = Q). But Z°
is nonempty because we have an accumulation point, so Z° = €2, so we are done. |

Remark 5.2. This is really something special about holomorphic functions. For example, the function

f(e) = {e’” s>,

0 2z <0,

is real analytic everywhere, and it agrees with the zero function on R<(, but of course f is nonzero.
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We remark that the value of n in Proposition 4.85 is somewhat special.

Definition 5.3 (Multiplicity). Fix an open, connected subset 2 C C and a holomorphic function f: Q —
C. If we have some z; € Q such that f(29) = 0 and z is isolated in f~1({0}), then by Proposition 4.85
there is a unique integer n and holomorphic function g: Q@ — C with g(zy) # 0 such that

f(2) = (z = 20)"g(2)-

This n is called the multiplicity of zq in f.

We actually know how to compute f because Proposition 4.85 is fully constructive: we simply expanded out
the power series expansion of f at zg as

f(2) =) ar(z = z)*
k=0

and then looked for the minimal n such that a,, # 0. However, we also know that these coefficients of the
power series can be computed via the proof of Corollary 3.45 as

£ (z0) = mlan,

so we can alternatively look for the minimal n such that f(™) () # 0.

Example 5.4. By Lemma 3.69, we computed

sinz = i 7(_1)1671 22k 1
= (2k+1)! ’

We can check that sin 0 = 0 while the linear term is nonzero, so we have multiplicity 1. Alternatively,
we can compute the first derivative as

sin’(0) = cos(0) = 1 # 0.

5.1.2 Moreon Zeroes

We close by stating a theorem.

Theorem 5.5 (Maximum modulus principle). Fix an open, connected subset 2 C C and a non-constant
holomorphic function f: Q — C. Foreach z € Q and r > 0, there exists w € B(z,r) N Q such that

[f(w)[ > |£(2)]-

Proof. We proceed by contraposition. Fix some zy € Qand r > 0 such that w € B(zp,r) N Q has |f(w)] <
|/ (20)|- Note that making r smaller merely makes our search space smaller, so we may take » small enough
so that B(z,r) C Q.

Further, note that if f is constant on B(zg, ), then f is constant on all of 2 because f will agree with a
constant function on the set B(zy, 7)—which contains a limit point—forcing f to be constant on all of 2 by
Theorem 5.1. Thus, it suffices to show that f is constant on B(zg, 7).

As such, we think of f as a function on B(zg,r) such that | f(zo)| > |f(w)| for each w € ©, and we want
to show that f is constant. Very quickly, if |f(z9)] = 0, then we get f = 0 automatically, so we assume
f(20) # 0. As such, we can replace f with f(z)/f(z0), which lets us assume that f(z9) = 1.

The key point here, is to use Theorem 4.63 to note

=g f L

2mi J, z— 2o
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for v.: [0,1] — C defined by v.(t) := zp + e exp(2nit), forany e € (0,r). The main idea, then, is that the
numerator f(z) is in some sense “too small” to actually accumulate properly to f(z9) = 1, especially if f(z)
ever deviates from exactly 1.
To be able to keep track of deviations in direction, we see that Lemma 4.46 promises us a function 6.
with
(f 072)(8) = [F(v(D))| exp(2rib.(1)).

_1 f(z)
- 2mi j{s Z = Z0 dz
_ 1/1 | (v(1))| exp(27if. (1))

B exp(2mit)

Thus, we compute

- 27 exp(2mit) dt

271
1
= [ 16 expiemin. ) ar

In particular, extracting out the real part from the integral forces

1= / (1 ()] cos(2mba (£)) dt.

Bounding the integral in R, we see

1
| £ cosmt. ) de < (1= 0) - ma {170 cos(2rt(6)} < 1.

where equality is now holding only when | f(v(t))| cos(2m6-(t)) = 1forallt € [0,1].> In particular, we need
|7 (v(t)] = 1 exactly, and we also need 6. (t) = 0 (mod 27) for all ¢, so in particular,

(f o7e)(t) = [£(7(1))] exp(2mifc (1)) = 1
always. Now, because any z € B(zg, ) \ {20} can be written in polar form by
z — zo = eexp(if)

forsomee < rand some 6, we see that actually any z € B(zp, ) will be forced to have f(z) = 1. This finishes
the proof that f is constant. |

Remark 5.6 (Nir). There are other ways to see this result. For example, it happens that holomorphic are
open, so f(B(zg,r)) must be open and in particular contains an open neighborhood around f(zy), and
we can choose an output in this neighborhood smaller than f(zy) in magnitude.

The rough idea here is that f cannot obtain a maximum on an open set: we must always look to the
boundary. More rigorously, we have the following statement.

Corollary 5.7. Fix an open, connected subset Q2 C C and a non-constant continuous function f: Q—C
such that f|q is holomorphic. Now, if zy € © such that | f(z9)| is maximal, then zy € 99.

Proof. If zy € 2, then f is forced to be continuous on by Theorem 5.5, which violates the hypothesis on f.
Thus, we conclude zp € Q\ 2, which is 9. [ |

1 The sharpness of these equalities really does need some continuity discussion. Roughly speaking, if we ever have a strict inequality
| f((t0))| cos(2mOe (to)) < 1, then we have strict inequality in some neighborhood around g, which we can track through to make the
integral strictly less than 1. This argument is purely real analysis.
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Corollary 5.8 (Schwarz's lemma). Fix a holomorphic function f: B(0,1) — B(0,1) such that f(0) = 0.
Then actually | f(2)] < |z| forall z € B(0,1) and also | f/(0)| < 1. Further, if | f(0)] = 1 or|f(z)| = |#] for
some nonzero z € B(0,1), then f(z) = az forall z € C for some fixed a € C.

Intuitively, holomorphic functions B(0,1) — B(0, 1) must contract.

Proof. We will prove this next class. |

5.2 Aprill

Good morning everyone. It's April Fool's day.
« Homework #7 is still due on Sunday at 11:59PM.

» There are office hours today.

5.2.1 TheSchwarzLemma

We quickly review the following result.

Corollary 5.8 (Schwarz's lemma). Fix a holomorphic function f: B(0,1) — B(0,1) such that f(0) = 0.
Then actually |f(2)| < |z| forallz € B(0,1) and also |f/(0)| < 1. Further, if | f(0)] = 1 or|f(z)| = |z] for
some nonzero z € B(0, 1), then f(z) = az forall z € C for some fixed a € C.

Proof. The main pointisto use the Maximum modulus principle on a specially chosen holomorphic function.
We defineg: B(0,1) —» Cas

_Jf(x)/z z2#0,
9(z) = {f’(@) —

As usual, we note that g is holomorphic: we are holomorphic at all z # 0 by restriction from f(z)/z, and we
are in fact holomorphic at z = 0 by doing a power series expansion there, by hand.
We now have two cases.

« Now, if g is constant, then f(z) = az for each z € C, for some fixed a € C. We get |f(2)| < |#| because
|f(2)| < 1forces |a|] < 1 (namely, by sending z to the boundary of B(0, 1)).

+ Otherwise, take g to be non-constant. To create a compact space, setr € (0,1) so that B(0,r) C
B(0,1). Now, by compactness, we see that |g| has a maximum on B(0, '), so Corollary 5.7 tells us that
each of these r hasaw € 9B(0,r), so

forallz € B(0,7). Now, sendingr — 1, we get theinequality |g(z)| < 1forallz € B(0,1),s0|f(2)| < ||
follows.

The above casework finishes the first sentence of the proof.

We now show the second sentence. If | f(z)| = |z| for some nonzero z € B(0, 1), then g achieves 1 on its
interior, which we know must be now be its maximum. So Theorem 5.5 forces g to be constant, giving the
result. Otherwise, if f/(0) = 1, then g(0) = 1, so again g achieves its maximum in B(0, 1), so Theorem 5.5
still forces g to be constant. [ ]

Remark 5.9. The above result is approximately what lets us talk intelligently about automorphisms of
B(0,1).
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5.2.2 Singularities

We will spend the rest of lecture today discussing singularities.

Definition 5.10 (Regular, singular). Fix an open and connected subset 2 C C with a function f: Q@ — C.
« A point zy € Qis regularif and only if f is holomorphic at z.

« A point zy € Qis a singularity otherwise.

Definition 5.11 (Isolated singularity). Fix an open and connected subset Q2 C C with a function f: Q —
C. A point zg € Qis an isolated singularity if and only if we can find » > 0 with B(z,r) C C such that f
is holomorphic on B(zp,7) \ {z}.

« 29 is removable if and only if f is bounded near zy.
« zgisa poleifand only if f is not bounded near z, but 2, is a removable singularity of 1/ f(z).

« 2gis an essential singularity if and only if zg is neither removable nor a pole.

Remark 5.12. Being aremovable singularity means that we can extend f to be holomorphicat the point,
by Theorem 4.84.

Here are some examples.

Example 5.13. The point zg = 0 is an isolated singularity of f: C\ {0} — C defined by f(z) = cos(z)/2>.

Example 5.14. The point zy = 0is a removable singularity of f: C\ {0} — C defined by f(z) = sin(z)/z,
which we can check by bounding sin near 0.

1/z

Example 5.15. The function e'/# has an essential singularity at zg = 0.

The point of introducing these notions is to expand our study of holomorphic functions. We take the follow-
ing definition.

Definition 5.16 (Meromorphic). Fix an open and connected subset Q C C. Then f: Q — Cis meromor-
phicif and only if all the singularities of f are isolated and poles.

The short version of where we are going is that meromorphic functions will also be very nice; for example,
though they will not be literally power series at the singularity, they will be some power series with a finite
negative tail, of sorts.

Anyway, we should probably prove something today.

Lemma 5.17. Fix an open and connected subset 2 C C with a function f: Q — C. If z5 € Qis a pole of

f, then

1
lim —— =0.

% 1)

Intuitively, poles of f transfer to zeroes of 1/ f.

Proof. We expand out the definitions. By definition, zg is a removable singularity of 1/ f(z), and because our
singularity is removable, we are promised an open ball B(z, r) so that f is nonzero at B(zp,7) \ {20}, so we
note that 1/f(z) will be holomorphic on this punctured ball.
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Further, 1/ f(z) isbounded near zy, so Theorem 4.84 tells us that we can extend 1/ f (z) to be holomorphic
fully on B(zg, r), so we know that

w = fraclf(zo) = Zlgrzlo %

after extending 1/ f appropriately. We want to show that w = 0. Well, suppose for the sake of contradiction

that w # 0 so that we have
1
lim f(z)=—.
Z—r20 w
However, this contradicts the fact that f needs to not be bounded near z; because it does tell us that (z —
20)f(z) = 0as z — zp. In particular, we are now invoking the fact that z; is a pole. |

And here is the dual to this lemma.

Lemma 5.18. Fix an open and connected subset 2 C C and zy € Q with a function f: Q\ {2} — Cso
that zg is an isolated singularity of f. Then zg is a pole of f if and only if

lim |f(z)| = oc.

zZ— 20

Proof. Inthe forward direction, zy being a pole forces
lim L =
220 |f(2)]
by Lemma 5.17. As such, we are forced to have

lim |f(z)| = oc.

zZ—20

The backwards direction will require some effort. We need to show that z, is a removable singularity of 1/ f
and that f is not bounded near zy. On one hand, we know

Jim [f(2)] = oo,
but then we can rearrange to
li 2= 20 0
1m =
0 1)

S0 zg is indeed a removable singularity of 1/f. On the other hand, suppose for the sake of contradiction that
f is bounded near zy; then Theorem 4.84 promises us that we can extend f to be holomorphic on 2, and
therefore we see

1i_>m f(2)

exists. But then

1
lim ———
== | f(2)]

cannot be zero (it is either nonzero or not defined at all), which contradicts what we just showed. |

5.2.3 Laurent Expansion

To deal with singularities, we have the following definition.

Definition 5.19 (Order). Fix an open and connected subset 2 C C with a function f:  — C. Given a
pole zg € Q of f, we define the order of z; as a pole to equal the multiplicity of zy as a zero of 1/ f(z).

Note that we are implicitly using Lemma 5.17.

We have the following lemma, which is intended to be analogous to the fact that holomorphic functions
are analytic.
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Lemma 5.20. Fix an open and connected subset Q2 C C with a function f: 2 — C, and suppose that z is
a pole of f with order m > 0. Then there exists any sufficiently small real number r € R* and a unique
sequence {ax}>_,, € Csuchthatz € B(zy,7) \ {20} has

—m

oo

F&) = 3 anz— ).

k=—m

In particular, the order of our pole controls the length of our tail.
We will not prove the above result today, but we will give the parts names.

Definition 5.21 (Laurent expansion). In the context of Lemma 5.20, the “power series” expansion

oo

f@)= Y alz -zt

k=—m

is the Laurent expansion of f at zy; here m is the order of the pole at z.

Definition 5.22 (Principal part). In the context of Lemma 5.20, we call the negative tail

=1

Prao(2) = ) arlz —z0)"

k=—m
the principal part of f at z.
Notably, the principal part is the “bad” part of our power series expansion.

Definition 5.23 (Residue). In the context of Lemma 5.20, we call a_; the residue of f at z, denoted
Resy, (f)-

Later on we will be able to compute residues via integrals.

5.3 April4

Good morning everyone.
« Homework #8 is due on Friday at 11:59PM.
« Midterm #2 is on Friday, April 15th.

« Office hours on Thursday are in flux.

5.3.1 The Residue Theorem

Today we are talking about residues. We return to the following lemma.

Lemma 5.20. Fix an open and connected subset Q2 C C with a function f: 2 — C, and suppose that z is
a pole of f with order m > 0. Then there exists any sufficiently small real number r € R* and a unique
sequence {ax}>_,, € Csuchthatz € B(zy,7) \ {20} has

[e.°]

&)= anz—z0).

k=—m
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Proof. We symbol-shift. Because z is a removable singularity for 1/f(z), Theorem 4.84 implies that we
can extend 1/ f(z) to zg in such a way that preserves being holomorphic. Further, Lemma 5.17 promises us
that 1/f(z) goes to 0 at z = z5. Namely, we can write

1 m
— = (2 —20)""g(2),
where g(z9) # 0and m is the order of our pole, where we are using Proposition 4.85. Because g(zp) # 0, we

get a small neighborhood B(zg, £) such that g(z) # 0 in this neighborhood (by continuity), so we can write

1

f(z) = (Z—Zo)’m-@

for z € B(0,¢). Now, setting h(z) := 1/g(z), we see that h(z) is holomorphic on B(0,¢) by Proposition 3.6.
Thus, i is holomorphic, so h is analytic at zy by Corollary 4.71, so we get a power series expansion

h(z) = ak(z — z0)*
k=0

forall z € B(zg,r), for some r > 0. Dividing out, we see that z € B(z, ) \ {70} will have

o

[ =20 a2 = Y arpn(z - 20",
k=0

k=—m
which is what we wanted. [ |

Now, here is our central definition today, which we introduced last class.

Definition 5.23 (Residue). In the context of Lemma 5.20, we call a_; the residue of f at z;, denoted
Resy, (f)-

Here is the main result for today.

Theorem 5.24 (Residue). Fix a primitive domain 2 C C and some finite subset S C  such that we have
a holomorphic function f: Q\ S — C, where S consists of the poles of f. Now, if y: [0,1] — Qs a
closed, piecewise C! path such thatimy NS = &, then

f F(2)dz = 2mi 3 Resa, (f) Ind(, 20)-

20ES

Proof. We combine previous results. At a high level, we are going to fix f at all poles, and the process of
“unfixing” the integrals will give rise to the residues. For each zy € S, we take p; ., (z) to be the principal
part of f at zp, where f(z) = Zf’:_mw aw k(2 — 20)* is our Laurent expansion at z. The idea here is to kill all
the “bad parts” of f: we set

9(z) = f(2) = Y Prael2):

20E€ES

We automatically know that g is holomorphic on 2\ S, and in fact, each w € S will have some power series
expansion

0o —1 0o
9= Y awplz—w) = Y aws(z—w) =) aws(z —w)*
k=—my, k=—my, k=0

in a neighborhood around w, so setting g(w) := a,, o makes g analytic and hence holomorphicateachw € S.
Thus, we can extend g to be holomorphic on all of 2.
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Now, because ( is a primitive domain, so Lemma 4.77 tells us that

ff dz—]{ ydz+ > fpf,ZO ydz =Y fpm(z)dz.

20€S 20€S VY
0

We now integrate by hand. Fix some w € S, and we note that

%pfw Z ak%Z—ZO dz.

k=—m.

Now, for k < —2, we see that
d (Z _ Zo)k+1
e

so the function (z — z)* has a primitive, so Corollary 4.39 promises us that

fpﬁ )dz = Z akf z—w)*dz4a_ 1%(2’ —w) " dz = Resy (f) Ind(y, w).

k=—my,

0

j{ )dz = Z Resy (f) Ind(vy, w),

z0€S
which is what we wanted. ]

Thus, we conclude

5.3.2 Computation with the Residue Theorem

The main point to Theorem 5.24 is that it helps us compute integrals, if only we could compute residues. So
let's compute residues.

Lemma 5.25. Fix a domain 2, and pick up a meromorphic function f: Q\ S — C for some set S of the
poles of f. Letting zp € S be a pole of order m, we get

Res,, (f) = li #dmiil
o = (m— 1) dzm—1

((z = 20)" f(2)) -

The point is that we can now compute residues in terms of derivatives, and we understand derivatives.

Proof. The main idea is to use the Laurent series expansion, turn it into a typical power series expansion,
and then extract out the a_; coefficient by hand. In particular, let our Laurent series expansion be

oo

[ =Y az - )

k=—m

for z in some neighborhood B(z, r) of zp. Thus, we get
(z—20)"f(z Zakmz—zo

for each z € B(zp,r). In particular,
dmfl

gy ((z—20)"f(2)) = g k(k—=1)-...- (k—m+2)(z— zo)kfm,

k=m—1

which is notably analytic at zp and hence holomorphic and hence continuous, so taking the limit at z — 2z
recovers the value of a_;. [ |

Let's see some examples.
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Exercise 5.26. We compute §| : *2) dz, where we are oriented counterclockwise around 9B(0, 2).

_0Z—4_
z|=2 z(z2—1

52—2
z(z—1)"

Proof. Here is the image; we let our path be v, and set f(z) ==

Im
A

In particular, we use Theorem 5.24 to get
%f(z) dz = Z Resy, (f) Ind(vy, w).
v we{0,1}

Now, the poles of f are 0 and 1, and each have order 1 because f(z)(z — w) is holomorphic in some neigh-
borhood at w for each w € {0, 1}. Further, we see that Ind(v,0) = Ind(~, 1) = 1 from the image. It remains
to compute the residues.

« Atz =0, we see

RGSO(f)Z;gI}J(Z-f(Z))—g% o = 2

e Atz =1, wesee
Resi(f) = lim (=~ 1) - £(2)) = lig = =3
esy —21_>r111(z z lim == =3.

In total, we see that
]f f(2) dz = Reso(f) Ind(7,0) + Res; (f) Ind(y,1) =2-143-1=[5],
.

so we are done. [ |

5.4 April6

Good morning everyone.
« Office hours tomorrow are still to be determined.
« Homework #8 is due on Friday at 11:59PM.

« It is Professor Morrow's birthday.
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5.4.1 Homotopy

Today we enter the realm of algebraic topology. In particular, we are talking about homotopy because we
want to talk about integration along “arbitrary” paths, but computing these can be potentially very annoy-

ing.

Theorem 4.8. For any path 7: [a,b] — C, there exists a sequence of piecewise C! paths {v;}ren such
that vy, — ~ uniformly.

As such, we have the following definition.

Definition 5.27 (Path integration). Fix a domain @ C C. Given a continuous function f: @ — Cand a
path v: [0,1] — C, let {7, }.en be a sequence of piecewise C! paths such that v,, — ~ uniformly. Then
we define

[fGraz= 1w [ s

n— 00
’Y’I'L

Remark 5.28. Professor Morrow is not sure if this integral is well-defined.

Today we are going to talk about how we can vary paths and still be able to compute our integrals, provided
that we are sufficiently careful. For example, we showed in Lemma 4.29 that we only care about paths up
to equivalence, but it turns out that we can do better than this.

As such, we have the following definition.

Definition 5.29 (Homotopy). Fixa domain Q2 and two paths v, 7: [0,1] — Q. Thena homotopy h between
v and 7 is a continuous map h: [0,1]? — Q such that

B(t0)=~(t)  and  h(t,1) = n(t),
In this case, we say that v and n are homotopic.
Definition 5.30 (Homotopic with fixed endpoints). Fix a domain €2 and two paths v,7n: [0,1] — Q. If
7(0) = n(0) and v(1) = n(1), and we have a homotopy &: [0,1]> — Q such that

h(0,8) =~(0) =n(0)  and  A(1,t) =~(1) =n(1)

for all ¢.

We now provide the obligatory picture of a homotopy, here with fixed endpoints.

(1) = h(t, 1)

n(t) = h(t,0)
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Namely, the idea is that we can continuously move from one path to the other, and h(—, s) is telling us how
to do that.

Example 5.31. Forr € R*, we define ~,.: [0,1] — C by
¥r(t) = r exp(2mit).

We claim that the «,. are all homotopic. Explicitly, given two radii r1, 73 € R, we can define our homo-
topy from ~,., to ~,., by

h(t, s) = (1= 8)yn, (8) + 57, (8) = ((1 = s)r1 + s72) exp(2mit),

which we can check works.

Here is the image for the previous example.

Yoy ()
Ch(t.3/4)
h(t,2/4)

a1

Vr1 (f>

Example5.32. A coffee mug and a donut both have one hole and are therefore pretty much “homotopic”
because we can imagine deforming one into the other.

5.4.2 Simply Connected Domains

It will turn out that homotopy provides the correct notion of equivalence. To see this, we have the following
definition.

Definition 5.33 (Null homotopic). Fixa domain Q2 and a closed path v: [0, 1] — C. Further, letn: [0,1] —
C be defined by 7(t) := v(0) = v(1) for allt. Then « is null homotopic if and only if v is homotopic to the
“constant path” n.

Definition 5.34 (Simply connected). A domain Q is simply connected if and only if every pair of paths
and n with (0) = n(0) and v(1) = n(1) are homotopic with fixed endpoints.

And here is our example
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Lemma 5.35. Convex domains are simply connected.

Proof. The point is to draw line segments directly from one path to the other. Here is the image.

We now rigorize this. Pick up a convex domain 2. Then, giventwo paths -, n: [0,1] — Q, wedefine h: [0, 1]* —
Q by
W, s) = (1= $)1(t) + sn(t).

Notably, i is well-defined because 2 is convex: for any s,t € [0,1], we see v(t),n(t) € Q, so (1 — s)y(¢) +
sn(t) € Q by convexity.

Continuing our checks, his continuous as a linear combination of continuous functions. Further, h(¢,0) =
~(t)and h(t,1) = n(t), and in fact

h(0,5) = (1 = )y(0) +sn(0) =~(0)  and  h(1,5) = (1 =s)y(t) + sn(t) = ~(1),

so h does indeed witness the needed homotopy. |

Remark 5.36. Itis also true that star-like domains are simply connected. Roughly speaking, fix Q a star-
like domain so that we have some z € 2 such that the line segment between z and any w € Q lives in
Q. The point is that we can contract any path to the constant path at z by drawing line segments in the
same way as above. See sx1748540 for details.

Example 5.37. The open ball B(z,r) forany z € Cand r € R" is convex. Thus, B(z,r) is simply con-
nected.

5.4.3 Homotopic Independence of Integrals

We close class by proving this last result.

Theorem 5.38 (Homotopy independence). Fix a domain €2 and a holomorphic function f: Q@ — C. Fur-
ther, take two paths v, 7n: [0,1] — € with v(0) = 7n(0) and v(1) = n(1). If v and n are homotopic with

fixed endpoints, then
/f(z)dz:/f(z)dz.
o 7

This is codifying the idea that homotopic paths (with fixed endpoints) should be essentially equivalent:
they are giving the same integral.
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Example 5.39. We already have reason to believe this theorem. The Cauchy integral formula told us
that
fw) =L ¢ 1E& 4,

2mi J, z—w

for any loop 7,-(t) := w + rexp(2wit). This makes sense because we showed that all circles v, are ho-
motopic.

Anyway, here is our result.

Proof of Theorem 5.38. Fix our homotopy h: [0,1]?> — C which fixes the endpoints. As an outline, we will
show that two paths which are homotopic and “close together” in a suitable sense will have the same inte-
gral, which we can extend to the general case by some compactness argument.

For psychological reasons, we will get the compactness argument out of the way first. Set K := imh,
which is compact because the image of a compact set under a continuous map. Thus, by compactness, there
exists e > 0 such that B(z,3¢) C Qforall z € K, where we are using Lemma 2.118 with {Q2} as the open
cover of K.

Now, view h(t, s) as inducing a function taking s € [0, 1] and outputting a function h(—,s): [0,1] — €;
i.e., vs(t) == h(t,s). Notably, h being continuous implies that v,: [0,1] —  is continuous (v; this is the
composite t — (t,s) — h(t,s)), so because the codomain ¢ € [0, 1] is compact, the function v, is bounded.

As such, we can trigger Remark 2.132 to say that s — ~, is a continuous function on the compact set
[0, 1] to the metric space of bounded functions [0, 1] — C, so s — ~, is uniformly continuous, so there exists
d > 0 such that

51— 2| <0 = sup {|7s,(t) — 1. (D[} <e ()
te(0,1]
In particular, we are using the definition of the metric back in Remark 2.132.

Fix any two times s; < s2 with |s; — s3] < d. The homotopy h more or less restricts to a homotopy
between a = v, and 8 = ~,,, but we now also have (x), which tells us that « and 3 are e-close together.
The idea, is to use the closeness to place everything locally in a disk: we want to create an image that looks
like the following.

In words, we want to choose disks Dy, ..., D,, with points
20y -y 2nt1 € IMa and Wy .y Wyt € IM P

satisfying the following constraints.
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+« We want a(0) = 8(0) = 290 = wgand a(1) = B(1) = 2541 = wny1. Notably, the endpoints of
a = h(—,s1)and 8 = h(—, s3) because h fixes the endpoints of v and 7.

o Fortechnical reasons, we should have each D; with center on im « or im 8 and have radius at most 3e¢.
This ensures that the D; are contained in €2, by construction of . (Notably, ima,im 8 C imh = K.)

« We want consecutive "quadruplets” zy, zx+1, Wi, wp+1 € Dy foreach0 < k < n.

We will want a few other non-intuitive constraints that will pop out of our construction, but we will ignore
these for now. Rigorously, we do the following.

» The path « is a continuous path with compact domain, so it is uniformly continuous, so there exists g
such that implies
|t1 — t2| < gy — |Oé(t1) — Ot(t2)| <E.

In particular, choose some n € N with 7#1 < gpand thenset z;, := a(k/(n+ 1)) foreach k € [0,n + 1].
Notably, |zx+1 — 2k| < € for each k € [1,n], by construction.

We also set wy, := B(k/(n+1)) foreach k € [0, n+ 1]. Note that we do indeed have zy = «(0) = 5(0) =
wg and zp,+1 = (1) = B(1) = wyyq.

+ Assuch, we set Dy, := B(z, 3¢) foreach k € [0,n]. Again, z; € ima C imh = K implies that D, C Q
by construction of e.

Now, for each 0 < k < n, we see that z;, € D;, automatically, we have |z;11 — zx| < € by construction and
|2k — wi|s [2h41 — Wiy < e

by (x), so ‘Zk — wk+1| < 2e < 3easwell. Thus, zg, zk+1, Wk, Wgr1 € Dy.

We now continue to decorate our diagram. For k € [0,7], let ax = [/ (n+1),(k+1)/(n+1)] denote the part
of a connecting zj, to zx 11, let 8, denote the part of 5|/ (1), (k+1)/(n+1)] CONNECting wy, to wy 1. Lastly, for
k € [0,n + 1], we define hy: [s1, s2] — Q by

hi(s) = h(s, k/(n + 1))

so that hy(s1) = a(k/(n+1)) = zp and hy(s2) = B(k/(n+1)) = w, making hy, a continuous path from z;, to
wy. Here is our image.
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We would like to rigorize some aspects of the above diagram. In particular, for each k € [0,n], we claim
that h ([51,52] X {HLH, Z—ED C Dy. To see this, pick up any (s,t) € [s1,52] X {ﬁp ﬁiﬁ] Then |s; — s| <
|s1 — s2| < §, so we see that

[7s(8) = a(®)] = |ys(t) =75, (D) <€

by (x). But now ¢ € {m,ﬁfﬂ} So‘t*m‘ = n+1

Mﬂ—a(nilﬂ<e.

|vs(t) — zk| < e+e < 3¢,

< gp, SO

a(t) — 2| =

Combining, we see that

which is what we wanted. Thus, we make the following observations.

» im g C Dy because ay(t) = h(sy,t) fort € [Tﬂv %ﬂ

e im By C Dy, because By (t) = h(sy,t) fort € |:77+1’ ’;jj]
« im hy C Dy, because hy(s) = h(s,k/(n+ 1)) for s € [s1, s2].
o imhyy1 C Dy because hy(s) = h(s, (k+1)/(n+ 1)) for s € [s1, s2].
Combining everything above, we see that we can write down the path
o * hy x B * h,;rl

as a closed path contained in Dy. Upon noting that Dy, is a disk and hence convex and hence star-like, it
follows from Theorem 4.70 that

agxhy*B, *h,:+1

1o

/ f(z)dz — f(z)dz = f(z)dz — f(z)dz
ag B hi

hit1

(f s o)
( fedz— [ f2) dz)
Bt hi

Z
/n 2)dz — 5 F(2)dz

+1

Summing over k € [0, n], we see that

/af(Z)dz—/ﬂf(z =>

n
k=0
n

by telescoping. However, h,_; and hg are constant paths because h fixes the endpoints, so b}, | = hy = 0
everywhere, so the right-hand side above simply vanishes. So have verified that

/ f(z)dz = / f(z)dz
a B
This finishes this part of the proof.

We now finish the proof. Fix some N such that 3, < § and set s;, := k/N for k € [0, N + 1]. In particular,
|sk+1 — sk| < 0 foreach k € [0, N], so
/

£(2) dz:L () dz

Sk Sk+1
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for each k € [0, N], using the work above. Chaining these equalities together, we conclude that
/f(z)dz: f(z)dz= f(z)dz:/f(z)dz.
Y Yo 71 n

This is what we wanted. [ |

5.5 April8

Good morning everyone.
« Homework #8 is due tonight at 11:59PM.
» There are office hours today from 1PM to 2:30PM.

« Midterm #2 is next Friday. A review has been posted, with review problems and a practice midterm to
come.

Remark 5.40 (Morrow). Fun life tip: if you show up 10 minutes to jury duty, they will have enough jurors,
and you will not get in trouble, so you will be excused.

5.5.1 Integralsin Simply Connected Domains

We continue our discussion of homotopy. We will not go over every single proof because they are somewhat
laborious. Last time we showed the following.

Theorem 5.38 (Homotopy independence). Fix a domain € and a holomorphic function f:  — C. Fur-
ther, take two paths v, 7n: [0,1] — € with v(0) = 7(0) and v(1) = n(1). If v and n are homotopic with

fixed endpoints, then
/f(z)dz:/f(z)dz.
v n

Have some corollaries.

Corollary 5.41. Fix a simply connected domain € and a holomorphic function f: @ — C. Given two
paths v,7n: [0,1] — C with the same endpoints v(0) = (0) and v(1) = n(1), we have

L () = /n () dz.

Proof. Because 2 is simply connected, v and n have a homotopy with fixed endpoints between them. W

Corollary 5.42. Fix a domain Q. If Q is simply connected, then Q is primitive.

Proof. The point is to use Theorem 4.44. As usual, pick up some holomorphic function f: 2 — C which we
would like to give a primitive, and choose any closed piecewise C! path «: [0, 1] — €2, so we want to show

7{ f(2)dz Lo,
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which by Theorem 4.44 will provide us with a primitive. Well, because Q is simply connected and v(0) =
~(1) =: 29, we see that v is homotopic with fixed endpoints to the path ¢: [0, 1] — C defined by

e(t) = 2o
forallt € [0,1]. However, Corollary 5.41 now tells us that

]gf(Z) dz = 7{}”(2) dz = /01 fle(®)d (1) dt,

but this last integral is 0 because ¢/(t) = 0. ]

Example 5.43. We now know that the Residue theorem (Theorem 5.24) applies to simply connected
domains.

5.5.2 A Better Cauchy Integral Formula

One of the main goals of homotopy is to be able to get a more general version of the Cauchy integral formula.
Take the following definition.

Definition 5.44 (Homologous to zero). Fix a domain 2. Then a closed, piecewise C! pathv: [0,1] — Q
is homologous to 0 if and only if Ind(y, w) = 0 forallw € C\ Q.

Roughly speaking, we are requiring that a path homologous to 0,

Theorem 5.45 (Cauchy integral formula). Fix a domain €2 and a closed, piecewise C* path y: [0,1] — Q
which is homologous to 0. Then, given a holomorphic function f: @ — C, we have

7{ f(2)dz =0,

and forany w € Q \ im~, we have

YY)

f(w) Ind(y,w) = %7{ 1) dz.

Note that we are able to recover the first version of the Cauchy integral formula (namely, Theorem 4.63) by
setting
~v(t) = z0 + rexp(2mit),

where im~y = B(zg,r) C Q. In this case, Theorem 4.70 was roughly speaking able to give us

and Theorem 4.63 was able to give us

for any « inside the loop. This last part we generalize past the loop v above to a more general closed, piece-
wise C! path homologous to 0, but we have to add in a winding number, lest we do something silly like
v k.

To prove Theorem 5.45, we will need the following result, but we will not prove it because it is somewhat
technical.
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Proposition 5.46. Fix a domain 2 and a closed, piecewise C! path ~: [0,1] — €. Givenaw € im+~, then
we can generate a closed, piecewise C'! path n with w ¢ imn while

j{f(z)dz:fi]f(z)dz

for any holomorphic function f: Q — C.

Proof. The point is to do “surgery” on ~ to avoid w. Here is the image of v with some bad w € im~.

Now, we explode w a little as follows to make our 7, as follows.
W e T]

By making the ball small enough, we can ensure that the entire ball lives in €2, and this ball is simply con-
nected, so the integrals over any f are the same by Corollary 5.41, roughly speaking. |

Anyway, here is our proof.

Proof of Theorem 5.45. We proceed in steps. Replace Q2 with some bounded domain containing v, which
we can do because im vy is compact and hence bounded. This won't affect the content of the conclusions; we
merely have to replace f with its restriction.

1. We define some F. Define F': (C\ im~) — C by

1

~ t)) —
0 v(t) —w

Notably, Fis holomorphic on C \ im by writing out a power series expansion at each point and then

integrating the power series expansion by hand using some local absolute convergence result.

Philosophically, the point is to show that F' = 0, which will give the second desired equality

Fw)magy.w) 2 L f TG g,
v

by rearranging. In particular, we will show that F can be extended to be entire and bounded (which by
Theorem 4.80 forces F to be constant), and then we will show that F' takes the value 0 somewhere.

2. We now extend to Q. Give some w € (2, we define

[T, oy,

We can check by hand (e.g., using a power series expansion) that g(—, w) is holomorphic on €2; notably,
we are holomorphic at each z # w for free, and then we can build a power series expansion at w by
hand. As such, we extend F'to F': 2 — C by

FW%=£g@wMz
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Notably, F' does indeed restrict down to

LIoW) — flw) =
Ww-w T
forw e C\ im~.

3. We check that F is holomorphic on Q. Our only problem is to check points w ¢ im~. By Proposi-
tion 5.46, there exists n with w ¢ im n such that

F(w) = 75 g(zw) dz = f gz w) dz,

but now this last integral is manifestly holomorphic at w because w ¢ im 7, where here we are appeal-
ing to the previous steps to note that

.1 ~ flw
F(w)ygf(z)dz/o W“lt

is holomorphic on C \ im# and in particular at w ¢ im .

4. We check that F is entire. Well, we have shown that F is holomorphic on im v, and we started with F
which is holomorphic on C \ im~, so we can glue these together to get an actual entire function.

5. We show the integral formulae. Note that F' is continuous and hence uniformly continuous on the
compact set im+, so F'is bounded there. On the other hand, we see that taking w ¢ C\ im+ gives

f’y(t) flw)
7() " - (t) dt
:j{z ZZU dz — 27t - f(w) Ind(vy, w). (*)

Notably, forw ¢ C\ Q, the term Ind(y, w) will vanish because  is homologous to 0 (!). Because Q is
bounded, fix R € Rt with Q C B(0, R), we can just say that w with |w| > R will have

F(w) = Zfizz)ﬂ dz.

Now, t — f(v(t)) is a continuous function [0, 1] — R on a compact set and hence has a maximum M.
As such, we use Proposition 4.35 to write

L) 1) < 10 g (| JOOL Y < 00

z—w ) —w|) T |w|—

[F(w)| =

-
for |lw| > R. Now, sending |w| — oo causes |F(w)| — 0.

To finish, being entire implies that F' is bounded on the compact set B(0, R + 1). Further, we have
bounded
Mt(v)

Fwl< 75—

for |lw| > R+ 1, so F'is a bounded, entire function and hence constant by Theorem 4.80. However,
|F'(w)| — 0as |w| — oo, so we must have F' = 0. So we conclude that any w ¢ im~y will have

1o,

21 N Z—wW

f(w) Ind(~y, w
by rearranging F' = 0 with ().
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6. It remains to show that jﬁy f(2)dz = 0. Well, givenw € '\ im~, we define

Then we compute

by using the integral formula in =. |

To close out class, have a corollary, where we impose conditions on €2 instead of .

Corollary 5.47. Fix a simply connected domain € and a closed, piecewise C! path v: [0,1] — Q. Then,
given a holomorphic function f: @ — C, we have

7{ f(2)dz =0,

and forany w € Q \ im~, we have

Proof. The main point is to show that v is in fact homologous to 0, from which the result will follow directly
from Theorem 5.45.

As such, pick up w € C\ ©, and we show that Ind (v, w) = 0. Because w € C\ €, the function f(z) = -
is holomorphic on €2 as the quotient of nonzero holomorphic functions. Now, Corollary 5.42 promises that
/ has a primitive, so Corollary 4.39 forces

1 1 1
Ind —— dz = — dz =
ww) = g § o= 5 § AR =0

which is what we wanted. [ ]

5.6 Aprilll

Good morning, everyone.

« Midterm #2 is on Friday. Both practice problems and a practice midterm were released.
« There are extra office hours.

» Thereis a review session on Wednesday.

5.6.1 Rouché’'s Theorem

We proved the following result on the homework.
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Theorem 5.48 (Argument principle). Fix a domain €2 and a meromorphic function f: Q — C, and pick
up 2o € Qand r > 0such that B(zg,r) C Q and f has no zeroes nor poles on 0B(zg, r). Further, set the
following.

» Ny is the number of zeroes of f, counted with multiplicity, in B(zo, ).
Py isthe number of poles of f, counted with multiplicity, in B(zo, r).
Then

111G
M= P =5 § 7

where v: [0,1] = Cis~(t) = zp + r exp(2mit).

dz =Int(f 0~,0),

Proof. The point is to use the Residue theorem on f’/f. We can check that f’/f will only have poles when
either f(z) has a pole or zero. Then, at a point w € €2, we can write down

f(z2) = (z —w)"g(2)

for some integer n and for some holomorphic function g: ¢ — C such that g(w) # 0. Then we can see that

by taking the derivative by hand, so we can see that

Resy(f'/f) = n.

Thus, Res,,(f’/f) counts zeroes with multiplicity positively and counts poles with multiplicity negatively.
Summing over these residues in B(zg, ) (via Theorem 5.24) gives the result. [ ]

Now, here is the statement we are going to prove today.

Theorem 5.49 (Rouché’s). Fix a domain Q and two holomorphic functions f,g: @ — C. Further, sup-

pose that we have zg € Q and r > 0 such that B(zp,r) C Qand

l9(2)| < [f(2)]

for each z € 9B(zp,r). Then f and f + g have the same number of zeroes, counted with multiplicity,
contained in the ball B(z, r).

Remark 5.50. As in Theorem 4.63, the main point is that we can talk about the behavior of f by only
weak information at the boundary. In particular, perturbations by “small” functions g are unable to
alter how f works in practice.

Warning 5.51. The proof in the Eterovic notes is incorrect.

The point of Theorem 5.49 is to be able to count and determine the location of zeroes of some holomorphic
function f by relating f to a simpler function.

Exercise 5.52. We show that the roots of the polynomial p(z) = 2* + 5z + 2 all lie in B(0, 2).
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Proof. To be able to use Rouché's theorem, we need to choose some f and g. Because g should be some
“small” perturbation to f, we take f(z) = 2* and g(2) = 52 + 2 so that p(z) = f(2) + g(z). Now, for
z € 9B(0,2), we see that

l9(2)] = |52 +2| <5|z| +2=5-2+2=12 < 16 = 2* < |2|* = |f(2)].

Thus, Theorem 5.49 tells us that f and f + g have the same number of zeroes in B(0, 2), but f has four zeroes
in B(0, 2) when counted with multiplicity (namely, four zeroes at z = 0), so we can say the sameforp = f+g.
This finishes. |

Now, let's prove Theorem 5.49.

Proof of Theorem 5.49. Note that f has no zeroes on 0B(zg, r) because f is strictly larger than [g(z)] > 0
foreach z € 0B(zg,r). Similarly, | f(z) + g(2)| > |f(2)| — |g(z)| > 0for z € OB(zp, ) by assumption, so f +g¢
also has no zeroes on this boundary. As such, we define

f(z) +9(2)
f(2)
Further, sety: [0,1] — Q by ~(¢) := 20 + r exp(2mit) to trace out B (2, ).

Continuing, note that the zeroes of h will only occur at zeroes of f(z) + g(z), and the poles of h(z) will
occur only at poles of f(z). Now, h has neither zero nor pole on 9B(zy,r), so Theorem 5.48 tells us that

h(z) =

Ny — Py, =Ind(h o+,0).

Notably, N, — P, is the number of zeroes of f + g minus the number of zeroes of f, even if there is some
cancellation with having a zero in the same place. Thus, we would like to show that the above integral van-
ishes.

Well, for each z € 9B(z,r), we see

f(z) +9(2) 9(2)
)~ 11=| o= (g2
f(2) (2)
Thus, im(h o) € B(1, 1) and in particular is nonzero everywhere. In particular, h o v does not wind around
Oatall,soInd(ho~y) =0. |

And here is another example.

Exercise 5.53. We compute the number of zeroes of p(z) == 2°+322+1for zinthe “annulus” 1 < || < 2.

Proof. Here is our image.

The point is to find the zeroes in B(0,2) and the zeroes in B(0,1) and then subtract. As such, we do two
computations.
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« Forz € 9B(0,1), we have |z| = 1, so we note g(z) == 2° + 1 and f(z) = 322 give
l9(2)| = |2° + 1| <2 <3=3z]> = | f(2)],
so we conclude that p = f + g has two zeroes in B(0, 1).
« Forz € 9B(0,2), we have |z| = 2, so we note g(z) == 322 + 1 and f(z) := z° give
9(2)] = 322+ 1] <3-4+1=13<32= |2 = | f(2))],
so we conclude that p = f + g has all five zeroes in B(0, 2).

Subtracting, it follows that there are three zeroes in B(0,2) \ B(0,1). To claim this as our answer, we check
that there is no zero on 9B(0, 1). Well, if |z| = 1, then we compute

|2 +322 + 1| > 32| = |2°| = [1| =3—-1-1>0,

so there are no zeroes here. Thus, there are indeed | 3 | total zeroes in the annulus. [ |

5.6.2 The Open Mapping Theorem

We close class with the following nice consequence of Theorem 5.49.

Theorem 5.54 (Open mapping). Fix a domain © and a non-constant holomorphic function f: Q — C.
For open subsets U C Q, the set f(U) is also open.

This is very surprising! For example, this is very much not true in R: the function f(z) := sin 2 sends the open
set R to [—1, 1], which is closed. In general, continuous and even differentiable functions really not need be
open—open is a very different notion.

Proof. Fix wy € f(U) with zy € U such that f(z9) = wo, and we need to put a neighborhood around wy in
f(U). To help us our, we define g: 2 — C by

so that g(zp) = 0. Now, g is a non-constant holomorphic function, so Theorem 5.1 tells us that g cannot
have zeroes accumulating to 2y (lest g be equivalent to 0), so there is some r > 0 such that g does not vanish
on

B(zo,7) \ {20}
Further, by making  small enough, we can also assume that B(zg, )\ {20} C U. Now, B(z, ) is compact,
so we can find § > 0 such that

lg(2)[ = 6

forall z € 9B(z¢, r) because continuous functions have achieved minimums, and g never achieves 0. This ¢
will give our neighborhood.

We are now almost ready to apply Rouché’s theorem. In particular, we would like to show that B(zg, §) C
f(U). Well, pick up some w € B(wyg,d), and we set h,,: Q@ — C by

hw(2) = g(z) + wo — w.

In particular, we can compute that
lwo —w| <6 <g(2)]

forall z € 9B(zp,7), so Theorem 5.49 promises us that h,(z) = g(z) + wy — w has the same number of
zeroes as g on B(wyg, §). However, by construction of r, we see that g has a zero in B(zp, ), so h does as well,
so there exists z € B(zg,r) C U suchthat h,,(z) = 0and hence f(z) = w, givingw € f(U). Thisfinishes. W
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5.7 April13

Good morning, everyone.

« There are office hours today from 11AM-12PM and 1PM-2:30PM. There are also office hours tomor-
row from 10PM-12PM and 2PM-4PM,

» The midterm is still on Friday.

5.7.1 Integral Commentary

It's a review session today. We will be computing a lot of integrals for the midterm, for which we have many
techniques. Here are some guidelines for finding the quickest computation for

j{f(z) dz.

1. Is f holomorphic or meromorphic almost everywhere? If not, we basically have to parameterize v and
proceeding with the definition. For example, integrals such as

ffdz or 7{\2;|dz or %Rezdz
2l g g

all fall under this category.

2. If fis close to holomorphic, look at the integral. We might try to pattern-match with

!
() () = G
[ (w) Gy ﬁ (z — w)nt1 &
where n is some nonnegative integer. In life, sometimes this fails, and we still have to parameterize.

3. If f is meromorphic, we should use the Residue theorem, which states

§5erds= 3 Ind(y,z0) Ressy (1),

poles zg

and we can compute the winding numbers and the residues by hand.
4. If f is not quite holomorphic or meromorphic but has an essential singularity, we can reparametrize

the path to make the function f meromorphic. Alternatively, we can use a power series expansion
and attempt to switch the sum with the integral, using the residue theorem by hand. For example, we

claim
f 2?sin(1/2) dz = —%274 sin z dz
|z[=1 n

by sending the path y to 1 := 1/+. Indeed, running this through, we compute 7/(t) = —/(t)/~(t)?

, SO

22sin(1/2)dz = 1 2sin ! 2= — ' —4gin ! v= ¢ 2z tsinzdz
ﬁ (1/2)d ]4 (1) sin(1/4(8)/ () d 75 n(t)~* sin(n ()1 (t) d f a

Now, we can just compute this directly via the Residue theorem.
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5.7.2 Review

Here are some questions from class.
« There might be a more general version of Corollary 5.47 allowing for derivatives of f.
 Technically speaking, the Cauchy integral formula is a subset of the Residue theorem.
» We will not need homotopy on the exam.

Let's see some practice problems.

Exercise 5.55. Fix a polynomial f(z) € C[z] of degree d > 2. Taking R > 0 such that f does not vanish
forall|z| > R, we show that
% dz 0
121=r f(2)

Proof. The fact that f(z) does not vanish for |z| > R promises us that 1/f(z) is holomorphic for |z| > R.
The point, now, is to use the Residue theorem to bound the integral. Explicitly, pick up some » > R, and we
set 7, to the counter-clockwise path around |z| = r so that

= 27i Z Ind(vr, 20) - Res,, (f) = 2mi Z Ind(vyg, 20) - Res,, (f) = j{ dz
Tr f(Z) 20 zero of f 1 20 zero of f ; TR f(z)
|zo| <7 [z0|<R

because all poles of 1/f(z) are zeroes of f(z), and those all live in the region with |z] < R < r. As such, the
estimation lemma tells us that
B j{ dz
|z|=r f(Z)

§o
1z21=r f(2)
d
flz) = Zakzk
k=0

1
<o)

To bound the size of f(z), we set

so that
1 1
‘f(Z) = laal - |2* = lag—1| - |24 = -+ —Jao|”
so
|?{ d—z < 2mr - L
en T | = Taal = Taa ] T = Jaol
which goes to 0 as r — oo because d > 2. This finishes. |

Exercise 5.56. Fixa polynomialp(z) € C|z] of degree n. Suppose that we have some M such that |p(z)| <
M for|z| < 1. Then we show that |p(2)| < M|z|™ for all z with |z] > 1.

Proof. The main point is that we know how p behaves on B(0, 1) as a bound, so we are going to want to use
the Maximum modulus principle. As such, we set f(z) := p(z)/2" and g(z) := f(1/z); notably, a computation
shows that g is holomorphic (it's the “reversed” version of p), so we see that we already have a bound on the
behavior of large values of p from this.

So now we push harder. By the Maximum modulus principle, the maximum of |g(z)| on B(0,1) will be
achieved on 9B(0,1). But now, the values of g agree with the values of p on 9B(0, 1) (because z — 1/zis a
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bijection 9B(0,1) — 9B(0, 1)), and we know that the values of p are upper-bounded by M on dB(0,1). As
such, we know that
l9(2)| < M

on B(0, 1), which rearranges to showing |z"p(1/z)| < M forall z € B(0,1) \ {0} and so |p(2)| > M - |z|" for
all z with |z] > 1. |
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THEME 6
EXTRA TOPICS

You take the red pill, you stay in wonderland, and | show you how deep
the rabbit hole goes.

—NMorpheus, [WW99]

6.1 Aprill8

Last class there was a midterm. Today we mourn.
+ Homework #9 will be posted later today, due Sunday at 11:59PM.
« Homework #10 will be the last homework.

» Midterm #2 will be returned on Wednesday.

6.1.1 Applications of Rouché’s Theorem

We begin by recalling the statement, as follows.

Theorem 5.49 (Rouché’s). Fix a domain Q and two holomorphic functions f,g: @ — C. Further, sup-
pose that we have zg € Q and r > 0 such that B(z,r) C Qand

l9(2)| < [f(2)]

for each z € 9B(zp,r). Then f and f + g have the same number of zeroes, counted with multiplicity,
contained in the ball B(zg, 7).

The main use of Theorem 5.49 is to determine where there are zeroes of a given holomorphic function. We
also showed Theorem 5.54; on the homework, we will prove the Fundamental theorem of algebra.
Before continuing, we give another example.

Exercise 6.1. We compute the number of roots of h(z) = 623 + exp(z) + 1in B(0,1).
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Proof. Note that f is holomorphic, so although this is not a polynomial, we can still use Theorem 5.49.
Indeed, our largest term seems to be f(z) := 623 and g(z) := exp(z) + 1 so that, for z € 9B(0, 1),

lexp(z) + 1] < |exp(2)| +1 < exp(lz]) +1<e+1<6=6-[°| = |f(2)],

where ; holds by expanding out exp as a series. It follows that f and h = f + g have the same number of
zeroes, so h has zeroes in B(0,1). ]

Anyway, let's prove something today.

Proposition 6.2. Fix a domain 2 and a non-constant holomorphic function f: Q — C. Given 2y € ,
then f'(z9) # Oifand only if f|5(.,,r) is injective for some r > 0.

Intuitively, we are saying that having derivative zero means that f is locally injective.

Example 6.3. The function f(z) = 22 is not injective on B(0,r) for any r > 0.

Anyway, let's prove this.
Proof of Proposition 6.2. We show the directions independently.

» We start by taking f’(z9) # 0; we imitate the proof of Theorem 5.54. Let wy := f(2¢) and define

9(2) = f(2) — wo

so that g(zg) = 0. Additionally, because f is non-constant, g is also non-constant and in particular not
zero everywhere, so Theorem 5.1 forces zj to be an isolated zero of g. As such, there is some ry > 0
such that g does not vanish on

B(Zo,’l"o) \ {Zo}
We now bring in the condition f/(zg) # 0: because f/(zg) # 0, we see g'(z9) # 0, S0 2o is a zero of ¢’ (zo)
of multiplicity 1—indeed, if we had g(z) = (2 — 29)?h(2), then ¢'(2) = (2 — 20) (2h(2) + (2 — 20) W' (2)),
so ¢'(zp) = 0. It follows that g has one zero in B(zo,79), at z = zp, even when counted with multiplicity.
We now continue as in Theorem 5.54. Because 9Bz, r¢) is closed and bounded and hence compact,
there exists 6 > 0 so that

l9(2)[ = 6

forall z € 9B(z9,70/2) by giving |g| @ minimum; we can set § > 0 because g does not vanish on
83(20,’)"0/2).
Now, to apply Theorem 5.49, we pick up some w € B(wy, ¢), and we would like to show

hyw(2) = g(2) + wop —w

has exactly one root in B(wy, §); this will be enough because it shows g is injective on g~ (B(wy, 9)),
from which we can extract an open neighborhood around zy. Well, we compute

lwo —w| <6 < |g(2)],

for z € 9B(z0,70/2), SO hy, and g have the same number of roots on B(wg, §) by Theorem 5.49, which
in particular is exactly one by our discussion above.

« Now, suppose that f’(z9) = 0, and we show that f is not injective on some any neighborhood around
zo0; as such, fix any » > 0, and we show f is not injective on B(zp,r). Because f is holomorphic, it
is analytic, so by taking » small enough (which will not harm our conclusion because our injectivity is
local), we have

o0

f(2) =) an(z —z)"

k=0
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for z € B(zg,r). Because f'(z) = 0, we have a; = 0 above. However, f’ is holomorphic and non-
constant (because f is holomorphic and non-constant, so some ay, # 0for k > 1 above duetoa; = 0),
so Theorem 5.1 forces z( to be an isolated zero of f’. In particular, we may take r even smaller so that
f’ does not vanish on

B(zo,7) \ {20}-
Running through the argument in the previous point once more, we are told that, for some w in the
image of f under B(zy,r) not equalto f(w), we have that

f(z)=w
has at least two roots in B(zp, ), counted with multiplicity.

We now push this further. If f were in fact injective on B(z, ), then f(z) —w has a double root at some
z = z1 € B(zp,7), butthen f’(21) = 0 would follow, which contradicts our construction of r because
f/ does not vanish on B(zg,7) \ {20} [ |

Remark 6.4. We can measure the failure of the locally injective by staring carefully at the argument at
the end: if f(z) — f(20) has a root of multiplicity m at z = 2o, then f is m-to-1 in some neighborhood
around zg.

Non-Example 6.5. In real analysis, this statement is not true. For example, f(z) := 2% is bijective on R
while f/(0) = 0. The issue here is that working in R is hiding the “rotation” that f is doing.

6.1.2 The lnverse Function Theorem

We close class with the following result.

Theorem 6.6 (Inverse function). Fix a domain 2 and an injective, holomorphic function f: Q — C. If
g: im f — Qistherightinverse of f (i.e., f(g(z)) = zforall z € im f), then g is holomorphic, and

forallw € im.

Proof. We proceed in steps.

1. We show that g is continuous. Well, take U C Q, and we need to show g~!(U) C im f is open. For
this, we simply write down the computation

g U) =g (FTHFU)) = (f o) (F(U)) = idye) (f(U)).

Notably, we are using the fact that f surjects onto U C Qto saythat U = f~1(f(U)). Now, f(U) is
open by Theorem 5.54, so we are done.

2. We now compute the derivative of g by hand. Note that f is injective, so f’ is locally injective every-
where, so f/(z) # 0 forall z € Q by Proposition 6.2.
Now, fix zg € Qand wg := f(z0), which implies hat g(wg) = zo is forced by the injectivity of f. Note that
any w € im f will have some unique z € Q with f(z) = w by injectivity. As such, the continuity of f and
g implies that a sequence {w, }neny C im f has some unique pullbacks z,, == g(w,,) so that f(z,) — wq
if and only if z,, — z. Thus, we can compute

lim M — lim FT %0 _ 1 _ 1 _ 1
e wowg s 7(2) — F(0) T TSI Flz) | Flg(wo))’
which is what we wanted. ]
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Remark 6.7. This result is somewhat surprising: a priori, we should only expect our inverse to be some
set-theoretic construction, but in our case this happens to be holomorphic.

6.2 April20

Welcome back everyone.

« Homework #9 is due on Sunday, at 11:59PM.

« The average on the midterm was 76.4, which is a few points lower than desired.

6.2.1 Defining Laurent Series

Today we are talking about Laurent series in their full power. This will allow us to add some power to our
Residue theorem.

Quote 6.8. It is not lost on me what today is.

Anyway, we begin with the following definition.

Definition 6.9 (Open annulus). The open annulus centered z; is
A(zo,m R) ={2€C:r<|z— 2| <R}

Remark 6.10. We can also write A(zg,r, R) = B(z0, R) \ B(z0, 1), so this is an open set.

Remark 6.11. We permit » = 0, which makes the annulus a punctured ball.

Here is the image.

Now, we pick up the following definition of a Laurent series, generalizing our previous one.
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Definition 6.12 (Laurent series). A Laurent series is a (formal) expression

L(z) = Z I

n=—oo

where {¢, }nen C C. This converges if and only if the individual series

oo oo
E e and E Bt ©
n=0 n=0

both converge.

An alternate way to state this convergence is to set

Si(z) = chz" and S_(z) = Zc_nz_”.
n=0 n=0

As such, we let R, > 0 be the radius of convergence of S, and R_ the radius of convergence of S_, which
means that both of these series will converge if and only if

1
== <lz| < Ry,

which creates an “annulus” of convergence.

Remark 6.13. In the cases we discussed previously, we had the Laurent series have a finite tail, which
made R_ = 400 and hence we were able to deal with the annulus/punctured ball

We will also want a shifting.

Definition 6.14 (Laurent series). A Laurent series centered at zy is a (formal) expression

oo

L(z) = Z cn(z — 20)".

n=—oo

6.2.2 Making Laurent Series
The reason we allowed infinite tails is to give us more power with series expansions, expanding from mere

meromorphic functions.

Theorem 6.15. Fix an open annulus A(zp, r, R) and a domain {2 containing A(zo, r, R). Given a holomor-
phic function f:  — C, we can construct

_ 1 f(z)
Cp = % %}/s W dZ,
where v5: [0,1] = Qisy4(t) = 20 + s exp(2mit) for s € [r, R]. Then we claim

o0

f(z) = Z en(z —20)"

n=—oo

forz € A(zo,r, R).
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Before proving this, we need to strengthen our version of Cauchy's integral formula.
Definition 6.16 (Cycles). Fixa domain 2. A cycleT'in Q is a formal C-linear combination of closed piece-

wise C'! paths homologous to 0. We will write im I to be the union of the individual paths making up
T.

Example 6.17. Consider the following annulus.

4! Y2

Then we can set, for example, I := v1 + 2.

These cycles are essentially bookkeeping devices to go around multiple paths. In particular, we have the
following definitions.

Definition 6.18 (Cycle integration). Fix a domain 2 and a holomorphic function f: Q@ — C. Then, given
acycleI' =>"" | a;v;, we define

%Ff(z) dz = ia ﬁ £(2) dz.

Definition 6.19 (Winding number, cycles). Fix a domain Q and a cycle I'. Then we define the winding
number of T around w € C to be

Ind(T, w) = Z a; Ind(;, w).
i=1

Definition 6.20 (Inside). The inside of a cycle T" consists of all the points w € Q \ imT" with nonzero
winding number.

Example 6.21. Work in the context of Example 6.17.
« If we set T := 41 + 79, then the interior will just be everything inside 5.

o IfwesetT :=; — 79, then the interior will just be everything inside v2 but outside ~;: everything
inside both ~; and 7, will have the winding number be 1 — 1 = 0 and cancel out!

In particular, our cycle is letting us pick out the annulus itself.
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Now, here is our stronger version of the Cauchy integral formula.

Theorem 6.22 (Cauchy integral formula). Fix a domain Q with a cycle T'. Then, given a holomorphic
function f: Q — C, we have
j{ f(z)dz =0,
T

fw)Ind(T,w) = %m ) % dz.

and forany w € 2\ im~, we have

Proof. Simply splitall the integrals into their formal sum over T, apply Theorem 5.45, and then sum back to
values overT. |

We are now ready to prove our theorem.
Proof of Theorem 6.15. By shifting, we take z, to be 0. Now, we can recover A(zy,r, R) by setting I' :=

Yr — 7 SO that the inside of I" is A(zg,r, R), as discussed in Example 6.21. As such, Theorem 6.22 tells us
thatallw € A(zg, r, R) have

F(w) Ind(y, w) — £(w) Ind (3, w) = f(w) Tnd (T, ) = f f(2)dz = ;f f(2)dz - f £(2) dz.
Now, Ind(yg,w) = 1 and Ind(y,,w) = 0, so we get

1 1
flw) = i f, f(z)dz — 27m?{f(z) dz.

We will compute the integrals separately. Indeed, we notice that any z € C with |z| > |w| will have

1/ i wk
z—w 11— (w/z) £t g1

which by the Weierstrass M-test will converge uniformly when |z| > |w| + & forany ¢ > 0. In particular,

R > |w|, so we may write
1 f(z) c- ( 1 (2) ) k
— 2 dz = — dz | w
2mi J, 2 —w I;) 2mi [, 2k Tt

Ck
by interchanging the sum and integral. Similarly, |w| > |z| implies

oo k — 0o

1 —1/w z wk
z—w 11— (z/w) __Z:w’“‘Irl T Z Fans

k=0 k=-1

This still absolutely converges and hence uniformly converges for |w| > |z|, so taking |z| = r, we can get

1 (2) /1 f(z) 2
5 ~—dz = Zl<2m %ZkHdz w”.

'er_w k=—

Ck
Subtracting our two integrals gets the desired result. |
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6.3 April22

Good morning, everyone.
« Homework #9 is due on Sunday at 11:59PM. One of the questions has since been corrected.

» There are (extended) office hours today from 12:30PM-3PM because we did not have office hours
yesterday.

« Homework #10 will be released later today. This will be our last homework.

6.3.1 Residue Theorem Two, Electric Boogaloo

Today we are talking about the more general Residue theorem. Last time we showed that all holomor-
phic functions have a Laurent series over an annulus. Here is a corollary, which will be our jumping-off
point.

Corollary 6.23. Fixa domain Q and a holomorphic function f: Q — C. If 2y € Qis anisolated singularity
of f, then f has a Laurent series expansion at zg in the punctured ball B(zg,r) \ {20} for some (small)
r > 0.

Proof. When zg is a pole, we were able to make our Laurent series with finite tail, and we were able to control
the size of the tail.

Anyway, by shifting we may assume that zy = 0. Now, fix any r so that B(zp,7) \ {20} C €, and Theo-
rem 6.15 promises us that any v/ > 0 will give A(0, 7/, ) C Q with

oo

0= % (g f o)

n=—oo

where s := r. Now, the coefficient depends on r but not on r’, so we may send 7’ to 0 to say that this series
holds on B(zp,7) \ {20}. This finishes. [ |

And here are our generalized versions of residue and principal part.

Definition 6.24 (Residue). Fix a domain 2 and some isolated set S C Q2 sothat f: (2\ S) — Ccanbea
holomorphic function with isolated singularities S. Then, writing our Laurent series for f as

oo

@)= 3 enlz—z0)",

n=—oo

we define the residue as Res,, (f) = c_1.

Definition 6.25 (Residue). Fix a domain 2 and some isolated set S C Q2 sothat f: (2\S) — Ccanbea
holomorphic function with isolated singularities S. Then, writing our Laurent series for f as

oo

f)= ) eulz—z)",

n=—oo

we define the principal partas Py ., (z) ==Y, 2 | ¢n(z — 20)™.

And so here is our theorem.
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Theorem 6.26 (Residue). Fix a domain 2 and a finite set S C 2 sothat f: (2\ S) — Ccanbeaholomor-
phic function with isolated singularities S. Given a closed, piecewise C! path v: [0,1] — € such that
im~y NS = @ with inside contained in 2 (i.e., homologous to 0 in 2), we have

% f(z)dz = 2mi Z Res., (f) Ind (v, 20).

20ES

Proof. We imitate the proof of Theorem 5.24. For each z; € S, let Py ., denote the principal part of f at z.
In particular, for each 2y € C, we see that f — P; , is holomorphic at 2o and that Py, is holomorphic at all
points aside z, (and therefore won't affect differentiability away from zg). Thus,

= Z Pf,zo
20E€ES

is holomorphic on Q. In particular, because im yN S and that 7y is homologous to 0 in £2, we may bop this with

Theorem 5.45 to see
]{ (f(z) - E Pf,ZU(Z)> dz = 0.
.

20E€S

Rearranging, we see

Now, in our proof of Theorem 6.15, we showed that the series for P ., converges uniformly onim v because
im+y is a compact set away from 2y (namely, they were integrals of some geometric series, which have a
perfectly fine radius of convergence). Thus, fixing some particular Py ., we compute

7{ Py .o (2)dz = 7{ Z Ch,zo (2 — 20)Fdz = Z Ch, 2o -7{(2 — 20)* dz.
v T k=-1 k=—1 h

Now, for each k < —1, the function (z — 2¢)* has a primitive (namely, k%rl(z — 20)%*1), so Corollary 4.39 tells
us that the integral vanishes. Otherwise, at k = —1, we see that

1
%Pf,zO (2)dz = c_1 2 7{ dz = 2miRes,, (f) Ind(7, 20).
¥ v 20

Thus,
?{f(z) dz = Z fpf,zw(z) dz = 2mi Z Res,, (f) Ind(y, 20),

20€S8 VY z0€S

which is what we wanted. ]

6.3.2 Example Contour Integral

So now we get to compute all the integrals we could want.

Exercise 6.27. We compute

Proof. We use a keyhole contour. To begin, we fix the branch of the logarithm on C\ R, and we will work
with the following image, where the red is our ray of death.
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As such, we set f(z) := /z/ (2% 4+ 1) and write
z == rexp(if)
where now 6§ € (0, 27) avoids the ray of death. We now draw the following contour.

Im
A

> Re

Let v be the full contour. To be explicit, v. and v are two arcs, oriented as drawn, with radii e and R respec-
tively. Then “cut out” from these are the horizontal paths 7; and 7, to connect them. We willsende — 0 and
R — oo so that the figure essentially becomes two copies of the real line, moving in opposite directions. As
such, we compute the integrals making up v one at a time.

» As R — oo, the integral along vz becomes a circle. So we bound | f(z)| < RQLfl so that

% f(z)dz gsz-ﬂ

R24+1’

which goes to 0 for R large.

+ Ase — 0, the integral along 7. becomes a circle. So we do the same bound to see that

JE

< 27e -
= “me e2 41’

f(z)dz

Ye

which still goes to 0 for € small.
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« It remains to compute the integral the integrals over 7, and 75. Because 1; and 72 have constant imag-
inary parts, we let this imaginary part be 44, which goes to 0 for R large and € small. As such

lim <Z)dZZY£R VI

2
60 Jp, 2+ 1

and
. Y VA
(%1_1)1(1)7{]2f(z)d2— a x2+1dz.

In particular, we have a — sign here because 7, lives on the other side of our ray of death/branch cut.
Thus, the sum of the two integrals over the 7,s is simply

2/ \/de
0

2 +1

as d goes to 0.

« It remains to compute the integral of f over the entire contour. We use Theorem 6.26; note that f only
has poles at +7, and the square root portion can be defined to be holomorphic, given our branch cut.
Thus, we compute

1 1
Res;(f) = 56Xp(7ﬂ'i/4) and Res_;(f) = —3 exp(im/4).
Soin total, our integral comes out to

]{ f(z)dz = 2mi(Res;(f) + Res_;(f)) = V2

because our only singularities are at +4, where we are using Theorem 6.26.

Synthesizing, we find that

< Vr 1., 7{ ™
dr == lim ¢ f(z)dz=—.
fg 2 +1 210/, V2
This finishes. |

6.4 April25

Good morning, everyone.
« Homework #10 is due on Friday, at 11:59PM.
« Course evaluations exist.
« Today will be our last “material for the final.”
« On Wednesday, we'll talk about complex dynamics. There is a talk (for general audience) on complex

dynamics on Thursday at 4:10PM, in Evans 60.

6.4.1 Mobius Transformations

Today we are talking about M&bius transformations. Here is our definition.
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Definition 6.28 (M&bius tranformation). Fix a domain Q. A Mébius transformation is a function f: Q —

C of the form
_az+ b

f(z) = Zid

where a,b,c,d € Cand ad — bc # 0.

The point is that M&bius transformations are more or less matrices in GL2(C), the group of 2 x 2 matrices
with complex coefficients. Namely,

a b Z._az—l—b
c d T ez+d

provides a group action of GLy(C) on C.

Example 6.29. When ¢ = 0, then f(z) = %“’ with ad # 0, so f is non-constant and entire.

Example 6.30. When ¢ # 0, then f(z) = ijrrdb will have a pole at z = —d/c. Notably, a - —d/c+b # 0

because ad — be # 0, so this singularity is indeed not removable.

6.4.2 Generating Mobius Transformations

There are, roughly speaking, three types of Mdbius transformations.

Definition 6.31 (M&bius transformation, types). Here are some examples of Mébius transformations.
¢ The Mobius transformations i h
z
T = = b
(2) 0z+1 S
are called the translations.
e The Mdbius transformations
az+0
D,(z) = =ax
0z+1
are called the dilations.
e The Mobius transformation
I(2) = 0z+1 B 1
T 1z40 2
is called the inversion.

It will turn out that these generate all of our Mébius transformations.
Here are some computational lemmas to rigorize our notion of “generate.”
Lemma 6.32. Let f and g be Mobius transformations.

« fogisalsoaMobius transformation, with composition give as multiplication of matrices.

« fis bijective, and its inverse is
dz—b

—cz+a

) =

Proof. The firstis a direct computation. The second comes down to noting that
a b|7' 1 [d —b
c d  ad—bc|—c a]’
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but the factor of 1/(ad — bc) does nothing. [ |

Remark 6.33. The above computations turn our set of Mébius transformations into a group under com-
position.

And here is our result.

Proposition 6.34. Every Mébius transformation can be written as a composition of translations, dila-
tions, and inversions.

Proof. We proceed by hand. Fix
az+b
ez +d

By
—
N
-
\

a Mobius transformation.
« If ¢ # 0, then proceed as

L Daegpye (be—ad)/e
cz+d cz+d

D, T, I
25 cz—% cz+d—

From here, we can apply 7, . to get

a (bc—ad)/c 1 (a(cz+d)+bc—ad az+b
= = :
c cz+d c cz+d cz+d

So in total, we have
f= Ta/c © D(bc—ad)/c oloTyo0D..

e If ¢ =0, then proceed as

TDoga @ Dajgd b
? AR R
which checks f =T;,/45 0 Dy /4.
These cases finish the proof. |
Exercise 6.35. We verify Proposition 6.34 for
1z+0
flz) = e
Proof. Following the algorithm, we get
. 1 -1 -1 .
ZE— 2z 2 — 1 - > - -+ .
zZ—1 zZ—1 zZ—1
We can check that =L + i = ‘2 = f(z), which finishes. [ |
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6.4.3 Classifying Automorphisms of B(0, 1)

The point of Mébius transformations is to be able to describe certain very nice maps. Here is our defini-
tion.

Definition 6.36 (Biholomorphic). Fix domains Q1,Qs. A function f: Q; — Qs is biholomorphic if and
only if f is bijective and holomorphic.

Note that, by Theorem 6.6, we know that the inverse function f~! is holomorphic.
In the case of Q; = Qs, we get a well-defined composition and hence group structure.

Definition 6.37 (Automorphism). Fix a domain Q. Then the automorphism group of Q is
Aut(Q2) := {biholomorphic maps f: Q@ — Q}.
Automorphisms (and more generally biholomorphic maps) are good to consider because they are in some
sense the natural symmetries of a complex space, so we often want to “mod out” by them in some suitable

sense.
Anyway, here is our theorem.

Theorem 6.38. The group Aut(B(0, 1)) is equal to

{f(z) = GZIZ:|CL|2—|b|2=1 and c=b,d:a}.
cz

Proof. We show our inclusions separately.

« Let f: B(0,1) — B(0,1) be an automorphism; we will show that f is a Mobius transformation of the
required type. Fix some z € B(0,1) and w := f(z). There are three steps.

1. Suppose that f(0) = 0. Then we may apply the Schwarz lemma: Corollary 5.8 with f~!, which
tells us that

|2l = [f7H(w)] < Jw] = [£(2)].
Applying Corollary 5.8 this time to f tells us that

w = [f(2)] < 2.

In particular, |f(2)| = |z|, so Corollary 5.8 one more time (namely, the second sentence) tells us
that f(z) = az for some a € C; note that | f(z)| = |z| forces |a| = 1.

Now, setting o = r exp(ifl), we see r = 1is forced, so we take a := exp(if/2) andb:=0andc:=0
and d := exp(—if/2) to get

s — exp(i0)s = EPUB/2)2 40
f(2) = az = exp(if)z = 0+ exp(—if/2)’
which finishes.

2. Suppose that ¢ := f(0) # 0 with |¢| < 1. Notably, |¢| > 0 as well. Now, set

zZ—cC zZ—C

9(z) = -2  —c+1

Now, the only pole here is at 1/¢, which has magnitude larger than 1 and hence does not live in
the ball, so g is holomorphic on B(0,1). We claim that g is an automorphism in B(0, 1), for which
we need to show that g: B(0,1) — B(0, 1) is a bijection.
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- In one direction, suppose z € B(0,1). Then
|2 = Jeal? = 2 (1 = [e[*) < 1= e,
which rearranges to |z|? + |¢|> < 1 + |cz|?, which gives

2= |22 + |¢|* —ez — cz

l9(2) <1

14 ez|2—cz—ze

by using our bound above.
— Inthe other direction, we note that the inverse of g is

z—C
—c+1

9 (z) =

from Lemma 6.32, which has the same form as g, so we appeal to the previous case.

3. To finish, consider g o f. This is certainly an automorphism because compositions of automor-
phisms give another automorphism. But

(g0 £)(0) = g(f(0)) = g(¢) =0,

so we conclude from our first step that g o f is a dilation of the form z — exp(if)z. In particular,
we get to write
exp(if)z + ¢

f(2) = g7 (exp(if)z) = Coxp(i0)z 11

from the above computation. As such, we setd := 1/ (1 — |c¢[?) and a := Vdexp(if/2) and b ==

evdexp(if). Then we can check by hand that

az+b
cz+d

flz) =

and |a|? — [b]* = d (1 — |¢|?) = 1. This finishes.

« We omit the proof that all the given M&bius transformations are in fact automorphisms. The proof is
essentially the second point above, given more generally.

The above inclusions finish the proof. |

Remark 6.39. The conditions on a, b, ¢, d force ad — be # 0. In particular, ad — be = |a|? — [b]* = 1.

We close with a warning.

Warning 6.40. Mébius transformations are not in bijection with matrices.

The main point is that

£(z) = az+b  waz+ wb
Ccz4+d  wez+wd

for any w € C*. As such, our Mébius transformations turn out to really be in bijection with elements of

PGLy(C), where we have modded out by the center. In particular, we can put elements of the form

f(2) = £ € Aut(B(0, 1))

in the correct form, with some elbow grease.
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6.5 April27

Good morning, everyone.
» Homework #10 is now due on Sunday at 11:59PM. Cool.

« Thereis a colloquium on complex dynamics at Evans 60, by Sarah Koch.

6.5.1 The Mandelbrot Set

Today we are talking about complex dynamics. Complex dynamics is the behavior of objects under iteration.
As an example, we let ¢ € C vary with the function

fo(z) =22 +ec

For example, we might ask what happens to the point 0 as we iterate it through f..

Example 6.41. Fix c = 1 so that f;(c) = 22 + 1. Then we compute

0
1
2
)

~

1

~

1

~

( 1,
( 2,
1( 3,
( 26.

~— ~— ~— —
Il

~

1

This is called "blowing up” because 0's iterations are to infinity.

It turns out that there are, roughly speaking, two options for the behavior of these iterations.
« Perhaps | f(™(0)| — coasn — occ.
« Perhaps | £ (0)| is bounded.

To make this easier to compute, we have the following lemma.

Lemma 6.42. Fix ¢ € C and define {z, }nen by 20 := 0and z,, :== f.(z,—1) forn > 0. If |z,| > 2 foranyn,
then |z,| — coasn — co.

Proof. On one hand, take |¢| < 2, we see that
|zn+1] > |Zn|2 — el > 2|zn| -2,

SO
|zn41] = 2> 2(|2n] — 2)

which goes to oo because it's constantly doubling. If |c| > 2, one can do something similar. [ |

Example 6.43. For ¢ = —1, we have
f*l(o) = _17

which will simply repeat itself, which in particular is bounded.

We want to be able to do lots of computations, so we should use a computer. Here are the iterations for
z=0.39 + 0.21.
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This path looks bounded.
The set of points ¢ for which this remains bounded has a name.

Definition 6.44 (Mandelbrot set). The Mandelbrot set is the set of all ¢ € C such that
{f§”>(0) ‘ne N}

is bounded.

Remark 6.45. The Mandelbrot set is named by Benoit B. Mandelbrot.

Remark 6.46. The "B” in Benoit B. Mandelbrot stands for “Benoit B. Mandelbrot."”

If we color all the points ¢ for which we remain bounded, we get the following figure. (The graphics were
created with Asymptote.)
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This is more fun to Zoom it; here we have zoomed in to z = 0.25.

There are fun things that we can say about the Mandelbrot set, even though it looks very strange.

Theorem 6.47. The Mandelbrot set is connected.

The proof is about 200 pages, in French, like all good mathematics.

Remark 6.48. It is conjectured that the Mandelbrot set is “locally connected”—every point has a con-
nected neighborhood.

6.5.2 JuliaSets

One might ask what happens if we fix ¢ and then let the starting point z vary instead. This gives the following
definition.

Definition 6.49 (Julia set). Fix c. Then the set
{x eC: ‘fc(”)(:v)‘ isboundedasn — oo}

is the filled Julia set of c.

Remark 6.50. Gaston Julia, for whom Julia sets are named after, is often pictured wearing a mask be-
cause he lost his nose in World War I.

Example 6.51. Fix ¢ = 0 so that we are looking at f(")(2) = 22". Then we can see that the Julia set is
just B(0,1)—everything outside here will have exploding norm, and certainly |z| < 1 implies ‘22n| <1.

Connectivity of Julia sets is a somewhat strange phenomenon. Here is the filled Julia set for ¢ = 0.25.
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And here is the filled Julia set for ¢ = 0.26.

F-"'I. "‘_-—

f‘-“

e

'i'oo,'_?

=
"‘- - et ..'.""'_

So indeed, connectivity looks sporadic, in some sense. Here is an amazing result.

Theorem 6.52. The Mandelbrot set is precisely the values of ¢ € C so that the filled Julia set of ¢ is
connected.

In general, dynamics questions are somewhat easy to state but very hard to answer. Here is an exam-
ple.

Definition 6.53. A complex number z € C is preperiodic for a polynomial f(z) € C|z] if and only if there
are distinct m and n so that

FM(2) = f(2).

The image here is that the points should “loop” in on themselves, in some sense. And here is our re-
sult.

Theorem 6.54. Fix an integer d > 2 and complex numbers a,b € C. Then the set of parameters ¢ € C
such that both a and b are preperiodic for the polynomial f(z) := 2¢ + cis infinite if and only if a¢ = b.

This is a really hard result, proven in roughly the last decade.
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6.6 April29

Good morning, everyone. Welcome to the last day of class.

6.6.1 Complex Numbers and Their Topology

Today we summarize the course. We began our story with the complex numbers.

Definition 2.1 (Complex numbers). The set C of complex numbers is
C={a+bi:a,beR}
Here i is some symbol such that i2 = —1 formally.

However, we wanted to turn this into a space, more specifically a metric space.

Definition 2.11 (Distance on C). Given complex numbers 2z = a + bi and w = ¢ + di, we define the
distance between z and w to be

|z —w| = /(a—c)2 + (b—d)2.

From here, we could define open balls and open subsets.

Definition 2.18 (Open ball). Given some zy € C, then open ball centered at z, with radiusr > 0 is
B(zp,1) ={2€C: |z — 2| <1}
Observe zy € B(z0,7).

Then the open balls formed a basis of our topological space, giving our open sets.

Definition 2.25 (Open). A subset X C C is open if and only if, for each z € X, there exists r > 0 such
that B(z,r) C X.

6.6.2 Complex Functions

With a topology in hand, we were able to talk about continuity; here are a few equivalent conditions.

Lemma 2.92. Suppose that f: X — C.

(@) Then fis continuous at w ifand only if every sequence {z,,} C X suchthat z,, — zimplies f(z,) —

f(2).
(b) We have that f is continuous on X if and only if every open set U C C has f~1(U) openin X.
(c) We have that f is continuous on X if and only if each closed set V' C X has f~(V) closed in X.

(d) Lastly, we have that f is continuous at if and only if, for each e > 0 and z € C, we have that
fY(B(z,¢))isopenin X.

However, to really be able to talk about complex analysis, we need to introduce our notion of differentia-
tion.
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Definition 3.2 (Differentiable). Fix an open subset Q2 € C and f: Q — C a function. Then f is complex
differentiable at zy, € Q with derivative o € C if and only if

lim f(z0 + h) — f(20) —a

h—0 h

We write this as f/(z9) = «.

Complex differentiability (as above) turns out to be very strong because the limit is taking place in the two-
dimensional plane C.

Functions differentiable everywhere had a special name.

Definition 3.4 (Holomorphic, entire). Fix an open subset @ C C and f: 2 — C a function. Then f is
holomorphic on Q if and only if f is complex differentiable at each 2y € C. If Q = C, then we say f is
entire.

We were able to show that a variety of functions were holomorphic, from polynomials to power series. Not
all “smoothish” functions were holomorphic, such as z — |z| and z — Re z.

As our first taste of the power of complex differentiability, we saw that it was a strictly stronger con-
dition than merely being differentiable as a function R? — R?: we had to satisfy some partial differential
equations.

Theorem 3.19 (Cauchy—Riemann). Fix 2 € C a nonempty open subset and f: 2 — C a function differ-
entiable at some zy = g + yoi € C. If we write f(x + yi) = u(x, y) + i(x,y), then

uz (o, Yo) = vy(z0, Yo),
vw(manO) = _uy(x07y0)-

In fact, f'(20) = uz(z0,%0) + tvz(z0,Y0) = vy(Z0, Yo) — tuy(z0,Yo)-

The above result had a pretty natural proof, essentially by writing down what we need for complex differ-
entiability on the real and imaginary axis.

However, it turns out that this real and imaginary information was also sufficient.

Theorem 3.26. Fix @ C C a nonempty open subset and f: Q@ — C a function. Writing f(z + yi) =
u(z,y) + iv(z,y) and fixing some 2y = zo + yoi, then suppose we have the following.

» We have u,, uy, v, v, all exist and are continuous (!).

« We have
uz (o, Yo) = vy(mOa Y0),
Uz(xoayo) = _uy(x07y0)~

Then f is differentiable at zg.

6.6.3 Integration

Having talked about derivatives, we were able to integrate.
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Definition 4.25 (Integration). Fix 2 C C an open and connected subset with a C! path v: [a,b] — .
Now, given a continuous function f: Q@ — C, we define the integral

b
/ f(e)de = / SO () dt,

if the integral exists.

This definition was extended to piecewise C' paths in the natural way.

The point of studying integration was for the Cauchy integral formula. More concretely, the story of
integration tied nicely into the story of analytic functions.

Definition 3.47 (Analytic). Fix X C C a nonempty open subset and f: X — C a function. Then f is
analytic at zo € Cif and only if f has a power series expansion at zy. Explicitly, there is a power series
S(z) = > pe, a2 and positive real number r > 0 (less than the radius of convergence) such that

f(z)=8S(z—2) = Zak(z — )"
k=0

forany z € B(zg,r). Then f is analyticif and only if it is analytic at each 2, € C.

Because power series were differentiable, we were able to get the following result.

Lemma 3.51. Fix X C C a nonempty open subset and f: X — C an analytic function. Then f’ is also
analytic.

It turns out that the converse is also true: holomorphic functions were analytic.

To codify our connection, we needed to talk about winding numbers. Roughly speaking, Ind(v, zo) refers
to the number of times v goes around z, (with counterclockwise orientation). So our first hint that integra-
tion would be helpful for us is that it actually let us compute winding numbers.

Lemma 4.54. Fixy: [0,1] — C a closed, piecewise C! path. Further, fix zg € C\ im~. Then

1 1
Ind(vy, z0) = 2—7”7{ - dz.
%

From here, we could define more generalized winding numbers.

Definition4.59 (Index). Fixan openand connected subset Q2 C Canda closed piecewise C! path~: [a,b] —
Q. Given a function f:  — C which is continuous on im -, we define

1 f(z
Indf (v, w) =g zELdZ
2l

The point of this? The Cauchy integral formula.
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Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset 2 C C and some 2y € 2 with
r > 0 such that B(z,r) C Q. Further, fix the path v: [0, 1] — Q given by

Y(t) = 2o + rexp(2mit).
Then, if f: Q — Cis holomorphic, then any w € B(zo,r) has

flw) = QL’TF’L : %dz = Inds(y, w).

From here, we could in fact, prove our goal.

Corollary 4.71. Fix an open, connected subset Q C C and f: Q — C some holomorphic function. Then
fisanalyticatany zp € Q. In fact, forany r > 0 such that B(zp,r) C , the path

~(t) == zo + 7 exp(2mit)
gives

211

£ o) = gz § LA

The main ingredient in the proof of Theorem 4.63 was the Cauchy—Goursat theorem.

Theorem 4.70. Fix an open, connected, star-like subset 2 C C with respect to z,. Further, fix a closed,
piecewise C'! pathv: [0,1] — €. Then, if f: Q — C is holomorphic,

?{ F(2)dz = 0.

The Cauchy—-Goursat theorem was first proven for triangles by some geometric argument and then gener-
alized to star-like domains.

The Cauchy integral formula gave us all sorts of lovely corollaries. Let's start with Liouville’s theo-
rem.

Theorem 4.80 (Liouville's). Fix an entire function f: C — C. If f is bounded, then f is constant.

From here followed the Fundamental theorem of algebra.

Theorem 4.81 (Fundamental theorem of algebra). Fix a polynomial p(z) € C|z] of degree n > 0. Then p
has arootinC.

My personal favorite corollary was the Identity theorem.

Theorem 5.1 (Identity). Fixan open, connected subset @ C Cwith two holomorphicfunctions fi, fo: Q —
C. Further, set

Z={z€: f1(z) = f2(2)}.

If Z contains an accumulation point, then fy = f5 on Q.

6.6.4 Singularities

Another consequence of the Cauchy integral formula was that it let us study singularities. The most basic
form was removable singularities.
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Theorem 4.84 (Riemann removable singularity). Fix an open and connected subset Q2 C C, and pick up
some zp € Q. If f: Q\ {20} — Cis holomorphic and bounded near zg, then f extends to a holomorphic
function on Q.

More generally, we had the following classification of singularities.

Definition 5.10 (Regular, singular). Fix an open and connected subset 2 C C with a function f: Q — C.
« Apoint zy € Qis regularif and only if f is holomorphic at z.

« A point zy € Qis a singularity otherwise.

Definition 5.11 (Isolated singularity). Fix an open and connected subset 2 C C with a function f: Q —
C. A point zg € Q is an isolated singularity if and only if we can find » > 0 with B(z,r) C C such that f
is holomorphic on B(zp, ) \ {z}.

e zgis removable if and only if f is bounded near z.
« 2pisa poleifandonly if f is not bounded near zy, but 2, is a removable singularity of 1/f(z2).

« 29 is an essential singularity if and only if zy is neither removable nor a pole.

We could understand removable singularities from the Riemann removable singularity theorem above, but
more work was required to understand poles and essential singularities.
To begin, we started with poles. The key to understanding them was the Laurent series.

Definition 5.21 (Laurent expansion). In the context of Lemma 5.20, the “power series” expansion

oo

f@= Y alz -zt

k=—m

is the Laurent expansion of f at zg; here m is the order of the pole at z.

Having access to Laurent expansions gave us a Residue theorem.

Theorem 5.24 (Residue). Fix a primitive domain 2 C C and some finite subset S C Q such that we have
a holomorphic function f: Q\ S — C, where S consists of the poles of f. Now, if v: [0,1] — Qs a
closed, piecewise C' path such thatim~y N S = @, then

% f(z)dz = 2mi Z Res,, (f) Ind(y, o).

Zo€ES

In particular, if f were holomorphic within the interior of 4, then Theorem 4.70 could tell us that the integral
should be 0.
It is possible to generalize Theorem 5.24 by simply removing the condition on poles.

Theorem 6.26 (Residue). Fixa domain 2 and a finite set S C 2 sothat f: (2\S) — C can be aholomor-
phic function with isolated singularities S. Given a closed, piecewise C! path v: [0,1] — € such that
im~y N S = g with inside contained in ) (i.e., homologous to 0 in ), we have

% f(z)dz = 2mi Z Res,, (f) Ind (7, 20).

20ES

178



6.6. APRIL 29 185: INTRO. TO COMPLEX ANALYSIS

The main ingredient in the proof of Theorem 6.26 was a more general version of the Cauchy integral for-
mula.

Theorem 6.22 (Cauchy integral formula). Fix a domain 2 with a cycle T. Then, given a holomorphic
function f: Q@ — C, we have
j{ f(z)dz =0,
T

and forany w € Q \ im ~, we have

f(w) Ind(T,w) = ﬁ ) % dz.

We then closed the course by discussing Mébius transformations and complex dynamics, for fun.

Remark 6.55. In a future course, one might see Weierstrass factorization, the Riemann mapping theo-
rem, and much more. We'll see you there.
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Bounded near, 42

Branch of the logarithm, 88
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Cartesian product, 10
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Complex power series, 67
Concatenation, 45
Conjugate, 16
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Converge, diverge, 30
Converges, 25
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Cycle integration, 160
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Differentiable, 56
Differentiable for paths, 93
Disconnected, 23

Discrete, 19

Distanceon C, 17

Domain, 122
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Equivalent, 95

Essential singularity, 132
exp, 76

Fiber, pre-image, 12
Frontier, boundary, 23
Functions, 11

Holomorphic, entire, 57
Homologous to zero, 145

Homotopic with fixed endpoints, 138

Homotopy, 138

Identity, 12

Image, 12

Index, 112

Infinite limits, 41

Inj-, sur-, bijective, 12
Inside, 160
Integrable, 99
Integration, 100, 101
Interior, 22

Isolated, 19

Isolated singularity, 132

Juliaset, 172
Kernel of exp, 80

Laurent expansion, 134
Laurent series, 159
Length, 103

Limit, 41

Limit point, 28
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Open annulus, 158
Open ball, 19
Opposite path, 97
Order, 133
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Path, 44

Path integration, 138
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Piecewise C', 94

Plus and timesin C, 14
Pointwise convergence, 52
Pole, 132

Power series expansion, 75
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Primitive domain, 122
Principal part, 134
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Quotient set, 11

Radius of convergence, 67
Real, imaginary parts, 15
Regular, singular, 132
Removable singularity, 132
Reparameterization, 95
Representatives, 11
Residue, 134,162, 162
Restriction, 12

Sequence, 24

Sequence of functions, 51
Sequentially compact, 30
Series, 30

Series of functions, 68
Simply connected, 139
Sine, cosine, 80

Star-like, 117
Subsequence, 25

Tends to infinity, 30

Uniform continuity, 50
Uniform convergence, 52

Winding number, 109
Winding number, cycles, 160
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