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6.4.2 Generating Möbius Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4.3 Classifying Automorphisms of B(0, 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.5 April 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.1 The Mandelbrot Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.5.2 Julia Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.6 April 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6.1 Complex Numbers and Their Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6.2 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.6.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
6.6.4 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography 180

List of Definitions 181

5



THEME 1

INTRODUCTION

Our reality isn’t about what’s real, it’s about what we pay attention to.

—Hank Green, [Gre20]

1.1 January 19

It is reportedly close enough to start.

1.1.1 Logistics
We are online for the first two weeks, as with the rest of Berkeley. We will be using bCourses a lot, so
check it frequently. There is also a website. There is a homework due on Friday, but do not worry about it.

Here are some syllabus things.

• Our main text is Complex Variables and Applications, 8th Edition because it is the version that Profes-
sor Morrow used. There is a free copy online.

• The homework consists of readings (for each course day) and weekly problem sets. Late homework is
never accepted.

• Lowest two homework scores are dropped.

• There are two midterms and a final. The final is cumulative, as usual. The final can replace one midterm
if the score is higher.

• Regrade requests can be made in GradeScope within one week of being graded.

• The class is curved but usually only curved at the end. The average on exams is expected to be 80%–
83%.

1.1.2 Complex Numbers
Welcome to complex analysis. What does that mean?
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1.1. JANUARY 19 185: INTRO. TO COMPLEX ANALYSIS

Idea 1.1.! In complex analysis, we study functions f : C→ C, usually analytic to some extent.

There are two pieces here: we should study C in themselves, and then we will study the functions.

Definition 1.2 (Complex numbers). The set of complex numbers C is {a+ bi : a, b ∈ R}, where i2 = −1.

Hopefully R is familiar from real analysis. As an aside, we see R ⊆ C because a = a+ 0i ∈ C for each a ∈ R.
The complex numbers have an inherent geometry as a two-dimensional plane.

−3

−3i

−2

−2i

−1

−1i

0 1

1i

2

2i

3

3i

2 + i

The point is that C looks like the real plane R2. More precisely, C ∼= R2 as an R-vector space, where our
basis is {1, i}.

We would like to understand C geometrically, “as a space.” The first step here is to create a notion of
size.

Definition 1.3 (Norm on C). We define the norm map | · | : C→ R≥0 by |z| :=
√
zz. In other words,

|a+ bi| :=
√
a2 + b2.

Note that this agrees with the absolute value on R: for a ∈ R, we have
√
a2 = |a|.

Norm functions, as in the real case, give us a notion of distance.

Definition 1.4 (Metric on C). We define the metric on C to be dC(z1, z2) := |z1 − z2|.

One can check that this is in fact a metric, but we will not do so here.

Remark 1.5. The distance in C is defined to match the distance in R2 under the basis {1, i}.

Again as we discussed in real analysis, having a metric gives us a metric topology by open balls. Lastly it is
this topology that our geometry will follow from: we have turned C into a topological space.

1.1.3 Complex Functions
There are lots of functions on C, and lots of them are terrible. So we would like to focus on functions with
some structure. We’ll start with continuous functions, which are more or less the functions that respect
topology.

Then from continuous functions, we will be able to define holomorphic functions, which are complex
di�erentiable. This intended to be similar to being real di�erentiable, but complex di�erentiable turns out
to be a very strong condition. Nevertheless, everyone’s favorite functions are holomorphic.
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Example 1.6. Polynomials, exp, sin, and cos are all holomorphic.

To make concrete that complex di�erentiability is stronger than real di�erentiability, the Cauchy–Riemann
equations which provides a partial di�erential equation to test complex di�erentiability.

From here we define analytic functions, which essentially are defined as taking the form

f(z) :=

∞∑
k=0

akz
k.

Analytic functions are super nice in that we have an ability to physically write them down, so the following
theorem is amazing.

Theorem 1.7. Holomorphic functions on C are analytic.

To prove this, we will need the following result, which is what Professor Morrow calls the most fundamental
result in complex analysis, the Cauchy integral formula.

In short, the Cauchy integral formula lets us talk about the value of holomorphic functions (and deriva-
tives) at a point in terms of integrals around the point. This will essentially let us build the power series for a
holomorphic function by hand. But as described, we will need a notion of complex (path) integration to even
be able to talk about the Cauchy integral formula.

The Cauchy integral formula has lots of applications; for example, Liouville’s theorem on holomorphic
functions and the Fundamental theorem of algebra.

Remark 1.8. It is very hard to spell Liouville.

Additionally, we remark that our study of holomorphic functions, via the Cauchy integral formula, will boil
down to a study of complex path integrals. So we will finish out our story with the Residue theorem, which
provides a very convenient way to compute such integrals.

Then as a fun addendum, we talk about automorphisms of the complex numbers.

Definition 1.9 (Automorphisms of C). A function f : C→ C is an automorphism of C if it is bijective and
both f and f−1 are holomorphic.

What is amazing is that all of these functions have a concrete description in terms of Möbius transforma-
tions.

1.1.4 Why Care?
Whenever taking a class, it is appropriate to ask why one should care. Here are some reasons to care.

• Algebraic geometry in its study of complex analytic spaces uses complex analysis.

• Analytic number theory (e.g., the Prime number theorem) makes heavy use of complex analysis.

• Combinatorics via generating functions can use complex analysis.

• Physics uses complex analysis.

The first two Professor Morrow is more familiar with, the last two less so.

1.2 January 21
We’re reviewing set theory today.
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1.2.1 Set Theory Notation
We have the following definitions.

• ∅ means the empty set.

• a ∈ X means that a is an element of the set X.

• A ⊆ B means that A is a subset of B.

• A ( B means that A is a proper subset of B.

• A ∪B consists of the elements which are in at least one of A or B.

• A ∩B consists of the elements which are in both A and B.

• A \B consists of the elements of A which are not in B.

• Two sets A and B are disjoint if and only if A ∩B = ∅.

• Given a set X, we define P(X) to be the set of all subsets of X.

• |X| = #X is the cardinality of X, or (roughly speaking) the number of elements of X.

As an example of unwinding notation, we have the following.

Proposition 1.10 (De Morgan’s Laws). Fix S ⊆ P(X) a collection of subsets of a set X. Then

X

∖ ⋂
S∈S

S =
⋃
S∈S

(X \ S) and X
∖ ⋃
S∈S

S =
⋂
S∈S

(X \ S).

Proof. We take these one at a time.

• Note a ∈ X \⋂S if and only if a ∈ X and a /∈ ⋂S. However, a /∈ ⋂S is merely saying that a is not in
all the sets S ∈ S, which is equivalent to saying a /∈ S for one of the S ∈ S.
Thus, this is equivalent to saying a ∈ X while a /∈ S for some S ∈ S, which is equivalent to a ∈⋃
S∈S(X \ S).

• Note a ∈ X \⋃S if and only if a ∈ X and a /∈ ⋃S. However, a /∈ ⋃S is merely saying that a is not in
any of the sets S ∈ S, which is equivalent to saying a /∈ S for each of the S ∈ S.
Thus, this is equivalent to saying a ∈ X while a /∈ S for each S ∈ S, which is equivalent to a ∈⋂
S∈S(X \ S). �

1.2.2 Some Conventions
In this class, we take the following names of standard sets.

• N = {0, 1, 2, . . .} is the set of natural numbers. Importantly, 0 ∈ N.

• N+ = {1, 2, 3, . . .} is the set of positive integers.

• Z = {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers.

• Q = {p/q : p, q ∈ Z and q 6=} is the set of rationals.

• R is the set of real numbers. We will not specify a construction here; see any real analysis class.

• R× = {x ∈ R : x 6=} is the nonzero real numbers.

• R+ = {x ∈ R : x > 0} is the positive real numbers.
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• R≥0 = {x ∈ R : x ≥ 0} is the nonnegative real numbers.

• R≤0 = {x ∈ R : x ≤ 0} is the nonpositive real numbers.

• C is the complex numbers.

• C× = {z ∈ C : z 6= 0} is the set of nonzero complex numbers.

1.2.3 Relations
Let’s review some set theory definitions.

Definition 1.11 (Cartesian product). Given two setsA andB, we define the Cartesian productA×B to
be the set of ordered pairs (a, b) such that a ∈ A and b ∈ B.

Definition 1.12 (Binary relation). A binary relation onA is any subsetR ⊆ A2 := A×A. We may some-
times notate (x, y) ∈ R by xRy, read as “x is related to y.”

Example 1.13. Equality is a binary relation on any set A; namely, it is the subset {(a, a) : a ∈ A}.

The best relations are equivalence relations.

Definition 1.14 (Equivalence relation). An equivalence relation onA is a binary relationR satisfying the
following three conditions.

• Reflexive: each x ∈ A has (x, x) ∈ R.

• Symmetric: each x, y ∈ A has (x, y) ∈ R implies (y, x) ∈ R.

• Transitive: each x, y, z ∈ A has (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R.

Equivalence relations are nice because they allow us to partition the set into “equivalence classes.”

Definition 1.15 (Equivalence class). Fix A a set and R ⊆ A2 an equivalence relation. Then, for given
x ∈ A, we define

[x]R := {y ∈ A : (x, y) ∈ R}
to be the equivalence class of x.

The hope is that equivalence classes partition the set. What is a partition?

Definition 1.16 (Parition). A partition of a setA is a collection of nonempty subsets S ⊆ P(A) ofA such
that any two distinct S1, S2 ∈ S are disjoint while A =

⋃
S∈S S.

And now let’s manifest our hope.

Lemma 1.17. Equivalence relations are in one-to-one correspondence with partitions of A.

Proof. Given an equivalence relation R, we define the collection

S(R) = {[x]R : x ∈ A}.

We claim that R 7→ S(R) is our needed bijection. We have the following checks.
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• Well-defined: observe that S(R) does partition A: if we have [x]R, [y]R ∈ S, then [x]R ∩ [y]R 6= ∅
implies there is some z with (x, z) ∈ R and (z, y) ∈ R, so x ∈ [y]R and then [x]R ⊆ [y]R follows. So by
symmetry, [y]R ⊆ [x]R as well, so we finish the disjointness check.
Further, we see that

A =
⋃
x∈A
{x} ⊆

⋃
x∈A

[x]R ⊆ A

because x ∈ [x]R, so indeed the equivalence classes cover A.

• Injective: supposeR1 andR2 have S(R1) = S(R2). We show thatR1 ⊆ R2, andR2 ⊆ R1 will follow by
symmetry, finishing.
We notice that, for any S partitioningA, being a partition, will have exactly one subset which contains
x. But for S(R) for an equivalence relation R, we see x ∈ [x]R ∈ S(R), so this equivalence class must
be the one.
So because [x]R1

and [x]R2
are the only subsets of S(R1) and S(R2) containing x (respectively), we

must have [x]R1 = [x]R2 . Thus, (x, y) ∈ R1 implies y ∈ [x]R1 = [x]R2 implies (x, y) ∈ R2.

• Surjective: suppose that S is a partition of A. As noted above, each x ∈ A is a member of exactly one
set S ∈ S, which we call [x]. Then we define R ⊆ A2 by (x, y) ∈ R if and only if y ∈ [x]. One can check
that this is an equivalence relation, which we will not do here in detail.1

The point is that
[x]R = {y : (x, y) ∈ R} = {y : y ∈ [x]} = [x],

so S(R) = S. So our mapping is surjective. �

We continue our discussion.

Definition 1.18 (Quotient set). Given an equivalence relation R ⊆ A2, we define the quotient set A/R
is the set of equivalence classes of R. In other words,

A/R = {[x]R : x ∈ A}.

Intuitively, the quotient set is the set where we have gone ahead and identified the elements which are
“similar” or “related.”

We would like a more concrete way to talk about equivalence classes, for which we have the follow-
ing.

Definition 1.19 (Representatives). Given an equivalence relation R ⊆ A2, we say that C ⊆ A is a set of
representatives ofR-equivalence classes ofA if and only ifC consists of exactly one element from each
equivalence class in A/R.

1.2.4 Functions
To finish o�, we discuss functions.

Definition 1.20 (Functions). A function f : X → Y is a relation f ⊆ X × Y satisfying the following.

• For each x ∈ X, there is some y ∈ Y such that (x, y) ∈ f . Intuitively, each x ∈ X goes somewhere.

• For each x ∈ X and given some y1, y2 ∈ Y such that (x, y1), (x, y2) ∈ f , then y1 = y2. Intuitively,
each x ∈ X goes to at most one place.

We will write f(x) = y as notational sugar for (x, y) ∈ f . Note this equality is legal because the value y
with (x, y) ∈ f is uniquely given.

1 Note x ∈ [x] by definition of [x]. If y ∈ [x], then note y ∈ [y] as well, so [x] = [y] is forced by uniqueness, so x ∈ [y]. If y ∈ [x] and
z ∈ [y], then again by uniqueness [x] = [y] = [z], so z ∈ [x] follows.
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We would like to create new functions from old. Here are two ways to do this.

Definition 1.21 (Restriction). Given a function f : X → Y and a subset A ⊆ X, we define

f |A := {(x, y) ∈ f : x ∈ A} ⊆ A× Y

to be a function f |A : A→ Y .

We will not check that f |A is actually a function; it is, roughly speaking inherited from f .

Definition 1.22. Given two functions f : X → Y and g : Y → Z, we define the composition of f and g to
be some function g ◦ f : X → Z defined by

(g ◦ f)(x) := g(f(x)).

Again, we will not check that this makes a function; it is.
Functions can also help create new sets.

Definition 1.23 (Image). Given a function f : X → Y , we define the image of f to be

im f = f(X) := {y ∈ Y : there is x ∈ X such that f(x)y}.

Namely, im f consists of all elements hit by someone in X hit by f .

Definition 1.24 (Fiber, pre-image). Given a function f : X → Y and some y ∈ Y , we define the fiber of
f over y to be

f−1(y) = {x ∈ X : f(x) = y} ⊆ X.
In general, we define the pre-image of a subset A ⊆ X to be

f−1(A) := {x ∈ A : f(x) ∈ A} =
⋃
a∈A
{x ∈ A : f(x) = a} =

⋃
a∈A

f−1(a).

Some functions have nicer properties than others.

Definition 1.25 (Inj-, sur-, bijective). Fix a function f : X → Y . We have the following.

• Then f is injective or one-to-one if and only if, given x1, x2 ∈ X, f(x1) = f(x2) implies x1 = x2.

• Then f is surjective or onto if and only if im f = Y . In other words, for each y ∈ Y , there exists
x ∈ X with f(x) = y.

• Then f is bijective if and only if it is both injective and surjective.

Here is an example.

Definition 1.26 (Identity). For a given set X, the function idX : X → X defined by idX(x) := x is called
the identity function.

For completeness, here are the checks that idX is bijective.

• Injective: given x1, x2 ∈ X, we see idX(x1) = idX(x2) implies x1 = idX(x1) = idX(x2) = x2.

• Surjective: given x ∈ X, we see that x ∈ im idX because x = idX .

We leave with some lemmas, to be proven once in one’s life.
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Lemma 1.27. Fix finite sets X and Y such that #X = #Y . Then a function f : X → Y is bijective if and
only if it is injective or surjective.

Proof. Certainly if f is bijective, then it is both injective and surjective, so there is nothing to say.
The reverse direction is harder. We proceed by induction on #X = #Y . If #X = #Y = 0, thenX = Y =

∅, and all functions f : ∅ → ∅ are vacuously bijective: for injective, note that any x1, x2 ∈ ∅ have x1 = x2;
for surjective, note that any x ∈ ∅ has f(x) = x.

Otherwise, #X = #Y > 0. We have two cases.

• Take f injective; we show f is surjective. In this case, #X > 0, so choose some a ∈ X. Note that x ∈ X
with x 6= a will have f(x) 6= f(a) by injectivity, so we may define the restriction

f |X\{a} : X \ {a} → Y \ {f(a)}.
Observe that f |X\{a} is injective because f is: if x1, x2 ∈ X \ {a} have

f(x1) = f |X\{a}(x1) = f |X\{a}(x2) = f(x2),

then x1 = x2 follows.
Now, #(X \ {a}) = #(Y \ {f(a)}) = #X − 1, so by induction f |X\{a} will be bijective because it is
injective. In particular, f by way of f |X\{a} fully hits Y \ {f(a)} in its image, so because f(a) ∈ im f as
well, we conclude im f = Y . So f is surjective.

• Take f surjective; we show f is injective. Define a function g : Y → X as follows: for each y ∈ Y , the
surjectivity of f promises some x ∈ X such that f(x) = y, so choose any such x and define g(y) := x.2

Observe that f(g(y)) = y by construction.
Now, we notice that g is injective: if y1, y2 ∈ Y have g(y1) = g(y2), then y1 = f(g(y1)) = f(g(y2)) = y2.
So the previous case tells us that g is in fact bijective.
So now choose any x1, x2 ∈ X such that f(x1) = f(x2). The surjectivity of f promises some y1, y2 ∈ Y
such that g(y1) = x1 and g(y2) = x2, so we see that

x1 = g(y1) = g(f(g(y1))) = g(f(x1)) = g(f(x2)) = g(f(g(y2))) = g(y2) = x2,

proving our injectivity. �

Lemma 1.28. Fix f : X → Y a bijective function. Then there is a unique function g : Y → X such that
f ◦ g = idY and g ◦ f = idX .

Proof. We show existence and uniqueness separately.

• We show existence. Note that, because f : X → Y is surjective, each y ∈ Y has some x ∈ X such that
f(x) = y. In fact, this x ∈ X is uniquely defined because f(x1) = f(x2) implies x1 = x2, so we may
define g(y) as the value x for which f(x) = y.
By construction, f(g(y)) = y, so f ◦ g = idY . Additionally, we note that, given any x ∈ X, the value x0

for which f(x) = f(x0) is x = x0 by the injectivity, so g(f(x)) = x. Thus, g ◦ f = idX , as claimed.

• We show uniqueness. Suppose that we have two functions g1, g2 : Y → X which satisfy

f ◦ g1 = f ◦ g2 = idY and g1 ◦ f = g2 ◦ f = idX .

Then we see that

g1 = g1 ◦ idY = g1 ◦ (f ◦ g2) = (g1 ◦ f) ◦ g2 = idX ◦g2 = g2,

where we have used the fact that function composition associates. This finishes. �

2 Technically we are using the Axiom of Choice here. One can remove this with an induction because all sets are finite, but I won’t
bother.
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THEME 2

COMPLEX NUMBERS AND THEIR TOPOLOGY

This somewhat laborious proof could have been avoided if one had
defined a complex analytic structure

—Jean-Pierre Serre, [Ser12]

2.1 January 24

Good morning everyone.

2.1.1 Algebraic Structure
Today we are reviewing the complex numbers (reportedly, “some basics”). Or at least it is hopefully mostly
review. Here is our main character this semester.

Definition 2.1 (Complex numbers). The set C of complex numbers is

C := {a+ bi : a, b ∈ R}.

Here i is some symbol such that i2 = −1 formally.

In particular, two complex numbers a1 + b1i and a2 + b2i are equal if and only if a1 = a2 and b1 = b2.
The complex numbers also have some algebraic structure.

Definition 2.2 (Plus and times in C). Given complex numbers a1 + b1i, a2 + b2i ∈ C, we define

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i,

and
(a1 + b1i) + (a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i,

defined essentially by direct expansion, upon recalling i2 = −1.

Here is the corresponding algebraic structure.
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Proposition 2.3. The set C with the above operations is a two-dimensional R-vector space with basis
{1, i}.

Proof. The elements {1, i} span C because all complex numbers in C can be written as a + bi = a · 1 + b · i
by definition.

To see that these elements are linearly independent, suppose a + bi = 0. If b = 0, then a = 0 follows,
and we are done. Otherwise, take b 6= 0, but then we see (−a/b) = i, so

(−a/b)2 = −1 < 0,

which does not make sense for real numbers. This finishes. �

Proposition 2.4. The set C with the above operations is a field.

Proof. We have the following checks.

• The element 0 + 0i is our additive identity. Indeed, one can check that (0 + 0i) + (a+ bi) = (a+ bi) +
(0 + 0i) = a+ bi.

• The element 1 + 0i is our multiplicative identity. Indeed, one can check that (1 + 0i)(a + bi) = (a +
bi)(1 + 0i) = a+ bi.

• Commutativity of addition and multiplication follow from by expansion.

• The distributive laws can again be checked by expansion.

• The additive inverse of a+ bi is (−a) + (−b)i.
• The multiplicative inverse of a+ bi can be found by wishing really hard and writing

1

a+ bi
=

1

a+ bi
· a− bi
a− bi =

a

a2 + b2
− b

a2 + b2
i.

Then one can check this works. �

Sometimes we would like to extract our coe�cients from our basis.

Definition 2.5 (Real, imaginary parts). Given z := a+ bi ∈ C, we define the operations

Re z := a and Im z := b.

Importantly, Re : C→ R and Im : C→ R.

Because we are merely doing basis extraction, it makes sense that these operations will preserve some (ad-
ditive) structure.

Proposition 2.6. Fix z = a+ bi and w = c+ di. Then the following.

(a) Re(z + w) = Re z + Rew.

(b) Im(z + w) = Im z + Imw.

Proof. We proceed by direct expansion. Observe

Re(z + w) = Re((a+ c) + (b+ d)i) = a+ c = Re z + Rew,

and
Im(z + w) = Im((a+ c) + (b+ d)i) = b+ d = Im z + Imw.

This finishes. �
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It also turns out that the complex numbers have a very special transformation.

Definition 2.7 (Conjugate). Given z := a+bi ∈ C, we define the complex conjugate to be z := a−bi ∈ C.

We promised conjugation would be special, so here are some special things.

Proposition 2.8. Fix z = a+ bi ∈ C. Then the following.

(a) z + z = 2 Re z.

(b) z − z = 2i Im z.

(c) z = z.

Proof. We take these one at a time.

(a) Write a+ bi+ a+ bi = a+ bi+ a− bi = 2a.

(b) Write a+ bi− a+ bi = a+ bi− (a− bi) = 2bi.

(c) Write a+ bi = a− bi = a+ bi. �

In fact, more is true.

Proposition 2.9. Fix z = a+ bi ∈ C and w = c+ di ∈ C. Then the following.

(a) z + w = z + w.

(b) zw = z · w.

Proof. We take these one at a time.

• Write
z + w = (a+ c)− (b+ d)i = (a− bi) + (c− di) = z + w.

• Write

z · w = (a− bi)(c− di)
= (ac− bd)− (ad+ bc)i

= (ac− bd) + (ad+ bc)i

= zw.

This finishes. �

2.1.2 Defining Distance
Complex conjugation actually gives rise to a notion of size.

Definition 2.10 (Norm on C). Given z := a+ bi, we define the norm function on C by

|z| :=
√
a2 + b2.

Size actually gives distance.
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Definition 2.11 (Distance on C). Given complex numbers z = a + bi and w = c + di, we define the
distance between z and w to be

|z − w| =
√

(a− c)2 + (b− d)2.

Here are some examples.

1

i

0

1 + i

1 + 2i

Re

Im

One can ask what is the distance between 0+0i and 1+1i, and we can compute directly that this is
√

1 + 1 =√
2. Similarly, the distance between 1 + 2i and 1 + i is |(1 + 2i)− (1 + i)| = |i| = 1. It should agree with our

geometric intuition.
We mentioned complex conjugation is involved here, so we have the following lemma.

Lemma 2.12. Fix z, w ∈ C. The following are true.

(a) |z|2 = zz.

(b) |Re z| ≤ |z| and | Im z| ≤ |z|.

(c) |z| = |z| = | − z|.

(d) |z| = 0 if and only if z = 0.

(e) |zw| = |z| · |w|.

Proof. We take these one at a time. Set z = a+ bi.

(a) We have
|z|2 = a2 + b2 = (a+ bi)(a− bi) = zz.

Here we have used subtraction of two squares, which one can see when writing a2 + b2 = a2 − (ib)2.

(b) We have a2 ≤ a2 + b2 and b2 ≤ a2 + b2 by the Trivial inequality, so

|Re z| = |a| ≤
√
a2 + b2 = |z|,

and similarly,
| Im z| = |b| ≤

√
a2 + b2 = |z|.

(c) Note
|z| = |a− bi| =

√
a2 + (−b)2 =

√
a2 + b2 = |z|,

and
| − z| = | − a− bi| =

√
(−a)2 + (−b)2 =

√
a2 + b2 = |z|.

(d) From (b), we know that |Re z|, | Im z| ≤ |z|, but |z| = 0 then forces Re z = Im z = 0, so z = 0.
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(e) From (a), we can write |zw|2 = zw · zw, which will expand out into

z · w · z · w.

We can collect this into zz · ww = |z|2|w|2. Thus, by (a) again, |zw|2 = |z|2|w|2. But because all norms
must be nonnegative real numbers, we may take square roots to conclude |zw| = |z| · |w|. �

Remark 2.13. Norms are actually more general constructions. For example, the requirement |zw| =
|z| · |w|makes | · | into a “multiplicative” norm.

To finish o�, we actually show that our distance function is good: we show the triangle inequality.

Lemma 2.14 (Triangle inequality). For every x, y, z ∈ C, we claim

|z − x| ≤ |z − y|+ |y − z|.

This claim should be familiar from real analysis. Intuitively, it means that travelling between z and x cannot
be made into a shorter trip by taking a detour to some other point y first.

Proof. Let a := z − y and b := y − z so that a+ b = z − x. Thus, we are showing that

|a+ b|
?
≤ |a|+ |b|,

which is nicer because it only has two letters. For this, because everything is a nonnegative real numbers, it
su�ces to show the square of this requirement; i.e., we show

(|a|+ |b|)2 − |a+ b|2
?
≥ 0.

Fully expanding, it su�ces to show

|a|2 + |b|2 + 2|a| · |b| − |a+ b|2
?
≥ 0.

Expanding out |w|2 = ww for w ∈ C, we are showing

aa+ bb+ 2|a| · |b| − (a+ b)(a+ b)
?
≥ 0.

This is nice because the expansion of the rightmost term will induce some cancellation: it expands into aa+
ab+ ab+ bb, so we are left with showing

2|a| · |b| − (ab+ ba)
?
≥ 0.

Note that ab = ab, so we can collect the final term as 2 Re(ab). Similarly, we can write |a| · |b| = |a| · |b| = |ab|,
so we are showing

2|ab| − 2 Re(ab) ≥ 0,

which is true because the real part does exceed the norm. This finishes. �

2.2 January 26

In-person class should start on Monday. Homework #2 will be released on Friday.
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2.2.1 Geometry on C
So let’s try to build a topology on C today. We pick up the following definition.

Definition 2.15 (Convex). A subset X ⊆ C is convex if and only if, for every z, w ∈ X and t ∈ [0, 1], we
have that w + t(z − w) ∈ X.

Intuitively, “convex” means that X contains the line segment of any two points in X.

Example 2.16. The disk is convex: any line with endpoints in the circle lives in the circle.

More explicitly, given z, w ∈ B(z0, r) for r > 0, we see that any t ∈ [0, 1] will have

|w + t(z −w)− z0| = |(1− t)(w − z0) + t(t− z0)| ≤ (1− t)|w − z0|+ (1− t)|z − z0| = (1− t)r + tr = r,

so w + t(z − w) ∈ B(z0, r). Replacing the < with≤ shows that B(z0, r) is convex.

Non-Example 2.17. The star-shape is not convex: the given line goes outside the star.

To define our open sets, we will define balls first.

Definition 2.18 (Open ball). Given some z0 ∈ C, then open ball centered at z0 with radius r > 0 is

B(z0, r) := {z ∈ C : |z − z0| < r}.

Observe z0 ∈ B(z0, r).

Open balls let us define all sorts of properties.

Definition 2.19 (Isolated). FixX ⊆ C. A point z ∈ X is isolated inX if and only if there exists r > 0 such
that

B(z, r) ∩X = {z}.

Definition 2.20 (Discrete). A subset X ⊆ C is discrete if and only if every point is isolated.

Example 2.21. Any finite subset of X ⊆ C is discrete. Namely, any point z ∈ X can take

r =
1

2
min

w∈X\{z}
|z − x|.
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Example 2.22. The subset Z ⊆ C is isolated. Namely, take r = 1
2 for any given point.

Definition 2.23 (Bounded). A subset X ⊆ C is bounded if and only if there is an M such that X ⊆
B(0,M).

Example 2.24. The star from earlier fits into a large circle and is therefore bounded.

And here is our fundamental definition for our topology.

Definition 2.25 (Open). A subset X ⊆ C is open if and only if, for each z ∈ X, there exists r > 0 such
that B(z, r) ⊆ X.

Remark 2.26 (Nir). We should probably show that open balls are open; letB(z, r) be an open ball. Well,
for any w ∈ B(z, r), set rw := r − |z − w|, which is positive because w ∈ B(z, r) requires |z − w| < r.
Now, w′ ∈ B(w, rw) implies that |w − w′| < r − |z − w|, so by the triangle inequality,

|z − w′| ≤ |z − w|+ |w − w′| < r,

so w′ ∈ B(z, r) follows. So indeed, each w ∈ B(z, r) has B(w, rw) ⊆ B(z, r).

Open lets us define closed.

Definition 2.27 (Closed). A subset X ⊆ C is closed if and only if C \X is open.

Warning 2.28. Sets are not doors: a set can be both open and closed.

2.2.2 Unions and Intersections
Here are some basic properties of our topology.

Lemma 2.29. The subsets ∅ and C are open and closed in C.

Proof. It su�ces to show that∅ andC are both open, by definition of closed. That∅ is open holds vacuously
because one cannot find any z ∈ ∅ anyways. That C is open holds because open balls are subsets of C, so
any z ∈ C can take r = 1 so that

B(z, r) ⊆ C.

So we are done. �
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Lemma 2.30. Fixing some z ∈ C, the set {z} is closed.

Proof. We show that U := C \ {z} is open. Well, fix any w ∈ U , and because w 6= z, we note |z − w| > 0, so
we set r := 1

2 |z − w|. It follows that
z /∈ B(w, r)

because |z − w| > r. But this is equivalent to B(w, r) ⊆ C \ {x} = U , so we are done. �

We would like to make new open and closed subsets from old ones. Here is one way to do so.

Lemma 2.31. The following are true.

(a) Arbitrary union: if U is any collection of open subsets of C, then the union
⋃
U∈U U is also open.

(b) Arbitrary intersection: if V is any collection of closed subsets of C, then intersection
⋂
V ∈V V is

also closed.

Proof. We take these one at a time.

(a) Fix z ∈ ⋃U∈U U . We need to show there is some r > 0 such that

B(z, r)
?
⊆
⋃
U∈U

U.

Well, we know there must be some Uz ∈ U such that z ∈ Uz by definition of the union. But now Uz is
open, and therefore we are promised an r > 0 such that

B(z, r) ⊆ Uz ⊆
⋃
U∈U

U,

so we are done.

(b) Fix V a collection of closed subsets of C. We want to show that

C
∖ ⋂

V ∈V
V

is open, which by de Morgan’s law is equivalent to⋃
V ∈V

(C \ V )

being open. However, each V ∈ V is closed, so C \ V will be open, so we are done by (a). �

Lemma 2.32. The following are true.

(a) Finite intersection: if {Uk}nk=1 is a finite collection of open subsets of C, then the intersection⋂n
k=1 Uk is also open.

(b) Finite union: if {Vk}nk=1 is a finite collection of closed subsets of C, then
⋃n
k=1 Vk is also closed.

Proof. We take these one at a time.
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(a) Fix z ∈ ⋂nk=1 Uk so that we need to find r > 0 such that

B(z, r)

⊆⋃n

k=1
Uk.

Well, z ∈ Uk for each k, and eachUk is open, so there is an rk > 0 such thatB(z, rk) ⊆ Uk. Thus, we set
r := mink{rk}; because there are only finitely many rk, we are assured that r > 0. Now, we observe
that

B(z, r) ⊆ B(z, rk) ⊆ Uk.
(Explicitly, |w − z| < r implies |w − z| < rk because r ≤ rk.) Thus, it follows that

B(z, r) ⊆
n⋂
k=1

Uk,

as desired.

(b) We use de Morgan’s laws. We want to show that

C
∖ n⋃

k=1

Vk

is open, which by de Morgan’s laws is the same thing as showing that

n⋂
k=1

(C \ Vk)

is open. However, each C \ Vk is open by hypothesis on the Vk, so the full intersection is open by (a).
This finishes. �

Remark 2.33. The finiteness is in fact necessary. For example,⋂
n∈N

B(0, 1/n) = {0}.

Then one can check that each open ball is open while singletons in C are not.

2.2.3 Interior, Closure
Let’s see more definitions.

Definition 2.34 (Interior). Given a subset X ⊆ C, we define the interior X◦ of X to be the union of all
open sets contained in X (which will be open by Lemma 2.31).

Remark 2.35. In fact, X◦ is the largest open subset of X, for any open subset U0 ⊆ C contained in X
will have

U0 ⊆
⋃

openU⊆X

U = X◦.

It follows X is open if and only if X = X◦: if X = X◦, then X is open because X◦ is open; if X is open,
then X is the largest open subset of C contained in X, so X = X◦.
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Definition 2.36 (Closure). Given a subsetX ⊆ C, we define the closureX ofX to be the intersection of
all closed sets containing X (which will be closed by Lemma 2.31).

Remark 2.37. In fact,X◦ is the smallest closed set containingX, for any closed subset V0 ⊆ C contain-
ing X will have

V0 ⊇
⋂

open V⊇X

V = X.

It followsX is closed if and only ifX = X: ifX = X, thenX is open becauseX is closed; ifX is closed,
then X is the smallest closed subset of C containing X, so X = X.

By the above definitions, it is not too hard to see that X◦ ⊆ X ⊆ X.
The interior and closure also let us define the boundary.

Definition 2.38 (Frontier, boundary). Given a subset X ⊆ C, we define the frontier or boundary ∂X of
X to be X \X◦.

2.2.4 Connectivity

Definition 2.39 (Disconnected). A subset X ⊆ C is disconnected if and only if there exists nonempty
disjoint open subsets U1 and U2 such that X ⊆ U1 ∪ U2 and X ∩ U1, X∩U2 6= ∅. (In other words, the
subspace of X ⊆ C is (topologically) disconnected.) In this case, we say that U1 and U2 disconnect X.

Lastly, we say X is connected if and only if it is not disconnected.

Example 2.40. The set ∅ is connected because it is impossible for U ∩∅ 6= ∅ for any open set U of C.

Example 2.41. Any singleton {z} is connected. In fact, one cannot decompose {x} into two disjoint sets
at all, much less into disjoint sets of the form U ∩ {x}with U open.

Example 2.42. Any open ballB(z, r) is connected. This is surprisingly annoying to check. We will show
this shortly by showing that B(z, r) is path-connected.

Example 2.43. The set {1, 2} is disconnected by U1 = B(1, 1/2) and U2 = B(2, 1/2).

Connectivity plays nicely with the rest of our definitions as well.

Lemma 2.44. A given subset X ⊆ C is connected if and only if the only subsets of X which are both
open and closed (in the subspace topology) are ∅ and X.

Proof. We take the directions independently. For the forwards direction, take X connected, and suppose
that U ⊆ X is open and closed. In the subspace topology, we get that X \ U will also be open, and then the
subsets U and X \ U are both open, disjoint and have

X = U ∪ (X \ U).

Thus, we require U = ∅ or X \ U = ∅, so U ∈ {∅, X}.

23



2.3. JANUARY 28 185: INTRO. TO COMPLEX ANALYSIS

We leave the reverse direction as an exercise. Suppose that X is disconnected, and we show that there
is a nonempty proper closed and open subset ofX. Well, becauseX is disconnected, we have disjoint open
sets U1 and U2 of C such that X ∩ U1, X ∩ U2 6= ∅ and X ⊆ U1 ∪ U2. It follows that

X = (U1 ∩X) ∪ (U2 ∩X). (∗)

However, now consider the open subset U := U1 ∩X ofX. We note that (U1 ∩X)∩ (U2 ∩X) = ∅, so by (∗)
we see that U1 ∩X = X \ (U2 ∩X), so U1 ∩X is closed as well.

To finish, we note that U 6= ∅ is nonempty, and its complement is X \ U = U2 ∩X is also nonempty, so
U 6= X is proper. Thus, U is a proper nonempty closed and open subset of X. This finishes. �

Remark 2.45 (Nir). It is actually important that the open subsets in the above lemma are in the subspace
topology and are not required to be C-open. For example, X = {1, 2} is disconnected, but it has no
nonempty C-open subsets to witness this.

Lemma 2.46. Fix S a collection of connected subsets of C. If
⋂
S∈S S is nonempty, then

⋃
S∈S S will be

connected.

Proof. Suppose
⋃
S∈S S is contained in the disjoint open subsetsU1 andU2 ofC; we claimU1∩

(⋃
S∈S S

)
= ∅

or U2 ∩
(⋃

S∈S S
)

= ∅, which will finish.
Pick up some

z ∈
⋂
S∈S

S,

which exists because the intersection is nonempty. Without loss of generality, we may assume that z ∈ U1.
Now, z ∈ S for each S ∈ S, so we see U1 ∩ S 6= ∅, so because (U1 ∩ S) ∪ (U2 ∩ S) = S, we see that

U2 ∩ S = ∅ by hypothesis on S’s connectivity. Thus, taking the union over the U2 ∩ S = ∅,

U2 ∩
(⋃
S∈S

S

)
= ∅,

which finishes the proof. �

Remark 2.47. The condition with nonempty intersection is necessary: {0} and {1} are connected, but
{0} ∪ {1} is not.

2.3 January 28
Hopefully we’ll be in-person on Monday. Homework 2 will be released later today, due next Friday.

2.3.1 Sequences
Today we’re talking about sequences, building towards a theory of sequences and series. Next week we will
begin studying holomorphic functions and actually doing complex analysis.

Anyways, here is a series of definitions.

Definition 2.48 (Sequence). A sequence of complex numbers is a function f : N → C. Often we will
notate this by {zn}n∈N where zn := f(n).

By convention, all of our sequences will be sequences of complex numbers unless otherwise stated.
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Definition 2.49 (Subsequence). A sequence {wn}n∈N ⊆ C is a subsequence of a sequence {zn}n∈N ⊆ C
if and only if there is some strictly increasing function g : N→ N such that wn = zg(n).

Definition 2.50 (Bounded). A sequence {zn}n∈N ⊆ C is bounded if and only if there exists a positive real
number M > 0 such that

{zn}n∈N ⊆ B(0,M).

In other words, |zn| < M for each n ∈ N.

We are in particular interested in convergence in analysis.

Definition 2.51 (Converges). A sequence {zn}n∈N ⊆ C converges to some z ∈ C if and only if, for each
ε > 0, there exists some N such that n > N implies

|z − zn| < ε.

We will notate this by zn → z or limn→∞ zn = z.

Note that the definition of the limit above says that

lim
n→∞

zn = z ⇐⇒ lim
n→∞

|zn − z| = 0.

Intuitively, the distance between the zn and the z has to “narrow in” on z.
We would like some real-analytic tools for our complex analysis. Here is a convergence lemma.

Lemma 2.52. Fix {zn}n∈N ⊆ C a sequence. Then, letting zn := xn + yni, we have that zn → z where
z = x+ yi if and only if xn → x and yn → y.

Proof. This is essentially by definition of the metric on C. We take the directions one at a time.

• Suppose that zn → z in C. Then we claim that Re zn → Re z and Im zn → Im zn in R. Indeed, for any
ε > 0, there is N such that

n > N =⇒ |z − zn| < ε.

But now we see that |Re zn−Re z|, | Im zn− Im z| ≤
√

(Re zn − Re z)2 + (Im zn − Im z)2, so it follows

n > N =⇒ |Re zn − Re z|, | Im zn − Im z| < ε,

finishing.

• Suppose that Re zn → x and Im zn → y. We claim that zn → x+ yi. Indeed, for any ε > 0, there exists
Nx such that

n > Nx =⇒ |Re zn − x| < ε/2

and Ny such that
n > Ny =⇒ | Im zn − y| < ε/2.

It follows that

n > max{Nx, Ny} =⇒ |zn − (x+ yi)| =
√
|Re zn − x|2 + | Im zn − y|2 ≤

√(ε
2

)2

+
(ε

2

)2

< ε.

This finishes. �

Essentially, this means that checking convergence of complex numbers is the same as checking real and
imaginary parts individually, so we can turn convergence questions into ones from real analysis.

We also have the following basic properties about convergence.
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Proposition 2.53. Fix {zn}n∈N ⊆ C a convergent sequence. The following are true.

(a) {zn}n∈N is bounded.

(b) The limit of {zn}n∈N is unique.

(c) Every subsequence of {zn}n∈N converges to z.

Proof. We take the claims one at a time. Let z ∈ C be so that zn → z.

(a) Fix ε = 1 so that there exists N so that n > N implies |zn − z| < 1. Now set

M := max({|zn|+ 1 : n ≤ N} ∪ {|z|+ 1}).

We claim that |zn| < M for each n ∈ N. We have two cases.

• If n ≤ N , then |zn| < |zn|+ 1 ≤M .
• Otherwise, n > N so that

|zn| ≤ |zn − z|+ |z| < |z|+ 1 ≤M,

so we are done.

(b) Suppose that zn → z′ for some z′ ∈ C, and we show z = z′. Indeed, if z = z′, then we are done, so
suppose that z 6= z′ so that |z − z′| 6= 0. Then we set ε := 1

2 |z − z′| > 0, and we are promised some
N,N ′ such that

n > N =⇒ |z − zn| <
ε

2
and n > N ′ =⇒ |z′ − zn| <

ε

2
.

In particular, we see that, for n > max{N,N ′}, we have

|z − z′| ≤ |z − zn|+ |zn − z′| <
ε

2
+
ε

2
= ε =

1

2
|z − z′|.

But because 0 ≤ |z − z′|, we see that this forces |z − z′| = 0, so z = z′ follows. (Technically we have
hit contradiction, but we do not need to use this.)

(c) Note that subsequences can be characterized by choosing a strictly increasing function f : N → N so
that we want to show zf(n) → z. Indeed, for any ε > 0, we are promised some N so that

n > N =⇒ |z − zn| < ε.

Now, for each n ∈ N, we have1 f(n) ≥ n, so we see that

n > N =⇒ f(n) > N =⇒ |z − zf(n)| < ε,

which finishes. �

Sequences themselves have an arithmetic.

Proposition 2.54. Fix {zn}n∈N, {wn}n∈N ⊆ C sequences such that zn → z and wn → w. Then the
following hold.

(a) zn + wn → z + w.

(b) znwn → zw.

(c) If w 6= 0 and wn 6= 0 for each n ∈ N, then 1
wn
→ 1

w .

1 We can show this by induction on n, for f(0) ≥ 0 and f(n+ 1) > f(n) forces f(n+ 1) ≥ f(n) + 1.
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Proof. We take these one at a time, essentially borrowing the proof from metric spaces.

(a) Fix some ε > 0. We can find some Nz such that

n > Nz =⇒ |z − zn| < ε/2

and some Nw such that
n > Nw =⇒ |w − wn| < ε/2.

Now, taking N := max{Nz, Nw} so that the triangle inequality gives

n > N =⇒ |(z + w)− (zn + wn)| ≤ |z − zn|+ |w − wn| < ε,

which finishes.

(b) We have to use the fact that the sequences are bounded here. Because wn → w, the sequence is
bounded, so there is an M so that |wn| < M for each n ∈ N. Now, the key inequality is that

|znwn − zw| ≤ |znwn − zwn|+ |zwn − zw| ≤M |zn − z|+ |z| · |wn − w|. (∗)

So with this in mind, fix any ε > 0, and we see that we are promised Nz such that

n > Nz =⇒ |zn − z| <
ε

2M

and some Nw such that
n > Nw =⇒ |wn − w| <

ε

2|z|

so that (∗) implies
n > max{Nx, Nw} =⇒ |znwn − zw| < ε,

finishing.

(c) We begin with some motivating arithmetic. Observe that∣∣∣∣ 1

w
− 1

wn

∣∣∣∣ =
|wn − w|
|wwn|

.

We can upper-bound the numerator without tears, so we see the main di�culty is lower-bounding
the denominator. Well, because w 6= 0, we can set ε = |w|/2 so that there exists N0 such that

n > N0 =⇒ |wn − w| < |w|/2.

In particular, it follows that |wn| ≥ |w| − |w − wn| = |w|/2 for n > N0.

With this in mind, fix any ε > 0. Then we are promised some N1 such that

n > N1 =⇒ |wn − w| < |w|2ε/2

so that we see

n > max{N0, N1} =⇒
∣∣∣∣ 1

w
− 1

wn

∣∣∣∣ =
|wn − w|
|w| · |wn|

≤ |w|2ε/2
|w| · |w|/2 = ε,

finishing. �
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2.3.2 Limit Points
Here is our main character.

Definition 2.55 (Limit point). Fix X ⊆ C and some z ∈ C. Then we say that z is a limit point if and only
if there exists some sequence {zn}n∈N ⊆ X such that zn → z.

Definition 2.56 (Accumulation point). FixX ⊆ C and some z ∈ C. Then we say that z is an accumulation
point if and only if there exists some sequence {zn}n∈N ⊆ X \ {z} such that zn → z.

Essentially accumulation points do not allow isolated points while limit points do.
The above essentially gives a more directly topological definition of “closed set.” It also gives us a more

directly topological definition of the closure.

Lemma 2.57. Fix X ⊆ C and z ∈ C. The following are equivalent.

(a) We have that z ∈ X.

(b) For all ε > 0, we have B(z, ε) ∩X 6= ∅.

(c) There exists {zn}n∈N ⊆ X such that zn → z.

Proof. We show our directions one at a time.

• We show (a) implies (b). Suppose z ∈ X, and for the sake of contradiction suppose we have ε > 0 such
that B(z, ε) ∩X = ∅. In particular, z /∈ X.
Now, z ∈ X implies that z is contained in every closed set containingX by definition ofX. But because
B(z, ε) is open and is disjoint from X, we see

z ∈ X ⊆ C \B(z, ε),

which is a contradiction.

• We show (b) implies (c). For each n ∈ N, we know that B(z, 1/n) ∩ X 6= ∅, so we find some zn ∈
B(z, 1/n). Now, for any ε > 0, choose N := 1/ε so that

n > N =⇒ |zn − z| <
1

n
<

1

N
= ε,

so indeed zn → z.

• We show (b) implies (a). We proceed by contraposition. Suppose that z /∈ X. It follows that z ∈ C \X,
which is open, so there exists an r > 0 such that

B(z, r) ⊆ C \X ⊆ C \X.

It follows that B(z, r) ∩X = ∅.

• We show (c) implies (b). Suppose {zn}n∈N ⊆ X has zn → z for some z ∈ C. For any ε > 0, there exists
N such that

n > N =⇒ |zn − z| < ε,

so in particular, choosing any n := dNe+ 1 has zn ∈ B(z, ε) ∩X, so B(z, ε) ∩X 6= ∅. �

The above discussion can give us a more directly topological definition of “closed.”
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Lemma 2.58. A subset X ⊆ C is closed in C if and only if X contains all of its limit points.

Proof. By the previous lemma, we see that z ∈ X if and only if z is a limit point ofX, so X is the set of limit
points of X. Now, X is closed if and only if X = X, so X is closed if and only if all limit points of X are
in fact points of X. (Note that all points of X are automatically limit points essentially because X ⊆ X for
free.) �

While we’re here, we can pick up a nice topological result.

Lemma 2.59. Fix X ⊆ C a connected subset. Then X is also connected.

Proof. This argument is purely topological. We proceed by contraposition: suppose X is disconnected by
U1, U2 ⊆ C. We claim that U1, U2 disconnect X. Well, we already know that A ⊆ A ⊆ U1 ∪ U2, and we
already know that U1 and U2 are disjoint.

We claim that, for U ⊆ C an open subset, if U ∩X 6= ∅, then U ∩X 6= ∅ as well. Indeed, we proceed by
contraposition: if U ∩X = ∅, then X ⊆ C \ U , but C \ U is closed, so

X ⊆ C \ U,
so X ∩ U = ∅.

Thus, it follows from U1 ∩X,U2 ∩X 6= ∅ that U1 ∩X,U2 ∩X 6= ∅. This finishes the proof that U1 and
U2 disconnect X. Indeed, �

2.3.3 Cauchy Sequences
Just like in real analysis, we will be interested in Cauchy sequences.

Definition 2.60 (Cauchy sequence). A sequence {zn}n∈N ⊆ C is a Cauchy sequence if and only if, for
each ε > 0, there exists an N such that

n,m > N =⇒ |zn − zm| < ε.

We have the following results on Cauchy sequences.

Proposition 2.61. Fix {zn}n∈N ⊆ C a sequence. If {zn}n∈N converges, it is Cauchy.

Proof. This proof uses no special properties of C. If zn → z, then for a given ε > 0, there exists N such that

n > N =⇒ |zn − z| < ε/2.

It follows that
n,m > N =⇒ |zn − zm| < |zn − z|+ |zm − z| < ε,

finishing. �

Proposition 2.62. Every Cauchy sequence in C converges.

Proof. If {zn}n∈N is Cauchy, then we claim {Re zn}n∈N and {Im zn}n∈N are Cauchy sequences. Indeed, for
any ε > 0, there exists N so that

n,m > N =⇒ |zn − zm| < ε,

but then |Re zn−Re zm| < |zn−zm| and | Im zn−Im zm| < |zn−zm|, so the sameN witnesses that {Re zn}n∈N
and {Im zn}n∈N are Cauchy in R.

Now, Cauchy sequences in R converge, so there are reals x, y ∈ R such that Re zn → x and Im zn → w.
It follows that zn → x+ yi, finishing. �

29



2.4. JANUARY 31 185: INTRO. TO COMPLEX ANALYSIS

2.3.4 A Little More Topology
We close with one more topological definition.

Definition 2.63 (Sequentially compact). A subset X ⊆ C is sequentially compact if and only if every
{zn}n∈N ⊆ X has a convergent subsequence which converges in X.

Remark 2.64. This happens to be equivalent to X is compact because C ∼= R2 satisfies the fact that all
compact sets are closed and bounded.

Example 2.65. Every finite set is compact.

And here is a last definition.

Definition 2.66 (Tends to infinity). A sequence {zn}n∈N ⊆ C tends to infinity (notated zn → ∞) if and
only if each M > 0 has some N ∈ N such that

n > N =⇒ |zn| > M.

Essentially the points of {zn}n∈N wander infinitely away.

2.4 January 31
So we are lecturing in-person today. Good morning everyone.

Quote 2.67. If I don’t fall o� the stage, I will consider it a major accomplishment.

Homework 2 is due Friday, the 4th of February. O�ce hours will occur at the usual times, but they will now
occur in-person at Evans 749.

2.4.1 Series
Today we’re mostly talking about series, and on Friday we’ll talk about continuous functions.

Definition 2.68 (Series). An infinite series over C is an infinite sum

S :=

∞∑
n=1

zn

where {zn}n∈N ⊆ C is a sequence of complex numbers.

With respect to series, we really want to know when various series converge so that the series is well-
defined.

Definition 2.69 (Converge, diverge). Fix a sequence {zn}n∈N ⊆ C of complex numbers, we define the
mth partial sum to be

Sm :=

m∑
n=0

zm.

Then we say that the infinite series converges if and only if the sequence {Sm}of partial sums converges.
Otherwise, we say that S is divergent.

As usual, we start with some basic examples.
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Exercise 2.70. Fix some z ∈ C with |z| < 1, we define zn := zn. Then we have

S =

∞∑
k=0

zk =
1

1− z .

Proof. Fix some partial sum

SN :=

N∑
k=0

zk = 1 + z + z2 + · · ·+ zN .

Multiplying by z, we see that
zSn = z + z2 + · · ·+ zN + zN+1.

It follows that
SN − zSN = 1− zN+1.

Because |z| < 1, we have z 6= 1, so we may write

SN =
1

1− z −
zN+1

1− z .

However, we may note that as N →∞, the bad term zN+1 will have size∣∣zN+1
∣∣ = |z|N+1,

which goes to 0 (because |z| < 1).2 It follows that

lim
N→∞

SN =
1

1− z ,

which is what we wanted. �

Anyways, here are some basic lemmas.

Lemma 2.71 (Divergence test). Suppose that {zn}n∈N is a sequence of complex numbers such that
∑
zn

converges. Then zn → 0 as n→∞.

Proof. Let Sn be the nth partial sum so that we are given Sn → L for some L ∈ C. But now we see that

zn+1 =

(
N+1∑
k=0

zk

)
−
(

N∑
k=0

zk

)
= Sn+1 − Sn.

Using limit laws, we see that

lim
n→∞

zn+1 = lim
n→∞

Sn+1 − lim
n→∞

Sn = L− L = 0.

Shifting the indices back gives zn → 0 as N →∞. �

Here is an important example of a divergent series.

2 This is surprisingly annoying to rigorize with an ε-δ proof, so we won’t do so here. The interested can try to use induction to
manually bound |z|n by c

n
for some c.
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Exercise 2.72. We claim that

S =

∞∑
k=1

1

k

does not converge.

Proof. We will show that the sequence of partial sums {Sn}∞n=1 is not Cauchy, which will show that the
series diverges. Well, observe that

S2n+1 − S2n =

2n+1∑
k=2n+1

1

k

after cancelling out all of our terms. However, each term in the sum is at least 1
2n+1 , so we bound

S2n+1 − S2n ≥ 1

2n+1

(
2n+1 − 2n

)
=

1

2
.

We now show that the partial sums are not Cauchy. Fix ε. Supposing for the sake of contradiction that the
sequence is Cauchy, there exists N so that n,m > N has

|Sn − Sm| <
1

2
.

However, we can find some power of 2 named 2r which exceeds N , in which case we find 2r+1, 2r > N and

|S2r+1 − S2r | ≥ 1

2
,

which is our contradiction. �

Remark 2.73. Because a sequence will converge if and only if its real and imaginary parts do, we can
turn a convergence test into a real-number test by taking the real and imaginary parts of the sum.

2.4.2 The Comparison Test
Recall the comparison test in R.

Theorem 2.74 (Comparison test). Fix {xn}n∈N, {yn}n∈N ⊆ R sequences of real numbers. Further, sup-
pose that we there exists a positive constant c > 0 such that 0 ≤ xn ≤ cyn. Then the following hold.

• If
∑
yn converges, then

∑
xn converges as well.

• If
∑
xn diverges, then

∑
yn diverges as well.

Proof. We appeal to real analysis. The interested can see Theorem 2.1.21 in Eterović. The main point is to
use the Monotone sequence theorem. �

Here is an example.

Exercise 2.75. Fix s > 1 an integer. Then the series

S =

∞∑
k=1

1

ks

converges.
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Proof. Because s is an integer, we have s ≥ 2. Namely, 1
ks ≤ 1

k2 , so by the comparison test it su�ces to just
show the convergence of

S′ :=

∞∑
k=1

1

k2
.

For this, we apply some trickery. In particular, for k > 1, we bound

1

k2
<

1

k(k − 1)
=

1

k − 1
− 1

k
.

In particular,

S′ = 1 +

∞∑
k=2

1

k2
< 1 +

∞∑
k=2

(
1

k − 1
− 1

k

)
.

Thus, by the comparison test, it su�ces to show the convergence of

T :=

∞∑
k=2

(
1

k − 1
− 1

k

)
.

But the nth partial sum will telescope, giving

Tn :=

n∑
k=2

(
1

k − 1
− 1

k

)
= 1− 1

n
,

so Tn → 1 as n→∞, and T = 1. It follows that S′ is upper-bounded by 1 + T ≤ 2. �

2.4.3 Absolute Convergence
The following kind of convergence is nontrivially stronger, but that makes it better.

Definition 2.76 (Absolute convergence). Fix a sequence {zn}n∈N ⊆ C of complex numbers. Then the
sum S :=

∑
zn converges absolutely if and only if the series

∞∑
n=0

|zn|

also converges. In other words, the partial sums of the above series converges.

We have the following quick lemma to justify naming this “convergence.”

Lemma 2.77. If a series converges absolutely, then the series also converges.

Proof. The idea is to use the triangle inequality. Fix our series

S :=

∞∑
n=0

zn

for which

T :=

∞∑
n=0

|zn|

converges. Let Sn be the nth partial sum of S and Tn the n the partial sum of T .
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Our goal is to show that {Sn}n∈N is Cauchy. Observe {Tn}n∈N is an increasing sequence of real numbers
because |z| ≥ 0 always. To start o� our arithmetic, we note that, for n,m ∈ N with n > mn, we have

|Sn − Sm| =
∣∣∣∣∣

n∑
k=m+1

zk

∣∣∣∣∣ ,
which by the triangle inequality can be bounded by

|Sn − Sm| ≤
n∑

k=m+1

|zk| = Tm − Tn.

But now we can use the fact that {Tn}n∈N must be Cauchy to finish: for any ε > 0, there exists someN such
that n > m > N implies Tm − Tn < ε. But then this same N promises n > m > N implies

|Sn − Sm| < Tm − Tn < ε,

which is what we wanted. �

Here is a surprise tool that will help us later.

Lemma 2.78. Fix a sequence {an}n∈N ⊆ C of nonzero complex numbers. Further, suppose that the
sequence {an}n∈N tends to infinity (i.e., |an| → ∞ as n→∞), then for any positive real number r ∈ R+,
the series

∞∑
k=0

(
r

|ak|

)k
converges.

Proof. We need the an to be nonzero in order to allow division, so the real puzzle is to determine how to use
the fact |an| → ∞. Well, there exists some N such that n > N has

|an| > 2r.

But then r
|an| <

1
2 for each n > N , so we can use the comparison test as follows: observe that

∞∑
k=0

1

2k

will converge, and there will exist some c > 1 so that
r

|ak|
<

c

2k

for 0 ≤ k ≤ N ; and then for n > N , we get the above inequality anyways as discussed earlier (observe we
took c > 1). �

Quote 2.79. I can’t break math on the first day of class. I can do it later on.

Lemma 2.80. Suppose that we have two series S :=
∑
k∈N zk and T :=

∑
k∈N wk are both absolutely

convergent. Then the sum

P :=

∞∑
k=0

 ∑
i+j=k

ziwj


is absolutely convergent as well. In fact, P will converge to ST .
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Proof. We sketch the result, and the remaining details are in Eterović. As usual, consider the partial sums

An :=

n∑
k=0

|zk| and Bn =

n∑
k=0

|wk|,

both of which will converge as n→∞. Brazenly multiplying these together, we see that

AnBn =

n∑
i,j=0

|ziwj | =
n∑
k=0

∑
i+j=k

0≤i,j≤n

|ziwj |+
∑
k>n

∑
i+j=k

0≤i,j≤n

|ziwj |.

In the first sum, observe that any time i+ j = k, we will automatically have i, j ≤ k ≤ n. It follows that

AnBn =

n∑
k=0

 ∑
i+j=k

ziwj

+
∑
i+j>n

0≤i,j≤n

|ziwj |

︸ ︷︷ ︸
Rn

.

The key claim is thatRn → 0. The main idea is that i+ j > n implies that i ≥ n/2 or j ≥ n/2, so we can write

|Rn| ≤
n∑
i=0

n∑
j=n/2

|ziwj |+
n∑

i=n/2

n∑
j=0

|ziwj | =
(

n∑
i=0

|zi|
) n∑

j=n/2

|wj |

+

 n∑
i=n/2

|zi|

 n∑
j=0

|wj |

 .

Now, fix any ε > 0, and we show there existsX so thatn > X has |Rn| < ε. NoteA :=
∑ |zk|andB :=

∑ |wk|
both converge and hence have Cauchy partial sums. Because the partial sums are increasing, we bound

|Rn| ≤ A

 n∑
j=n/2

|wj |

+B

 n∑
i=n/2

|zi|


So there exists N such that n > m > N has

n∑
i=m+1

|zi| <
ε

2B

Similarly there exists M so that n > m > M has
n∑

j=m+1

|wj | <
ε

2A
,

from which it follows that n > n/2 > max{N,M}will have

|Rn| ≤ A ·
ε

2A
+B · ε

2B
= ε,

which finishes.
Now, because Rn → 0, we see

lim
n→∞

n∑
k=0

 ∑
i+j=k

|zi| · |wj |

 = lim
n→∞

AnBn − lim
n→∞

Rn,

which does indeed converge, so indeed the series

∞∑
k=0

 ∑
i+j=k

|zi| · |wj |


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will converge. By the comparison test (using the triangle inequality), it follows that

P =

∞∑
k=0

 ∑
i+j=k

ziwj


will also absolutely converge.

To show that P converges to ST , we observe that the di�erence of the nth partial sum is

Pn − SnTn =

n∑
k=0

 ∑
i+j=k

ziwj

− n∑
i,j=0

ziwj =

n∑
k=0

 ∑
i+j=k

ziwj

− n∑
k=0

 n∑
i+j=k

ziwj

+
∑

0≤i,j≤n
i+j<n

ziwj ,

so
Pn − SnTn =

∑
0≤i,j≤n
i+j<n

ziwj .

But by the triangle inequality, we see |Pn − SnTn| ≤ Rn, so Pn − SnTn → 0 as n → ∞. It follows Pn and
SnTn have the same limit as n→∞ (which exists because Sn and Tn have a limit). So indeed, P = ST . �

2.5 February 2

Good morning everyone. Here is some house-keeping.

• Homework #2 is due on Friday at 11:59, on GradeScope. The assignment has just been added.

• There are o�ce hours to talk about the homework. Please come if you have questions.

2.5.1 Summation Review
Today we finish our discussion of series, for now. We quickly recall the definitions.

Definition 2.68 (Series). An infinite series over C is an infinite sum

S :=

∞∑
n=1

zn

where {zn}n∈N ⊆ C is a sequence of complex numbers.

Definition 2.69 (Converge, diverge). Fix a sequence {zn}n∈N ⊆ C of complex numbers, we define the
mth partial sum to be

Sm :=

m∑
n=0

zm.

Then we say that the infinite series converges if and only if the sequence {Sm}of partial sums converges.
Otherwise, we say that S is divergent.

Today we are building towards proving Dirichlet’s convergence theorem. We pick up the following lem-
mas.
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Lemma 2.81. Fix sequences {zk,`}k,`∈N a collection of complex numbers satisfying the following con-
ditions.

• Fixing any k, the sum
∑∞
`=0 |zk,`| converges.

• The sum
∑∞
k=0

∑∞
`=0 |zk,`| converges.

Then the following are true.

(a) Fix any `, the sum
∑∞
k=0 |zk,`| converges; i.e., the terms in the left sum below are well-defined.

(b) We have that
∞∑
`=0

∞∑
k=0

zk,` =

∞∑
k=0

∞∑
`=0

zk,`,

and both sums converge.

Intuitively, the first condition is requiring that the series horizontally does not grow too fast. The second
condition is requiring an absolute convergence condition. Then the first conclusion says we can sum verti-
cally instead, and the second conclusion says that we can move around the order of summation.

Proof. We will sketch this proof; we prove (a) and (b) more or less simultaneously. To turn the infinite double
sum into something we can consider finite partial sums of, we set, for each natural N ,

Sn :=

n∑
k=0

n∑
`=0

|zk,`|.

The main claim is that

lim
n→∞

Sn
?
=

∞∑
k=0

∞∑
`=0

|zk,`|.

Indeed, fix any ε > 0. Because the latter sum converges, there exists some natural A such that

∑
k>A

∞∑
`=0

|zk,`| <
ε

2
.

Further, there exists some natural Bk such that∑
`>Bk

|zk,`| <
ε

2A

for each k ∈ N. Take B := max0≤k<ABk. Now, we set N := max{A,B}. To start o� our inequalities, we
note that

Sn =

n∑
k=0

n∑
`=0

|zk,`| ≤
n∑
k=0

∞∑
`=0

|zk,`| ≤
∞∑
k=0

∞∑
`=0

|zk,`|,

so we know the sign of our di�erence. In particular, for any n > N , we see that

Sn =

N∑
k=0

N∑
`=0

|zk,`| ≥
K∑
k=0

L∑
`=0

|zk,`|.

Thus,

0 ≤
∞∑
k=0

∞∑
`=0

|zk,`| − Sn ≤
∞∑
k=0

∞∑
`=0

|zk,`| −
K∑
k=0

L∑
`=0

|zk,`| =
∑
k>K

∞∑
`=0

|zk,`|+
K∑
k=0

∑
`>L

|zk,`|

after some cancellation. But we can upper-bound the last quantity by ε
2 +K · ε

2K = ε, so we are done.
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The main point of the above lemma is that we are told each ε > 0 has some N so that n > N implies
∞∑
k=0

∞∑
`=0

|zk,`| − Sn =
∑

(k,`)∈Z2

k>n or `>n

|zk,`| < ε.

We now take the two parts in sequence.
(a) Fix an index `′; we show absolute convergence by showing that the partial sums of

∑∞
k=0 |zk,`′ | are

Cauchy. Indeed, fix some ε > 0, and we know there exists N so that each n > N has
∞∑
k=0

∞∑
`=0

|zk,`| − Sn < ε.

Now, we see that any n > m > N will have
n∑

k=m+1

|zk,`′ | ≤
N∑

k=m+1

∞∑
`=0

|zk,`| ≤
∞∑

k=N+1

∞∑
`=0

|zk,`|+
N∑
k=0

∞∑
`=N+1

|zk,`| < ε,

so we are done.

(b) As above, fix some ε > 0, and we are promised N so that∑
(k,`)∈Z2

k>N or `>N

|zk,`| < ε/2.

Observe, for K,L > N , we have by the triangle inequality that∣∣∣∣∣
L∑
`=0

K∑
k=0

zk,` − SN
∣∣∣∣∣ < ε/2.

This bounds holds for anyK, so we can sendK arbitrarily large; that inner sum will converge, so in fact
we can send K to∞ without ill e�ect. (Formally, the inner term is an increasing sequence bounded
above, so it will converge as K →∞.) This gives∣∣∣∣∣

L∑
`=0

∞∑
k=0

zk,` − SN
∣∣∣∣∣ ≤ ε/2.

Again, the inner term is an increasing sequence as L→∞ but still bounded above as ε/2, so the inner
sum will converge as L→∞ and still give the inequality∣∣∣∣∣

∞∑
`=0

∞∑
k=0

zk,` − SN
∣∣∣∣∣ < ε.

Now as we send ε→ 0, we see that limN→∞ SN =
∑∞
`=0

∑∞
k=0 zk,`, which finishes. �

2.5.2 Dirichlet Test
We now go directly for the Dirichlet test for convergence.

Lemma 2.82 (Summation by parts). Fix sequences {an}n∈N and {bn}n∈N sequences of complex num-
bers. Then we define

Bn :=

N∑
k=0

bn,

and B−1 = 0 to be the empty sum. It follows that, for any n,m ∈ N with n > m,

n∑
k=m

akbk = anBn − amBm−1 +

n−1∑
k=m

Bk(ak − ak+1).
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Proof. This comes down to a direct computation. The main point is that bk = Bk −Bk−1, which even works
with k = 0. Indeed,

n∑
k=m

akbk =

n∑
k=m

ak(Bk −Bk−1)

=

n∑
k=m

akBk −
n∑

k=m

akBk−1

∗
= anBn +

n−1∑
k=m

akBk − amBm−1 −
n∑

k=m

ak+1Bk

= anBn − amBm−1 +

n−1∑
k=m

Bk(ak − ak+1),

which is what we wanted. The important step to pay attention to is the rearrangement we did in ∗= in order
to message the sums together. �

And here is our theorem.

Theorem 2.83 (Dirichlet’s test). Fix {an}n∈N ⊆ R a sequence of real numbers and {bn}n∈N ⊆ C a se-
quence of complex numbers satisfying the following conditions.

• The sequence {an}n∈N is decreasing.

• We have an → 0 as n→∞.

• Bounded partial sums: there exists a positive real number M such that∣∣∣∣∣
n∑
k=0

bk

∣∣∣∣∣ < M

for each n ∈ N.

Then we claim that
∞∑
k=0

akbk

converges.

Proof. As usual, fix our partial sums

Sn :=

n∑
k=0

akbk and Bn :=

n∑
k=0

bk.

We are given that the Bk are bounded, so we are going to want to use Lemma 2.82, which tells us that

Sn = anBn +

n−1∑
k=0

Bk(ak − ak+1).

We examine the convergence of these terms individually.

• For the sum, we will show that it absolutely converges. We are given that the partial sums Bn are
bounded by M , so we note |Bk(ak − ak+1)| < M |ak − ak+1|, so it su�ces to show that

M

n−1∑
k=0

|ak − ak+1|
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converges as n→∞. It would be great if this would telescope, and indeed it does! Because the ak are
decreasing,

∞∑
k=0

|ak − ak+1| =
∞∑
k=0

(ak − ak+1) = a0 − an+1.

Because an → 0 as n→∞, we see that this sum will converge to a0. It follows that

∞∑
k=0

|Bk(ak − ak+1)|

will converge by the Comparison test, so

∞∑
k=0

Bk(ak − ak+1)

converges by absolute convergence.

• Note that theBn are bounded in norm byM , so |anBn| ≤M |an|, but |an| → 0 as n→∞, so |anBn| →
0. �

Eterović has lots of di�erent convergence tests in his notes, but we don’t care about most of them. Here is
one that we do care about.

Theorem 2.84 (Integral test). Fix a decreasing function f : [1,∞)→ R+ and for which∫ k+1

k

f(x) dx

always exists. Then the sequence of integrals In :=
∫ n

1
f(x) dx converges if and only if the summation

∞∑
k=1

f(k)

converges.

Proof. We omit this proof; it’s a reasonably standard real-analytic test. �

2.6 February 4

Today we are talking about continuity.

Warning 2.85. The first half of this lecture was transcribed from Professor Morrow’s notes because I
had to miss class for a job interview

2.6.1 Limits

Before defining continuity, we have the following definitions.
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Definition 2.86 (Limit). Fix f : X → C a function and z0 ∈ X. Then we say the limit of f(z) as z ap-
proaches z0 equals w, denoted

lim
z→z0

f(z) = w,

if and only if, for each ε > 0, there exists δ > 0 such that

|z − z0| < δ =⇒ |f(z)− w| < ε

for z ∈ X.

This is the standard ε-δ definition.
We also pick up the following convention as a surprise tool that may help us later.

Definition 2.87 (Infinite limits). Fix f : X → C a function. Then we say the limit of f(z) as z tends to
infinity equals w, denoted

lim
z→∞

f(z) = w,

if and only if, for each ε > 0, there exists N > 0 such that

|z| > N =⇒ |f(z)− w| < ε

for z ∈ X.

As in real analysis, the ε-δ definition of a limit can be translated to a statement about sequences.

Proposition 2.88. Fix α ∈ X. Then limz→α f(z) = w if and only if, for each {zn}n∈N ⊆ X such that
zn → α as n→∞, we have f(zn)→ w as n→∞.

Proof. In the forwards direction, fix {zn}n∈N ⊆ X such that zn → α, and we show that f(zn)→ w. Well, for
any ε > 0, there exists δ > 0 such that

|z − α| < δ =⇒ |f(z)− f(α)| < ε,

where z ∈ X. But for this δ > 0, there exists N such that

n > N =⇒ |zn − α| < δ =⇒ |f(zn)− f(α)| < ε.

So indeed, f(zn)→ f(α).
In the reverse direction, suppose that f(z) does not approachw as z → α. Then, there exists ε0 > 0 such

that, for any δ > 0, there is z ∈ X such that |z − α| < δ while |f(z) − w| > ε0. Well, for any n ∈ N, taking
δ = 1/(n+ 1), we are promised zn ∈ X such that

|zn − α| <
1

n+ 1
qquadand |f(zn)− w| > ε0.

So to finish, we claim that zn → α as n→∞, but f(zn) does not approach w as n→∞.

• For any ε > 0, we note that N := 1/ε has n > N implies

|zn − α| <
1

n+ 1
<

1

N + 1
<

1

N
= ε,

so indeed zn → α as N →∞.

• We note that ε0 > 0 satisfies that
|f(zn)− w| > ε0

for any n ∈ N, so no N will have n > N implies |f(zn) − w| < ε0. Thus, f(zn) does not approach w as
n→∞.
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The sequence {zn}n∈N now completes the proof by showing the reverse direction by contraposition. �

While we’re here, we pick up the following definitions.

Definition 2.89 (Bounded). A function f : X → C is bounded if there exists R > 0 such that im f ⊆
B(0, R).

Definition 2.90 (Bounded near). Fix a nonempty open subset Ω ⊆ C and z0 ∈ Ω. Then f : Ω \ {z0} → C
is bounded near z0 if and only if

lim
z→z0

(z − z0)f(z) = 0.

2.6.2 Continuity
And here is our central definition for today.

Definition 2.91 (Continuous). A function f : X → C is continuous at z0 ∈ X if and only if, for each ε > 0,
there exists δ > 0 such that

|z − z0| < δ =⇒ |f(z)− f(z0)| < ε,

where z ∈ X. Further, f is continuous on X if and only if f is continuous at each z0 ∈ X.

We have the following lemma of equivalent definitions.

Lemma 2.92. Suppose that f : X → C.

(a) Then f is continuous atw if and only if every sequence {zn} ⊆ X such that zn → z implies f(zn)→
f(z).

(b) We have that f is continuous on X if and only if every open set U ⊆ C has f−1(U) open in X.

(c) We have that f is continuous on X if and only if each closed set V ⊆ X has f−1(V ) closed in X.

(d) Lastly, we have that f is continuous at if and only if, for each ε > 0 and z ∈ C, we have that
f−1(B(z, ε)) is open in X.

Proof. We take the parts one at a time.

(a) We could use Proposition 2.88, but we will just do this by hand. For the forwards direction, suppose
that {zn}n∈N ⊆ X converges to some w. Then let ε > 0. By assumption, there exists some δ > 0 such
that

|z − w| < δ =⇒ |f(x)− f(w)| < ε.

It follows from zn → w that there exists some N such that

n > N =⇒ |zn − w| < δ =⇒ |f(zn)− f(z)| < ε,

so it follows that f(zn)→ f(z).

In the reverse direction, take f not continuous at w, so there exists ε > 0 so that for all n ∈ N, there
exists some chosen zn with

|zn − w| < δ =⇒ |f(zn)− f(w)| > ε.

But as zn → w, we see that f(zn) does not approach f(w), so we are done.
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(b) In the forwards direction, suppose that U ⊆ C is open, and we show that f−1(U) is open in X. Well,
suppose that z ∈ f−1(U), and we will find δ > 0 such that B(z, δ) ⊆ f−1(U).
Well, f(z) ∈ U , so there exists ε > 0 such that B(f(z), ε) ⊆ U . Thus, continuity of f requires some
δ > 0 such that

|w − z| < δ =⇒ |f(w)− f(z)| < ε,

which implies f(w) ∈ B(f(z), ε) ⊆ U implies w ∈ f−1(U). So indeed, B(z, δ) ⊆ f−1(U).
In the reverse direction, suppose that each open U ⊆ C has f−1(U) is open. Now fix any z ∈ X and
ε > 0. The set B(f(z), ε) is open, so

f−1(B(f(z), ε))

is open. But z ∈ f−1(B(f(z), ε)), so we can find δ > 0 such that B(z, δ) ⊆ f−1(B(f(z), ε)). Thus,
|w − z| < δ implies w ∈ f−1(B(f(z)), ε) implies f(w) ∈ B(f(z), ε) implies |f(w)− f(z)| < ε, finishing.

(c) In the forwards direction, suppose f is continuous so that U ⊆ C open implies f−1(U) ⊆ X is open.
But then, if V ⊆ C is closed, then C \ V is open, so3

f−1(C \ V ) = f−1(C) \ f−1(V ) = X \ f−1(V )

is open, so f−1(V ) is closed.
In the backwards direction, suppose f−1 preserves closed sets. Then, ifU ⊆ C is open, C\U is closed,
so

f−1(C \ U) = f−1(C) \ f−1(U) = X \ f−1(U)

is closed, so f−1(U) is open. Thus, f−1 preserves open sets, so f must be continuous.

(d) In the forwards direction, fix ε > 0 and z ∈ C, soB(z, ε) is open, so f−1(B(z, ε)) is open inX, finishing.
In the other direction fix ε > 0 and z ∈ C to consider B(f(z), ε) ⊆ U . Thus, continuity of f requires
some δ > 0 such that

|w − z| < δ =⇒ |f(w)− f(z)| < ε,

which implies f(w) ∈ B(f(z), ε) ⊆ U implies w ∈ f−1(U). So indeed, B(z, δ) ⊆ f−1(U).
In the reverse direction, fix U open, and we show that f−1(U) is open. Well, each z ∈ U has some εz
such that B(z, εz) ⊆ U . But f−1(B(z, εz)) is open by hypothesis, so

f−1(U) = f−1

(⋃
z∈U

B(z, εz)

)
=
⋃
z∈U

f−1(B(z, εz))

is an arbitrary union of open sets and hence open. �

And here are some special examples.

Example 2.93. Fix some z0 ∈ C. Then f(z) := |z − z0| is continuous on C. Indeed, fix any w ∈ C. Then
for any ε > 0, we set δ := ε so that |z − w| < δ implies

|f(z)− f(w)| =
∣∣|z − z0| − |w − z0|

∣∣ ≤ |z − w| < δ = ε.

Example 2.94. The functions Re and Im is continuous. Indeed, fix any w ∈ C. Then, for any ε > 0, take
δ := ε so that |z − w| < δ implies

|Re z − Rew| = |Re(z − w)| ≤ |z − w| < δ = ε,

and similarly,
| Im z − Imw| = | Im(z − w)| ≤ |z − w| < δ = ε,

Continuous functions also have some arithmetic.
3 To see f−1(A \B) = f−1(A) \ f−1(B), note that x ∈ f−1(A \B) if and only if f(x) ∈ A \B if and only if f(x) ∈ A but f(x) /∈ B

if and only if x ∈ f−1(A) but x /∈ f−1(B).
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Proposition 2.95. Fix f, g : X → C to functions continuous at z0 ∈ X. Then f+g, f ·g are both continuous
at z0 ∈ X, and f/g is continuous at z0 provided g(z0) 6= 0.

Proof. The point is to appeal to the corresponding results on convergence of sequences. In particular, we
use the idea that f is continuous at z0 if and only if each sequence zn → z0 inX has f(zn)→ f(z0). We omit
the details because they are essentially the same as in a real analysis class. �

Corollary 2.96. Every polynomial in one variable is a continuous function X → C for any X ⊆ C.

Proof. Note that x 7→ x is continuous, so by induction x 7→ xn is continuous for each n ∈ N. Taking a
C-linear combination gives arbitrary polynomials. �

Here is another sort of arithmetic.

Lemma 2.97. The composition of two continuous functions is continuous.

Proof. Omitted. �

2.6.3 Connectedness
We want to build towards a particular type of continuous function.

Proposition 2.98. FixX ⊆ C a connected subset. Then a continuous function f : X → C has connected
image f(X).

Proof. The main point is to use the topological characterization of continuity. In particular, suppose that
f(X) is disconnected, and we show thatX is disconnected. In particular, suppose thatU1 andU2 disconnect
f(X), and we have that f−1(U1) and f−1(U2) disconnect X. We will not run all the checks here; the main
point is that f−1(U1) and f−1(U2) are open because f is continuous. �

Definition 2.99 (Path). A path in C is a continuous function γ : [a, b]→ C where a < b are real numbers.

Definition 2.100. We say that a path γ is closed if and only if γ(a) = γ(b). We say that γ is simple if and
only if γ : (a, b)→ C is injective.

Remark 2.101. The point of restricting γ to the open interval at the end so that closed, simple paths are
allowed to exist.

Example 2.102. Here is a path.
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Example 2.103. Here is a closed path.

Example 2.104. Here is a simple path.

Example 2.105. Here is a closed, simple path, also called a loop.

Definition 2.106 (Concatenation). Fix γ1 : [a, b] → C and γ2 : [c, d] paths in C such that γ1(b) = γ2(c).
Then we define the concatenation of γ1 and γ2 to be

(γ1 ∗ γ2)(t) :=

{
γ1(t) t ∈ [a, b],

γ2(t− b+ c) t ∈ [b, d− c+ b].

The main point is that we are doing one path after the other.

Example 2.107. The following shows an example concatenation of γ1 ∗ γ2, where γ1, γ2 : [0, 1]→ C.

t = 0
t = 1

t = 2
γ1 γ2

The entire path is γ1 ∗ γ2.

Paths give us the following notion.

Definition 2.108 (Path-connected). A subsetX ⊆ C is path connected if and only if, for any two x0, x1 ∈
X, there exists a path γ : [0, 1]→ X such that γ(0) = x0 and γ(1) = x1.

Lemma 2.109. The open ball B(z, r) and closed ball B(z, r) are both path-connected.

Proof. The point is that B(z, r) and B(z, r) are both convex, so the path

γ(t) := z0 + t(z1 − z0)

will work. �

Here is the basic result.
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Proposition 2.110. A space X is path-connected implies that X is connected. If X is open and con-
nected, then X is path-connected.

Proof. We will show this next class. �

2.7 February 7
Good morning everyone. A few announcements.

• Homework #3 is due on Friday.

• There will be no in-person class on Wednesday or Friday.

• O�ce hours this week are today (1:00PM–2:30PM) and tomorrow (2:00PM–3:30PM).

2.7.1 Connectedness
Today we’re going to talk more about continuous functions.

Last time we ended with the following proposition.

Proposition 2.110. A space X is path-connected implies that X is connected. If X is open and con-
nected, then X is path-connected.

Proof. We do these separately.

• Suppose that X = U1 t U2 is disconnected, and we show that X is not path-connected. Namely,
we have U1, U2 ⊆ X open subsets (in X) which are disjoint and nonempty. Because U1 and U2 are
nonempty, find x1 ∈ U1 and x2 ∈ U2.
However, we claim there is no continuous path γ : [0, 1] → X with γ(0) = x1 and γ(1) = x2. Indeed,
the image of γ([0, 1]) must be connected, but then we can disconnect γ([0, 1]) by U1 and U2: γ([0, 1]) ⊆
U1 ∪ U2 and x• ∈ U• ∩ γ([0, 1]) and U1 ∩ U2 = ∅.
At a high level, here is the image that a disconnected X cannot have a path between any two pair
points: there is no possible red path below which stays in the gray region.

u1

u2

U1

U2

• Suppose we have a point z ∈ X, and we set

C(z) := {w ∈ X : there is a path from z to w}.

We claim that C(z) is closed and open in X, which will force C(z) = X because X is connected and
C(z) is nonempty (z ∈ C(z) by the trivial path γ : t 7→ z).
We start by showing C(z) is open: because X is open, there exists r > 0 such that B(w, r) ⊆ X. But
with w ∈ C(z), there will be a path between any point in p ∈ B(w, r) and w, so there is a path from z
to w to p. Here is the image.
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z
w

p

Now we show that C(z) is closed. Suppose that w ∈ X \ C(z), and we have to show that there is an
open ball around w in X \ C(z). To see this, fix an open ball B(w, r) ⊆ X for r > 0, but now there
can be no path from z to anywhere in B(w, r), for then we could just run the above argument again to
show that w ∈ C(z). �

Remark 2.111. The proof for the second part merely needsX to be locally path-connected, not a metric
space.

Corollary 2.112. We have that C is path-connected and therefore connected.

Proof. Given any two points z, w ∈ C, we choose the path γ : [0, 1]→ C by

γ(t) = tz + (1− t)w.

Indeed, γ(0) = w and γ(1) = z, and γ is somewhat clearly continuous by, say, checking component-wise. �

2.7.2 Compactness
Let’s do compactness better this time.

Lemma 2.113. Fix X ⊆ C (sequentially) compact. Then X is both closed and bounded.

Proof. We start by showing X is closed. For this, we show that X contains all of its limit points.
Well, suppose that z ∈ X is a limit point so that we have a sequence {zn}n∈N ⊆ X such that zn → z. But

by the (sequential) compactness of X, this sequence has a convergent subsequence {zσn}n∈N which does
converge in X. But any subsequence will converge to the same limit (!), so zσn → z as well, so z ∈ X is
forced.

We now show thatX is bounded. We proceed by contraposition: ifX is unbounded, then for any n ∈ N,
then we can find some zn ∈ X\B(0, n). But then we can check that {zn}n∈N has no convergent subsequence,
essentially because it tends o� to infinity. �

Our goal for the rest of class is to prove the following two results.

Proposition 2.114. A subset X ⊆ C is (sequentially) compact if and only if it is closed and bounded.

Theorem 2.115 (Heine–Borel). A subsetX ⊆ C is (sequentially) compact if and only if every open cover
of X has a finite subcover.

On the homework, we showed the backward direction of Theorem 2.115.
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Remark 2.116. Our hope is to have lots of equivalent characterizations of compactness so that we can
have easier proofs of statements about compact sets.

To start o�, here are some lemmas we will need.

Lemma 2.117. Fix X ⊆ C (sequentially) compact. For any ε > 0, there exist only finitely many points
z1, . . . , zn ∈ X such that

X ⊆
n⋃
k=1

B(zk, ε).

Proof. The point is to build some inductive argument: one fixes an ε > 0 and then continues choosing
random points out of X until we cover X. Indeed, if the process does not terminate, then the sequence we
generate has no convergent subsequence.

Rigorously, if X is empty, then just choose no points at all and be done. Otherwise, we can find some
z1 ∈ X. Inductively, suppose we have a sequence {z1, . . . , zm}. If

X ⊆
n⋃
k=1

B(zk, ε),

then we are done. Otherwise, we can find zm+1 ∈ X \
⋃n
k=1B(zk, ε).

If the above inductive process terminates, then we get the result. Otherwise, there is a sequence {zn}n∈N
such that

zn+1 ∈ X
∖ n⋃

k=1

B(zk, ε).

We claim that {zn}n∈N has subsequence converging inX. Indeed, suppose for the sake of contradiction that
zσn → z for some strictly increasing σ and z ∈ X. Then there exists N such that n > N implies

|zσn − z| < ε/2.

But then, finding some n+ 1, n > N , we have

|zσ(n+1) − zσn| < |zσ(n+1) − z|+ |zσn − z| < ε,

so

zσ(n+1) ∈
σ(n+1)−1⋃

k=1

B(zk, ε),

which is our contradiction to the construction of z•. �

Lemma 2.118. Fix X ⊆ C (sequentially) compact with some open cover U of X. Then there is an ε > 0
such that, for every z ∈ X, there is U ∈ U such that B(z, ε) ⊆ U .

Proof. Suppose that, for all ε > 0, there exists some z ∈ X such that no U ∈ U has B(z, ε) ⊆ U . We
construct a sequence in X with no subsequence converging in X. Indeed, for any n ∈ N, we find zn ∈ X
such that no U ∈ U has B(zn, 1/n) ⊆ U . We claim that {zn}n∈N has no subsequence converging in X.

Indeed, suppose that we have z ∈ X and strictly increasing σ : N→ N such that zσn → z. We will then be
able to find some zn such thatB(zn, 1/n) ⊆ U for someU ∈ U , which will be a contradiction. Indeed, z ∈ X,
and U covers z, so there is some U ∈ U with z ∈ U . In fact, U is open, so there is an ε > 0 such that

B(z, ε) ⊆ U.
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Now, there is N such that for n > N , we can guarantee that |z − zn| < ε/2. Further, for n > 2/ε, we have
1/n < ε/2. So n > max{N, 2/ε}will have σn > max{N, 2/ε}, implying

|w − zn| < 1/n < ε/2 =⇒ |w − z| < |w − zn|+ |z − zn| = ε =⇒ w ∈ B(z, ε) ⊆ U,

so B(zn, 1/n) ⊆ U . This contradiction finishes. �

This is saying that there is a universal ε that we can find for our open cover.

Lemma 2.119. FixX a bounded set. Then, for any ε > 0, there exist finitely many points z1, . . . , zn such
that

X ⊆
n⋃
k=1

B(zk, ε).

Proof. The point is to reduce this to the case of [−M,M ]2 which can cover X because X is bounded, and
then we can create the cover for X by hand. �

Now let’s attack one of our equivalent conditions for compactness.

Proposition 2.114. A subset X ⊆ C is (sequentially) compact if and only if it is closed and bounded.

Proof. The forwards direction we have already done.
In the backwards direction, suppose that {zn}n∈N ⊆ X is some sequence. Our main goal is to construct

a convergent subsequence. Because X is bounded, we can choose w1,1, . . . , w1,`1 such that

X ⊆
`1⋃
k=1

B(w1,k, 1/2).

Now, because {zn}n∈N is infinite, there must be some index w1 := w1,k1 such that

L1 = {n ∈ N : zn ∈ B(w1,k1 , 1/2)}

is infinite. The important point is that {zn}n∈L1
has formed a subsequence which lives inside a ball of radius

1/2. We can continue this process: again using our bounded condition, we can find some w2,1, . . . , w2,`2 ∈
B(w1,k1 , 1/2) such that

B(w1,k1 , 1/2) ⊆
`2⋃
k=1

B(w2,k, 1/4).

Then we can choose L2 from here by choosing one of the w2,k with infinitely many indices. Continuing this
process forces our sequence to converge.

To more explicitly appeal to choice, we note that we can always find some sequence {wk,i} ⊆ X such
that

X ⊆
`n⋃
k=1

B(wk,i, 1/2
k),

but Li−1 is infinite, so there is a specific wk := wk,i such that

Li := {n ∈ Li−1 : |zn − wk| < 2−k}

is infinite. To actually construct our sequence from these infinite subsets, we define a choice function over
our indices: defineϕ : N→ N such thatϕ(n+1) is the smallest number exceedingϕ(n) withϕ(n+1) ∈ Ln+1.
Then we know that

|zϕ(n) − wk| < 2−n
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for each 1 ≤ k ≤ n. Thus, for n ≥ m > N , we have

|zϕ(n) − zϕ(m)| ≤ |zϕ(n) − wm|+ |zϕ(n) − wm| < 2 · 2−m < 2−N+1,

so for any ε > 0, we can choose N := 1− log2 ε su�ciently large so that n,m > N implies

|zϕ(n) − zϕ(m)| < 2−N+1 = ε.

It follows that the subsequence defined by ϕ is Cauchy and hence converges. But because X is closed, any
convergent sequence in X will be in X, so our sequence in X has a convergent subsequence. �

2.8 February 9

2.8.1 More Compactness
To wrap up from last class, we show the following.

Theorem 2.115 (Heine–Borel). A subsetX ⊆ C is (sequentially) compact if and only if every open cover
of X has a finite subcover.

Proof. The direction that sequentially compact implies closed and bounded was done on the homework.
We focus on the other direction. Fix U an open cover of X. By Lemma 2.118, we know there exists

ε > 0 such that, for each z ∈ X, there is some U ∈ U such that B(z, ε) ⊆ U . But in fact, with this ε > 0,
Lemma 2.119 tells us that there exists finitely many points z1, . . . , z` such that

X ⊆
⋃̀
k=1

B(zk, ε).

But now, finding Uk such that B(zk, ε) ⊆ Uk (possible by construction of ε), we see that {Uk}`k=1 will be our
finite subcover. �

Remark 2.120. The conclusion of the above theorem is the usual notion of compactness, so I will stop
writing “(sequentially)” whenever I say “compact.”

Let’s see a use for our definitions of compactness.

Corollary 2.121. Let X ⊆ C be a compact space and f : X → C continuous. Then f(X) is compact.

Proof. Give f(X) some open cover U . Because f is continuous, we see that{
f−1(U)

}
U∈U

is an open cover for X. But X is compact, so we can find some finite subcover {Uk}nk=1 ⊆ U so that{
f−1(Uk)

}n
k=1

coversX. But then the {Uk}nk=1 will coverX by taking the union over our open subcover. �

2.8.2 Uniform Continuity
The point of uniform convergence is to make fewer choices in our notion of continuity.

Definition 2.122 (Uniform continuity). Fix X ⊆ C a nonempty subset. Then a function f : X → C is
uniformly continuous if and only if, for each ε > 0, there exists a single δ > 0 so that z, w ∈ X have

|z − w| < δ =⇒ |f(z)− f(w)| < ε.

Importantly, this definition has δ not depend on either z norw, where continuity would allow δ to depend on
one of them.
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Example 2.123. The functions idC and z 7→ z are both uniformly continuous on C. Letting f be either of
these functions, we see that, for any ε > 0, we may take |z − w| < ε to imply

|f(z)− f(w)| = |z − w| < ε.

Here is a nice result.

Proposition 2.124. Fix X a nonempty, compact subset. Then any continuous function f : X → C is
uniformly continuous.

Proof. The point is to let δ → 0 until we can fit some prescribed ε bound. Choose δ = 1/n as n varies over
positive integers, and we imagine fixing sequences {zn}∞n=1 and {wn}∞n=1 such that

|zn − wn| < 1/n.

Now we use the sequential compactness ofX, which forces {zn}∞n=1 to have a convergent subsequence, so
we conjure α ∈ X and a strictly increasing σ : N→ N such that zσn → α as n→∞.

We now claim thatwσn → α as well. In particular, for any δ > 0, there is someN1 so that n > N1 implies

|zσn − α| < δ/2.

Choosing N to be larger than N1 and 2/δ, we see that n > N will have

|wσn − α| ≤ |zσn − wσn|+ |zσn − α| <
1

σn
+
δ

2
≤ 1

n
+
δ

2
<
δ

2
+
δ

2
= δ,

so indeed wσn → α as n→∞.
Only now we suppose for the sake of contradiction we have some ε > 0 such that any δ > 0 has some z

andw such that |z−w| < δ actually has |f(z)−f(w)| ≥ ε. Taking δ := 1/n, we are promised some sequences
{zn}∞n=1 and {wn}∞n=1 so that

|zn − wn| < δ and |f(zn)− f(wn)| ≥ ε.

Using the above machinery, we see that zσn → α and wσn → α force f(zσn)→ f(α) and f(wσn)→ f(α) by
continuity of f , but the sequences f(zσn) and f(wσn) are supposed to be ε far apart! Explicitly, we can find
su�ciently large N1 and N2 such that

n > N1 =⇒ |f(zσn)− α| < ε/4,

n > N2 =⇒ |f(wσn)− α| < ε/4,

which by the triangle inequality means that any n > max{N1, N2}will give

|f(zσn)− f(wσn)| ≤ |f(zσn)− α|+ |f(wσn)− α| ≤ ε

4
+
ε

4
< ε,

which is a contradiction to the construction of zσn and wσn. �

2.8.3 Uniform Convergence
We next talk about uniform convergence for functions. Here is our starter pack.

Definition 2.125 (Sequence of functions). Fix X ⊆ C a nonempty subset. Then a sequence of functions
{fn}n∈N is a function ϕ : N→ (X → C). Namely, for each n ∈ N, we are given a function ϕ(n) : X → C.
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Definition 2.126 (Pointwise convergence). Fix {fn}n∈N a sequence of functions X → C. Then {fn}
converges to some g : X → C pointwise if and only if, for each z ∈ X, we have fn(z)→ g(z) as n→∞.
We write this as fn → g.

This is called pointwise convergence because we are only checking convergence at each individual point
z ∈ X, without caring about the larger structure of the function. This will cause problems later but not
now.

Definition 2.127 (Bounded). We say that a function f : X → C is bounded if and only if f(X) ⊆ C is
bounded. In other words, there is some M > 0 so that f(X) ⊆ B(0,M).

Definition 2.128 (Uniform convergence). Fix {fn}n∈N a sequence of functions X → C. Then {fn} con-
verges to some g : X → C pointwise if and only if, for each ε > 0, there is some N so that

n > N =⇒ |fn(z)− g(z)| < ε

for each z ∈ X.

The uniformity here is that the value of N is no longer allowed to depend on z. Here is an alternate defini-
tion.

Proposition 2.129. Fix {fn}n∈N a sequence of functions X → C and g : X → C some function. Then
{fn}n∈N converges uniformly to g if and only if

lim
n→∞

sup
z∈X
{|fn(z)− g(z)|} = 0.

Proof. We take the directions independently.

• In the forward direction, we know that there is an N1 so that n > N1 implies each z ∈ X has

|fn(z)− g(z)| < 1.

In particular, for n > N1, the set {|fn(z)− g(z)| : z ∈ X} is bounded above by 1, so the supremum will
exist; set yn := sup{|fn(z)− g(z)| : z ∈ X} so that we want to show yn → 0 as n→∞.
More generally, for any ε > 0, there exists some N so that n > N0 implies

|fn(z)− g(z)| < ε/2.

So n > max{N0, N1}, we will have that yn = sup{|fn(z) − g(z)| : z ∈ X} both exists and has yn ≤
ε/2 < ε. So we do get yn → 0 as n→∞.

• In the reverse direction, set yn := sup{|fn(x) − g(x)| : x ∈ X} so that yn → 0 as n → ∞. Namely, for
each ε > 0, there exists some N so that n > N has yn < ε. In particular, we see n > N has

|fn(x0)− g(x0)| ≤ sup{|fn(x)− g(x)| : x ∈ X} = yn < ε

for each x0 ∈ X. So indeed, fn converges to g uniformly. �

2.8.4 Distances Between Functions
Later in life it will be nice to view functions as forming a metric under d(f, g) := sup{|f(x)−g(x)|}. However,
this supremum need not only exist; here is one condition in which it does.
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Lemma 2.130. Fix f, g : X → C bounded functions. Then sup{|f(x)− g(x)| : x ∈ X} exists.

Proof. Because f is bounded, there exists Mf so that each x ∈ X has |f(x)| < Mf . Similarly, because g is
bounded, there exists Mg so that each x ∈ X has |g(x)| < Mg. It follows that, for each x ∈ X,

|f(x)− g(x)| ≤ |f(x)|+ |g(x)| ≤Mf +Mg,

so the set {|f(x)− g(x)| : x ∈ X} is bounded above and in particular has a supremum. �

Proposition 2.131. Fix f, g, h : X → C all bounded functions. Then

sup
x∈X
{|f(x)− h(x)|} ≤ sup

x∈X
{|f(x)− g(x)|}+ sup

x∈X
{|g(x)− h(x)|}.

Note that all the suprema above exist by Lemma 2.130

Proof. The point is to reduce to the typical triangle inequality. Indeed, for any x ∈ X, we see that

|f(x)− h(x)| ≤ |f(x)− g(x)|+ |g(x)− h(x)|.

Thus,

sup
x∈X
{|f(x)− h(x)|} ≤ sup

x∈X
{|f(x)− g(x)|+ |g(x)− h(x)|}

≤ sup
x∈X
{|f(x)− g(x)|}+ sup

x∈X
{|g(x)− h(x)|},

which is what we wanted. We have used the fact that sup(A + B) ≤ supA + supB for A,B ⊆ R, which
is not hard to show: if a + b ∈ A + B, then a ≤ supA and b ≤ supB, so a + b ≤ supA + supB; thus,
sup(A+B) ≤ supA+ supB.4 �

Remark 2.132 (Nir). Viewing Lemma 2.130 as providing a distance metric on the space of bounded func-
tions X → C, the above proposition proves the triangle inequality for this metric. The other checks as
follows; fix two bounded functions f, g : X → C.

• Note that sup{|f(x)− g(x)| : x ∈ X} = 0 if and only if |f(x)− g(x)| = 0 for all x ∈ X if and only if
f = g.

• Note that |f(x)−g(x)| = |g(x)−f(x)| for each x ∈ X, so {|f(x)−g(x)| : x ∈ X} = {|g(x)−f(x)| :
x ∈ X}, so they also have equal suprema.

We can also build a Cauchy criterion for uniform convergence.

Proposition 2.133. A sequence of functions {fn}n∈N a sequence of functions X → C. Then {fn}n∈N
converges to some function uniformly if and only if the quantity supx∈X{fn(x)− fm(x)} exists and, for
any ε > 0, there exists some N so that n,m > N implies

sup
x∈X
{|fn(x)− fm(x)|} < ε

for any x ∈ X.

4 In fact, supA+supB ≤ sup(A+B) as well. We show supA ≤ sup(A+B)−supB. Fixinga ∈ A, we needa ≤ sup(A+B)−supB,
so we show supB ≤ sup(A+B)− a. Fixing b ∈ B, we need b ≤ sup(A+B)− a, which is clear.
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We note that the hypothesis that the supremum exists can be removed if the functions are presupposed to
be bounded.

Proof. We again take the directions independently.

• Suppose that the sequence of functions {fn}n∈N converges to a function g uniformly. Then, for any
ε > 0, we are promised some N so that n > N will have

|fn(x)− g(x)| < ε/4

for any x ∈ X. In particular, for any n,m > N , we see

|fn(x)− fm(x)| < |fn(x)− g(x)|+ |fm(x)− g(x)| < ε

4
+
ε

4
=
ε

2
,

so
sup
x∈X
{|fn(x)− fm(x)|} ≤ ε

2
< ε,

which is what we wanted.

• There are two steps.

– We begin by constructing g. Well, for each x ∈ X, we note that any ε > 0 will have some N so
that n,m > N implies

|fn(x)− fm(x)| ≤ sup
x∈X
{|fn(x)− fm(x)|} < ε,

so the sequence {fn(x)}n∈N is a Cauchy sequence and hence converges in C. We define g(x) to
be the limit of fn(x) as n→∞.

– Next we show the uniform convergence. Fix some ε > 0. Then we are promised some N so that
n,m > N has

sup
x∈X
{|fn(x)− fm(x)|} < ε.

In particular, for any x ∈ X

fn(x)− g(x) = lim
m→∞

(fn(x)− fm(x)),

so because z 7→ |z| is continuous, any n > N will have

|fn(x)− g(x)| = lim
m→∞

|fn(x)− fm(x)| ≤ lim
m→∞

sup
z∈X
{|fn(x)− fm(x)|} < lim

m→∞
ε = ε,

where the last inequality holds by taking m su�ciently large (that is, m > N ). So we have been
provided uniform convergence. �

Remark 2.134 (Nir). In the language of metric topology, the above proposition asserts that the space
of (bounded) functions is metrically complete. For this, one must technically show that {fn}n∈N being
bounded implies that the convergent g is bounded, but this is not hard: there is N so that n > N has
|fn(x)− g(x)| < 1 for each x ∈ X.

Remark 2.135. In lecture, Professor Morrow asserted that we require these functions to be bounded. I
do not think this is the case; indeed, the above proof never uses this hypothesis.

We close with one result which shows that uniform continuity is nice.
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Proposition 2.136. Fix {fn}n∈N a sequence of functionsX → C all continuous at somex ∈ X. If {fn}n∈N
converges uniformly to some function g : X → C, then g is also continuous.

Proof. The idea is to well-approximate g by fns. Fix any ε > 0. By the uniform convergence, there will be
some N so that

|fn(z)− g(z)| < ε/3

for any n > N and z ∈ X; fix some n > N . Because fn is continuous, we are promised some δ > 0 (allowed
to vary with our chosen x ∈ X) so that

|z − x| < δ =⇒ |fn(z)− fn(x)| < ε/3

for any z ∈ X. Well, if |z − x| < δ, then the triangle inequality gives

|g(z)− g(x)| ≤ |g(z)− fn(z)|+ |fn(z)− fn(x)|+ |fn(x)− g(x)| < ε

3
+
ε

3
+
ε

3
= ε,

which is what we needed. �

Remark 2.137 (Nir). In fact, if the {fn}n∈N are uniformly continuous, then g will also be uniformly con-
tinuous. The argument is similar.
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THEME 3

DIFFERENTIATION

I turn with terror and horror from this lamentable scourge of
continuous functions with no derivatives.

—Charles Hermite

3.1 February 11

The wheel of time marches on. Today, we actually start talking about complex analysis.

3.1.1 Di�erentiability
We are going to talk about holomorphic functions.

Convention 3.1. We set Ω to be some open subset of C.

This gives the following definition.

Definition 3.2 (Di�erentiable). Fix an open subset Ω ⊆ C and f : Ω → C a function. Then f is complex
di�erentiable at z0 ∈ Ω with derivative α ∈ C if and only if

lim
h→0

f(z0 + h)− f(z0)

h
= α.

We write this as f ′(z0) = α.

If f ′ is itself a di�erentiable function, then f would be “twice” di�erentiable, and we denote this function by
f ′′. In general, if f can be di�erentiated n times, we denote the corresponding function by f (n).

Warning 3.3. In the definition of complex di�erentiability, we are taking the limit with h ∈ C, not h ∈ R.
This will make complex di�erentiability significantly more structured.

Di�erentiability gives rise to the following definition.
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Definition 3.4 (Holomorphic, entire). Fix an open subset Ω ⊆ C and f : Ω → C a function. Then f is
holomorphic on Ω if and only if f is complex di�erentiable at each z0 ∈ C. If Ω = C, then we say f is
entire.

Here is a small usual lemma.

Lemma 3.5. Fix an open subset Ω ⊆ C and f : Ω → C a function. Then if f is di�erentiable at z0 ∈ Ω,
then f is continuous at z0 ∈ C.

Proof. We compute that

lim
z→z0

(
f(z)− f(z0)

)
= lim
z→z0

f(z)− f(z0)

z − z0
· lim
z→z0

(z − z0)

∗
= lim
h→0

f(z0 + h)− f(z0)

h
· lim
z→z0

(z − z0)

= f ′(z0) · 0
= 0.

It follows by rearrangement that limz→z0 f(z) = f(z0), which is what we wanted. Notably, ∗= sets h :=
z − z0. �

3.1.2 Basic Properties
As usual, di�erentiable functions have an arithmetic.

Proposition 3.6. Fix an open subset Ω ⊆ C and f, g : Ω→ C functions di�erentiable at z0 ∈ C.

(a) We have that (af + bg)′(z0) = af ′(z0) + bg′(z0), where a, b ∈ C.

(b) We have that (fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0).

(c) If g′(z0) 6= 0, then

(f/g)′(z0) =
f ′(z0)g(z0)− f(z0)g′(z0)

g(z0)2
.

Proof. We copy the proofs from real analysis.
(a) We check that

lim
h→0

(af + bg)(z0 + h) + (af + bg)(z0)

h
= a · lim

h→0

f(z0 + h) + f(z0)

h
+ b · lim

h→0

g(z0 + h)− g(z0)

h

= a · f ′(z0) + b · g′(z0),

which is what we wanted.

(b) The key idea is to add and subtract f(z0)g(z0 + h). Indeed, we see

lim
h→0

(fg)(z0 + h)− (fg)(z0)

h
= lim
h→0

f(z0 + h)g(z0 + h)− f(z0)g(z0 + h)

h

+ lim
h→0

f(z0)g(z0 + h)− f(z0)g(z0)

h

=

(
lim
h→0

f(z0 + h)− f(z0)

h

)(
lim
h→0

g(z0 + h)

)
+ f(z0)

(
lim
h→0

g(z0 + h)− g(z0)

h

)
= f ′(z0)g(z0) + f(z0)g′(z0),
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which is what we wanted.

(c) This will follow from applying the product rule to f · 1
g , where we can compute the derivative of 1

g by
the chain rule. We refer to Eterović’s notes for the details. �

Remark 3.7 (Nir). Technically part (c) will require us to compute the derivative of f(z) := 1
z for z 6= 0 to

finish the proof. Well, for any z ∈ C \ {0}, we see that

f(z + h)− f(z)

h
=

1
z+h − 1

z

h
=
z − (z + h)

hz(z + h)
= − 1

z(z + h)
.

Taking h→ 0 reveals that the derivative is in fact f ′(z) = − 1
z2 .

Let’s give some examples of entire functions.

Exercise 3.8. Fix n some positive integer. We show that the function f(z) := zn is entire with derivative
f ′(z) := nzn−1.

Proof. We employ the usual proof involving the binomial theorem. Note that

f(z + h) = (z + h)n =

n∑
k=0

(
n

k

)
zn−khk,

so
f(z + h)− f(z)

h
=

n∑
k=1

(
n

k

)
zn−khk−1,

where notably the k = 0 term was killed by the−f(z). Thus,

lim
h→0

f(z + h)− f(z)

h
=

n∑
k=1

(
n

k

)
zn−k

(
lim
h→0

hk−1

)
,

but all terms except k = 1 will now vanish as h→ 0, so we are left with nzn−1 as our limit. �

Remark 3.9 (Nir). One could also show this by induction, using the product rule.

Corollary 3.10. Any polynomial function is entire.

Proof. Polynomials are (finite) linear combinations of the monomials fn(z) := zn, so this follows from com-
bining the above two results. �

3.1.3 Advanced Properties
We also have a notion of L’Hôpital’s rule.

Proposition 3.11 (L’Hôpital’s rule). Fix Ω ⊆ C an open subset with f, g : Ω→ C holomorphic functions.
Then, given z0 ∈ Ω with f(z0) = g(z0) = 0 while g′(z0) 6= 0, we have that

lim
z→z0

f(z)

g(z)
=
f ′(z0)

g′(z0)
.
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Proof. Note that, because f(z0) = g(z0) = 0, we see that

f ′(z0) = lim
z→z0

f(z)

z − z0
and g′(z0) = lim

z→z0

g(z)

z − z0
.

Dividing, we see that

lim
z→z0

f(z)

g(z)
= lim
z→z0

f(z)/(z − z0)

g(z)/(z − z0)
= lim
z→z0

f ′(z0)

g′(z0)
=
f ′(z0)

g′(z0)
,

which is what we wanted. �

Remark 3.12 (Nir). The above proof technically does not work because we have not ruled out the possi-
bility that g might vanish arbitrarily close to z0, thus making the limits not actually make sense. We will
not fix this problem, but we will remark that a holomorphic function will only have finitely many zeroes
on a compact set, which we could use to create a neighborhood for z0 on which g doesn’t vanish.

And here is our chain rule.

Proposition 3.13 (Chain rule). Fix Ω and U open subsets of C with functions f : Ω → U and g : U → C.
Further, suppose that f is di�erentiable at z0 ∈ Ω and that g is di�erentiable at f(z0) ∈ U . Then (g ◦ f)
is di�erentiable at z0 with derivative

(g ◦ f)′(z0) = g′(f(z0))f ′(z0).

Proof. This proof is long, so we will try to be brief. The main idea is to consider the auxiliary function r : U \
{f(z0)} → C defined by

r(w) :=
g(w)− g(f(z0))

w − f(z0)
− g′(f(z0)).

We extend r to f(z0) by setting r(f(z0)) := 0. Now, the di�erentiability of g at f(z0) implies that

lim
z→z0

g(z)− g(f(z0))

z − z0
= g′(f(z0)),

so in particular rearranging implies that r is continuous on at f(z0) ∈ U .
The reason we used the letter r is that we should think of r as a remainder term. Indeed, we see

g(w)− g(f(z0)) = g′(f(z0))(w − f(z0)) + r(w)(w − f(z0)).

Plugging in w = f(z), we get

g(f(z))− g(f(z0)) = g′(f(z0))(f(z)− f(z0)) + r(f(z))(f(z)− f(z0)),

so
g(f(z))− g(f(z0))

z − z0
= g′(f(z0)) · f(z)− f(z0)

z − z0
+ r(f(z)) · f(z)− f(z0)

z − z0
.

Sending z → z0 makes the rightmost term vanish by continuity because r(f(z0)) = 0 and the limit is f ′(z0),
so we are left with

(g ◦ f)′(z0) = g′(f(z0))f ′(z0),

which is what we wanted. �
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Remark 3.14 (Nir). Let’s complete the proof of quotient rule. Note that the derivative of 1
g(z) will be, by

the chain rule,− 1
g(z)2 · g′(z). Thus, the derivative of f(z)

g(z) = f(z) · 1
g(z) will be

f ′(z) · 1

g(z)
− f(z) · g

′(z)

g(z)2
=
f ′(z)g(z)− f(z)g′(z)

g(z)2
.

And we finish with a result which is less common in real analysis, essentially saying that di�erentiable func-
tions are “approximately” linear.

Proposition 3.15 (Carathéodory). Fix Ω ⊆ C an open subset with a function f : Ω→ C and point z0 ∈ Ω.
Then f is di�erentiable at z0 if and only if there exists a function h : Ω → C which is continuous at z0

such that
f(z)− f(z0) = h(z)(z − z0).

In particular, h(z0) = f ′(z0).

Proof. We show the directions independently.

• Suppose f is di�erentiable at z0. We construct the function h manually. We define

h(z) :=

{
(f(z)− f(z0))/(z − z0) z ∈ Ω \ {z0},
f ′(z0) z = z0.

In particular, we note that h is continuous at z0 because h(z)→ f ′(z0) as z → z0 by di�erentiability of
f .

• Suppose h is such a function. Then

lim
z→z0

f(z)− f(z0)

z − z0
= lim
z→z0

h(z) = h(z0)

by continuity. Formally, the first equality is holding for the limit in Ω \ {z0}, and the second equality is
continuity for h|Ω\{z0}.

To finish, we note that the second part shows that h(z0) = f ′(z0). �

3.2 February 14
Happy Valentine’s Day, I suppose. Homework #4 is due on Sunday. Homework #5 will be released on Friday.

3.2.1 Motivating Cauchy–Riemann Equations
Today we’re talking about the Cauchy–Riemann equations.

Idea 3.16.! The Cauchy–Riemann equations are necessary conditions for a function to be holomorphic.

In fact, they will be su�cient as well, but we will only see this next class.
Throughout today’s class, we will fix Ω ⊆ C a nonempty open subset. We recall that a function f : Ω→ C

is “di�erentiable” at some z0 ∈ Ω if and only if the limit

lim
h→0

f(z0 + h)− f(z0)

h
= lim
z→z0

f(z)− f(z0)

z − z0
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exists. If it exists, we denoted it by f ′(z0), though we will not assume it exists yet. If we fix ∆z := z−z0, then
we can write the above as

f ′(z0) = lim
z→z0

f(z)− f(z0)

∆z
.

Now, to motivate our discussion, we recall that under the isomorphism C ∼= R2 with basis {1, i}, we can
define u(x, y) := Re f(x+ yi) and v(x, y) := Im f(x+ yi) where u, v : R2 → R so that

f(x+ yi) = u(x, y) + iv(x, y).

The point of this is to encode some geometry directly into our set-up.

Example 3.17. Given f(z) = z2, we can plug in

f(x+ yi) = (x+ yi)2 = x2 − y2︸ ︷︷ ︸
u

+i · 2xy︸︷︷︸
v

.

Now that we’re moving things to R2, we will fix z0 := x0 + y0i for x0, y0 ∈ R with z = x + yi so that
∆z = (x− x0) + (y − y0)i = ∆x+ i∆y. And for a little more convenience, we fix ∆w := f(z0 + z)− f(z0) so
that

f ′(z0)
?
= lim
z→z0

∆w

∆z
,

if the limit exists. Expanding out f into real and imaginary parts, we find

∆w :=
(
u(x0 + ∆x, y0 + ∆y)− u(x0, y0)

)
+ i
(
v(x0 + ∆x, y0 + ∆y)− v(x0, y0)

)
.

Now assume that f is inf act di�erentiable at z0 so that f ′(z0) will actually exist. Our key idea to continue is
to split up the limit into real and imaginary parts because it will exist if and only if the limits of the real and
imaginary parts exist. So we note

f ′(z0) = lim
∆z→0

∆w

∆z

= lim
(∆x,∆y)→0

Re

(
∆w

∆z

)
+ i lim

(∆x,∆y)→0
Im

(
∆w

∆z

)
(∗)

We will now compute this limit in two ways to get the Cauchy–Riemann equations, as follows.

∆x

∆y

∆y = 0

∆x = 0

These are probably the easiest two limits that we could think of, so it’s nice that they will be so useful.
Anyways, here is our working out.

• We set ∆y = 0 so that ∆z = ∆x. This gives

∆w

∆x
=
u(x0 + ∆x, y0)− u(x0, y0)

∆x
+ i · v(x0 + ∆x, y0)− v(x0, y0)

∆x
.
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On one hand, we can use (∗) to show the real part comes out to

Re f ′(z0) = lim
(∆x,∆y)→0

Re

(
∆w

∆x

)
= lim

∆x→0

u(x0 + ∆x, y0)− u(x0, y0)

∆x
.

This limit must exist because f is di�erentiable at z0, and when this limit exists, the rightmost limit is
called the partial derivative ux(x0, y0).
On the other hand, the imaginary part comes out to

Im f ′(z0) = lim
(∆x,∆y)→0

Im

(
∆w

∆x

)
= lim

∆x→0

v(x0 + ∆x, y0)− v(x0, y0)

∆x
,

which comes out to vx(x0, y0) because we know that the limit exists.
So in total, we see f ′(z0) = ux(x0, y0) + i · vx(x0, y0).

• We set ∆x = 0 so that ∆z = i∆y. Be warned that an unexpected sign is about to appear from this i.
This time we get

∆w

∆z
=
u(x0, y0 + ∆y)− u(x0, y0)

i∆y
+ i · v(x0, y0 + ∆y)− v(x0, y0)

i∆y
.

To “rationalize” the deminators, we write

∆w

∆z
=
v(x0, y0 + ∆y)− v(x0, y0)

∆y
− i · u(x0, y0 + ∆y)− u(x0, y0)

∆y
,

where we are using 1/i = −i. Note that the us and vs have swapped from the last computation!
We now compute our limits. On one hand,

Re f ′(z0) = lim
(∆x,∆y)→0

Re

(
∆w

∆z

)
= lim

∆y→0

v(x0, y0 + ∆y)− v(x0, y0)

∆y
,

which is vy(x0, y0) because the limit exists. On the other hand,

Im f ′(z0) = lim
(∆x,∆y)→0

Im

(
∆w

∆z

)
= lim

∆y→0
−u(x0, y0 + ∆y)− u(x0, y0)

∆y
,

which is−uy(x0, y0) because the limit exists.
So in total, we see f ′(z0) = vy(x0, y0)− iuy(x0, y0).

Remark 3.18. Either equation itself is pretty useful to actually compute formulae for the derivatives.

Synthesizing, we see

f ′(z0) = ux(x0, y0) + i · vx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

Comparing real and imaginary parts, we get the following.

Theorem 3.19 (Cauchy–Riemann). Fix Ω ⊆ C a nonempty open subset and f : Ω→ C a function di�er-
entiable at some z0 = x0 + y0i ∈ C. If we write f(x+ yi) = u(x, y) + i(x, y), then{

ux(x0, y0) = vy(x0, y0),

vx(x0, y0) = −uy(x0, y0).

In fact, f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

Proof. This follows from the above discussion. �

62



3.2. FEBRUARY 14 185: INTRO. TO COMPLEX ANALYSIS

3.2.2 Examples
Let’s see some examples to be convinced of the utility of Theorem 3.19. Let’s start by checking that some-
thing is di�erentiable.

Example 3.20. Take f(z) = z2 so that

(x+ yi) = (x+ yi)2 =
(
x2 − y2

)
+ i(2xy)

so that u(x, y) = x2 − y2 and v(x, y) = 2xy has f(x + yi) = u(x, y) + iv(x, y). We know that f is entire
(it’s impossible), so picking up any z = x+ yi ∈ C, we compute

ux(x, y) = 2x = vy(x, y) and vx(x, y) = 2y = −(−2y) = −uy(x0, y0),

verifying Theorem 3.19. In fact, we can see that f ′(z) = ux(x, y) + vx(x, y) = 2x+ 2yi = 2z.

And now let’s see something which isn’t di�erentiable.

Example 3.21. Take f(z) = |z|2 so that

f(x+ yi) = |x+ yi|2 = (x+ yi)(x− yi) = x2 + y2,

which only has a real part! Namely, we haveu(x, y) = x2+y2 and v(x, y) = 0 to make f(x+yi) = u(x, y)+
iv(x, y). Now suppose for the sake of contradiction that f were di�erentiable at some z = x + yi ∈ C.
Then we are forced into

2x = ux(x, y) = vx(x, y) = 0 and 0 = vx(x, y) = −uy(x, y) = −2y,

which means x = y = 0. So f is di�erentiable at nowhere outside C \ {0}.

Observe that the above example does not show that f is di�erentiable at 0 ∈ C, though this is true. To be
explicit, Theorem 3.19 does not tell us that satisfying the Cauchy–Riemann equations implies di�erentia-
bility.

Remark 3.22. Extending Example 3.21, we can show that the only entire real-valued function is con-
stant.

Let’s also close with an application of Theorem 3.19.

Corollary 3.23. Fix Ω ⊆ C a connected nonempty open subset and f : Ω → C a function di�erentiable
on all of Ω so that f ′(z) = 0 for all z ∈ Ω. Then f is constant.

Proof. By Theorem 3.19, we see that, for any z = x+ yi, we see

ux(x, y) = vy(x, y) = Re f ′(z) = 0 and vx(x, y) = −uy(x, y) = Im f ′(z) = 0.

In particular, for some function g : C → R for some C ⊆ R2 connected and open, having gx = 0 forces g
to be constant as a function of x on any connected horizontal line, and gy = 0 forces g to be constant as a
function of y.

Now, because any path between two points in an open subset can be approximated by vertical and hori-
zontal line segments contained in neighborhoods of points, we see that the endpoints of any path inC must
have the same value.1 But C is open and connected and hence path-connected, so C any two points can be
connected by path, so g must be constant on all of C.

Returning to f , we see that u and v will be constant on the embedding of Ω into R2 (recall that C ∼= R2

topologically, so Ω ⊆ R2 remains open and connected), so f is constant on Ω. This is what we wanted. �

1 Please don’t ask me to rigorize this.
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Remark 3.24. We do need the connected hypothesis: we could take Ω = C \R and with f(z) = 1Re z>0.

3.3 February 16
We talk more about the Cauchy–Riemann equations today. For our announcements, Homework #4 is due
on Sunday. There is a midterm next Friday; we will get a review sheet and some practice problems in the
next few days. There will be no homework, and there will be extra o�ce hours.

3.3.1 Introducing Su�cient Conditions
The slogan for today as follows.

Idea 3.25.! The Cauchy–Riemann equations provide a su�cient condition for di�erentiability.

Recall our theorem.

Theorem 3.19 (Cauchy–Riemann). Fix Ω ⊆ C a nonempty open subset and f : Ω→ C a function di�er-
entiable at some z0 = x0 + y0i ∈ C. If we write f(x+ yi) = u(x, y) + i(x, y), then{

ux(x0, y0) = vy(x0, y0),

vx(x0, y0) = −uy(x0, y0).

In fact, f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

These are su�cient conditions for di�erentiability. Today we are discussing necessary conditions for di�er-
entiability.

Theorem 3.26. Fix Ω ⊆ C a nonempty open subset and f : Ω → C a function. Writing f(x + yi) =
u(x, y) + iv(x, y) and fixing some z0 := x0 + y0i, then suppose we have the following.

• We have ux, uy, vx, vy all exist and are continuous (!).

• We have {
ux(x0, y0) = vy(x0, y0),

vx(x0, y0) = −uy(x0, y0).

Then f is di�erentiable at z0.

Remark 3.27. It is possible to construct functions which are di�erentiable at z0 but do not have contin-
uous first partial derivatives.

Let’s do some examples of Theorem 3.26 to see its utility.

Example 3.28. Fix f(x+ yi) = x2 + y+ i
(
y2 − x

)
. Here, u(x, y) = x2 + y and v(x, y) = y2−x, so we see

ux(x, y) = 2x, uy(x, y) = 1, vx(x, y) = −1, and vy(x, y) = 2y.

So all first partial derivatives are continuous. To satisfy the Cauchy–Riemann equations, we see that we
need ux = vy and uy = −vx, which is equivalent to 2x = 2y and 1 = −−1. It follows from Theorem 3.26
that f is di�erentiable on the line y = x, and f is not di�erentiable anywhere else by Theorem 3.19.
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Remark 3.29. Another type of question is to be given u(x, y) and be asked for what v(x, y) might be.

3.3.2 Proving Su�cient Conditions
Let’s go ahead and prove Theorem 3.26.

Proof of Theorem 3.26. As with last time, we fix ∆z := z − z0 and ∆x = x− x0 and ∆y = y − y0 so that our
di�erence quotient is

f(z0 + ∆z)− f(z0)

∆z
=
u(x0 + ∆x, y0 + ∆y)− u(x0, y0)

∆z︸ ︷︷ ︸
∆u/∆z:=

+i · v(x0 + ∆x, y0 + ∆y)− v(x0, y0)

∆z︸ ︷︷ ︸
∆v/∆z:=

.

So our goal is to show that

lim
∆z→0

(
∆u

∆z
+ i · ∆v

∆y

)
exists and is equal to ux(x0, y0) + ivx(x0, y0). So we need to force our first partial derivatives into the limit.

We start with ∆u/∆z. To make our partial derivatives appear, we write

∆u

∆z
=
u(x0 + ∆x, y0 + ∆y)− u(x0, y0)

∆z

=
u(x0 + ∆x, y0 + ∆y)− u(x0, y0 + ∆y)

∆z
+
u(x0, y0 + ∆y)− u(x0, y0)

∆z
.

To get our partial derivatives, we apply the Mean value theorem (!): define

F (x) := u(x, y0 + ∆y) and F (y) := u(x0, y).

We do our applications one at a time.

• Note that F (x) is di�erentiable everywhere from x0 to x0 + ∆x, so the Mean value theorem provides
some x∗0 between x0 and x0 + ∆x such that

F (x0 + ∆x)− F (x0) = F ′(x∗0)∆x.

• Similarly, F (y) is di�erentiable everywhere from y0 to y0 + ∆y, so the Mean value theorem provides
some y∗0 between y0 and y0 + ∆y such that

F (y0 + ∆x)− F (y0) = F ′(y∗0)∆y.

Synthesizing and plugging in, we get

∆u

∆z
=
ux(x∗0, y0)∆x

∆z
+
uy(x0, y

∗
0)∆y

∆z
.

We now use continuity of our first partial derivative. Our hope is that sending ∆z → 0 will send ux(x∗0, y0)→
ux(x0, y0) and u− y(x0, y

∗
0)→ uy(x0, y0). To show this, we show the di�erence will be small. We write

∆u

∆z
=
ux(x0, y0)∆x

∆z
+
uy(x0, y0)∆y

∆z
+ Eux + Euy,

where
Eux =

(
ux(x∗0, y0)− ux(x0, y0)

)∆x

∆z
and Euy =

(
uy(x0, y

∗
0)− uy(x0, y0)

)∆y

∆z
.

We now remark that we can repeat the entire above argument for ∆v
∆z . Namely, running the above machinery

lets us write
∆v

∆z
=
vx(x0, y0)∆x

∆z
+
vy(x0, y0)∆y

∆z
+ Evx + Evy,
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where
Evx =

(
ux(x∗∗0 , y0)− ux(x0, y0)

)∆x

∆z
and Evy =

(
uy(x0, y

∗∗
0 )− uy(x0, y0)

)∆y

∆z
.

We now show that the various E• terms vanish as ∆z → 0. Note that, as ∆z → 0, the following happen.

• Because x∗0 and x∗∗0 are bounded between x0 and x0 + ∆x, they will approach x0.

• Because y∗0 and y∗∗0 are bounded between y0 and y0 + ∆y, they will approach y0.

• We will have
∣∣∆x

∆z

∣∣ ≤ 1 and
∣∣∣∆y∆z

∣∣∣ ≤ 1 by direct expansion of the norm because Re ∆z = ∆x and Im ∆z =

∆y.

It follows that each of the E• do indeed vanish as ∆z → 0. For example,∣∣∣∣(ux(x∗0, y0)− ux(x0, y0)
)∆x

∆z

∣∣∣∣ ≤ ∣∣ux(x∗0, y0)− ux(x0, y0)
∣∣

will go to 0 as ∆z → 0 by the continuity of ux at (x0, y0).
Now we return to our di�erence quotient. We see

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆z→0

(
∆u

∆z
+ i · ∆v

∆z

)
= lim

∆z→0

(
ux(x0, y0)∆x

∆z
+
uy(x0, y0)∆y

∆z
+ i · vx(x0, y0)∆x

∆z
+ i · vy(x0, y0)∆y

∆z

)
+ lim

∆z→0
Eux + lim

∆z→0
Euy + lim

∆z→0
Evx + lim

∆z→0
Evy

= lim
∆z→0

(
ux(x0, y0)∆x

∆z
+
uy(x0, y0)∆y

∆z
+ i · vx(x0, y0)∆x

∆z
+ i · vy(x0, y0)∆y

∆z

)
,

using the fact that our error terms all vanish. At this point we use the Cauchy–Riemann equations. We see

lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z
= lim

∆z→0

(
ux(x0, y0)∆x

∆z
− vx(x0, y0)∆y

∆z
+ i · vx(x0, y0)∆x

∆z
+ i · ux(x0, y0)∆y

∆z

)
= lim

∆z→0

(
ux(x0, y0) · ∆x+ i∆y

∆z

)
+ i · lim

∆z→0

(
vx(x0, y0) · ∆x+ i∆y

∆z

)
,

which finishes after evaluating our first partial derivatives. �

3.4 February 18
Good morning everyone. Here are some announcements.

• Homework #4 is due on Sunday.

• Next Friday is our midterm. A review sheet has been posted. Some practice problems and a practice
midterm will be released today or tomorrow.

• Next week will have o�ce hours every day.

• Next Wednesday will be a review class.

3.4.1 Power Series
Today we are building towards a discussion of analytic functions. We won’t actually define what “analytic”
means, but it will be important, so we will spend today setting up the definitions and results.
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Definition 3.30 (Complex power series). A complex power series is a formal expression of the form

S(z) :=

∞∑
k=0

akx
k

where {ak}k∈N ⊆ C and z is a (formal) variable taking complex values.

Our main goal for today is to be able to answer the following question.

Question 3.31. For which z will S(z) converge?

The answer to this is essentially the same as for real analysis: it’s the radius of convergence.

Definition 3.32 (Radius of convergence). The radius of convergence of a complex power series S(z) =∑∞
k=0 akz

k is defined to be equal to the radius of convergence of the real power series

T (x) =
n∑
k=0

|ak|xk.

Concretely, we define
R :=

1

lim supn→∞
n
√
|an|

.

We should probably check convergence in the radius of convergence.

Proposition 3.33. Fix a complex power series S(z) =
∑∞
k=0 akz

k with radius of convergence R. Then
the following hold.

(a) The sequence of partial sums
∑n
k=0

∣∣akzk∣∣ converge for any z with |z| < R. In other words, S(z)
converges absolutely.

(b) The series S(z) will diverge for z with |z| > R.

Proof. We take these one at a time. The point is to imitate the proofs from real analysis.

(a) We note that, ifR = 0, there is nothing to prove here. Otherwise, fix z with |z| < R so that there exists
some ρ ∈ R with |z| < ρ < R. For example, ρ := |z|+R

2 will do.

Now, because ρ < R, we see that 1
ρ > lim supn→∞

n
√
|an| (this is legal because R 6= 0), so there exists

some N for which any fixed n > N has

sup
k≥n

k
√
|ak| <

1

ρ
.

In particular, each k > N will have k
√
|ak| < 1/ρ, so |ak|ρk < 1. So, setting

M := max
(
{1} ∪ {|ak| : k ≤ N}

)
,

we see that |ak|ρk ≤M for each k ∈ N.
But because |z| < ρ, we note that |z|/ρ < 1, so we bound∣∣akzk∣∣ =

∣∣akρk∣∣ · ∣∣∣∣znρn
∣∣∣∣ ≤M ∣∣∣∣zρ

∣∣∣∣n .
However, |z/ρ| < 1, so the series

∑∞
k=0 |z/ρ|k will converge as a geometric series, so we are done by

the comparison test.
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(b) We proceed by contraposition. Suppose that S(z) converges, so by Lemma 2.71, akzk → 0 as k →∞.
We show that |z| ≤ R. If z = 0, there is nothing to say; otherwise, it will su�ce to show that

1

|z|
?
≥ lim sup

k→∞

k
√
|ak|.

For this, fix ε = 1, so we are granted some N for which k > N has∣∣akzk∣∣ < 1.

In particular, this rearranges into 1/|z| > k
√
|ak|. So for each n > N , we see 1/|z| > k

√
|ak| for k > n,

so 1/|z| ≥ sup{ k
√
|ak| : k > n}, so

1

|z| ≥ lim
n→∞

sup
{

k
√
|ak| : k > n

}
= lim sup

n→∞

n
√
|an|,

which is what we wanted. �

Remark 3.34 (Nir). The proof of (b) might feel weird because we are not using the full power of S(z)
converging, just that its terms go to 0. However, a power series will “essentially” converge whenever
its terms go to 0 (aside from boundary cases), so it is not too surprising that this is all that we need.

We have the following warning.

Warning 3.35. Proposition 3.33 is agnostic to the case of |z| = R.

In general, the behavior need not be uniform, as with
∑∞
k=0 z

k = 1
1−z .

3.4.2 Series of Functions
We will be interested in series of functions, which generalize power series.

Definition 3.36 (Series of functions). Fix X ⊆ C a nonempty set and {fk}k∈N a sequence of functions
X → C. Then we define the series of functions

S(z) =

∞∑
k=0

fk(z)

for each z ∈ C.

Observe that the partial sums of some S(z) =
∑m
k=0 fk(z) will look like some finite sum

Sm(z) =

m∑
k=0

fk(z),

which defines a sequence of functions {Sm}m∈N where Sm : X → C. We are interested in the convergence
of S as a function.

Definition 2.69 (Converge, diverge). Fix a sequence {zn}n∈N ⊆ C of complex numbers, we define the
mth partial sum to be

Sm :=

m∑
n=0

zm.

Then we say that the infinite series converges if and only if the sequence {Sm}of partial sums converges.
Otherwise, we say that S is divergent.

Uniform convergence will be nice because (say) it will preserve continuity, but before talking about utility,
we discuss a way to check uniform convergence.
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Theorem 3.37 (WeierstrassM-test). FixX ⊆ C a nonempty subset and {fk}k∈N a sequence of functions
X → C defining a series of functions S(z) =

∑∞
k=0 fk(z). Further, suppose that, for each k ∈ N, there

exists some Mk such that
|fk(z)| ≤Mk

for each z ∈ X. If
∑∞
k=0Mk converges, then S(z) converges uniformly.

In other words, we can determine uniform convergence of a series of functions by bounding the functions
individually.

Proof of Theorem 3.37. This is not as hard as it looks. Let Sm denote the mth partial sum. By Proposi-
tion 2.133, it su�ces to show that, for each ε > 0, there exists some N such that n ≥ m > N implies

sup
x∈X
{|Sn(z)− Sm(z)|} < ε.

Well, we know that the series
∑∞
k=0Mk converges, so its partial sums are Cauchy, so there exists some N

such that n ≥ m > N implies
n∑

k=m+1

Mk < ε,

where the left-hand side is the di�erence between the nth and mth partial sums. So now we bound

|Sn(z)− Sm(z)| =
∣∣∣∣∣

n∑
k=m+1

fk(z)

∣∣∣∣∣ ≤
n∑

k=m+1

|fk(z)| ≤
n∑

k=m+1

Mk,

for any z ∈ X. Thus,

sup
z∈X
{|Sn(z)− Sm(z)|} ≤

n∑
k=m+1

Mk < ε.

This finishes the proof. �

And now let’s apply the Weierstrass M-test to power series.

Corollary 3.38. Fix S(z) =
∑∞
k=0 akz

k a power series with positive radius of convergence R > 0. We
have the following.

(a) For any r such that 0 < r < R, the power series S(z) converges uniformly in B(0, r).

(b) The power series S(z) is continuous on B(0, r).

Proof. Most of our work will be done in (a), which comes from the Weierstrass M-test.

(a) Fix some r with 0 < r < R. Note that S(r) converges absolutely by Proposition 3.33. To use the
Weierstrass M-test, we set fk(z) := akz

k with Mk := |ak|rk so that |z| ≤ r implies

|fk(z)| =
∣∣akzk∣∣ = |ak| · |z|k ≤ |ak|rk.

But we know that S(r) converges absolutely, so

∞∑
k=0

∣∣akrk∣∣ =

∞∑
k=0

Mk

converges, so now Theorem 3.37 promises that S(z) will converge uniformly for each z ∈ B(0, r).
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(b) Note that, for every k, the function fk(z) = akz
k is a polynomial and hence entire and hence continuous

on B(0, R).
The trick is to apply (a) by starting with a fixed z0 ∈ B(0, R) with r such that |z0| < r < R. In particular,
by restriction, it su�ces to show that S|B(0,r) is continuous at z0. (For example, r = |z0|+R

2 will work.)
So now we note that the continuous partial sums of S(z) converge uniformly to S(z) on B(0, r) by (a),
so Proposition 2.136 forces S(z) itself to be continuous on B(0, r). This finishes. �

We remark that the restriction to S|B(0,r) only works becauseB(0, r) is an open set. Here is the exact lemma
we just used.

Lemma 3.39. Fix f : X → Ca function andU ⊆ Can open subsetX withx ∈ U∩X. Then f is continuous
at x if and only if the restriction f |U∩X : U ∩X → C is continuous at x.

An alternate way to give the hypothesis on U is that U ∩X is an open subset of X.

Proof. We show the directions independently.

• Suppose that f is continuous at x. We show that f |U∩X is continuous at x. Well, for any ε > 0, we are
promised some δ > 0 so that any z ∈ X has

|z − x| < δ =⇒ |f(z)− f(x)| < ε.

In particular, any z ∈ X ∩ U has

|z − x| < δ =⇒
∣∣f |U∩X(z)− f |U∩X(x)

∣∣ = |f(z)− f(x)| < ε.

• Suppose that f |U∩X is continuous at x. Fix any ε > 0. Because x ∈ U and U is open, there exists r > 0
such that B(x, r) ⊆ U . Because f |U∩X is continuous at x, there exists some δ0 > 0 such that

|z − x| < δ0 =⇒ |f(z)− f(x)| = |fU∩X(z)− fU∩X(z)| < ε

for z ∈ U ∩ X. However, taking δ := min{r, δ}, we see that any z ∈ X with |x − z| < δ will have
z ∈ B(x, δ) ⊆ U , so z ∈ U ∩X automatically. So |z − x| < δ will still imply

|f(z)− f(x)| < ε,

and we are done. �

Remark 3.40 (Nir). More generally, if we have a sequence of continuous functions fk : X → C such that
the series S(z) :=

∑∞
k=0 fk(z) converges uniformly onX, then S is a continuous function onX. Indeed,

fix some z0 ∈ X and ε > 0. We have the following.

• There is N so that n > N has |S(z)− fn(z)| < ε/3 for z ∈ X. Fix some n > N .

• There is δ > 0 so that |z − z0| < δ has |fn(z)− fn(z0)| < ε/3.

Thus, |z − z0| < δ will have

|S(z)− S(z0)| < |S(z)− fn(z)|+ |fn(z)− fn(z0)|+ |fn(z0)− S(z0)| < ε

3
+
ε

3
+
ε

3
= ε.

3.5 February 23
Good morning everyone. We are doing review today.
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3.5.1 Review Highlights
Here are some of the answers to questions asked in class.

• The midterm will be like the practice midterm.

• You do not need to be stressed about the midterm.

• Things proven in class we will not be asked to prove on the midterm.

• We will probably will not be asked to do anything involving summation by parts.

• Professor Morrow will not curve downward.

• Please write more on the exam for the sake of partial credit.

• For words with multiple definitions (like continuity and compactness), the first definition is preferred,
though other definitions will likely be accepted.

• We may cite facts from real analysis, which is a requirement for this class; e.g., [0, 1] is compact.

• Lemmas elided from class we will not be responsible for. Essentially, please know the things on the
review.

• Please know the definitions of things is important. They will be graded fairly harshly because these
are critical to know to going forwards.

Let’s do a practice problem.

Exercise 3.41. Find the possible functions v(x, y) : R2 → R such that

f(z) = f(x+ iy) = x2 − y2 + iv(x, y)

is entire and f(0) = 0.

Proof 1. The point is to use the Cauchy–Riemann equations. We set u(x, y) := x2 − y2 so that f(x + yi) =
u(x, y) + iv(x, y). If we want this to be di�erentiable, we want

ux(x, y) = 2x = vy(x, y)

by Theorem 3.19. This means that v(x, y) = 2xy + h(x) for some function h(x) : R→ R. Again, we note

uy(x, y) = −2y = −vx(x, y) = −2y − h′(x),

so we want h′(x) = 0. So h is a constant function, so we set h(x) = c for some c ∈ R.
It remains to determine c. Well, so far the story is that

f(x+ iy) = x2 − y2 + i(2xy + c).

Plugging in x = y = 0 forces c = 0, so we see that we get f(x+ iy) = x2 − y2 − i · 2xy . �

Remark 3.42. The current form of the answer is fine: we do not have to simplify in terms of z or some-
thing. More generally, we will not have to spend large amounts of time simplifying on the exam.

Let’s present another proof.
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Proof 2. The point is to use the x information to fully piece together f ′(z). As before, set, u(x, y) = x2 − y2.
Namely, the Cauchy–Riemann equations promise

f ′(z) = f ′(x+ yi) = ux(x, y) + ivx(x, y) = ux(x, y)− iuy(x, y).

Taking partial derivatives of u implies that

f(z) = 2x− i(−2y) = 2x+ i · 2y = 2(x+ yi) = 2z.

So from here, we can take the “antiderivative” (i.e., guess) that f(z) = z2 + c. Lastly, plugging in f(0) = 0,
we get c = 0, so f(z) = z2 . �

Remark 3.43. We can rigorize that this is the only possible solution because any other solution g(z)
must have g(z)−z2 with constant derivative 0, from which we can argue that g(z)−z2 is constant using
the Cauchy–Riemann equations and the fact that C is path-connected. To be explicit, we are using
Corollary 3.23.

3.6 February 25
There was no lecture today because we had a midterm.

3.7 February 28
Good morning, everyone. Here are some announcements.

• Midterm grades will be posted today or tomorrow, on bCourses.

• Class on Wednesday will be a recording. Professor Morrow will be giving a talk, at 9AM as decided by
the powers that be.

• There is no homework due Friday because we haven’t covered anything since the midterm.

3.7.1 Holomorphic Power Series
Today we actually talk about analytic functions. Professor Morrow promises that it is actually complex anal-
ysis today, and once we talk about analytic functions and path integration, we will prove the Cauchy integral
formula, which is one of the major results of the course.

We recall the following definition.

Definition 3.30 (Complex power series). A complex power series is a formal expression of the form

S(z) :=

∞∑
k=0

akx
k

where {ak}k∈N ⊆ C and z is a (formal) variable taking complex values.

So far we’ve talked about the radius of convergence of a power series as well as some properties of series
of functions in general (e.g., the Weierstrass M-test).

Today we are showing the following result.
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Proposition 3.44. Fix S(z) =
∑∞
k=0 akz

k a (complex) power series with radius of convergence R > 0.
Then S(z) is holomorphic on B(0, R) with derivative

S′(z) =

∞∑
k=1

kakz
k−1.

Further, S′(z) also has radius of convergence R.

Note that this derivative is essentially the “term-wise” derivative of S(z), so it is more or less the best thing
that we could want.

Proof. We will symbolically define

S′(z) :=

∞∑
k=1

kakz
k−1

and show that it is equal to the requested derivative. We start by noting the radius of convergence of S′ is

1

limk→∞
k
√
|(k + 1)ak|

=
1

limk→∞
k
√
k
· 1

limk→∞
k
√
|ak|

= 1 ·R = R,

so at the very least our radius of convergence matches, as claimed.
Fix 0 < r < R a real number (i.e., we don’t want to deal with R = +∞), so that it su�ces to show S

is holomorphic with the given derivative on B(0, r). (Namely, for a given w ∈ B(0, R), choose any r with
|w| < r < R.)

Indeed, given w ∈ B(0, r), it su�ces to show that S is di�erentiable at w with the requested derivative,
for which we claim (

lim
z→w

S(z)− S(w)

z − w

)
− S′(w)

?
= 0,

where S′(z) is the claimed derivative. To set up our computation, we fix a positive integer m and work with
the mth partial sum, computing

Sm(z)− Sm(w)

z − w − S′m(w) =

m∑
k=0

akz
k − akwk
z − w −

m∑
k=1

kakw
k−1

= (a0 − a0) +

m∑
k=1

ak

(
zk − wk
z − w − kwk−1

)

=

m∑
k=1

ak

( ∑
a+b=k−1

zbwa −
∑

a+b=k−1

wk−1

)

=

m∑
k=1

ak

( ∑
a+b=k−1

(
zbwa − wk−1

))

=

m∑
k=1

ak

( ∑
a+b=k−1

wa
(
zb − wb

))
.

With this in mind, we set
hk(z) =

∑
a+b=k−1

wa
(
zb − wb

)
,

which we note is a polynomial in z ∈ B(0, r) because we fixed w to be constant. In particular, we have

Sm(z)− Sm(w)

z − w − S′m(w) =

m∑
k=1

akhk(z).

73



3.7. FEBRUARY 28 185: INTRO. TO COMPLEX ANALYSIS

We now show that this series converges uniformly asm→∞; we will use Theorem 3.37. For this, we bound

|hk(z)| =
∣∣∣∣∣ ∑
a+b=k−1

wa
(
zb − wb

)∣∣∣∣∣ ≤ ∑
a+b=k−1

|w|a
(
|z|b + |w|b

)
<

∑
a+b=k−1

ra
(
rb + rb

)
= 2(k − 1)rk−1,

so we bound |akhk(z)| < |ak| · 2(k − 1)rk−1. Namely, by Theorem 3.37, it su�ces to show that the series
∞∑
k=1

2(k − 1)|ak|rk−1

converges. Well,
∑∞
k=1 2(k − 1)|ak|xk−1 is a power series with radius of convergence

1

limk→∞

(
k
√

2k · k
√
|ak+1|

) =
1

limk→∞
k
√

2k
· 1

limk→∞
k
√
|ak+1|

= R,

so indeed the power series
∑∞
k=1 2(k − 1)|ak|xk−1 converges at x = r < R.

So in total, we see that the series of functions
∞∑
k=1

akhk(z)

uniformly converges as m → ∞. Because each component function akhk(z) is continuous, we see that the
entire series will converge to a continuous function by Remark 3.40. In other words, we can evaluate

lim
z→w

lim
m→∞

(
Sm(z)− Sm(w)

z − w − S′m(w)

)
= lim
z→w

∞∑
k=1

akhk(z) =

∞∑
k=1

akhk(w).

But now we notice that hk(w) = 0 for each hk, so this sum does indeed vanish.
We are now essentially done. We compute

lim
z→w

S(z)− S(w)

z − w = lim
z→w

(
S(z)− S(w)

z − w − S′(w)

)
+ lim
z→w

S′(w)

= lim
z→w

(
limm→∞ Sm(z)− limm→∞ Sm(w)

z − w − lim
m→∞

S′m(w)

)
+ S′(w)

= lim
z→w

lim
m→∞

(
Sm(z)− Sm(w)

z − w − S′m(w)

)
+ S′(w)

= S′(w),

so we are done. �

So indeed, power series are holomorphic. Here is nice application of this fact.

Corollary 3.45. Fix

S(z) =

∞∑
k=0

akz
k and T (z) =

∞∑
k=0

bkz
k

two complex power series with radius of convergence R > 0. If S(z) = T (z) for all z ∈ B(0, R), then
ak = bk for each k.

Proof. We proceed inductively, in spirit. For example a0 = S(0) = T (0) = b0, so these are equal as our base
case. Further, we could take one derivative to see that

S′(z) =

∞∑
k=1

kakz
k−1 and T ′(z) =

∞∑
k=1

kbkz
k−1,
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so a1 = S′(0) = T ′(0) = b1. More generally, setting S(m) to be the mth derivative, we can see that

S(m)(z) =

∞∑
k=m

k(k − 1) · · · (k −m+ 1)akz
k−m and T (m) =

∞∑
k=m

k(k − 1) · · · (k −m+ 1)akz
k−m,

and both of these have the same radius of convergence. So now am = 1
m!S

(m)(0) = 1
m!T

(m)(0) = bm. �

3.7.2 Analytic Functions
To define analytic, we need one more definition.

Definition 3.46 (Power series expansion). FixX ⊆ C a nonempty open subset and f : X → C a function.
We say that f has a power series expansion centered at z0 ∈ X if and only if there is a positive real
number r such that B(z0, r) ⊆ X and further there is a power series defined by {ak}k∈N which has

f(z) =

∞∑
k=0

ak(z − z0)k

for each z ∈ B(z0, r).

And here is our definition.

Definition 3.47 (Analytic). Fix X ⊆ C a nonempty open subset and f : X → C a function. Then f is
analytic at z0 ∈ C if and only if f has a power series expansion at z0. Explicitly, there is a power series
S(z) =

∑∞
k=0 akz

k and positive real number r > 0 (less than the radius of convergence) such that

f(z) = S(z − z0) =

∞∑
k=0

ak(z − z0)k

for any z ∈ B(z0, r). Then f is analytic if and only if it is analytic at each z0 ∈ C.

Here is the idea.

Idea 3.48.! Analytic functions are locally power series.

Being analytic is a very nice condition. For example, we have the following.

Proposition 3.49. Analytic functions are holomorphic on their domain.

Proof. Fix f : X → C an analytic function. For each x ∈ X, we note that f is locally equal to a power
series at x (i.e., f |B(x,r) is a power series), which is holomorphic by Proposition 3.44. Because f is locally
di�erentiable at each point, f will be actually di�erentiable at each point. �

Remark 3.50. It will turn out that the converse is also true, but this is a pretty deep result. We will prove
it from the Cauchy integral formula. The main obstacle is how we should construct the power series,
which the Cauchy integral formula will tell us how to do.

Anyways, let’s prove something of substance.

Lemma 3.51. Fix X ⊆ C a nonempty open subset and f : X → C an analytic function. Then f ′ is also
analytic.
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Proof. Fix z0 ∈ X. Because f is analytic, there is a positive real number r > 0 and power series S(z) =∑∞
k=0 ak(z − z0)k (with radius of convergence at least r) such that

f(z) = S(z − z0) =

∞∑
k=0

ak(z − z0)k

for each z ∈ B(z0, r). By Proposition 3.44, we see that

f ′(z) = S′(z − z0) =

∞∑
k=1

kak(z − z0)k−1

for each z ∈ B(0, r). So we see that f ′ has a power series expansion at our arbitrarily chosen z0 ∈ X, so f ′ is
analytic at each z0 ∈ X, so f ′ is analytic. �

Remark 3.52. We can iterate the above lemma to show that an analytic function is infinitely di�eren-
tiable.

Remark 3.53. In fact, because analytic will turn out to be equivalent to holomorphic, we will see that
being once di�erentiable implies being analytic implies being infinitely di�erentiable. This is pretty
nice.

Next class we will start talking about the exponential function, a very important analytic function.

3.8 March 2
This lecture was recorded.

3.8.1 Definition of the Exponential
For the next couple lectures we will be discussing the very special functions exp and log. For now, we will
focus on exp, defined as follows.

Definition 3.54 (exp). We define the complex exponential exp: C→ C by the power series

exp(z) =

∞∑
k=0

zk

k!
.

In particular, we are going to be building our exponentiation from scratch. Nevertheless, we promise that it
will work fine.

As such, we have the following checks.

Lemma 3.55. We have that exp is analytic and entire with derivative exp′(z) = exp(z).

Proof. Very quickly, we note that the radius of convergence of exp is lower-bounded by(
lim
n→∞

n
√
|1/n!|

)−1

≥
(

lim
n→∞

n
√
n−n/2

)−1

=
(

lim
n→∞

n−1/2
)−1

=∞,

so our radius of convergence is actually ∞. As such Proposition 3.44 tells us that exp is holomorphic on
B(0,∞) = C (i.e., entire) with derivative

exp′(z) =

∞∑
k=1

k

k!
zk−1 =

∞∑
k=1

1

(k − 1)!
zk−1 =

∞∑
k=0

zk

k!
,
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where we have shifted indices in the last step. So indeed, exp′(z) = exp(z).
Lastly, to show that exp is analytic, we need to show that exp can be locally expanded as a power series.

For this, we appeal to the following lemma.

Lemma 3.56. Fix S(z) :=
∑∞
k=0 akz

k a power series with radius of convergence R > 0. Then S(z) is
analytic on B(0, R).

Proof. There is actually something to show here: given z0 ∈ C, we need to expand S(z) locally at a power
series at z0. In particular, we need to be able to write

S(z) =

∞∑
k=0

bk(z − z0)k,

where the series on the right converges for any z ∈ B(z0, r) for some r > 0. For this, we expand

S(z + z0) =

∞∑
n=0

ak(z + z0)n,

under the assumption z, z0, z+z0, |z|+|z0| ∈ B(0, R). (We will discuss how to ensure these conditions later.)
The short version of what we are about to do is that we will expand out this power series in terms of z and

then collect terms of the same degree. Making this rigorous requires some care to the uniform convergence,
but everything is okay because we converge absolutely.

Heuristically, we have

∞∑
n=0

an(z + z0)n =

∞∑
n=0

( ∑
k+`=n

(
n

k

)
anz

kz`0

)
∗
=

∞∑
k=0

( ∞∑
`=0

(
n

k

)
anz

`
0

)
zk,

where ∗= is the equality which requires attention. To rigorize ∗=, we use Lemma 2.81.2 Indeed, to make the
application clearer, we set

an,k :=

{(
n
k

)
anz

kzn−k0 k ≤ n,
0 k > n

so that we are interested in exchanging the order of the summation

∞∑
n=0

( ∑
k+`=n

(
n

k

)
anz

kz`0

)
=

∞∑
n=0

∞∑
k=0

an,k.

Well, for fixed n, we see that
∑∞
k=0 |an,k| is a finite sum and hence converges. And further, we see that

∞∑
n=0

∞∑
k=0

|an,k| =
∞∑
n=0

(
n∑
k=0

(
n

k

)
an|z|k|z0|n−k

)
=

∞∑
n=0

an(|z|+ |z0|)n = S(|z|+ |z0|),

which converges because |z|+ |z0| ∈ B(0, R). As such, Lemma 2.81 tells us that

S(z + z0) =

∞∑
n=0

∞∑
k=0

ak,` =

∞∑
k=0

∞∑
n=0

ak,` =

∞∑
k=0

∞∑
n=k

(
n

k

)
anz

kzn−k0 .

The inner sums we may simplify as
∑∞
n=k

(
n
k

)
anz

kzn−k0 = zk
∑∞
`=0

(
n
k

)
anz

`
0, so we do indeed find that

S(z + z0) =

∞∑
k=0

( ∞∑
`=0

(
n

k

)
anz

`
0

)
zk,

2 Yes, I, too, am impressed that this lemma is seeing use.
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for any z ∈ C. In particular, plugging in z − z0 tells us that

S(z) =

∞∑
k=0

( ∞∑
`=0

(
n

k

)
anz

`
0

)
(z − z0)k,

which gives us our power series expansion at z0.
It remains to show the power series expansion will hold in some neighborhoodB(z0, r). Translating back,

we need to know that the power series expansion for S(z + z0) will hold in some neighborhood S(0, r). To
review, our hypotheses were that

z, z0, z + z0, |z|+ |z0| ∈ B(0, R).

Recalling that z0 ∈ B(0, R) automatically, we set r := R− |z0| > 0. Then r < R, so z ∈ B(0, R). Similarly,

|z + z0| ≤ |z|+ |z0| < r + |z0| = R,

so we get z + z0, |z| + |z0| ∈ B(0, R) as well. So we have constructed our neighborhood and have verified
that S(z) is analytic at z0. �

Thus, because we defined exp as a power series with infinite radius of convergence, we see that exp is analytic
everywhere on C. �

3.8.2 Basic Properties of the Exponential
Now that we know exp′(z) = exp(z), we can begin actually building some theory. We pick up the following
nice properties of exp.

Proposition 3.57. Fix z, w ∈ C.

(a) We have that exp(z + w) = exp(z) exp(w).

(b) We have that exp(z) 6= 0.

(c) We have that exp(−z) = 1/ exp(z).

Proof. Parts (b) and (c) will follow from (a), so we will focus our attention on (a). Fixing someα ∈ C, the trick
is to consider

f(z) = exp(z) exp(α− z).
Observe that z 7→ z and so α−z are entire, so the chain rule promises each factor of f is entire, so f is entire
by the product rule. Tracking all this through, we can compute the derivative as

f ′(z) = exp′(z) exp(α− z) + exp(z) exp′(α− z) · (−1)

= exp(z) exp(α− z)− exp(z) exp(α− z)
= 0.

Thus, f ′ is constantly 0 everywhere (and C is connected by Corollary 2.112), so f is constant on C by Corol-
lary 3.23. However, we can plug in z = α into f to see that

f(α) = exp(α) · exp(0) = exp(α),

where exp(0) = 1 by construction of exp. In particular, we see that

exp(z) exp(α− z) = exp(α)

for any z, α ∈ C. Setting α := w + z recovers exp(z + w) = exp(z) exp(w), which is part (a).
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We now show (b) and (c). Setting z = −w ∈ C in (a), we see that

1 = exp(0) = exp(z +−z) = exp(z) exp(−z).

Thus, because C is an integral domain, we see that exp(z) 6= 0 automatically, which is (b). So, using the field
structure of C to divide by exp(z), we conclude that

exp(−z) = 1/ exp(z),

which proves (c). �

Remark 3.58 (Nir). In other words, exp: C→ C× is a homomorphism: exp does map to C× by (c) of the
proposition, and exp satisfies the needed homomorphism property by (a).

In fact, exp will behave with our complex analytic structure.

Lemma 3.59. Fix any z ∈ C. Then
exp(z) = exp(z).

Proof. The main point is that z 7→ z is continuous on C, say by Example 2.123. Thus, we compute

exp(z) = lim
n→∞

n∑
k=0

zk

k!

∗
= lim
n→∞

n∑
k=0

zk

k!
= lim
n→∞

n∑
k=0

zk

k!
= exp(z),

where we have used the continuity of z 7→ z in ∗=. In particular, the point is that the sequence of partial sums
Sn :=

∑n
k=0

zk

k! approach exp(z), so by continuity, Sn (which goes to exp(z) definitionally) must approach
exp(z). �

Our next goal is to study certain outputs of exp. Like a good algebraist, we will particularly be interested
in the “kernel” of exp (as a homomorphism). For now, we will avoid saying the word “kernel” and instead
simply solve for the output 1.

Lemma 3.60. Fix any t ∈ R. Then | exp(it)| = 1.

Proof. Note that
exp(it) = exp(it) = exp(−it) = 1/ exp(it),

where we have used Lemma 3.59 followed by Proposition 3.57. Thus,

| exp(it)|2 = exp(it) · exp(it) = 1,

so | exp(it)| = 1 follows because the norm is always a positive real number. �

In fact, we can do better than the above.

Corollary 3.61. Fix any z ∈ C. Then | exp(z)| = 1 if and only if Re(z) = 0.

Proof. We show our implications separately.

• Suppose that Re(z) = 0. Then we can write z = it for some t ∈ R, from which Lemma 3.60 tells us
that | exp(z)| = | exp(it)| = 1 for free.
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• Suppose that | exp(z)| = 1. Writing z = x+ yi with x, y ∈ R, we compute

exp(z) = exp(x) exp(iy) = exp(x),

where we have used Proposition 3.57 and Lemma 3.60. Now, taking norms, we see that | exp(x)| =
| exp(z)| = 1.
However, exp |R is a strictly increasing function: it is di�erentiable with continuous nonzero derivative
(using Proposition 3.57), so the Intermediate value theorem implies that the derivative must stay the
same sign for all x0 ∈ R. So noting exp(0) = 1 is enough to conclude exp′(x0) > 0 for any x0 ∈ R, so
exp is strictly increasing from a Mean value theorem argument.3

Thus, if x < 0, then | exp(x)| = exp(x) < 1, and if 0 < x, then 1 < exp(x) = | exp(x)|. So we see that
x = 0 with | exp(x)| = 1 is our only way to hit 1, so Re z = x = 0 follows. �

So far we understand | exp(z)| pretty well. It is time to turn to exp.

Definition 3.62 (Kernel of exp). We define the kernel of exp as

ker exp := {z ∈ C : exp(z) = 1}.

Remark 3.63. This is intended to align with abstract algebra: viewing exp: C → C× as a homomor-
phism, we see that we are asking for the values of z ∈ C which go to the identity of C×, which is 1.

Example 3.64. We have that exp(0) = 1, so 0 ∈ ker exp.

To better access the kernel, we will want to talk about the real and imaginary parts of exp(it).

Definition 3.65 (Sine, cosine). Given z ∈ C, we define the (complex) sin and cos functions as

cos z :=
exp(iz) + exp(−iz)

2
and sin z :=

exp(iz)− exp(−iz)
2i

.

We can see pretty directly that

cos z + i sin z =
exp(iz) + exp(−iz)

2
− exp(iz)− exp(−iz)

2
= exp(iz).

In the case where z is real, we get to say a little more.

Remark 3.66. Using Proposition 2.8 with Lemma 3.59, we see that, for when t ∈ R,

cos t =
exp(it) + exp(−it)

2
=

exp(it) + exp(it)

2
= Re exp(it),

and

sin t =
exp(it)− exp(−it)

2i
=

exp(it)− exp(it)

2i
= Im exp(it).

In particular exp(it) = cos t+ i sin t is our decomposition into real and imaginary parts.

3.8.3 Some Trigonometry
Before we go any further, we do some trigonometry. We want to establish that exp(it) is periodic, but this
requires a little e�ort; we follow sx63102.

3 If a < b, then use the Mean value theorem to find x ∈ (a, b) with f(b)− f(a) = (b− a)f ′(x) > 0, so f(a) < f(b).

80

https://math.stackexchange.com/a/63109/869257


3.8. MARCH 2 185: INTRO. TO COMPLEX ANALYSIS

Lemma 3.67. For each z ∈ C, we have cos2 z + sin2 z = 1.

Proof. We directly compute

cos2 z + sin2 z =
exp(iz)2 + 2 exp(iz) exp(−iz) + exp(−iz)2

4
+

exp(iz)2 − 2 exp(iz) exp(−iz) + exp(−iz)2

−4
.

After the dust settles, we are left with

cos2 z + sin2 z = exp(iz) exp(−iz),
which is 1 by Proposition 3.57. �

More or less by just staring at cos and sin, we can see that they are entire.

Lemma 3.68. For each z ∈ C, we have d
dz cos z = − sin z and d

dt sin z = cos z.

Proof. We directly compute
d

dz

exp(iz) + exp(−iz)
2

=
i exp(iz)− i exp(iz)

2
= −exp(iz)− exp(−iz)

2i
= − sin z,

and
d

dz

exp(iz)− exp(−iz)
2i

=
i exp(iz) + i exp(iz)

2
=

exp(iz) + exp(−iz)
2

= cos z,

which is what we wanted. �

Lemma 3.69. For z ∈ C, we have

cos z =

∞∑
k=0

(−1)k

(2k)!
z2k and sin z =

∞∑
k=0

(−1)k−1

(2k + 1)!
z2k+1.

Proof. We directly compute, for any z ∈ C, we have

cos z =
1

2
(exp(iz) + exp(−iz)) =

1

2

( ∞∑
k=0

ik

k!
zk +

∞∑
k=0

(−i)k
k!

zk

)
=

1

2

∞∑
k=0

ik + (−i)k
k!

zk.

Here, we were allowed to merge the two sums because they are just limits which converge. Now, we note
that

ik + (−i)k =


2 k ≡ 0 (mod 4),

0 k ≡ 1 (mod 2),

−2 k ≡ 2 (mod 4),

so all the odd terms vanish, leaving us with

cos z =
1

2

∞∑
k=0

2(−1)k

(2k)!
z2k =

∞∑
k=0

(−1)k

(2k)!
z2k,

which is what we wanted.
On the other hand, we note that cos z is an entire function, and its power series will converge everywhere

because the power series for exp also converges everywhere. In particular, Proposition 3.44 tells us that

sin z = − d

dz
cos z =

∞∑
k=1

(−1)k · 2k
(2k)!

z2k−1 =

∞∑
k=1

(−1)k

(2k − 1)!
z2k−1,

which gives the power series for sin after shifting over our indices. Notably, Proposition 3.44 assures us that
this also has infinite radius of convergence. �
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To continue, we have to do a little real analysis.

Lemma 3.70. There exists the smallest positive real number θ such that cos θ = 0.

Proof. On one hand, note cos 0 = 1. On the other hand, using the Alternating series bound, we note

cos 2 =

∞∑
k=0

(−1)k

(2k)!
· 22k ≤ 1− 4

2
+

16

24
= −1

3
< 0.

Thus, there certainly exists some t ∈ [0, 2] such that cos t = 0, so we define

θ := inf{t > 0 : cos t = 0}.

Because cos is continuous, we note that the set {t : cos t = 0}will be closed and hence contain all of its limit
points, so we do have cos θ = 0.

Further, cos 0 = 1 implies there is some δ such that |t| < δ has | cos t − 1| < 1, meaning there is an open
neighborhood around 0 for which cos t 6= 0. In particular, we must have θ ≥ δ > 0, so θ is a positive real
number. So lastly, we note that any t > 0 for which cos t = 0 must have t ≥ θ by construction, so θ is indeed
the smallest positive real number with cos θ = 0. �

And now we get to define π.

Definition 3.71 (π). We define π ∈ R so that π/2 is the smallest positive real number such that cosπ/2 =
0.

And now let’s show our periodicity.

Lemma 3.72. We have that exp(z + 2πi) = exp(z) for any z ∈ C. In fact, 2π is the smallest positive real
number θ such that exp(iθ) = 1 = exp 0.

Proof. We start with the second sentence. We are given that cosπ/2 = 0 already, and π/2 is the smallest
such positive real number. From Lemma 3.67, we see that this requires sinπ/2 ∈ {±1}. However,

d

dt
sin t = cos t

must be positive in the interval (0, π/2) because cos 0 = 1 > 0 and cos is nonzero on (0, π/2). In particular, a
Mean value theorem argument tells us that sin is strictly increasing on (0, π/2), so we have

sinπ/2 > sin 0 = 0,

so sinπ/2 = 1. Plugging into Remark 3.66, we get that exp(iπ/2) = i, so

exp(2πi) = exp(4 · iπ/2) = exp(iπ/2)4 = i4 = 1.

It remains to show that 2π is the smallest such positive real number. Well, suppose that θ > 0 has exp(θi) = 1
and is the smallest such positive real number; we get for free that θ ≤ 2π by the above. On the other hand,
we compute

exp(θ/4 · i)4 = exp(θi) = 1,

but we can factor z4−1 = (z−1)(z+1)(z−i)(z+i), so exp(θ/4·i) ∈ {±1,±i}. Certainly if exp(θ/4·i) ∈ {±1},
then exp(θ/2 · i) = exp(θ/4 · i)2 = 1, but θ/2 < θ/4, so this cannot be. So instead, we have that

exp(θ/4 · i) = ±i,

so in particular, Remark 3.66 tells us that cos(θ/4) = Re exp(θ/4 · i) = 0. Thus, θ/4 ≥ π/2 by the definition
of π, so θ ≥ 2π. It follows θ = 2π.
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We now show the first sentence. By Proposition 3.57, we merely have to compute

exp(z + 2πi) = exp(z) exp(2πi) = exp z,

so we are done. �

While we’re here, we note that also get access to the kernel from our work.

Proposition 3.73. We have that ker exp = {2πin : n ∈ Z}.

Proof. In one direction, certainly
exp(2πin) = exp(2πi)n = 1

by Lemma 3.72. In the other direction, suppose exp z = 1. Then Corollary 3.61 forces Re z = 0, so we can
write z = it. By the division algorithm, we can write

t = 2πq + r,

where q ∈ Z and r ∈ [0, 2π), from which we see

1 = exp z = exp(it) = exp(2πiq + ir) = exp(2πiq) exp(ir) = exp(ir).

However, r < 2π is smaller than the smallest positive real number for which exp(ir) = 1, so r cannot be a
positive real number at all. But we do know r ≥ 0, so r = 0 is forced. Thus, t = 2πiq, as needed. �

Remark 3.74 (Nir). As a last remark, it would be a crime to note say that exp(iπ) = −1. Indeed,

exp(iπ)2 = exp(2πi) = 1,

but we can factor z2− 1 = (z+ 1)(z− 1), s exp(iπ) ∈ {±1}. But π < 2π, so we cannot have exp(iπ) = 1,
so exp(iπ) = −1 is forced.

3.8.4 Polar Coordinates
We would like to talk about polar coordinates, so for this we would like to access the arctangent function.
This requires a little care.

Lemma 3.75. We have that cos(−z) = cos z and sin(−z) = − sin z for any z ∈ C.

Proof. This comes down to computing

cos(−z) =
exp(i(−z)) + exp(−i(−z))

2
=

exp(iz) + exp(−iz)
2

= cos z.

Similarly,

sin(−z) ==
exp(i(−z))− exp(−i(−z))

2i
= −exp(iz)− exp(−iz)

2i
= − sin z,

which is what we wanted. �

So now we note that cos is, by definition of π/2, nonzero on [0, π/2). The above lemma lets us extend this
nonzero region to (−π/2, π/2), permitting the following definition.

Definition 3.76. Given a real number t ∈ (−π/2, π/2), we define tan t := sin t
cos t . Note that this definition

is legal because cos t 6= 0 for (−π/2, π/2).
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Lemma 3.77. The function tan is real di�erentiable and strictly increasing.

Proof. That tan is real di�erentiable follows from the quotient rule, which applies because the denominator
cos is nonzero on all of (−π/2, π/2).4 In fact, we can compute the derivative as

d

dt
tan t =

d

dt

sin t

cos t
=

(cos t)(cos t)− (sin t)(− sin t)

(cos t)2
,

where we have used Lemma 3.68. So from Lemma 3.67, we see that d
dt tan t = 1

(cos t)2 , which is positive for
real numbers t. Thus, tan t is in fact strictly increasing. �

We would like to show that tan surjects onto R. To start, we note tan 0 = sin 0/ cos 0 = 0/1 = 0.

Lemma 3.78. For t ∈ (−π/2, π/2), we have that tan(−z) = − tan z.

Proof. By brute force, Lemma 3.75 tells us that

tan(−t) =
sin(−t)
cos(−t) =

− sin t

cos t
= tan t,

which is what we wanted. �

Lemma 3.79. The function tan: (−π/2, π/2)→ R is a bijection.

Proof. We already know that tan is injective because it is strictly increasing by Lemma 3.77, so we have left
to show the surjection. Additionally, Lemma 3.78 implies that we merely have to show that tan surjects onto
R≥0, and because tan 0 = 0, we merely have to show that tan surjects onto R+.

Now, tan is continuous (by Lemma 3.77), so the Intermediate value theorem means that we merely need
to show tan takes on arbitrarily large values in R+. For this, we claim that

lim
t→π/2

tan t =∞,

which will be enough. So fix any M > 0. Well, because cos is continuous, we see that

lim
t→π/2

cos t = cosπ/2 = 0.

Thus, for ε = 1/(2M), there exists some δ1 > 0 so that π/2 − δ1 < t < π/2 will have cos t < ε. Because cos
must be positive for t < π/2, we actually have 0 < cos t < ε. Additionally, because sin is continuous, we see
that

lim
t→π/2

sin t = sinπ/2 = 1.

Thus, there exists some δ2 > 0 so that π/2 − δ2 < t < π/2 will have sin t > 1/2. In particular, setting
δ := min{δ1, δ2}, we see π/2− δ < t < π/2 implies that

tan t =
sin t

cos t
>

1/2

ε
=

1

2ε
= M.

This finishes. �

The above check permits the following definition.
4 Technically, we should extend tan to a small open strip around (−π/2, π/2) in order to make the complex quotient rule work and

then restrict tan afterwards. We will settle for merely saying that we should do this instead of actually doing it.
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Definition 3.80 (Arctangent). We define arctan: R→ (−π/2, π/2) to be the inverse function of tan.

Note that the above definition makes sense because tan is a bijection (−π/2, π/2)→ R. In fact, the proof of
Lemma 3.79 lets us say

lim
t→∞

arctan t =
π

2
.

In fact, we see tan(−t)→ −π/2 as t→∞, so

lim
t→−∞

arctan t = −π
2
.

We are now ready to give polar form.

Remark 3.81. Very quickly, we note that arctan is a continuous function. This is true because it is strictly
increasing (it is the inverse function of the strictly increasing function tan) and it satisfies the interme-
diate value property (arctan is in fact bijective because it is an inverse function).

Proposition 3.82 (Polar form). For any z ∈ C×, there exist unique real numbers r > 0 and θ ∈ [−π, π)
such that z = r exp(iθ).

Proof. We start by showing uniqueness because it is easier: if r1 exp(iθ1) = r2 exp(iθ2), then taking magni-
tudes tells us that

|r1| = |r1 exp(iθ1)| = |r2 exp(iθ2)| = |r2|,
where we have used Corollary 3.61. Because r1 and r2 are positive real numbers, we conclude r1 = r2. So
now

exp(i(θ1 − θ2)) = exp(iθ1)/ exp(iθ2) = 1

using Proposition 3.57. By Proposition 3.73, this forces θ1 − θ2 ∈ 2πiZ. However, −π ≤ θ1, θ2 < π implies
that

−2π < θ1 − θ2 < 2π,

so θ1 − θ2 = 0 is forced, so θ1 = θ2.
We now show that the r and θ actually exist for any z ∈ C×. As above, we take r = |z|, so we need to set

θ. Well, we see that Remark 3.66 gives

r exp(iθ) = r cos θ + ir sin θ.

So we want a value θ ∈ [−π, π) such that Re z = r cos θ and Im z = r sin θ. Noting that z 6= 0 implies r 6= 0,
we want to choose θ such that

(cos θ, sin θ)
?
= (Re z/r, Im z/r).

In particular, we set a := Re z/r and b := Im z/r so that a2 + b2 = (Re z)2+(Im z)2

r2 1. So, given (a, b) ∈ R2 such
that a2 + b2 = 1, we need to find θ such that

(cos θ, sin θ)
?
= (a, b).

We set θ by hand. We do casework.
• If a = 0, then cos θ = 0 and b = ±1. Well, for b = ±1, we set θ = ±π2 so that cos±π2 = cos π2 and

sin±π2 = ± sin π
2 = ±1 by Lemma 3.75.

• If a > 0, then we choose θ = arctan(b/a) ∈ (−π/2, π/2). In particular, we see that tan θ = b
a , so we

have the system of equations
sin θ

cos θ
=
b

a
and (cos θ)2 + (sin θ)2 = 1.

In particular, sin θ = b
a cos θ, so

(
1 + b2

a2

)
(cos θ)2 = 1, so cos θ = ±abecause a2+b2. But cos θ is positive

on (−π/2, π/2), so we see that cos θ = a, from which we can read sin θ = b
a · a = b.
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• If a < 0, we note −a > 0, so we use the above argument to choose γ = arctan(b/ − a) ∈ (−π/2, π/2)
so that

cos γ = −a and sin γ = b.

In particular, we see that−γ has

exp(i(−γ)) = exp(iγ) = −a+ bi = −a− bi.

In particular, multiplying this through by exp(iπ) = −1, we see that exp(i(π − γ)) = a + bi, giving
cos(π − γ) = a and sin(π − γ) = b.
It remains to force π − γ into [−π, π). However, exp(it) is periodic with period 2π, so we can callously
shift 2π − γ into [0, 2π) via the division algorithm and then subtract γ to get a representative of π − γ
in [−π, π). This finishes. �

Example 3.83. We take z = −1− i. Here, |z| =
√

1 + 1 =
√

2; further Re z < 0, so we compute

π − arctan(−1/− (−1)) = π −−π
4

=
5π

4
,

so we take θ = −3π/4 after shifting. So the above argument assures us that z =
√

2 exp(−i ·3π/4). Here
is the image.

Re

Im

−1

−1

√
2

z

3.9 March 4
Good morning everyone. Today’s lecture was not recorded.

• Homework #5 will be uploaded today, due next Friday.

• The class average on the midterm was a 74; it might have been a little long. There will probably be
something approximately equal to a 6-point curve.

Before continuing, we make some remarks, as a review from real analysis.

Remark 3.84 (Nir). Today, we will want to pick up some properties of the real logarithm. We define
log : R+ → R as the inverse of exp: R→ R+, for which we need to know exp: R→ R+ is a bijection.

• Note exp r > 0 for r ≥ 0 by the power series, and exp(r) = 1/ exp(−r) > 0 for r < 0. Thus,
exp′(r) = exp(r) > 0 everywhere, so exp is strictly increasing and therefore injective.

• For surjective, by continuity and exp(−r) = 1/ exp(r), we need exp r → ∞ as r → ∞, for which
we note exp(1) > exp(0) = 1 gives exp(1) > 1 + ε for some ε > 0, so exp(n) > (1 + ε)n > 1 + nε.
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Remark 3.85 (Nir). We will also want to know that log : R+ → R is continuous. Well, x < y if and only
if exp(x) < exp(y) implies that x < y requires log x < log y, so log is strictly increasing. Thus, it su�ces
to show that log satisfies the intermediate value property, but log is surjective (it’s the inverse function
of a bijection and hence a bijection), so we are done.

3.9.1 Arguments
Today we talk more about the exponential function. Last time we proved the following.

Proposition 3.82 (Polar form). For any z ∈ C×, there exist unique real numbers r > 0 and θ ∈ [−π, π)
such that z = r exp(iθ).

As a brief review, we recall that we took r = |z|, and we computed θ in terms of some arctans. Essentially,
this means that we can e�ectively compute polar form without tears.

Remark 3.86. The interval [−π, π) is somewhat arbitrary; we can choose any set of representatives for
R/2πZ. To see this, we note that the unique θ ∈ [−π, π) will have a unique representative in any set
of representatives for R/2πZ and vice versa. For example, any half-open interval of length 2π (such as
[0, 2π)) will do the trick. To see this,

We can in fact use polar form to talk about the exponential map.

Corollary 3.87. For any z ∈ C×, there exists some w ∈ C such that exp(w) = z.

Proof. To start, we know that we can write z = r exp(iθ) by Proposition 3.82. So, using real analysis, we set

w := log r + iθ,

where log : R+ → R is the real logarithm. Thus,

z = r exp(iθ) = exp(log r) exp(iθ) = exp(log r + iθ) = exp(w),

which is what we wanted. �

Continuing to talk about polar form, we have the following definition.

Definition 3.88 (Argument). Given a complex number z ∈ C×, we define the principal argument arg z ∈
[−π, π) by writing z := |z| exp(iθ) (using Proposition 3.82) and taking arg z := θ. More generally, for any
η ∈ R, we define

argη : C× → [η, η + 2π)

by argη(z) := arg z + π + η.

Remark 3.89 (Nir). By definition, we see that |z| exp(i arg z) = z.

Example 3.90. We have that arg−π = arg.
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3.9.2 Branches of the Complex Logarithm
The logarithm is somewhat subtle, so we have to be careful. We take the following definition.

Definition 3.91 (Branch of the logarithm). Fix Ω ⊆ C \ {0} an open, connected subset. A branch of the
logarithm is a continuous function f : Ω→ C such that

exp(f(z)) = z.

Intuitively, f will “look like” an inverse for exp.
Nevertheless, there is a fairly standard choice of branch.

Definition 3.92 (Log). Taking Ω := C\R≤0, we define the principal branch of the logarithm as Log : Ω→
C by

z 7→ log |z|+ i arg z.

Remark 3.93. It is not too hard to check that C \R≤0 is connected. Indeed, it is path-connected: for any
a+ bi ∈ C \ R≤0, we define γ : [0, 1]→ C \ R≤0 by

γ(t) := (1− t)(a+ bi) + t.

Notably, Im γ(t) = (1 − t)b, so γ(t) ∈ R≤0 would imply that Im γ(t) = 0 so that t = 1 or b = 0.
We cannot have t = 0 because γ(1) = 1; we cannot have b = 0 because b = 0 requires a > 0, so
Re γ(t) = (1− t)a+ t > 0 always.

Remark 3.94. We can check directly that exp Log z = z for z ∈ C \ R≤0. In particular, Remark 3.89 lets
us write

exp Log z = exp(log |z|+ i arg z) = exp(log |z|) exp(i arg z) = |z| exp(i arg z) = z.

We will check that Log is actually a continuous later, in Corollary 3.98.

Remark 3.95. Again, log : R+ → Rhere is the real logarithm, which is legal because z 6= 0 so that |z| > 0.

In particular, we are essentially using the construction from back in Corollary 3.87.
As some brief geometric commentary, we are calling these “branches” our open sets Ω are typically C

minus a single line, and the subtlety of why we have to do this is to make the logarithm continuous. For
example, in the principal branch, we deleted R≤0, which has the following image.

Re

Im

We should probably check that Log is actually well-formed; namely, it turns out that we had some choice in
our construction of Log.

Lemma 3.96. Fix z, w ∈ C such that exp(z) ∈ C \ R≤0 and Log exp(z) = w. Then there is a k ∈ Z such
that z = w + 2πik.
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Proof. Write z = x+iy so that exp z = exp(x) exp(iy). Now, we know that exp(α) = 0 if and only ifα ∈ 2πiZ,
so for example, we can write

exp(yi+ 2πin) = exp(iy)

for any n ∈ Z. So, by the division algorithm, we choose a k ∈ Z so that

ỹ := y + 2πk

has ỹ ∈ [−π, π). But now, because exp(z) /∈ R≥0, we see that we cannot have ỹ = −π because this would
make exp(iy) = −1 and therefore exp z = − exp(x) ∈ R≤0.

The point of choosing this ỹ is that we still have exp(z) = exp(x) exp(iy) = exp(x) = exp(iỹ), but now
ỹ ∈ (−π, π), so we are assured

arg exp(z) = ỹ.

At this point, we just write out

w = Log exp(z) = Log exp(x+ iy) = log(| exp(x) exp(it)|) + i arg exp(z) = x+ iỹ.

So now we can write w = x+ iy − 2πik, which is what we wanted. �

Let’s return to our discussion of branches. There are a few reasons why we want “branches” for Log. Roughly
speaking, here is the reasoning.

• The function exp is not injective: it has kernel ker exp = 2πiZ. In particular, if we wanted to define Log
on 1 ∈ C, then we need to make a choice among the representatives in 2πiZ.

• In order to avoid having to make a choice, we chose Log to have imaginary part in [−π, π) always (in
fact,−π is illegal because Log doesn’t take inputs in R≤0).

• But making this choice makes Log not continuous at values in R≤0 because (notably!) arg z is not con-
tinuous on R≤0. In particular, z → −1 from above gives arg z → π while z → −1 from below gives
arg z → −π.

• So the point of introducing the branch is to simply throw out the R≤0 and recover our continuity.

3.9.3 The Principal Branch
We now finish the checks that Log is actually a branch of the logarithm. For this, it remains to check that Log
is continuous; in fact, we will extend and show that Log is holomorphic. As discussed when we were talking
about branches, the issue with extending the continuity of Log to all of C is arg, so we pay arg some special
attention.

Lemma 3.97. The restricted argument function arg : C \ R≤0 → [−π, π) is continuous.

Proof. Fix some z ∈ C \ R≤0, and we show that arg z is continuous at z. We do casework because we have
to back-track through the definition of arg and therefore back through Proposition 3.82

• Suppose Re z > 0. Then it su�ces to show that arg is continuous on B(z,Re z) ⊆ {w : Rew > 0}.
Well, on this region we defined argw by

argw = arctan

(
Imw

Rew

)
.

On {w : Rew > 0}, we see that Rew 6= 0, so the continuity of Re and Im promise that Imw/Rew is
continuous. So because arctan is continuous, we conclude arctan(Imw/Rew) is continuous at z.
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• Suppose Re z < 0 and Im z > 0. Then it su�ces to show that arg is continuous on

B(z,min{−Re z, Im z}) ⊆ {w : Rew < 0, Im z > 0}.

Here, we defined arg z by shifting π − arctan(Imw/− Rew) into [−π, π). But now, Imw/Rew > 0, so
arctan(Imw/− Rew) ∈ (0, π/2), so

argw = π − arctan(Imw/− Rew) ∈ [−π, π).

The function arctan(Imw/Rew) is continuous for the same reasons as before, so the total function is
continuous at z.

• Suppose Re z < 0 and Im z < 0. Then it su�ces to show that arg is continuous on

B(z,min{−Re z,− Im z}) ⊆ {w : Rew < 0, Im z < 0}.

On this region, we defined arg z by shifting π − arctan(Imw/− Rew) into [−π, π). However, Imw/−
Rew < 0, so arctan(Imw/− Rew) ∈ (−π/2, 0), so

argw = −π − arctan(Imw/− Rew) ∈ [−π, π).

The function arctan(Imw/Rew) is continuous for the same reasons as before, so the total function is
continuous at z.

• Suppose Re z = 0 and Im z > 0. Then we defined arg z = π
2 . To check continuity here, we note that it

su�ces to look in the ball B(0, Im z) ⊆ {w : Imw > 0}. Then

lim
w→z

Rew>0,Imw>0

argw = lim
w→z

Rew>0,Imw>0

arctan

(
Imw

Rew

)
= lim
x→∞

arctanx =
π

2

while

lim
w→z

Rew<0,Imw>0

argw = lim
w→z

Rew<0,Imw>0

π − arctan

(
Imw

−Rew

)
= π − lim

x→∞
arctanx = π − π

2
=
π

2
,

which both match arg z. So, fixing some ε > 0, we can use the two limits above to find suitable δ1, δ2
in each region, and then we take δ := min{δ1, δ2}.

• Suppose Re z = 0 and Im z < 0. We repeat the previous argument. Then we defined arg z = −π2 . To
check continuity here, we note that it su�ces to look in the ball B(0, Im z) ⊆ {w : Imw < 0}. Then

lim
w→z

Rew>0,Imw<0

argw = lim
w→z

Rew>0,Imw>0

arctan

(
Imw

Rew

)
= lim
x→−∞

arctanx = −π
2

while

lim
w→z

Rew<0,Imw<0

argw = lim
w→z

Rew<0,Imw<0

−π − arctan

(
Imw

−Rew

)
= −π − lim

x→−∞
arctanx = −π +

π

2
= −π

2
,

which both match with arg z. So, fixing some ε > 0, we can use the two limits above to find suitable
δ1, δ2 in each region, and then we take δ := min{δ1, δ2}.

The above casework finishes the proof. �

Corollary 3.98. The function Log : C \ R≤0 → C is continuous.
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Proof. Well, we write
Log z = log |z|+ i arg z,

and we now know that each component is continuous, so the total function is continuous. To be explicit, the
function log |z| is the composite of two continuous functions and is therefore continuous; the function arg z
is continuous by the previous lemma. So we may finish by Proposition 2.95. �

In fact, we get that Log is holomorphic, essentially inherited from exp.

Lemma 3.99. Fix Ω1,Ω2 ⊆ C connected and open subsets. Further, suppose we have a continuous
function f : Ω1 → Ω2 and a holomorphic function g : Ω2 → Ω1 such that g(f(z)) = z and g′(z) 6= 0 for
each z ∈ Ω1. Then f is holomorphic on Ω1 with derivative

f ′(z) =
1

g′(f(z))
.

Proof. We quickly observe that f is injective: if z, w ∈ Ω1 have f(z) = f(w), then z = g(f(z)) = g(f(w)) = w.
Now, the trick is that, for distinct z, w ∈ Ω1, we may write

g(f(z))− g(f(w))

z − w =
g(f(z))− g(f(w))

f(z)− f(w)
· f(z)− f(w)

z − w .

In particular, note z 6= w implies f(z) 6= f(w) because f is injective. We see that the left-hand side is merely
1 because g ◦ f = idΩ1 . In particular, we may write

lim
z→w

f(z)− f(w)

z − w = lim
z→w

1
g(f(z))−g(f(z))
f(z)−f(w)

.

Notably, the denominator here is legal because z 6= w implies f(z) 6= f(w) and g(f(z)) 6= g(f(w)).
To finish, imagine some sequence {zn}n∈N ⊆ Ω1 \ {w} such that zn → w. By continuity of f , we see that

f(zn)→ f(w). However, we know that

lim
z′→f(w)

g(z′)− g(f(w))

z′ − f(w)
= g′(f(w)),

so f(zn) → f(w) tells us that g(f(zn))−g(f(w))
f(zn)−f(w) → g′(f(z)). Because our sequence {zn}n∈N was arbitrary, we

may conclude

lim
z→w

f(z)− f(w)

z − w = lim
z→w

1
g(f(z))−g(f(z))
f(z)−f(w)

=
1

limz→w
g(f(z))−g(f(z))
f(z)−f(w)

=
1

g′(f(z))
.

This finishes. �

Proposition 3.100. The function Log is holomorphic on C \ R≤0 with derivative

d

dz
Log z =

1

z
.

Proof. We simply apply Lemma 3.99 with Ω1 = C \ R≤0 and Ω2 = C and f = Log and g = exp. We quickly
check the hypotheses.

• Note Ω2 is connected and open, as discussed before.
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• Note Ω1 is connected by Remark 3.93 and open because

Ω1 = {z ∈ C : Re z > 0} ∪ {z ∈ C : Im z 6=} = Re−1(R>0) ∪ Im−1(R \ {0})

is the union of two open sets by the continuity of Re and Im.

• The function f is continuous by Corollary 3.98.

• The function g is holomorphic on Ω2 by Lemma 3.55.

• We have g(f(z)) = z, essentially by construction; see Remark 3.94.

• The function g′ = exp is nonzero everywhere on Ω2 because exp(z) exp(−z) = 1 for z 6= 0.

Now, applying Lemma 3.99, we see that

d

dz
Log z =

1

exp′(Log z)
=

1

exp(Log z)
=

1

z
,

where we have used the facts that exp′ = exp by Lemma 3.55 and that exp(Log z) = z as shown above. �
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THEME 4

INTEGRATION

Every person believes that he knows what a curve is until he has
learned so much mathematics that the countless possible

abnormalities confuse him.

—Felix Klein, [Kle16]

4.1 March 7
Good morning everyone.

4.1.1 Smooth Paths
Today we are going to build some theory of paths. We recall the definition.

Definition 2.99 (Path). A path in C is a continuous function γ : [a, b]→ C where a < b are real numbers.

Now that we have access to some di�erentiation, we can talk about the smoothness of our paths.

Definition 4.1 (Di�erentiable for paths). Fix [a, b] ⊆ R. A path γ : [a, b] → C is di�erentiable if and only
if the limit

lim
t→t0

γ(t)− γ(t0)

t− t0
exists. If the limit exists, we set it equal to γ′(t) and call it the derivative. Further, γ is di�erentiable if
and only if γ is di�erentiable at all points t ∈ [a, b].

Remark 4.2. When computing γ′(a) and γ′(b), the above limit is one-sided.

There are still going to be some pathological paths that are di�erentiable, so we add more smoothness
conditions.

Definition 4.3 (C1). Fix [a, b] ⊆ R. A path γ : [a, b] → C is C1 or smooth if and only if γ is di�erentiable
and γ′ is continuous.
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This is perhaps a little too strong, but it is the correct notion. Here is a slightly weaker version.

Definition 4.4 (Piecewise C1). Fix [a, b] ⊆ R. A path γ : [a, b] → C is piecewise C1 if and only if there
exists a sequence {ak}nk=0 with a0 = a and an = b such that

γ|[ak,ak+1]

is C1 for each 0 ≤ k < n.

The point is that we are going to want to glue C1 paths together in the future, and the resulting path need
not be C1.

This is a math class, so we should probably prove something today, so have some lemmas.

Lemma 4.5. Fix s : [a, b] → [c, d] a function di�erentiable at t0 ∈ [a, b]. Further, if γ : [c, d] → C is di�er-
entiable at γ(t0), then γ ◦ s is di�erentiable at t0 with

(γ ◦ s)′(t0) = γ′(s(t0))s′(t0).

Proof. As usual with compositions, we consider the di�erence quotient v : [c, d]→ C defined as

v(x) :=

{
γ(x)−γ(s(t0))

x−s(t0) − γ′(s(t0)) t 6= s(t0),

0 x = s(t0).

Now, by definition of the di�erentiability of γ at s(t0), we know that v(x)→ 0 as x→ s(t0). Rearranging, we
see that

γ(x)− γ(s(t0)) = (x− s(t0)) ·
(
γ′(s(t0)) + v(x)

)
for all x ∈ [c, d], so plugging in s(t) ∈ [c, d], we see that

γ(s(t))− γ(s(t0)) = (s(t)− s(t0)) ·
(
γ′(s(t0)) + v(s(t))

)
.

So now we rearrange backwards to see

γ(s(t))− γ(s(t0))

t− t0
=
s(t)− s(t0)

t− t0
·
(
γ′(s(t0)) + v(s(t))

)
.

Upon taking the limit as t→ t0, the di�erentiability of s at t0 assures us that

lim
t→t0

γ(s(t))− γ(s(t0))

t− t0
=

(
lim
t→t0

s(t)− s(t0)

t− t0

)(
lim
t→t0

γ′(s(t0)) + v(s(t))

)
= s′(t0)γ′(s(t0)).

Notably, we are using the fact that v ◦ s is continuous at t0 because s is continuous and v is continuous at
s(t0). �

Lemma 4.6. Fix γ : [a, b] → C a path di�erentiable at c ∈ (a, b). Then γ is di�erentiable on C with
derivative γ′(c).

Proof. Note that the function z 7→ z is continuous, so we compute

lim
t→c

γ(t)− γ(c)

t− c = lim
t→c

(
γ(t)− γ(c)

t− c

)
= lim
t→c

γ(t)− γ(c)

t− c = γ′(c),

which is what we wanted. �
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Remark 4.7. Lemma 4.6 might seem surprising because conjugation itself is usually not complex dif-
ferentiable. However, this is okay because we are only really taking limits in R, so the extra dimension
of C does not impede us.

As a side remark, we note the following: we can approximate any path reasonably well.

Theorem 4.8. For any path γ : [a, b] → C, there exists a sequence of piecewise C1 paths {γk}k∈N such
that γk → γ uniformly.

Proof. The main point is to use the Stone–Weierstrass theorem. We will not prove this in class, for it would
sidetrack us somewhat significantly. �

The reason why we bring up the above result is that we can, roughly speaking, understand paths (and
integration on paths) by reducing them to piecewise C1 paths and then studying the C1 paths individually.

4.1.2 Reparameterization
We are going to want to adjust our “speed” along a path, for which we have the following definition.

Definition 4.9 (Reparameterization). Fix s : [a, b] → [c, d] a continuously di�erentiable function with
s(a) = c and s(b) = d. Then, given a path γ : [c, d]→ C be a C1 path. Then the path

γ̃ := γ ◦ s : [a, b]→ C

is again a C1 path. We call γ̃ a reparameterization of γ.

Remark 4.10. We can also check that, in the context of the above definition, im γ = im γ̃. Indeed, it
su�ces to show that ϕ is surjective, for which we note γ(a) = c and γ(b) = d gives us surjectivity onto
[c, d] by the Intermediate value theorem.

Reparameterization allows us a notion of equivalence.

Definition 4.11 (Equivalent). Two paths γ1 : [a, b] → C and γ2 : [c, d] → C are equivalent if and only if
there is a continuously di�erentiable, bijective function s : [a, b]→ [c, d] such that s′ > 0 and γ1 = γ2 ◦ s.
We denote this by γ1 ∼e γ2

One can check that∼e defined above is an equivalence relation.

Lemma 4.12. The relation∼e defined on paths is an equivalence relation.

Proof. We have the following checks.

• Reflexive: given a path γ : [a, b]→ C, we show γ ∼e γ. Indeed, the function s : [a, b]→ [a, b] defined by
s(x) := x is bijective and continuously di�erentiable (with constant derivative 1) and γ(t) = γ(s(t)). So
s witnesses γ ∼e γ.

• Symmetric: fix paths γ1 : [a, b] → C and γ2 : [c, d] → C with γ1 ∼e γ2; i.e., we are given a bijective and
continuously di�erentiable s : [a, b]→ [c, d] such that γ1 = γ2 ◦ s.
Because s is bijective, it has an inverse function r : [c, d] → [a, b], which we can check is also con-
tinuously di�erentiable by real analysis; the idea is to copy the proof of Lemma 3.99 to show that
r′(t) = 1

s′(r(t)) which is continuously di�erentiable (using the condition s′ > 0).

Thus, γ1 = γ2 ◦ s implies γ2 = γ1 ◦ r, so γ2 ∼e γ1.
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• Transitive: fix paths γ1 : [a, b]→ C and γ2 : [c, d]→ C and γ3 : [e, f ]→ C such that γ1 ∼e γ2 and γ2 ∼e γ3;
i.e., we have bijective, continuously di�erentiable functions r : [a, b] → [c, d] and s : [c, d] → [e, f ] such
that r′, s′ > 0 and

γ1 = γ2 ◦ s and γ2 = γ3 ◦ r.
But then we see r ◦ s is bijective and continuously di�erentiable (by the chain rule) with (r ◦ s)′ > 0, so
γ1 = γ3 ◦ (r ◦ s) witnesses γ1 ∼e γ3.

The above sketchy checks finish the proof. �

Definition 4.13 (Oriented curve). An equivalence class [γ]e of paths is an oriented curve.

Here are two basic curves.

Example 4.14. Given z0 ∈ C, the set of constant paths γ : [a, b]→ C by γ ≡ z0 is an oriented curve.

Example 4.15. Given α, β ∈ C, we define the line segment γ : [0, 1]→ C by

γ(t) := (1− t)α+ tβ,

which we can check is di�erentiable with constant derivative (−α + β) and is therefore continuously
di�erentiable.

There might not be a nice, canonical way to define a curve. Here are two circles.

Example 4.16. Fix z0 ∈ C and r ∈ R>0. Then we define the circle of radius r centered at z0 by the path
γ : [0, 2π]→ C by the path

γ(t) := z0 + r exp(it).

Here is the image.

z0

r

Example 4.17. Fix z0 ∈ C and r ∈ R>0. Then we define the circle of radius r centered at z0 by the path
γ : [0, 2π]→ C by the path

γ0(t) := z0 + r exp(−it).
Here is the image.

z0

r

We can generalize the above example.
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Definition 4.18 (Opposite path). Given a path γ : [a, b]→ C, we define the opposite path γ− : [a, b]→ C
by γ−(t) := γ(b+ a− t).

4.1.3 Conformal Maps
We close with the following theorem.

Theorem 4.19. Fix Ω ⊆ C an open and connected subset. Further, fix two paths γ1, γ2 : [a, b]→ C twoC1

paths and some holomorphic function f : Ω → C. Now, suppose that t1, t2 ∈ [a, b] have z0 := γ1(t1) =
γ2(t2) 6= 0 with γ1(t1), γ2(t2) 6= 0 and f ′(z0) 6= 0. Then

γ′1(t1)

γ′2(t2)
=

(f ◦ γ1)′(t1)

(f ◦ γ2)′(t2)
.

Proof. The main tool that we need is a version of Lemma 4.5 to deal with composition.

Lemma 4.20. Fix γ : [a, b] → C a path di�erentiable at t0 ∈ [a, b]. Further, set a nonempty open subset
Ω ⊆ C with im γ ⊆ Ω with a function f : [c, d]→ C di�erentiable at γ(t0). Then f ◦ γ is di�erentiable at
t0 with

(f ◦ γ)′(t0) = f ′(γ(t0))γ′(t0).

Proof. We repeat the proof of Lemma 4.5. We consider the di�erence quotient v : [c, d]→ C defined as

v(z) :=

{
f(z)−f(γ(t0))

z−γ(t0) − f ′(s(t0)) z 6= γ(t0),

0 z = γ(t0).

Now, by definition of the di�erentiability of f at s(t0), we know that v(z)→ 0 as z → γ(t0). Rearranging, we
see that

f(z)− f(γ(t0)) = (z − γ(t0)) ·
(
f ′(γ(t0)) + v(z)

)
for all z ∈ Ω, so plugging in γ(t) ∈ Ω, we see that

f(γ(t))− f(γ(t0)) = (γ(t)− γ(t0)) ·
(
f ′(γ(t0)) + v(γ(t))

)
.

So now we rearrange backwards to see

f(γ(t))− f(γ(t0))

t− t0
=
γ(t)− γ(t0)

t− t0
·
(
f ′(γ(t0)) + v(γ(t))

)
.

Upon taking the limit as t→ t0, the di�erentiability of γ at t0 assures us that

lim
t→t0

f(γ(t))− f(γ(t0))

t− t0
=

(
lim
t→t0

γ(t)− γ(t0)

t− t0

)(
lim
t→t0

f ′(γ(t0)) + v(γ(t))

)
= γ′(t0)f ′(γ(t0)).

Notably, we are using the fact that v ◦ γ is continuous at t0 because γ is continuous and v is continuous at
γ(t0). �

Using the above lemma, we can compute

(f ◦ γ1)′(t1)

(f ◦ γ2)′(t2)
=
f ′(γ(t1))γ′(t1)

f ′(γ(t2))γ′(t2)
=
γ′(t1)

γ′(t2)
.

Note that we have successfully used the hypotheses that f ′(z0) 6= 0 and γ′2(t2) 6= 0; the last hypothesis that
γ′1(t1) 6= 0 is added for aesthetic reasons. �

We should probably explain why we named this subsection “conformal maps.” We pick up the following
corollary.
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Corollary 4.21. In the context of the Theorem 4.19, we have that

arg γ′1(t1)− arg γ′2(t2) ≡ arg(f ◦ γ1)′(t1)− arg(f ◦ γ2)′(t2) (mod 2π)

Proof. Everything involved is nonzero by hypothesis; this time γ′1(t1) 6= 0 is not aesthetic. By taking arg of
both sides of the conclusion of Theorem 4.19, we see that it will su�ce to show

arg(z/w)− arg z + argw
?≡ 0 (mod 2π)

for z, w ∈ C× after some rearranging. Well, we write z = r exp(iα) and w = s exp(iβ) so that

z/w = (r/s) exp(i(α− β))

using Proposition 3.57. In particular, α ≡ arg z and β ≡ argw, so

arg(z/w) ≡ α− β ≡ arg z − argw (mod 2π),

which is what we wanted. �

Now, we recall that arg z is intended to be the (counterclockwise) angle from the real axis to a complex
number z. As such, arg z−argw should be the (counterclockwise) angle fromw := s exp(iβ) to z := r exp(iα),
as in the following diagram.

Re

z
w

α
β

α− β

Thus, Corollary 4.21 is saying that, at a point z0 ∈ C, the angle between two tangent vectors γ′1(t1) and
γ′2(t2) remains the same if we pass the tangent vectors through f . This angle-preserving property is called
being “conformal.”

It would be a crime to give this description and then not actually show this for some holomorphic func-
tion, so we pass two rays from z := 1 + i through f(z) := z2.

z

γ1

γ2

f(z)

fγ1

fγ2

Indeed, we can check visually that it looks like the angle got preserved (even though lengths are quite scaled).

4.2 March 9
Here we go.
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4.2.1 Integrals from the Reals
Today we start talking about path integration.

Definition 4.22 (Integrable). Fix ψ : [a, b]→ C a function (such as a path) with ψ(t) = u(t) + iv(t), where
u, v : R → R. Then ψ is integrable over [a, b] if and only if u and v are both integrable over [a, b] (as real
functions!). In this case, we define∫ b

a

ψ(t) dt :=

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt.

We have the following sanity checks.

Lemma 4.23. Fix ψ1, ψ2 : [a, b]→ C integrable functions with α1, α2 ∈ C. Then∫ b

a

(α1ψ1(t) + α2ψ2(t)) dt = α1

∫ b

a

ψ1(t) dt+ α2

∫ b

a

ψ2(t) dt.

Proof. This is by brute force. Let α1 = x1 + y1i and α2 = x2 + y2i and ψ1(t) = u1(t) + iv1(t) and ψ2(t) =
u2(t) + iv2(t). Then we see that

α1ψ1(t) + α2ψ2(t) = (x1 + y1i)(u1(t) + iv1(t)) + (x2 + y2i)(u2(t) + iv2(t))

= (x1u1(t) + x2u2(t)− y1v1(t)− y2v2(t)) + i(x1v1(t) + x2v2(t) + y1u1(t) + y2u2(t))

has integrable components because u1, v1, u2, v2 are all integrable by hypothesis, and the components are
justR-linear combinations of these. Doing a lot of expansion, the fact that linear combinations of real-valued
integrals is legal, we see∫ b

a

(α1ψ1(t) + α2ψ2(t)) dt =

∫ b

a

(x1u1(t) + x2u2(t)− y1v1(t)− y2v2(t)) dt

+ i

∫ b

a

(x1v1(t) + x2v2(t) + y1u1(t) + y2u2(t)) dt

= x1

∫ b

a

u1(t) dt+ x2

∫ b

a

u2(t) dt− y1

∫ b

a

v1(t) dt− y2

∫ b

a

v2(t) dt

+ ix1

∫ b

a

v1(t) dt+ ix2

∫ b

a

v2(t) dt+ iy1

∫ b

a

u1(t) dt+ iy2

∫ b

a

u2(t) dt

= (x1 + y1i)

(∫ b

a

u1(t) dt+ i

∫ b

a

v1(t) dt

)

+ (x2 + y2i)

(∫ b

a

u2(t) dt+ i

∫ b

a

v2(t) dt

)

= α1

∫ b

a

ψ1(t) dt+ α2

∫ b

a

ψ2(t) dt,

which is what we wanted. �

Lemma 4.24. Fix ψ : [a, b]→ C an integral function. Then∣∣∣∣∣
∫ b

a

ψ(t) dt

∣∣∣∣∣ ≤
∫ b

a

|ψ(t)| dt.
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Proof. There is approximately one idea to this proof: the point is to create a real-valued integral equal to
the norm. Note that

∫ b
a
ψ(t) dt = 0 means we are done for free. Thus, we can put

∫ b
a
ψ(t) dt = 0 into polar

form as

r exp(iθ) =

∫ b

a

ψ(t) dt

for r > 0. We would like to factor out a exp(iθ) from this integral, so we compute (using cos(−θ) = cos θ and
sin(−θ) = − sin θ from Lemma 3.75) that

ψ(t) exp(−iθ) = (u(t) + iv(t))(cos(−θ) + i sin(−θ))
= (u(t) + iv(t))(cos θ − i sin θ)

= (u(t) cos θ + v(t) sin θ)︸ ︷︷ ︸
α(t)

+i · (v(t) cos θ − u(t) sin θ)︸ ︷︷ ︸
β(t)

In particular, α, β : R→ R, and so by Proposition 3.57, we write

ψ(t) = α(t) exp(iθ) + iβ(t) exp(iθ) = exp(iθ)(α(t) + iβ(t)).

Thus, we can write

r exp(iθ) =

∫ b

a

ψ(t) dt =

∫ b

a

exp(iθ)(α(t) + iβ(t)) dt = exp(iθ)

∫ b

a

(α(t) + iβ(t)) dt.

Upon cancelling out the exp(iθ), we see that

r =

∫ b

a

(α(t) + iβ(t)) dt =

∫ b

a

α(t) dt+ i

∫ b

a

β(t) dt.

Because β is still a real function, that integral evaluates to a real number, but because we have no imaginary
part, we conclude

r =

∫ b

a

α(t) dt.

So now we appeal to real analysis. We see∣∣∣∣∣
∫ b

a

ψ(t) dt

∣∣∣∣∣ = r =

∫ b

a

α(t) dt ≤
∫ b

a

|ψ(t)| dt,

where α(t) ≤ |ψ(t)| is because

α(t) = Reψ(t) exp(−iθ) ≤ |ψ(t)| · | exp(−iθ)| = |ψ(t)|,

where | exp(−iθ)| = 1 by Corollary 3.61. �

4.2.2 Path Integration
We have the following definition.

Definition 4.25 (Integration). Fix Ω ⊆ C an open and connected subset with a C1 path γ : [a, b] → Ω.
Now, given a continuous function f : Ω→ C, we define the integral∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt,

if the integral exists.
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Lemma 4.26. Under the hypotheses of Definition 4.25, the integral
∫
γ
f(z) dz actually exists.

Proof. Note that f and γ are both continuous, so f ◦ γ is continuous. Similarly, γ′ is continuous because γ is
C1. In total, we can expand

f(γ(t))γ′(t)

to be a product of continuous functions and therefore must be continuous. It follows that Re(f(γ(t))γ′(t))
and Im(f(γ(t))γ′(t)) is also a continuous function, so these components are integrable, so the total integral∫ b

a

f(γ(t))γ′(t) dt

exists. �

Our goal is to show that the integral itself only depends on the equivalence class of γ.
We can extend this definition a little to piecewise C1 paths.

Definition 4.27 (Integration). Fix Ω ⊆ Can open and connected subset with a piecewiseC1 pathγ : [a, b]→
Ω, where we have the strictly increasing sequence {ak}nk=1 such that a = a0 and b = an and γ|ak,ak+1

are
C1. Then, given a continuous function f : Ω→ C, we define the integral∫

γ

f(z) dz :=

n−1∑
k=0

∫ ak+1

ak

f(γ(t))γ′(t) dt.

Note that this integral exists because each component integral exists because γ|[ak,ak+1] is in factC1.

Example 4.28. Fix f : C \ {0} → C by f(z) := 1
z and γ : [0, 2π] → C by γ(t) = exp(it) so that γ′(t) =

i exp(it). It follows ∫
γ

f(z) dz =

∫ 2π

0

(
1

exp(it)
· i exp(it)

)
dt =

∫ 2π

0

i dt = 2πit.

Now let’s show that the integral does not change on reparameterization.

Lemma 4.29. Fix γ1 : [a, b] → Ω and γ2 : [c, d] → Ω two equivalent piecewise C1 paths. Then, for any
continuous function f : Ω→ C, ∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

Proof. By equivalence, we are promised a function s : [c, d] → [a, b] which is continuously di�erentiable,
bijection, and has positive derivative everywhere such that γ2 = γ1 ◦ s.

We will in the case where γ1 is C1, and the general case will follow. Then we compute∫
γ2

f(z) dz =

∫ d

c

f(γ1(s(t)))(γ1 ◦ s)′(t) dt.

Applying Lemma 4.5, we see ∫
γ2

f(z) dz =

∫ d

c

f(γ1(s(t)))γ′1(s(t))s′(t) dt
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By applying a u-substitution along s (notably, this is now an integral from a real variable!),1 we see∫
γ2

f(z) dz =

∫ b

a

f(γ1(s))γ′1(s) ds =

∫
γ1

f(z) dz,

which is what we wanted. �

4.2.3 Path Arithmetic
Let’s blast through some lemmas.

Warning 4.30. In the following statements, we will merely require our paths to be piecewise C1, but
the proofs will deal with the C1 case. This can be amended by partitioning all the intervals to make
everything C1, but we will not write this out formally.

Lemma 4.31. Fix an open subset Ω ⊆ C. If γ : [a, b] → Ω is a piecewise C1 path and f, g : Ω → C are
continuous functions and α, β ∈ C, then we have∫

γ

(αf(z) + βg(z)) dz = α

∫
γ

f(z) dz + β

∫
γ

g(z) dz.

Proof. We write ∫
γ

(αf(z) + βg(z)) dz =

∫ b

a

(αf(γ(t)) + βg(γ(t)))γ′(t) dt

by definition, which expands by Lemma 4.23 into

α

∫ b

a

f(γ(t))γ′(t) dt+ β

∫ b

a

g(γ(t))γ′(t) dt = α

∫
γ

f(z) dz + β

∫
γ

f(z) dz,

which is what we wanted. �

Lemma 4.32. Fix an open subset Ω ⊆ C. Further, fix γ : [a, b] → Ω is a piecewise C1 path with γ−(t) :=
γ(b+ a− t) the opposite path. Then, for f : Ω→ C a continuous function,∫

γ

f(z) dz = −
∫
γ−
f(z) dz.

Proof. The point is to do a u-substitution t 7→ b+ a− t. Indeed, we compute∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ a

b

f(γ(b+ a− t))γ′(b+ a− t) dt,

where in the last step we have applied our u-substitution, legal from real analysis because our integral is
from a real variable.2 However, we see γ(b+ a− t) = γ−(b+ a− t), so the right-hand integral is the desired
one; notably, (γ−)′(t) = −γ(b+a− t), but this inherited minus sign reverses the order of the time to be from
t = a to t = b, as it should be. �

1 Technically, we should expand out this integral into real and imaginary parts and then apply the u-substitution. Please don’t make
me do this.

2 Again, to be formal, we should expand this into real and imaginary parts and then apply the u-substitution, but we won’t bother.
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Lemma 4.33. Fix an open subset Ω ⊆ C. Further, fix γ : [a, b]→ Ω and η : [c, d]→ Ω to be a piecewiseC1

paths such that γ(b) = η(c). Then, for a continuous function f : Ω→ C, we have∫
γ∗η

f(z) dz =

∫
γ

f(z) dz +

∫
η

f(z) dz.

Proof. Note that∫
γ∗η

f(z) dz =

∫ b+d−c

a

f((γ ∗ η)(t))(γ ∗ η)′(t) dt =

∫ b

a

f(γ(t))γ′(t) dt+

∫ b+d−c

b

f(η(t− b+ c))η′(t− b+ c) dt.

This is what we want as soon as we apply the change of variables t− b+ c 7→ t. �

For our last lemma, we have the following definition.

Definition 4.34 (Length). Fix a C1 path γ : [a, b]→ C. Then we define the length of γ as

`(γ) :=

∫ b

a

|γ′(t)| dt.

More generally, if γ is piecewiseC1, then we are promised a strictly increasing sequence {ak}nk=0 where
a0 = a and an = b such that γ|[ak,ak+1] is C1. So we define the length as

`(γ) :=

n−1∑
k=0

∫ ak+1

ak

|γ′(t) dt.

Let’s use this definition a little.

Proposition 4.35. Fix an open and connected subset Ω ⊆ C. Then, for γ : [a, b]→ C a piecewiseC1 path
and a continuous function f, g : Ω→ C, we have the following. Then we have∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ ≤ sup
t∈[a,b]

{|f(γ(t))|} · `(γ).

Proof. By composition, |f ◦ γ| is a continuous function. In particular, because [a, b] is a compact set, the
supremum will actually exist, thus bounding f on γ([a, b]). Now, estimating, we see∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a

f(γ(z))γ′(z) dz

∣∣∣∣∣ ≤
∫ b

a

|f(γ(z))| · |γ′(z)| dz.

By real analysis, we bound this last integral (from real analysis) as

sup
t∈[a,b]

{|f(γ(t))|} ·
∫ b

a

|γ′(t)| dt,

which is what we wanted. �

We close with a definition, to advertise the fundamental theorem of calculus.

Definition 4.36 (Primitive). Fix a nonempty, open subset Ω ⊆ C. Then, given two continuous functions
F, f : Ω→ C, we say that F is a primitive on f if and only if F is holomorphic on Ω and F ′ = f .
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4.3 March 11
Good morning everyone.

4.3.1 The Fundamental Theorem of Calculus
Today we continue talking about path integration. We want to talk about a Fundamental theorem of calcu-
lus, so we pick up the following definition.

Definition 4.36 (Primitive). Fix a nonempty, open subset Ω ⊆ C. Then, given two continuous functions
F, f : Ω→ C, we say that F is a primitive on f if and only if F is holomorphic on Ω and F ′ = f .

As promised, we have the following statement.

Theorem 4.37 (Fundamental theorem of calculus). Fix an open, connected, nonempty subset Ω ⊆ C
with continuous functions F, f : Ω → C such that F is a primitive of f . If γ : [a, b] → C is piecewise C1,
then we can compute ∫

γ

f(z) dz = F (γ(b))− F (γ(a)).

Proof. We proceed by force. Write∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt =

∫ b

a

d

dt
F (γ(t)) dt = F (γ(b))− F (γ(a)),

where the last step is separating outF ◦γ into real and imaginary parts and using the Fundamental theorem
of calculus from R. �

Remark 4.38. Importantly, Theorem 4.37 asserts that the exact pathγ does not matter to this integral—
only its endpoints!

Corollary 4.39. Fix an open, connected, nonempty subset Ω ⊆ Cwith continuous functionsF, f : Ω→ C
such that F is a primitive of f . If γ : [a, b]→ C is a closed path, then∫

γ

f(z) dz = 0.

Proof. We compute ∫
γ

f(z) dz = F (γ(b))− F (γ(a)) = 0,

which is what we wanted. �

Example 4.40. The function f(z) = 1
z does not have a primitive on C \ {0}, which we can see formally

because ∫
γ

1

z
dz = 2πi,

for γ : [0, 2π] defined by γ(t) := eit. Less formally, we would like f(z) = 1
z to have primitive given by

Log z, but Log z is only defined on C \ R<0.

So we would like to determine when a function has a primitive root.
To start our discussion, we have the following technical result.

104



4.3. MARCH 11 185: INTRO. TO COMPLEX ANALYSIS

Lemma 4.41. Fix a nonempty, open, and connected subset Ω ⊆ C. Then any two points in C are con-
nected by a piecewise C1 path contained in Ω.

Proof. The idea is to build path-connected components as in Proposition 2.110, but this time, we force our
paths to be piecewise C1.

Fix z ∈ Ω, and let U ⊆ Ω denote the set of points w ∈ Ω such that there exists a piecewise C1 path from
z to w contained in Ω. We want to show U = Ω. The key is the following lemma.

Lemma 4.42. Fix everything as above. If X ⊆ Ω is convex with X ∩ U 6= ∅, then X ⊆ U .

Proof. Fix any w ∈ X ∩ U so that we want to show X ⊆ U . In other words, for any p ∈ X, we want to show
p ∈ U . The point, like with Proposition 2.110, is the following image.

z
w

p

Indeed, because w ∈ U , there exists a piecewise C1 path γ : [a, b] → Ω from z to w. To finish, we set
η : [0, 1]→ B(w, r) to be

η(t) := w + t(p− w)

so that η(0) = w and η(1) = p and η′(t) = p−w is a constant function and therefore continuous. BecauseX
is convex, we see that η lives in X and therefore in Ω.

Thus, η is a C1 path from w to p, so γ ∗ η is a piecewise C1 path from z to w to p.3 Because γ and η both
output to Ω, we see that γ ∗ η does as well, so p ∈ U follows. �

We now have the following checks on U .

• We see that U is nonempty because z ∈ U . Namely, the path γz : [0, 1]→ Ω by

γz(t) := z

has derivative γ′z(t) = 0, which is constant and hence continuous. Thus, γz is a C1 path from z to z.

• We show that U is open in Ω. Indeed, suppose that w ∈ U . We need to find an open neighborhood
around w which lives in U ; well, Ω is open, so there exists some r > 0 such that B(w, r) ⊆ Ω.
But now, B(w, r) is convex (by Example 2.16) and intersects U nontrivially at w ∈ U , so B(w, r) ⊆ U
by Lemma 4.42, so we are done.

• We show that U is closed in Ω. For this, we show that Ω \ U is open in Ω. Well, given w ∈ Ω \ U , we
need to find an open neighborhood around w contained in Ω \ U ; because Ω is open, we certainly may
find some r > 0 such that B(w, r) ⊆ Ω.
So we claim that B(w, r) ⊆ Ω \ U or equivalently that B(w, r) ∩ U = ∅. Well, supposing for the
sake of contradiction that we can find p ∈ B(w, r) ∩ U , we see that B(w, r) is convex by Example 2.16
and intersects U nontrivially at U , so B(w, r) ⊆ U and w ∈ U will follow by Lemma 4.42. But this
contradicts the construction of w, so we are done.

3 Technically, we should provide a partition for γ ∗η : [a, b+1]→ Ω. Well, partition [a, b] by the partition for γ, and then take [b, b+1]
to be the last portion.
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Thus, U is a nonempty closed and open subset of Ω, so because Ω is connected, we must have U = Ω: we
see that Ω = U t (Ω \ U) is a disjoint union into open sets, so because U is nonempty, we must have Ω \ U
be empty, so U = Ω. But this is exactly what we wanted, so we are done. �

Remark 4.43. We can strengthen this to having a C1 path, with a little more technical care.

As such, we have the following.

Theorem 4.44. Fix a nonempty, open, and connected subset Ω ⊆ C. Further, fix a continuous function
f : Ω→ C such that ∫

γ

f(z) dz = 0

for all closed paths γ. Then f admits a primitive F .

Proof. We construct our primitive F by hand. Fix z0 ∈ Ω. Then, for any z ∈ Ω, we choose some piecewise
C1 path γ : [a, b]→ C with γ(a) = z0 and γ(b) = z so that we can define

F (z) :=

∫
γ

f(z) dz.

Of course, it is not immediately obvious that F does not depend on the exact choice of path γ, but it does
not: suppose γ1 : [a, b] → C and γ2 : [c, d] → C have γ1(a) = γ2(c) = z0 and γ1(b) = γ2(d) = z. Now, the key
observation is that

γ := γ2 ∗ γ−1 ,
which we can see is well-defined because γ−1 (b) = z0 and γ2(c) = z0 as well. Further, γ is closed because
γ−1 (a) = z while γ2(d) = z, so we see that∫

γ2

f(z) dz −
∫
γ1

f(z) dz =

∫
γ2

f(z) dz +

∫
γ−1

f(z) dz =

∫
γ2∗γ−1

f(z) dz = 0,

where we have used (in order) Lemma 4.32 and Lemma 4.33 and the hypothesis.
It remains to show thatF is holomorphic on C withF ′ = f . Well, fixw ∈ Ω and ε > 0 such thatB(w, ε) ⊆

Ω, which is legal because Ω is open. Now, we are promised a piecewise C1 path γ : [a, b]→ Ω such that

γ(a) = z0 and γ(b) = w.

Now, for any z1 ∈ B(w, ε), we set s1 : [0, 1]→ B(w, ε) be the line segment connecting w to z1; explicitly, we
have

s1(t) = w + t(z1 − w).

Then, we define γ1∗ = γ ∗ s1, a path from z0 to w to z1. In particular, we find

F (z1)− F (w) =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz =

∫
s1

f(z) dz,

where we have used Lemma 4.33 again. In particular, for z1 6= w, we find∣∣∣∣F (z1)− F (w)

z1 − w
− f(w)

∣∣∣∣ =

∣∣∣∣ 1

z1 − w

∫ 1

0

f(w + t(z1 − w))(z1 − w) dt− f(w)

∣∣∣∣
=

∣∣∣∣∫ 1

0

f(w + t(z1 − w)) dt− f(w)

∣∣∣∣ .
By Proposition 4.35, we see∣∣∣∣F (z1)− F (w)

z1 − w
− f(w)

∣∣∣∣ ≤ `(s1) · sup
t∈[0,1]

{|f(w + t(z1 − w))− f(w)|}.
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We now need to show that this values goes to 0 as ε > 0 goes to 0. Well, for some ε′ > 0, there is a δ > 0
such that |z − w| < δ for which

|z − w| < δ =⇒ |f(z)− f(w)| < ε′.

In particular, we see that |z1 − w| < δ′ implies that

|w + t(z1 − w)− w| = |t(z1 − w)| = |z1 − w| < δ′ =⇒ |f(w + t(z1 − w))− f(w)| < ε′,

so
sup
t∈[0,1]

{|f(w + t(z1 − w))− f(w)|} ≤ ε′.

Putting this together, we see that

F ′(w) = lim
z1→w

F (z1)− F (w)

z1 − w
= f(w),

so we are done. �

Remark 4.45. This criterion might appear useless, but we promise that it isn’t. It will turn out that we
don’t really have to check all paths.

4.3.2 Winding Numbers
We start with a continuous version of the polar form of a complex number. This will be the major technical
step in our construction of the winding number.

Lemma 4.46. Fix γ : [0, 1]→ C \ {0} a path. Then there is a continuous function θγ : [0, 1]→ R such that

γ(t) = |γ(t)| exp(2πiθγ(t)).

Furthermore, if we have two such functions θγ and ψγ , then θγ − ψγ di�er by a constant integer.

Proof. The point is to choose θγ with various branches of Log. We proceed with the following steps.

1. For psychological reasons, we replace γ(t) with γ(t)
|γ(t)| so that |γ(t)| = 1, and we are looking for a func-

tion θ : [0, 1]→ R so that
γ(t) = exp(2πiθ(t)).

2. We now temper the speed of γ by partitioning its interval [0, 1]. Because [0, 1] is compact γ is continu-
ous, γ is in fact, uniformly continuous by Proposition 2.124. So, for example, we can find some δ > 0
such that s, t ∈ [0, 1] has

|s− t| < δ =⇒ |γ(s)− γ(t)| < 1.

As such, we set some n ∈ N exceeding 1
δ and partition [0, 1] by {ak}nk=0 defined by ak := k/n (note

a0 = 0 and an = 1) so that |ak+1−ak| = 1
n < δ. The point is that our partition {ak}nk=0 forces γ to move

at a reasonable pace.

3. We now define θ piecewise by θk : [ak, ak+1]→ C by

θk(t) :=
arg γ(ak) + arg(γ(t)/γ(ak))

2π
.

Notably, |γ(t)−γ(ak)| < 1/2 implies that γ(t)/γ(ak) cannot be in R<0 because γ lives on the unit circle
in C, so γ(t)/γ(ak) ∈ R<0 would imply that γ(t)/γ(ak) = −1 and so |γ(t) − γ(ak)| = |1 − −1| = 2.
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Thus, θk defined above is in fact a continuous function by Lemma 3.97 because it is the composite of
continuous functions.

Importantly, we can check that i arg γ(ak) = Log γ(ak) because |γ(ak)|, so we see

exp(2πiθk(t)) = exp(i arg γ(ak) + i arg(γ(t)/γ(ak)))

= exp(Log γ(ak)) exp(Log γ(t)/γ(ak))

= γ(ak) · γ(t)/γ(ak) = γ(t),

so our θk is chosen correctly.

4. Next we glue our θk functions. Fixing some am for 0 < m < n, we see

exp(2πiθm−1(am)) = exp(2πiθm(am)),

so 2πi(θm(am) − θm−1(am)) ∈ ker exp by Proposition 3.57, so θm(am) = sm + θm−1(am) for some
sm ∈ Z by Proposition 3.73. As such, we define

θ(t) := θm(t) +

m∑
k=1

sk where t ∈ [am, am+1],

where t ∈ [am, am+1]. Note that this function is well-defined on the endpoints am for 0 < m < n
because θm(am) + sm = θm−1(am). On one hand,

exp(2πiθ(t)) = exp(2πiθm(t)) exp

(
2πi ·

m∑
k=1

sk

)
= γ(t) · 1 = γ(t)

as we showed above (using Proposition 3.57 and Proposition 3.73), so we see that this θ satisfies the
needed equation.

Lastly, to see that θ is continuous, we note that θ is continuous within each interval (am, am+1) because
this turns into a shifted version of θm, which we know is continuous by construction. Then at each
endpoint the well-definedness check shows that we can glue these intervals together.

Thus, we have exhibited our continuous function θ. It remains to show that this θ is unique up to shifting by
an integer. Well, suppose θ and ψ both satisfy

γ(t) = |γ(t)| exp(2πiθ(t)) = |γ(t)| exp(2πiψ(t)).

Using Proposition 3.57, we see that

exp
(
2πi(θ(t)− γ(t))

)
= 1,

so θ(t)−γ(t) ∈ Z by Proposition 3.73. However, t 7→ θ(t)−γ(t) is a continuous function from the connected
set [0, 1] to the set Z, but because the image must be connected by Proposition 2.98, so the image must be
a single point.4 Thus,

θ(t) = γ(t) + n

for any t ∈ [0, 1] for some fixed integer n. �

This gives us the winding number.

4 Any connected subset S ⊆ Z containing a point a ∈ Z cannot be disconnected by the open sets (a − 1/2, a + 1/2) ∩ Z and
(−∞, a− 1/2) ∪ (a+ 1/2,∞) ∩ Z, so the latter set must be empty, so S ⊆ (a− 1/2, a+ 1/2), so S = {a}.
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Definition 4.47 (Winding number). Fix γ : [0, 1]→ C \ {0} a closed path and θγ : [0, 1]→ R such that

γ(t) = |γ(t)| exp(2πiθγ(t)).

Then we define the winding number of γ around 0 by

Ind(γ, 0) :=
θγ(1)− θγ(0)

2πi
.

More generally, for a given path γ : [0, 1]→ C \ {z0}, the winding number of γ around z0 is

Ind(γ, z1) := Ind(γ − z1, 0).

Remark 4.48. Because γ is closed, we see that exp(θγ(0)) = exp(θγ(1)), so θγ(0) ≡ θγ(1) (mod 2πi), so
the winding number is in fact an integer. In fact, the winding number is independent of the chosen θγ
because any two such functions di�er by a constant integer, by Lemma 4.46.

Pictorially, the winding number of γ : [0, 1]→ C\{0} is intended to be the number of times γ “winds” around
0. We have the following examples, which we will not justify formally.

Example 4.49. The following path has winding number 0.

0

Example 4.50. The following path has winding number 1.

0

Example 4.51. The following path has winding number−1.

0

Example 4.52. The following path has winding number 2.

0
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4.4 March 14
Good morning everyone. It’s π day. Here are some house-keeping notes.

• Homework #6 is due on Friday, at midnight.

• Class on Friday will be recorded.

• Next week is spring break!

4.4.1 Winding Numbers by Integrals
Today we finish our discussion of path integration; soon we will transition over to the Cauchy integral for-
mula. We recall the following lemma.

Lemma 4.46. Fix γ : [0, 1]→ C \ {0} a path. Then there is a continuous function θγ : [0, 1]→ R such that

γ(t) = |γ(t)| exp(2πiθγ(t)).

Furthermore, if we have two such functions θγ and ψγ , then θγ − ψγ di�er by a constant integer.

We quickly recall that the function θγ in the statement is, roughly speaking, the composition of γ(t) (nor-
malized) with a suitably chosen branch of the logarithm.

This gave us the following definition.

Definition 4.47 (Winding number). Fix γ : [0, 1]→ C \ {0} a closed path and θγ : [0, 1]→ R such that

γ(t) = |γ(t)| exp(2πiθγ(t)).

Then we define the winding number of γ around 0 by

Ind(γ, 0) :=
θγ(1)− θγ(0)

2πi
.

More generally, for a given path γ : [0, 1]→ C \ {z0}, the winding number of γ around z0 is

Ind(γ, z1) := Ind(γ − z1, 0).

Remark 4.53. It is advisable to not really care about the definition given in Lemma 4.46 because we are
about to give a more computational view of it. To be more explicit, Lemma 4.46 is bad for computation.

Here’s a better way to compute the winding number.

Lemma 4.54. Fix γ : [0, 1]→ C a closed, piecewise C1 path. Further, fix z0 ∈ C \ im γ. Then

Ind(γ, z0) =
1

2πi

∮
γ

1

z − z0
dz.

Here are some example.

Example 4.55. Fix γ : [0, 1]→ C by γ(t) := exp(2πit) to be the unit circle. We can compute that∮
γ

1

z
dz =

∫ 1

0

2πi exp(2πit)

2 exp(2πit)
dt = 2πi,

so the winding number of γ around z0 = 0 is 1.
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Example 4.56. Fix γ : [0, 1] → C by γ(t) := exp(−2πit) to be the clockwise unit circle. We can then
compute that ∮

γ

1

z
dz =

∫ 1

0

−2πi exp(−2πit)

exp(−2πit)
dt = −2πi,

so the winding number of γ around z0 = 0 is−1.

And here is our proof.

Proof of Lemma 4.54. This proof is a little slick. The point is to write a(t) in terms of a branch of the loga-
rithm. As from Lemma 4.46, we have that

γ(t) = z0 + r(t) exp(2πia(t))

where r(t) := |γ(t)− z0| and a(t) : [0, 1]→ R is a continuous function.
Fix some t0 ∈ [0, 1]. The idea is to show that everything in sight is di�erentiable. Because γ(t0) 6= z0 and

γ is continuous, we can find some δ > 0 and a suitable branch of the logarithm Log so that Log(γ(t)− z0) is
defined on all B(γ(t0), δ). Here, we can compute

r(t) = exp

(
1

2
log ((γ(t)− z0)(γ(t)− z0))

)
.

Notably, this is the real-valued logarithm, so all of our standard logarithm rules apply (i.e., we are allowed
to move the 1

2 outside without concern). Thus, we see that r is a composite of continuous functions and
therefore continuous here. Now, by the continuity of r(t), we can build a branch of the logarithm so that
Log

(
γ(t)−z0
r(t)

)
is defined near γ(t0). Because

exp

(
Log

(
γ(t)− z0

r(t)

))
= exp(2πia(t)),

we conclude from Proposition 3.73 that

a(t)− 1

2πi
· γ(t)− z0

r(t)

is always an integer for each t ∈ [0, 1]. But because [0, 1] is connected andZ is discrete, this must be constant,
so there is a fixed integer n ∈ Z such that

a(t) =
1

2πi
· γ(t)− z0

r(t)
+ n.

Now we integrate. We see that∮
γ

1

z − z0
dz =

∫ 1

0

γ′(t)

γ(t)− z0
dz =

∫ 1

0

(
r′(t) + 2πir(t)a′(t)

)
exp(2πit)

r(t) exp(2πit)
dt.

At this point, we notice that the exponential functions cancel, so we have that∮
γ

1

z − z0
dz =

∫ 1

0

r′(t) + 2πir(t)a′(t)

r(t)
dt =

∫ 1

0

r′(t)

r(t)
dt+ 2πi

∫ 1

0

a′(t) dt.

Now these integrals are completely real-valued. So we compute∫ 1

0

r′(t)

r(t)
dt = log r(1)− log r(0) = 0

because γ(1) = γ(0) (it’s a closed path). Thus, we are left with∮
γ

1

z − z0
dz = 2πi

∫ 1

0

a′(t) dt = 2πi(a(1)− a(0)),

so the conclusion follows. �

Here are some corollaries.
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Corollary 4.57. Fix a closed piecewise C1 path γ : [0, 1] → C and z0 ∈ C \ im γ. Then Ind(γ−, z0) =
− Ind(γ, z0).

Proof. Applying Lemma 4.32 to Lemma 4.54, we get

Ind(γ−, z0) =

∮
γ−

1

z
dz = −

∮
γ

1

z
dz = − Ind(γ, z0),

which is what we wanted. �

Corollary 4.58. Fix closed piecewise C1 paths γ, η : [0, 1] → C such that γ(1) = η(0), and pick up some
z0 ∈ C \ (im γ ∪ im η). Then Ind(γ ∗ η, z0) = Int(γ, z0) + Ind(η, z0).

Proof. Applying Lemma 4.33 to Lemma 4.54, we get

Ind(γ ∗ η, z0) =

∮
γ∗η

1

z
dz =

∮
γ

1

z
dz +

∮
η

1

z
dz = Ind(γ, z0) + Ind(η, z0),

which is what we wanted. �

4.4.2 More General Indices
We will want a slightly more general version of the winding number for where we’re going.

Definition 4.59 (Index). Fix an open and connected subset Ω ⊆ Cand a closed piecewiseC1 pathγ : [a, b]→
Ω. Given a function f : Ω→ C which is continuous on im γ, we define

Indf (γ,w) :=
1

2πi

∮
γ

f(z)

z − w dz

Remark 4.60. This integral is equal to ∫ b

a

f(γ(t))

γ(t)− w · γ
′(t) dt,

which is now more obviously well-defined. In particular, the inner function is piecewise continuous, so
its real and imaginary parts are integrable.

Proposition 4.61. Fix an open and connected subset Ω ⊆ C and a closed, piecewise C1 path γ : [a, b]→
Ω. Given a function f : Ω → C a function continuous on im γ, the function Indf (γ,−) is analytic (!) at w
with power series around z0 given by

Indf (γ, z0) =

∞∑
n=0

(
1

2πi

∮
γ

f(z)

(z − z0)n+1
dz

)
(z − z0)n

This is our first major step towards showing that all holomorphic functions are analytic: here we have been
granted a way to conjure some magical power series.

For Proposition 4.61, we will need the following lemma.
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Lemma 4.62. Fix Ω and γ as in Proposition 4.61. Given a sequence of continuous functions {fk}∞k=1

which uniformly converge to f on im γ, then f is integrable and

lim
n→∞

∮
γ

fn(z) dz =

∮
γ

f(z) dz.

Proof. Roughly speaking, the point is to look at∮
γ

(f − fn)(z) dz

and use Proposition 4.35 and uniform convergence to show that this vanishes as n→∞.
Let’s be a little more precise. We need to show that

lim
n→∞

∮
γ

(
f(z)− fn(z)

)
dz = 0.

By Proposition 4.35, we can say∣∣∣∣∮
γ

(
f(z)− fn(z)

)
dz

∣∣∣∣ ≤ sup
t∈[a,b]

{|f(γ(t))− fn(γ(t))|} · `(γ).

If `(γ) = 0, there is nothing to say. Otherwise, we set any ε > 0 and note that uniform convergence of fn → f
promises us some N for which n > N has

|f(z)− fn(z)| < ε

2`(γ)

for all z ∈ im γ. In particular, we find that∣∣∣∣∮
γ

(
f(z)− fn(z)

)
dz

∣∣∣∣ ≤ sup
t∈[a,b]

{|f(γ(t))− fn(γ(t))|} · `(γ) ≤ ε

2`(γ)
· `(γ) < ε,

so we have established the needed limit. �

And here is our proof.

Proof of Proposition 4.61. Fix z0 ∈ C \ im γ. For psychological reasons, we translate our path and Ω so that
z0 = 0. Now, [a, b] is compact, so γ([a, b]) is compact and therefore closed, so C\ im γ is open, so we can find
an r > 0 such that B(0, 2r) ⊆ C \ im γ.

Now, for any w ∈ B(0, r) and z ∈ im γ, we have |w| < r and |z|2r, so we have |w/z| < 1/2. Continuing
with our estimation, we set

M := sup
t∈[a,b]

{|f(γ(t))|}

which exists because [a, b] is compact (namely, real-valued continuous functions always maximums on com-
pact sets). Thus, we bound ∣∣∣∣f(z)wn

zn+1

∣∣∣∣ =

∣∣∣∣f(z)

z

∣∣∣∣ · ∣∣∣wz ∣∣∣n ≤ M

2r
·
(

1

2

)n
. (∗)

Noting that |w/z| < 1, it follows that

f(z)

z − w =
f(z)

z
· 1

1− w/z =

∞∑
n=0

f(z)

z

(w
z

)n
=

∞∑
n=0

f(z)wn

zn+1
,

by how we sum geometric series. In fact, by the Weierstrass M-test, this sum converges uniformly: by (∗),
we can write

∞∑
n=0

∣∣∣∣f(z)wn

zn+1

∣∣∣∣ ≤ M

2r

∞∑
n=0

(
1

2

)n
<∞.
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Thus, Lemma 4.62 tells us that

1

2πi

∮
γ

f(z)

z − w dz =
1

2πi

∮
γ

( ∞∑
n=0

wnf(z)

zn+1

)
dz =

∞∑
n=0

(
1

2πi

∮
γ

f(z)

zn+1
dz

)
wn,

which gives the desired power series expansion. �

4.5 March 16
Good morning everyone. Here are some house-keeping notes.

• Homework #6 is still due Friday.

• Class on Friday will be recorded.

4.5.1 Cauchy Integral Formula Primer
Today we’re start with the Cauchy integral formula. Here’s the statement.

Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset Ω ⊆ C and some z0 ∈ Ω with
r > 0 such that B(z, r) ⊆ Ω. Further, fix the path γ : [0, 1]→ Ω given by

γ(t) := z0 + r exp(2πit).

Then, if f : Ω→ C is holomorphic, then any w ∈ B(z0, r) has

f(w) =
1

2πi

∮
γ

f(z)

z − w dz = Indf (γ,w).

Namely, evaluating a holomorphic function f at a pointw can be determined only from the value of f on
the path γ!

Here is a nice consequence.

Corollary 4.64. Holomorphic functions are analytic.

Proof. Use Theorem 4.63 to show that any function f di�erentiable at a point in an open set is equal to
Ind(w, γ) locally, from which Proposition 4.61 provides the local power series expansion. �

4.5.2 The Cauchy–Goursat Theorem
To prove Theorem 4.63, we will proceed in steps. Here is one major step.

Theorem 4.65 (Cauchy–Goursat). Fix an open, connected subset Ω ⊆ C and T a triangle in Ω (i.e., a
closed path defined as the concatenation of three segments). If f : Ω→ C is holomorphic, then∮

T

f(z) dz = 0.

Proof. Suppose for the sake of contradiction that the integral is nonzero. Set

I :=

∣∣∣∣∮
T

f(z) dz

∣∣∣∣ 6= 0.

Here is the image. The idea is to subdivide our triangle T := T 0 by midpoints.
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T 0
2

T 0
1

T 0
3

T 0
4

T 0

By orienting everything properly, we get cancellation along the overlapped regions, so

∮
T

f(z) dz =

4∑
i=1

∮
T 0
i

f(z) dz.

Because the norm here is nonzero, there is an index i such that

I

4
≤
∣∣∣∣∣
∮
T 0
i

f(z) dz

∣∣∣∣∣ ,
so we set T 1 := T 0

i . Then we can repeat the process inductively to T 1; here is the iterated image for T 1,
working with T 1 = T 0

2 .

T 1
2

T 1
1

T 1
3

T 1
4

T 1

This gives a sequence of nested triangles T 0, T 1, . . . such that

Ik :=

∣∣∣∣∮
Tk

f(z) dz

∣∣∣∣ ≥ I

4k
> 0.

As another bound, we note that `
(
T k
)

= 2−k`(T ) by essentially geometry of midpoint triangles.
The idea, now, is to find a point contained in all of our triangles. Let V k be the region enclosed by T k (i.e.,

the convex hull). Thus, we have a descending sequence of nested closed sets

V 1 ⊇ V 2 ⊇ V 3 ⊇ · · · .

Each of the V k is closed and bounded and therefore compact, so it follows that the intersection in total is
nonempty from the following lemma.
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Lemma 4.66. Fix a descending chain
V0 ⊇ V1 ⊇ V2 ⊇ · · ·

of nonempty compact subsets of C. Then the intersection is nonempty.

Proof. Suppose for the sake of contradiction that
∞⋂
i=0

Vi = ∅.

Then we can write

V0 = V0

∖ ∞⋂
i=0

Vi =

∞⋃
i=0

(V0 \ Vi).

In particular, V0 \Vi = V0∩ (C\Vi) is open in V0, so the above provides an open cover of V0. By compactness,
this has a finite subcover {Vik}nk=1, so

V0 =

n⋃
k=1

(V0 \ Vik) = V0

∖ n⋂
k=1

Vik ,

so we see that

∅ =

n⋂
k=1

Vik ⊇
n⋂
k=1

Vmaxk ik = Vmaxk ik

must be empty, which is a contradiction to the construction of the Vi. �

Now, put z0 in the intersection of our descending chain. Now, f is holomorphic and in particular complex
di�erentiable at z0, so Proposition 3.15 promises us a continuous function h : Ω→ C continuous at z0 such
that

f(z) = f(z0) + h(z)(z − z0).

Quickly, we expand∮
Tk

(
h(z)− f ′(z0)

)
(z − z0) dz =

∮
Tk

f(z) dz −
∮
Tk

f(z0) dz −
∮
Tk

f ′(z0)(z − z0) dz.

Now, the constant function z 7→ f(z0) has f(z0)z as a primitive, and f ′(z0)(z − z0) has f ′(z0)
2 (z − z0)2 as

a primitive, so Corollary 4.39 tells us that the two right-hand integrals vanish. Thus, we can estimate (by
Proposition 4.35)

Ik =

∣∣∣∣∮
Tk

(
h(z)− f ′(z0)

)
(z − z0) dz

∣∣∣∣
≤ sup
z∈V k

{|h(z)− f ′(z0)| · |z − z0|} · `
(
T k
)

≤ sup
z∈V k

{|h(z)− f ′(z0)|} · sup
z∈V k

{|z − z0|} · `
(
T k
)
.

Now, supz∈V k{|z−z0|} is less than the largest length in V k, which we define to be diam
(
V k
)

. Re-expanding
out to T , we see diam

(
V k
)

= 2−k diam(V 0) and `
(
T k
)
≤ `(T 0), so we get to bound

Ik ≤ 4−k sup
z∈V k

{|h(z)− f ′(z0)|} · diam(V ) · `(T ).

We now take a moment to acknowledge that the point z0 is the unique point in the intersection of the V k
because diam

(
V k
)

= 2−k diam
(
V 0
)

goes to 0, zeroing in on z0.
As such, we now take z → z0 and then k →∞. In particular, the continuity of h requires

4kIk ≤ sup
z∈V k

{|h(z)− f ′(z0)|}

to go to 0 as k →∞. But now, I ≤ 4kIk, so I = 0 is forced, which is our final contradiction. �
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4.5.3 Not Just Triangles
Triangles are a nice starting point for Theorem 4.65, but most sets we deal with will not be triangles. Here’s
a more general definition to help us.

Definition 4.67 (Star-like). A subset X ⊆ C is star-like with respect to z0 ∈ X if and only if each w ∈ X
has a line segment to z0 contained in X.

Example 4.68. Any convex set X is star-like, for any point in its interior. To be explicit, fix any z0 ∈ X.
Then, for any x ∈ X, the line segment connecting z0 and x lives in X, thus finishing. Here’s the image.

z0

Example 4.69. The star is star-like with respect to its center. Here is the image.

z0

So here is our associated statement.

Theorem 4.70. Fix an open, connected, star-like subset Ω ⊆ C with respect to z0. Further, fix a closed,
piecewise C1 path γ : [0, 1]→ Ω. Then, if f : Ω→ C is holomorphic,∮

γ

f(z) dz = 0.

Proof. The point is to construct a primitive for f by hand, similar to Theorem 4.44, using Theorem 4.65
instead of the listed condition. In particular, note that if we give f a primitive on Ω, then the conclusion will
follow by Corollary 4.39.

We imitate the construction from Theorem 4.44. Indeed, we would like to integrate over a path to create
our primitive, so we will use the star-like condition to get the desired path: forw ∈ Ω, the star-like condition
on Ω promises us the line segment γw : [0, 1]→ Ω from z0 to w, defined by

γw(t) := (1− t)z0 + tw.

As such, we set

F (w) :=

∫
γw

f(z) dz.

We now claim that F is our primitive, for which we have to show F ′(z1) = f(z1) for any z1 ∈ Ω.
For psychological reasons, we start by placing z1 ∈ Ω inside some open ballB(z1, r) ⊆ Ω. We would like

to control the value of F inside B(z1, r). Well, for any w in B(z1, r), we have the following image.
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z1
w

z0

γw

η

γ−z1

In words, we have the triangle
Tz0,w,z1 := γw ∗ η ∗ γ−z1

contained in Ω, where η(t) := (1−t)w+tz1 is the line segment connectingw to z1. In particular, γw(1) = w =
η(0) and η(1) = z1 = γ−z1(1), so we may concatenate these segments into a triangle. Further, this triangle
lives in Ω because im γw ⊆ Ω and im γz1 ⊆ Ω by hypothesis on Ω, and im η ⊆ B(z1, r) ⊆ Ω because B(z1, r)
is convex.

Thus, by Theorem 4.65, we get to write

0 =

∮
Tz0,w,z1

f(z) dz

=

∫
γw

f(z) dz +

∫
η

f(z) dz +

∫
γ−z1

f(z) dz

=

∫
γw

f(z) dz +

∫
η

f(z) dz −
∫
γz1

f(z) dz

= F (w)− F (z1) +

∫
η

f(z) dz.

We are now ready to bound our di�erence quotient: by Proposition 4.35, we see∣∣∣∣F (z1)− F (w)

z1 − w
− f(z1)

∣∣∣∣ =

∣∣∣∣ 1

z1 − w

∫
η

f(z) dz − f(z1)

∣∣∣∣
=

∣∣∣∣∫ 1

0

f((1− t)w + tz1)

z1 − w
· (z1 − w) dt− f(z1)

∣∣∣∣
=

∣∣∣∣∫ 1

0

f((1− t)w + tz1)− f(z1) dt

∣∣∣∣
= sup
t∈[0,1]

{∣∣f((1− t)w + tz1)− f(z1)
∣∣} .

Now, as w → z1, we see that f((1− t)w + tz1) will be forced to approach f(z1) by continuity of f , bounded
uniformly byw, so the quantity approaches 0. More rigorously, for any ε > 0, choose δ < r so that |z′−z1| < δ
implies |f(z′)− f(z1)| < ε. Then any w with |w − z1| < δ will have |(1− t)w + tz1 − z1| < δ as well, so

sup
t∈[0,1]

{∣∣f((1− t)w + tz1)− f(z1)
∣∣} ≤ ε
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by taking the supremum everywhere. Sending ε→ 0 gives the result. �

4.6 March 18
This lecture was recorded.

4.6.1 Proving the Cauchy Integral Formula
Today we finish the proof of the Cauchy integral formula. Recall the statement.

Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset Ω ⊆ C and some z0 ∈ Ω with
r > 0 such that B(z, r) ⊆ Ω. Further, fix the path γ : [0, 1]→ Ω given by

γ(t) := z0 + r exp(2πit).

Then, if f : Ω→ C is holomorphic, then any w ∈ B(z0, r) has

f(w) =
1

2πi

∮
γ

f(z)

z − w dz = Indf (γ,w).

Proof. As needed, choosew ∈ B(z0, r), which is open, so we choose any ε > 0 such thatB(w, ε) ⊆ B(z0, r).
As such, we set

C1 := ∂B(z0, r) = im γ and C2 = ∂B(w, ε).

Now, the main trick in the proof will be the following image, which will turn the integral around γ into a more
controlled (and small!) square.

w

C2

C1 = Γ1 ∗ Γ2

Γ1

Γ2

s1
∆1

s2

∆2

We will not spend the time to rigorously define what the various paths are, but we will list their properties.

• The concatenation Γ1 ∗ Γ2 fully covers the circle C1.

• The concatenation ∆1 ∗∆2 creates a square aroundw whose vertices are {w− ε, w+ iε, w+ ε, w− iε},
in that order.

119



4.6. MARCH 18 185: INTRO. TO COMPLEX ANALYSIS

• The segments s1 and s2 are parallel to the real axis such that s1 intersectsC1 (“on the left”) andw− ε.
Similarly, s2 intersects C1 (“on the right”) and w + ε.

• The path Γ1 starts where s2 ends and ends where s1 begins. Similarly, the path Γ2 starts where s1

begins and ends where s2 ends.

Now, as promised, we move from an integral around γ to an integral around the square ∆1∗∆2. In particular,
we set γ̃ : [0, 1]→ Ω to be a reparameterization of (∆1 ∗∆2)−, and we will transfer the integral around γ into
an integral around γ̃.

For this, we use the work we did last class. Recall the following statement.

Theorem 4.70. Fix an open, connected, star-like subset Ω ⊆ C with respect to z0. Further, fix a closed,
piecewise C1 path γ : [0, 1]→ Ω. Then, if f : Ω→ C is holomorphic,∮

γ

f(z) dz = 0.

With this in mind, we set

γ1 := Γ1 ∗ s1 ∗∆1 ∗ s2 and γ2 := Γ2 ∗ s−2 ∗∆2 ∗ s−1

to be closed paths, more or less representing the green and blue halves of our drawn contours. (These con-
catenations are well-defined and are closed by the chosen orientations of our paths.) In particular, applying
our rules from Lemma 4.33 and Lemma 4.32, we see that∮

γ1

f(z)

z − w dz +

∮
γ2

f(z)

z − w dz =

∫
Γ1

f(z)

z − w dz +

∫
s1

f(z)

z − w dz +

∫
∆1

f(z)

z − w dz +

∫
s2

f(z)

z − w dz

+

∫
Γ2

f(z)

z − w dz −
∫
ss

f(z)

z − w dz +

∫
∆2

f(z)

z − w dz −
∫
s1

f(z)

z − w dz

=

∫
Γ1∗Γ2

f(z)

z − w dz +

∫
∆1∗∆2

f(z)

z − w dz

=

∮
γ

f(z)

z − w dz −
∮
γ̃

f(z)

z − w dz, (1)

where in the last step we have reparameterized (twice), as in Lemma 4.29. The negative sign in front of
∮
γ̃

occurs because γ̃ is a reparameterization of (∆1 ∗∆2)−; pictorially, γ̃ is counterclockwise.
We now finish by brute force. Note that the function f(z)

z−w is a quotient of holomorphic functions on
Ω \ {w} is holomorphic itself. Even though we cannot immediately apply Theorem 4.70 to Ω \ {w}, we can
apply it to the regions interior to γ1 and γ2; i.e., the top and bottom parts of B(z0, r) \B(w, ε), respectively.
Both of these regions are star-like5 (as witnessed by w + iε and w − iε, respectively) because s1 and s2 are
collinear and on opposite sides of our square, so Theorem 4.70 implies∮

γ1

f(z)

z − w dz =

∮
γ2

f(z)

z − w dz = 0 + 0 = 0.

As such, (1) tells us that ∮
γ

f(z)

z − w dz =

∮
γ̃

f(z)

z − w dz.

So we have indeed transformed our integral around γ into an integral around a square γ̃. Observe that we
can even make ε > 0 smaller and maintain the above equality.

5 Technically, we should expand out the regions by a very small amount δ in order to make these regions also open and containing
γ1 and γ2, but we will not bother to do this in any rigorous way.
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We now run our computation of the integral around the square. We see

1

2πi

∮
γ̃

f(z)

z − w =
1

2πi

∮
γ̃

f(z)− f(w)

z − w dz +
1

2πi

∮
γ̃

f(w)

z − w dz

=
1

2πi

∮
γ̃

f(z)− f(w)

z − w dz + f(w) Ind(γ̃, w)

=
1

2πi

∮
γ̃

f(z)− f(w)

z − w dz + f(w), (2)

where we have computed the winding number as in Lemma 4.54. Notably, our winding number is +1, per-
haps by plugging into the definition via Lemma 4.46 because the normalized version of γ̃ is just a circle, so
the corresponding θγ̃ can be set to θ0 + 2πt for some starting value θ0. We will not make this more rigorous
because look at it.

We now send ε→ 0, which will send f(z)−f(w)
z−w → f ′(w) by definition of the derivative. More rigorously,

for any ε0 > 0, there exists ε > 0 so that |z − w| < ε implies∣∣∣∣f(z)− f(w)

z − w − f ′(w)

∣∣∣∣ < ε0,

so Proposition 4.35 tells us that∣∣∣∣ 1

2πi

∮
γ̃

f(z)− f(w)

z − w dz

∣∣∣∣ ≤ 1

2π
· sup
t∈[0,1]

{∣∣∣∣f(γ̃(z))− f(w)

γ̃(z)− w

∣∣∣∣} · `(γ̃)

≤ 1

2π
·
(
|f ′(w)|+ ε0

)
· 2πε,

where in the last step we have bounded both the di�erence quotient and γ̃ by the circumference of the
circumscribed circle. Thus, sending ε→ 0 will force the entire integral to vanish, so we find from (2) that

1

2πi

∮
γ

f(z)

z − w dz = lim
ε→0

1

2πi

∮
γ̃

f(z)

z − w dz = lim
ε→0

1

2πi

∮
γ̃

f(z)− f(w)

z − w dz + f(w) = f(w),

which is what we wanted. �

4.6.2 Applications of the Cauchy Integral Formula
As a first application, we extend Corollary 4.64.

Corollary 4.71. Fix an open, connected subset Ω ⊆ C and f : Ω→ C some holomorphic function. Then
f is analytic at any z0 ∈ Ω. In fact, for any r > 0 such that B(z0, r) ⊆ Ω, the path

γ(t) := z0 + r exp(2πit)

gives

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − w)n+1
dz.

Proof. By Theorem 4.63, we know that
f(w) = Indf (γ,w),

for any w ∈ B(z0, r). Now, applying Proposition 4.61, we see that

f(z) =

∞∑
n=0

(
1

2πi

∮
γ

f(z)

(z − z0)n+1

)
(z − z0)n
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for z in some open ball around z0, which is our local power series expansion. Now, inductively throwing
Proposition 3.44 at this power series, we see that

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − z0)n+1
dz,

which is what we wanted. �

And here is another one.

Theorem 4.72 (Morera). Fix an open, connected subset Ω ⊆ C such that f : Ω → C is continuous. Fur-
ther, suppose that every closed, piecewise C1 path γ : [a, b]→ Ω has∮

γ

f(z) dz = 0.

Then f is holomorphic.

Proof. By Theorem 4.44 tells us that f has a primitive F on Ω. In particular, F is holomorphic on Ω (with
F ′ = f ) and therefore F is analytic by Corollary 4.71, so f = F ′ is analytic by Lemma 3.51 and therefore
holomorphic by Proposition 3.49. �

Remark 4.73. I think a strengthening of Theorem 4.44 can show that we merely need to check∮
γ

f(z) dz = 0

for C1 paths γ.

4.6.3 Primitive Domains
To close our lecture, we build a little theory on domains.

Definition 4.74 (Domain). A subset Ω ⊆ C is a domain if and only if Ω is open and connected.

Definition 4.75 (Primitive domain). A domain Ω ⊆ C is a primitive domain if and only if every holomor-
phic function f : Ω→ C admits a primitive.

Example 4.76. Star-like domains are primitive because we constructed a primitive for each holomor-
phic f : Ω → C by hand in the proof of Theorem 4.70. Alternatively, we can more directly just apply
Theorem 4.70 and then Theorem 4.44 backwards to get our primitive.

Here is a quick reason why we might care about this definition.

Lemma 4.77. Fix a primitive domain Ω ⊆ C and some holomorphic function f : Ω → C. Then, given a
closed, piecewise C1 path γ : [a, b]→ C, we have∮

γ

f(z) dz = 0.

Proof. Because Ω is a primitive domain, f admits a primitive. Then Corollary 4.39 finishes. �

And here is the technical result we will need.
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Lemma 4.78. Fix primitive domains Ω1,Ω2 ⊆ C. Further, suppose that Ω1 ∩ Ω2 is nonempty and con-
nected. Then Ω1 ∪ Ω2 is a primitive domain.

Proof. By Lemma 2.46, we see that Ω1∪Ω2 is connected, and because both these sets are open, we see that
Ω1 ∪ Ω2 is in fact a domain as well.

It remains to show that Ω1 ∪Ω2 is in fact a primitive domain. Well, fix any holomorphic function f : (Ω1 ∪
Ω2)→ C. For brevity, set f1 := f |Ω1

and f2 := f |Ω2
so that f1 : Ω1 → C and f2 : Ω2 → C are both holomorphic

by restriction.
Thus, because Ω1 and Ω2 are both primitive domains, we are promised primitives F1 and F2 for f1 and f2

respectively. In particular,
F ′1 = f1 and F ′2 = f2.

It remains to stitch these together to create a single primitive for f . Well, Ω1∩Ω2 is also open and connected
(as the intersection of open and connected sets) and hence a domain, and we note

(F1 − F2)′(z) = F ′1(z)− F ′2(z) = f(z)− f(z) = 0

for any z ∈ Ω1 ∩Ω2. In particular, F1−F2 is constant on Ω1 ∩Ω2 by Lemma 2.46; note that here is where we
use the condition that Ω1 ∩ Ω2 is connected! So we set (F1 − F2)(z) =: c for some c ∈ C.

We now note that F2 + c will be a primitive for f on Ω2 because

(F2 + c)′ = F ′2 + c′ = f.

With this in mind, we define F : (Ω1 ∪ Ω2)→ C by

F (z) :=

{
F1(z) z ∈ Ω1,

F2(z) + c z ∈ Ω2.

Note this is well-defined because z ∈ Ω1 ∩ Ω2 has F1(z) = F2(z) + c. We can then check that

(F |Ω1
)′ = F ′1 = f and (F |Ω2

)′ = (F2 + c)′ = f,

which is what we wanted. �

After spring break, we prove some more consequences of the Cauchy integral formula.

4.7 March 28
Welcome back from spring break, everybody. Homework #7 has been released and is due on Sunday.

4.7.1 Liouville’s Theorem
Today we are discussing consequences of the Cauchy integral formula. Here is the statement.

Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset Ω ⊆ C and some z0 ∈ Ω with
r > 0 such that B(z, r) ⊆ Ω. Further, fix the path γ : [0, 1]→ Ω given by

γ(t) := z0 + r exp(2πit).

Then, if f : Ω→ C is holomorphic, then any w ∈ B(z0, r) has

f(w) =
1

2πi

∮
γ

f(z)

z − w dz = Indf (γ,w).

123



4.7. MARCH 28 185: INTRO. TO COMPLEX ANALYSIS

Remark 4.79. There are two ways to read this: we could either try to evaluate f at w via the integral,
or we could be handed an integral that looks something like the right-hand side and then compute by
evaluating f at w.

As one immediate consequence, we showed that holomorphic functions are analytic.
Let’s see another consequence.

Theorem 4.80 (Liouville’s). Fix an entire function f : C→ C. If f is bounded, then f is constant.

Proof. This isn’t too hard. Because f is bounded, we are promised a real numberM ∈ R+ such that |f(z)| <
M for all z ∈ C. Fix some w ∈ C, and choose any r so that r > |w|. The idea is to take r very large in the
Cauchy integral formula to show that f(w) = f(0); for now, we innocently define γr : [0, 1]→ C by

γr(0) := r exp(2πit)

as tracing the boundary of B(0, r). In particular, our w ∈ C with |w| < r (i.e., w ∈ B(0, r)) will have

|z − w| ≥ |r − |w||

for any z ∈ im γr.6 We will show that f(w) = f(0) by the Cauchy integral formula: by Theorem 4.63, we
have

|f(w)− f(0)| =
∣∣∣∣ 1

2πi

∮
γr

(
f(z)

z − w −
f(z)

z

)
dz

∣∣∣∣
=

∣∣∣∣ 1

2πi

∮
γr

wf(z)

z(z − w)
dz

∣∣∣∣
≤ 1

2π
· `(γr) · sup

z∈im γr

{∣∣∣∣ wf(z)

z(z − w)

∣∣∣∣} ,
where we have applied Proposition 4.35 in the last step. Further, `(γr) = 2πr because we are tracking out a
circle. And lastly, we note that any z ∈ im γr will have∣∣∣∣ wf(z)

z(z − w)

∣∣∣∣ ≤ |w| ·M
r · (r − |w|) ,

so
|f(w)− f(0)| ≤ 1

2π
· 2πr · |w| ·M

r · (r − |w|) =
|w| ·M
r − |w| .

Now, taking r →∞will have
|w| ·M
r − |w| = 0,

so f(w) = f(0) follows. Thus, f is indeed constant. �

And now we can use Liouville’s theorem for fun and profit.

Theorem 4.81 (Fundamental theorem of algebra). Fix a polynomial p(z) ∈ C[z] of degree n > 0. Then p
has a root in C.

Proof. Let our polynomial be

p(z) =

n∑
k=0

akz
k.

6 This is from the triangle inequality: note |z − w|+ |w| ≥ |z| = r and |w − z|+ r ≥ |w|.
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Note that p(w) = 0 if and only if 1
an
p(w) = 0, so for psychological reasons, we will replace p(z) with 1

an
p(z).

In other words, we will simply assume that an = 1 and set

q(z) =

n−1∑
k=0

akz
k

so that p(z) = zn + q(z).
Now, suppose that p has no roots, and we will show that p is constant via Theorem 4.80; i.e., p(z) 6= 0 for

any z ∈ C. Then Proposition 3.6 tells us that f(z) := 1
p(z) is holomorphic no C (i.e., entire). We claim that f

is bounded on C. Well, by the triangle inequality again, we see

||zn| − |q(z)|| ≤ |p(z)|,

so
|f(z)| ≤ 1

||z|n − |q(z)|| .

But now, by sending |z| → ∞, we may assume that z 6= 0 for |z| su�ciently large, so

|f(z)| ≤ 1

||z| − |q(z)/zn−1|| ,

which goes to 0 as |z| → ∞. As such, f(z) is bounded and hence constant by Theorem 4.80, so p(z) = 1
f(z)

is also bounded and hence constant. Note f(z) 6= 0 because f(z) = 1
p(z) everywhere. �

Remark 4.82. This proof is somewhat non-constructive, in that we have no idea what the root is.

Remark 4.83. By inducting, we can show that p has exactly n roots, counted with multiplicity.

4.7.2 Poles and Zeroes Preview
Here is another result.

Theorem 4.84 (Riemann removable singularity). Fix an open and connected subset Ω ⊆ C, and pick up
some z0 ∈ Ω. If f : Ω \ {z0} → C is holomorphic and bounded near z0, then f extends to a holomorphic
function on Ω.

Proof. We will construct f(z0) explicitly by starting with a function fully holomorphic on Ω, which we will
then use to derive f(z0). In particular, we define h : Ω→ C by

h(z) :=

{
(z − z0)2f(z) z 6= z0,

0 z = z0.

Quickly, we claim thath is holomorphic on Ω. Becauseh|Ω\{z0}(z) = (z−z0)2f(z) is a product of holomorphic
functions, we conclude thath is holomorphic on Ω\{z0}. Thus, we merely have to check thath is holomorphic
at z0. In particular, we compute

h′(z0) = lim
z→z0

h(z)− h(z0)

z − z0
= lim
z→z0

f(z)(z − z0)2

z − z0
= lim
z→z0

f(z)(z − z0) = 0,

where the last step is because f is bounded near z0.
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Now, h is holomorphic on Ω, so h is analytic on Ω by Corollary 4.71, so we are promised a local power
series expansion at z0: there are coe�cients {ak}k∈N ⊆ C with an r > 0 such that z ∈ B(z0, r) will have

h(z) =

∞∑
k=0

ak(z − z0)k.

Quickly, we see that a0 = h(0) = 0 and a1 = h′(0) = 0 (by Corollary 4.71). Thus, we may write

f(z) =
h(z)

(z − z0)2
=

∞∑
k=0

ak+2(z − z0)k (∗)

for any z ∈ B(z0, r) \ {z0}. However, if we define f̃ : Ω→ C by

f̃(z) :=

{
a2 z = z0,

f(z) z 6= z0,

then f̃ is holomorphic on Ω \ {z0} by restriction and analytic at z0 by (∗), so f̃ is the holomorphic extension
of f to Ω. �

We close with one more statement.

Proposition 4.85. Fix an open, connected subset Ω ⊆ C and a holomorphic function f : Ω→ C. Further,
define Z := f−1({0}).

(a) If z0 ∈ Z, then either z0 is isolated, or there is some open neighborhood of z0 in Z.

(b) If z0 is isolated, then there is a unique integern and holomorphic function g : Ω→ Cwith g(z0) 6= 0
such that

f(z) = (z − z0)ng(z)

for z ∈ Ω.

Proof. We will prove this next class. �
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THEME 5

SMOOTHING OVER

What we didn’t do is make the construction at all usable in practice!
This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

5.1 March 30
Good morning everyone.

• Homework #7 is due on Sunday just before midnight.

• There will be o�ce hours tomorrow from 2PM to 3:30PM, as usual.

5.1.1 More on Zeroes
We are talking about more consequences of the Cauchy integral formula. For example, last time we showed
Liouville’s theorem, the Fundamental theorem of algebra, and the Riemann removable singularity theorem.
We are also about to show the following result.

Proposition 4.85. Fix an open, connected subset Ω ⊆ C and a holomorphic function f : Ω→ C. Further,
define Z := f−1({0}).

(a) If z0 ∈ Z, then either z0 is isolated, or there is some open neighborhood of z0 in Z.

(b) If z0 is isolated, then there is a unique integern and holomorphic function g : Ω→ Cwith g(z0) 6= 0
such that

f(z) = (z − z0)ng(z)

for z ∈ Ω.

Proof. Fix some z0 ∈ Z. Now, because f is holomorphic, f is analytic at z0 (by Corollary 4.71), so we have
some r > 0 such that B(z0, r) ⊆ Ω with

f(z) =

∞∑
k=0

ak(z − z0)k (∗)
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for any z ∈ B(z0, r). It is technically possible for ak = 0 for all k ∈ N. But now, f is zero on all of B(z0, r),
which is one possibility for part (a). This is all we are going to say about this case.

Otherwise, let n be the minimum natural number such that an 6= 0. As such, we simply define g : Ω→ C
as

g(z) :=

{
f(z)/(z − z0)n z 6= z0,

an z = z0.
.

This function is at least holomorphic at all points away from z0 as the quotient of two holomorphic functions
(by Proposition 3.6), so we merely need to check that g is holomorphic at z0. However, on B(z0, r), we see
that z 6= z0 will have

g(z) =
f(z)

(z − z0)n
=

∞∑
k=n

ak(z − z0)n

by (∗). But of course, this also works at g(z0) = an, so we see that the above power series expansion works
for all z ∈ B(z0, r). So g is in fact analytic at z0 and hence holomorphic at z0 by (∗).

We now show that z0 is an isolated point of Z. Well, g(z0) 6= 0 and g is continuous (in fact holomorphic),
we are promised some ε > 0 such that

|g(z)− g(z0)| > |g(z0)|

for all z ∈ B(z0, ε), so in particular g(z) 6= 0 here. Thus, when we write

f(z) = (z − z0)ng(z),

the only time we can have f(z) = 0 for z ∈ B(z0, ε) is at z = z0 because z 6= z0 implies (z − z0)n 6= 0 and
g(z) 6= 0.

Lastly, we get the uniqueness of the integer n follows from its minimality. �

To use the above result, we show one of my personal favorite results from complex analysis.

Theorem 5.1 (Identity). Fix an open, connected subset Ω ⊆ Cwith two holomorphic functionsf1, f2 : Ω→
C. Further, set

Z := {z ∈ Ω : f1(z) = f2(z)}.
If Z contains an accumulation point, then f2 = f2 on Ω.

Proof. For psychological reasons, we set f(z) := f1(z) − f2(z) so that z ∈ Z if and only if f1(z) = f2(z) if
and only if f(z) = 0. So Z = f−1({0}), and we are ripe to apply the previous result.

Now, we are granted an accumulation point w ∈ Z, so we have some sequence {zk}k∈N ⊆ Z \ {w} such
that zk → n. In particular, w is not isolated: for every open neighborhood B(w, ε) around w, the fact that
zk → n promises that B(w, ε) ∩ (Z \ {w}) 6= ∅.

Thus, Proposition 4.85 kicks in, so there exists some r > 0 such that f(z) = 0 for allB(w, r), soB(w, r) ⊆
Z. In other words, every accumulation point of Z is contained in the interior of Z, which we will denote Z◦.

As such, we claim thatZ◦ is closed. Quickly, note thatZ = f−1({0}) is the pre-image of a closed set and
hence closed by Lemma 2.92 because f is continuous. In particular, if α is any limit point of Z◦, then α is an
accumulation point of Z (because Z is closed), so α ∈ Z◦.

Thus, Z◦ is indeed closed. But it is also open, so the connectivity of Ω forces Z◦ = ∅ or Z◦ = Ω. But Z◦
is nonempty because we have an accumulation point, so Z◦ = Ω, so we are done. �

Remark 5.2. This is really something special about holomorphic functions. For example, the function

f(z) =

{
e−1/z2 z > 0,

0 z ≤ 0,

is real analytic everywhere, and it agrees with the zero function on R≤0, but of course f is nonzero.
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We remark that the value of n in Proposition 4.85 is somewhat special.

Definition 5.3 (Multiplicity). Fix an open, connected subset Ω ⊆ C and a holomorphic function f : Ω →
C. If we have some z0 ∈ Ω such that f(z0) = 0 and z0 is isolated in f−1({0}), then by Proposition 4.85
there is a unique integer n and holomorphic function g : Ω→ C with g(z0) 6= 0 such that

f(z) = (z − z0)ng(z).

This n is called the multiplicity of z0 in f .

We actually know how to compute f because Proposition 4.85 is fully constructive: we simply expanded out
the power series expansion of f at z0 as

f(z) =

∞∑
k=0

ak(z − z0)k

and then looked for the minimal n such that an 6= 0. However, we also know that these coe�cients of the
power series can be computed via the proof of Corollary 3.45 as

f (m)(z0) = m!am,

so we can alternatively look for the minimal n such that f (n)(z0) 6= 0.

Example 5.4. By Lemma 3.69, we computed

sin z =

∞∑
k=0

(−1)k−1

(2k + 1)!
z2k+1.

We can check that sin 0 = 0 while the linear term is nonzero, so we have multiplicity 1. Alternatively,
we can compute the first derivative as

sin′(0) = cos(0) = 1 6= 0.

5.1.2 More on Zeroes
We close by stating a theorem.

Theorem 5.5 (Maximum modulus principle). Fix an open, connected subset Ω ⊆ C and a non-constant
holomorphic function f : Ω→ C. For each z ∈ Ω and r > 0, there exists w ∈ B(z, r) ∩ Ω such that

|f(w)| > |f(z)|.

Proof. We proceed by contraposition. Fix some z0 ∈ Ω and r > 0 such that w ∈ B(z0, r) ∩ Ω has |f(w)| ≤
|f(z0)|. Note that making r smaller merely makes our search space smaller, so we may take r small enough
so that B(z0, r) ⊆ Ω.

Further, note that if f is constant on B(z0, r), then f is constant on all of Ω because f will agree with a
constant function on the set B(z0, r)—which contains a limit point—forcing f to be constant on all of Ω by
Theorem 5.1. Thus, it su�ces to show that f is constant on B(z0, r).

As such, we think of f as a function on B(z0, r) such that |f(z0)| ≥ |f(w)| for each w ∈ Ω, and we want
to show that f is constant. Very quickly, if |f(z0)| = 0, then we get f ≡ 0 automatically, so we assume
f(z0) 6= 0. As such, we can replace f with f(z)/f(z0), which lets us assume that f(z0) = 1.

The key point here, is to use Theorem 4.63 to note

f(z0) =
1

2πi

∮
γε

f(z)

z − z0
dz
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for γε : [0, 1] → C defined by γε(t) := z0 + ε exp(2πit), for any ε ∈ (0, r). The main idea, then, is that the
numerator f(z) is in some sense “too small” to actually accumulate properly to f(z0) = 1, especially if f(z)
ever deviates from exactly 1.

To be able to keep track of deviations in direction, we see that Lemma 4.46 promises us a function θε
with

(f ◦ γε)(t) = |f(γ(t))| exp(2πiθε(t)).

Thus, we compute

1 =
1

2πi

∮
γε

f(z)

z − z0
dz

=
1

2πi

∫ 1

0

|f(γ(t))| exp(2πiθε(t))

exp(2πit)
· 2πi exp(2πit) dt

=

∫ 1

0

|f(γ(t))| exp(2πiθε(t)) dt.

In particular, extracting out the real part from the integral forces

1 =

∫ 1

0

|f(γ(t))| cos(2πθε(t)) dt.

Bounding the integral in R, we see∫ 1

0

|f(γ(t))| cos(2πθε(t)) dt ≤ (1− 0) · max
t∈[0,1]

{
|f(γ(t))| cos(2πθε(t))

}
≤ 1,

where equality is now holding only when |f(γ(t))| cos(2πθε(t)) = 1 for all t ∈ [0, 1].1 In particular, we need
|f(γ(t))| = 1 exactly, and we also need θε(t) ≡ 0 (mod 2π) for all t, so in particular,

(f ◦ γε)(t) = |f(γ(t))| exp(2πiθε(t)) = 1

always. Now, because any z ∈ B(z0, r) \ {z0} can be written in polar form by

z − z0 = ε exp(iθ)

for some ε < r and some θ, we see that actually any z ∈ B(z0, r) will be forced to have f(z) = 1. This finishes
the proof that f is constant. �

Remark 5.6 (Nir). There are other ways to see this result. For example, it happens that holomorphic are
open, so f(B(z0, r)) must be open and in particular contains an open neighborhood around f(z0), and
we can choose an output in this neighborhood smaller than f(z0) in magnitude.

The rough idea here is that f cannot obtain a maximum on an open set: we must always look to the
boundary. More rigorously, we have the following statement.

Corollary 5.7. Fix an open, connected subset Ω ⊆ C and a non-constant continuous function f : Ω→ C
such that f |Ω is holomorphic. Now, if z0 ∈ Ω such that |f(z0)| is maximal, then z0 ∈ ∂Ω.

Proof. If z0 ∈ Ω, then f is forced to be continuous on Ω by Theorem 5.5, which violates the hypothesis on f .
Thus, we conclude z0 ∈ Ω \ Ω, which is ∂Ω. �

1 The sharpness of these equalities really does need some continuity discussion. Roughly speaking, if we ever have a strict inequality
|f(γ(t0))| cos(2πθε(t0)) < 1, then we have strict inequality in some neighborhood around t0, which we can track through to make the
integral strictly less than 1. This argument is purely real analysis.
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Corollary 5.8 (Schwarz’s lemma). Fix a holomorphic function f : B(0, 1) → B(0, 1) such that f(0) = 0.
Then actually |f(z)| ≤ |z| for all z ∈ B(0, 1) and also |f ′(0)| ≤ 1. Further, if |f ′(0)| = 1 or |f(z)| = |z| for
some nonzero z ∈ B(0, 1), then f(z) = az for all z ∈ C for some fixed a ∈ C.

Intuitively, holomorphic functions B(0, 1)→ B(0, 1) must contract.

Proof. We will prove this next class. �

5.2 April 1
Good morning everyone. It’s April Fool’s day.

• Homework #7 is still due on Sunday at 11:59PM.

• There are o�ce hours today.

5.2.1 The Schwarz Lemma
We quickly review the following result.

Corollary 5.8 (Schwarz’s lemma). Fix a holomorphic function f : B(0, 1) → B(0, 1) such that f(0) = 0.
Then actually |f(z)| ≤ |z| for all z ∈ B(0, 1) and also |f ′(0)| ≤ 1. Further, if |f ′(0)| = 1 or |f(z)| = |z| for
some nonzero z ∈ B(0, 1), then f(z) = az for all z ∈ C for some fixed a ∈ C.

Proof. The main point is to use the Maximum modulus principle on a specially chosen holomorphic function.
We define g : B(0, 1)→ C as

g(z) :=

{
f(z)/z z 6= 0,

f ′(0) z = 0.

As usual, we note that g is holomorphic: we are holomorphic at all z 6= 0 by restriction from f(z)/z, and we
are in fact holomorphic at z = 0 by doing a power series expansion there, by hand.

We now have two cases.

• Now, if g is constant, then f(z) = az for each z ∈ C, for some fixed a ∈ C. We get |f(z)| ≤ |z| because
|f(z)| ≤ 1 forces |a| ≤ 1 (namely, by sending z to the boundary of B(0, 1)).

• Otherwise, take g to be non-constant. To create a compact space, set r ∈ (0, 1) so that B(0, r) ⊆
B(0, 1). Now, by compactness, we see that |g| has a maximum onB(0, r), so Corollary 5.7 tells us that
each of these r has a w ∈ ∂B(0, r), so

|g(z)| ≤ |g(w)| = |f(w)|
|w| ≤

1

|w| =
1

r

for all z ∈ B(0, r). Now, sending r → 1, we get the inequality |g(z)| ≤ 1 for all z ∈ B(0, 1), so |f(z)| ≤ |z|
follows.

The above casework finishes the first sentence of the proof.
We now show the second sentence. If |f(z)| = |z| for some nonzero z ∈ B(0, 1), then g achieves 1 on its

interior, which we know must be now be its maximum. So Theorem 5.5 forces g to be constant, giving the
result. Otherwise, if f ′(0) = 1, then g(0) = 1, so again g achieves its maximum in B(0, 1), so Theorem 5.5
still forces g to be constant. �

Remark 5.9. The above result is approximately what lets us talk intelligently about automorphisms of
B(0, 1).
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5.2.2 Singularities
We will spend the rest of lecture today discussing singularities.

Definition 5.10 (Regular, singular). Fix an open and connected subset Ω ⊆ C with a function f : Ω→ C.

• A point z0 ∈ Ω is regular if and only if f is holomorphic at z0.

• A point z0 ∈ Ω is a singularity otherwise.

Definition 5.11 (Isolated singularity). Fix an open and connected subset Ω ⊆ C with a function f : Ω →
C. A point z0 ∈ Ω is an isolated singularity if and only if we can find r > 0 with B(z, r) ⊆ C such that f
is holomorphic on B(z0, r) \ {z}.

• z0 is removable if and only if f is bounded near z0.

• z0 is a pole if and only if f is not bounded near z0, but z0 is a removable singularity of 1/f(z).

• z0 is an essential singularity if and only if z0 is neither removable nor a pole.

Remark 5.12. Being a removable singularity means that we can extend f to be holomorphic at the point,
by Theorem 4.84.

Here are some examples.

Example 5.13. The point z0 = 0 is an isolated singularity of f : C\{0} → C defined by f(z) = cos(z)/z2.

Example 5.14. The point z0 = 0 is a removable singularity of f : C\{0} → C defined by f(z) = sin(z)/z,
which we can check by bounding sin near 0.

Example 5.15. The function e1/z has an essential singularity at z0 = 0.

The point of introducing these notions is to expand our study of holomorphic functions. We take the follow-
ing definition.

Definition 5.16 (Meromorphic). Fix an open and connected subset Ω ⊆ C. Then f : Ω→ C is meromor-
phic if and only if all the singularities of f are isolated and poles.

The short version of where we are going is that meromorphic functions will also be very nice; for example,
though they will not be literally power series at the singularity, they will be some power series with a finite
negative tail, of sorts.

Anyway, we should probably prove something today.

Lemma 5.17. Fix an open and connected subset Ω ⊆ C with a function f : Ω → C. If z0 ∈ Ω is a pole of
f , then

lim
z→z0

1

f(z)
= 0.

Intuitively, poles of f transfer to zeroes of 1/f .

Proof. We expand out the definitions. By definition, z0 is a removable singularity of 1/f(z), and because our
singularity is removable, we are promised an open ballB(z0, r) so that f is nonzero atB(z0, r) \ {z0}, so we
note that 1/f(z) will be holomorphic on this punctured ball.
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Further, 1/f(z) is bounded near z0, so Theorem 4.84 tells us that we can extend 1/f(z) to be holomorphic
fully on B(z0, r), so we know that

w := frac1f(z0) = lim
z→z0

1

f(z)

after extending 1/f appropriately. We want to show thatw = 0. Well, suppose for the sake of contradiction
that w 6= 0 so that we have

lim
z→z0

f(z) =
1

w
.

However, this contradicts the fact that f needs to not be bounded near z0 because it does tell us that (z −
z0)f(z)→ 0 as z → z0. In particular, we are now invoking the fact that z0 is a pole. �

And here is the dual to this lemma.

Lemma 5.18. Fix an open and connected subset Ω ⊆ C and z0 ∈ Ω with a function f : Ω \ {z0} → C so
that z0 is an isolated singularity of f . Then z0 is a pole of f if and only if

lim
z→z0

|f(z)| =∞.

Proof. In the forward direction, z0 being a pole forces

lim
z→z0

1

|f(z)| = 0

by Lemma 5.17. As such, we are forced to have

lim
z→z0

|f(z)| =∞.

The backwards direction will require some e�ort. We need to show that z0 is a removable singularity of 1/f
and that f is not bounded near z0. On one hand, we know

lim
z→z0

|f(z)| =∞,

but then we can rearrange to
lim
z→z0

z − z0

f(z)
= 0,

so z0 is indeed a removable singularity of 1/f . On the other hand, suppose for the sake of contradiction that
f is bounded near z0; then Theorem 4.84 promises us that we can extend f to be holomorphic on Ω, and
therefore we see

lim
z→z0

f(z)

exists. But then
lim
z→z0

1

|f(z)|
cannot be zero (it is either nonzero or not defined at all), which contradicts what we just showed. �

5.2.3 Laurent Expansion
To deal with singularities, we have the following definition.

Definition 5.19 (Order). Fix an open and connected subset Ω ⊆ C with a function f : Ω → C. Given a
pole z0 ∈ Ω of f , we define the order of z0 as a pole to equal the multiplicity of z0 as a zero of 1/f(z).

Note that we are implicitly using Lemma 5.17.
We have the following lemma, which is intended to be analogous to the fact that holomorphic functions

are analytic.
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Lemma 5.20. Fix an open and connected subset Ω ⊆ C with a function f : Ω→ C, and suppose that z0 is
a pole of f with order m > 0. Then there exists any su�ciently small real number r ∈ R+ and a unique
sequence {ak}∞k=−m ⊆ C such that z ∈ B(z0, r) \ {z0} has

f(z) =

∞∑
k=−m

ak(z − z0)k.

In particular, the order of our pole controls the length of our tail.
We will not prove the above result today, but we will give the parts names.

Definition 5.21 (Laurent expansion). In the context of Lemma 5.20, the “power series” expansion

f(z) =

∞∑
k=−m

ak(z − z0)k

is the Laurent expansion of f at z0; here m is the order of the pole at z0.

Definition 5.22 (Principal part). In the context of Lemma 5.20, we call the negative tail

pf,z0(z) :=

−1∑
k=−m

ak(z − z0)k

the principal part of f at z0.

Notably, the principal part is the “bad” part of our power series expansion.

Definition 5.23 (Residue). In the context of Lemma 5.20, we call a−1 the residue of f at z0, denoted
Resz0(f).

Later on we will be able to compute residues via integrals.

5.3 April 4
Good morning everyone.

• Homework #8 is due on Friday at 11:59PM.

• Midterm #2 is on Friday, April 15th.

• O�ce hours on Thursday are in flux.

5.3.1 The Residue Theorem
Today we are talking about residues. We return to the following lemma.

Lemma 5.20. Fix an open and connected subset Ω ⊆ C with a function f : Ω→ C, and suppose that z0 is
a pole of f with order m > 0. Then there exists any su�ciently small real number r ∈ R+ and a unique
sequence {ak}∞k=−m ⊆ C such that z ∈ B(z0, r) \ {z0} has

f(z) =

∞∑
k=−m

ak(z − z0)k.
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Proof. We symbol-shift. Because z0 is a removable singularity for 1/f(z), Theorem 4.84 implies that we
can extend 1/f(z) to z0 in such a way that preserves being holomorphic. Further, Lemma 5.17 promises us
that 1/f(z) goes to 0 at z = z0. Namely, we can write

1

f(z)
= (z − z0)mg(z),

where g(z0) 6= 0 andm is the order of our pole, where we are using Proposition 4.85. Because g(z0) 6= 0, we
get a small neighborhood B(z0, ε) such that g(z) 6= 0 in this neighborhood (by continuity), so we can write

f(z) = (z − z0)−m · 1

g(z)

for z ∈ B(0, ε). Now, setting h(z) := 1/g(z), we see that h(z) is holomorphic on B(0, ε) by Proposition 3.6.
Thus, h is holomorphic, so h is analytic at z0 by Corollary 4.71, so we get a power series expansion

h(z) =

∞∑
k=0

ak(z − z0)k

for all z ∈ B(z0, r), for some r > 0. Dividing out, we see that z ∈ B(z0, r) \ {z0}will have

f(z) = (z − z0)−m
∞∑
k=0

ak(z − z0)k =

∞∑
k=−m

ak+m(z − z0)k,

which is what we wanted. �

Now, here is our central definition today, which we introduced last class.

Definition 5.23 (Residue). In the context of Lemma 5.20, we call a−1 the residue of f at z0, denoted
Resz0(f).

Here is the main result for today.

Theorem 5.24 (Residue). Fix a primitive domain Ω ⊆ C and some finite subset S ⊆ Ω such that we have
a holomorphic function f : Ω \ S → C, where S consists of the poles of f . Now, if γ : [0, 1] → Ω is a
closed, piecewise C1 path such that im γ ∩ S = ∅, then∮

γ

f(z) dz = 2πi
∑
z0∈S

Resz0(f) Ind(γ, z0).

Proof. We combine previous results. At a high level, we are going to fix f at all poles, and the process of
“unfixing” the integrals will give rise to the residues. For each z0 ∈ S, we take pf,z0(z) to be the principal
part of f at z0, where f(z) =

∑∞
k=−mw

aw,k(z− z0)k is our Laurent expansion at z0. The idea here is to kill all
the “bad parts” of f : we set

g(z) := f(z)−
∑
z0∈S

pf,z0(z).

We automatically know that g is holomorphic on Ω \ S, and in fact, each w ∈ S will have some power series
expansion

g(z) =

∞∑
k=−mw

aw,k(z − w)k −
−1∑

k=−mw

aw,k(z − w)k =

∞∑
k=0

aw,k(z − w)k

in a neighborhood aroundw, so setting g(w) := aw,0 makes g analytic and hence holomorphic at eachw ∈ S.
Thus, we can extend g to be holomorphic on all of Ω.
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Now, because Ω is a primitive domain, so Lemma 4.77 tells us that∮
γ

f(z) dz =

∮
γ

g(z) dz︸ ︷︷ ︸
0

+
∑
z0∈S

∮
γ

pf,z0(z) dz =
∑
z0∈S

∮
γ

pf,z0(z) dz.

We now integrate by hand. Fix some w ∈ S, and we note that∮
γ

pf,w(z) dz =

−1∑
k=−mw

ak

∮
γ

(z − z0)k dz.

Now, for k ≤ −2, we see that
d

dz

(z − z0)k+1

k + 1
= (z − z0)k,

so the function (z − z0)k has a primitive, so Corollary 4.39 promises us that∮
γ

pf,w(z) dz =

−2∑
k=−mw

ak

∮
γ

(z − w)k dz︸ ︷︷ ︸
0

+a−1

∮
γ

(z − w)−1 dz = Resw(f) Ind(γ,w).

Thus, we conclude ∮
γ

f(z) dz =
∑
z0∈S

Resw(f) Ind(γ,w),

which is what we wanted. �

5.3.2 Computation with the Residue Theorem
The main point to Theorem 5.24 is that it helps us compute integrals, if only we could compute residues. So
let’s compute residues.

Lemma 5.25. Fix a domain Ω, and pick up a meromorphic function f : Ω \ S → C for some set S of the
poles of f . Letting z0 ∈ S be a pole of order m, we get

Resz0(f) = lim
z→z0

1

(m− 1)!

dm−1

dzm−1
((z − z0)mf(z)) .

The point is that we can now compute residues in terms of derivatives, and we understand derivatives.

Proof. The main idea is to use the Laurent series expansion, turn it into a typical power series expansion,
and then extract out the a−1 coe�cient by hand. In particular, let our Laurent series expansion be

f(z) =

∞∑
k=−m

ak(z − z0)k

for z in some neighborhood B(z0, r) of z0. Thus, we get

(z − z0)mf(z) =

∞∑
k=0

ak−m(z − z0)k

for each z ∈ B(z0, r). In particular,

dm−1

dzm−1
((z − z0)mf(z)) =

∞∑
k=m−1

ak−m · k(k − 1) · . . . · (k −m+ 2)(z − z0)k−m,

which is notably analytic at z0 and hence holomorphic and hence continuous, so taking the limit at z → z0

recovers the value of a−1. �

Let’s see some examples.
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Exercise 5.26. We compute
∮
|z|=2

5z−2
z(z−1) dz, where we are oriented counterclockwise around ∂B(0, 2).

Proof. Here is the image; we let our path be γ, and set f(z) := 5z−2
z(z−1) .

Re

Im

γ

0 1

In particular, we use Theorem 5.24 to get∮
γ

f(z) dz =
∑

w∈{0,1}

Resw(f) Ind(γ,w).

Now, the poles of f are 0 and 1, and each have order 1 because f(z)(z − w) is holomorphic in some neigh-
borhood at w for each w ∈ {0, 1}. Further, we see that Ind(γ, 0) = Ind(γ, 1) = 1 from the image. It remains
to compute the residues.

• At z = 0, we see

Res0(f) = lim
z→0

(z · f(z)) = lim
z→0

5z − 2

z − 1
= 2.

• At z = 1, we see

Res1(f) = lim
z→1

((z − 1) · f(z)) = lim
z→0

5z − 2

z
= 3.

In total, we see that∮
γ

f(z) dz = Res0(f) Ind(γ, 0) + Res1(f) Ind(γ, 1) = 2 · 1 + 3 · 1 = 5 ,

so we are done. �

5.4 April 6
Good morning everyone.

• O�ce hours tomorrow are still to be determined.

• Homework #8 is due on Friday at 11:59PM.

• It is Professor Morrow’s birthday.
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5.4.1 Homotopy
Today we enter the realm of algebraic topology. In particular, we are talking about homotopy because we
want to talk about integration along “arbitrary” paths, but computing these can be potentially very annoy-
ing.

Theorem 4.8. For any path γ : [a, b] → C, there exists a sequence of piecewise C1 paths {γk}k∈N such
that γk → γ uniformly.

As such, we have the following definition.

Definition 5.27 (Path integration). Fix a domain Ω ⊆ C. Given a continuous function f : Ω → C and a
path γ : [0, 1] → C, let {γn}n∈N be a sequence of piecewise C1 paths such that γn → γ uniformly. Then
we define ∫

γ

f(z) dz = lim
n→∞

∫
γn

f(z) dz.

Remark 5.28. Professor Morrow is not sure if this integral is well-defined.

Today we are going to talk about how we can vary paths and still be able to compute our integrals, provided
that we are su�ciently careful. For example, we showed in Lemma 4.29 that we only care about paths up
to equivalence, but it turns out that we can do better than this.

As such, we have the following definition.

Definition 5.29 (Homotopy). Fix a domain Ω and two paths γ, η : [0, 1]→ Ω. Then a homotopyhbetween
γ and η is a continuous map h : [0, 1]2 → Ω such that

h(t, 0) = γ(t) and h(t, 1) = η(t).

In this case, we say that γ and η are homotopic.

Definition 5.30 (Homotopic with fixed endpoints). Fix a domain Ω and two paths γ, η : [0, 1] → Ω. If
γ(0) = η(0) and γ(1) = η(1), and we have a homotopy h : [0, 1]2 → Ω such that

h(0, t) = γ(0) = η(0) and h(1, t) = γ(1) = η(1)

for all t.

We now provide the obligatory picture of a homotopy, here with fixed endpoints.

h(t, 1/5)

h(t, 2/5)

h(t, 3/5)

h(t, 4/5)

η(t) = h(t, 0)

γ(t) = h(t, 1)
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Namely, the idea is that we can continuously move from one path to the other, and h(−, s) is telling us how
to do that.

Example 5.31. For r ∈ R+, we define γr : [0, 1]→ C by

γr(t) := r exp(2πit).

We claim that the γr are all homotopic. Explicitly, given two radii r1, r2 ∈ R+, we can define our homo-
topy from γr1 to γr2 by

h(t, s) = (1− s)γr1(t) + sγr2(t) =
(
(1− s)r1 + sr2

)
exp(2πit),

which we can check works.

Here is the image for the previous example.

h(t, 1/4)

h(t, 2/4)

h(t, 3/4)

γr2(t)

γr1(t)

Example 5.32. A co�ee mug and a donut both have one hole and are therefore pretty much “homotopic”
because we can imagine deforming one into the other.

5.4.2 Simply Connected Domains
It will turn out that homotopy provides the correct notion of equivalence. To see this, we have the following
definition.

Definition 5.33 (Null homotopic). Fix a domain Ω and a closed path γ : [0, 1]→ C. Further, let η : [0, 1]→
C be defined by η(t) := γ(0) = γ(1) for all t. Then γ is null homotopic if and only if γ is homotopic to the
“constant path” η.

Definition 5.34 (Simply connected). A domain Ω is simply connected if and only if every pair of paths γ
and η with γ(0) = η(0) and γ(1) = η(1) are homotopic with fixed endpoints.

And here is our example
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Lemma 5.35. Convex domains are simply connected.

Proof. The point is to draw line segments directly from one path to the other. Here is the image.

h(t, 1/5)

h(t, 2/5)

h(t, 3/5)

h(t, 4/5)

η(t)

γ(t)

We now rigorize this. Pick up a convex domain Ω. Then, given two pathsγ, η : [0, 1]→ Ω, we defineh : [0, 1]2 →
Ω by

h(t, s) = (1− s)γ(t) + sη(t).

Notably, h is well-defined because Ω is convex: for any s, t ∈ [0, 1], we see γ(t), η(t) ∈ Ω, so (1 − s)γ(t) +
sη(t) ∈ Ω by convexity.

Continuing our checks, h is continuous as a linear combination of continuous functions. Further, h(t, 0) =
γ(t) and h(t, 1) = η(t), and in fact

h(0, s) = (1− s)γ(0) + sη(0) = γ(0) and h(1, s) = (1− s)γ(t) + sη(t) = γ(1),

so h does indeed witness the needed homotopy. �

Remark 5.36. It is also true that star-like domains are simply connected. Roughly speaking, fix Ω a star-
like domain so that we have some z ∈ Ω such that the line segment between z and any w ∈ Ω lives in
Ω. The point is that we can contract any path to the constant path at z by drawing line segments in the
same way as above. See sx1748540 for details.

Example 5.37. The open ball B(z, r) for any z ∈ C and r ∈ R+ is convex. Thus, B(z, r) is simply con-
nected.

5.4.3 Homotopic Independence of Integrals
We close class by proving this last result.

Theorem 5.38 (Homotopy independence). Fix a domain Ω and a holomorphic function f : Ω → C. Fur-
ther, take two paths γ, η : [0, 1] → Ω with γ(0) = η(0) and γ(1) = η(1). If γ and η are homotopic with
fixed endpoints, then ∫

γ

f(z) dz =

∫
η

f(z) dz.

This is codifying the idea that homotopic paths (with fixed endpoints) should be essentially equivalent:
they are giving the same integral.
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Example 5.39. We already have reason to believe this theorem. The Cauchy integral formula told us
that

f(w) =
1

2πi

∮
γr

f(z)

z − w dz

for any loop γr(t) := w + r exp(2πit). This makes sense because we showed that all circles γr are ho-
motopic.

Anyway, here is our result.

Proof of Theorem 5.38. Fix our homotopy h : [0, 1]2 → C which fixes the endpoints. As an outline, we will
show that two paths which are homotopic and “close together” in a suitable sense will have the same inte-
gral, which we can extend to the general case by some compactness argument.

For psychological reasons, we will get the compactness argument out of the way first. Set K := imh,
which is compact because the image of a compact set under a continuous map. Thus, by compactness, there
exists ε > 0 such that B(z, 3ε) ⊆ Ω for all z ∈ K, where we are using Lemma 2.118 with {Ω} as the open
cover of K.

Now, view h(t, s) as inducing a function taking s ∈ [0, 1] and outputting a function h(−, s) : [0, 1] → Ω;
i.e., γs(t) := h(t, s). Notably, h being continuous implies that γs : [0, 1] → Ω is continuous (γs this is the
composite t 7→ (t, s) 7→ h(t, s)), so because the codomain t ∈ [0, 1] is compact, the function γs is bounded.

As such, we can trigger Remark 2.132 to say that s 7→ γs is a continuous function on the compact set
[0, 1] to the metric space of bounded functions [0, 1]→ C, so s 7→ γs is uniformly continuous, so there exists
δ > 0 such that

|s1 − s2| < δ =⇒ sup
t∈[0,1]

{|γs1(t)− γs2(t)|} < ε. (∗)

In particular, we are using the definition of the metric back in Remark 2.132.
Fix any two times s1 < s2 with |s1 − s2| < δ. The homotopy h more or less restricts to a homotopy

between α := γs1 and β := γs2 , but we now also have (∗), which tells us that α and β are ε-close together.
The idea, is to use the closeness to place everything locally in a disk: we want to create an image that looks
like the following.

z0
w0

D0

z1

w1

D1

z2

w2

D2

z3

w3

D3

z4
w4

In words, we want to choose disks D0, . . . , Dn with points

z0, . . . , zn+1 ∈ imα and w0, . . . , wn+1 ∈ imβ

satisfying the following constraints.
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• We want α(0) = β(0) = z0 = w0 and α(1) = β(1) = zn+1 = wn+1. Notably, the endpoints of
α = h(−, s1) and β = h(−, s2) because h fixes the endpoints of γ and η.

• For technical reasons, we should have eachDi with center on imα or imβ and have radius at most 3ε.
This ensures that the Di are contained in Ω, by construction of ε. (Notably, imα, imβ ⊆ imh = K.)

• We want consecutive “quadruplets” zk, zk+1, wk, wk+1 ∈ Dk for each 0 ≤ k ≤ n.

We will want a few other non-intuitive constraints that will pop out of our construction, but we will ignore
these for now. Rigorously, we do the following.

• The path α is a continuous path with compact domain, so it is uniformly continuous, so there exists ε0

such that implies
|t1 − t2| < ε0 =⇒ |α(t1)− α(t2)| < ε.

In particular, choose some n ∈ N with 1
n+1 < ε0 and then set zk := α(k/(n+ 1)) for each k ∈ [0, n+ 1].

Notably, |zk+1 − zk| < ε for each k ∈ [1, n], by construction.

We also setwk := β(k/(n+1)) for each k ∈ [0, n+1]. Note that we do indeed have z0 = α(0) = β(0) =
w0 and zn+1 = α(1) = β(1) = wn+1.

• As such, we set Dk := B(zk, 3ε) for each k ∈ [0, n]. Again, zk ∈ imα ⊆ imh = K implies that Dk ⊆ Ω
by construction of ε.

Now, for each 0 ≤ k ≤ n, we see that zk ∈ Dk automatically, we have |zk+1 − zk| < ε by construction and

|zk − wk|, |zk+1 − wk+1| < ε

by (∗), so |zk − wk+1| < 2ε < 3ε as well. Thus, zk, zk+1, wk, wk+1 ∈ Dk.
We now continue to decorate our diagram. For k ∈ [0, n], let αk = α|[k/(n+1),(k+1)/(n+1)] denote the part

of α connecting zk to zk+1, let βk denote the part of β|[k/(n+1),(k+1)/(n+1)] connecting wk to wk+1. Lastly, for
k ∈ [0, n+ 1], we define hk : [s1, s2]→ Ω by

hk(s) := h(s, k/(n+ 1))

so that hk(s1) = α(k/(n+ 1)) = zk and hk(s2) = β(k/(n+ 1)) = wk, making hk a continuous path from zk to
wk. Here is our image.

α0

β0

D0

z0
w0

α1

β1

h1

D1

z1

w1

α2

β2

h2

D2

z2

w2

α3

β3

h3

D3

z3

w3

z4
w4
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We would like to rigorize some aspects of the above diagram. In particular, for each k ∈ [0, n], we claim
that h

(
[s1, s2]×

[
k

n+1 ,
k+1
n+1

])
⊆ Dk. To see this, pick up any (s, t) ∈ [s1, s2] ×

[
k

n+1 ,
k+1
n+1

]
. Then |s1 − s| ≤

|s1 − s2| < δ, so we see that
|γs(t)− α(t)| = |γs(t)− γs1(t)| < ε

by (∗). But now t ∈
[

k
n+1 ,

k+1
n+1

]
, so

∣∣∣t− k
n+1

∣∣∣ ≤ 1
n+1 < ε0, so

|α(t)− zk| =
∣∣∣∣α(t)− α

(
k

n+ 1

)∣∣∣∣ < ε.

Combining, we see that
|γs(t)− zk| < ε+ ε < 3ε,

which is what we wanted. Thus, we make the following observations.

• imαk ⊆ Dk because αk(t) = h(s1, t) for t ∈
[

k
n+1 ,

k+1
n+1

]
.

• imβk ⊆ Dk because βk(t) = h(s2, t) for t ∈
[

k
n+1 ,

k+1
n+1

]
.

• imhk ⊆ Dk because hk(s) = h(s, k/(n+ 1)) for s ∈ [s1, s2].

• imhk+1 ⊆ Dk because hk(s) = h(s, (k + 1)/(n+ 1)) for s ∈ [s1, s2].

Combining everything above, we see that we can write down the path

αk ∗ hk ∗ β−k ∗ h−k+1

as a closed path contained in Dk. Upon noting that Dk is a disk and hence convex and hence star-like, it
follows from Theorem 4.70 that ∮

αk∗hk∗β−k ∗h
−
k+1

f(z) dz = 0,

so ∫
αk

f(z) dz −
∫
βk

f(z) dz =

∫
hk+1

f(z) dz −
∫
hk

f(z) dz.

Summing over k ∈ [0, n], we see that∫
α

f(z) dz −
∫
β

f(z) dz =

n∑
k=0

(∫
αk

f(z) dz −
∫
βk

f(z) dz

)

=

n∑
k=0

(∫
hk+1

f(z) dz −
∫
hk

f(z) dz

)

=

∫
hn+1

f(z) dz −
∫
h0

f(z) dz

by telescoping. However, hn+1 and h0 are constant paths because h fixes the endpoints, so h′n+1 = h′0 = 0
everywhere, so the right-hand side above simply vanishes. So have verified that∫

α

f(z) dz =

∫
β

f(z) dz.

This finishes this part of the proof.
We now finish the proof. Fix some N such that 1

N < δ and set sk := k/N for k ∈ [0, N + 1]. In particular,
|sk+1 − sk| < δ for each k ∈ [0, N ], so ∫

γsk

f(z) dz =

∫
γsk+1

f(z) dz
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for each k ∈ [0, N ], using the work above. Chaining these equalities together, we conclude that∫
γ

f(z) dz =

∫
γ0

f(z) dz =

∫
γ1

f(z) dz =

∫
η

f(z) dz.

This is what we wanted. �

5.5 April 8
Good morning everyone.

• Homework #8 is due tonight at 11:59PM.

• There are o�ce hours today from 1PM to 2:30PM.

• Midterm #2 is next Friday. A review has been posted, with review problems and a practice midterm to
come.

Remark 5.40 (Morrow). Fun life tip: if you show up 10 minutes to jury duty, they will have enough jurors,
and you will not get in trouble, so you will be excused.

5.5.1 Integrals in Simply Connected Domains
We continue our discussion of homotopy. We will not go over every single proof because they are somewhat
laborious. Last time we showed the following.

Theorem 5.38 (Homotopy independence). Fix a domain Ω and a holomorphic function f : Ω → C. Fur-
ther, take two paths γ, η : [0, 1] → Ω with γ(0) = η(0) and γ(1) = η(1). If γ and η are homotopic with
fixed endpoints, then ∫

γ

f(z) dz =

∫
η

f(z) dz.

Have some corollaries.

Corollary 5.41. Fix a simply connected domain Ω and a holomorphic function f : Ω → C. Given two
paths γ, η : [0, 1]→ C with the same endpoints γ(0) = η(0) and γ(1) = η(1), we have∫

γ

f(z) dz =

∫
η

f(z) dz.

Proof. Because Ω is simply connected, γ and η have a homotopy with fixed endpoints between them. �

Corollary 5.42. Fix a domain Ω. If Ω is simply connected, then Ω is primitive.

Proof. The point is to use Theorem 4.44. As usual, pick up some holomorphic function f : Ω→ C which we
would like to give a primitive, and choose any closed piecewise C1 path γ : [0, 1]→ Ω, so we want to show∮

γ

f(z) dz
?
= 0,
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which by Theorem 4.44 will provide us with a primitive. Well, because Ω is simply connected and γ(0) =
γ(1) =: z0, we see that γ is homotopic with fixed endpoints to the path c : [0, 1]→ C defined by

c(t) = z0

for all t ∈ [0, 1]. However, Corollary 5.41 now tells us that∮
γ

f(z) dz =

∮
c

f(z) dz =

∫ 1

0

f(c(t))c′(t) dt,

but this last integral is 0 because c′(t) = 0. �

Example 5.43. We now know that the Residue theorem (Theorem 5.24) applies to simply connected
domains.

5.5.2 A Better Cauchy Integral Formula
One of the main goals of homotopy is to be able to get a more general version of the Cauchy integral formula.
Take the following definition.

Definition 5.44 (Homologous to zero). Fix a domain Ω. Then a closed, piecewise C1 path γ : [0, 1] → Ω
is homologous to 0 if and only if Ind(γ,w) = 0 for all w ∈ C \ Ω.

Roughly speaking, we are requiring that a path homologous to 0,

Theorem 5.45 (Cauchy integral formula). Fix a domain Ω and a closed, piecewise C1 path γ : [0, 1] → Ω
which is homologous to 0. Then, given a holomorphic function f : Ω→ C, we have∮

γ

f(z) dz = 0,

and for any w ∈ Ω \ im γ, we have

f(w) Ind(γ,w) =
1

2πi

∮
γ

f(z)

z − w dz.

Note that we are able to recover the first version of the Cauchy integral formula (namely, Theorem 4.63) by
setting

γ(t) = z0 + r exp(2πit),

where im γ = B(z0, r) ⊆ Ω. In this case, Theorem 4.70 was roughly speaking able to give us∮
γ

f(z) dz = 0,

and Theorem 4.63 was able to give us

f(w) =
1

2πi

∮
γ

f(z)

z − w dz

for any γ inside the loop. This last part we generalize past the loop γ above to a more general closed, piece-
wise C1 path homologous to 0, but we have to add in a winding number, lest we do something silly like
γ ∗ γ.

To prove Theorem 5.45, we will need the following result, but we will not prove it because it is somewhat
technical.
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Proposition 5.46. Fix a domain Ω and a closed, piecewise C1 path γ : [0, 1]→ Ω. Given a w ∈ im γ, then
we can generate a closed, piecewise C1 path η with w /∈ im η while∮

γ

f(z) dz =

∮
η

f(z) dz

for any holomorphic function f : Ω→ C.

Proof. The point is to do “surgery” on γ to avoid w. Here is the image of γ with some bad w ∈ im γ.

γw

Now, we explode w a little as follows to make our η, as follows.

ηw

By making the ball small enough, we can ensure that the entire ball lives in Ω, and this ball is simply con-
nected, so the integrals over any f are the same by Corollary 5.41, roughly speaking. �

Anyway, here is our proof.

Proof of Theorem 5.45. We proceed in steps. Replace Ω with some bounded domain containing γ, which
we can do because im γ is compact and hence bounded. This won’t a�ect the content of the conclusions; we
merely have to replace f with its restriction.

1. We define some F̃ . Define F̃ : (C \ im γ)→ C by

F̃ (w) :=

∫ 1

0

f(γ(t))− f(w)

γ(t)− w · γ′(t) dt.

Notably, F̃ is holomorphic on C \ im γ by writing out a power series expansion at each point and then
integrating the power series expansion by hand using some local absolute convergence result.
Philosophically, the point is to show that F̃ ≡ 0, which will give the second desired equality

f(w) Ind(γ,w)
?
=

1

2πi

∮
γ

f(z)

z − w dz

by rearranging. In particular, we will show that F̃ can be extended to be entire and bounded (which by
Theorem 4.80 forces F̃ to be constant), and then we will show that F̃ takes the value 0 somewhere.

2. We now extend to Ω. Give some w ∈ Ω, we define

g(z, w) :=

{
f(z)−f(w)

z−w z 6= w,

f ′(w) z = w.

We can check by hand (e.g., using a power series expansion) that g(−, w) is holomorphic on Ω; notably,
we are holomorphic at each z 6= w for free, and then we can build a power series expansion at w by
hand. As such, we extend F̃ to F : Ω→ C by

F (w) :=

∮
γ

g(z, w) dz.
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Notably, F does indeed restrict down to

F (w) =

∫ 1

0

f(γ(t))− f(w)

γ(t)− w · γ′(t) dt = F̃ (w)

for w ∈ C \ im γ.

3. We check that F is holomorphic on Ω. Our only problem is to check points w /∈ im γ. By Proposi-
tion 5.46, there exists η with w /∈ im η such that

F (w) =

∮
γ

g(z, w) dz =

∮
η

g(z, w) dz,

but now this last integral is manifestly holomorphic atw becausew /∈ im η, where here we are appeal-
ing to the previous steps to note that

F (w) =

∮
η

f(z) dz =

∫ 1

0

f(η(t))− f(w)

η(t)− w dt

is holomorphic on C \ im η and in particular at w /∈ im η.

4. We check that F is entire. Well, we have shown that F is holomorphic on im γ, and we started with F̃
which is holomorphic on C \ im γ, so we can glue these together to get an actual entire function.

5. We show the integral formulae. Note that F is continuous and hence uniformly continuous on the
compact set im γ, so F is bounded there. On the other hand, we see that taking w /∈ C \ im γ gives

F (w) =

∫ 1

0

f(γ(t))− f(w)

γ(t)− w · γ′(t) dt

=

∮
γ

f(z)

z − w dz − f(w)

∮
γ

1

z − w dz

=

∮
γ

f(z)

z − w dz − 2πi · f(w) Ind(γ,w). (∗)

Notably, for w /∈ C \ Ω, the term Ind(γ,w) will vanish because γ is homologous to 0 (!). Because Ω is
bounded, fix R ∈ R+ with Ω ⊆ B(0, R), we can just say that w with |w| > R will have

F (w) =

∮
γ

f(z)

z − w dz.

Now, t 7→ f(γ(t)) is a continuous function [0, 1] → R on a compact set and hence has a maximum M .
As such, we use Proposition 4.35 to write

|F (w)| =
∣∣∣∣∮
γ

f(z)

z − w dz

∣∣∣∣ ≤ `(γ) · max
t∈[0,1]

{∣∣∣∣ f(γ(t))

γ(t)− w

∣∣∣∣} ≤ M`(γ)

|w| −R

for |w| > R. Now, sending |w| → ∞ causes |F (w)| → 0.
To finish, being entire implies that F is bounded on the compact set B(0, R+ 1). Further, we have
bounded

|F (w)| ≤ M`(γ)

R+ 1−R
for |w| ≥ R + 1, so F is a bounded, entire function and hence constant by Theorem 4.80. However,
|F (w)| → 0 as |w| → ∞, so we must have F ≡ 0. So we conclude that any w /∈ im γ will have

f(w) Ind(γ,w) =
1

2πi

∮
γ

f(z)

z − w dz

by rearranging F ≡ 0 with (∗).
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6. It remains to show that
∮
γ
f(z) dz = 0. Well, given w ∈ Ω \ im γ, we define

gw(z) = (z − w)f(z).

Then we compute
1

2πi

∮
γ

f(z) dz =
1

2πi

∮
γ

gw(z)

z − w dz
∗
= gw(w) Ind(γ,w) = 0

by using the integral formula in ∗=. �

To close out class, have a corollary, where we impose conditions on Ω instead of γ.

Corollary 5.47. Fix a simply connected domain Ω and a closed, piecewise C1 path γ : [0, 1] → Ω. Then,
given a holomorphic function f : Ω→ C, we have∮

γ

f(z) dz = 0,

and for any w ∈ Ω \ im γ, we have

f(w) Ind(γ,w) =
1

2πi

∮
γ

f(z)

z − w dz.

Proof. The main point is to show that γ is in fact homologous to 0, from which the result will follow directly
from Theorem 5.45.

As such, pick upw ∈ C\Ω, and we show that Ind(γ,w) = 0. Becausew ∈ C\Ω, the function f(z) := 1
z−w

is holomorphic on Ω as the quotient of nonzero holomorphic functions. Now, Corollary 5.42 promises that
f has a primitive, so Corollary 4.39 forces

Ind(γ,w) =
1

2πi

∮
γ

1

z − w dz =
1

2πi

∮
γ

f(z) dz = 0,

which is what we wanted. �

5.6 April 11

Good morning, everyone.

• Midterm #2 is on Friday. Both practice problems and a practice midterm were released.

• There are extra o�ce hours.

• There is a review session on Wednesday.

5.6.1 Rouché’s Theorem

We proved the following result on the homework.
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Theorem 5.48 (Argument principle). Fix a domain Ω and a meromorphic function f : Ω → C, and pick
up z0 ∈ Ω and r > 0 such that B(z0, r) ⊆ Ω and f has no zeroes nor poles on ∂B(z0, r). Further, set the
following.

• Nf is the number of zeroes of f , counted with multiplicity, in B(z0, r).

• Pf is the number of poles of f , counted with multiplicity, in B(z0, r).

Then
Nf − Pf =

1

2πi

∮
γ

f ′(z)

f(z)
dz = Int(f ◦ γ, 0),

where γ : [0, 1]→ C is γ(t) := z0 + r exp(2πit).

Proof. The point is to use the Residue theorem on f ′/f . We can check that f ′/f will only have poles when
either f(z) has a pole or zero. Then, at a point w ∈ Ω, we can write down

f(z) = (z − w)ng(z)

for some integer n and for some holomorphic function g : Ω→ C such that g(w) 6= 0. Then we can see that

f ′(z)

f(z)
=

n

z − w +
g′(z)

g(z)

by taking the derivative by hand, so we can see that

Resw(f ′/f) = n.

Thus, Resw(f ′/f) counts zeroes with multiplicity positively and counts poles with multiplicity negatively.
Summing over these residues in B(z0, r) (via Theorem 5.24) gives the result. �

Now, here is the statement we are going to prove today.

Theorem 5.49 (Rouché’s). Fix a domain Ω and two holomorphic functions f, g : Ω → C. Further, sup-
pose that we have z0 ∈ Ω and r > 0 such that B(z0, r) ⊆ Ω and

|g(z)| < |f(z)|

for each z ∈ ∂B(z0, r). Then f and f + g have the same number of zeroes, counted with multiplicity,
contained in the ball B(z0, r).

Remark 5.50. As in Theorem 4.63, the main point is that we can talk about the behavior of f by only
weak information at the boundary. In particular, perturbations by “small” functions g are unable to
alter how f works in practice.

Warning 5.51. The proof in the Eterović notes is incorrect.

The point of Theorem 5.49 is to be able to count and determine the location of zeroes of some holomorphic
function f by relating f to a simpler function.

Exercise 5.52. We show that the roots of the polynomial p(z) = z4 + 5z + 2 all lie in B(0, 2).
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Proof. To be able to use Rouché’s theorem, we need to choose some f and g. Because g should be some
“small” perturbation to f , we take f(z) := z4 and g(z) := 5z + 2 so that p(z) = f(z) + g(z). Now, for
z ∈ ∂B(0, 2), we see that

|g(z)| = |5z + 2| ≤ 5|z|+ 2 = 5 · 2 + 2 = 12 < 16 = 24 ≤ |z|4 = |f(z)|.

Thus, Theorem 5.49 tells us that f and f+g have the same number of zeroes inB(0, 2), but f has four zeroes
inB(0, 2) when counted with multiplicity (namely, four zeroes at z = 0), so we can say the same for p = f+g.
This finishes. �

Now, let’s prove Theorem 5.49.

Proof of Theorem 5.49. Note that f has no zeroes on ∂B(z0, r) because f is strictly larger than |g(z)| ≥ 0
for each z ∈ ∂B(z0, r). Similarly, |f(z) + g(z)| ≥ |f(z)| − |g(z)| > 0 for z ∈ ∂B(z0, r) by assumption, so f + g
also has no zeroes on this boundary. As such, we define

h(z) :=
f(z) + g(z)

f(z)
.

Further, set γ : [0, 1]→ Ω by γ(t) := z0 + r exp(2πit) to trace out ∂B(z0, r).
Continuing, note that the zeroes of h will only occur at zeroes of f(z) + g(z), and the poles of h(z) will

occur only at poles of f(z). Now, h has neither zero nor pole on ∂B(z0, r), so Theorem 5.48 tells us that

Nh − Ph = Ind(h ◦ γ, 0).

Notably, Nh − Ph is the number of zeroes of f + g minus the number of zeroes of f , even if there is some
cancellation with having a zero in the same place. Thus, we would like to show that the above integral van-
ishes.

Well, for each z ∈ ∂B(z0, r), we see

|h(z)− 1| =
∣∣∣∣f(z) + g(z)

f(z)
− 1

∣∣∣∣ =

∣∣∣∣ g(z)

f(z)

∣∣∣∣ < 1.

Thus, im(h ◦ γ) ⊆ B(1, 1) and in particular is nonzero everywhere. In particular, h ◦ γ does not wind around
0 at all, so Ind(h ◦ γ) = 0. �

And here is another example.

Exercise 5.53. We compute the number of zeroes of p(z) := z5+3z2+1 for z in the “annulus” 1 < |z| < 2.

Proof. Here is our image.

Re

Im

The point is to find the zeroes in B(0, 2) and the zeroes in B(0, 1) and then subtract. As such, we do two
computations.
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• For z ∈ ∂B(0, 1), we have |z| = 1, so we note g(z) := z5 + 1 and f(z) := 3z2 give

|g(z)| =
∣∣z5 + 1

∣∣ ≤ 2 < 3 = 3|z|2 = |f(z)|,

so we conclude that p = f + g has two zeroes in B(0, 1).

• For z ∈ ∂B(0, 2), we have |z| = 2, so we note g(z) := 3z2 + 1 and f(z) := z5 give

|g(z)| =
∣∣3z2 + 1

∣∣ ≤ 3 · 4 + 1 = 13 ≤ 32 = |z|5 = |f(z)|,

so we conclude that p = f + g has all five zeroes in B(0, 2).

Subtracting, it follows that there are three zeroes inB(0, 2) \B(0, 1). To claim this as our answer, we check
that there is no zero on ∂B(0, 1). Well, if |z| = 1, then we compute∣∣z5 + 3z2 + 1

∣∣ ≥ ∣∣3z2
∣∣− ∣∣z5

∣∣− |1| = 3− 1− 1 > 0,

so there are no zeroes here. Thus, there are indeed 3 total zeroes in the annulus. �

5.6.2 The Open Mapping Theorem
We close class with the following nice consequence of Theorem 5.49.

Theorem 5.54 (Open mapping). Fix a domain Ω and a non-constant holomorphic function f : Ω → C.
For open subsets U ⊆ Ω, the set f(U) is also open.

This is very surprising! For example, this is very much not true in R: the function f(x) := sinx sends the open
set R to [−1, 1], which is closed. In general, continuous and even di�erentiable functions really not need be
open—open is a very di�erent notion.

Proof. Fix w0 ∈ f(U) with z0 ∈ U such that f(z0) = w0, and we need to put a neighborhood around w0 in
f(U). To help us our, we define g : Ω→ C by

g(z) := f(z)− w0

so that g(z0) = 0. Now, g is a non-constant holomorphic function, so Theorem 5.1 tells us that g cannot
have zeroes accumulating to z0 (lest g be equivalent to 0), so there is some r > 0 such that g does not vanish
on

B(z0, r) \ {z0}.
Further, by making r small enough, we can also assume thatB(z0, r)\{z0} ⊆ U . Now, ∂B(z0, r) is compact,
so we can find δ > 0 such that

|g(z)| ≥ δ
for all z ∈ ∂B(z0, r) because continuous functions have achieved minimums, and g never achieves 0. This δ
will give our neighborhood.

We are now almost ready to apply Rouché’s theorem. In particular, we would like to show thatB(z0, δ) ⊆
f(U). Well, pick up some w ∈ B(w0, δ), and we set hw : Ω→ C by

hw(z) := g(z) + w0 − w.

In particular, we can compute that
|w0 − w| < δ < |g(z)|

for all z ∈ ∂B(z0, r), so Theorem 5.49 promises us that hw(z) = g(z) + w0 − w has the same number of
zeroes as g onB(w0, δ). However, by construction of r, we see that g has a zero inB(z0, r), so h does as well,
so there exists z ∈ B(z0, r) ⊆ U such that hw(z) = 0 and hence f(z) = w, givingw ∈ f(U). This finishes. �
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5.7 April 13

Good morning, everyone.

• There are o�ce hours today from 11AM–12PM and 1PM–2:30PM. There are also o�ce hours tomor-
row from 10PM–12PM and 2PM–4PM.

• The midterm is still on Friday.

5.7.1 Integral Commentary

It’s a review session today. We will be computing a lot of integrals for the midterm, for which we have many
techniques. Here are some guidelines for finding the quickest computation for∮

γ

f(z) dz.

1. Is f holomorphic or meromorphic almost everywhere? If not, we basically have to parameterize γ and
proceeding with the definition. For example, integrals such as∮

γ

z dz or
∮
γ

|z| dz or
∮
γ

Re z dz

all fall under this category.

2. If f is close to holomorphic, look at the integral. We might try to pattern-match with

f (n)(w) =
n!

2πi

∮
γ

f(z)

(z − w)n+1
dz,

where n is some nonnegative integer. In life, sometimes this fails, and we still have to parameterize.

3. If f is meromorphic, we should use the Residue theorem, which states∮
γ

f(z) dz =
∑

poles z0

Ind(γ, z0) Resz0(f),

and we can compute the winding numbers and the residues by hand.

4. If f is not quite holomorphic or meromorphic but has an essential singularity, we can reparametrize
the path to make the function f meromorphic. Alternatively, we can use a power series expansion
and attempt to switch the sum with the integral, using the residue theorem by hand. For example, we
claim ∮

|z|=1

z2 sin(1/z) dz = −
∮
η

z−4 sin z dz

by sending the path γ to η := 1/γ. Indeed, running this through, we compute η′(t) = −γ′(t)/γ(t)2, so∮
γ

z2 sin(1/z) dz =

∮ 1

0

γ(t)2 sin(1/γ(t))γ′(t) dz = −
∮ 1

0

η(t)−4 sin(η(t))η′(t) dz =

∮
η

z−4 sin z dz

Now, we can just compute this directly via the Residue theorem.
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5.7.2 Review
Here are some questions from class.

• There might be a more general version of Corollary 5.47 allowing for derivatives of f .

• Technically speaking, the Cauchy integral formula is a subset of the Residue theorem.

• We will not need homotopy on the exam.

Let’s see some practice problems.

Exercise 5.55. Fix a polynomial f(z) ∈ C[z] of degree d ≥ 2. Taking R > 0 such that f does not vanish
for all |z| ≥ R, we show that ∮

|z|=R

dz

f(z)
= 0.

Proof. The fact that f(z) does not vanish for |z| ≥ R promises us that 1/f(z) is holomorphic for |z| ≥ R.
The point, now, is to use the Residue theorem to bound the integral. Explicitly, pick up some r ≥ R, and we
set γr to the counter-clockwise path around |z| = r so that∮

γr

dz

f(z)
= 2πi

∑
z0 zero of f
|z0|≤r

Ind(γr, z0)︸ ︷︷ ︸
1

·Resz0(f) = 2πi
∑

z0 zero of f
|z0|≤R

Ind(γR, z0)︸ ︷︷ ︸
1

·Resz0(f) =

∮
γR

dz

f(z)

because all poles of 1/f(z) are zeroes of f(z), and those all live in the region with |z| ≤ R ≤ r. As such, the
estimation lemma tells us that∣∣∣∣∣

∮
|z|=R

dz

f(z)

∣∣∣∣∣ =

∣∣∣∣∣
∮
|z|=r

dz

f(z)

∣∣∣∣∣ ≤ 2πr ·max
|z|=r

{
1

|f(z)|

}
.

To bound the size of f(z), we set

f(z) =

d∑
k=0

akz
k

so that ∣∣∣∣ 1

f(z)

∣∣∣∣ ≤ 1

|ad| · |z|d − |ad−1| · |z|d−1 − · · · − |a0|
,

so ∣∣∣∣∣
∮
|z|=R

dz

f(z)

∣∣∣∣∣ ≤ 2πr · 1

|ad| · rd − |ad−1| · rd−1 − · · · − |a0|
,

which goes to 0 as r →∞ because d ≥ 2. This finishes. �

Exercise 5.56. Fix a polynomialp(z) ∈ C[z] of degreen. Suppose that we have someM such that |p(z)| ≤
M for |z| < 1. Then we show that |p(z)| ≤M |z|n for all z with |z| ≥ 1.

Proof. The main point is that we know how p behaves onB(0, 1) as a bound, so we are going to want to use
the Maximum modulus principle. As such, we set f(z) := p(z)/zn and g(z) := f(1/z); notably, a computation
shows that g is holomorphic (it’s the “reversed” version of p), so we see that we already have a bound on the
behavior of large values of p from this.

So now we push harder. By the Maximum modulus principle, the maximum of |g(z)| on B(0, 1) will be
achieved on ∂B(0, 1). But now, the values of g agree with the values of p on ∂B(0, 1) (because z 7→ 1/z is a
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bijection ∂B(0, 1) → ∂B(0, 1)), and we know that the values of p are upper-bounded by M on ∂B(0, 1). As
such, we know that

|g(z)| ≤M
on B(0, 1), which rearranges to showing |znp(1/z)| ≤M for all z ∈ B(0, 1) \ {0} and so |p(z)| ≥M · |z|n for
all z with |z| ≥ 1. �
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THEME 6

EXTRA TOPICS

You take the red pill, you stay in wonderland, and I show you how deep
the rabbit hole goes.

—Morpheus, [WW99]

6.1 April 18
Last class there was a midterm. Today we mourn.

• Homework #9 will be posted later today, due Sunday at 11:59PM.

• Homework #10 will be the last homework.

• Midterm #2 will be returned on Wednesday.

6.1.1 Applications of Rouché’s Theorem
We begin by recalling the statement, as follows.

Theorem 5.49 (Rouché’s). Fix a domain Ω and two holomorphic functions f, g : Ω → C. Further, sup-
pose that we have z0 ∈ Ω and r > 0 such that B(z0, r) ⊆ Ω and

|g(z)| < |f(z)|

for each z ∈ ∂B(z0, r). Then f and f + g have the same number of zeroes, counted with multiplicity,
contained in the ball B(z0, r).

The main use of Theorem 5.49 is to determine where there are zeroes of a given holomorphic function. We
also showed Theorem 5.54; on the homework, we will prove the Fundamental theorem of algebra.

Before continuing, we give another example.

Exercise 6.1. We compute the number of roots of h(z) = 6z3 + exp(z) + 1 in B(0, 1).
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Proof. Note that f is holomorphic, so although this is not a polynomial, we can still use Theorem 5.49.
Indeed, our largest term seems to be f(z) := 6z3 and g(z) := exp(z) + 1 so that, for z ∈ ∂B(0, 1),

| exp(z) + 1| ≤ | exp(z)|+ 1
∗
≤ exp(|z|) + 1 ≤ e+ 1 < 6 = 6 ·

∣∣z3
∣∣ = |f(z)|,

where
∗
≤ holds by expanding out exp as a series. It follows that f and h = f + g have the same number of

zeroes, so h has 3 zeroes in B(0, 1). �

Anyway, let’s prove something today.

Proposition 6.2. Fix a domain Ω and a non-constant holomorphic function f : Ω → C. Given z0 ∈ Ω,
then f ′(z0) 6= 0 if and only if f |B(z0,r) is injective for some r > 0.

Intuitively, we are saying that having derivative zero means that f is locally injective.

Example 6.3. The function f(z) = z2 is not injective on B(0, r) for any r > 0.

Anyway, let’s prove this.

Proof of Proposition 6.2. We show the directions independently.

• We start by taking f ′(z0) 6= 0; we imitate the proof of Theorem 5.54. Let w0 := f(z0) and define

g(z) := f(z)− w0

so that g(z0) = 0. Additionally, because f is non-constant, g is also non-constant and in particular not
zero everywhere, so Theorem 5.1 forces z0 to be an isolated zero of g. As such, there is some r0 > 0
such that g does not vanish on

B(z0, r0) \ {z0}.
We now bring in the condition f ′(z0) 6= 0: because f ′(z0) 6= 0, we see g′(z0) 6= 0, so z0 is a zero of g′(z0)
of multiplicity 1—indeed, if we had g(z) = (z − z0)2h(z), then g′(z) = (z − z0)

(
2h(z) + (z − z0)h′(z)

)
,

so g′(z0) = 0. It follows that g has one zero inB(z0, r0), at z = z0, even when counted with multiplicity.
We now continue as in Theorem 5.54. Because ∂B(z0, r0) is closed and bounded and hence compact,
there exists δ > 0 so that

|g(z)| ≥ δ
for all z ∈ ∂B(z0, r0/2) by giving |g| a minimum; we can set δ > 0 because g does not vanish on
∂B(z0, r0/2).
Now, to apply Theorem 5.49, we pick up some w ∈ B(w0, δ), and we would like to show

hw(z) = g(z) + w0 − w

has exactly one root in B(w0, δ); this will be enough because it shows g is injective on g−1(B(w0, δ)),
from which we can extract an open neighborhood around z0. Well, we compute

|w0 − w| < δ ≤ |g(z)|,

for z ∈ ∂B(z0, r0/2), so hw and g have the same number of roots on B(w0, δ) by Theorem 5.49, which
in particular is exactly one by our discussion above.

• Now, suppose that f ′(z0) = 0, and we show that f is not injective on some any neighborhood around
z0; as such, fix any r > 0, and we show f is not injective on B(z0, r). Because f is holomorphic, it
is analytic, so by taking r small enough (which will not harm our conclusion because our injectivity is
local), we have

f(z) =

∞∑
k=0

ak(z − z0)k
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for z ∈ B(z0, r). Because f ′(z0) = 0, we have a1 = 0 above. However, f ′ is holomorphic and non-
constant (because f is holomorphic and non-constant, so some ak 6= 0 for k > 1 above due to a1 = 0),
so Theorem 5.1 forces z0 to be an isolated zero of f ′. In particular, we may take r even smaller so that
f ′ does not vanish on

B(z0, r) \ {z0}.
Running through the argument in the previous point once more, we are told that, for some w in the
image of f under B(z0, r) not equal to f(w), we have that

f(z) = w

has at least two roots in B(z0, r), counted with multiplicity.
We now push this further. If f were in fact injective onB(z0, r), then f(z)−w has a double root at some
z = z1 ∈ B(z0, r), but then f ′(z1) = 0 would follow, which contradicts our construction of r because
f ′ does not vanish on B(z0, r) \ {z0}. �

Remark 6.4. We can measure the failure of the locally injective by staring carefully at the argument at
the end: if f(z) − f(z0) has a root of multiplicity m at z = z0, then f is m-to-1 in some neighborhood
around z0.

Non-Example 6.5. In real analysis, this statement is not true. For example, f(z) := z3 is bijective on R
while f ′(0) = 0. The issue here is that working in R is hiding the “rotation” that f is doing.

6.1.2 The Inverse Function Theorem
We close class with the following result.

Theorem 6.6 (Inverse function). Fix a domain Ω and an injective, holomorphic function f : Ω → C. If
g : im f → Ω is the right inverse of f (i.e., f(g(z)) = z for all z ∈ im f ), then g is holomorphic, and

g(w) =
1

f ′(g(w))

for all w ∈ im.

Proof. We proceed in steps.
1. We show that g is continuous. Well, take U ⊆ Ω, and we need to show g−1(U) ⊆ im f is open. For

this, we simply write down the computation

g−1(U) = g−1
(
f−1(f(U))

)
= (f ◦ g)−1(f(U)) = idf(Ω)(f(U)).

Notably, we are using the fact that f surjects onto U ⊆ Ω to say that U = f−1(f(U)). Now, f(U) is
open by Theorem 5.54, so we are done.

2. We now compute the derivative of g by hand. Note that f is injective, so f ′ is locally injective every-
where, so f ′(z) 6= 0 for all z ∈ Ω by Proposition 6.2.
Now, fix z0 ∈ Ω andw0 := f(z0), which implies hat g(w0) = z0 is forced by the injectivity of f . Note that
anyw ∈ im f will have some unique z ∈ Ω with f(z) = w by injectivity. As such, the continuity of f and
g implies that a sequence {wn}n∈N ⊆ im f has some unique pullbacks zn := g(wn) so that f(zn)→ w0

if and only if zn → z. Thus, we can compute

lim
w→w0

g(w)− g(w0)

w − w0
= lim
z→z0

z − z0

f(z)− f(z0)
=

1

limz→z0
f(z)−f(z0)

z−z0

=
1

f ′(z0)
=

1

f ′(g(w0))
,

which is what we wanted. �
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Remark 6.7. This result is somewhat surprising: a priori, we should only expect our inverse to be some
set-theoretic construction, but in our case this happens to be holomorphic.

6.2 April 20

Welcome back everyone.

• Homework #9 is due on Sunday, at 11:59PM.

• The average on the midterm was 76.4, which is a few points lower than desired.

6.2.1 Defining Laurent Series
Today we are talking about Laurent series in their full power. This will allow us to add some power to our
Residue theorem.

Quote 6.8. It is not lost on me what today is.

Anyway, we begin with the following definition.

Definition 6.9 (Open annulus). The open annulus centered z0 is

A(z0, r, R) := {z ∈ C : r < |z − z0| < R}.

Remark 6.10. We can also write A(z0, r, R) = B(z0, R) \B(z0, r), so this is an open set.

Remark 6.11. We permit r = 0, which makes the annulus a punctured ball.

Here is the image.

z0 r

R

Now, we pick up the following definition of a Laurent series, generalizing our previous one.
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Definition 6.12 (Laurent series). A Laurent series is a (formal) expression

L(z) :=

∞∑
n=−∞

cnz
n,

where {cn}n∈N ⊆ C. This converges if and only if the individual series

∞∑
n=0

cnz
n and

∞∑
n=0

c−nz
−n

both converge.

An alternate way to state this convergence is to set

S+(z) :=

∞∑
n=0

cnz
n and S−(z) :=

∞∑
n=0

c−nz
−n.

As such, we let R+ > 0 be the radius of convergence of S+ and R− the radius of convergence of S−, which
means that both of these series will converge if and only if

1

R−
< |z| < R+,

which creates an “annulus” of convergence.

Remark 6.13. In the cases we discussed previously, we had the Laurent series have a finite tail, which
made R− = +∞ and hence we were able to deal with the annulus/punctured ball

0 < |z| < R+.

We will also want a shifting.

Definition 6.14 (Laurent series). A Laurent series centered at z0 is a (formal) expression

L(z) :=

∞∑
n=−∞

cn(z − z0)n.

6.2.2 Making Laurent Series
The reason we allowed infinite tails is to give us more power with series expansions, expanding from mere
meromorphic functions.

Theorem 6.15. Fix an open annulusA(z0, r, R) and a domain Ω containingA(z0, r, R). Given a holomor-
phic function f : Ω→ C, we can construct

cn :=
1

2πi

∮
γs

f(z)

(z − z0)n+1
dz,

where γs : [0, 1]→ Ω is γs(t) := z0 + s exp(2πit) for s ∈ [r,R]. Then we claim

f(z) =

∞∑
n=−∞

cn(z − z0)n

for z ∈ A(z0, r, R).
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Before proving this, we need to strengthen our version of Cauchy’s integral formula.

Definition 6.16 (Cycles). Fix a domain Ω. A cycle Γ in Ω is a formalC-linear combination of closed piece-
wise C1 paths homologous to 0. We will write im Γ to be the union of the individual paths making up
Γ.

Example 6.17. Consider the following annulus.

γ1 γ2z0

Then we can set, for example, Γ := γ1 + γ2.

These cycles are essentially bookkeeping devices to go around multiple paths. In particular, we have the
following definitions.

Definition 6.18 (Cycle integration). Fix a domain Ω and a holomorphic function f : Ω → C. Then, given
a cycle Γ =

∑n
i=1 aiγi, we define ∮

Γ

f(z) dz :=

n∑
i=1

ai

∮
γi

f(z) dz.

Definition 6.19 (Winding number, cycles). Fix a domain Ω and a cycle Γ. Then we define the winding
number of Γ around w ∈ C to be

Ind(Γ, w) :=

n∑
i=1

ai Ind(γi, w).

Definition 6.20 (Inside). The inside of a cycle Γ consists of all the points w ∈ Ω \ im Γ with nonzero
winding number.

Example 6.21. Work in the context of Example 6.17.

• If we set Γ := γ1 + γ2, then the interior will just be everything inside γ2.

• If we set Γ := γ1 − γ2, then the interior will just be everything inside γ2 but outside γ1: everything
inside both γ1 and γ2 will have the winding number be 1− 1 = 0 and cancel out!

In particular, our cycle is letting us pick out the annulus itself.
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Now, here is our stronger version of the Cauchy integral formula.

Theorem 6.22 (Cauchy integral formula). Fix a domain Ω with a cycle Γ. Then, given a holomorphic
function f : Ω→ C, we have ∮

Γ

f(z) dz = 0,

and for any w ∈ Ω \ im γ, we have

f(w) Ind(Γ, w) =
1

2πi

∮
Γ

f(z)

z − w dz.

Proof. Simply split all the integrals into their formal sum over Γ, apply Theorem 5.45, and then sum back to
values over Γ. �

We are now ready to prove our theorem.

Proof of Theorem 6.15. By shifting, we take z0 to be 0. Now, we can recover A(z0, r, R) by setting Γ :=
γR − γr so that the inside of Γ is A(z0, r, R), as discussed in Example 6.21. As such, Theorem 6.22 tells us
that all w ∈ A(z0, r, R) have

f(w) Ind(γR, w)− f(w) Ind(γr, w) = f(w) Ind(Γ, w) =

∮
Γ

f(z) dz =

∮
γR

f(z) dz −
∮
γr

f(z) dz.

Now, Ind(γR, w) = 1 and Ind(γr, w) = 0, so we get

f(w) =
1

2πi

∮
γR

f(z) dz − 1

2πi

∮
γr

f(z) dz.

We will compute the integrals separately. Indeed, we notice that any z ∈ C with |z| > |w|will have

1

z − w =
1/z

1− (w/z)

∞∑
k=0

wk

zk+1
,

which by the Weierstrass M-test will converge uniformly when |z| > |w| + ε for any ε > 0. In particular,
R > |w|, so we may write

1

2πi

∮
γR

f(z)

z − w dz =

∞∑
k=0

(
1

2πi

∮
γR

f(z)

zk+1
dz

)
︸ ︷︷ ︸

ck

wk

by interchanging the sum and integral. Similarly, |w| > |z| implies

1

z − w =
−1/w

1− (z/w)
= −

∞∑
k=0

zk

wk+1
= −

−∞∑
k=−1

wk

zk+1
.

This still absolutely converges and hence uniformly converges for |w| > |z|, so taking |z| = r, we can get

1

2πi

∮
γr

f(z)

z − w dz = −
−∞∑
k=−1

(
1

2πi

∮
γr

f(z)

zk+1
dz

)
︸ ︷︷ ︸

ck

wk.

Subtracting our two integrals gets the desired result. �
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6.3 April 22
Good morning, everyone.

• Homework #9 is due on Sunday at 11:59PM. One of the questions has since been corrected.

• There are (extended) o�ce hours today from 12:30PM–3PM because we did not have o�ce hours
yesterday.

• Homework #10 will be released later today. This will be our last homework.

6.3.1 Residue Theorem Two, Electric Boogaloo
Today we are talking about the more general Residue theorem. Last time we showed that all holomor-
phic functions have a Laurent series over an annulus. Here is a corollary, which will be our jumping-o�
point.

Corollary 6.23. Fix a domain Ω and a holomorphic function f : Ω→ C. If z0 ∈ Ω is an isolated singularity
of f , then f has a Laurent series expansion at z0 in the punctured ball B(z0, r) \ {z0} for some (small)
r > 0.

Proof. When z0 is a pole, we were able to make our Laurent series with finite tail, and we were able to control
the size of the tail.

Anyway, by shifting we may assume that z0 = 0. Now, fix any r so that B(z0, r) \ {z0} ⊆ Ω, and Theo-
rem 6.15 promises us that any r′ > 0 will give A(0, r′, r) ⊆ Ω with

f(z) =

∞∑
n=−∞

(
1

2πi

∮
γs

f(z)

(z − z0)n+1
dz

)
zn,

where s := r. Now, the coe�cient depends on r but not on r′, so we may send r′ to 0 to say that this series
holds on B(z0, r) \ {z0}. This finishes. �

And here are our generalized versions of residue and principal part.

Definition 6.24 (Residue). Fix a domain Ω and some isolated set S ⊆ Ω so that f : (Ω \ S)→ C can be a
holomorphic function with isolated singularities S. Then, writing our Laurent series for f as

f(z) =

∞∑
n=−∞

cn(z − z0)n,

we define the residue as Resz0(f) := c−1.

Definition 6.25 (Residue). Fix a domain Ω and some isolated set S ⊆ Ω so that f : (Ω \ S)→ C can be a
holomorphic function with isolated singularities S. Then, writing our Laurent series for f as

f(z) =

∞∑
n=−∞

cn(z − z0)n,

we define the principal part as Pf,z0(z) :=
∑−∞
n=−1 cn(z − z0)n.

And so here is our theorem.
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Theorem 6.26 (Residue). Fix a domain Ω and a finite setS ⊆ Ω so that f : (Ω\S)→ C can be a holomor-
phic function with isolated singularities S. Given a closed, piecewise C1 path γ : [0, 1] → Ω such that
im γ ∩ S = ∅ with inside contained in Ω (i.e., homologous to 0 in Ω), we have∮

γ

f(z) dz = 2πi
∑
z0∈S

Resz0(f) Ind(γ, z0).

Proof. We imitate the proof of Theorem 5.24. For each z0 ∈ S, let Pf,z0 denote the principal part of f at z0.
In particular, for each z0 ∈ C, we see that f − Pf,z0 is holomorphic at z0 and that Pf,z0 is holomorphic at all
points aside z0 (and therefore won’t a�ect di�erentiability away from z0). Thus,

f −
∑
z0∈S

Pf,z0

is holomorphic on Ω. In particular, because im γ∩S and that γ is homologous to 0 in Ω, we may bop this with
Theorem 5.45 to see ∮

γ

(
f(z)−

∑
z0∈S

Pf,z0(z)

)
dz = 0.

Rearranging, we see ∮
γ

f(z) dz =
∑
z0∈S

∮
γ

Pf,z0(z) dz.

Now, in our proof of Theorem 6.15, we showed that the series forPf,z0 converges uniformly on im γ because
im γ is a compact set away from z0 (namely, they were integrals of some geometric series, which have a
perfectly fine radius of convergence). Thus, fixing some particular Pf,z0 , we compute∮

γ

Pf,z0(z) dz =

∮
γ

−∞∑
k=−1

ck,z0(z − z0)k dz =

−∞∑
k=−1

ck,z0

∮
γ

(z − z0)k dz.

Now, for each k < −1, the function (z− z0)k has a primitive (namely, 1
k+1 (z− z0)k+1), so Corollary 4.39 tells

us that the integral vanishes. Otherwise, at k = −1, we see that∮
γ

Pf,z0(z) dz = c−1,z0

∮
γ

1

z − z0
dz = 2πiResz0(f) Ind(γ, z0).

Thus, ∮
γ

f(z) dz =
∑
z0∈S

∮
γ

Pf,z0(z) dz = 2πi
∑
z0∈S

Resz0(f) Ind(γ, z0),

which is what we wanted. �

6.3.2 Example Contour Integral
So now we get to compute all the integrals we could want.

Exercise 6.27. We compute ∫ ∞
0

√
x

1 + x2
dx.

Proof. We use a keyhole contour. To begin, we fix the branch of the logarithm on C \R≥0, and we will work
with the following image, where the red is our ray of death.
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Re

Im

As such, we set f(z) :=
√
z/
(
z2 + 1

)
and write

z := r exp(iθ)

where now θ ∈ (0, 2π) avoids the ray of death. We now draw the following contour.

Re

Im

η1

η2

γε

γR

ε

R

Let γ be the full contour. To be explicit, γε and γR are two arcs, oriented as drawn, with radii ε andR respec-
tively. Then “cut out” from these are the horizontal paths η1 and η2 to connect them. We will send ε→ 0 and
R→∞ so that the figure essentially becomes two copies of the real line, moving in opposite directions. As
such, we compute the integrals making up γ one at a time.

• As R→∞, the integral along γR becomes a circle. So we bound |f(z)| ≤
√
R

R2+1 so that∣∣∣∣∮
γR

f(z) dz

∣∣∣∣ ≤ 2πR ·
√
R

R2 + 1
,

which goes to 0 for R large.

• As ε→ 0, the integral along γε becomes a circle. So we do the same bound to see that∣∣∣∣∮
γε

f(z) dz

∣∣∣∣ ≤ 2πε ·
√
ε

ε2 + 1
,

which still goes to 0 for ε small.
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• It remains to compute the integral the integrals over η1 and η2. Because η1 and η2 have constant imag-
inary parts, we let this imaginary part be±δ, which goes to 0 for R large and ε small. As such

lim
δ→0

∮
η1

f(z) dz =

∮ R

ε

√
x

x2 + 1
dz

and

lim
δ→0

∮
η2

f(z) dz =

∮ ε

R

−√x
x2 + 1

dz.

In particular, we have a − sign here because η2 lives on the other side of our ray of death/branch cut.
Thus, the sum of the two integrals over the η•s is simply

2

∫ ∞
0

√
x

x2 + 1
dx

as δ goes to 0.

• It remains to compute the integral of f over the entire contour. We use Theorem 6.26; note that f only
has poles at ±i, and the square root portion can be defined to be holomorphic, given our branch cut.
Thus, we compute

Resi(f) =
1

2
exp(7πi/4) and Res−i(f) = −1

2
exp(iπ/4).

So in total, our integral comes out to∮
γ

f(z) dz = 2πi
(

Resi(f) + Res−i(f)
)

= π
√

2

because our only singularities are at±i, where we are using Theorem 6.26.

Synthesizing, we find that ∮ ∞
0

√
x

x2 + 1
dx =

1

2
lim
R→0
ε→0

∮
γ

f(z) dz =
π√
2
.

This finishes. �

6.4 April 25

Good morning, everyone.

• Homework #10 is due on Friday, at 11:59PM.

• Course evaluations exist.

• Today will be our last “material for the final.”

• On Wednesday, we’ll talk about complex dynamics. There is a talk (for general audience) on complex
dynamics on Thursday at 4:10PM, in Evans 60.

6.4.1 Möbius Transformations
Today we are talking about Möbius transformations. Here is our definition.
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Definition 6.28 (Möbius tranformation). Fix a domain Ω. A Möbius transformation is a function f : Ω→
C of the form

f(z) :=
az + b

cz + d
,

where a, b, c, d ∈ C and ad− bc 6= 0.

The point is that Möbius transformations are more or less matrices in GL2(C), the group of 2 × 2 matrices
with complex coe�cients. Namely, [

a b
c d

]
· z :=

az + b

cz + d

provides a group action of GL2(C) on C.

Example 6.29. When c = 0, then f(z) = az+b
d with ad 6= 0, so f is non-constant and entire.

Example 6.30. When c 6= 0, then f(z) = az+b
cz+d will have a pole at z = −d/c. Notably, a · −d/c + b 6= 0

because ad− bc 6= 0, so this singularity is indeed not removable.

6.4.2 Generating Möbius Transformations
There are, roughly speaking, three types of Möbius transformations.

Definition 6.31 (Möbius transformation, types). Here are some examples of Möbius transformations.

• The Möbius transformations
Tb(z) :=

1z + b

0z + 1
= z + b

are called the translations.

• The Möbius transformations
Da(z) :=

az + 0

0z + 1
= ax

are called the dilations.

• The Möbius transformation
I(z) :=

0z + 1

1z + 0
=

1

z

is called the inversion.

It will turn out that these generate all of our Möbius transformations.
Here are some computational lemmas to rigorize our notion of “generate.”

Lemma 6.32. Let f and g be Möbius transformations.

• f ◦ g is also a Möbius transformation, with composition give as multiplication of matrices.

• f is bijective, and its inverse is

f−1(z) :=
dz − b
−cz + a

.

Proof. The first is a direct computation. The second comes down to noting that[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
,
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but the factor of 1/(ad− bc) does nothing. �

Remark 6.33. The above computations turn our set of Möbius transformations into a group under com-
position.

And here is our result.

Proposition 6.34. Every Möbius transformation can be written as a composition of translations, dila-
tions, and inversions.

Proof. We proceed by hand. Fix

f(z) :=
az + b

cz + d

a Möbius transformation.

• If c 6= 0, then proceed as

z
Dc7−→ cz

Td7−→ cz + d
I7−→ 1

cz + d

D(bc−ad)/c7−→ (bc− ad)/c

cz + d
.

From here, we can apply Ta/c to get

a

c
+

(bc− ad)/c

cz + d
=

1

c

(
a(cz + d) + bc− ad

cz + d

)
=
az + b

cz + d
.

So in total, we have
f = Ta/c ◦D(bc−ad)/c ◦ I ◦ Td ◦Dc.

• If c = 0, then proceed as

z
TDa/d7−→ a

d
z
Da/d7−→ a

d
z +

b

d
,

which checks f = Tb/d ◦Da/d.

These cases finish the proof. �

Exercise 6.35. We verify Proposition 6.34 for

f(z) :=
iz + 0

z − i .

Proof. Following the algorithm, we get

z 7−→ z 7−→ z − i 7−→ 1

z − i 7−→
−1

z − i 7−→
−1

z − i + i.

We can check that −1
z−i + i = iz

z−i = f(z), which finishes. �
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6.4.3 Classifying Automorphisms of B(0, 1)

The point of Möbius transformations is to be able to describe certain very nice maps. Here is our defini-
tion.

Definition 6.36 (Biholomorphic). Fix domains Ω1,Ω2. A function f : Ω1 → Ω2 is biholomorphic if and
only if f is bijective and holomorphic.

Note that, by Theorem 6.6, we know that the inverse function f−1 is holomorphic.
In the case of Ω1 = Ω2, we get a well-defined composition and hence group structure.

Definition 6.37 (Automorphism). Fix a domain Ω. Then the automorphism group of Ω is

Aut(Ω) := {biholomorphic maps f : Ω→ Ω}.

Automorphisms (and more generally biholomorphic maps) are good to consider because they are in some
sense the natural symmetries of a complex space, so we often want to “mod out” by them in some suitable
sense.

Anyway, here is our theorem.

Theorem 6.38. The group Aut(B(0, 1)) is equal to{
f(z) :=

az + b

cz + d
: |a|2 − |b|2 = 1 and c = b, d = a

}
.

Proof. We show our inclusions separately.

• Let f : B(0, 1) → B(0, 1) be an automorphism; we will show that f is a Möbius transformation of the
required type. Fix some z ∈ B(0, 1) and w := f(z). There are three steps.

1. Suppose that f(0) = 0. Then we may apply the Schwarz lemma: Corollary 5.8 with f−1, which
tells us that

|z| =
∣∣f−1(w)

∣∣ ≤ |w| = |f(z)|.
Applying Corollary 5.8 this time to f tells us that

|w| = |f(z)| ≤ |z|.

In particular, |f(z)| = |z|, so Corollary 5.8 one more time (namely, the second sentence) tells us
that f(z) = αz for some α ∈ C; note that |f(z)| = |z| forces |α| = 1.
Now, setting α = r exp(iθ), we see r = 1 is forced, so we take a := exp(iθ/2) and b := 0 and c := 0
and d := exp(−iθ/2) to get

f(z) = αz = exp(iθ)z =
exp(iθ/2)z + 0

0 + exp(−iθ/2)
,

which finishes.
2. Suppose that c := f(0) 6= 0 with |c| < 1. Notably, |c| > 0 as well. Now, set

g(z) :=
z − c
1− cz =

z − c
−c+ 1

.

Now, the only pole here is at 1/c, which has magnitude larger than 1 and hence does not live in
the ball, so g is holomorphic onB(0, 1). We claim that g is an automorphism inB(0, 1), for which
we need to show that g : B(0, 1)→ B(0, 1) is a bijection.
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– In one direction, suppose z ∈ B(0, 1). Then

|z|2 − |cz|2 = |z|2
(
1− |c|2

)
< 1− |c|2,

which rearranges to |z|2 + |c|2 < 1 + |cz|2, which gives

|g(z)|2 =
|z|2 + |c|2 − cz − cz
1 + |cz|2 − cz − zc < 1

by using our bound above.
– In the other direction, we note that the inverse of g is

g−1(z) =
z − c
−c+ 1

from Lemma 6.32, which has the same form as g, so we appeal to the previous case.
3. To finish, consider g ◦ f . This is certainly an automorphism because compositions of automor-

phisms give another automorphism. But

(g ◦ f)(0) = g(f(0)) = g(c) = 0,

so we conclude from our first step that g ◦ f is a dilation of the form z 7→ exp(iθ)z. In particular,
we get to write

f(z) = g−1(exp(iθ)z) =
exp(iθ)z + c

c exp(iθ)z + 1

from the above computation. As such, we set d := 1/
(
1− |c|2

)
and a :=

√
d exp(iθ/2) and b :=

c
√
d exp(iθ). Then we can check by hand that

f(z) =
az + b

cz + d

and |a|2 − |b|2 = d
(
1− |c|2

)
= 1. This finishes.

• We omit the proof that all the given Möbius transformations are in fact automorphisms. The proof is
essentially the second point above, given more generally.

The above inclusions finish the proof. �

Remark 6.39. The conditions on a, b, c, d force ad− bc 6= 0. In particular, ad− bc = |a|2 − |b|2 = 1.

We close with a warning.

Warning 6.40. Möbius transformations are not in bijection with matrices.

The main point is that

f(z) =
az + b

cz + d
=
waz + wb

wcz + wd

for any w ∈ C×. As such, our Möbius transformations turn out to really be in bijection with elements of
PGL2(C), where we have modded out by the center. In particular, we can put elements of the form

f(z) :=
z − a
1− az ∈ Aut(B(0, 1))

in the correct form, with some elbow grease.
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6.5 April 27
Good morning, everyone.

• Homework #10 is now due on Sunday at 11:59PM. Cool.

• There is a colloquium on complex dynamics at Evans 60, by Sarah Koch.

6.5.1 The Mandelbrot Set
Today we are talking about complex dynamics. Complex dynamics is the behavior of objects under iteration.
As an example, we let c ∈ C vary with the function

fc(z) := z2 + c.

For example, we might ask what happens to the point 0 as we iterate it through fc.

Example 6.41. Fix c = 1 so that f1(c) = z2 + 1. Then we compute

f1(0) = 1,

f1(1) = 2,

f1(2) = 5,

f1(5) = 26.

This is called “blowing up” because 0’s iterations are to infinity.

It turns out that there are, roughly speaking, two options for the behavior of these iterations.

• Perhaps
∣∣f (n)(0)

∣∣→∞ as n→∞.

• Perhaps
∣∣f (n)(0)

∣∣ is bounded.

To make this easier to compute, we have the following lemma.

Lemma 6.42. Fix c ∈ C and define {zn}n∈N by z0 := 0 and zn := fc(zn−1) for n > 0. If |zn| > 2 for any n,
then |zn| → ∞ as n→∞.

Proof. On one hand, take |c| ≤ 2, we see that

|zn+1| ≥ |zn|2 − |c| > 2|zn| − 2,

so
|zn+1| − 2 > 2(|zn| − 2)

which goes to∞ because it’s constantly doubling. If |c| > 2, one can do something similar. �

Example 6.43. For c = −1, we have
f−1(0) = −1,

which will simply repeat itself, which in particular is bounded.

We want to be able to do lots of computations, so we should use a computer. Here are the iterations for
z = 0.39 + 0.2i.
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Re

Im

This path looks bounded.
The set of points c for which this remains bounded has a name.

Definition 6.44 (Mandelbrot set). The Mandelbrot set is the set of all c ∈ C such that{
f (n)
c (0) : n ∈ N

}
is bounded.

Remark 6.45. The Mandelbrot set is named by Benoit B. Mandelbrot.

Remark 6.46. The “B” in Benoit B. Mandelbrot stands for “Benoit B. Mandelbrot.”

If we color all the points c for which we remain bounded, we get the following figure. (The graphics were
created with Asymptote.)
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This is more fun to Zoom it; here we have zoomed in to z = 0.25.

There are fun things that we can say about the Mandelbrot set, even though it looks very strange.

Theorem 6.47. The Mandelbrot set is connected.

The proof is about 200 pages, in French, like all good mathematics.

Remark 6.48. It is conjectured that the Mandelbrot set is “locally connected”—every point has a con-
nected neighborhood.

6.5.2 Julia Sets
One might ask what happens if we fix c and then let the starting point z vary instead. This gives the following
definition.

Definition 6.49 (Julia set). Fix c. Then the set{
x ∈ C :

∣∣∣f (n)
c (x)

∣∣∣ is bounded as n→∞
}

is the filled Julia set of c.

Remark 6.50. Gaston Julia, for whom Julia sets are named after, is often pictured wearing a mask be-
cause he lost his nose in World War I.

Example 6.51. Fix c = 0 so that we are looking at f (n)(z) = z2n . Then we can see that the Julia set is
just B(0, 1)—everything outside here will have exploding norm, and certainly |z| ≤ 1 implies

∣∣z2n ∣∣ ≤ 1.

Connectivity of Julia sets is a somewhat strange phenomenon. Here is the filled Julia set for c = 0.25.
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And here is the filled Julia set for c = 0.26.

So indeed, connectivity looks sporadic, in some sense. Here is an amazing result.

Theorem 6.52. The Mandelbrot set is precisely the values of c ∈ C so that the filled Julia set of c is
connected.

In general, dynamics questions are somewhat easy to state but very hard to answer. Here is an exam-
ple.

Definition 6.53. A complex number z ∈ C is preperiodic for a polynomial f(z) ∈ C[z] if and only if there
are distinct m and n so that

f (m)(z) = f (n)(z).

The image here is that the points should “loop” in on themselves, in some sense. And here is our re-
sult.

Theorem 6.54. Fix an integer d ≥ 2 and complex numbers a, b ∈ C. Then the set of parameters c ∈ C
such that both a and b are preperiodic for the polynomial f(z) := zd + c is infinite if and only if ad = bd.

This is a really hard result, proven in roughly the last decade.
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6.6 April 29

Good morning, everyone. Welcome to the last day of class.

6.6.1 Complex Numbers and Their Topology
Today we summarize the course. We began our story with the complex numbers.

Definition 2.1 (Complex numbers). The set C of complex numbers is

C := {a+ bi : a, b ∈ R}.

Here i is some symbol such that i2 = −1 formally.

However, we wanted to turn this into a space, more specifically a metric space.

Definition 2.11 (Distance on C). Given complex numbers z = a + bi and w = c + di, we define the
distance between z and w to be

|z − w| =
√

(a− c)2 + (b− d)2.

From here, we could define open balls and open subsets.

Definition 2.18 (Open ball). Given some z0 ∈ C, then open ball centered at z0 with radius r > 0 is

B(z0, r) := {z ∈ C : |z − z0| < r}.

Observe z0 ∈ B(z0, r).

Then the open balls formed a basis of our topological space, giving our open sets.

Definition 2.25 (Open). A subset X ⊆ C is open if and only if, for each z ∈ X, there exists r > 0 such
that B(z, r) ⊆ X.

6.6.2 Complex Functions
With a topology in hand, we were able to talk about continuity; here are a few equivalent conditions.

Lemma 2.92. Suppose that f : X → C.

(a) Then f is continuous atw if and only if every sequence {zn} ⊆ X such that zn → z implies f(zn)→
f(z).

(b) We have that f is continuous on X if and only if every open set U ⊆ C has f−1(U) open in X.

(c) We have that f is continuous on X if and only if each closed set V ⊆ X has f−1(V ) closed in X.

(d) Lastly, we have that f is continuous at if and only if, for each ε > 0 and z ∈ C, we have that
f−1(B(z, ε)) is open in X.

However, to really be able to talk about complex analysis, we need to introduce our notion of di�erentia-
tion.
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Definition 3.2 (Di�erentiable). Fix an open subset Ω ⊆ C and f : Ω → C a function. Then f is complex
di�erentiable at z0 ∈ Ω with derivative α ∈ C if and only if

lim
h→0

f(z0 + h)− f(z0)

h
= α.

We write this as f ′(z0) = α.

Complex di�erentiability (as above) turns out to be very strong because the limit is taking place in the two-
dimensional plane C.

Functions di�erentiable everywhere had a special name.

Definition 3.4 (Holomorphic, entire). Fix an open subset Ω ⊆ C and f : Ω → C a function. Then f is
holomorphic on Ω if and only if f is complex di�erentiable at each z0 ∈ C. If Ω = C, then we say f is
entire.

We were able to show that a variety of functions were holomorphic, from polynomials to power series. Not
all “smoothish” functions were holomorphic, such as z 7→ |z| and z 7→ Re z.

As our first taste of the power of complex di�erentiability, we saw that it was a strictly stronger con-
dition than merely being di�erentiable as a function R2 → R2: we had to satisfy some partial di�erential
equations.

Theorem 3.19 (Cauchy–Riemann). Fix Ω ⊆ C a nonempty open subset and f : Ω→ C a function di�er-
entiable at some z0 = x0 + y0i ∈ C. If we write f(x+ yi) = u(x, y) + i(x, y), then{

ux(x0, y0) = vy(x0, y0),

vx(x0, y0) = −uy(x0, y0).

In fact, f ′(z0) = ux(x0, y0) + ivx(x0, y0) = vy(x0, y0)− iuy(x0, y0).

The above result had a pretty natural proof, essentially by writing down what we need for complex di�er-
entiability on the real and imaginary axis.

However, it turns out that this real and imaginary information was also su�cient.

Theorem 3.26. Fix Ω ⊆ C a nonempty open subset and f : Ω → C a function. Writing f(x + yi) =
u(x, y) + iv(x, y) and fixing some z0 := x0 + y0i, then suppose we have the following.

• We have ux, uy, vx, vy all exist and are continuous (!).

• We have {
ux(x0, y0) = vy(x0, y0),

vx(x0, y0) = −uy(x0, y0).

Then f is di�erentiable at z0.

6.6.3 Integration

Having talked about derivatives, we were able to integrate.
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Definition 4.25 (Integration). Fix Ω ⊆ C an open and connected subset with a C1 path γ : [a, b] → Ω.
Now, given a continuous function f : Ω→ C, we define the integral∫

γ

f(z) dz :=

∫ b

a

f(γ(t))γ′(t) dt,

if the integral exists.

This definition was extended to piecewise C1 paths in the natural way.

The point of studying integration was for the Cauchy integral formula. More concretely, the story of
integration tied nicely into the story of analytic functions.

Definition 3.47 (Analytic). Fix X ⊆ C a nonempty open subset and f : X → C a function. Then f is
analytic at z0 ∈ C if and only if f has a power series expansion at z0. Explicitly, there is a power series
S(z) =

∑∞
k=0 akz

k and positive real number r > 0 (less than the radius of convergence) such that

f(z) = S(z − z0) =

∞∑
k=0

ak(z − z0)k

for any z ∈ B(z0, r). Then f is analytic if and only if it is analytic at each z0 ∈ C.

Because power series were di�erentiable, we were able to get the following result.

Lemma 3.51. Fix X ⊆ C a nonempty open subset and f : X → C an analytic function. Then f ′ is also
analytic.

It turns out that the converse is also true: holomorphic functions were analytic.

To codify our connection, we needed to talk about winding numbers. Roughly speaking, Ind(γ, z0) refers
to the number of times γ goes around z0 (with counterclockwise orientation). So our first hint that integra-
tion would be helpful for us is that it actually let us compute winding numbers.

Lemma 4.54. Fix γ : [0, 1]→ C a closed, piecewise C1 path. Further, fix z0 ∈ C \ im γ. Then

Ind(γ, z0) =
1

2πi

∮
γ

1

z − z0
dz.

From here, we could define more generalized winding numbers.

Definition 4.59 (Index). Fix an open and connected subset Ω ⊆ Cand a closed piecewiseC1 pathγ : [a, b]→
Ω. Given a function f : Ω→ C which is continuous on im γ, we define

Indf (γ,w) :=
1

2πi

∮
γ

f(z)

z − w dz

The point of this? The Cauchy integral formula.
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Theorem 4.63 (Cauchy integral formula). Fix an open, connected subset Ω ⊆ C and some z0 ∈ Ω with
r > 0 such that B(z, r) ⊆ Ω. Further, fix the path γ : [0, 1]→ Ω given by

γ(t) := z0 + r exp(2πit).

Then, if f : Ω→ C is holomorphic, then any w ∈ B(z0, r) has

f(w) =
1

2πi

∮
γ

f(z)

z − w dz = Indf (γ,w).

From here, we could in fact, prove our goal.

Corollary 4.71. Fix an open, connected subset Ω ⊆ C and f : Ω→ C some holomorphic function. Then
f is analytic at any z0 ∈ Ω. In fact, for any r > 0 such that B(z0, r) ⊆ Ω, the path

γ(t) := z0 + r exp(2πit)

gives

f (n)(z0) =
n!

2πi

∮
γ

f(z)

(z − w)n+1
dz.

The main ingredient in the proof of Theorem 4.63 was the Cauchy–Goursat theorem.

Theorem 4.70. Fix an open, connected, star-like subset Ω ⊆ C with respect to z0. Further, fix a closed,
piecewise C1 path γ : [0, 1]→ Ω. Then, if f : Ω→ C is holomorphic,∮

γ

f(z) dz = 0.

The Cauchy–Goursat theorem was first proven for triangles by some geometric argument and then gener-
alized to star-like domains.

The Cauchy integral formula gave us all sorts of lovely corollaries. Let’s start with Liouville’s theo-
rem.

Theorem 4.80 (Liouville’s). Fix an entire function f : C→ C. If f is bounded, then f is constant.

From here followed the Fundamental theorem of algebra.

Theorem 4.81 (Fundamental theorem of algebra). Fix a polynomial p(z) ∈ C[z] of degree n > 0. Then p
has a root in C.

My personal favorite corollary was the Identity theorem.

Theorem 5.1 (Identity). Fix an open, connected subset Ω ⊆ Cwith two holomorphic functionsf1, f2 : Ω→
C. Further, set

Z := {z ∈ Ω : f1(z) = f2(z)}.
If Z contains an accumulation point, then f2 = f2 on Ω.

6.6.4 Singularities
Another consequence of the Cauchy integral formula was that it let us study singularities. The most basic
form was removable singularities.
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Theorem 4.84 (Riemann removable singularity). Fix an open and connected subset Ω ⊆ C, and pick up
some z0 ∈ Ω. If f : Ω \ {z0} → C is holomorphic and bounded near z0, then f extends to a holomorphic
function on Ω.

More generally, we had the following classification of singularities.

Definition 5.10 (Regular, singular). Fix an open and connected subset Ω ⊆ C with a function f : Ω→ C.

• A point z0 ∈ Ω is regular if and only if f is holomorphic at z0.

• A point z0 ∈ Ω is a singularity otherwise.

Definition 5.11 (Isolated singularity). Fix an open and connected subset Ω ⊆ C with a function f : Ω →
C. A point z0 ∈ Ω is an isolated singularity if and only if we can find r > 0 with B(z, r) ⊆ C such that f
is holomorphic on B(z0, r) \ {z}.

• z0 is removable if and only if f is bounded near z0.

• z0 is a pole if and only if f is not bounded near z0, but z0 is a removable singularity of 1/f(z).

• z0 is an essential singularity if and only if z0 is neither removable nor a pole.

We could understand removable singularities from the Riemann removable singularity theorem above, but
more work was required to understand poles and essential singularities.

To begin, we started with poles. The key to understanding them was the Laurent series.

Definition 5.21 (Laurent expansion). In the context of Lemma 5.20, the “power series” expansion

f(z) =

∞∑
k=−m

ak(z − z0)k

is the Laurent expansion of f at z0; here m is the order of the pole at z0.

Having access to Laurent expansions gave us a Residue theorem.

Theorem 5.24 (Residue). Fix a primitive domain Ω ⊆ C and some finite subset S ⊆ Ω such that we have
a holomorphic function f : Ω \ S → C, where S consists of the poles of f . Now, if γ : [0, 1] → Ω is a
closed, piecewise C1 path such that im γ ∩ S = ∅, then∮

γ

f(z) dz = 2πi
∑
z0∈S

Resz0(f) Ind(γ, z0).

In particular, if f were holomorphic within the interior of γ, then Theorem 4.70 could tell us that the integral
should be 0.

It is possible to generalize Theorem 5.24 by simply removing the condition on poles.

Theorem 6.26 (Residue). Fix a domain Ω and a finite setS ⊆ Ω so that f : (Ω\S)→ C can be a holomor-
phic function with isolated singularities S. Given a closed, piecewise C1 path γ : [0, 1] → Ω such that
im γ ∩ S = ∅ with inside contained in Ω (i.e., homologous to 0 in Ω), we have∮

γ

f(z) dz = 2πi
∑
z0∈S

Resz0(f) Ind(γ, z0).
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The main ingredient in the proof of Theorem 6.26 was a more general version of the Cauchy integral for-
mula.

Theorem 6.22 (Cauchy integral formula). Fix a domain Ω with a cycle Γ. Then, given a holomorphic
function f : Ω→ C, we have ∮

Γ

f(z) dz = 0,

and for any w ∈ Ω \ im γ, we have

f(w) Ind(Γ, w) =
1

2πi

∮
Γ

f(z)

z − w dz.

We then closed the course by discussing Möbius transformations and complex dynamics, for fun.

Remark 6.55. In a future course, one might see Weierstrass factorization, the Riemann mapping theo-
rem, and much more. We’ll see you there.
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LIST OF DEFINITIONS

Absolute convergence, 33
Accumulation point, 28
Analytic, 75
Arctangent, 85
Argument, 87
Automorphism, 168
Automorphisms of C, 8

Biholomorphic, 168
Binary relation, 10
Bounded, 20, 25, 42, 52
Bounded near, 42
Branch of the logarithm, 88

C1, 93
Cartesian product, 10
Cauchy sequence, 29
Closed, 20
Closure, 23
Complex numbers, 7, 14
Complex power series, 67
Concatenation, 45
Conjugate, 16
Continuous, 42
Converge, diverge, 30
Converges, 25
Convex, 19
Cycle integration, 160
Cycles, 160

Di�erentiable, 56
Di�erentiable for paths, 93
Disconnected, 23
Discrete, 19
Distance on C, 17
Domain, 122

Equivalence class, 10

Equivalence relation, 10
Equivalent, 95
Essential singularity, 132
exp, 76

Fiber, pre-image, 12
Frontier, boundary, 23
Functions, 11

Holomorphic, entire, 57
Homologous to zero, 145
Homotopic with fixed endpoints, 138
Homotopy, 138

Identity, 12
Image, 12
Index, 112
Infinite limits, 41
Inj-, sur-, bijective, 12
Inside, 160
Integrable, 99
Integration, 100, 101
Interior, 22
Isolated, 19
Isolated singularity, 132

Julia set, 172

Kernel of exp, 80

Laurent expansion, 134
Laurent series, 159
Length, 103
Limit, 41
Limit point, 28
Log, 88

Möbius tranformation, 166
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Möbius transformation, types, 166
Mandelbrot set, 171
Meromorphic, 132
Metric on C, 7
Multiplicity, 129

Norm on C, 7, 16
Null homotopic, 139

Open, 20
Open annulus, 158
Open ball, 19
Opposite path, 97
Order, 133
Oriented curve, 96

Parition, 10
Path, 44
Path integration, 138
Path-connected, 45
π, 82
Piecewise C1, 94
Plus and times in C, 14
Pointwise convergence, 52
Pole, 132
Power series expansion, 75
Primitive, 103
Primitive domain, 122
Principal part, 134

Quotient set, 11

Radius of convergence, 67
Real, imaginary parts, 15
Regular, singular, 132
Removable singularity, 132
Reparameterization, 95
Representatives, 11
Residue, 134, 162, 162
Restriction, 12

Sequence, 24
Sequence of functions, 51
Sequentially compact, 30
Series, 30
Series of functions, 68
Simply connected, 139
Sine, cosine, 80
Star-like, 117
Subsequence, 25

Tends to infinity, 30

Uniform continuity, 50
Uniform convergence, 52

Winding number, 109
Winding number, cycles, 160
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