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THEME 1

METRIC SPACES

My personal view on spaces is that every space I ever work with is
either metrizable or is the Zariski topology.

—Evan Chen, [Che22]

1.1 August 24
Good morning everyone. This is my first class of the semester.

1.1.1 Administrative Notes
Here are some housekeeping remarks.

• The webpage for this class is math.berkeley.edu/ rieffel/202AannF22.html.

• The midterm date is negotiable. We will have a vote on Friday. The possible dates are Friday 14 Oc-
tober, Monday 17 October, or Wednesday 19 October.

• There will be no vote on the final exam. It is on 15 December at 7PM.

• Homework will be due Fridays by midnight, approximately every week.

• There is no particular text for this course, and any given text covers more than we have time for. That
said, we will (very) loosely follow [Lan12], but it is helpful to have a number of different expositions
around.

• Please wear a mask during lectures and office hours.

Here is a summary of the course.

• We will spend the next couple of lectures talking about metric spaces.

• We will then spend the first half of the course on general topology. The second half of the course will
be on measure and integration.

• Throughout we will see a little on functional analysis.
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1.1. AUGUST 24 202A: TOPOLOGY AND ANALYSIS

1.1.2 Metric Spaces
Hopefully we remember something about metric spaces. Here’s the definition.

Definition 1.1 (Metric). A metric d on a set X is a function d : X × X → R≥0 satisfying the following
rules for any x, y, z ∈ X.

(a) Zero: d(x, x) = 0.

(b) Zero: d(x, y) = 0 implies x = y.

(c) Symmetry: d(x, y) = d(y, x).

(d) Triangle inequality: d(x, y) + d(y, z) ≥ d(x, z).

We call (X, d) a metric space.

Remark 1.2. It is occasionally helpful to think about a “reversed” triangle inequality: note d(x, z) ≤
d(x, y) + d(y, z) implies d(x, z)− d(x, y) ≤ d(y, z). Similarly, d(x, y)− d(x, z) ≤ d(y, z), so it follows

|d(y, x)− d(x, z)| ≤ d(y, z).

We will want some “almost” metrics as well. Here are their names.

Definition 1.3 (Semi-metric). A semi-metric d on a set X satisfies (a), (c), and (d) of Definition 1.1. We
call (X, d) a semi-metric space.

Definition 1.4 (Extended metric). An extended metric d on a setX is a function d : X ×X → R∞
≥0 satis-

fying (a)–(d) of Definition 1.1. We call (X, d) an extended metric space.

Intuitively, we might want extended metrics if we have points that we never want to be able to get to from
other ones.

We can turn spaces with a semi-metric into a space with a metric.

Lemma 1.5. Fix a semi-metric space (X, d), and define the relation ∼ on X by x ∼ y if and only if
d(x, y) = 0. Then∼ is an equivalence relation.

Proof. We run these checks by hand. Fix any x, y, z ∈ X.

• Reflexive: d(x, x) = 0 means that x ∼ x.

• Symmetry: if x ∼ y, then d(x, y) = 0, so d(y, x) = 0, so y ∼ x.

• Transitive: if x ∼ y and y ∼ z, then

0 ≤ d(x, z) ≤ d(x, y) + d(y, z) = 0,

so d(x, z) = 0, so x ∼ z. ■

As such, given a semi-metric space (X, d), we may look at the set of equivalence classes under∼, which we
will denote X/∼.1

1 The notation of /∼ is intended to make us think of quotients.
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Proposition 1.6. Fix a semi-metric space (X, d)and define∼as in Lemma 1.5. Thendnaturally descends
to a metric d̃ on X/∼.

Proof. Let [x] denote the equivalence class of x ∈ X under∼. We claim that the function

d̃([x], [y]) := d(x, y)

is a well-defined metric. We have the following checks; fix any x, y, z ∈ X.

• Well-defined: if x ∼ x′ and y ∼ y′, then note that

d(x, y) ≤ d(x, x′) + d(x′, y) = d(x′, y) ≤ d(x′, y′) + d(y′, y) = d(x′, y′).

By symmetry, we also have d(x′, y′) ≤ d(x, y), so equality follows. So d does descent properly to the
quotient X/∼.

• Zero: note that d̃([x], [y]) = 0 if and only if d(x, y) = 0 if and only if x ∼ y if and only if [x] = [y].

• Symmetry: note that
d̃([x], [y]) = d(x, y) = d(y, x) = d̃([y], [x]).

• Triangle inequality: note that

d̃([x], [z]) = d(x, z) ≤ d(x, y) + d(y, z) = d̃([x], [y]) + d̃([y], [z]),

which finishes. ■

Here are some examples of metric spaces.

Example 1.7. Given a connected graphG = (V,E) with a weighting functionw : E → R≥0, we can build
a metric as follows: define the “shortest-path” function d : V ×V → R≥0 sending two vertices v, w ∈ V
to the length of the shortest path. If the graphG is not connected, we merely have an extended metric.

Example 1.8 (Euclidean metric). The function d : Rn × Rn → R≥0

d
(
(x1, . . . , xn), (y1, . . . , yn)

)
:=

√√√√ n∑
i=1

(xi − yi)2

is a metric.

Observe that it is not completely obvious that Example 1.8 satisfies the triangle inequality, but this will
follow from the theory of the next subsections.

1.1.3 Norms on Vector Spaces
Norms provide convenient ways to build metrics.

Definition 1.9 (Norm). Fix a vector space V over a normed field (k, | · |). A norm ∥·∥ : V → R≥0 is a
function satisfying the following, for any r ∈ R and v, w ∈ V .

(a) Zero: ∥0∥ = 0.

(b) Zero: if ∥v∥ = 0, then v = 0.

(c) Scaling: ∥rv∥ = |r| · ∥v∥.

(d) Triangle inequality: ∥v + w∥ ≤ ∥v∥+ ∥w∥.
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Remark 1.10. We can probably work with a more general normed field instead of “merely” R or C.

There is also an analogous notion of “semi-norm.”

Definition 1.11 (Semi-norm). Fix a vector space V over R or C. A semi-norm ∥·∥ : V → R≥0 is a function
satisfying (a), (c), and (d) of Definition 1.9.

And here is our result.

Proposition 1.12. Given a vector space V with a (semi-)norm ∥·∥ : V → R≥0, then the function

d(v, w) := ∥v − w∥

defines a (semi-)metric on V .

Proof. We run the checks directly. Let x, y, z ∈ V be points. Quickly, we note that d(x, y) = ∥x− y∥ ≥ 0 by
hypothesis on ∥·∥.

(a) Zero: note that d(x, x) = 0 because d(x, x) = ∥x− x∥ = ∥0∥ = 0.

(b) Zero: if d(x, y) = 0, then ∥x− y∥ = 0, so x− y = 0, so x = y.

(c) Symmetry: note that

d(x, y) = ∥x− y∥ = | − 1| · ∥y − x∥ = 1 · ∥y − x∥ = d(y, x).

(d) Triangle inequality: note that

d(x, z) = ∥x− z∥ = ∥(x− y) + (y − z)∥ ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z),

which finishes the check.

Thus, if ∥·∥ is a full norm, then d is a full metric. But if ∥·∥ is only a semi-norm satisfying (a), (c), and (d) of
Definition 1.9, then the corresponding d only satisfies (a), (c), and (d) of Definition 1.1 and makes a semi-
metric. ■

As an aside, we note that what’s nice about semi-norms is that they will “algebraically” encode the equiva-
lence relation of Lemma 1.5.

Proposition 1.13. Fix a vector space V over a normed field (k, | · |) and a semi-norm ∥·∥ on V . Then the
set N := {v ∈ V : ∥v∥ = 0} is a subspace of V . In fact, the semi-norm ∥·∥ descends to a well-defined
norm on V/N .

Proof. To show that N ⊆ V is a subspace, we pick up v, w ∈ N and scalars r, s ∈ k. Then we note

∥rv + sw∥ ≤ ∥rv∥+ ∥sw∥ = |r| · ∥v∥+ |s| · ∥w∥ = 0,

so it follows ∥rv + sw∥ = 0 and so rv + sw ∈ N .
It remains to descend ∥·∥ to V/N . Here are our checks; fix v, w ∈ V and r ∈ k.

• Well-defined: if v +N = w+N , we need ∥v∥ = ∥w∥. Well, v +N = w+N tells us that there is some
z ∈ N with v = w + z and so

∥v∥ = ∥w + z∥ ≤ ∥w∥+ ∥z∥ = ∥w∥ .

Similarly, v + (−z) = w implies that ∥w∥ ≤ ∥v∥, so ∥v∥ = ∥w∥ follows.
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• Zero: note that v +N = 0 +N implies that ∥v +N∥ = ∥0 +N∥ = ∥0∥ = 0.

• Zero: if ∥v +N∥ = 0, then ∥v∥ = 0, so v ∈ N , so v +N = 0 +N .

• Scaling: note ∥r(v +N)∥ = ∥rv +N∥ = ∥rv∥ = |r| · ∥v∥ = |r| · ∥v +N∥.

• Triangle inequality: note ∥(v +N) + (w +N)∥ = ∥(v + w) +N∥ = ∥v + w∥ ≤ ∥v∥+ ∥w∥ = ∥v +N∥+
∥w +N∥.

■

Here are the usual examples.

Example 1.14. Set V := Rn or V := Cn. Then the following are norms on V .

• ∥(x1, . . . , xn)∥2 :=
(∑n

i=1 |xi|2
)1/2.

• ∥(x1, . . . , xn)∥1 :=
∑n
i=1 |xi|.

Here are some more esotetric examples.

Example 1.15. Set V := Rn or V := Cn. Then

∥(x1, . . . , xn)∥∞ := sup{|x1|, . . . , |xn|}

provides a norm on V .

Example 1.16. Set V := Rn or V := Cn. Then, given p ≥ 1,

∥(x1, . . . , xn)∥p :=

(
n∑
i=1

|xi|p
)1/p

provides a norm on V .

Remark 1.17. Taking the limit as p→∞ of ∥f∥p gives ∥f∥∞. This justifies the notation.

Remark 1.18. Despite having lots of examples, all of these norms are equivalent in a topological sense.

These normed vector spaces actually allow us to define a metric on any subset.

Proposition 1.19. Given a metric space (X, d) and a subset Y ⊆ X, the restriction of d to Y × Y is a
metric.

Proof. All the requirements for d on Y × Y are satisfied for any points in X, so we are done by doing no
work. ■

Example 1.20. Any subset X ⊆ Rn has an induced metric by restricting the (say) Euclidean metric.
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1.1.4 A Hint of Lp Spaces
Here is a more complicated example of a metric.

Example 1.21. Define V := C([0, 1]) to be the R-vector space of R-valued (or C-valued) continuous
functions on [0, 1]. The following are norms.

• ∥f∥∞ := sup{|f(x)| : x ∈ [0, 1]}.

• ∥f∥1 :=
∫ 1

0
|f(t)| dt.

• ∥f∥2 :=
(∫ 1

0
|f(t)|2 dt

)1/2
.

• More generally, given p ≥ 1

∥f∥p :=
(∫ 1

0

|f(t)|p dt
)1/p

.

These integrals are finite because [0, 1] is compact, forcing f to achieve a finite maximum on [0, 1].

Remark 1.22. We can tell the same story for C(X), for any measurable compact space X.

Remark 1.23. Note the analogy of Example 1.21 with Example 1.16. To see this more rigorously, setX
to be the finite set {1, . . . , n} so that C(X) = Rn.

We should probably justify the claims of this subsection, so here is our result.

Proposition 1.24. Define V := C([0, 1]) to be the vector space of R-valued (or C-valued) continuous
functions on [0, 1]. Then, given p ≥ 1, the function ∥·∥p : C → R≥0 by

∥f∥ :=
(∫ 1

0

|f(t)|p dt
)1/p

is a norm.

Proof. We run the checks directly.

• Zero: if f = 0, then of course
∫ 1

0
|f(t)|p dt = 0.

• Zero: suppose that f ∈ C([0, 1]) has f(t0) ̸= 0 for any t0 ∈ [0, 1]; set y := f(t0). Then f−1((y/2, 3y/2))
is a nonempty open subset of X and hence contains a nonempty open interval (a, b) with a < b. As
such, ∫

X

|f(t)|p dt ≥
∫ b

a

|f(t)|p dt ≥
∫ b

a

|y/2|p dt > 0,

so we are done.

• Scaling: given f ∈ C([0, 1]) and a scalar r, we have

∥rf∥ =
(∫ 1

0

|rf(t)|p dt
)1/p

=

(
|r|p

∫ 1

0

|f(t)|p dt
)1/p

= |r| · ∥f∥ .

• Triangle inequality: we borrow from [Tao09]. Given f, g ∈ C([0, 1]), for psychological reasons we will
assume that f and g are nonzero (else this is clear); then ∥f∥ , ∥g∥ ≠ 0, so we may scale everything so
that ∥f∥+ ∥g∥ = 1. In fact, we may again use scaling to find a, b ∈ V such that

f = (1− θ)a and g = θb

11



1.2. AUGUST 26 202A: TOPOLOGY AND ANALYSIS

where θ ∈ (0, 1) and ∥a∥ = ∥b∥ = 1. Now, the triangle inequality translates into showing∫ 1

0

|(1− θ)a(t) + θb(t)|p dt = ∥(1− θ)a+ θb∥pp
?
≤
(
∥(1− θ)a∥p + ∥θb∥p

)p
= 1.

Well, because p ≥ 1, the function t 7→ tp is convex, so we get to write∫ 1

0

|(1− θ)a(t) + θb(t)|p dt ≤ (1− θ)
∫ 1

0

|a(t)|p dt+ θ

∫ 1

0

|b(t)|p dt,

which is what we wanted.

The above checks complete the proof; note that the proof of the triangle inequality was nontrivial. ■

Remark 1.25. Now, to show Remark 1.23, replace all
∫ 1

0
with

∑n
i=1 and adjust all the language accord-

ingly. The point is that “integrating over [0, 1]” is analogous to “integrating over {1, . . . , n}.” A more
thorough understanding of measure theory will allow us to rigorize this.

Next class we will talk about completeness.

1.2 August 26
Today we’re talking about completeness of metric spaces.

1.2.1 Isometries
In mathematics, we are interested in objects not in isolation but as they relate to each other. Namely, we
are interested also in the maps between our objects.

The philosophy here comes from category theory, where one is really most interested in the “mor-
phisms” between “objects” instead of the objects themselves. For concreteness, here is a definition of a
category.

Definition 1.26 (Category). A categoryC consists of a class of objectsOb C and class of morphismsMor C
such that any two objectsA,B ∈ Ob C have a morphism class Mor(A,B). This data satisfy the following
properties.

• Composition: given objects A,B,C ∈ Ob C, there is a binary composition operation

◦ : Mor(B,C)×Mor(A,B)→ Mor(A,C).

Explicitly, given f ∈ Mor(A,B) and g ∈ Mor(B,C), there is a composition (g ◦ f) ∈ Mor(A,C).

• Given A ∈ Ob C, there is an identity morphism idA ∈ Mor(A,A).

• Identity: any f ∈ Mor(A,B) has f ◦ idA = f = idB ◦ f .

• Associativity: any f ∈ Mor(A,B) and g ∈ Mor(B,C) and h ∈ Mor(C,D) has (h◦g)◦f = h◦ (g ◦f).

Example 1.27. There is a category of groups, where the morphisms are group homomorphisms. The
identity function gives the identity morphism, and composition of functions gives the required compo-
sition.

For completeness, we check that composition is well-defined: given homomorphisms f : A → B
and g : B → C, we need (g ◦ f) : A→ C to be a group homomorphism. Well,

(g ◦ f)(a · a′) = g(f(a · a′)) = g(f(a) · f(a′)) = g(f(a)) · g(f(a′)) = (g ◦ f)(a) · (g ◦ f)(a′).
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In our discussion of metric spaces, there are many possible kinds of morphisms for us to consider. Here is
the strongest type.

Definition 1.28 (Isometry). Given metric spaces (X, dX) and (Y, dY ), an isometry is a function f : X → Y
preserving the metric as

dY (f(x), f(x
′)) = dX(x, x′).

Example 1.29. The 90◦ rotation r : R2 → R2 given by r(x, y) 7→ (y,−x) is an isometry, where R2 is given
the Euclidean metric. Indeed, any (x, y), (x′, y′) ∈ R2 have

d
(
r(x, y), r(x′, y′)

)
= d
(
(y,−x), (y′,−x′)

)
=
√
(y − y′)2 + (−x−−x′)2

=
√
(x− x′)2 + (y − y′)2

= d
(
(x, y), (x′, y′)

)
.

Notation 1.30. Fix two metric spaces (X, dX) and (Y, dY ). Given a function f : X → Y with extra struc-
ture respecting some aspect of the metric, we might write f : (X, dX)→ (Y, dY ) to emphasize this.

To show that isometries are valid morphisms, we need to check that the identity function idX : X → X is
an isometry (which of course it is) and that the composition of two isometries is an isometry. We check this
last one in a quick lemma.

Lemma 1.31. Given two isometries f : (X, dX) → (Y, dY ) and g : (Y, dY ) → (Z, dZ), the composition
g ◦ f is an isometry.

Proof. Well, any two points x, x′ ∈ X have

dZ(g(f(x)), g(f(x
′))) = dY (f(x), f(x

′)) = dX(x, x′),

which is what we wanted. ■

One can restrict further to surjective isometries, where the main point is that (again) the composition of two
surjective functions remains surjective. (Note that the identity is of course surjective.) The following is the
reason why a surjective isometry is a good notion.

Lemma 1.32. A surjective isometry f : (X, dX) → (Y, dY ) is bijective, and its inverse function is also an
isometry.

Proof. To see that f is bijective, we only need to know that f is injective. Well, given x, x′ ∈ X, note that
f(x) = f(x′) if and only if dY (f(x), f(x′)) = 0 if and only if d(x, x′) = 0 if and only if x = x′.2

Thus, f is indeed bijective; let g : Y → X be its inverse. We now need to show that g is an isometry. Well,
given y, y′ ∈ Y , we may find x, x′ ∈ X such that f(x) = y and f(x′) = y′. Then

dX(g(y), g(y′)) = dX((g ◦ f)(x), (g ◦ f)(x′)) = dX(x, x′)
∗
= dY (f(x), f(x

′)) = dY (y, y
′),

where in ∗
= we have used the fact that f is an isometry. ■

2 In fact, this argument shows that all isometries are injective. We will shortly see that all actually Lipschitz continuous functions are
injective.
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Remark 1.33. The above result is somewhat subtle in its importance: the inverse function of a bijection
is only an inverse in the category of sets. The above result is saying that this inverse morphism in the
category of sets is lifting to an inverse morphism in the category of metric spaces with isometries as
morphisms. In general, it is not always true that bijective morphisms are invertible, as we shall soon
see.

1.2.2 Lipschitz Continuity
Isometries are somewhat restrictive, so we might weaken this as follows.

Definition 1.34 (Lipschitz continuous). Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y
is a Lipschitz continuous if and only if there is a constant c ∈ R such that

dY (f(x), f(x
′)) ≤ c · dX(x, x′).

Remark 1.35. Equivalently, we are asking for the ratio

dY (f(x), f(x
′))

dX(x, x′)

to be uniformly bounded above for all x ̸= x′. Notably, the inequality is trivially satisfied whenever
x = x′, or equivalently whenever d(x, x′) = 0.

Example 1.36. Any isometry f : (X, dX) → (Y, dY ) is Lipschitz continuous: indeed, set c := 1 so that,
for any x, x′ ∈ X,

dY (f(x), f(x
′)) = dX(x, x′) ≤ 1 · dX(x, x′).

Example 1.37. Provide R and R2 their usual Euclidean metrics. Then the projection π : R2 → R by
π : (x, y) 7→ x is Lipschitz continuous: indeed, set c := 1 so that, for any (x, y), (x′, y′) ∈ R2, we have

dR2

(
(x, y), (x′, y′)

)
=
√
(x− x′)2 + (y − y′)2 ≥

√
(x− x′)2 = dR(x, x

′) = dR
(
π((x, y)), π((x′, y′))

)
.

Example 1.38. Fix a normed vector space (B, ∥·∥). We show the function ∥·∥ : B → R is Lipschitz con-
tinuous. Well, observe that ∥x∥ ≤ ∥x− y∥+ ∥y∥, so by symmetry, it follows that

| ∥x∥ − ∥y∥ | ≤ ∥x− y∥ .

Again, one can see that the identity function idX : (X, dX) → (X, dX) is Lipschitz continuous (with c := 1),
and here is our composition check.

Lemma 1.39. If f : (X, dX)→ (Y, dY ) and g : (Y, dY )→ (Z, dZ) are Lipschitz continuous, then the com-
position (g ◦ f) : (X, dX)→ (Z, dZ) is also Lipschitz continuous.

Proof. We are given constants c and d such that any x, x′ ∈ X and y, y′ ∈ Y have

dY (f(x), f(x
′)) ≤ c · dX(x, x′) and dZ(g(y), g(y

′)) ≤ d · dY (y, y′).

As such, we use the constant cd to witness our Lipschitz continuity: any x, x′ ∈ X have

dZ(g(f(x)), g(f(x
′))) ≤ d · dY (f(x), f(x′)) ≤ cd · dX(x, x′),

which is what we wanted. ■
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It will be shortly worth our time to talk about the constant c appearing in Definition 1.34.

Lemma 1.40. Fix a Lipschitz continuous function f : (X, dX)→ (Y, dY ). Then there exists a constant cf
(possibly −∞) such that any real number c ≥ cf is equivalent to the following property: any x, x′ ∈ X
have

dY (f(x), f(x
′)) ≤ c · dX(x, x′).

Proof. Let S denote the set of all constants c such that any x, x′ ∈ X have

dY (f(x), f(x
′)) ≤ c · dX(x, x′).

Equivalently, using Remark 1.35, S is the set of upper-bounds for

R :=

{
dY (f(x), f(x

′))

dX(x, x′)
: x, x′ ∈ X,x ̸= x′

}
.

Now, S is nonempty because f is Lipschitz continuity, so we set cf := supR to be the least upper bound for
R—observe that cf = −∞ is permissible when X has one point. It is now pretty clear that S = [cf ,∞). ■

Note that cf the property stated in the lemma automatically implies that cf is the least possible constant
and is unique. Being least is immediate (by the backwards direction), and being unique follows from being
least. So because we have some uniqueness, we get a definition.

Definition 1.41 (Lipschitz constant). Given a Lipschitz continuous function f : (X, dX) → (Y, dY ), the
Lipschitz constant cf for f is the least real number c such that

dY (f(x), f(x
′)) ≤ c · dX(x, x′).

We could, as before, look at surjective Lipschitz continuous functions, but these need not be bijective any-
more as shown by Example 1.37. What’s worse is that, as warned possible in Remark 1.33, bijective Lipschitz
continuous functions need not even have a Lipschitz continuous inverse.

Exercise 1.42. We exhibit a function between metric spaces which is bijective and Lipschitz continuous,
but its inverse function is not Lipschitz continuous.

Proof. Set X := (0, 1) and Y := (1,∞), both metric spaces with the Euclidean (subspace) metric, and set
f : (0,∞)→ (0,∞) by f : x 7→ 1/x. Notably, x ∈ X implies f(x) ∈ Y , and y ∈ Y implies f(y) ∈ X.

• Note f |Y is bijective with inverse f |X because f(f(x)) = f(1/x) = x for all x ∈ (0,∞).

• Note f |Y is Lipschitz continuous: set c := 1 and note that any y, y′ ∈ Y have

|f(y)− f(y′)| =
∣∣∣∣1y − 1

y′

∣∣∣∣ = ∣∣∣∣y − y′yy′

∣∣∣∣ ≤ |y − y′|.
• But f |X is not Lipschitz continuous: suppose for contradiction that fX is Lipschitz continuous, and use

Lemma 1.40 to recover the needed constant c0. Then set c := max{c0, 4}, which must also work as a
constant, and set x := 1/c and x′ := 1/(3c) so that

|f(x)− f(x′)| = |c− 3c| = 2c > c · |x− x′|.

This is a contradiction, so we are done. ■
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Remark 1.43 (Nir). In some sense, the problem here is that the definition of Lipschitz continuity allows
dY (f(x), f(x

′)) to be “too small,” which permits the inverse function to have distances which blow up.

In light of Exercise 1.42, we introduce a new definition.

Definition 1.44 (Lipschitz isomorphism). Give metric spaces (X, dX) and (Y, dY ), a function f : X → Y
is a Lipschitz isomorphism if and only if f is Lipschitz continuous and has an inverse function which is
also Lipschitz continuous.

Remark 1.45. A good reason to care about this notion of continuity (and isomorphism) is that all normed
R-vector spaces of some finite dimension n are Lipschitz isomorphic.

1.2.3 Fun with Continuity

Here is yet a weaker notion of morphism.

Definition 1.46 (Uniformly continuous). Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y
is uniformly continuous if and only if every ε > 0 has some δ > 0 such that

dX(x, x′) < δ =⇒ dY (f(x), f(x
′)) < ε

for all x, x′ ∈ X.

Example 1.47. Any Lipschitz continuous function f : (X, dX) → (Y, dY ) is also uniformly continuous:
indeed, for any ε > 0, set δ := max{cf , 1}ε > 0 (where cf is the Lipschitz constant) so that

dX(x, x′) < ε =⇒ dY (f(x), f(x
′)) ≤ cf · d(x, x′) < δ.

Example 1.48. Give [0, 1] the Euclidean (subspace) metric, and set f : [0, 1]→ [0, 1] by f(x) :=
√
x.

• Note f is uniformly continuous because it is continuous on a compact set.

• However, f is not Lipschitz continuous: for any constant c > 0, set x = 1/(c + 1)2 and x′ = 0 so
that ∣∣∣∣f(x)− f(x′)x− x′

∣∣∣∣ = ∣∣∣∣ 1/(c+ 1)

1/(c+ 1)2

∣∣∣∣ = |c+ 1| > c,

so Remark 1.35 tells us that we are not Lipschitz continuous.

By rearranging quantifiers, we get another useful (but weaker) notion.

Definition 1.49 (Continuous). Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is contin-
uous at x ∈ X if and only if all ε > 0 have some δx > 0 such that

dX(x, x′) < δx =⇒ dY (f(x), f(x
′)) < ε.

Then f is continuous if and only if it is continuous at all x ∈ X.
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Example 1.50. All uniformly continuous functions f : (X, dX)→ (Y, dY ) are continuous. Indeed, at any
x0 ∈ X with ε > 0, uniform continuity promises δ > 0 so that

|x− x′| < δ =⇒ |f(x)− f(x′)| < ε

for all x, x′ ∈ X. Setting x′ to x0 recovers continuity.

Example 1.51. Give R the usual Euclidean metric, and set f : R→ R by f(x) := x2.

• Note f(x) is continuous because it is a polynomial.

• However, f(x) is not uniformly continuous: take ε = 1. Now, for any δ > 0, set x = 1/δ and
x′ = 1/δ + δ/2 so that |x− x′| < δ, but

|f(x)− f(x′)| =
(
1

δ
+
δ

2

)2

− 1

δ2
= 1 +

δ2

4
> ε.

As usual, the identity function is uniformly continuous and continuous (it’s an isometry), and these conti-
nuities are preserved by composition. We will have a different way to see that continuous functions remain
continuous under composition later, so for now we will focus on uniform continuity.

Lemma 1.52. Fix uniformly continuous morphisms f : (X, dX) → (Y, dY ) and g : (Y, dY ) → (Z, dZ).
Then the function (g ◦ f) is uniformly continuous.

Proof. For any ε > 0, the uniform continuity of g promises δg > 0 such that

dY (y, y
′) < δg =⇒ dZ(g(y), g(y

′)) < ε

for any y, y′ ∈ Y . Continuing, the uniform continuity of f promises δf > 0 such that

dX(x, x′) < δX =⇒ dY (f(x), f(x
′)) < δY =⇒ dZ(g(f(x)), g(f(x

′))) < ε

for any x, x′ ∈ X, which is what we wanted. ■

Remark 1.53. In some sense, isometries and Lipschitz continuous functions have their definition funda-
mentally interrelated with the metric. In contrast, the weaker notion of continuity will readily generalize
to general topological spaces. Uniform continuity also generalizes to “uniformities,” which is a different
notion.

1.2.4 Convergent Sequences
To discuss completeness, we need to talk about convergence.

Definition 1.54 (Converge). Fix a semi-metric d on a set X. A sequence of points {xn}n∈N ⊆ X con-
verges to x ∈ X if and only if, for any ε > 0, we can find N > 0 such that

n > N =⇒ d(xn, x) < ε.

We might write this as “xn → x as n → ∞” or “limn→∞ xn = x.” In this event, we may say that the
sequence {xn}n∈N converges, and its limit is x.

17
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Remark 1.55 (Nir). As a sanity check, the limit of a sequence is unique if (X, d) is a metric space: ifxn → x
and xn → x′ as n→∞, then any ε > 0 can find some large n so that d(xn, x), d(xn, x′) < ε/2. As such,

d(x, x′) < d(xn, x) + d(xn, x
′) = ε

for any ε > 0, so d(x, x′) = 0 and thus x = x′ is forced.

Example 1.56. Given x ∈ X, define the sequence {xn}n∈N by xn := x for each n. Then d(xn, x) = 0 for
each n, so any ε > 0 may set N = 0 so that n ≥ N implies d(xn, x) < ε. Thus, xn → x as n→∞.

We have no reason yet to be convinced that any of our morphisms described previously are good notions,
so let’s start with continuity.

Lemma 1.57. Fix a continuous function between metric spaces f : (X, dX) → (Y, dY ). Then, if the se-
quence {xn}n∈N ⊆ X converges to x ∈ X, then the sequence {f(xn)}n∈N ⊆ Y converges to f(x) ∈ Y .

Proof. For any ε > 0,the continuity of f implies that we can find δx > 0 so that

dX(xn, x) < δx =⇒ dY (f(xn), f(x)) < ε

for any xn. But the fact that xn → x as n→∞means that there is N > 0 so that

n > N =⇒ dX(xn, x) < δx =⇒ dY (f(xn), f(x)) < ε,

so indeed, f(xn)→ f(x) as n→∞. ■

In fact, the converse also holds.

Lemma 1.58. Fix metric spaces (X, dX) and (Y, dY ), and fix a point x ∈ X. Then suppose a function
f : X → Y satisfies that any convergent sequence {xn}n∈N with xn → x as n→∞ has f(xn)→ f(x) as
n→∞. Then f is continuous at x.

Proof. We proceed by contraposition. If f is not continuous at x, then any n ∈ N can find xn such that
dX(x, xn) < 1/n even though dY (f(xn), f(x)) ≥ 1. In particular, xn → x as n → ∞ (for any ε, choose
N = 1/ε), but the sequence {f(xn)}n∈N does not converge to f(x)because nonhas dY (f(x), f(xn)) < 1. ■

We will want the following fact (much) later, but we prove it now while ideas are fresh.

Lemma 1.59. Fix a semi-norm ∥·∥ on a k-vector space V . Further, fix sequences {vn}n∈N and {wn}n∈N
of vectors and two more vectors v, w ∈ V such that vn → v and wn → w as n→∞.

(a) We have vn + wn → v + w as n→∞.

(b) For any scalar a ∈ k, we have avn → av as n→∞.

Proof. Here we go. Let | · | denote the norm on k.

(a) For any ε > 0, having vn → v promises Nv such that n ≥ Nv has

∥v − vn∥1 < ε/2.

Similarly, wn → w promises Nw such that n ≥ Nw has

∥w − wn∥1 < ε/2.

18
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As such, we set N := max{Nv, Nw} so that n ≥ N implies n ≥ Nv and n ≥ Nw and thus

∥(v + w)− (vn + wn)∥1 ≤ ∥v − vn∥1 + ∥w − wn∥1 <
ε

2
+
ε

2
= ε

by the triangle inequality.

(b) If a = 0, then avn = av = 0, so av − avn = 0, so ∥av − avn∥1 = 0. Thus, avn → av.
Otherwise, take a ̸= 0 so that |a| > 0. Now, having vn → v promises N such that n ≥ N has

∥v − vn∥1 <
ε

|a|
.

Thus, n ≥ N has

∥av − avn∥1 = ∥a(v − vn)∥1
∗
= |a| · ∥v − vn∥1 < |a| ·

ε

|a|
= ε,

where ∗
= is because ∥·∥ is a semi-norm. ■

1.2.5 Cauchy Sequences
We would like a notion of convergence which only uses data internal to the sequence, and this leads to the
following definition.

Definition 1.60 (Cauchy). Fix a semi-metric d on a setX. A sequence of points {xn}n∈N ⊆ X is a Cauchy
sequence if and only if, for any ε > 0, we can find N > 0 such that

n,m > N =⇒ d(xn, xm) < ε.

Example 1.61. Given x ∈ X, define the sequence {xn}n∈N by xn := x for each n. Then d(xm, xn) = 0
for each n, so any ε > 0 may set N = 0 so that n ≥ N implies d(xm, xn) < ε. Thus, {xn}n∈N is Cauchy.
More generally, we will see that convergent sequences are Cauchy in Lemma 1.64.

It would be rude if continuity was always the best kind of morphism, so this time around preserving Cauchy-
ness requires something stronger.

Lemma 1.62. Fix a uniformly continuous function between metric spaces f : (X, dX) → (Y, dY ). Then,
if the sequence {xn}n∈N ⊆ X is Cauchy, then the sequence {f(xn)}n∈N ⊆ Y is also Cauchy.

Proof. For any ε > 0, the uniform continuity of f promises δ > 0 so that

dX(xn, xm) < δ =⇒ d(f(xn), f(xm)) < ε

for any xn, xm. However, the fact that {xn}n∈N is Cauchy promises N so that

n,m > N =⇒ dX(xn, xm) < δ =⇒ d(f(xn), f(xm)) < ε,

which is what we wanted. ■

Example 1.63. Continuous functions do not need to preserve Cauchy sequences: f : (0,∞)→ (0,∞) by
f(x) := 1/x is continuous, and the sequence {1/n}n∈N ⊆ (0,∞) is Cauchy (it converges to 0 in R) even
though {f(1/n)}n∈N = {n}n∈N certainly does not converge.

Anyway, it is quick to check that convergent sequences are Cauchy.
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Lemma 1.64. Fix a metric space (X, d). Then all convergent sequences are Cauchy.

Proof. Suppose that the sequence {xn}n∈N ⊆ X converges to x ∈ X. Then, for any ε > 0, find N so that

d(xn, x) < ε/2

for all n > N . Then any n,m > N has

d(xn, xm) ≤ d(xn, x) + d(xm, x) < ε,

so the sequence {xn}n∈N is Cauchy. ■

As before, we will want the following fact later.

Lemma 1.65. Fix a semi-norm ∥·∥ on a k-vector space V . Further, fix Cauchy sequences {vn}n∈N and
{wn}n∈N of vectors.

(a) The sequence {vn + wn}n∈N is Cauchy.

(b) For any scalar a ∈ k, the sequence {avn}n∈N is Cauchy.

Proof. These proofs are essentially the same as Lemma 1.59. As usual, let | · | denote the norm on k.

(a) For any ε > 0, having {vn}n∈N Cauchy promises Nv such that n ≥ Nv has

∥vm − vn∥1 < ε/2.

Similarly, {wn}n∈N Cauchy promises Nw such that n ≥ Nw has

∥wm − wn∥1 < ε/2.

As such, we set N := max{Nv, Nw} so that n ≥ N implies n ≥ Nv and n ≥ Nw and thus

∥(vm + wm)− (vn + wn)∥1 ≤ ∥vm − vn∥1 + ∥wm − wn∥1 <
ε

2
+
ε

2
= ε

by the triangle inequality.

(b) If a = 0, then avn = avm = 0, so avm − avn = 0, so ∥avm − avn∥1 = 0. Thus, the sequence {avm}n∈N
in Cauchy.
Otherwise, take a ̸= 0 so that |a| > 0. Now, having {vn}n∈N Cauchy promises N such that n ≥ N has

∥vm − vn∥1 <
ε

|a|
.

Thus, n ≥ N has

∥avm − avn∥1 = ∥a(vm − vn)∥1
∗
= |a| · ∥vm − vn∥1 < |a| ·

ε

|a|
= ε,

where ∗
= is because ∥·∥ is a semi-norm. ■

We in general hope that our Cauchy sequences converge. As such, we have the following definition.

Definition 1.66 (Complete). A metric space (X, d) is complete if and only if every Cauchy sequence inX
converges to a point in X.

We are sad when a metric space is not complete, so we hope to have a way to make it complete. The most
natural way to do this is by using the notion of density.

20



1.2. AUGUST 26 202A: TOPOLOGY AND ANALYSIS

Definition 1.67 (Dense). Fix a metric space (X, d). Then S ⊆ X is dense if and only if, given any x ∈ X
and ε > 0, we may find x′ ∈ S with d(x, x′) < ε.

And here is our completion.

Definition 1.68 (Completion). A completion of the metric space (X, d) is a metric space (X, d) equipped
with an isometry ι : X → X such that (X, d) is complete and im ι is dense in X.

One can show that any metric space has a completion and that they are all isometric and therefore in some
sense the same. We’ll do these separately.

1.2.6 Existence of Completions
Let’s start with existence.

Theorem 1.69. Any metric space (X, d) has a completion.

Proof. Let X̃ denote the set of all Cauchy sequences inX. We hope to make X̃ into our completion, but this
requires a little care. To begin, we have the following lemma.

Lemma 1.70. Given a metric space (X, d) with two Cauchy sequences {xn}n∈N and {yn}n∈N, then the
sequence

{d(xn, yn)}n∈N ⊆ R

converges.

Proof. BecauseR is a complete metric space, it suffices to show that the sequence {d(xn, yn)}n∈N is Cauchy.
Well, for any ε > 0, find a sufficiently large N so that

n,m > N =⇒ d(xn, xm), d(yn, ym) < ε/2.

Then any n,m > N has

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn) < ε+ d(ym, yn),

and d(xm, ym) < d(xn, yn) + ε as well by symmetry. It follows that any n,m > N has∣∣d(xn, yn)− d(xm, ym)
∣∣ < ε,

verifying that our sequence is Cauchy. ■

Remark 1.71. Here is a quick motivational remark for the definition of our metric below: if (X, d) is a
metric space with xn → x and yn → y as n→∞, then we claim d(xn, yn)→ d(x, y) as n→∞. Indeed,
for any ε > 0, we can find N large enough so that d(xn, x), d(yn, y) < ε/2 for any n > N . As such,

d(xn, yn) ≤ d(xn, x) + d(x, y) + d(y, yn) < d(x, y) + ε.

By symmetry, we get d(x, y) ≤ d(xn, yn) + ε as well, finishing.

Thus, we define d̃ : X̃ × X̃ → R≥0 by

d̃ ({xn}, {yn}) := lim
n→∞

d(xn, yn).

We claim that d̃ is a semi-metric on X̃. We have the following checks; fix Cauchy sequences {xn}, {yn}, {zn}.
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• Zero: note
d̃({xn}, {xn}) = lim

n→∞
d(xn, xn) = 0.

• Symmetry: note

d̃({xn}, {yn}) = lim
n→∞

d(xn, yn) = lim
n→∞

d(yn, xn) = d̃({yn}, {xn}).

• Triangle inequality: note

d̃({xn}, {yn}) + d̃({yn}, {zn}) = lim
n→∞

d(xn, yn) + lim
n→∞

d(yn, zn)

= lim
n→∞

(d(xn, yn) + d(yn, zn))

≥ lim
n→∞

d(xn, zn)

= d̃(xn, zn),

where we have implicitly used a number of limit laws.

So because d̃ is a semi-metric, Proposition 1.6 tells us that d̃ will descend naturally to a metric d on X :=

X̃/∼, where {xn} ∼ {yn} if and only if d̃({xn}, {yn}) = 0. We will let [{xn}] denote the equivalence class of
the Cauchy sequence {xn} ∈ X̃ in X.

We now show that (X, d) can be made into a completion for X.

• Given x ∈ X, note that the constant sequence {x} is Cauchy (for any ε > 0, set N = 0), so we define
ι : X → X by

ι(x) := [{x}].
To see that ι is an isometry, note any x, x′ ∈ X have

d(ι(x), ι(x′)) = d̃({x}, {y}) = lim
n→∞

d(x, y) = d(x, y).

• We show that im ι is dense inX. Indeed, fix some [{xn}] ∈ X and ε > 0. Then there is someN so that
n,m > N has

d(xn, xm) < ε/2.

Fixing a particular n0 with n0 > N , we set x := xn0
so that

d([{xn}], ι(x)) = d̃({xn}, xn0
) = lim

n→∞
d(xn, xn0

).

Now, for n > N , we have d(xn, xn0) < ε/2, so we conclude that this limit must be less than ε.

• We show that (X, d) is a complete metric space. Fix a Cauchy sequence {xk} inX. To find the Cauchy
sequence we are supposed to converge to, we use our density result: for each k ∈ N, we can find
yk ∈ X such that d(xk, ι(yk)) < 1/k.
We claim that {yk} is Cauchy. Indeed, for any ε > 0, we can find N such that k, ℓ > N0 has

d(xk, xℓ) < ε/3.

Then, setting N := max{3/ε,N0}, we note that k, ℓ > N has

d(yk, yℓ) = d(ι(yk), ι(dℓ)) ≤ d(xk, ι(yk)) + d(xℓ, ι(yℓ)) + d(xk, xℓ) < ε.

Lastly, we claim that xk → [{yn}] in X. Indeed, for any ε > 0, find some sufficiently large N so that

k, ℓ > N =⇒ d(yk, yℓ) < ε/2.

Then k > max{N, 2/ε} has

d(xk, [{yn}]) ≤ d(xk, ι(yk)) + d([{yn}], ι(yk)) <
ε

2
+ lim
n→∞

d(yn, yk).

Because k > N , we have d(yn, yk) < ε/2 for any n > N , so the entire right-hand side must be upper-
bounded by ε. This finishes.
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The above checks complete the proof. ■

Remark 1.72 (Nir). One might complain that we used the completeness of R in this proof because one
common way to construct the real numbers is as the completion of Q under the Euclidean metric. To
remedy this, one ought to define the equivalence relation on Cauchy sequences more directly, saying
that two Cauchy sequences {xn}n∈N and {yn}n∈N of real numbers are equivalent under∼ if and only if

lim
n→∞

dR(xn, yn) = 0.

1.2.7 Uniqueness of Completions
We now show that any two completions of a metric space (X, d) are isometric, which is our uniqueness
result. Here is the main intermediate result.

Lemma 1.73. Fix a metric space (X, d) and a completion (X, d) with its isometry ι : (X, d) → (X, d).
Then, for any complete metric space (Y, d′) and isometry φ : (X, d)→ (Y, d′), there is a unique isometry
ψ : (X, d)→ (Y, d′) making the following diagram commute.

X X

Y

ι

φ
ψ

Proof. We start by showing the uniqueness of ψ. Well, for any x ∈ X, note that any n ∈ N allows us to find
xn ∈ X with

d(x, ι(xn)) < 1/n

because im ι is dense inX. Now, we notice that ι(xn)→ x as n→∞ because any ε > 0 can setN = 1/ε. As
such, we see that Lemma 1.57 applied to any possible ψ : X → Y forces

ψ(x) = ψ
(

lim
n→∞

ι(xn)
)
= lim
n→∞

ψ(ι(xn)) = lim
n→∞

φ(xn).

Note that, a priori, we do not know if the sequence {φ(xn)}n∈N converges, but this argument tells us that it
must; the limit is unique by Remark 1.55, so ψ(x) is unique as well.

We now show that ψ exists. As before, any x ∈ X can find a sequence {xn} ⊆ X such that ι(xn)→ x as
n→∞. Thus, we note that {φ(xn)} is Cauchy by Lemma 1.62, so the completeness of Y gives it a limit; we
set

ψ(x) := lim
n→∞

φ(xn).

We have the following checks on ψ.

• Well-defined: if we have two sequences {xn} and {x′n} such that ι(xn)→ x and ι(x′n)→ x as n→∞,
we need to show that

lim
n→∞

φ(xn) = lim
n→∞

φ(x′n).

For brevity, set y and y′ to be the limits of {φ(xn)} and {φ(x′n)}, respectively. Then, for any ε > 0, we
note that there is a sufficiently large N such that

n > N =⇒ dY (y, φ(xn)), dY (y
′, φ(x′n)) < ε/4.

Further, we can make N even larger so that

n > N =⇒ d(x, ι(xn)), d(x, ι(x
′
n)) < ε/4.
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As such, any n > N has

dY (y, y
′) ≤ dY (y, φ(xn)) + dY (φ(xn), φ(x

′
n)) + dY (y

′, φ(x′n))

< ε/4 + dX(xn, x
′
n) + ε/4

= ε/2 + d(ι(xn), ι(x
′
n))

≤ ε/2 + d(x, ι(xn)) + d(x, ι(x′n))

< ε.

It follows dY (y, y′) = 0, so y = y′.

• Isometry: given x, x′ ∈ X, find sequences {xn} and {x′n} in X so that ι(xn) → x and ι(x′n) → x′ as
n→∞. Thus,

dY (ψ(x), ψ(x
′)) = dY

(
lim
n→∞

φ(xn), lim
n→∞

φ(x′n)
)

∗
= lim
n→∞

dY (φ(xn), φ(x
′
n))

= lim
n→∞

d(xn, x
′
n)

= lim
n→∞

d(ι(xn), ι(x
′
n))

= d
(

lim
n→∞

ι(xn), lim
n→∞

ι(x′n)
)

∗
= d(x, x′),

where we have used Remark 1.71 at the ∗
=.

• For any x ∈ X, we see that the (constant) Cauchy sequence {ι(x)} converges to ι(x), so

ψ(ι(x)) = lim
n→∞

φ(x) = φ(x).

It follows ψ ◦ ι = φ.

Thus, we have finished establishing the existence of an isometry ψ : X → Y such that φ = ψ ◦ ι. ■

Remark 1.74. One can also replace all isometries with uniformly continuous functions in the statement.

And here is our uniqueness result.

Theorem 1.75. Fix a metric space (X, d) and two completions ι : (X, d) → (X, d) and ι′ : (X, d) →
(X

′
, d

′
). Then there is a surjective isometry ψ : (X, d)→ (X

′
, d

′
).

Proof. Applying Lemma 1.73 twice, we get isometries ψ : (X, d)→ (X
′
, d

′
) and ψ′ : (X

′
, d

′
)→ (X, d) mak-

ing the following diagrams commute.

X X X X
′

X
′

X

ι

ι′
ψ

ι′

ψ′
ι

In particular, we see that ψ′ ◦ ψ makes the following diagram commute.

X X

X

ι

ι
ψ′◦ψ
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However, using Lemma 1.73 again, this isometry ψ′ ◦ ψ is unique to make the diagram commute, and we
could of course put the isometry idX here if we wanted to. Thus,

ψ′ ◦ ψ = idX .

By symmetry, ψ ◦ ψ′ = idX′ , so we do see that ψ and ψ′ are inverse isometries. This finishes the proof. ■

1.3 August 29
Good morning everyone.

1.3.1 Some Examples
Let’s give some more examples of metric spaces. Let’s start with spaces of continuous functions.

Definition 1.76. Given a (normed) topological field k, such as R or C, we denote the k-vector space of
k-valued continuous function from a topological space X as C(X). By convention, we will take k = C
unless otherwise specified.

And here are our two examples. The first is of a complete metric space.

Exercise 1.77. Give V := C([0, 1]) the uniform norm

∥f∥∞ := sup{|f(t)| : t ∈ [0, 1]}.

Then V is complete.

Proof. This is merely the statement that a sequence of continuous functions which are uniformly Cauchy
will converge uniformly to a continuous function. We will prove this for completeness. Fix a sequence of
continuous function {fn}n∈N which are Cauchy with respect to ∥·∥∞. In other words, for each ε > 0, there
exists Nε so that

n,m > Nε =⇒ ∥fn − fm∥∞ < ε,

which means that |fn(t)− fm(t)| < ε for all t ∈ [0, 1].
In particular, for any fixed t ∈ [0, 1], the sequence {fn(t)}n∈N is Cauchy in R (using the same Nε), so we

use the completeness of R to let this sequence converge to f(t) ∈ R. We have the following checks.

• To see that fn → f as n→∞ (under our metric), select any ε > 0, and then find N so that

n,m > N =⇒ ∥fn − fm∥∞ < ε/3.

Further, for any t ∈ [0, 1], we see that we can find a large enough nt > N so that |f(t)− fnt
(t)| < ε/3.

But then n > N has

|fn(t)− f(t)| ≤ |fn(t)− fnt
(t)|+ |fnt

(t)− f(t)| < 2ε/3,

so ∥f − fn∥∞ ≤ 2ε/3 < ε.

• To see that f is continuous, fix t ∈ [0, 1] so that we want to show f is continuous at t. Well, for any
ε > 0, find N large enough so that

n,m > N =⇒ ∥fn − fm∥∞ < ε/4.

Now, select nt > N large enough so that |f(t) − fnt(t)| < ε/4, and the continuity of fnt promises us
δ > 0 so that

|t− t′| < δ =⇒ |fnt
(t)− fnt

(t′)| < ε/4.
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In particular, for any t′ with |t − t′| < δ, find nt′ > N large enough so that |f(t′) − fnt′ (t
′)| < ε/4, and

then we see

|f(t)− f(t′)| ≤ |f(t)− fnt(t)|+ |fnt(t)− fnt(t
′)|+ |fnt(t

′)− fnt′ (t
′)|+ |fnt′ (t

′)− f(t′)| < ε,

which is what we wanted. ■

The second example is the same space, but it is no longer complete.

Example 1.78. Fix p ≥ 1 finite. Give V := C([0, 1]) the Lp norm as

∥f∥p :=
(∫ 1

0

|f(t)|p dt
)1/p

.

Then V is not complete.

Proof. For each n ≥ 2, define fn as the piecewise continuous function

fn(t) :=


0 0 ≤ t ≤ 1

2 ,

n(t− 1
2 )

1
2 ≤ t ≤

1
2 + 1

n ,

1 1
2 + 1

n ≤ t ≤ 1.

Here is the image.

fn

0 1
2

1

1

The point is that fn is trying to converge to a discontinuous function. To help us with the proof here, we pick
up the following lemma.

Lemma 1.79. Fix V := C([0, 1]) and some finite p ≥ 1. If we have a convergent sequence fn → f
as n → ∞ in the ∥·∥p metric, and fn(t) = g(t) for all sufficiently large n and t ∈ U for some open
U ⊆ C([0, 1]), then f |U (t) = g(t).

Proof. Suppose for the sake of contradiction that we have t0 ∈ U with f(t0) ̸= g(t0); we show that {fn}
does not converge to f . Set ε := |f(t0)− g(t0)|, which is nonzero. The continuity of f − g now promises that
there is δ > 0 for which

|t− t0| < δ =⇒ |(f − g)(t0)− (f − g)(t)| < ε/2,

so in particular |(f − g)(t)| ≥ ε/2. It follows that, for sufficiently large n, we have

∥f − fn∥pp =
∫ 1

0

|f(t)− fn(t)|p dt ≥
∫
U

|(f − g)(t)| dt ≥
∫
U∩(t0−δ,t0+δ)

ε

2
dt.

Because U ∩ (t0 − δ, t0 + δ) is open, it has nonzero measure, so this entire right-hand quantity is nonzero,
thus violating that fn → f as n→∞. ■
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Now suppose for the sake of contradiction that fn → f as n→∞ for some f ∈ V . Then, usingU = (0, 1/2),
we conclude that f(t) = 0 for all t ∈ (0, 1/2). Similarly, for any n, we set Un = (1/2 + 1/n, 1), so fm|Un

returns 1 always for sufficiently large m; this then implies f(t) = 1 for any t ∈ Un for any n, so f(t) = 1 for
any t ∈ (1/2, 1).

However, the sequences an := 1
2 −

1
n and bn := 1

2 +
1
n (for n ≥ 3) have an → 1

2 and bn → 1
2 both as n→∞

while the continuity of f would require

0 = lim
n→∞

f(an) = f(1/2) = lim
n→∞

f(bn) = 1,

which is a contradiction. ■

Remark 1.80. In an attempt to make this metric space complete, we can try to specify which functions
we want to look at, which motivates the theory of measure and integration.

Remark 1.81. The ∥·∥2 norm onC(X) for some (say) subsetX ⊆ R with finite measure as coming from
an inner product

⟨f, g⟩ :=
∫
X

f(t)g(t) dt.

When ∥·∥2 is complete, we would then get a Hilbert space, which are very nice normed vector spaces,
and we’ll see more of them in Math 202B.

Remark 1.82 (Nir). In contrast to the finite case, we see that the ∥·∥∞ norm induces a different (metric)
topology on C([0, 1]) than the ∥·∥p norms with p finite because the former is complete while the latter
are not. In fact, all the norms ∥·∥p induce different topologies on C([0, 1]).
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TOPOLOGY



THEME 2

BUILDING TOPOLOGIES

Sets are not doors.

—Munkres

2.1 August 29
We continue lecture by shifting to topology.

2.1.1 Metric Topology
We close our discussion of metric spaces with a taste of topology. Recall the following definition.

Definition 1.49 (Continuous). Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is contin-
uous at x ∈ X if and only if all ε > 0 have some δx > 0 such that

dX(x, x′) < δx =⇒ dY (f(x), f(x
′)) < ε.

Then f is continuous if and only if it is continuous at all x ∈ X.

We are going to want to extend this definition to more general topological spaces. To step in that direction,
we will want to talk about open sets, so we start with open balls.

Definition 2.1 (Ball). Fix a metric space (X, d). Then the open ball of radius r centered at x0 ∈ X is

B(x0, r) := {x ∈ X : d(x, x0) < r}.

The closed ball is B(x0, r) := {x ∈ X : d(x, x0) ≤ r}.

We can now restate continuity as follows.

Definition 2.2 (Continuous). Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is continu-
ous at x ∈ X if and only if, given any nonempty open ballB(f(x0), ε), there exists a nonempty open ball
B(x0, δ) such that

f(B(x0, δ)) ⊆ B(f(x0), ε).
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Namely, we’ve really only restated our inequalities.
To continue our generalization, we define the pre-image.

Definition 2.3 (Pre-image). Fix a function f : X → Y . Then we define the pre-image f−1 : P(Y ) →
P(X) by

f−1(B) := {x ∈ X : f(x) ∈ B}.

Note that our pre-image notation matches with the notation of an inverse function. In general, no confusion
will arise by confusing these two.

As such, let’s restate continuity again: observe that A ⊆ X and B ⊆ Y has f(A) ⊆ B if and only if all
a ∈ A have f(a) ∈ B if and only if all a ∈ A have a ∈ f−1(B) if and only if A ⊆ f−1(B).

Definition 2.4 (Continuous). Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is continu-
ous at x ∈ X if and only if, given any nonempty open ball B(f(x), ε), there exists a nonempty open ball
B(x, δ) such that

B(x, δ) ⊆ f−1(B(f(x), ε)).

We defined open balls and promised open sets, so now let’s define our open sets.

Definition 2.5 (Open set). Fix a metric space (X, d). Then a subset U ⊆ X is open if and only if, for each
x ∈ U , there exists some ε > 0 such that B(x, ε) ⊆ U . In other words, each point in U has an open ball
around it.

Example 2.6. Open balls are open sets. Indeed, given an open ball B(x, r), note that any x0 ∈ B(x, r)
has d(x0, x) < r, so we take ε := r − d(x0, x). To see this works, observe x′ ∈ B(x0, ε) will have

d(x′, x) ≤ d(x′, x0) + d(x0, x) < ε+ (r − ε) = r,

so B(x0, ε) ⊆ B(x, r) follows. Here is the image for what just happened.

r

ε

x

x0

And here is our definition of corresponding definition of continuity.

Lemma 2.7. Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is continuous at x ∈ X if
and only if, given any open set U ⊆ Y with f(x) ∈ U , there is an open ball B(x, δ), such that

B(x, δ) ⊆ f−1(U).

Proof. Taking f to be continuous, note that we can find ε > 0 such that B(f(x), ε) ⊆ U because U is open.
Thus, continuity promises δ > 0 such that

B(x, δ) ⊆ f−1(B(f(x), ε)) ⊆ f−1(U).
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Conversely, if f satisfies the conclusion of the statement, we can take U = B(f(x), ε) for any ε > 0 by
Example 2.6, and the conclusion promises δ > 0 such that

B(x, δ) ⊆ f−1(U) = f−1(B(f(x), ε)),

which is what we wanted. ■

It is cleaner to talk about the entire function being continuous instead of at a point.

Lemma 2.8. Given metric spaces (X, dX) and (Y, dY ), a function f : X → Y is continuous if and only if,
given any open set U ⊆ Y with f(x) ∈ U , the pre-image f−1(U) is open.

Proof. This is a matter of rearranging our quantifiers correctly. Lemma 2.7 tells us that, for all x ∈ X, all
open U ⊆ Y with f(x) ∈ U has some δ > 0 such that B(x, δ) ⊆ U . Equivalently, for all open U ⊆ Y , any
x ∈ X with x ∈ f−1(U) has some δ > 0 such that B(x, δ) ⊆ U . But by definition of being open, we’re just
saying that all open U ⊆ Y has f−1(U) also open. ■

So we have the following definition.

Definition 2.9 (Continuous). A function f : X → Y between metric spaces is continuous if and only if,
for any open set U ⊆ Y , the pre-image f−1(U) is open.

The philosophy here is to try to understand open sets instead of trying to understand the metrics. This is the
idea of topology.

2.1.2 Open Sets
Thus, we are motivated to understand open sets. Here are some basic properties.

Proposition 2.10. Fix a metric space (X, d), and let T be the collection of open sets.

(a) We have X ∈ T and ∅ ∈ T .

(b) Arbitrary union: given a collection U ⊆ T , the arbitrary union⋃
U∈U

U

is open.

(c) Finite intersection: given a finite collection {U1, . . . , Un} ∈ T , we have

n⋂
i=1

Ui

is open.

Proof. We go in sequence.

(a) To show X ∈ T , note that any x ∈ X has B(x, 1) ⊆ X by definition. To show ∅ ∈ T , note that any
x ∈ ∅ has B(x, 1) ⊆ ∅ because there is no x ∈ ∅ at all.

(b) For any x ∈
⋃
U∈U U , we have x ∈ V for some particular V ∈ U . Then the openness of V tells us we

can find ε > 0 such that
B(x, ε) ⊆ V ⊆

⋃
U∈U

U,

which finishes.
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(c) Fix x in the common intersection. Then, for any i, we have x ∈ Ui, so we have some εi > 0 such that
B(x, εi) ⊆ U , and so we set

ε := min
1≤i≤n

εi.

In particular, ε > 0 because n is finite, and we have

B(x, ε) ⊆ B(x, εi) ⊆ Ui

for each i, so B(x, ε) is a subset of our intersection. ■

Remark 2.11. The arbitrary intersection of open sets need not be open: working in R with the usual
metric,

∞⋂
i=1

B(0, 1/n) = {0},

which is not open. (Namely, no ε > 0 has B(x, ε) ⊆ {0}.)

Motivated by Proposition 2.10, we have the following definition.

Definition 2.12 (Topology). Fix a set X. Then a topology T on X is a collection of subsets T ⊆ P(X)
satisfying the following.

(a) We have ∅ ∈ T and X ∈ T .

(b) Arbitrary union: given a collection U ⊆ T , the arbitrary union
⋃
U∈U U lives in T .

(c) Finite intersection: given a finite collection {U1, . . . , Un} ⊆ T , the intersection
⋂n
i=1 Ui lives in T .

We will say that the ordered pair (X, T ) is a topological space. We say that the sets in T are open.

Example 2.13. By Proposition 2.10, metric spaces with their open sets form a topological space.

Here are some more basic examples.

Definition 2.14 (Discrete topology). Given a set X, the discrete topology is the topology P(X).

Definition 2.15 (Indiscrete topology). Given a set X, the indiscrete topology is the topology {∅, X}.

It is fairly routine to check that the above collections form topologies. In fact, they are closed under both
arbitrary union and arbitrary intersection.

Remark 2.16. The discrete topology can be defined by the metric d : X ×X → R≥0 by

d(x, x′) :=

{
1 x ̸= x′,

0 x = x′.

Indeed, for any x ∈ X, we see B(x, 1/2) = {x}, so any subset U ⊆ X is the open set

U =
⋃
x∈U
{x} =

⋃
x∈U

B(x, 1/2).
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Remark 2.17. If #X ≥ 2, the indiscrete topology cannot be given a metric. Indeed, find distinct points
a, b ∈ X and set r := d(a, b), so a ̸= b implies r > 0. Now, a ∈ B(a, r), but b /∈ B(a, r), so B(a, r) is an
open set distinct from both ∅ and X.

Remark 2.18. One can give topologies a partial order by inclusion. Then the discrete topology is the
maximal one (definitionally, any topology is a subset of P(X)), and the indiscrete topology is the mini-
mal one (definitionally, any topology contains ∅ and X).

And so here is our general definition of continuity.

Definition 2.19 (Continuous). Fix topological spaces (X, TX) and (Y, TY ). Then a function f : X → Y is
continuous if and only if, for any UY ∈ TY , we have f−1(UY ) ∈ TX .

2.2 August 31

It is once again the morning.

2.2.1 Intersections of Topologies
We will want to have lots of topologies to work with. Here is a basic way to build them.

Proposition 2.20. LetX be a set, and pick up some collection of topologies {Tα}α∈λ. Then the intersec-
tion

T :=
⋂
α∈λ

Tα

is also a topology on X.

Proof. This is mostly a matter of writing out the axioms.

(a) Note that ∅, X ∈ Tα for each α, so ∅, X ∈ T .

(b) Arbitrary union: given a collection U ⊆ T , we have U ⊆ Tα for each α, so
⋃
U∈U U ∈ Tα for each α, so⋃

U∈U
U ∈ T

as well.

(c) Finite intersection: given a finite collection {U1, . . . , Un} ⊆ T , we have {U1, . . . , Un} ⊆ Tα for each α,
so
⋂n
i=1 Ui ∈ Tα for each α, so

n⋂
i=1

Ui ∈ T

follows. ■

Corollary 2.21. Fix a set X. Given a collection S ⊆ P(X), there is a smallest topology T containing S.
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Proof. Certainly there is some topology containing S, namely the discrete topologyP(X). Thus, we can set
our topology to be

T (S) :=
⋂
T ⊇S

T a topology

T ,

which is a topology (by Proposition 2.20) which contains S (because each topology in the intersection con-
tains S), and of course any topology T containing S will have T (S) ⊆ T . ■

To codify this idea, we have the following idea.

Definition 2.22 (Generated topology). Fix a set X. We say that a collection S ⊆ P(X) generates its
smallest topology T . We will write T (S) for this topology.

Remark 2.23 (Nir). The topology T (S) is unique. Indeed, suppose two topologies T and T ′ are minimal
topologies containing S. Then T ∩ T ′ is also a topology containing S by Proposition 2.20, but T ∩ T ′ ⊆
T , T ′ forces T = T ∩ T ′ = T ′.

Remark 2.24 (Nir). Given collections S ⊆ S ′, then T (S) ⊆ T (S ′). Indeed, we have

T (S) =
⋂
T ⊇S

T a topology

T ⊆
⋂

T ⊇S′

T0 a topology

T = T (S ′).

Remark 2.25 (Nir). If T is already a topology on X, then T (T ) = T . Indeed, of course T ⊆ T (T ), but
then also

T (T ) =
⋂

T ′⊇T
T ′ a topology

T ′ ⊆ T

because T is a topology containing T .

2.2.2 Sub-bases
On the other side of things, we pick up the following definition.

Definition 2.26 (Sub-base). Let (X, T ) be a topological space. A collection S ⊆ T is a sub-base for T if
and only if the following hold.

(a) S covers X, in that X =
⋃
U∈S U .

(b) T is generated by S.

The point is that collections S are easy to find, so we have therefore found many topologies.
It will be useful to give a more concrete description of the topology generated by a collection S. We start

by taking finite intersections.

Lemma 2.27. Fix a set X and a collection S ⊆ P(X) with X =
⋃
U∈S U . Then set

IS :=

{
n⋂
i=1

Ui : {Ui}ni=1 ⊆ S

}
.

Then S ⊆ IS and IS is closed under finite intersection. Further, the topology generated by IS is also
the topology generated by S.
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Proof. We show the claims in sequence

• That {U} ⊆ S for any U ∈ S implies that U ∈ IS for any U ∈ S, so S ⊆ IS follows.

• To show IS is closed under finite intersection, pick up some finite collection {U1, . . . , Un} ⊆ IS . Then,
for each i, we can find some finite collection Ui ⊆ S such that

Ui =
⋂
V ∈Ui

V.

Setting U :=
⋃n
i=1 Ui, we see that U is finite and that

n⋂
i=1

Ui =

n⋂
i=1

⋂
V ∈Ui

V =
⋂
V ∈U

V

must live in IS .

• Because S ⊆ IS , Remark 2.24 tells us T (S) ⊆ T
(
IS
)

. In the other direction, note that any finite
collection {U1, . . . , Un} ⊆ S also lives in T (S), so

n⋂
i=1

Ui ∈ T (S).

It follows IS ⊆ T (S), so T
(
IS
)
⊆ T (T (S)) = T (S) by Remark 2.25. ■

After taking finite intersections, we take arbitrary unions.

Lemma 2.28. Fix a set X and a collection I ⊆ P(X) closed under finite intersection with
⋃
U∈I U = X.

Then the collection of (arbitrary) unions of elements in I, denoted

T :=

{ ⋃
U∈U

U : U ⊆ I

}
,

is T (I).

Proof. If T ′ is a topology containing I, then note any collection U ⊆ I lives in T ′, so the arbitrary union⋃
U∈U

U

lives in T ′. It follows that T ⊆ T ′, so

T ⊆
⋂

T ′⊇T
T ′ a topology

T ′ = T (I).

Thus, it remains to show that T is in fact a topology, which will imply from I ⊆ T that T (I) ⊆ T (T ) = T by
Remark 2.24. Here are our checks.

• Setting U = ∅ ⊆ I, we see that
⋃
U∈U U = ∅, so ∅ ∈ T . Also, by hypothesis, we have

X =
⋃
U∈I

U ∈ T .
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• Arbitrary union: let U ⊆ T be a subcollection. For any U ∈ U , we can find a collection VU ⊆ I such
that

U =
⋃

V ∈VU

V.

Now, we set V to be the union of all the collections of VU for each U ∈ U , which is still contained in I,
so that ⋃

U∈U
U =

⋃
U∈U

⋃
V ∈VU

V =
⋃
V ∈V

V ∈ T .

• Finite intersection: by induction, it suffices to pick up two sets U, V ∈ T and show U ∩ V ∈ T . Well,
we can find collections U ,V ⊆ I such that

U =
⋃
U ′∈U

U ′ and V =
⋃
V ′∈V

V ′,

from which it follows (by distribution) that

U ∩ V =

( ⋃
U ′∈U

U ′

)
∩

( ⋃
V ′∈V

V ′

)
=
⋃
U ′∈U

(
U ′ ∩

⋃
V ′∈V

V ′

)
=
⋃
U ′∈U
V ′∈V

(U ′ ∩ V ′).

Now, I is closed under finite intersection, so U ′ ∩ V ′ ∈ I, so we have witnessed U ∩ V as an arbitrary
union of elements of I, so U ∩ V ∈ T follows. ■

Corollary 2.29. Fix a setX and a collection S ⊆ P(X) withX =
⋃
U∈S U . Letting IS be the collection of

finite intersections of S and then T be the collection of arbitrary unions of IS , we have that T = T (S).

Proof. By Lemma 2.27, we have T (S) = T
(
IS
)

. Plugging IS into Lemma 2.28 (which applies because IS
is closed under finite intersection and covers X because S ⊆ IS ), we see that T

(
IS
)
= T , finishing. ■

We quickly point out that the point of discussing sub-bases is that we will be allowed to check continuity on
only a sub-base.

Lemma 2.30. Fix a topological space (X, TX) and a set Y . Given a function f : X → Y , the collection

T (f) :=
{
U ⊆ Y : f−1(U) ∈ TX

}
forms a topology on Y .

Proof. Here are our checks.

• Note f−1(∅) = ∅ ∈ TX , so ∅ ∈ T (f). Also, f−1(Y ) = X ∈ TX , so Y ∈ T (f).

• Arbitrary union: given a collection U ⊆ T (f), we see that

f−1

( ⋃
U∈U

U

)
=
⋃
U∈U

f−1(U)

is a union of elements of TX and therefore in TX . Thus,
⋃
U∈U U ∈ T (f).

• Finite intersection: this is identical to the previous check. Given a finite collection {U1, . . . , Un} ∈ T (f),
we see that

f−1

(
n⋂
i=1

Ui

)
=

n⋂
i=1

f−1(Ui)

is a finite intersection of elements of TX and therefore in TX . Thus,
⋂n
i=1 Ui ∈ T (f). ■
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Proposition 2.31. Fix topological spaces (X, TX) and (Y, TY ), and let S be a sub-base for TY . Then a
function f : X → Y is continuous if and only if

f−1(U) ∈ TX

for all U ∈ S.

Proof. Certainly if f is continuous then the pre-image of any open set U ∈ S ⊆ TY must be open. On the
other hand, let T (f) ⊆ P(Y ) be the collection of subsets U for which f−1(U) ∈ TX . This is a topology by
Lemma 2.30, and it contains S by hypothesis, so it follows

TY = T (S) ⊆ T (f).

Thus, f−1(U) ∈ TX for any U ∈ TY , so f is continuous. ■

2.2.3 Bases
Having defined a sub-base, we should be rightly upset that we have not defined a base.

Definition 2.32 (Base). Fix a set X. A collection B ⊆ P(X) is a base (for a topology on X) if and only if
the collection of arbitrary unions of B form a topology on X.

This definition is a little hard to access because we still don’t have a good notion of what a topology is.

Example 2.33. Fix a set X. Given any collection S ⊆ P(X), the collection of finite intersections IS is a
base by Lemma 2.28.

However, in general we do not require a base to be closed under finite intersection.

Example 2.34. Fix a metric space (X, d). Then the collection of open balls B forms a topology by Exam-
ple 2.13. Notably, the intersection of two open balls need not be an open ball, as follows.

Even though bases are not closed under finite intersection, we do have the following.

Proposition 2.35. Fix a set X and a collection B ⊆ P(X). Then B is a base if and only if

(a) X =
⋃
B∈B B, and

(b) any B1, B2 ∈ B has some collection U ⊆ B such that

B1 ∩B2 =
⋃
B∈U

B.

Proof. In one direction, suppose that B is a base generating the topology T .

37



2.2. AUGUST 31 202A: TOPOLOGY AND ANALYSIS

(a) Because X ∈ T , we see that X is the union of some subcollection U ⊆ B, so it follows

X =
⋃
U∈U

U ⊆
⋃
B∈B

B ⊆ X.

(b) Given B1, B2 ∈ B ⊆ T , we see that B1 ∩B2 ∈ T , so because T is made of arbitrary unions of B, there
is a collection U ⊆ B such that

B1 ∩B2 =
⋃
B∈U

B.

We now go in the other direction. Suppose B satisfies (a) and (b), and define

T :=

{ ⋃
U∈U

U : U ⊆ B

}
.

We now check that T is a topology.

• Using U = ∅ ⊆ B, so we see that
⋃
U∈U U = ∅ is in T . Also, by (a), we have

X =
⋃
B∈B

B ∈ T .

• Arbitrary union: this is the same as the check in Lemma 2.28. Given a collection U ⊆ T , each U ∈ U
has some collection VU ⊆ B such that

⋃
V ∈VU

V = U . Letting V ⊆ B be the union of all the VU , we see⋃
U∈U

U =
⋃
U∈U

⋃
V ∈VU

V =
⋃
V ∈V

V

lives in T .

• Finite intersection: by induction, it suffices to pick up U1, U2 ∈ T and show U1 ∩ U2 ∈ T . Well, find
B1,B2 ⊆ B such that

U1 =
⋃

B1∈B1

B1 and U2 =
⋃

B2∈B2

B2,

which implies
U1 ∩ U2 =

⋃
B1∈B1
B2∈B2

(B1 ∩B2).

Now, (b) implies that B1 ∩ B2 for any B1, B2 ∈ B is a union of elements in B, so B1 ∩ B2 ∈ T . Thus,
U1 ∩ U2 is the arbitrary union of elements in T , so U1 ∩ U2 ∈ T by the previous check. ■

Remark 2.36 (Nir). Careful readers might realize that we could rearrange the given exposition to show
that, given a sub-base S, the collection of finite intersections IS is a base instead of going through
Lemma 2.28.

Remark 2.37. Of course, any base is also a sub-base. Notably, sub-bases only require thatX =
⋃
U∈S U ,

which must be satisfied for bases.

Example 2.38. SetX = R with the usual topology T . Then the collection B of open intervals (a, b) form
a base for the usual topology (these are our open balls). In contrast, the collection

S = {(−∞, a) : a ∈ R} ∪ {(a,∞) : a ∈ R}

forms a sub-base for the usual topology. Namely, certainly S ⊆ T , and B ⊆ T (S) because of the finite
intersection (−∞, b) ∩ (a,∞) = (a, b) for any a, b ∈ R. Namely, T = T (B) ⊆ T (T (S)) = T (S) follows.
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2.2.4 Induced Topologies
We start with the following motivating example.

Example 2.39. Fix a set X, and give it the discrete topology. Then, for any topological space (Y, TY ),
any function f : X → Y is continuous because the pre-image of any open subset UY ⊆ Y is open in X.

In general, we might have some smallish collection of functions which we want to force to be continuous,
so we might ask what topology is forced by their continuity.

Definition 2.40 (Induced topology). Fix a set X and a collection of topologies {(Yα, Tα)}α∈λ with some
functions fα : X → Yα for each α ∈ λ. Then⋃

α∈λ

{
f−1
α (Uα) : Uα ∈ Tα

}
is a sub-base for an induced topology.

The one thing to check is that X belongs to the arbitrary unions of our collection, which is clear because
X = f−1

α (Yα).

Definition 2.41 (Relative topology). Fix (Y, T ) a topological space. Then the relative topology for a sub-
set X ⊆ Y is the topology induced by the natural embedding ι : X ↪→ Y .

We have the following more concrete description.

Lemma 2.42. Fix (Y, TY ) a topological space. Then the relative topology for a subsetX ⊆ Y consists of
the subsets

{X ∩ U : U ∈ TY } .

Proof. Let ι : X ↪→ Y be the natural embedding. Then we are given the sub-base

S :=
{
ι−1(U) : U ∈ TY

}
.

Now, ι−1(U) = X ∩ U , and then we can check directly that this collection S gives a topology and finish by
Remark 2.25. Here are the checks, which should be completely routine by now.

• Note ∅ ∈ TY implies ∅ = X ∩∅ ∈ S. Also, Y ∈ TY implies X = X ∩ Y ∈ S.

• Arbitrary union: given a collection U ⊆ S, for each U ∈ U find UV ∈ TY such that U = X ∩ UV . Then⋃
U∈U

= U =
⋃
U∈U

X ∩ UV = X ∩
⋃
U∈U

UV︸ ︷︷ ︸
∈TY

lives in S.

• Finite intersection: given a finite collection {U1, . . . , Un} ⊆ S, find Vi ∈ TY such thatUi = X ∩Vi. Then

n⋂
i=1

Ui =

n⋂
i=1

(X ∩ Vi) = X ∩
n⋂
i=1

Vi︸ ︷︷ ︸
∈TY

lives in S. ■
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2.3 September 2
There are no questions about anything.

2.3.1 Closed Sets
We begin, as always, with a definition.

Definition 2.43 (Closed). Fix a topological space (X, T ). A subsetV ⊆ X is closed if and only if (X \V ) ∈
T .

Here are some basic properties.

Lemma 2.44. Fix a topological space (X, T ).

(a) The set ∅ and X are both closed.

(b) Arbitrary intersection: given a collection of closed sets V , the intersection
⋂
V ∈V V is closed.

(c) Finite union: given a finite collection of closed sets {V1, . . . , Vn}, the union
⋃n
i=1 Vi is closed.

Proof. We proceed in sequence.

(a) Note that X \∅ = X and X \X = ∅ are both open so ∅ and X are closed.

(b) Arbitrary intersection: observe that

X

∖ ⋂
V ∈V

V =
⋃
V ∈V

(X \ V )

is an arbitrary union of open sets and therefore open. Thus,
⋂
V ∈V V is closed.

(c) Finite union: observe that

X

∖ n⋃
i=1

Vi =

n⋂
i=1

(X \ Vi)

is the finite intersection of open sets and therefore open. Thus,
⋃n
i=1 Vi is closed. ■

Remark 2.45. Observe that both X and ∅ are both open and closed. This is allowed.

Example 2.46. Fix a metric space (X, d). Then any closed ball B(x0, r) is closed: we need to show

U := X \B(x0, r) = {x ∈ X : d(x, x0) > r}

is open. Well, for any y ∈ U , we see d(y, x0) > r, so set εy := d(y, x0) − r, so y′ ∈ B(y, εy) has
d(x0, y

′) ≥ d(x0, y)− d(y, y′) > r. Thus, any y ∈ U has B(y, εy) ⊆ U , finishing.

Remark 2.47. In R2 with the Euclidean metric,
∞⋃
ε<1

B(0, ε) =
{
x ∈ R2 : d(0, x) < ε for some ε < 1

}
= B(0, 1)

is not closed. Indeed, we need to show U := X \ B(0, 1) =
{
x ∈ R2 : d(0, x) ≥ 1

}
is not open. Well,

note (1, 0) ∈ U , but any ε > 0 has (1− ε/2, 0) ∈ B((1, 0), ε) despite (1− ε/2, 0) /∈ U . Thus,U is not open.
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Remark 2.48. One can define a topology by defining its closed sets to satisfy the axioms of Lemma 2.44.
Then one defines the open sets as the complements of open sets.

Remark 2.49. Aligned with Remark 2.48, one can show that a function f : (X, TX)→ (Y, TY ) is contin-
uous if and only if f−1(V ) is closed for all closed subsets V ⊆ Y .

• If f is continuous, then note any closed subset V ⊆ Y has Y \V open, so f−1(Y \V ) = X \f−1(V )
is open, so f−1(V ) is closed.

• If f preserves closed sets, then any open subset U ⊆ Y has Y \ U closed, so f−1(Y \ U) = X \
f−1(U) is closed, so f−1(U) is open.

In the case of metric spaces, we also have the following characterization of metric spaces.

Lemma 2.50. Fix a metric space (X, d) and V ⊆ X. The following are equivalent.

(a) V is closed.

(b) Any sequence {xn}n∈N in V which converges to a point x ∈ X actually converges to x ∈ V .

Proof. In one direction, suppose V is closed, and suppose xn → x as n→∞with x /∈ V . Then we show that
some n ∈ N has xn /∈ V . Well, x ∈ X \ V , and X \ V is open, so there is some ε > 0 with

B(x, ε) ⊆ X \ V.

However, xn → x as n→∞ promises some large n such that d(x, xn) < ε, implying that xn ∈ X \ V and so
xn /∈ V .

In the other direction, suppose V is not closed. Then X \ V is not open, so we can find x ∈ X \ V for
which there is no ε > 0 with B(x, ε) ⊆ X \ V . As such, x /∈ V but B(x, 1/n) ∩ V ̸= ∅ for all n ∈ N, so just
pick up some

xn ∈ B(x, 1/n) ∩ V

for each n ∈ N. As such, d(x, xn) < 1/n for all n ∈ N, so xn → x as n→∞ (takeN = 1/ε), and xn ∈ V for all
n ∈ N, but the limit x does not live in V . ■

Remark 2.51. The reason we are not generalizing the above lemma to arbitrary topological spaces is
because we haven’t generalized convergence yet.

Corollary 2.52. Fix a complete metric space (X, d). Then a closed subset V ⊆ X given the restricted
metric is also complete.

Proof. Suppose a sequence of points {xn}n∈N in V is Cauchy. Embedding back in X, this sequence is still
Cauchy in X, so it has a limit x ∈ X. But Lemma 2.50 then promises x ∈ V , so {xn}n∈N does in fact have a
limit x in V . ■

2.3.2 Closures
Given a general set, we can define the closure as follows.
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Definition 2.53 (Closure). Fix a topological space (X, T ). Given a subset S ⊆ X, we define the closure
as

S :=
⋂
V⊇S
V closed

V.

Lemma 2.54. Fix a topological space (X, T ). Given a subset S ⊆ X, the closure S is the unique smallest
closed set containing S.

Proof. Note that
S :=

⋂
V⊇S
V closed

V

is closed as the arbitrary intersection of closed sets, by Lemma 2.44. To see that S is a minimal such closed
set, note that any closed V containing S must have S ⊆ V by definition of S.

Lastly, to see that S is unique, note that if we have two minimal closed sets S1 and S2 containing S, then
note S1 ∩S2 are both closed sets containing S by Lemma 2.44, so minimality forces S1 = S1 ∩S2 = S2. ■

Example 2.55. If S ⊆ X is closed, then we see

S ⊆
⋂
V⊇S
V closed

V ⊆ S

because S is a closed set containing S. Thus, S = S.

Here is a more concrete way to work with the closure.

Lemma 2.56. Fix a topological space (X, T ) and a subset A ⊆ X. Then x ∈ A if and only if every open
subset U ⊆ X containing x has U ∩A ̸= ∅.

Proof. In one direction, if there exists an open subset U ⊆ X containing x such that U ∩ A ̸= ∅, then
A ⊆ X \ U . By definition of the closure, it follows A ⊆ X \ U , so x /∈ X \ U ensures x /∈ A.

In the other direction, suppose x /∈ A. Then X \ A is an open subset containing x (note A is closed by
Lemma 2.54), and

A ∩ (X \A) ⊆ A ∩ (X \A) = ∅,

so we have found an open set containing x disjoint from A. ■

With the notation, we note that we can move our notion of density from metric spaces to general topol-
ogy.

Lemma 2.57. Fix a metric space (X, d). Then S ⊆ X is dense if and only if S = X.

Proof. In one direction, suppose that S is not dense inX, and we show S ⊊ X. Well, we are granted x ∈ X
and ε > 0 such that S ∩B(x, ε) = ∅, so S ⊆ X \B(x, ε). However, X \B(x, ε) is closed, so

S ⊆ X \B(x, ε) ⊊ X,

as needed.
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In the other direction, suppose S ⊊ X, and we show that S is not dense in X. Well, find x ∈ X \ S.
Because X \ S is open, we may find ε > 0 such that B(x, ε) ⊆ X \ S, implying that

B(x, ε) ∩ S ⊆ B(x, ε) ∩ S = ∅,

making S not dense in X. ■

Thus, we can generalize our definition as follows.

Definition 2.58 (Dense). Fix a topological space (X, T ). Given subsets A ⊆ B, we say A is dense in B if
and only if B ⊆ A.

Remark 2.59. We are not requiring that B be closed for the definition of density. For example, Q ⊆ R
is dense in Q.

2.3.3 The Product Topology
Let’s see more examples of induced topologies. We start with the easiest example of the product topol-
ogy.

Definition 2.60 (Product topology). Fix topological spaces (X1, T1) and (X2, T2). The product topology
on X1 ×X2 is the topology induced by the canonical projection mappings

π1 : X1 ×X2 → X1 and π2 : X1 ×X2 → X2.

We now give the following more concrete description of the product topology.

Lemma 2.61. Fix topological spaces (X1, T1) and (X2, T2). The product topology T on X := X1 × X2

has a base given by
B := {U1 × U2 : U1 ∈ T1, U2 ∈ T2}.

Proof. The product topology is the minimal topology making π1 : X1 × X2 → X1 and π2 : X1 × X2 → X2

continuous. Namely, the product topology has a sub-base given by the sets

π−1
1 (U1) = U1 ×X2 and π−1

2 (U2) = X1 × U2

for anyU1 ∈ T1 andU2 ∈ T2. Using Example 2.33, we let I denote the finite intersections of these open sets
and note I is a base for our topology.

Now, we finish by claimingB = I. On one hand, anyU1×U2 ∈ BwithU1 ∈ T1 andU2 ∈ T2 can be written
as the finite intersection

U1 × U2 = (U1 ×X2) ∩ (X1 × U2) = π−1
1 (U1) ∩ π−1

2 (U2) ∈ I.

On the other hand, pick finitely many sets of the form π−1
1 (U1) and π−1

2 (U2); dividing them into their classes,
we can write our finite collection of sets as in {U (i)

1 ×X2}mi=1 or {X1 × U (j)
2 }nj=1. Their intersection is(

m⋂
i=1

U
(i)
1 ×X2

)
∩

(
n⋂
j=1

X1 × U (j)
2

)
=

(
m⋂
i=1

U
(i)
1

)
︸ ︷︷ ︸

U1:=

∩

(
n⋂
j=1

U
(j)
2

)
︸ ︷︷ ︸

U2:=

.

Now,U1 ⊆ X1 andU2 ⊆ X2 are finite intersection of open sets and therefore open, so our finite intersection
takes the form U1 × U2 and thus lives in B. ■
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Remark 2.62. Later in life we will discuss measurable sets, which are not quite topologies but will have
similar ideas in spirit. For example, they will also care deeply about “rectangles.”

We can define this more generally.

Definition 2.63 (Product topology). Fix a collection of topological spaces {(Xα, Tα)}α∈λ. The product
topology on X :=

∏
α∈λXα is induced by the canonical projection maps

πα : X → Xα.

Here is our more concrete description.

Lemma 2.64. Fix a collection of topological spaces {(Xα, Tα)}α∈λ. Then the product topology on X :=∏
α∈λXα has a base

B :=

{∏
α∈λ

Uα : Uα ∈ Tα, Uα = Xα for all but finitely many α

}
.

Proof. We are immediately given the sub-base of S := {π−1
α (Uα) : Uα ∈ Tα}. Using Example 2.33, we let I

denote the finite intersections of S so that I is a base for our product topology.
As before, we finish by claiming I = B. To stay organized, we proceed in steps.

• We show B ⊆ I. Namely, for any
∏
α∈λ Uα in B, we set λ′ := {α : Uα ̸= Xα}, which we know must be

finite. Then ∏
α∈λ

Uα =
⋂
α∈λ

π−1(Uα) =
⋂
α∈λ′

π−1
α (Uα)

because π−1(Xα) = X. The right-hand side is indeed a finite intersection of elements of S and there-
fore in I.

• We show S ⊆ B. For a given β and Uβ ∈ Tβ , set Uα := Xα for each α ̸= β. Then we see that

π−1
β (Uβ) =

∏
α∈λ

Uα

is in B because Uα = Xα for all but a single α ∈ λ.

• We show B is closed under finite intersection. By induction, it suffices to pick up U,U ′ ∈ B and show
that U ∩ U ′ ∈ B. Indeed, write

U =
∏
α∈λ

Uα and U ′ =
∏
α∈λ

U ′
α,

where λ0 = {α : Uα ̸= Xα} and λ′0 = {α : U ′
α ̸= Xα} are both finite. Then

U ∩ U ′ =
∏
α∈λ

(Uα ∩ U ′
α),

and we have Uα ∩ U ′
α = Xα whenever α /∈ (λ0 ∪ λ′0), which is only finitely many exceptions because

both λ0 and λ0 are finite.

• We show I ⊆ B. Indeed, I is made of the finite intersections of S, and we see that B does indeed
contain the finite intersections ofS becauseB contains the finite intersections of itself, andS ⊆ B. ■
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Remark 2.65. If λ is finite, then the arguments of Lemma 2.61 generalize to give the cleaner base{∏
α∈λ

Uα : Uα ∈ Tα

}
.

This also follows directly from Lemma 2.64, where we note that the “finitely many exceptions” actually
permits all α ∈ λ to be an exception because λ is finite.

Example 2.66. Give {0, 1} the discrete topology. Then the space X := {0, 1}N given the product topol-
ogy does not have

U :=
∏
n∈N
{0}

open in X even though {0} ⊆ {0, 1} is always open. To see this, we note U has only a single element.
On the other hand, forU to be open, Lemma 2.64 tells usU must contain a basis elementB of the form

B :=
∏
n∈N

Un

where Un = {0, 1} for all but finitely many n. However, B is infinite as the infinite product of sets
containing more than 1 element, so B ̸⊆ U .

We quickly remark that the product topology satisfies the following universal property.

Lemma 2.67. Fix a collection of topological spaces {(Xα, Tα)}α∈λ, and give the productX :=
∏
α∈λXα

the projections πα : X → Xα and the product topology T . Given a topological space (Y, TY ) and con-
tinuous maps fα : Y → Xα, there is a unique continuous map f : Y → X such that fα = πα ◦ f for each
α ∈ λ.

Proof. We show uniqueness and existence separately.

• Uniqueness: suppose both f and f ′ satisfy that fα = πα ◦ f = πα ◦ f ′ for each α ∈ λ. Then, for some
y ∈ Y , we see that f(y) = (xα)α∈λ and f ′(y) = (x′α)α∈λ have

xβ = (πβ ◦ f)(y) = fβ(y) = (πβ ◦ f ′)(y) = x′β

for each β ∈ λ. So we conclude that f(y) = f ′(y) on all inputs. Observe that we have not used conti-
nuity anywhere.

• Existence: define f : Y → X by
f(y) := (fα(y))α∈λ.

We now need to check that f is continuous. By Proposition 2.31, it suffices to check this on the subbase
of Lemma 2.64. In particular, pick up some finite λ′ ⊆ λ and setUα ∈ Tα for each α ∈ λwhileUα = Xα

for α /∈ λ′. Then our basis element is
U :=

∏
α∈λ

Uα.

In particular,

f−1(U) = {y ∈ Y : fα(y) ∈ Uα for all α ∈ λ}

=
⋂
α∈λ

f−1
α (Uα)

=

( ⋂
α∈λ′

f−1
α (Uα)

)
∩

( ⋂
α/∈λ′

f−1
α ( Uα︸︷︷︸

Xα

)

)
,
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which is open because the left term is a finite intersection of open sets and the right term is just Y . ■

Corollary 2.68. Fix a collection of topological spaces {(Xα, Tα)}α∈λ. Give the product X :=
∏
α∈λXα

the projections πα : X → Xα and the product topology T . Given a topological space (Y, TY ), a function
f : Y → X is continuous if and only if the compositions πα ◦ f are continuous.

Proof. Certainly if f is continuous, then the continuity of πα means that each πα ◦ f is continuous.
Conversely, set fα := πα ◦ f to be a continuous map fα : Y → Xα. Then Lemma 2.67 promises us a

unique continuous map f̃ : Y → X such that

πα ◦ f̃ = fα = πα ◦ f.

However, the uniqueness proof of Lemma 2.67 showed that there is in fact one unique map of sets whose
projections under πα are fα, so we conclude f = f̃ . Thus, f is continuous. ■

2.3.4 Comments on the Dual Space
Given a vector space V with a norm ∥·∥, we might be interested in the linear functionals on V , but because V
is a metric space, we should actually be looking at the continuous linear functional. One can show (in Math
202B) that one has “plenty” of continuous linear functionals. Here is a lemma we will use a few times.

Lemma 2.69. Let ∥·∥be a norm on anR-vector spaceV . Then a linear functional f : V → R is continuous
if and only if there exists a real number c > 0 such that

|f(v)| ≤ c ∥v∥ (2.1)

for all v ∈ V .

Proof. In one direction, suppose that we can find a real number c > 0 satisfying (2.1) for all v ∈ V . To show
f is continuous, we use Lemma 1.58: suppose that we have a sequence {vn}n∈N such that vn → v as n→∞.
Then, for any ε > 0, find N such that n > N implies

∥v − vn∥ < ε/c

so that
|f(v)− f(vn)| ≤ c ∥v − vn∥ < ε.

Conversely, suppose that f is continuous. Note that we don’t have to worry about v = 0 because this gives
equality. Now, we can find δ > 0 such that ∥v∥ < δ implies |f(v)| < 1. It follows that any nonzero v ∈ V will
have ∥∥∥∥ δ

2 ∥v∥
v

∥∥∥∥ < δ,

so we see
|f(v)| = 2 ∥v∥

δ

∣∣∣∣f ( δ

2 ∥v∥
v

)∣∣∣∣ ≤ 2

δ
· ∥v∥ ,

so c := 2/δ will do the trick. ■

Here is an example.

Exercise 2.70. Give V := C([0, 1]) a p-norm ∥·∥p for some p ≥ 1 or p = ∞. Then g ∈ C([0, 1]) defines a
continuous linear functional

φg : f 7→
∫ 1

0

f(t)g(t) dt.
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Proof. To show φg is linear, pick up any r1, r2 ∈ R and f1, f2 ∈ V ; then

φg(r1f1 + r2f2) =

∫ 1

0

(r1f1 + r2f2)(t)g(t) dt = r1

∫ 1

0

f1(t)g(t) dt+ r2

∫ 1

0

f2(t)g(t) dt = r1φg(f1) + r2φg(f2).

Checking continuity is a little more involved. Note |g| is a continuous function on a compact set [0, 1] and
therefore has a maximum M . We now use Lemma 2.69; we have two cases.

• Suppose p =∞. Then, for any f ∈ V , we see

|φg(f)| =
∣∣∣∣∫ 1

0

f(t)g(t) dt

∣∣∣∣ ≤M ∫ 1

0

|f(t)| dt ≤M ∥f∥∞ ,

which finishes by Lemma 2.69.

• Suppose p ≥ 1 is finite. To begin, we note

|φg(f)| =
∣∣∣∣∫ 1

0

f(t)g(t) dt

∣∣∣∣ ≤M ∫ 1

0

|f(t)| dt.

Now, because the function x 7→ xp is convex, we see that(∫ 1

0

|f(t)| dt
)p
≤
∫ 1

0

|f(t)|p dt = ∥f∥pp ,

so |φg(f)| ≤M ∥f∥p. Lemma 2.69 finishes. ■

Even though the linear functionals we found were continuous for all ∥·∥p, it is possible to find linear func-
tionals continuous for some of our norms but not others.

Exercise 2.71. Fix V := C([0, 1]), and select some t0 ∈ [0, 1]. Then

φ : f 7→ f(t0)

defines a linear functional on V which is continuous for ∥·∥∞ but not for ∥·∥p for any finite p ≥ 1.

Proof. To see continuity with ∥·∥∞, we note that any f ∈ V has

|φ(f)| = |f(t0)| ≤ ∥f∥∞ ,

so Lemma 2.69 finishes.
We now show that φ is not continuous for a fixed ∥·∥p, where p ≥ 1 is finite. Using Lemma 2.69, we just

have to show that the ratio |φ(v)|/ ∥v∥p is unbounded for v ∈ V . For this, we define fc : [0, 1]→ R by

f(t) := max
{
0, c− c2p+1(t− t0)2

}
.

The idea here is that f has a sharp bump at t0. Now, f is a continuous function on [0, 1] because it is the
composition of continuous functions, so f ∈ V . We can compute

∥f∥p =
(∫ 1

0

|f(t)|p dt
)1/p

.

Now, f(t) will only be nonzero when c − c2p+1(t − t0)2 ≥ 0, which is equivalent to t − t0 ∈ (−c−p, c−p), so
we bound

∥f∥pp =
∫ 1

0

|f(t)|p dt ≤
∫ c−p

−c−p

(
c− c2p+1z2

)
dz ≤ 2c1−p.

Notably, as c→∞, we have that ∥f∥p ≤ 21/p · c1/p−1 is bounded, but |φ(f)| = c grows unbounded. Thus, φ
is discontinuous. ■
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Remark 2.72. Now, we have exhibited many continuous functions

φg : C([0, 1])→ R,

so we can ask for the topology on C([0, 1]) induced by these. It turns out that this induced topology is
much weaker than any individual norm topology; this topology is often called the weak topology deter-
mined by C([0, 1]).

Remark 2.73. By the end of the class, we will have a reasonable notion of the dual space of ∥·∥1 and ∥·∥2.
The dual space for ∥·∥∞ will come up in Math 202B.

Remark 2.74. Still working withC([0, 1]) given a specific norm ∥·∥p, one can show that any g ∈ C([0, 1])
has some rg ∈ R with

φg(B(0, 1)) ⊆ B(0, rg).

It turns out to be helpful to be able to consider the product topology on the (very large) product∏
g∈C([0,1])

B(0, rg).

2.4 September 7
It’s another day of sun.

2.4.1 Quotient Spaces
Here is a different way to induce a topology, the reverse of the induced topology.

Definition 2.75 (Final topology). Fix a set Y and some topological spaces {(Xα, Tα)}α∈λ. Given func-
tions fα : Xα → Y , we define the final topology on Y to be the “strongest” (i.e., with the most open
sets) making the fα continuous.

Remark 2.76. Note that certainly some topology on Y exists making the fα continuous because we can
give Y the indiscrete topology, where f−1

α (∅) = ∅ and f−1
α (Y ) = Xα are open for each α ∈ λ.

Here is a more concrete description.

Lemma 2.77. Fix a setY and some topological spaces {(Xα, Tα)}α∈λ, with functions fα : Xα → Y . Then
the final topology is

T :=
⋂
α∈λ

{
S ⊆ Y : f−1

α (S) ∈ Tα
}
.

Proof. Certainly each
{
S ⊆ Y : f−1

α (S) ∈ Tα
}

is a topology by Lemma 2.30, as is their intersection by Propo-
sition 2.20. Thus, T is a topology.

It remains to show that T is the strongest topology making each of the fα continuous. Well, suppose T ′

is a topology making each of the fα continuous. Then, for each U ∈ T ′, we have

f−1
α (U) ∈ Tα for each α ∈ λ,

so U ∈ T follows. Thus, T ′ ⊆ T . ■
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We will be primarily interested in the case with just one function.

Remark 2.78. In the case of one function, which is Lemma 2.30, note that we might as well assume
that f : X → Y is onto for otherwise we might as well just pass to the relative topology on im f . To be
explicit, we see U ⊆ Y is open if and only if f−1(U) is open if and only if f−1(U ∩ im f) is open if and
only if U ∩ im f is open.

We are now ready to define the quotient space.

Lemma 2.79. Given sets f : X → Y , there is an equivalence relation ∼ on X with x ∼ x′ if and only if
f(x) = f(x′).

Proof. We check the conditions one at a time. Find x, x′, x′′ ∈ X.

• Reflexive: note f(x) = f(x), so x ∼ x.

• Symmetric: if x ∼ x′, then f(x) = f(x′), so f(x′) = f(x), so x′ ∼ x.

• Transitive: if x ∼ x′ and x′ ∼ x′′, then f(x) = f(x′) = f(x′′), so f(x) = f(x′′), so x ∼ x′′. ■

With an equivalence relation, we may consider the set of equivalence classes X/∼.

Remark 2.80. Conversely, given some partitionP ⊆ P(X) ofX, we can define f : X → P by f : x 7→ [x],
where [x] ∈ P is the element of P containing x. (Note [x] ∈ P exists and is well-defined because P is
a partition.) The point is that surjective functions give rise to equivalence relations, and equivalence
relations give rise to surjective functions.

Anyway, here is our definition.

Definition 2.81 (Quotient topology). Fix an equivalence relation ∼ on a set X with a topology T . Then
the quotient topology on X/∼ is the final topology for the natural projection X ↠ X/∼.

It turns out that we can talk about the quotient space by universal property as well.

Proposition 2.82. Fix an equivalence relation∼ on a setX with a topology T ; let π : X ↠ (X/∼) be the
natural projection. Then, for any continuous map f : X → Z such that any x ∼ x′ has f(x) = f(x′),
there is a unique continuous map f : (X/∼)→ Z such that

f = f ◦ π.

Proof. We show uniqueness and existence separately.

• Uniqueness: for any [x] ∈ (X/∼), we see that we must have

f([x]) = f(π(x)) = f(x),

so f([x]) is forced by our other data.

• Existence: for each [x] ∈ (X/∼), define f([x]) := f(x). Note that this is well-defined: if [x] = [x′], then
x ∼ x′, so f(x) = f(x′) by hypothesis.
It remains to show that f is continuous. Well, for an open set U ⊆ Z, we note that

f
−1

(U) = {[x] : f([x]) ∈ U} = {[x] : f(x) ∈ U} = π
(
f−1(U)

)
.

Now, π−1
(
π
(
f−1(U)

))
= f−1(U) because x ∈ π−1

(
π
(
f−1(U)

))
if and only if π(x) ∈ π

(
f−1(U)

)
,

which is equivalent to there being x′ ∈ f−1(U) with π(x) = π(x′), which is equivalent to there being x′
with x ∼ x′ while f(x) = f(x′) ∈ U .
Thus, π−1

(
π
(
f−1(U)

))
is open, so it follows π

(
f−1(U)

)
⊆ (X/∼) is open. ■
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2.4.2 Homeomorphism
Homeomorphisms are isomorphisms in our category Top. To be technical, here is our definition.

Definition 2.83 (Homeomorphism). A function f : X → Y between topological spaces (X, TX) and
(Y, TY ) is a homeomorphism if and only if f is continuous and has a continuous inverse. Formally, we
require a continuous map g : Y → X such that

f ◦ g = idY and g ◦ f = idX .

Warning 2.84. It is not enough for f to be continuous and bijective to be a homeomorphism. The hy-
pothesis that the inverse function be continuous is necessary.

Remark 2.85. The definition above does not require that f be bijective, but this follows from f having
an inverse.

Here are some examples.

Example 2.86. Fix a nonzero real number a and a real number b. Then the function φa,b : R → R by
φa,b(x) := ax+ b is continuous: checking this on the subbase (which is enough by Proposition 2.31), we
computeφ−1

a,b((c, d)) = ((c−b)/a, (d−b)/a). The inverse function isφ1/a,−b/a—noteφ1/a,−b/a(φa,b(x)) =
φa,b(φ1/a,−b/a(x)) = x—which is continuous for the same reason, so this function φa,b is a homeomor-
phism.

Lemma 2.87. Fix a homeomorphism f : (X, TX) → (Y, TY ). Further, for any subset S ⊆ X, give S and
f(S) their respective relative topologies. Then the restriction f |S : S → f(S) is a homeomorphism.

Proof. For clarity, let g : Y → X be the inverse function for f ; note that g(f(S)) = {g(f(x)) : x ∈ S} = S, so
g|f(S) : f(S) → S. Observe that we still have g(f(x)) = x and f(g(y)) for each x ∈ X and y ∈ Y , so f |S and
g|S are inverse functions by restricting these equations.

It remains to see that f and g are continuous. We will show that f is continuous, and g will follow by
symmetry. Well, for an open subset U ∩ f(S) ⊆ f(S) (where U ⊆ X is open), we see

f |−1
S (U∩f(S)) = {x ∈ S : f(x) ∈ U∩f(S)} = S∩{x ∈ X : f(x) ∈ U}∩{x ∈ S : f(x) ∈ f(S)} = S∩f−1(U),

which is indeed open in the relative topology of S. ■

Example 2.88. Fix real numbers b > a. Continuing from Example 2.86, φa,b : R → R restricts by
Lemma 2.87 to a homeomorphism

φb−a,a|[0,1] : [0, 1]→ [a, b].

Namely, x ∈ [0, 1] if and only if 0 ≤ x ≤ 1 if and only if a ≤ (b−a)x+a ≤ b if and only ifφb−a,a(x) ∈ [a, b].

Example 2.89. GiveR the Euclidean topology, and letRd be the real numbers with the discrete topology.
Then the identity function ι : Rd → R is continuous because all functions from the discrete topology are
continuous. However, ι is its own inverse, and the inverse function

π : R→ Rd

(which is also the identity on R) is not continuous. For example, π−1({0}) = {0} is not open in R (by
Remark 2.11) even though R \ {0} ⊆ Rd is open.
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Here are some more exotic examples.

Exercise 2.90. Give X := [0, 1] the subspace topology, and define the equivalence relation ∼ as having
equivalence classes {0, 1} and {r} for each r ∈ (0, 1). Then the quotient topologyX/∼ is homeomorphic
to S1 ⊆ C.

Proof. We note that ∼ is an equivalence relation because its equivalence classes are a partition. Now, we
define the maps

(X/∼) ∼= S1

t 7→ e2πit

θ/2π ← [ eiθ

which we can see to be well-defined inverse. Note that R→ C by t 7→ eit is continuous by complex analysis
(it’s in fact holomorphic). Restricting, we get the continuous map [0, 1] → S1, and then we can see that we
can mod out by 0 ∼ 1 because they both go to the same place (using Proposition 2.82). One can check by
hand that the inverse map is continuous, but we won’t bother. ■

Remark 2.91 (Nir). Here is a quick way to see that the inverse map is continuous: any continuous bi-
jection f : (X/∼)→ S1 with (X/∼) compact—which is true becauseX is compact—and S1 Hausdorff
will send closed subsets V ⊆ (X/∼) (which are compact) to compact subsets of S1 (which are closed).
Thus, f is a closed map, so its inverse is continuous because f is bijective.

For the next few examples, we won’t be very rigorous because we haven’t provided good definitions of the
relevant spaces.

Example 2.92. Give X := [0, 2]× [0, 1] the subspace topology, and define the equivalence relation∼ as
requiring (0, r) ∼ (2, r) only. Then X is homeomorphic to a circle by gluing its edges. One might draw
X as follows.

Example 2.93. Continuing with the drawing style of Example 2.92, we have that

is the Möbius strip.

Remark 2.94. Note that these homeomorphisms do not care for the metric of our spaces. All that mat-
ters is the continuity.

Example 2.95. Let X be the unit sphere in R3 with the subspace topology, and define the equivalence
relation on X by equivalence classes {v,−v} for each v ∈ X. Then X/∼ turns out to be RP2, which is
hard to visualize.

2.4.3 Group Actions
A space might even have interesting homeomorphisms to itself.
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Example 2.96. Fix a real number θ. The circle S1 in C (given the subspace topology) has the rotation
homeomorphism

rθ : e
it 7→ ei(t+θ).

Remark 2.97. In general, given a topological space (X, T ), we can make the group of homeomorphisms
Aut(X) of homeomorphisms whose operation is composition.

This gives the following definition.

Definition 2.98 (Group action). A group action by a groupG on a topological spaceX is a group homo-
morphism

φ• : G→ Aut(X).

Example 2.99. The group ⟨σ⟩ ≃ Z/2Z acts on a normed vector space (V, ∥·∥) by sending σk to

φσk · v := (−1)kv.

Notably, φσk is continuous and its own inverse for any k, so it is a homeomorphism. In fact, we can see
directly that φσk ◦ φσℓ = φσk+ℓ .

Notably, with a group action comes a partition.

Definition 2.100 (Orbit). Let G act on a topological space X by φ• : G → Aut(X). Then the G-orbit Gx
of a point x ∈ x is the set

Gx := {φg(x) : g ∈ G}.

We denote the set of all orbitsOx be X/G.

Remark 2.101. Note that the map x 7→ Ox is a well-defined (surjective) map X → X/G. In particular,
we need to know that x ∈ Ox′ implies that Ox = Ox′ so that there is exactly one orbit containing x.
Well, x ∈ Ox′ means we can find g0 ∈ G such that x = φg0(x

′), so

Ox = {φg(x) : g ∈ G} = {φg(φg0(x′)) : g ∈ G} = {φgg0(x′) : g ∈ G} ⊆ Ox′ .

Conversely, we note that x′ = φg−1
0

(x), soOx′ ⊆ Ox follows, giving equality.

Thus, theG-orbits partitionX, so we can give the setX/G the quotient topology as the final topology of the
natural projection X ↠ X/G.
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THEME 3

BUILDING FUNCTIONS

I can assure you, at any rate, that my intentions are honourable and my
results invariant, probably canonical, perhaps even functorial.

—Andre Weil, [Wei59]

3.1 September 9

The fun continues. The next problem set is going to be long but only in words, not in what we actually have
to prove. We are being told not to be intimidated.

Remark 3.1. We are about to transition from making topologies to coming up with adjectives which will
give “lots” of continuous maps to, say, the real numbers. A rigorization of this shall be provided shortly.

3.1.1 Normal Spaces

Last class we briefly mentioned the Hausdorff property.

Definition 3.2 (Hausdroff). Fix a topological space (X, T ). Then (X, T ) is Hausdorff if and only if, for
any two distinct points x, x′ ∈ X, there are disjoint open sets U and U ′ such that x ∈ U and x′ ∈ U ′.

Example 3.3. A metric space (X, d) is Hausdorff. Indeed, given distinct points x, x′ ∈ X, we have
d(x, x′) > 0, so we set r := 1

2d(x, x
′). Then x ∈ B(x, r) and x′ ∈ B(x′, r) (which are open sets by

Example 2.6), we seeB(x, r)∩B(x′, r) = ∅. Indeed, if we had y ∈ B(x, r)∩B(x′, r), then we must have

d(x, x′) ≤ d(x, y) + d(x′, y) < 2r = d(x, x′),

which is a contradiction.

Here is the image
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x x′

U U ′

Here is another adjective.

Definition 3.4 (Normal). Fix a topological space (X, T ). Then (X, T ) is Hausdorff if and only if, for any
two disjoint closed sets V, V ′ ⊆ X, there are disjoint open sets U and U ′ such that V ⊆ U and V ′ ⊆ U ′.

Remark 3.5. Intuitively, Hausdorff is approximately the normal property with singleton sets. In partic-
ular, some authors require “Hausdorff” in the definition of a normal space. We will not do this.

Example 3.6. Any setX given the indiscrete topology is normal. The problem here is that the only closed
sets {∅, X}, so the only possible pair of disjoint closed sets have V1 := ∅ or V2 := ∅, for which the open
sets U1 := V1 and U2 := V2 are disjoint and cover these.

Example 3.7. A set X with more than 2 elements given the indiscrete topology is normal, as shown in
the previous example, but it is not Hausdorff. Namely, finding distinct points x1, x2 ∈ X, the only open
subset of X containing x1 or x2 is X, so there are no disjoint open subsets U1 containing x1 and U2

containing x2.

Here is the image.

V V ′

U U ′

It is not completely obvious that metric spaces are normal, but we will see that they are.
Here is the main result for today.

Theorem 3.8 (Urysohn’s lemma). Fix a topological space (X, T ). If (X, T ) is normal, then for any disjoint
closed subsets V0, V1 ⊆ X, there is a continuous function f : X → [0, 1] such that f(V0) = {0} and
f(V1) = {1}.

So the point here is to realize Remark 3.1, where being normal is implying that we have “lots” of continuous
functions.

Remark 3.9. Certainly if a topological space (X, T ) satisfies the conclusion of Theorem 3.8, then (X, T )
is normal. Indeed, for any disjoint closed subsets V0, V1 ⊆ X, pick up the promised continuous function
f . Then

V0 ⊆ f−1((−1/2, 1/2)) and V1 ⊆ f−1((1/2, 3/2))

are disjoint open sets; namely, these are open because f is continuous, and they are disjoint because
f−1((−1/2, 1/2)) ∩ f−1((1/2, 3/2)) = f−1

(
(−1/2, 1/2) ∩ (1/2, 3/2)

)
= f−1(∅) = ∅.
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3.1.2 Urysohn’s Lemma: Metric Spaces
Let’s see Theorem 3.8 for metric spaces, which will prove that metric spaces are normal by Remark 3.9. We
pick up the following definition.

Definition 3.10. Fix a metric space (X, d). Then we define, for any x ∈ X and nonempty subset A ⊆ X,

dA(x) := inf
a∈A

d(x, a).

Remark 3.11. The infimum here exists becauseA is nonempty, so the set {d(x, a) : a ∈ A} is nonempty
(and bounded below by 0).

The image is that dA(x) is the distance from x to A.

Ax
dA(x)

We have the following continuity check.

Lemma 3.12. Fix a metric space (X, d). Then, for any nonempty subsetA ⊆ X, the function dA : X → R
is Lipschitz continuous.

Proof. Fix any x, y ∈ X. Then, for any given a ∈ A, we find that

dA(x) ≤ d(x, a) ≤ d(x, y) + d(y, a).

Thus, dA(x)− d(x, y) ≤ d(y, a) for all a ∈ A, so we conclude that

dA(x)− d(x, y) ≤ inf
a∈A

d(y, a) = dA(y),

so dA(x)− dA(y) ≤ d(x, y). By symmetry, we also have dA(y)− dA(x) ≤ d(x, y), so it follows∣∣dA(x)− dA(y)∣∣ ≤ d(x, y),
which is what we need for our Lipschitz continuous. ■

As a sanity-check that this function behaves like it should, we pick up the following.

Lemma 3.13. Fix a metric space (X, d). Then, for any nonempty subset A ⊆ X, we have

d−1
A ({0}) = A.

Proof. Certainly A ⊆ d−1
A ({0}) because dA(a) = 0 for all a ∈ A. (In particular, dA(x) ≥ 0 everywhere, and

a ∈ A implies that dA(a) ≤ d(a, a) = 0.) Because dA is continuous by Lemma 3.12, we see d−1
A ({0}) is closed,

so containing A forces
A ⊆ d−1

A ({0}).
Conversely, suppose that x /∈ X \ A, and we show that dA(x) > 0. Indeed, X \ A is open, so there is some
open ball B(x, ε) with ε > 0 such that B(x, ε) ⊆ X \A. It follows B(x, ε) ∩A = ∅, so

d(a, x) ≥ ε

for all a ∈ A. Thus, dA(x) ≥ ε > 0, so dA(x) ̸= 0. ■
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Example 3.14. If A ⊆ X is a dense subset, then A = X, so dA : X → R is the constantly zero function.

Example 3.15. If A ⊆ X is closed, then A = A by Example 2.55, so d−1
A ({0}) = A. In other words, we

have x ∈ A if and only if dA(x) = 0.

Let’s now show Theorem 3.8 for metric spaces.

Proposition 3.16. Fix a metric space (X, d). For any disjoint closed subsets V0, V1 ⊆ X, there is a con-
tinuous function f : X → [0, 1] such that f(V0) = {0} and f(V1) = {1}.

Proof. The point is to use the Lipschitz continuous functions dV0
, dV1

. Then we define

f(x) :=
dV0(x)

dV0
(x) + dV1

(x)
.

Note that defining f : X → R does not have division-by-zero problems: because dV0
(x), dV1

(x) ≥ 0, the
only way to get zero in the denominator is by dV0

(x) = dV1
(x) = 0. However, this forces x ∈ V0 ∩ V1 by

Lemma 3.13 because V0 and V1 are closed, but in fact V0 ∩ V1 = ∅.
We now run our checks on f .

• Because the quotient of two continuous functions is still continuous, we see that f is continuous.

• Using the fact that dA(x) ≥ 0 for any nonempty A ⊆ X and x ∈ X, we find

f(x) =
dV0(x)

dV0
(x) + dV1

(x)
≥ 0,

and
f(x) = 1− dV1

(x)

dV0
(x) + dV1

(x)
≤ 1,

so im f ⊆ [0, 1].

• If x ∈ V0, then dV0
(x) = 0, so f(x) = 0/(0 + dV1

(x)) = 0. If x ∈ V1, then dV1
(x) = 0, so f(x) =

dV0(x)/(dV0(x) + 0) = 1. ■

And here is our check.

Corollary 3.17. Any metric space (X, d) is normal.

Proof. Plug Proposition 3.16 into Remark 3.9. ■

3.1.3 Urysohn’s Lemma: The General Case
We will not prove the general case of Theorem 3.8 today, but we will make some progress. Here is a useful
lemma.

Lemma 3.18. Fix a normal topological space (X, T ). Given a closed subset V ⊆ X and an open subset
U0 ⊆ X with V ⊆ U0, there is an open set U such that

V ⊆ U ⊆ U ⊆ U0.
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Proof. Because V ⊆ U0, we define V ′ := X \U0, which is closed becauseU0 is open. Further, V ′ ⊆ X \U0 ⊆
X \ V forces V ∩ V ′ = ∅. Thus, using the normality of (X, T ), we are promised disjoint open sets U and U ′

such that
V ⊆ U and V ′ ⊆ U ′.

In particular, we see that
U ⊆ X \ U ′

while X \ U ′ is closed by definition. Thus, by definition of the closure, U ⊆ X \ U ′ ⊆ X \ V ′ = U0. This
finishes the proof. ■

3.2 September 12
There are still no questions.

3.2.1 Urysohn’s Lemma: The General Case
We continue the proof from last class.

Theorem 3.8 (Urysohn’s lemma). Fix a topological space (X, T ). If (X, T ) is normal, then for any disjoint
closed subsets V0, V1 ⊆ X, there is a continuous function f : X → [0, 1] such that f(V0) = {0} and
f(V1) = {1}.

Proof. To begin, define U1 := X \ V1, which is open because V1 is closed; notably V0 ⊆ U1. The idea here is
that the points of U1 will take value at most 1. Now, by Lemma 3.18, we find U1/2 with

V0 ⊆ U1/2 ⊆ U1/2 ⊆ U1.

Intuitively, we are going to let f take values at most 1/2 on U1/2. Using Lemma 3.18 again, we can find U1/2

with
V0 ⊆ U1/4 ⊆ U1/4 ⊆ U1/2,

and now our function will take values at most 1/4 on U1/4. On the other side, we can use the containment
U1/2 ⊆ U1 in Lemma 3.18 to find U3/4 such that

U1/2 ⊆ U3/4 ⊆ U3/4 ⊆ U1,

and here U3/4 our function should take values less than 3/4.
We can then continue the process for eights and then off to infinity. Let’s describe what we have at the

end of this inductive process. Set∆ := {k/2n : 0 < k ≤ 2n} to be the set of “dyadic” rationals in (0, 1]; notably
∆ is dense in [0, 1].1 Then each r ∈ ∆, we get an open set Ur ⊆ X. These have the following properties.

• Any r, s ∈ ∆ with r < s has Ur ⊆ Us.

• By construction U1 = X \ V1.

• Also, V0 ⊆ Ur for all r ∈ ∆.

We now define

f(x) :=

{
1 x ∈ V1,
inf{r ∈ ∆ : x ∈ Ur} x /∈ V1,

where x /∈ V1 in the second case promises x ∈ U1 so that the infimum in the second line makes sense. We
now run the following checks on f .

1 The fact we need is that a, b ∈ [0, 1] with a < b have r ∈ ∆ between them. Well, multiply b − a by a suitably large power of 2 so
that 2n(b− a) > 1, so there is an integer k in this interval between 2na and 2nb, so a < k/2n < b.
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• Note that im f(x) ⊆ ∆ = [0, 1].

• By the construction of these open sets, we have f(x) = 1 if x ∈ V1.

• Further, f(x) < r for all r ∈ ∆ if x ∈ V0, so f(x) = 0 for x ∈ V0.

• It remains to check that f is continuous. For this, we use Proposition 2.31 to check the continuity on a
subbase. Specifically, we use sets of the form [0, a) and (a, 1] for a ∈ (0, 1). Indeed, note [0, a)∩ (b, 1] =
(a, b), so intersections of these can give all open intervals strictly contained [0, 1]; adding in the “open”
intervals [0, a) and (a, 0] make all the open intervals in [0, 1], which are a basis for our topology.
We now proceed with our check; fix some a ∈ (0, 1).

– Note that x ∈ X has f(x) < a if and only if there is some r ∈ ∆ such that f(x) < r < a (by density
of ∆) if and only if there is some r ∈ ∆ such that x ∈ Ur and r < a (by definition of the infimum).
As such,

f−1([0, a)) =
⋃
r<a

Ur.

– Note that x ∈ X has f(x) > a if and only if there is an r, s ∈ ∆ with f(x) > r > s > a (by density).
It follows x /∈ Ur, which contains Us, so x /∈ Us for some s ∈ ∆ with s > a.
On the other hand, x /∈ Us for some s ∈ ∆ with s > a implies that x /∈ Ur for any r ∈ ∆ with
r > s > a, so it follows f(x) ≥ s > a.
Thus, f(x) > a if and only if x /∈ Us for s ∈ ∆ with s > a, implying

f−1((a, 1]) =
⋃
s>a

(X \ Us).

The above checks complete the proof. ■

Remark 3.19. We could not have f output to Q ∩ [0, 1] because we used the completeness of R in the
construction of f .

Remark 3.20. It is somewhat noticeable that we have not discussed sequences at all in this class yet,
even though they were featured prominently in metric space topology. The reason we have been avoid-
ing them is that we prefer to use open sets and not points to study general topological spaces.

3.2.2 Bounded Functions
We are going to want a little functional analysis before we continue.

Definition 3.21 (Bounded). Fix a metric space (X, d)and a nonempty setA. A subsetA ⊆ X is bounded if
and only if there is an open ballB(x, r) containingA. More generally, a function f : A→ X is bounded if
and only if im f ⊆ X is bounded, and we letB(A,X) denote the set of all bounded functions f : A→ X.

We will be particularly interested in the case where X is a normed vector space.
The point of defining bounded functions is that we can provide them with a metric.

Definition 3.22 (Uniform metric). Fix a nonempty set X and a metric space (Y, d). Then the uniform
metric is the function du : B(X,Y )2 → R≥0 defined by

du(f, g) := sup{d(f(x), g(x)) : x ∈ X}.
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Lemma 3.23. Fix a set X and a metric space (Y, d). Then the uniform metric du on B(X,Y ) is a metric.

Proof. Here are our checks; fix f, g, h ∈ B(X,Y ).

• Well-defined: because f and g bounded, we can find open ballsB(a, r) andB(b, s) containing im f and
im g respectively. It follows that, for any x ∈ X, we have

d(f(x), g(x)) ≤ d(f(x), a) + d(a, b) + d(b, g(x)) ≤ r + d(a, b) + s,

so the set {d(f(x), g(x)) : x ∈ X} has an upper bound and hence a supremum.

• Nonnegative: fixing a particular x ∈ X, note du(f, g) ≥ d(f(x), g(x)) ≥ 0.

• Zero: note du(f, f) is sup{d(f(x), f(x)) : x ∈ X} = sup{0 : x ∈ X} = 0.

• Zero: note du(f, g) = 0 implies that sup{d(f(x), g(x)) : x ∈ X} = 0, so d(f(x), g(x)) ≤ 0 for all x ∈ X,
so d(f(x), g(x)) = 0 for all x ∈ X, so f(x) = g(x) for all x ∈ X.

• Symmetric: note

du(f, g) = sup{d(f(x), g(x)) : x ∈ X} = sup{d(g(x), f(x)) : x ∈ X} = du(g, f).

• Triangle inequality: note that

d(f(x), h(x)) ≤ d(f(x), g(x)) + d(g(x), h(x)) = du(f, g) + du(g, h)

for all x ∈ X, so it follows du(f, h) ≤ du(f, g) + du(g, h) by taking the supremum. ■

Here is why we like this metric.

Proposition 3.24. Fix a setX and a complete metric space (Y, d). ThenB(X,Y )given the uniform metric
is complete.

Proof. Fix a Cauchy sequence {fn}n∈N in B(X,Y ). Namely, for all ε > 0, there exists some N so that

n,m > N =⇒ d(fn(x), fm(x)) < ε

for all x ∈ X. In particular, fixing some particular x ∈ X, we see that {fn(x)}n∈N is a Cauchy sequence in Y ,
so the completeness of Y promises some limit f(x).

It remains to check that the data of f assembles to a function f ∈ B(X,Y ). Well, any (fixed) ε > 0
promises anN so that n,m > N forces d(fn(x), fm(x)) < ε for all x ∈ X. Now, fixing some x ∈ X, any δ > 0
has some N ′ large enough so that m > N ′ has d(fm(x), f(x)) < δ, meaning that n,m > max{N,N ′} gives

d(fn(x), f(x)) ≤ d(fn(x), fm(x)) + d(fm(x), f(x)) < ε+ δ

for all δ > 0. Thus, fixing some n > N , we see d(fn(x), f(x)) ≤ ε for all x ∈ X.
To finish, we note fn ∈ B(X,Y ) is bounded, so there is an open ball B(a, r) containing im fn. Thus, for

all x ∈ X,
d(a, f(x)) ≤ d(a, fn(x)) + d(fn(x), f(x)) < r + ε,

so im f ⊆ B(a, r + ε). ■

We close with the following result.
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Proposition 3.25. Fix a topological space (X, T ) and a metric space (Y, d). Let Bc(X,Y ) ⊆ B(X,Y )
denote the metric subspace of bounded continuous functions f : X → Y . Then Bc(X,Y ) is a closed
subspace of B(X,Y ). In particular, if (Y, d) is complete, then Bc(X,Y ) is also complete.

Proof. Note that the second claim follows from the first claim by Corollary 2.52; thus, we focus on the first
claim. For this, we use Lemma 2.50: fix a sequence {fn}n∈N of bounded continuous functions such that
fn → f as n→∞where f : X → Y is just some bounded function. We need to show that f is continuous.

Well, fix an open set U ⊆ Y so that we need to show f−1(U) ⊆ X is open. For this, we pick up any
element x ∈ f−1(U), and we find an open neighborhood Ux ⊆ f−1(U) containing x; this will finish because
it shows

f−1(U) ⊆
⋃
x∈U

Ux ⊆ f−1(U),

so f−1(U) is the arbitrary union of open sets.
We now proceed with the proof directly.

1. Because f(x) ∈ U , and U is open, there is some ε > 0 such that B(f(x), ε) ⊆ U .

2. Because {fn}n∈N converges to f , there is a sufficiently largeN so that n > N has d(fn(y), f(y)) < ε/2
for all y ∈ X. Fix some n > N .

3. Now, for all y ∈ f−1
n (B(f(x), ε/2)), we see

d(f(y), f(x)) ≤ d(f(y), fn(y)) + d(fn(y), f(x)) < ε/2 + ε/2 = ε,

so f(y) ∈ U . As such, we see that f−1
n (B(f(x), ε/2)) is open (because fn is continuous), it contains x,

and it is contained in f−1(U).

The above open neighborhood completes the proof of the first claim. ■

3.3 September 14
The march continues.

3.3.1 The Tietze Extension Theorem
Here is the main result for today.

Theorem 3.26 (Tietze extension). Fix a normal topological space (X, T ), and give some closed subset
A ⊆ X the relative topology from X. Given a continuous function f : A→ R, there exists a continuous
function f̃ : X → R such that f̃ |A = f . In fact, if im f ⊆ [a, b], then we may enforce im f̃ ⊆ [a, b] as well.

This property is quite special to R shared by a few other spaces.

Example 3.27. Take X := B(0, 1) ⊆ R2 given the relative topology, and let A = ∂X be the bound-
ary, which is the unit circle. Then the identity function idA : A → A does not extend continuously to a
function ĩdA : X → A. To see this rigorously, take a course in algebraic topology.

Example 3.28. Of course, any setY given the indiscrete topology will be such that a continuous function
f : A → Y can be extended to continuously to a function f̃ : X → Y because all functions to Y are
continuous for free.
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Remark 3.29. The condition of im f ⊆ [a, b] might as well be replaced by im f ⊆ [0, 1] by using the
homeomorphism R→ R by x 7→ (x− a)/(b− b) which will send [a, b] to [0, 1].

Here is a lemma which will help the proof of Theorem 3.26.

Lemma 3.30. Fix a normal topological space (X, T ), and give some closed subset A ⊆ X the relative
topology from X. Given a continuous function f : A → [0, r] (where r > 0), there exists a continuous
function g : X → [0, r/3] such that

0 ≤ f(a)− g(a) ≤ 2r/3

for each a ∈ A.

Proof. Set B := {x ∈ A : f(x) ≤ r/3} = f−1([0, r/3]) and C := {x ∈ A : f(x) ≥ 2r/3} = f−1([(2r/3, r]).
BothB,C ⊆ A andC are closed because they are the pre-image of closed subsets under f : A→ R. In fact,
by the relative topology, we can write B = B′ ∩ A where B′ ⊆ X is closed. However, B′ and A are both
closed in X, so B ⊆ X is closed. Similar holds for C.

Thus, so Urysohn’s lemma provides (Theorem 3.8) a continuous function g : X → [0, 1] such that g|B = 0
and g|C = 1. As such, we define g : X → [0, r/3] by

g(x) := (r/3) · g(x),

which is still continuous because the map x 7→ (r/3)x is a homeomorphism [0, 1]→ [0, r/3] by Example 2.88.
We can now see that g satisfies the needed properties. Fix some a ∈ A.

• If a ∈ B, then g(a) = 0 while f(a) ≤ r/3, so 0 ≤ f(a)− g(a) ≤ r/3.

• If a ∈ C, then g(a) = r/3 while f(a) ∈ [2r/3, r], so 0 ≤ f(a)− g(a) ≤ 2r/3.

• Lastly, a /∈ B and a /∈ C means that r/3 < f(a) < 2r/3 while 0 ≤ g(a) ≤ r/3, so it follows 0 ≤
f(a)− g(a) ≤ 2r/3 still.

The above checks finish. ■

We now show the following special case of Theorem 3.26.

Proposition 3.31. Fix a normal topological space (X, T ), and give some closed subsetA ⊆ X the relative
topology fromX. Given a continuous function f : A→ [0, 1], there exists a continuous function f̃ : X →
[0, 1] such that f̃ |A = f .

Proof. For brevity, define σ := 2/3. Taking r = 1 in Lemma 3.30, we get a function g1 : X → [0, 1/3] with

0 ≤ f(a)− g1(a) ≤ σ

for all a ∈ A, so define f̃1 := g1. Next applying Lemma 3.30 to (f − f̃1|A) : A → [0, σ] with r = σ, we get
promised a function g2 : X → [0, σ/3] with

0 ≤ f(a)− f̃1(a)− g2(a) ≤ σ2

for any a ∈ A, so define f̃2 := f̃1 + g2.
In general, suppose given a function f̃n : X → [0, 1] with

0 ≤ f(a)− f̃n(a) ≤ σn

for a ∈ A, we can use Lemma 3.30 to (f − f̃n|A) : A→ [0, σn] to get a function gn+1 : X → [0, σn/3] with

0 ≤ f(a)− f̃n(a)− gn+1(a) ≤ σn+1
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for a ∈ A, allowing us to then set f̃n+1 := f̃n + gn+1.
Applying the above process inductively, we get a function

f̃n =

n∑
k=1

gk

going to [0, 1] such that ∥gk∥∞ ≤ σk−1/3 and 0 ≤ f(a)− f̃n(a) ≤ (2/3)n for each a ∈ A and n ≥ 1. Notably,
using the uniform metric du, we see that any n ≥ m has

du(f̃n, f̃m) = sup
x∈X

(
n∑

k=m+1

gk(x)

)
≤

n∑
k=m+1

1

3
σk−1 ≤ σm

3

∞∑
k=0

σk =
σm

3
· 1

1− σ
=

(
2

3

)m
,

which gets arbitrarily small. Thus, {f̃n}n∈N is a Cauchy sequence: for any ε > 0, we can find N with n > N

having (2/3)n < ε, meaning n,m ≥ N will have du(f̃n, f̃m) < ε. Now, because [0, 1] ⊆ R is a closed subset
of a complete metric space and hence complete by Corollary 2.52, the sequence {f̃n}n∈N converges to a
continuous function f̃ : X → [0, 1] by Proposition 3.25.

It remains to check that f̃ |A = f . Well, any a ∈ A and n ∈ N have

|f(a)− f̃(a)| ≤ |f(a)− f̃n(a)|+ |f̃n(a)− f̃(a)| ≤
(
2

3

)n
+ |f̃n(a)− f(a)|.

Because f̃n → f as n → ∞ under the metric du, we see that |f̃n(a) − f(a)| → 0 as n → ∞. Additionally,
(2/3)n → 0 as n→∞, so the entire right-hand side goes to 0 as n→∞, meaning that |f(a)− f̃(a)| < ε for
all ε > 0. Thus, f(a) = f̃(a) for each a ∈ A. ■

3.4 September 16
We continue the proof from last class.

3.4.1 The Tietze Extension Theorem: Proof
And here is the proof of the general case of Theorem 3.26.

Theorem 3.26 (Tietze extension). Fix a normal topological space (X, T ), and give some closed subset
A ⊆ X the relative topology from X. Given a continuous function f : A→ R, there exists a continuous
function f̃ : X → R such that f̃ |A = f . In fact, if im f ⊆ [a, b], then we may enforce im f̃ ⊆ [a, b] as well.

Proof. Fix a continuous function f : A → R. Note that there is a homeomorphism φ : R ∼= (−1, 1), so we
name composite

A
f→ R

φ∼= (−1, 1) ⊆ [0, 1]

g and then extend it to a function g̃0 : X → [−1, 1] by Proposition 3.31. We would like to go back to (−1, 1)
and then back to R, but it is possible for−1, 1 ∈ im g0.

Isolating the problem, we setB := g̃−1
0 ({−1, 1}) and note thatA∩(B0∪B1) = ∅because g̃0(A) = g(A) ⊆

(−1, 1). Now, by normality of X, we get promised by Theorem 3.8 a continuous function δ : X → R such
that δ|B = 0 and δ|A = 1. Thus, we define

g̃(x) := δ(x)g̃0(x).

Notably, g̃|A = δ|A · g̃0|A = 1 · g = g. But now |g̃(x)| = 1 would force |g̃0(x)| = 1, but this implies δ(x) = 0 by
construction and so g̃(x) = 0; thus,±1 /∈ im g̃, so we can pull back g̃ through φ : R ∼= (−1, 1) to R. ■
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3.4.2 Existence of Completions, Again
We quickly provide another proof of the existence of completions. We begin with the following exam-
ple.

Example 3.32. Given any topological space (X, T ), the metric space (Bc(X,R), du) of bounded contin-
uous functions is complete by Proposition 3.25 because R is complete.

More generally, we will want to remember the following definition.

Definition 3.33 (Banach space). A normed vector space (V, ∥·∥) is a Banach space if and only if it is com-
plete.

As such, we pick up the following tool.

Lemma 3.34. Fix an isometry f : (X, d) → (Y, dY ) of metric spaces such that (Y, dY ) is complete. Then
f(X)equipped with the induced metric fromY is a complete metric space, and it is actually a completion
of (X, d) when equipped with the natural embedding ι : X → f(X) from f .

Proof. For brevity, define X := f(X) and set d to be the metric on X induced by (Y, dY ). In particular,
X ⊆ Y is a closed subset, and so (X, d) is complete by Corollary 2.52. Now, note that ι : (X, d) → (X, d) is
an isometry because, for any x, x′ ∈ X,

d(x, x′) = dY (f(x), f(x
′)) = dY (ι(x), ι(x

′)) = d(ι(x), ι(x′))

using our various restriction maps.
Lastly, we have to show that im ι ⊆ X is dense. Well, by Lemma 2.57, it suffices to note

im ι = f(X) = X,

which is what we wanted. ■

We are now ready to prove Theorem 1.69.

Theorem 1.69. Any metric space (X, d) has a completion.

Proof. Let our metric space be (X, d). For each x ∈ X, define fx(y) := d(x, y). To embed fx into Bc(X,R),
we would need fx to be bounded, but it need not be. To fix this, we choose a base-point x0 ∈ X, and define

hx := fx − fx0
.

In particular, anyy ∈ X will have |hx(y)| = |d(x, y)−d(x0, y)| ≤ d(x, x0), sohx is bounded, and it is continuous
as the sum of two continuous functions. More explicitly, for any ε > 0, take δ = ε so that d(x1, x2) < δ implies

|hx(x1)− hx(x2)| = |d(x, x1)− d(x, x2)| ≤ d(x1, x2) < δ = ε.

We now need to show that the map h• : (X, d)→ (Bc(X,R), du) is an isometry. Indeed,

du (hx1 , hx2) = sup
x∈X
{hx1(x)− hx2(x)} = sup

x∈X
{d(x1, x)− d(x2, x)}.

This is certainly upper-bounded by d(x1, x2) by the triangle inequality, and we do achieve d(x1, x2) at x = x2
because d(x1, x2)− d(x2, x2) = d(x1, x2). So indeed, du(hx1

, hx2
) = d(x1, x2).

Thus, we have provided an isometry h• : (X, d) → (Bc(X,R), du) from (X, d) to the complete metric
space (Bc(X,R), du) (see Example 3.32), so h•(X) is a completion for (X, d) by Lemma 3.34. ■

Remark 3.35. Despite the above construction, it is actually fairly non-obvious what functions really are
in h•(X).
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THEME 4

COMPACTNESS

That something so small could be so beautiful.

—Anthony Doerr, [Doe14]

4.1 September 16
We continue the lecture, into compactness.

4.1.1 Compactness
The following is perhaps the most important definition in point-set topology.

Definition 4.1 (Open cover). Fix a topological space (X, T ). An open cover ofX is a collection U ⊆ T of
open sets such that

X =
⋃
U∈U

U.

Definition 4.2 (Open subcover). Fix a topological space (X, T ). An (open) subcover U ′ of an open cover
U is an open cover U ′ of X such that U ′ ⊆ U .

And here is the relevant definition.

Definition 4.3 (Compact). Fix a topological space (X, T ). We say that (X, T ) is compact if and only if
every open cover of X has a finite subcover.

Example 4.4. The subset [0, 1] ⊆ R given the relative topology is compact.

In light of the previous example, it is helpful to extend our definition to subsets of a topological space.

Definition 4.5 (Compact). Fix a topological space (X, T ). A subset A ⊆ X is compact if and only if A is
compact when given the relative topology from X.

64



4.1. SEPTEMBER 16 202A: TOPOLOGY AND ANALYSIS

Lemma 4.6. Fix a topological space (X, T ). Then A is compact if and only if any U ⊆ T covering A has
a finite subcover covering A.

Proof. The point is to use Lemma 2.42. In one direction, supposeA is compact. Then a cover {Uα}α∈λ ⊆ T
of A provides the open cover by

Vα := A ∩ Uα
of A. Indeed, A ∩ Uα ⊆ A is open, and

⋃
α∈λ Vα =

⋃
α∈λ(A ∩ Uα) = A. Thus, compactness provides a finite

subset λ′ ⊆ λ such that {Vα}α∈λ′ still covers A, so

A =
⋃
α∈λ′

(A ∩ Uα) ⊆
⋃
α∈λ′

Uα,

meaning that the finite subcover {Uα}α∈λ′ ⊆ {Uα}α∈λ still covers A.
In the other direction, suppose that each open cover ofA from T has a finite subcover. Now, giveA some

open cover {Vα}α∈λ from the relative topology on A. Each open subset Vα can be written as Uα ∩ A where
Uα ⊆ X is open by Lemma 2.42, so we define

U := {Uα}α∈λ.

Notably,
⋃
α∈λ Uα contains

⋃
α∈λ Vα, which isA, soU coversA and hence has a finite subset λ′ ⊆ λ such that

{Uα}α∈λ′ covers A. But then
A =

⋃
α∈λ′

(A ∩ Uα) =
⋃
α∈λ′

Vα,

so {Vα}α∈λ′ provides a finite subcover of {Vα}α∈λ. ■

In light of the above proof, it will be helpful to extend our notion of an open cover.

Notation 4.7. Given a topological space (X, T ), we will say that some open sets U ⊆ T form an open
cover for a subset A ⊆ X if and only if

A ⊆
⋃
U∈U

U.

Remark 4.8. We will freely use Lemma 4.6 as a “definition” of compactness without reference.

Example 4.9. Given compact subsets A1, A2 ⊆ X of a topological space (X, T ), we see that A1 ∪ A2

is also compact. Indeed, given an open cover U of A1 ∪ A2, we see that U is an open cover for both
A1 and A2, so we can find our finite subcovers U1 ⊆ U and U2 ⊆ U by the compactness of A1 and A2,
respectively. Thus, U1 ∪U2 ⊆ U is a finite collection coveringA1 andA2 and therefore coveringA1 ∪A2.

Here is a quick fact about compactness.

Lemma 4.10. Fix a compact topological space (X, T ). Then any closed subset A ⊆ X is compact.

Proof. By Lemma 4.6, pick up an open cover U ofA, and we would like to find a finite subcover. Then we set

V := U ∪ {X \A}.

Notably, X \A is open in X because A is closed, so we see⋃
U∈V

U = (X \A) ∪
⋃
U∈U

U ⊇ (X \A) ∪A = X,

65



4.2. SEPTEMBER 19 202A: TOPOLOGY AND ANALYSIS

so V is an open cover for X. As such, we can find a finite subcover V ′ for X, and we set U ′ := V ∩ U .
We claim that U ′ is a finite subcover of U ; indeed, U ′ ⊆ V is finite, and U ′ ⊆ U is a subset. It remains to

check that U ′ covers A. Well, for any a ∈ A, we can find some U ′ ∈ V ′ containing a because V ′ covers X.
However, a /∈ X \A, so U ′ ̸= X \A, so actually U ′ ∈ U ′. Thus,

A ⊆
⋃
U∈U ′

U,

which is what we wanted. ■

Example 4.11. Give X = R the indiscrete topology. Then X has only two open sets, so any nonempty
subsetS ⊆ X can only be covered by {X}, which is its own finite subcover. For example, {0} is compact
in X, but it is not closed because R \ {0} is not open.

4.2 September 19

There are questions today.

4.2.1 Compact Hausdorff Spaces
Last class we saw in Example 4.11 that compact subsets of a topological space need not be compact. It turns
out that compact subsets of Hausdorff spaces are in fact closed. Let’s see this.

Lemma 4.12. Fix a Hausdorff topological space (X, T ), and letA ⊆ X be compact. Then, for any x /∈ A,
there are disjoint open sets U and V with A ⊆ U and x ∈ V .

Proof. For each y ∈ (X \A), the Hausdorff condition promises disjoint open sets Vy andUy such that y ∈ Uy
and x ∈ Vy. We would like to take the union of all the Uy and the intersection of all the Ux, but the arbitrary
intersection of open sets need not be open.

To fix this, we note that {Uy}y∈A are some open sets which cover A, so the compactness of A allows us
some finite subset Y ⊆ A such that {Uy}y∈Y covers A. As such, we set

U :=
⋃
y∈Y

Uy and V :=
⋂
y∈Y

Vy.

Here are our checks.

• Both U and V are open because these are a finite union and a finite intersection of open sets, respec-
tively.

• By construction of Y , we see that A ⊆ U .

• Note x ∈ Vy for all y ∈ Y ⊆ A, so x ∈ V as well.

• Lastly, we see that U and V are disjoint: for each z ∈ U , we can find some y ∈ Y such that z ∈ Uy, but
then z /∈ Vy by construction, so z /∈ V . ■

Corollary 4.13. Fix a Hausdorff topological space (X, T ), and let A ⊆ X be compact. Then A is closed.
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Proof. For each x /∈ A, Lemma 4.12 grants us an open subset Vx containing x which is disjoint from A. It
follows Vx ⊆ X \A, so we may say

(X \A) ⊆
⋃

y∈X\A

Vy ⊆
⋃

y∈X\A

(X \A) = X \A,

so X \ A =
⋃
y∈X\A Vy shows that X \ A is a union of open sets and therefore open. It follows that A is

closed. ■

Corollary 4.14. Fix a compact Hausdorff topological space (X, T ). Then all closed subsets A ⊆ X and
x /∈ A have disjoint open subsets U and V with A ⊆ U and x ∈ V .

Proof. Lemma 4.10 says that A is compact, so Lemma 4.12 finishes. ■

The above property is useful enough to deserve a definition.

Definition 4.15 (Regular). A topological space (X, T ) is regular if and only if each closed subset A ⊆ X
and x /∈ A have disjoint open subsets U and V with A ⊆ U and x ∈ V .

Example 4.16. Every compact Hausdorff space is regular by Corollary 4.14.

Example 4.17. Any normal, Hausdorff space is regular. For example, metric spaces are regular.

In fact, compact Hausdorff spaces are not just regular but also normal.

Proposition 4.18. Fix a compact Hausdorff space (X, T ). Then (X, T ) is normal.

Proof. Fix disjoint closed subsets A and B. Then A and B are compact by Lemma 4.10.
Now, for any y ∈ B, we see y /∈ A, so Lemma 4.12 grants us disjoint open subsets Uy and Vy such that

Uy contains A and Vy contains y. As before, we see {Vy}y∈B forms an open cover of B, so the compactness
of B promises a finite subset Y ⊆ B such that {Vy}y∈Y still covers B. Thus, we set

U :=
⋂
y∈Y

Uy and V :=
⋃
y∈Y

Vy.

Here are our checks again.

• Note U is open as a finite intersection of open sets. Similarly, V is open as a union of open sets.

• By construction A ⊆ Uy for each y, so A ⊆ U .

• By construction {Vy}y∈Y covers B, so B ⊆ V .

• Lastly, to see that U and V are disjoint, note that any z ∈ V has z ∈ Vy for some y ∈ Y , so z /∈ Uy, so
z /∈ U . ■

67



4.2. SEPTEMBER 19 202A: TOPOLOGY AND ANALYSIS

4.2.2 Compact Images
We continue our fact-collection for compact spaces.

Lemma 4.19. Fix a continuous map f : (X, TX) → (Y, TY ). If (X, TX) is compact, then im f ⊆ Y is also
compact.

Proof. For psychological reasons, we may assume that im f = Y , though we will not do this.
Suppose we have an open cover {Vα}α∈λ ⊆ TY for im f . Then we set

U :=
{
f−1(Vα)

}
α∈λ

In particular, the continuity of f promises that everyone is U is open. We claim U covers X: for any x ∈ X,
we see f(x) ∈ im f , so f(x) ∈ Vα for some α ∈ λ, so x ∈ f−1(Vα) ∈ U .

Thus, the compactness of X promises a finite subset λ′ ⊆ λ so that
{
f−1(Vα)

}
α∈λ′ is still an open cover

for X. Thus, we can see that the finite collection of open subsets

{Vα}α∈λ′ ⊆ {Vα}α∈λ

still covers im f . Indeed, for any y ∈ im f , find x ∈ X with f(x) = y, so place x ∈ f−1(Vα) for some α ∈ λ′,
so y ∈ Vα. ■

Corollary 4.20. Fix a continuous function f : R → R. Then, for any closed interval [a, b], f achieves its
maximum on [a, b].

Proof. Note that f([a, b]) is compact, and R is Hausdorff, so f([a, b]) is also closed. Further, f([a, b]) is
bounded because it is compact. Thus, f([a, b]) has all of its limit points and in particular contains its supre-
mum. ■

We take a moment to use this machinery to build an easier test for homeomorphisms; namely, we manifest
Remark 2.91.

Proposition 4.21. Fix a compact topological space (X, TX) and a Hausdorff topological space (Y, TY ).
Then any continuous bijection f : X → Y is a homeomorphism.

Proof. The bijectivity of f promises some inverse function g : Y → X, which we need to show is continuous.
Well, for an open subset U ⊆ X, we need to show that g−1(U) is open. But because g is the inverse of f , we
see

g−1(U) = {y ∈ Y : g(y) ∈ U} = {f(x) ∈ Y : g(f(x)) ∈ U} = f(U),

so we need to show that f(U) is open. Taking compliments, we set A := X \ U so that A is closed, and we
will show that f(A) is closed; this will finish because the bijectivity of f forces

f(U) = f(X \A) = f(X) \ f(A) = Y \ f(A)

to be open.
We are now ready to finish the proof. Because (X, TX) is compact, A being closed implies that A is

compact by Lemma 4.10. It follows by Lemma 4.19 that f(A) is compact, so because (Y, TY ) is Hausdorff,
we see Lemma 4.12 forces f(A) to be closed. This finishes. ■
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4.2.3 Compactness via Closed Sets
It will be helpful to be able to discuss compact sets in terms of closed sets.

Lemma 4.22. A set X is covered by a collection S ⊆ P(X) if and only if⋂
S∈S

(X \ S) = ∅.

Proof. Note ⋂
S∈S

(X \ S) = X

∖ ⋃
S∈S

X,

which is empty if and only if
⋃
S∈S X = X. ■

Corollary 4.23. Fix a topological space (X, T ). Then (X, T ) is compact if and only if any collection of
closed subsets V with

⋂
V ∈V V = ∅ has some finite subcollection V ′ ⊆ V with

⋂
V ∈V′ V = ∅.

Proof. If X is compact, then note any collection of closed subsets V with
⋂
V ∈V V = ∅ has

X = X

∖ ⋂
V ∈V

V =
⋃
V ∈V

(X \ V ),

so U = {(X \V ) : V ∈ V} is an open cover. Thus, we can find a finite subset V ′ ⊆ V such that U ′ = {(X \V ) :
V ∈ V ′} covers X, so it follows that

⋂
V ∈V′ V = ∅ by taking complements, as above.

Conversely, we show thatX is compact. Well, pick up an open cover U ofX. Then Lemma 4.22 says that
V = {(X \ V ) : V ∈ V} has

⋂
V ∈V V = ∅. By hypothesis onX, we get some finite subcollection U ′ ⊆ U such

that
⋂
U∈U ′(X \ U) = ∅, so Lemma 4.22 says U ′ covers X. ■

It will be useful to have some language to describe this.

Definition 4.24 (Finite intersection property). Fix a set X. A collection S ⊆ P(X) has the finite inter-
section property if and only if any nonempty finite subcollection S ′ ⊆ S has⋂

S∈S′

S ̸= ∅.

In particular, we get the following.

Proposition 4.25. Fix a topological space (X, T ). Then (X, T ) is compact if and only if any collection V
of closed subsets with the finite intersection property has⋂

V ∈V
V ̸= ∅.

Proof. Applying contraposition to the conclusion, we are saying that any collection V with
⋂
V ∈V V = ∅

has some finite subcollection V ′ ⊆ V with
⋂
V ∈V′ V = ∅. This is equivalent to (X, T ) being compact by

Corollary 4.23. ■

Remark 4.26. It is somewhat important to notice that the proof of Proposition 4.25 does not require
the Axiom of Choice to prove. It is purely moving around definitions cleverly.
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4.3 September 21
Today we begin talking about Tychonoff’s theorem.

4.3.1 Comments on Choice
Here is our main result for today.

Theorem 4.27 (Tychonoff). Fix a collection {(Xα, Tα)}α∈λ of compact topological spaces, and give the
product space X :=

∏
α∈λXα the product topology. Then X is compact.

Notably, we are not requiring the spaces Xα to be Hausdorff.

Warning 4.28. The proof of Theorem 4.27 will be the hardest part of this course.

Remark 4.29. The reason for Warning 4.28 is that we need to at least know that X is nonempty to say
anything aboutX at all, and an arbitrary product being nonempty is equivalent to the Axiom of Choice.
In fact, Theorem 4.27 (notably not assuming that the Xα are Hausdorff!) actually implies the Axiom of
Choice, as shown by John Kelly.

To prepare ourselves, we will point out a few of the main ingredients we will use. We will use the Axiom of
Choice, which we will go ahead and state now.

Axiom 4.30 (Choice). Given a collection of nonempty sets {Sα}α∈λ, the product
∏
α∈λ Sα is nonempty.

We will also use Zorn’s lemma. To state Zorn’s lemma, we begin by defining a partially ordered set and its
chains.

Definition 4.31 (Poset). A partially ordered set or poset is a set P equipped with a reflexive, antisym-
metric, and transitive relation≤ ⊆ P × P .

Example 4.32. Given a set X, the power set P(X) is a partially ordered set under inclusion⊆. Here are
the checks.

• Reflexive: for A ∈ P(X), we see A ⊆ A.

• Antisymmetric: for A,B ∈ P(X), we see A ⊆ B and B ⊆ A implies A = B.

• Transitive: for A,B,C ∈ P(X), we see A ⊆ B and B ⊆ C implies A ⊆ C.

Replacing all the⊆s with⊇s shows that P(X) is also a partially ordered set under containment⊇.

Posets have very natural subposets.

Definition 4.33 (Subposet). Given a partially ordered (P,≤), a subposet is a subsetS ⊆ P equipped with
the restricted partial order≤ ∩ (S × S).

All the checks for (S,≤ ∩ (S × S)) being a partially ordered set are inherited directly from P , so the proof
amounts to just writing them down.

Example 4.34. Given a topological space (X, T ), we see that T is a subposet of P(X), where P(X) can
be given the partial order⊆ or⊇ from Example 4.32.

And here are our chains.
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Definition 4.35 (Chain). Fix a partially ordered set (P,≤). Then a chain is a subset C ⊆ P such that the
subposet (C,≤) is totally ordered.

Zorn’s lemma is interested in special kinds of partially ordered sets.

Definition 4.36 (Inductively ordered). A partially ordered set (P,≤) is inductively ordered if and only if
every chain C ⊆ P has an upper bound in P . In other words, there is an element p ∈ P such that c ≤ p
for all c ∈ C.

And here is Zorn’s lemma.

Axiom 4.37 (Zorn’s lemma). An inductively ordered partially ordered set (P,≤) has a maximal element.

Remark 4.38. It turns out that the Axiom of Choice (in the form of Zorn’s lemma) is also equivalent to
every vector space having a basis. (In one direction, given a vector space V , one can build a basis by
taking a maximal linearly independent set of vectors in V .) One can get a feeling for the other direction
because the Q-vector space R doesn’t have any “constructible” basis.

Remark 4.39. The fact that every (commutative) ring has a maximal ideal containing any given proper
ideal is also equivalent to the Axiom of Choice (in the form of Zorn’s lemma). Here are two examples.

• Given any set S, finding a maximal ideal of the ringR := FS2 (whose operations are pointwise from
F2) which contains the ideal F⊕S

2 requires knowing that R is nonempty.

• The ring R := C([0,∞)) of continuous R-valued functions has the ideal

I :=
{
f ∈ R : lim

x→∞
f(x) = 0

}
doesn’t have any constructible maximal ideals containing it.

For our next example, we define a filter.

Definition 4.40 (Filter). Fix a set X. A filter F on X is a collection of nonempty subsets of X satisfying
the following conditions.

(a) F is closed under finite intersection.

(b) If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .

Example 4.41. Given a topological space (X, T ) and a subset A ⊆ X, the subposet T of (P(X),⊆) has
a filter F of all those open subsets containing A.

Example 4.42. Given a set X, the collection of subsets containing a given point p ∈ X is a filter and in
fact a “maximal” filter.

The point is that Zorn’s lemma automatically promises us maximal filters, or “ultrafilters.”

Example 4.43. Fix X := [0,∞). Then the collection F of the subsets of A ⊆ X which contain [n,∞) for
some integer n is a filter. However, there is no obvious maximal filter.
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4.4 September 23
We continue discussing Tychonoff’s theorem.

4.4.1 Tychonoff’s Theorem
Here is our statement.

Theorem 4.27 (Tychonoff). Fix a collection {(Xα, Tα)}α∈λ of compact topological spaces, and give the
product space X :=

∏
α∈λXα the product topology. Then X is compact.

Proof. We will use Proposition 4.25. For each α, let πα : X → Xα denote the canonical projection. Let V be
a collection of closed subsets ofX satisfying the finite intersection property, and we will show that

⋂
V ∈V V

is nonempty. We proceed in steps.

1. The beginning of this proof does not use topology. Let ΩV be the collection of families of subsetsF of
X which contain V and have the finite intersection property. We claim that WV is inductively ordered
under⊇.
Well, let Ω ⊆ ΩV be some chain, and we define the collection

U :=
⋃
F∈Ω

F ,

which we claim is the required upper bound for Ω. Of course, each F contains V , and U ⊇ F for each
F , so U both contains V and is an upper bound for Ω. It remains to show U ∈ ΩV , for which we need to
show that U has the finite intersection property.
For this, find some finite subcollection of nonempty subsets {Ak}nk=1 ⊆ U which we would like to show
have nonempty intersection. Now, for each k, there is some Fk ∈ Ω containing Ak, by construction of
U as the union over Ω. Because the number of subsets is finite, and because Ω is totally ordered, we
may find the largest of the Fk, which we call F .
Now, F ∈ Ω ⊆ ΩV must have the finite intersection property, so {Ak}nk=1 ⊆ F forces

n⋂
k=1

Ak ̸= ∅,

which is what we wanted. This completes the proof.

2. From the previous step, Zorn’s lemma promises a maximal family M. We claim that M is closed
under taking finite intersections. Indeed, defineM′ as the set of all finite intersections ofM, and we
will show thatM′ =M.
Well, certainlyM ⊆ M′ because intersections of exactly one set F ∈ M will just recover F ∈ M′.
Thus, if we can showM′ ∈ ΩV , the desired equalityM′ =Mwill follow by maximality.
Certainly, we of course haveM ⊇ V , soM′ ⊇ V as well. So to showM′ ∈ ΩV , it remains to show
the finite intersection property. Well, let {Ak}nk=1 ⊆ M′ be some finite subcollection of nonempty
subsets, and we show their intersection is nonempty. By definition ofM′, each k lets us write

Ak =

nk⋂
ℓ=1

Bk,ℓ

for some subsets Bk,ℓ ∈ M; because Ak ∈ M′ is nonempty, we see that Bk,ℓ ∈ M is nonempty, so
the finite intersection property onM tells us that

n⋂
k=1

Ak =

n⋂
k=1

nk⋂
ℓ=1

Bk,ℓ

is nonempty, which is what we wanted.
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3. We claim that if a subset B ⊆ X has B ∩ A ̸= ∅ for each A ∈ M, then in fact B ∈ M. Indeed, define
M′′ :=M∪ {B}, and we showM′′ =M.
CertainlyM ⊆M′′, so it is enough by maximality ofM to showM′′ ∈ ΩV . Certainly V ⊆ M ⊆ M′′,
so it remains to show thatM′′ satisfies the finite intersection property.
For this, pick up some finite subcollection of nonempty subsets {Ak}nk=1 ⊆ M′′, and we show their
intersection is nonempty. If none of these subsets are B, then in fact {Ak}nk=1 ⊆ M, so the finite
intersection property forM forces

n⋂
k=1

Ak ̸= ∅.

Otherwise, say B = A1 without loss of generality. Then we may assume B ̸= Ak for each k > 1, so
Ak ∈M for each k > 1, so we note

n⋂
k=1

Ak = B ∩
n⋂
k=2

Ak.

However,M is closed under finite intersection, so in fact
⋂n
k=2Ak ∈M, and by the finite intersection

property, we have that
⋂n
k=2Ak is nonempty. Thus, by hypothesis on B, we see

B ∩
n⋂
k=2

Ak ̸= ∅,

which is what we wanted.

4. We now begin touching our product. For given α ∈ λ and F ∈ ΩV , we claim that

πα(F) := {πα(A) : A ∈ F}

satisfies the finite intersection property. Fix a finite subcollection of nonempty subsets {πα(Ak)}nk=1

of πα(F), and we will show its intersection is nonempty. Then we must have Ak being nonempty for
each k, so the finite intersection property on F forces

n⋂
k=1

Ak ̸= ∅.

Finding some a in this intersection, we see πα(a) ∈ πα(Ak) for each k, so πα(a) belongs in

n⋂
k=1

πα(Ak),

thus making this intersection nonempty.

5. And now the topology begins. For given α, note that

Mα := {πα(A) : A ∈M}

has the finite intersection property by the previous step. Namely, any finite subcollection of nonempty
subsets {παAk}nk=1 has a nonempty intersection, so writing

∅ ̸=
n⋂
k=1

πα(Ak) ⊆
n⋂
k=1

πα(Ak)

gives what we want. However, Xα is compact (!), so Proposition 4.25 tells us that⋂
A∈Mα

A ̸= ∅.
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6. Directly invoking the Axiom of Choice, we may find some xα ∈
⋂
A∈Mα

A for each α. Set x := (xα)α∈λ
to be the corresponding element of X.

We claim that each nonempty A ∈ M has x ∈ A. By Lemma 2.56, it suffices to show that every open
subset U containing x has nonempty intersection with A. Because each open subset U containing x
has a(n open) basis set B ⊆ U containing x, it suffices to check B ∩ A ̸= ∅ for basis elements, and
B ∩A ⊆ U ∩A will give the result.

There are three steps. Observe that we must invoke the definition of the product topology onX to talk
topologically about X, so we do so here.

(a) We begin by checking this on the sub-base. For each α ∈ λ, fix some sub-base element π−1
α (Uα)

(where Uα ⊆ Xα is open) containing x, and we claim

π−1
α (Uα) ∩A

?

̸= ∅.

Well, x ∈ π−1
α (Uα) requires xα ∈ Uα, but A ∈ M forces xα ∈ πα(A). Thus, Uα ∩ πα(A) ̸= ∅ by

Lemma 2.56, so there is some a ∈ A with πα(a) ∈ Uα, so π−1
α (Uα) ∩A is in fact nonempty.

(b) We show that each basis set containing x lives in M. Part (a) above added to item 3 directly
shows that every sub-base open set containing x lives inM. Thus, item 2 tells us that any finite
intersection of sub-basic sets containing x live inM as well, but these are exactly the basic sets
containing x. (Namely, any basic set is the intersection of sub-basic sets, and x living in the basic
set forces x to still live in those sub-basic sets.)

(c) It follows from the finite intersection property forM that any basic setB containing x hasB ∈M
and therefore A ∩B ̸= ∅ because A is nonempty.

The above steps finish this part.

7. We finish the proof. Any V ∈ V is closed and has V ∈ M. By the above point, we see x ∈ V , so x ∈ V
by Example 2.55, so we have exhibited ⋂

V ∈V
V ̸= ∅.

The above steps have showed that
⋂
V ∈V V ̸= ∅ from V having the finite intersection property, so we con-

clude that X is compact by Proposition 4.25. ■

4.5 September 26

We begin class by finishing the proof of Tychonoff’s theorem (Theorem 4.27). I have gone ahead and just
edited Friday’s lecture for continuity.

4.5.1 Remarks on Tychonoff’s Theorem

Here are some remarks.

Remark 4.44. Intuitively, the maximal elementM is constructed in order to become some filter focused
around the single point x. Similar to maximal ideals corresponding to points, adding in all the “maxi-
mality” constraints forM hones in our focus to the single constructed point x.
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Remark 4.45. Here is an application of Theorem 4.27. One can show that any normed vector space
(V, ∥·∥)has “lots” of continuous functionals by extending those found on a finite-dimensional subspace;
letV ′ be the complete normed vector space of continuous linear functionals. (The norm of some v′ ∈ V ′

is its Lipschitz constant, using Lemma 2.69.) Fixing the unit ball B of V ′, one can give V ′ the weakest
topology making all the linear functionals “from V ” continuous (this is the weak-∗ topology), which one
can show is both Hausdorff and compact (!). This is the Banach–Alaoglu theorem, and it follows from
Theorem 4.27 by showing the space we want is a closed subspace of the compact space∏

v∈V
[−∥v∥ , ∥v∥].

Remark 4.46 (β-compactification). Let A := C([0,∞)) be the space of bounded continuous function
[0,∞) → R, which we can see directly is an R-algebra by taking r to the constant function r. Let A′ be
the set of continuous functions A → R. Notably, any x ∈ R gives a continuous ring homomorphism
A → R by f 7→ f(x), so we let Y be the set of all homomorphisms A → R. Again, A′ is compact using
the weak-∗ topology, and so Y as a closed subset ofA′ can be given a compact topology. Then one can
show that A is homeomorphic to C(Y ).

4.5.2 Tychonoff’s Theorem and Choice
We now show that Tychonoff’s theorem implies the Axiom of Choice.

Theorem 4.47 (Kelley). Tychonoff’s theorem implies the Axiom of Choice.

Proof. Assume Theorem 4.27 is true. Let {Xα}α∈λ be a collection of nonempty sets. We want to show that

X :=
∏
α∈λ

Xα

is nonempty.
The trick is to enlarge the Xα to be able to give them a suitable topology. Choose some (set) ω which

does not live in
⋃
αXα; for example, setting ω to be equal to this set will do (using the Axiom of Foundation).

Then we set
Yα := Xα ∪ {ω},

which we give the topology Tα := {Yα,∅, Xα, {ω}}. We quickly check that this is a topology.

• Note ∅ and Yα are open.

• Arbitrary union: let U ⊆ Tα be a collection. Note that U is necessarily finite, so it suffices by induction
to show that U ∪ U ′ ∈ Tα for any U,U ′ ∈ Tα. We have the following cases.

– If U = ∅ or U ′ = ∅, then we get U ∪ U ′ ∈ {U,U ′} ⊆ Tα.
– If U = Yα or U ′ = Yα, then U ∪ U ′ = Yα ∈ Tα.
– Note U = U ′ gives U ∪ U ′ = U ∈ Tα.
– We have left to deal with {U,U ′} ⊆ {Xα, {ω}}where U and U ′ are distinct, which means we just

have to check Tα ∪ {ω} = Yα is open.

• Finite intersection: note thatU ∈ Tα implies Yα \U ∈ Tα because Yα \ {ω} = Xα and Yα \∅ = Yα, and
the other checks follow. Thus, we note any finite collection U ⊆ Tα has

Yα

∖ ⋂
U∈U

U =
⋃
α∈λ

(Yα \ U)

is a union of open sets and hence open. It follows that our intersection also lives in Tα.
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Additionally, because Tα has only finitely many sets, the space (Yα, Tα) is compact: any subcollection of Tα
is finite, so all open covers of Yα are automatically finite. It follows that the product

Y :=
∏
α∈λ

Yα

is compact by applying Theorem 4.27 (!).
We will now extract out our element ofX using compactness of Y via Proposition 4.25. Let πα : Y → Yα

be the canonical projection. Note that Yα \Xα = {ω} is open in Yα, soXα ⊆ Yα is closed, so Vα := π−1
α (Xα)

is a closed subset of Y by the continuity of πα (using Remark 2.49).
We now claim that the closed sets {Vα}α∈λ satisfy the finite intersection property: given a finite subcol-

lection {Vαi}ni=1, one may finitely (!) choose a point xαi ∈ Xαi . So we define

yα :=

{
xαi

α ∈ {α1, . . . , αn},
ω α /∈ {α1, . . . , αn},

so the point (yα)α∈λ ∈ Y has παi
(y) ∈ Xαi

for each αi, so yαi
∈ π−1

αi
(Xα) = Vα, so

y ∈
n⋂
i=1

Vαi
.

So we have verified the finite intersection property.
It follows from Proposition 4.25 that we can find

y ∈
⋂
α∈λ

Vα.

However, this implies that each α ∈ λ has y ∈ Vα and so πα(y) ∈ Xα. It follows that

y ∈
∏
α∈λ

Xα,

which finishes the proof. ■

Remark 4.48. The topology on Yα need not be Hausdorff, so we needed Theorem 4.27 to allow non-
Hausdorff spaces.

4.6 September 28
Today we discuss compactness for metric spaces.

4.6.1 Totally Bounded Spaces
Here is a quick lemma.

Lemma 4.49. Fix a compact metric space (X, d). For any ε > 0, there are finitely many points {xi}ni=1

such that

X =

n⋃
i=1

B(xi, ε).
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Proof. Note that of course
X =

⋃
x∈X
{x} ⊆

⋃
x∈X

B(x, ε) = X,

so {B(x, ε)}x∈X is an open cover forX (see Example 2.6). The result follows by extracting a finite subcover.
■

This is a pretty nice finiteness property for a metric space to have, so we give it a name.

Definition 4.50 (Totally bounded). Fix a metric space (X, d). A subset A ⊆ X is totally bounded if and
only if any ε > 0 has a finite set {xi}ni=1 ⊆ A for which

A ⊆
n⋃
i=1

B(xi, ε).

If X is totally bounded, we say that (X, d) is totally bounded.

Example 4.51. Any compact metric space is totally bounded by Lemma 4.49.

It’s going to turn out that totally bounded is pretty close to compactness. Here is a quick sanity check.

Lemma 4.52. A totally bounded metric space (X, d), and A ⊆ X, then A with the induced metric is
totally bounded.

Proof. For any ε > 0, we see that there is a finite set S ⊆ X for which

X =

n⋃
x∈S

B(x, ε)

because (X, d) is totally bounded. Now, let T ⊆ S be the subset for which B(x, ε) ∩ A ̸= ∅ for each x ∈ S,
and we then find some yx ∈ B(x, ε) ∩A for each x ∈ T . We now claim that

A ⊆
m⋃
x∈T

B(yx, ε),

which will finish the proof. Indeed, if a ∈ A, then a ∈ X, so we can find some x0 ∈ S with a ∈ B(x0, ε/2). It
follows that

d(a, yx0) ≤ d(a, x0) + d(x0, yx0) <
ε

2
+
ε

2
= ε,

so we get
a ∈ B(yx0 , ε) ⊆

⋃
x∈T

B(yx, ε),

which is what we wanted. ■

Lemma 4.53. Fix a metric space (X, d) and a subset A ⊆ X which is totally bounded. Then A is also
totally bounded.

Proof. Fix any ε > 0. Because A is totally bounded, we may find {ai}ni=1 ⊆ A for which

A ⊆
n⋃
i=1

B(ai, ε/2).
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We now claim that

A
?
⊆

n⋃
i=1

B(ai, ε),

which will finish the proof. Indeed, if x ∈ A, then Lemma 2.56 tells us that B(x, ε/2) ∩ A is nonempty, so
place a ∈ A ∩B(x, ε/2). By hypothesis on the ai, there exists some ai such that a ∈ B(ai, ε/2) as well, so

d(x, ai) ≤ d(x, a) + d(a, ai) <
ε

2
+
ε

2
= ε,

so

x ∈ B(ai, ε) ⊆
n⋃
i=1

B(ai, ε).

The claim follows. ■

4.6.2 Nets
It will be beneficial to us to be able to talk about nets for convergence instead of just sequences.

Definition 4.54 (Directed set). A partially ordered set Λ is a directed set if and only if any a, b ∈ Λ have
some c ∈ Λ for which c ≥ a, b.

Example 4.55. Any totally ordered set is a directed set. In particular, any a, b ∈ Λ will have a ≥ b or
b ≥ a, so we just set c to be the larger of the two.

Definition 4.56 (Net). Fix a topological space (X, T ). Given a directed set Λ, a net is a Λ-indexed se-
quence {xα}α∈Λ in X.

Definition 4.57 (Cluster point). Fix a topological space (X, T ) and a net {xα}α∈Λ. Thenx ∈ X is a cluster
point if and only if, for any open subsetU containingxandα ∈ Λ, there is someα′ > α for whichxα′ ∈ U .

Remark 4.58. Fix a metric space (X, d). Then a cluster point x of a Cauchy sequence {xn}n∈N in X is
in fact a limit point. Indeed, for any ε > 0, find some N1 for which m,n ≥ N1 has d(xm, xn) < ε/2.
Additionally, being a cluster point means there is N2 > N1 with d(x, xN2

) < ε/2. Thus, setting N :=
max{N1, N2}, any n > max{N1, N2} has

d(xn, x) ≤ d(xn, xN2
) + d(xN2

, x) <
ε

2
+
ε

2
= ε.

Here is the application to metric spaces.

Proposition 4.59. Fix a compact topological space (X, T ). Then any net {xα}α∈Λ has a cluster point.

Proof. Define
Aα := {xβ : β > α}.

Observe β ≥ α implies Aβ ⊆ Aα, so Aβ ⊆ Aα, so Aβ ⊆ Aα.
Additionally, we note that any finite subset of theAα have a nonempty intersection. Indeed, for any finite

S ⊆ Λ, inductively applying the fact that Λ is a directed set promises us some ω ∈ Λ with ω ≥ α for each
α ∈ S. It follows that xω ∈ Aα for each α ∈ S, so ⋂

n∈S
An,
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contains xω and hence is not empty.
Now, because Aα ⊆ Aα, we see that the Aα also have the finite intersection property: for any finite

S ⊆ Λ, see
∅ ̸=

⋂
α∈S

Aα ⊆
⋂
α∈S

Aα,

But now the Aα are closed, so the compactness of X (!) tells us that there is an element

x ∈
⋂
α∈Λ

Aα

by Proposition 4.25.
It remains to check that x is a cluster point. Indeed, for any open set U containing x, we see that x ∈ Aα

and so U ∩Aα ̸= ∅ for each α by Lemma 2.56. As such, for any α ∈ Λ, we are being promised U ∩Aα ̸= ∅,
so there is xβ with β ≥ α with xβ ∈ U . This finishes. ■

Corollary 4.60. Any compact metric space (X, d) is complete.

Proof. Fix a Cauchy sequence {xn}n∈N ofX. BecauseX is compact as a topological space, Proposition 4.59
promises us some cluster point x ∈ X. But then x is our limit point by Remark 4.58. ■

4.6.3 A “Metric” Completeness
Here is our capstone result: a converse for Lemma 4.49 combined with Corollary 4.60.

Theorem 4.61. Fix a metric space (X, d). If X is complete and totally bounded, then X is compact.

Proof. Suppose thatX is not compact and totally bounded. We show thatX is not complete. BecauseX is
not compact, we can find an open cover U of X with no finite subcover.

Notice that, for any fixed ε > 0, being totally bounded means we can find some finite S ⊆ X for whichX
is covered by the {B(x, ε)}x∈S . If it were the case that each x ∈ S has B(x, ε) covered by some finite cover
{Ux,i}nx

i=1 ∈ U , then we could write

X ⊆
⋃
x∈S

B(x, ε) ⊆
⋃
x∈S

(
nx⋃
i=1

Ux,i

)
,

giving our finite subcover of U . However, this violates the fact that U has no finite subcover, so there must
be some x ∈ S not covered by any finite subset of U .

We can run the above argument starting with ε = 1/2 and find our x1. Then we replaceX withB(x1, 1/2)
whereB(x1, 1/2) has no finite subcover by U , so running the argument with ε = 1/22 on the totally bounded
space B(x1, 1/2) grants us x2 ∈ B(x1, 1/2) such that B(x2, 1/2

2) still has no finite subcover by U . Going
again, we run the argument with ε = 1/23 on the totally bounded space B(x2, 1/2

2), so we get a totally
bounded ball B(x3, 1/2

3) with no finite subcover by U .
We can continue this process inductively, which gives a sequence {xn}n∈N such that each n ∈ N has

B(xn, 1/2
n) with no finite cover by U and

d(xn, xn+1) ≤ 1/2n.

A standard argument shows that {xn}n∈N is a Cauchy sequence.1 To finish the proof, we claim that it has no
limit point.

1 For any m ≥ n, note that d(xm, xn) ≤ ∑m−1
k=n d(xk+1, xk) ≤ ∑m−1

k=n 1/2k <
∑∞

k=n 1/2k = 1/2n−1. Namely, we see that
m,n → ∞ makes d(xm, xn) → 0.
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Indeed, suppose for the sake of contradiction that xn → x as n→∞. Then we find someU ∈ U contain-
ing x, and by definition of a set being open, we can find some open ballB(x, ε) contained in U . We now find
some n large enough so that 1/2n < ε/2 and d(xn, x) < ε/2 so that any y ∈ B(xn, 1/2

n) has

d(x, y) ≤ d(x, xn) + d(xn, y) <
ε

2
+
ε

2
= ε,

so y ∈ B(x, ε). It follows B(xn, 1/2
n) ⊆ B(x, ε) ⊆ U , which is a contradiction to the construction of

B(xn, 1/2
n). This completes the proof. ■

Corollary 4.62. Fix a complete metric space (X, d). Then a subset A ⊆ X is compact if and only if A is
closed and totally bounded.

Proof. In the forward direction, if A is compact, then A is totally bounded by Lemma 4.49, and A is closed
by Corollary 4.13 because (X, d) is a metric space and thus Hausdorff. In the reverse direction, ifA is closed
and totally bounded, then A is complete by Corollary 2.52 and therefore compact by Theorem 4.61. ■

4.7 September 30

There are no questions.

4.7.1 Totally Bounded for Function Spaces
We continue our discussion of compactness in metric spaces. Fix a topological space (X, T ) and a metric
space (M,d) so that we can give the space of bounded continuous functionsBc(X,M) the uniform metric du
by Proposition 3.25. We would like to understand the compact subset of Bc(X,M), so Corollary 4.62 tells
us that we are really interested in totally bounded subsets, and we’ll take the closure afterward to get our
compact sets.

Here are a few lemmas.

Lemma 4.63. Fix a topological space (X, T ) and a metric space (M,d) so that we can give the space of
bounded continuous functions Bc(X,M) the uniform metric du. Fixing a totally bounded subset F ⊆
Bc(X,M), the set

{s(x) : s ∈ F}

totally bounded for any fixed x ∈ X.

Proof. For any ε > 0has a finite set {f1, . . . , fn} ⊆ F so thatF is covered by theB(si, ε/2). This is equivalent
to saying that any f ∈ F has some fi with

d(f(x), fi(x)) ≤ ε/2

for all x ∈ X, so

{f(x) : s ∈ F} ⊆
n⋃
i=1

B(fi(x), ε),

so the claim follows. ■

Lemma 4.63 motivates the following definition.
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Definition 4.64 (Pointwise totally bounded). Fix topological spaces (X, TX) and a metric space (M,d),
and let F be a family of continuous functions f : X → M . Then F is pointwise totally bounded if and
only if any x ∈ F makes the set

{f(x) : f ∈ F}

totally bounded.

Example 4.65. By Lemma 4.66, any totally bounded subset of Bc(X,M) is pointwise totally bounded.

Lemma 4.66. Fix a topological space (X, T ) and a metric space (M,d) so that we can give the space of
bounded continuous functions Bc(X,M) the uniform metric du. Fixing a totally bounded subset F ⊆
Bc(X,M) and a point x ∈ X, any ε > 0 has some open subset U ⊆ X containing x such that

d(f(x), f(y)) < ε

for any y ∈ X and f ∈ F .

Proof. Fix any ε > 0 and use our totally boundedness to extract {f1, . . . , fn} ⊆ F such that the B(fi, ε/3)
cover F . Now, for any f ∈ F , find some fi with d(fi, f) < ε/3, we see that any y ∈ F can write

d(f(x), f(y)) ≤ d(f(x), fi(x)) + d(fi(x), fi(y)) + d(fi(y), f(y)) ≤ 2ε/3 + d(fi(x), fi(y)).

Now, by the continuity of fi, we see that there is an open subset Ui containing x such that y ∈ Uj implies
d(fi(x), fi(y)) < ε/3, so d(f(x), f(y)) < ε follows.

We now let f vary, which allows the Ui to vary. Defining

U :=

n⋂
i=1

Ui,

we see U is an open subset of X containing x, and each y ∈ U has d(f(x), f(y)) < ε for any (!) f ∈ F . ■

Lemma 4.66 motivates the following definition.

Definition 4.67 (Equicontinuous). Fix topological spaces (X, TX) and a metric space (M,d), and let F
be a family of continuous functions f : X → M . We say that the family F is equicontinuous at some
x ∈ X if and only if any ε > 0 has some open subset U ⊆ X containing x such that y ∈ U has

d(f(y), f(x)) < ε

for all f ∈ F . The entire family F is equicontinuous if any only if it is equicontinuous at all x ∈ X.

Example 4.68. By Lemma 4.66, any totally bounded subset of Bc(X,M) is equicontinuous.

4.7.2 Arzelá–Ascoli’s Theorem
We might hope for a converse of our given lemmas. Here is the result.

Theorem 4.69 (Arzelá–Ascoli). Fix a compact topological space (X, T ) and a metric space (M,d) so
that we can give the space of bounded continuous functionsBc(X,M) the uniform metric du. Then any
equicontinuous and pointwise totally bounded family F ⊆ Bc(X,M) is totally bounded.
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Proof. Fix some ε > 0 so that we want to cover F with finitely balls of radius ε > 0.
The point is to use compactness on the equicontinuous statement. Indeed, for any x ∈ X, we are

promised an open subset Ux ⊆ X such that any y ∈ Ux and f ∈ F has d(f(x), f(y)) < ε/4. However,
this means

X ⊆
⋃
x∈X

Ux

gives us an open cover of X, so compactness tells us that there is some finite sequence of points {xi}ni=1

such that the Ui := Uxi
cover X.

Now, fixing any particular i, we use the pointwise totally bounded condition to note

{f(xi) : f ∈ F}

is totally bounded, so we get a finite subset Si ⊆ F such that

{f(xi) : f ∈ F} ⊆
⋃
g∈Si

B(g(xi), ε/4).

We now define S as the union of all the Si, which is finite as the finite union of finite sets.
To finish the proof, we will need to do a little bookkeeping. LetΨdenote the set of sequences of elements

of S indexed by {1, . . . , n}. The idea is that any function f ∈ F can choose some functions from S close to
it at each of the points xi (via the previous paragraph), and Ψ keeps track of how to choose these functions.
Let’s explain this in more detail. For each ψ ∈ Ψ, define

Fψ := {f ∈ F : f(xi) ∈ B(ψi(xi), ε/4) for each 1 ≤ i ≤ n}.

The main claim is that the Fψ cover F : fix some f ∈ F , and we will construct ψ. Well, for each i, the con-
struction of Si promises some gi ∈ Si such that f(xi) ∈ B(gi(xi), ε/4). With this in mind, we simply take
ψi := gi for each i, and then f ∈ Fψ by the construction.

We will finish upon showing that Fψ has diameter less than ε. Well, for any f, g ∈ Fψ, we need to show
that du(f, g) < ε. Well, fix any x ∈ X and find some i with x ∈ Ui. Then we see

d(f(x), g(x)) ≤ d(f(x), f(xi)) + d(f(xi), g(xi)) + d(g(xi), g(x)) ≤ ε/2 + d(f(xi), g(xi)).

Now, by construction of ψ, we see

d(f(xi), g(xi)) ≤ d(f(xi), ψi(xi)) + d(ψi(xi), g(xi)) < ε/2,

so we see that d(f(x), g(x)) < ε in total. It follows ∥f − g∥∞ ≤ ε, so, say, dividing all εs by two will give Fψ
all with radius less than ε. ■

4.8 October 3
It’s spooky season. We begin class by finishing the proof of Theorem 4.69. I have edited the proof from
yesterday for continuity reasons.

4.8.1 Locally Compact Spaces
Here is our definition.

Definition 4.70 (Locally compact). A topological space (X, T ) is locally compact if and only if each point
x ∈ X has some open subset U ∈ T containing x such that U is compact.

Example 4.71. The set of real numbers R with the usual topology is locally compact. Indeed, any x ∈ R
has the open neighborhood (x− 1, x+ 1) with closure [x− 1, x+ 1], and [x− 1, x+ 1] is compact.
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Example 4.72. For the same reason, the space [a, b) is also locally compact.

Remark 4.73. Even though compact Hausdorff spaces are normal (by Proposition 4.18), locally compact
Hausdorff spaces do not have to be.

For today, we are going to look at only locally compact Hausdorff spaces.

Lemma 4.74. Fix a locally compact Hausdorff space (X, T ). Then any x ∈ X and open subset U ∈ T
containing x has some open subset Ux ⊆ X containing x such that Ux is compact and Ux ⊆ U .

Proof. We begin by finding our promised U ′ containing x with U ′ compact. Thus, it suffices to find some
open subset V containing x such that V is compact and V ⊆ U ∩ U ′, but now we see that

U ∩ U ′ ⊆ U ′

is a closed subset of the compact space U ′ and therefore compact by Lemma 4.10. In particular, we can
replace U with U ∩ U ′ and assume that U is compact.

Now, let ∂U := U \ U be the boundary of U . Notably, ∂U is a closed subset of the compact space U , so
∂U is compact by Lemma 4.10. Because {x} is a closed subset in U (noteX \ {x} is open, so U \ {x} is open
in the relative topology), the fact that compact Hausdorff spaces are normal (Proposition 4.18) grants open
subsets Ux and U∂ of U with x ∈ Ux and ∂U ⊆ U∂ .

Now, Ux ⊆ U \ U∂ ⊆ U \ ∂U , so we see Ux ⊆ U \ U∂ because U \ U∂ is a closed subset of U . Further, Ux
is a closed subset of a compact space U , so Ux is compact by Lemma 4.10, so we are done. ■

Remark 4.75. Lemma 4.74 basically says that open subspaces of locally compact Hausdorff spaces are
locally compact.

We can extend the previous result past points to full compact sets.

Proposition 4.76. Fix a locally compact Hausdorff space (X, T ) and some compact subsetC ⊆ X. Then
any open subset U containing C has some open subset UC containing C such that UC is compact and
UC ⊆ U .

Proof. We use Lemma 4.74. For each x ∈ C, find some Ux by Lemma 4.74 with Ux containing x with Ux
compact and Ux ⊆ U . Then we see that

C ⊆
⋃
x∈C

Ux,

so we have provided an open cover forC, so we can choose finitely many {xi}ni=1 ⊆ C withUi := Uxi
so that

C ⊆
n⋃
i=1

Ui ⊆ UC .

Now, we see that
n⋃
i=1

Ui =

n⋃
i=1

Ui

is a compact subset of U because being compact is closed under finite unions (by inductively applying Ex-
ample 4.9), so

⋃n
i=1 Ui is the required open subset. ■
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4.8.2 Supports
A nice thing about locally compact Hausdorff spaces is that they let us talk about supports.

Definition 4.77 (Support). Fix a locally compact Hausdorff space (X, T ) and a normed vector space
(V, ∥·∥). Then the support of a continuous function f : X → V is

supp f := {x ∈ X : f(x) ̸= 0}.

Notably, {x ∈ X : f(x) ̸= 0} = f−1(V \{0}) is the pre-image of an open subset and is therefore open by the
continuity of f . In particular, normed vector spaces are metric spaces and therefore Hausdorff, so {0} ⊆ V
is in fact a closed subset.

Here are some quick checks about the support.

Lemma 4.78. Fix a locally compact Hausdorff space (X, T ) and a normed k-vector space (V, ∥·∥). Then,
given two continuous functions f, g ∈ C(X,V ) and a, b ∈ k, we have that

supp(af + bg) ⊆ (supp f ∪ supp g)

Proof. Because supp f ∪ supp g is the union of two closed sets, it’s closed, so it suffices by definition of the
closure to show that

{x ∈ X : (af + bg)(x) ̸= 0}
?
⊆ (supp f ∪ supp g).

Well, if f(x) = 0 and g(x) = 0, then we see (af + bg)(x) = af(x)+ bg(x) = 0, so x /∈ supp(af + bg). Applying
contraposition, we see x ∈ supp(af + bg) implies f(x) ̸= 0 or g(x) ̸= 0, so x ∈ supp f or x ∈ supp g. ■

Lemma 4.79. Fix a locally compact Hausdorff space (X, T ) and a normed k-algebra (R, ∥·∥). Then, given
two continuous functions f, g ∈ C(X,R) and a, b ∈ k, we have that

supp fg ⊆ (supp f ∩ supp g)

Proof. Again, because supp f ∩supp g is the intersection of closed sets, it’s closed, so it suffices to show that

{x ∈ X : (fg)(x) ̸= 0}
?
⊆ (supp f ∩ supp g).

Well, if f(x) = 0 or g(x) = 0, then (fg)(x) = f(x)g(x) = 0. Thus, by contraposition, if (fg)(x) = 0, then
f(x) ̸= 0 and g(x) ̸= 0, so x ∈ (supp f ∩ supp g). ■

We tend to like small things, so here are our small functions.

Definition 4.80 (Compact support). Fix a locally compact Hausdorff space (X, T ) and a normed vec-
tor space (V, ∥·∥). A continuous function f : X → V has compact support if and only if its support is
compact. We let Cc(X,V ) denote the continuous functions of compact support.

Here is a quick sanity check.

Lemma 4.81. Fix a locally compact Hausdorff space (X, T ) and a normed kvector space (V, ∥·∥). Then
Cc(X,V ) is a k-subspace of C(X,V ). If V is a normed k-algebra, then Cc(X,V ) is a k-subalgebra.

Proof. We have the following checks.
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• Zero: note that the zero function z : X → V by z(x) = 0 for all x ∈ X has

{x ∈ X : z(x) ̸= 0} = ∅.

The closure of the empty set is still empty (certainly∅ ⊆ ∅by definition of the closure), so we conclude
that supp z = ∅. Now, ∅ is compact because any open cover can take the empty subcover, which is
certainly finite. Thus, z ∈ Cc(X,C).

• Linear combination: given f, g ∈ Cc(X,V ) and a, b ∈ k, we see from Lemma 4.78 that supp(af + bg)
is a closed subset of supp f ∪ supp g. However, supp f ∪ supp g is the union of two compact sets and
therefore compact by Example 4.9, so supp(af + bg) is a closed subset of a compact space and hence
compact by Lemma 4.10.

• Multiplication: given f, g ∈ Cc(X,V ), we see from Lemma 4.79 that supp(fg) is a closed subset of

supp f ∩ supp g ⊆ supp f.

However, supp f is compact, so supp fg is a closed subset of a compact space and hence compact by
Lemma 4.10.

The first two checks tell us that we have a subspace, and the last check uses the algebra structure to get a
subalgebra. ■

Of course, we would like to know that there are a nontrivial number of functions of compact support, so here
we go.

Proposition 4.82. Fix a locally compact Hausdorff space (X, T ) and a normed vector space (V, ∥·∥). For
any compact subsetC ⊆ X and open subsetU ⊆ X containingC, there is a continuous function f : X →
R of compact support such that f |C = 1 and f |X\U = 0.

Proof. The point is to apply Theorem 3.8. By Proposition 4.76, we may find an open subset V containing C
such that V is compact and V ⊆ U . Then we see C and V \ V are disjoint closed subsets of V —note C is
closed because X is Hausdorff, using Corollary 4.13.

Thus, because V is a normal space (it’s compact and Hausdorff, so Proposition 4.18 applies), we are
promised a continuous function fV : V → R such that fV |C = 1 and fV |V \V = 0. We now extend V to all of
X by

f(x) :=

{
fV (x) x ∈ V ,
0 x /∈ V .

Indeed, if x ∈ C, we see x ∈ V , so f(x) = 1; similarly, if x /∈ U , then x /∈ V and so f(x) = 0. Lastly, to see
that f is continuous, we pick up some open closed W ⊆ V ; we have the following cases.

• If 0 /∈W , then we see that f(x) ∈W forces x ∈ V , so

f−1(W ) = f−1

V
(W )

is a closed subset of V by the continuity of fV . Closed subsets of closed subspaces are still closed,
though, so we see that f−1(W ) is closed in X.

• If 0 ∈ W , then we do casework. If x ∈ V , then actually x ∈ f−1

V
(W ), which is closed in V and hence

closed inX by continuity of fV . Otherwise, x /∈ V , but then we see that x ∈ X \ V as well; conversely,
if x ∈ V \ V , then either x ∈ V and so fV (x) = 0 ∈W , or x /∈ V and so f(x) = 0 ∈W .
In total, we see

f−1({0}) = fV (W ) ∪ (X \ V )

is the union of closed sets and thus closed.

Lastly, we see that supp f ⊆ V , so supp f is a closed subset of a compact set, so we conclude supp f is
compact by Lemma 4.10, so f has compact support. ■
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Remark 4.83. By Proposition 3.25, the space of bounded continuous functions X → R is complete
under ∥·∥∞. We note that Cc(X,R) is a subalgebra, but it is not a closed subset. It turns out that its
closure is C∞(X,R), which is the space of functions which vanish at infinity: namely, for any ε > 0,
there is a compact set C ⊆ X such that |f(x)| ≤ ε for each x /∈ C.
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PART II

MEASURE THEORY



THEME 5

DEFINING MEASURES

One fish, two fish, red fish, blue fish.

—Dr. Suess, [Gei60]

5.1 October 5
We begin today by making some motivating remarks on C∗-algebras and the like. I hope it’s not important
because I didn’t understand it very well.

5.1.1 Evaluation Maps
For this subsection, we will want to work with the fieldsR andC at the same time, so we pick up the following
definition.

Definition 5.1. An archimedean field is either R or C.

We now recall the following piece of notation, which we will state in the case we now care about.

Notation 5.2. Fix an archimedean field k and a compact Hausdorff space X. Then we let C(X) denote
the continuous functions X → k.

Remark 5.3. Note thatC(X) is a k-subalgebra of kX because the constantly one function is continuous
and the sum and product of two continuous functions is still continuous.

It will turn out that C(X) can tell us a lot about X. For example, homomorphisms we can use X to build
homomorphisms C(X)→ k.

Example 5.4. Given any x ∈ X, the function evx : C(X) → k by f 7→ f(x) is a homomorphism. To see
that this is a homomorphism, note that evx(1) = 1, and evx(f + g) = (f + g)(x) = f(x) + g(x), and
evx(fg)(x) = (fg)(x) = f(x)g(x).

In fact, these are all the homomorphisms!
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Theorem 5.5. Fix an archimedean field k and a compact Hausdorff space X. Then all homomorphisms
C(X)→ k take the form evx for some x ∈ X.

Proof. Fix some homomorphism φ : C(X)→ k, and suppose for the sake of contradiction that φ := evx for
each x ∈ X. To relate our geometry and our algebra, we will use the fact that the “algebraic” set k \ {0} is
open.

Now, we can find fx ∈ C(X) with φ(fx) ̸= fx(x) for each x ∈ X. However, (fx − φ(fx)1X) : X → k is a
continuous function, so

Ux := {y ∈ X : (fx − φ(fx)1X)(y) ̸= 0}

is the preimage of the open subset k \ {0} through the continuous function (fx − φ(fx)1X).
Further, x ∈ Ux because (φ(fx)1X)(x) = φ(fx) ̸= fx(x), so the open sets {Ux}x∈X produce an open

cover of X, so we can finitely many of these points in {x1, . . . , xn} so that the open sets Ui := Uxi
cover X.

Thus, the function

f :=

n∑
i=1

(fx − φ(fx)1X)2

is nonzero everywhere and thus a unit inC(X). On the other hand,φ(fx−φ(fx)1X) = φ(fx)−φ(fx)φ(1X) =
0, so summing givesφ(f) = 0, which is a contradiction because ring homomorphisms send units to units! ■

Remark 5.6. Via Theorem 5.5, we can giveC(X)∗ a topology such that the mapX → C(X)∗ defined by
x 7→ evx is a homeomorphism.

The point of the above example is that the algebraC(X) and its evaluation maps are able to fully recover the
topological space X !

5.1.2 The Gelfand–Naimark Theorem
By adding in a little more data, we can read even more information off C(X).

Remark 5.7. With k = C, note that complex conjugation extends to a functionC(X)→ C(X) by f 7→ f .
Then one can check that ∥∥f · f∥∥∞ = ∥f∥2∞ .

In fact, the converse is true!

Theorem 5.8 (Gelfand–Naimark). Suppose that A is a commutative Banach R-algebra or C-algebra
equipped with an involution a 7→ a∗ such that ∥aa∗∥ = ∥a∥2. Then there is an isomorphism

A ≃ C(A∗).

In particular, all of these Banach algebras come from a topological space!

Example 5.9. WhenX is locally compact, setC∞(X) to be the set of continuous functionsX → kwhich
vanish at infinity. Even though C∞(X) has no multiplicative unit, it is still the case that C∞(A∗) ∼=
C∞(X), and in fact A∗ ∼= X. Not having a unit turns out to not be a problem because we can have a
function be 1 over a large interval, which is topologically close enough to a unit.

Example 5.10. In contrast, the bounded continuous functions A := Cb(X) have A ∼= C(A∗) still, even
though A∗ is compact. This is weird: the embedding X ↪→ A∗ is going to have elements not live in the
image, but the elements outside the image require the Axiom of Choice to see.
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The above example is why we prefer to work with C∞(X) when we talk about locally compact spaces X.
Before jumping into measure theory, we will want to pick up the following definition.

Definition 5.11. A Hilbert space is a complete inner product R- or C-vector space.

Example 5.12. Given a Hilbert spaceH, the set of linear operatorsB(H) onH has a conjugation again,
giving us an involution T 7→ T . One still has

∥∥TT∥∥ = T
2, so Theorem 5.8 applies, and we can think

about these spaces as spaces of functions.

The above example will generalize to the study of C∗ algebras, but we won’t discuss this further.

5.1.3 Finitely Additive Measures
We begin with a motivating example. Consider the set of functions fn : [0, 2] → R, given by the following
image.

fn

0
0

2

1

More precisely, we can write
fn(x) := min{1,max{0, 1− n(x− 1)}}.

These functions are all continuous by definition, but we can also give them a piecewise definition as

fn(x) :=


1 x ≤ 1,

1− n(x− 1) 1 ≤ x ≤ 1 + 1/n,

0 1 + 1/n ≤ x ≤ 2.

In particular, we can see that fn → 1[0,1] as n→∞with respect to the ∥·∥p norm for p ∈ [1,∞): the error is

∥∥1[0,1] − fn∥∥pp = ∫ 2

0

|1[0,1/2](t)− fn(t)|p dt =
∫ 1+1/n

1

|fn(t)|p dt ≤
∫ 1+1/n

1

dt = 1/n,

which goes to 0 as n → ∞. Namely, to complete the set of our continuous functions C([0, 1]) equipped
with ∥·∥p for p ∈ [1,∞), we need to add in these indicator functions. Nonetheless, we just integrated over
1[0,1] just fine above, so we will want to build a class of functions which includes 1[0,1] both for completeness
reasons but also for integration reasons.

It turns out that not all sets should be able to be integrated over; this leads to the notion of measurable
sets. So we will have some collection of subsetsR ⊆ P(R) and then some measuring functionµ : R → [0,∞]
(we must allow infinity!). Let’s discuss what we want to be true of µ.

• Additivity: if E,F ∈ R are disjoint, then E ⊔ F should be in R, and we had better have µ(E ⊔ F ) =
µ(E) + µ(F ). Namely, the sum of the sizes of two disjoint sets had better just be size of the disjoint
union.

• Splitting: if E,F ∈ Rwith F ⊆ E, then we want (from the above)

µ(E) = µ(E ∩ F ) + µ(E \ F ),

where the idea is that we can look at just the size ofE∩F andE\F individually to more locally compute
our sizes.
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We can view the above rules as first dictating what sets should be measured at all. As such, we have the
following definition.

Definition 5.13 (Ring). Fix a set X. A ring is a nonempty collectionR ⊆ P(X) with the following prop-
erties.

• Union: if E,F ∈ R, then E ∪ F ∈ R.

• Subtraction: if E,F ∈ R, then E \ F ∈ R.

Example 5.14. Of course, the full collection P(X) is a ring. More generally, given a subset S ⊆ X, the
collection of subsets of S is a ring: ifE,F are subsets of S, we seeE ∪ F andE \ F are both subsets of
F .

Example 5.15. Of course, {∅} is a ring.

Example 5.16. The set of all finite subsets ofX is a ring. Indeed, ifE,F ⊆ X are finite, then bothE ∪F
and E \ F are finite as well.

Remark 5.17. Fix a ringR and some E,F ∈ R. Note that E ∩ F = E \ (E \ F ), so E ∩ F ∈ R as well.

Remark 5.18. Given a ring R, we note that ∅ ∈ R: we know there is some E ∈ R, so it follows ∅ =
E \ E ∈ R.

Adding in the desired properties for our µ, we can now define “small” measures.

Definition 5.19 (Finitely additive measure). Fix a set X and ring R ⊆ P(X). Then a finitely additive
measure is a function µ : R → [0,∞] such that any disjoint E,F ∈ R have

µ(E ⊔ F ) = µ(E) + µ(F )

Remark 5.20. Note that µ(∅) = µ(∅ ⊔∅) = 2µ(∅), so it follows µ(∅) = 0.

Remark 5.21. Note that being finitely additive tells us that E ⊆ F implies E = F ⊔ (E \ F ) because an
element of E is either in F or not in F . Thus, we see µ(E) = µ(F ) + µ(E \ F ), so if µ(F ) <∞, we may
write µ(E \ F ) = µ(E)− µ(F ).

It turns out that being finitely additive is not good enough.

Example 5.22. We use the usual measure µ on R. Fix a sequence of disjoint intervals {Ei}∞i=1 in [0, 1],
and we see that we should have

∞∑
i=1

µ(Ei) <∞.

Defining Fn :=
⊔
i≤nEi and F :=

⊔∞
i=1Ei, we see that the characteristic functions 1Fn

is a Cauchy
sequence converging to 1F , but we don’t immediately have access to 1F because it’s an infinite union!

So next class we will discuss how adding a countably additive condition will help us.
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5.2 October 7

We continue our discussion into measure theory.

5.2.1 σ-Things

Motivated by Example 5.22, we see that we want to be able to measure countable unions. As such, we have
the following definitions.

Definition 5.23 (σ-ring). Fix a set X. Then a ringR ⊆ P(X) is a σ-ring if and only if R is closed under
countable unions.

Remark 5.24. As in Remark 5.17, we note σ-rings S have countable intersections. Fix some {Ei}∞i=1 ⊆
S. Then we note

E1

∖ ∞⋃
i=1

(E1 \ Ei) =
∞⋂
i=1

(E1 \ (E1 \ Ei)) =
∞⋂
i=1

(E1 ∩ Ei) = E1 ∩
∞⋂
i=1

Ei =

∞⋂
i=1

Ei

lives in S, finishing.

Definition 5.25 (σ-algebra). Fix a setX. Then a ringR ⊆ P(X) is a σ-algebra if and only ifR is a σ-ring
and contains X.

Example 5.26. Given a setX, we seeP(X) is a σ-ring because a countable union of subsets ofX is still
a subset of X. Further, P(X) is a σ-algebra because X ∈ P(X).

Example 5.27. Fix a setX. Then the collection S ⊆ P(X) of countable subsets ofX is a σ-ring; here are
our checks.

• Countable union: suppose {Ei}∞i=1 ⊆ S. Then

∞⋃
i=1

Ei

is the countable union of countable subsets ofX and therefore countable. It follows that
⋃∞
i=1Ei ∈

S.

• Subtraction: if E,F ∈ S, then E and F are both countable, so E \ F ⊆ E is still countable, so
E \ F ∈ S.

Notably, if X itself is not an uncountable set, then X /∈ S, so S is not a σ-algebra.

As usual, we may give the collection of all σ-rings (and σ-algebras) the subposet structure coming from
inclusion on P(X). For example, P(X) is the largest collection in P(X) and is thus the largest σ-ring and
also the largest σ-algebra.

Analogous to our discussion of topologies in Proposition 2.20, we pick up the following lemma to make
our σ-rings smaller.
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Lemma 5.28. Fix a set X, and fix a collection Σ of rings, σ-rings, or σ-algebras. Then

S :=
⋂
R∈Σ

R

is another ring, σ-ring, or σ-algebra, respectively.

Proof. We show the axioms get inherited individually.

(a) Suppose that each R ∈ Σ is closed under finite unions. Then for any E,F ∈ S, we see E,F ∈ R for
eachR ∈ Σ, so E ∪ F ∈ R for eachR ∈ Σ, so E ∪ F ∈ S.

(b) Suppose that each R ∈ Σ is closed under subtraction. Then for any E,F ∈ S, we see E,F ∈ R for
eachR ∈ Σ, so E \ F ∈ R for eachR ∈ Σ, so E \ F ∈ S.

(c) Suppose that eachR ∈ Σ is closed under countable union. Then for any countable collection {Ei}∞i=1 ∈
S, we see {Ei}∞i=1 ∈ R for eachR ∈ Σ, so

⋃∞
i=1Ei \ F ∈ R for eachR ∈ Σ, so

⋃∞
i=1Ei ∈ S.

(d) Suppose that eachR ∈ Σ contains X. Then X ∈ S.

The above checks complete the proof. For example, if Σ contains σ-rings, then checks (a)–(c) show S is still
a σ-ring. ■

Corollary 5.29. Fix a set X and a collection C ⊆ P(X). Then there is a unique smallest ring, σ-ring, or
σ-algebra containing C.

Proof. Let Σ denote the collection of all rings, σ-rings, or σ-algebras containing C. We want to show that Σ
contains a unique minimum element. Well, we set

S :=
⋂
R∈Σ

R.

Notably, S ∈ Σ by Lemma 5.28, and S is its minimum somewhat directly: for anyR ∈ Σ, we have S ⊆ R by
construction of S. ■

This gives us the following definition.

Definition 5.30 (σ-ring generated by). Fix a setX. Then give a collectionC, we letS(C)denote theσ-ring
generated by C, as conjured by Corollary 5.29.

There are analogous definitions for ring and σ-algebra, but we won’t state them explicitly.

Remark 5.31. As usual, we note that C ⊆ C′ implies S(C) ⊆ S(C ′) because S(C′) is a σ-ring containing
C.

Remark 5.32. Also as usual, if S is already a σ-ring, then S(S) = S. Of course, S ⊆ S(S), but also S is a
σ-ring containing S, so S(S) ⊆ S follows.
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Example 5.33. Fix a set X. We claim σ-ring generated by the collection F finite subsets of X is the
σ-ring S of countable subsets of X. Certainly S(F) ⊆ S because S is a σ-ring by Example 5.27. On the
other hand, any countable subset E ⊆ X has

E =
⋃
x∈E
{x}

while {x} ∈ F ⊆ S(F) and therefore E ∈ S(F). Thus, S ⊆ S(F).

5.2.2 Measures
We are now ready to define measures.

Definition 5.34 (Countably additive). Fix a set X and a collection of subsets C ⊆ P(X). A function
µ : C → [0,∞] is countably additive if and only if any pairwise disjoint subcollection {Ei}∞i=1 ⊆ C with⊔∞
i=1Ei ∈ C has

µ

( ∞⊔
i=1

Ei

)
=

∞∑
i=1

µ(Ei).

Notably, we are allowed to have the right-hand side diverge to∞ if the left-hand side is∞.

Remark 5.35. In general, it is pretty difficult to actually show that a function is countably additive, but
one can take advantage of the fact that

∞⊔
i=1

Ei

might not actually be in C.

And here is our definition.

Definition 5.36 (Measure). Fix a set X and σ-ring S. Then a measure on S is a function µ : S → [0,∞]
which is countably additive.

Remark 5.37. Note that the countable unions of sets in S to check the countably additive condition are
always in S because S is a σ-ring. Namely, the trick suggested in Remark 5.35 doesn’t help us.

Remark 5.38. In general, it is not a good idea to ask for unions larger than countable. Approximately
speaking, we really want to have countable unions, but we need to be careful adding any other infinities.
The main problem is that those infinite sums don’t have easy notions of convergence. Even if we don’t
want to work with something like nets to allow larger convergences, then allowing arbitrary unions for
E ⊆ X gives

µ(E) =
∑
x∈X

µ({x}),

which intuitively should vanish if we make our points have measure 0.

Remark 5.39. Fix a set X and measure µ : S → [0,∞]. If µ(∅) <∞, then note ∅ =
⊔∞
i=1 ∅ implies that

the sum
∑∞
i=1 µ(∅) = µ(∅) converges, so µ(∅) = 0 is forced. Otherwise, if µ(∅) =∞, then any E ∈ S

has E = E ⊔∅, so µ(E) = µ(E) + µ(∅) =∞.

94



5.2. OCTOBER 7 202A: TOPOLOGY AND ANALYSIS

Remark 5.40. If µ is a measure a σ-ring S, then µ|T remains a measure on any σ-ring T ⊆ S. Indeed,
any pairwise disjoint subcollection {Ti}∞i=1 ⊆ T also lives in S, so we maintain having

µ|T

( ∞⊔
i=1

Ti

)
= µ

( ∞⊔
i=1

Ti

)
=

∞∑
i=1

µ(Ti) =

∞∑
i=1

µ|T (Ti).

Let’s see some examples.

Exercise 5.41. More generally, fix a set X using the σ-ring S := P(X) of countable subsets of X. For a
function f : X → [0,∞), we define

µf (E) :=
∑
x∈E

f(x)

for each countable subset E ⊆ X. Then µf is a measure.

Proof. Note that the order of the sum over x ∈ X doesn’t matter because if the sum converges, then it
absolutely converges because all the terms in the sum are positive. Now, to see that we have a measure,
pick up some countably many pairwise disjoint countable subsets {Ei}∞i=1 of X. Then

µf

( ∞⊔
i=1

Ei

)
=

∑
x∈

⊔∞
i=1 Ei

f(x)
∗
=

∞∑
i=1

∑
x∈Ei

f(x) =

∞∑
i=1

µf (Ei),

where ∗
= holds because each x ∈

⊔∞
i=1Ei lives in exactly one of the Ei. ■

Example 5.42. Fix a set X with σ-ring S := P(X). Then we set µ(E) := #E for each E ⊆ X; namely, if
µ(E) = ∞ if and only if E is infinite. We claim that µ is a measure: if {Ei}∞i=1 is a countable collection
of pairwise disjoint subsets of X, then it’s a property of cardinality that the cardinality of the (disjoint)
union is the sum of the cardinalities.

5.2.3 Premeasures
We are going to want to build measures, but this is somewhat difficult. So we begin with something a little
weaker. We begin by weakening our rings.

Definition 5.43 (Prering). Fix a setX. A prering of a setX is a nonempty collectionP ⊆ P(X) satisfying
the following.

• Intersection: if E,F ∈ P , then E ∩ F = P .

• Decomposition: if E,F ∈ P , then we can write

E \ F =

n⊔
i=1

Gi

for some finite disjoint union on the right-hand side with Gi ∈ P for each i.

Remark 5.44. Fix a prering P . Note any E ∈ P has E \ E = ∅, so ∅ ∈ P always because P is required
to be nonempty.

And now here are our weaker measures.
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Definition 5.45 (Premeasure). Fix a set X and a prering P ⊆ P(X). A premeasure on P is a countably
additive function µ : P → [0,∞].

It will turn out that premeasures on prering will give measures on the generatedσ-ring. This is nicer because
the countably additive condition might be easier to check on a prering, using ideas of Remark 5.35.

Here is our main example.

Exercise 5.46. Fix our setX := R, and letP be the collection of half-open intervals [a, b) where a, b ∈ R.
Then P is a prering.

Proof. We begin by checking that P is a prering.

• Intersection: suppose that [a, b), [a′, b′) ∈ P ; without loss of generality, take a ≤ a′ so that x ∈ [a, b) ∩
[a′, b′) requires a′ ≤ x. Now, note

[a, b) ∩ [a′, b′) = {x ∈ R : a ≤ x and a′ ≤ x and x < b and x < b′}
= [max{a, a′},min{b, b′}).

• Decomposition: suppose that [a, b), [a′, b′) ∈ P . Now, note

[a, b) \ [a′, b′) = {x ∈ R : a ≤ x and x < b and (a′ > x or x ≥ b′)}
= {x ∈ R : a ≤ x and x < b and x < a′} ∪ {x ∈ R : a ≤ x and x < b and b′ ≤ x}
= [a,min{b, a′}) ∪ [max{a, b′}, b).

The above checks complete the proof. ■

Continuing from Exercise 5.46, it will turn out that the function µ : P → R given by

µ([a, b)) := b− a

will give a premeasure, but we will not show this today. (We will say that one should use ideas of Exer-
cise 5.46.) This is surprisingly annoying to prove.

Example 5.47. Give Q ∩ [0, 1) an enumeration {qk}k∈N. Then define the interval Fk := [qk, qk+1) ∪
[qk+1, qk) and “disjoint-ize” these intervals by taking

Ek := Fk

∖ k−1⋃
ℓ=1

Fℓ

and then decompose Ek into a finite disjoint union of Gks so that the Gks are now disjoint. Any proof
that µ is a premeasure must account for pathologies like this.

5.3 October 10
The midterm exam is coming. It will cover topology things.

5.3.1 The Lebesgue Premeasure
We continue with our attempts to construct measures.
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Proposition 5.48. Fix a left-continuous, increasing function α : R→ R, and let P ⊆ P(R) as the prering
of half-open intervals [a, b) for a < b. Then

µα([a, b)) := α(b)− α(a)

is a premeasure on P .

Proof. Quickly, note that the fact that α is increasing implies that µ([a, b)) = α(b)− α(a) ≥ 0 for any [a, b) ∈
P .

Fix some [a, b) ∈ P which has been decomposed into an infinite disjoint union

[a, b) =

∞⊔
i=1

[ai, bi).

We need to show that µα([a, b)) is the sum of all the µα([ai, bi))s. We will show our two inequalities sepa-
rately.

• In the easy direction, we show
∑∞
i=1 µα([ai, bi)) ≤ µα([a, b)). It suffices to show that, for any n ∈ N, we

have
n∑
i=1

µα([ai, bi))
?
≤ µα([a, b)),

which will finish by taking the limit as n→∞. Well, let σ : {1, . . . , n} → {1, . . . , n} be the permutation
such that aσ(1) ≤ aσ(2) ≤ · · · ≤ aσ(n). Notably, aσ(i) ≤ aσ(i+1) implies that bσ(i) ≤ aσ(i+1) because
[aσ(i), bσ(i)) ∩ [aσ(i+1), bσ(i+1)) = ∅ requires aσ(i+1) /∈ [aσ(i), bσ(i)).
Thus, bσ(i) ≤ aσ(i+1) implies α(bσ(i)) ≤ α(aσ(i+1)), so

n∑
i=1

µα([ai, bi)) =

n∑
i=1

(
α(bσ(i))− α(aσ(i))

)
= −α(aσ(1)) +

n−1∑
i=1

(
− α(aσ(i+1)) + α(bσ(i))

)
+ α(bσ(n))

has−α(aσ(i+1)) + α(bσ(i)) ≤ 0 for each i. Finishing up,

n∑
i=1

µα([ai, bi)) ≤ −α(aσ(1)) + α(bσ(n)) ≤ α(b)− α(a) = µα([a, b)),

where we have used a ≤ aσ(1) and bσ(n) ≤ b in our bounding.

• In the difficult direction, we show µα([a, b)) ≤
∑∞
i=1 µα([ai, bi)). Fix any ε > 0, and we will actually

show µα([a, b)) ≤
∑∞
i=1 µα([ai, bi)) + ε, which will be enough upon sending ε→ 0+.

To set up the proof, set εi := ε/2i+1 so that

∞∑
i=1

εi =

∞∑
i=1

ε

2i+1
=
ε

2

∞∑
i=1

1

2i
=
ε

2
.

(This is a surprise tool which will help us later.)
We now proceed in steps. The idea is to approximate all of our [ai, bi) by open intervals to use com-
pactness of closed intervals.

1. Find some b′ ≤ b such that α(b)− ε/2 ≤ α(b′) ≤ α(b), using the left-continuity of α. Similarly, for
each i ∈ N, we may select a′i < ai such that α(ai)− εi ≤ α(a′i) ≤ α(ai). Thus,

∞⋃
i=1

(a′i, bi) ⊇
∞⋃
i=1

[ai, bi) ⊇ [a, b) ⊇ [a, b′].
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Thus, we have given [a, b′] a countable open cover! So compactness (!) provides us with a finite
subcover given by indices {i1, . . . , in}. Letting N be the largest of the indices, then, we see that

N⋃
i=1

(a′i, bi) ⊇
n⋃
k=1

(a′ik , bik) ⊇ [a, b′].

2. We now inductively relabel our intervals. Some open interval must contain a, so we find j1 ∈
{1, . . . , N} so that a ∈ (a′j1 , bj1). If bj1 > b′, then we are done because we have covered [a, b′].
Otherwise, bj1 ∈ [a, b′], so we find j2 ∈ {1, . . . , N} so that bj1 ∈ (a′j2 , bj2). If bj2 > b′, then we are
done because we have covered [a, b′]; otherwise we find j3 and continue.
The above inductive process must terminate because each of the ji are distinct—at each point,
bji is strictly greater than all previous bj•s—and we were already promised that the indices up to
N will produce a finite subcover. So we have produced some open cover

m⋃
k=1

(a′jk , bjk) ⊇ [a, b′].

3. We are finally able to give the argument that everyone always wants to. Observe that

m∑
k=1

(
α(bjk)− α(a′jk)

)
= −α(a′j1) +

m−1∑
k=1

(
α(bjk)− α(a′jk+1

)
)
+ α(bjm)

by some re-indexing. However, a′jk+1
< bjk , so α(bjk)− α(a′jk+1

) ≥ 0 always, so

m∑
k=1

(
α(bjk)− α(a′jk)

)
≥ α(bjm)− α(a′j1) ≥ α(b

′)− α(a),

where at the end we have used the fact that bjm ≥ b′ and a′ ≥ aj1 . But now α(b′) ≥ α(b)− ε/2, so
we get

m∑
k=1

(
α(bjk)− α(a′jk)

)
≥ α(b)− α(a)− ε/2. (5.1)

4. Now, on the other side, we write
m∑
k=1

(
α(bjk)− α(a′jk)

)
≤

m∑
k=1

(
α(bjk)− α(ajk) + εjk

)
,

using the fact that α(a′jk) ≥ α(ajk)− εjk . We can now just add in all the indices to get

m∑
k=1

(
α(bjk)− α(a′jk)

)
≤

∞∑
i=1

(
α(bi)− α(ai)

)
+

∞∑
i=1

εi ≤
∞∑
i=1

µα([ai, bi)) +
ε

2
. (5.2)

5. In total, we combine (5.1) and (5.2) to get
∞∑
i=1

µα([ai, bi)) + ε ≥ µα([a, b)).

Sending ε→ 0+ finishes the proof. ■

Remark 5.49. The “easy” part of the above proof works fine without using the completeness of R, but
it is very necessary for the harder part.
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5.4 October 12
The midterm exam is still coming. It is closed-book. Only bring writing implements. He might ask for defi-
nitions, statements of theorems, proofs of theorems, and relatively quick applications of theorems.

5.4.1 Premeasure Subtraction
Last class, in Proposition 5.48, we showed that µα : P → [0,∞] gave a suitable premeasure. We are now
going to embark on a somewhat long story to show that µα (and premeasures in general) can turn into a full
measure.

To begin our journey, we pick up some annoying facts about prerings and premeasures.

Lemma 5.50. Fix a set X and a prering P . For any set E ∈ P and any {Ei}mi=1 ⊆ P , there exist finitely
many {Fj}nj=1 ⊆ P which are pairwise disjoint and satisfy

E

∖ m⋃
i=1

Ei =

n⊔
j=1

Fj .

Proof. We induct on m, using the prering condition. When m = 0, set F1 = E, and there is nothing else to
say.

Now suppose that we can write

E

∖ m⋃
i=1

Ei =

n⊔
j=1

Fj .

Picking up some other Em+1 ∈ P , we note

E

∖m+1⋃
i=1

Ei =

(
E

∖ m⋃
i=1

Ei

)
\ Em+1 =

(
m⊔
j=1

Fj

)
∩ (X \ Em+1)

∗
=

m⋃
j=1

(Fj ∩ (X \ Em+1)) =

m⋃
j=1

(Fj \ Em+1)

where we have used the distributivity of intersection over union in ∗
=. For each j, because P is a prering, we

may find pairwise disjoint {Gj,k}
mj

k=1 ⊆ P such that

Fj \ Em+1 =

mj⊔
k=1

Gj,k

so that

E

∖m+1⋃
i=1

Ei =

m⋃
j=1

mj⋃
k=1

Gj,k.

We now claim that the {Gj,k} are pairwise disjoint, which will finish the proof. Indeed, if we can find x ∈
Gj,k ∩ Gj′,k′ , then Gj,k ⊆ Fj and Gj′,k′ ⊆ Fj′ tells us x ∈ Fj ∩ Fj′ , so j = j′ because the F• are pairwise
disjoint. Thus,x ∈ Gj,k∩Gj,k′ further impliesk = k′ because theGj,• are pairwise disjoint. So (j, k) = (j′, k′),
and we are done. ■

Lemma 5.51. Fix a prering P on X and a finitely additive function µ : P → [0,∞]. Given E,F ∈ P , then
µ(E) ≥ µ(E ∩ F ). In particular, if E ⊇ F , then µ(E) ≥ µ(F ).

Proof. Note that an element of E is always exactly one of in F or not, so E = (E ∩ F ) ⊔ (E \ F ). Now, we
use the prering condition on P to write

E \ F =

n⊔
i=1

Gi
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for some pairwise disjointG1, . . . , Gn ∈ P . We also note thatGi ⊆ X \F for each i, soGi ∩ (E ∩F ) = ∅ for
each i, so the sets (E ∩ F ), G1, . . . , Gn are pairwise disjoint and grant

µ(E) = µ(E ∩ F ) +
n∑
i=1

µ(Gi).

However, µ(Gi) ≥ 0 always, so the first assertion follows. The second assertion follows upon noticing
E ⊇ F implies E ∩ F = F . ■

The above result motivates the following definition.

Definition 5.52 (Monotone). Fix a collectionF of subsets of a setX. A function µ : F → [0,∞] is mono-
tone if and only if any E,F ∈ F with E ⊆ F have µ(E) ≤ µ(F ).

Example 5.53. Finitely additive premeasures on prerings are monotone by Lemma 5.51.

5.4.2 Finite Subadditivty
We now pick up some subadditivity lemmas.

Lemma 5.54. Fix a preringP onX and a finitely additive functionµ : P → [0,∞]. GivenE ∈ P and some
pairwise disjoint {Ei}ni=1 ⊆ P such that Ei ⊆ E for such i, we have

n∑
i=1

µ(Ei) ≤ µ(E).

Proof. By Lemma 5.50, we note that we may write

E

∖ n⋃
i=1

Ei =

m⊔
j=1

Fj

for pairwise disjoint {Fj}mj=1 ⊆ P . We now note that all theEi and Fj are pairwise disjoint from each other:
note thatEi ∩Ej ̸= ∅ implies i = j by hypothesis on theE•, and Fi ∩Fj ̸= ∅ implies i = j by hypothesis on
the F•. Further, we note that Ei ∩ Fj ⊆ Ei ∩ (E \ Ei) = ∅ for each i and j, by construction of the Fj .

In total, we see that we have a disjoint union

E =

(
n⊔
i=1

Ei

)
⊔

(
m⊔
j=1

Fj

)
,

so the finite additivity of µ tells us

µ(E) =

n∑
i=1

µ(Ei) +

m∑
j=1

µ(Fj) ≥
n∑
i=1

µ(Ei),

which is what we wanted. ■

Lemma 5.55. Fix a preringP on a setX and a finitely additive function µ : P → [0,∞]. GivenE ∈ P and
some {Fj}mj=1 ⊆ P covering E, we have

µ(E) ≤
m∑
j=1

µ(Fj).
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Proof. To begin, we note E =
⋃m
j=1(E ∩ Fj), so we note that it suffices for

µ(E) ≤
m∑
k=1

µ(E ∩ Fj),

which will finish because µ(E ∩ Fj) ≤ µ(Fj) for each j by Lemma 5.51. Thus, we just replace each Fj with
E ∩ Fj so that E =

⋃m
j=1 Fj .

Next, we force the Fj to be disjoint, using Lemma 5.50 to write

Hj := Fj \
j−1⋃
k=1

Fk =

nj⊔
k=1

Gj,k

where the Gj,k ⊆ Hj live in P and are pairwise disjoint for each fixed j. Now, we note that each x ∈ E will
live in some Fj with least j, so x ∈ Hj for this j, so the Hj cover E.

We now note that all the Gj,k are disjoint. Indeed, if x ∈ Gj,k ∩ Gj′,k′ , we see that Gj,k ⊆ Hj and
Gj′,k′ ⊆ Hj′ , so x ∈ Hj ⊆ Hj′ . If j ̸= j′, say that j < j′ without loss of generality, so x ∈ Hj ⊆ Fj while
x ∈ Hj′ has Hj′ disjoint from Fj , so we have a contradiction. So instead we see j = j′, so x ∈ Gj,k ∩ Gj,k′ ,
and it follows that k = k′ because the Gj,• are disjoint.

In total, we see that

E =

m⊔
j=1

nj⊔
k=1

Gj,k,

so the finitely additive condition tells us that

µ(E) =

m∑
j=1

nk∑
k=1

µ(Gj,k).

However, we note that the Gj,k are disjoint for any fixed j and have Gj,k ⊆ Fj for each k, so we see that

nk∑
k=1

µ(Gj,k) ≤ µ(Fj)

for each j by Lemma 5.54, so we conclude

µ(E) =

m∑
j=1

nk∑
k=1

µ(Gj,k) ≤
m∑
j=1

µ(Fj),

which is what we wanted. ■
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THEME 6

BUILDING MEASURES

So the man gave him the bricks, and he built his house with them.

—Joseph Jacobs, “The Story of the Three Little Pigs” [Jac90]

6.1 October 14
We will probably still have homework next week, despite the midterm.

6.1.1 Countable Subadditivity
Continuing our story from last time, we pick up the following definition. The above result motivates the
following definition.

Definition 6.1 (Countably subadditive). Fix a setX and a collectionF ⊆ P(X). A functionµ : F → [0,∞]
is countably subadditive if and only if

E ⊆
∞⋃
i=1

Ei =⇒ µ(E) ≤
∞∑
i=1

µ(Ei)

for any E ∈ F and {Ei}∞i=1 ⊆ F .

Lemma 6.2. Fix a preringP on a setX, and letµ be a premeasure onP . Thenµ is countably subadditive.

Proof. We repeat the proof of Lemma 5.55, essentially verbatim, replacing the bound m with∞. Indeed,
pick up any E ∈ P and some {Fj}∞j=1 ⊆ P with E ⊆

⋃∞
j=1 Fj , and we want to show that

µ(E) ≤
∞∑
j=1

µ(Fj).

To begin, we note E =
⋃∞
j=1(E ∩ Fj), so we note that it suffices for

µ(E) ≤
∞∑
k=1

µ(E ∩ Fj),
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which will finish because µ(E ∩ Fj) ≤ µ(Fj) for each j by Lemma 5.51. Thus, we just replace each Fj with
E ∩ Fj so that E =

⋃m
j=1 Fj .

Next, we force the Fj to be disjoint, using Lemma 5.50 to write

Hj := Fj \
j−1⋃
k=1

Fk =

nj⊔
k=1

Gj,k

where the Gj,k ⊆ Hj live in P and are pairwise disjoint for each fixed j. Now, we note that each x ∈ E will
live in some Fj with least j, so x ∈ Hj for this j, so the Hj cover E.

We now note that all the Gj,k are disjoint. Indeed, if x ∈ Gj,k ∩ Gj′,k′ , we see that Gj,k ⊆ Hj and
Gj′,k′ ⊆ Hj′ , so x ∈ Hj ⊆ Hj′ . If j ̸= j′, say that j < j′ without loss of generality, so x ∈ Hj ⊆ Fj while
x ∈ Hj′ has Hj′ disjoint from Fj , so we have a contradiction. So instead we see j = j′, so x ∈ Gj,k ∩ Gj,k′ ,
and it follows that k = k′ because the Gj,• are disjoint.

In total, we see that

E =

∞⊔
j=1

nj⊔
k=1

Gj,k,

so the finitely additive condition tells us that

µ(E) =

m∑
j=1

nk∑
k=1

µ(Gj,k).

However, we note that the Gj,k are disjoint for any fixed j and have Gj,k ⊆ Fj for each k, so we see that

nk∑
k=1

µ(Gj,k) ≤ µ(Fj)

for each j by Lemma 5.54, so we conclude

µ(E) =

∞∑
j=1

nk∑
k=1

µ(Gj,k) ≤
m∑
j=1

µ(Fj),

which is what we wanted. ■

6.1.2 Hereditary Rings
We continue trying to move from premeasures to measures. Our next step is to add in lots and lots of sets
to our prering, which we will later filter out to get our actual measure.

Definition 6.3 (Hereditary σ-ring). Fix a set X and nonempty family F ⊆ P(X). Then the hereditary σ-
ringH(F ) generated byF consists of all subsetsE ⊆ X such that there exists a countable subcollection
{Fi}∞i=1 ⊆ F such that

E ⊆
∞⋃
i=1

Ei.

Remark 6.4. Because F is nonempty, find some E ∈ F . Then ∅ ⊆ E ⊆ X tells us that ∅ ∈ H(F).

Here’s a quick sanity check.

Lemma 6.5. Fix a set X and a family F ⊆ P(X). ThenH(F) is a σ-ring.
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Proof. Here are our checks.

• Union: suppose {Ei}∞i=1 ⊆ H(F). Then, for each i, we can write

Ei =

∞⋃
j=1

Fij

where Fij ∈ F for each j. So
∞⋃
i=1

Ei =

∞⋃
i=1

∞⋃
j=1

Fij

shows that
⋃∞
i=1Ei is contained in a countable union of elements Fij ∈ F , so

⋃∞
i=1Ei ∈ H(F).

• Subtraction: suppose E,F ∈ H(F). Indeed, we can write E ⊆
⋃∞
i=1Ei for some Ei ∈ F , so

E \ F ⊆ E ⊆
∞⋃
i=1

Ei

has covered E \ F by countably many elements Ei of F , so we conclude E \ F ∈ H(F). ■

Example 6.6. Take X = R and P the prering from Exercise 5.46. But now we see that

R =
⋃
i∈Z

[i, i+ 1),

so any subset E ⊆ R ⊆
⋃
i∈Z[i, i + 1) is contained in a countable union of elements from P . Thus,

H(P) = P(R).

Example 6.7. Fix a set X and P the prering of finite set of X. Then any set in H(P) is countable as
contained in a countable union of finite sets, and conversely any countable subset E ⊆ X can write

E =
⋃
x∈E
{x}

to show that E is covered by countably many finite sets {x} ∈ P . Thus, H(P) contains exactly the
countable subsets of X.

It might feel like taking all the subsets of R makes us too big, but there are measures here anyway.

Example 6.8. Fix a set X and an element x ∈ X. Then we define the measure δx : P(X)→ [0,∞] by

δx(E) :=

{
1 x ∈ E,
0 x /∈ E.

To see that this is a measure, fix disjoint {Ei}∞i=1, and set E :=
⊔∞
i=1Ei. We have two cases.

• If x /∈ Ei for each i, then x /∈ E, so δx(E) = 0 =
∑∞
i=1 δx(Ei).

• If x ∈ Ei0 for some i0, then note x ∈ Ei for exactly one i because the Ei are disjoint. Also, x ∈ E
because Ei0 ⊆ E, so δx(E) = 1 = δx(Ei0) =

∑∞
i=0 µ(Ei).

The term “hereditary” comes from the following definition.

Definition 6.9 (Hereditary). Fix a setX and nonempty family G ⊆ P(X). Then G is hereditary if and only
if A ∈ G and A′ ⊆ A implies A′ ∈ G.
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Example 6.10. Indeed, given a collection F ⊆ P(X), we can see that H(F) is hereditary. To see this,
note E ∈ H(F) can be contained as E ⊆

⋃∞
i=1Ei for some {Ei}∞i=1 ⊆ F , but then any E′ ⊆ E has

E′ ⊆ E ⊆
∞⋃
i=1

Ei,

so E′ is covered by a countable union of elements of F , so E′ ∈ H(F).

Remark 6.11. Note that the intersection of hereditary rings is still hereditary. Indeed, fixing our set X
for hereditary rings {Hα}α∈λ of X, we need to show

H :=
⋂
α∈λ

Hα

is still hereditary. Well, for any E ∈ H and E′ ⊆ E, we see E ∈ Hα for each α ∈ λ, so E′ ⊆ E forces
E′ ∈ Hα for each α ∈ λ, so actually E′ ∈ H.

Remark 6.12. Thus, we can see that the hereditary σ-ring H(F) generated by a family F ⊆ P(X) is
in fact the smallest hereditary σ-ringH containing F , whereH is the intersection of all the hereditary
σ-rings containing F . (NoteH is hereditary by Remark 6.11 and a σ-ring by Lemma 5.28.)

• CertainlyH(F) is a σ-ring by Lemma 6.5, andH(F) is hereditary by Example 6.10, soH ⊆ H(F).

• Conversely, anyE ∈ H(F) is contained in some countable union asE ⊆
⋃∞
i=1Ei where {Ei}∞i=1 ⊆

F . But then Ei ∈ H for each i, so
⋃∞
i=1Ei ∈ H because H is a σ-ring, so E ∈ H because H is

hereditary.

6.1.3 Outer Measures

We now have the following construction.

Notation 6.13. Fix a set X and nonempty family F ⊆ P(X). Then give µ : F → [0,∞], we will define
µ∗ : H(F)→ [0,∞] by

µ∗(E) := inf

{ ∞∑
i=1

µ(Ei) : {Ei}∞i=1 ⊆ F and E ⊆
∞⋃
i=1

Ei

}
.

Remark 6.14. Note thatE ∈ H(F) tells us that the set we are taking the infimum of is in fact nonempty
because E ∈ H(F) is contained in some countable collection of elements from F . And in fact, for any
subcollection {Ei}∞i=1 ⊆ F covering E ∈ H(F), we see that

∞∑
i=1

µ(Ei) ≥ 0

by definition of µ, so µ∗(E) ≥ 0 for any E ∈ H(F).

Here are some quick facts.
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Lemma 6.15. Fix a set X and nonempty family F ⊆ P(X). Further, fix some µ : F → [0,∞]. Then we
have the following.

(a) µ∗(E) ≤ µ(E) for any E ∈ F .

(b) µ∗ is monotone.

(c) µ∗ is countably subadditive.

Proof. Here we go.

(a) Note that {E} ⊆ F covers E, so µ∗(E) ≤ µ(E) follows.

(b) Suppose E ⊆ F with E,F ∈ H(F). We need to show µ∗(E) ≤ µ∗(F ); certainly, if µ∗(F ) = ∞, then
there is nothing to say. Otherwise, pick up any ε > 0, and we show

µ∗(E) ≤ µ∗(F ) + ε,

which will be enough upon sending ε→ 0+.
Now, the definition of µ∗(F ) as an infimum promises some countable subcollection {Fi}∞i=1 ⊆ F cov-
ering F such that

∞∑
i=1

µ(Fi) < µ∗(F ) + ε.

But now E ⊆ F ⊆
⋃∞
i=1 Fi, so the definition of µ∗ lets us conclude

µ∗(E) ≤
∞∑
i=1

µ(Fi) < µ∗(F ) + ε,

which finishes because we may now take ε→ 0+.

(c) This requires some effort. Suppose that A ∈ H(F) and some {Bi}∞i=1 ⊆ H(F) covering A. We need
to show that

µ∗(A) ≤
∞∑
i=1

µ∗(Bi).

Well, fix any ε > 0, and we will actually show that

µ∗(A) ≤ ε+
∞∑
i=1

µ∗(Bi),

which will be enough upon sending ε→ 0+. Certainly ifµ∗(Bi) is infinite for any i, then there is nothing
to say. Otherwise, each µ∗(Bi) is finite, so we may use the definition of µ∗ as an infimum to find some
countably subcollection {Eij}∞j=1 such that

Bi ⊆
∞⋃
j=1

Eij and
∞∑
j=1

µ(Eij) ≤ µ∗(Bi) +
ε

2i

because ε/2i > 0 always. It follows that

A ⊆
∞⋃
i=1

Bi ⊆
∞⋃
i=1

∞⋃
j=1

Eij ,

so the definition of µ∗ lets us say

µ∗(A) ≤
∞∑
i=1

∞∑
j=1

µ(Eij) ≤
∞∑
i=1

(
ε

2i
+ µ∗(Bi)

)
= ε+

∞∑
i=1

µ∗(Bi),

which is what we wanted. ■
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It seems somewhat frustrating that we don’t get equality in part (a) of Lemma 6.15, but we need a few more
adjectives to make the proof go through.

Lemma 6.16. Fix a setX and a preringP onX equipped with a premeasure µ onP . Then µ∗(E) = µ(E)
for any E ∈ P .

Proof. Fix some E ∈ F . Note that µ∗(E) ≤ µ(E) already from Lemma 6.15, so we just need the other
inequality. Well, for any cover

E ⊆
∞⋃
i=1

Ei,

where {Ei}∞i=1 ⊆ F , countable subadditivity tells us that

µ(E) ≤
∞∑
i=1

µ(Ei)

by Lemma 6.2. Thus, µ(E) ≤ µ∗(E), which is what we wanted. ■

The above results motivate the following definition.

Definition 6.17 (Outer measure). Fix a set X and a hereditary σ-ringH. An outer measure is a function
µ∗ : H → [0,∞] which is monotone and countably subadditive.

Example 6.18. From Lemma 6.15, we note that if µ is a premeasure on a prering P , then µ∗ is an outer
measure on the hereditary σ-ringH(P).

6.2 October 17
Please write neatly on the exam.

6.2.1 Restricting Outer Measures
Last time, in Example 6.18, we constructed an outer measure from a premeasure. We might hope that this
outer measure is actually countably additive, thus giving us our measure, but most of the time it is not.

Instead, we are going to restrict our outer measure to some “σ-subring” which will then be a measure.
The following definition is due to Carathéodory.

Definition 6.19. Fix a set X and a hereditary σ-ring H on X, and fix an outer measure ν : H → [0,∞].
Then a set E ⊆ H is ν-measurable if and only if

ν(A) = ν(A ∩ E) + ν(A \ E)

for any A ∈ H. We will letM(ν) denote the set of ν-measurable sets.

Remark 6.20. Because ν is already an outer measure, it is countably subadditive, so ν(A) ≤ ν(A∩E) +
ν(A \ E). Thus, we really only need to focus on proving

ν(A) ≥ ν(A ∩ E) + ν(A \ E).

Here are the main results.
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Theorem 6.21. Fix a set X and a hereditary σ-ringH on X, and fix an outer measure ν : H → [0,∞]. If
nonempty,M(ν) is a σ-ring, and ν|M(ν) is a measure.

Remark 6.22. Later, we will also show that, give a premeasureµ on a preringP , we will seeP ⊆M(µ∗),
so µ∗|S(P) will be a measure on S(P) extending µ. We won’t be precise about this until we need to, but
we do want to see that we are close to the finish line.

Remark 6.23. It is indeed possible forM(ν) to be empty. For example, the outer measure ν : P(X) →
[0,∞] by ν(E) := 1 for any E ⊆ X has no ν-measurable sets.

Let’s begin our proof.

Proof of Theorem 6.21. We proceed in steps.

1. Finite union: given E,F ∈M(ν), we show E ∪ F ∈M(ν). Well, for any A ∈ H, we compute

ν(A ∩ (E ∪ F )) + ν(A \ (E ∪ F )) = ν((A ∩ E) ⊔ ((A \ E) ∩ F )) + ν((A \ E) \ F )
≤ ν(A ∩ E) + ν((A \ E) ∩ F ) + ν((A \ E) \ F ),

where we have used subadditivity at the end.
Because F is ν-measurable, the last two pieces become ν(A \ E), where we note A \ E ⊆ E ∈ H
implies A \ E ∈ H. Thus, because E is ν-measurable, this in total collapses down to ν(A), which is
enough by Remark 6.20.

2. Subtraction: given E,F ∈M(ν), we show E \ F ∈M(ν). Well, for any A ∈ H, we compute

ν(A ∩ (E \ F )) + ν(A \ (E \ F )) = ν((A ∩ E) \ F ) + ν((A \ E) ⊔ (A ∩ E ∩ F ))
≤ ν((A ∩ E) \ F ) + ν(A \ E) + ν((A ∩ E) ∩ F ),

where we have used subadditivity at the end.
Now, becauseF is ν-measurable, we see ν((A∩E)\F )+ν((A∩E)∩F ) = ν(A∩E), whereA∩E ⊆ E
is inH because E ∈ H. Thus, because E is ν-measurable, this in total collapses down to ν(A), which
is enough by Remark 6.20.

3. Strong finitely additive: for any A ∈ H and disjoint E,F ∈M(ν), we claim

ν(A ∩ (E ⊔ F )) ?
= ν(A ∩ E) + ν(A ∩ F ).

Well, because E is measurable, we note A ∩ (E ⊔ F ) ⊆ A must live inH and so

ν(A ∩ (E ⊔ F )) = ν(A ∩ (E ⊔ F ) ∩ E) + ν(A ∩ (E ⊔ F ) \ E) = ν(A ∩ E) + ν(A ∩ F ),

where the last equality has used the fact that E ∩ F = ∅.
By induction, for finitely many pairwise disjoint ν-measurable subsets {Ei}ni=1 ⊆M(ν), we see

ν

(
A ∩

n⊔
i=1

Ei

)
=

n∑
i=1

ν(A ∩ Ei).

4. Finitely additive: we show ν|M(ν) is finitely additive: for finitely many pairwise disjoint ν-measurable
subsets {Ei}ni=1Ei ∈ M(ν), we note A :=

⋃n
i=1Ei ∈ M(ν) becauseM(ν) is a preserved by finite

unions, so we set A :=
⋃n
i=1Ei to give

ν

(
n⊔
i=1

Ei

)
= ν

(
A ∩

n⊔
i=1

Ei

)
=

n∑
i=1

ν(A ∩ Ei) =
n∑
i=1

ν(Ei).
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5. Countable union: given some countable subcollection {Ei}∞i=1 ⊆M(ν), and letF be their union. Now,
we set

Fi := Ei \
⋃
j<i

Ej

so thatF is the union of theFi (certainlyFi ⊆ Ei ⊆ F for any i, and conversely any x ∈ F is in someEi,
for i as small as possible, so x ∈ Fi), and the Fi are pairwise disjoint (if i ̸= j, then i < j without loss
of generality, so Fi ⊆ Ei \ Fj is disjoint from Fj ). The point is that we are now dealing with pairwise
disjoint subsets.
We now need to show thatF is ν-measurable. Well, fix anyA ∈ H. Then, for anyn, we note thatM(ν)
is already a ring, so

⊔n
i=1 Fi is inM(ν) for any finite n, so

ν(A) = ν

(
A ∩

n⊔
i=1

Fi

)
+ ν

(
A \

n⊔
i=1

Fi

)
=

n∑
i=1

ν(A ∩ Fi) + ν

(
A \

n⊔
i=1

Fi

)
,

where we have used finite additivity. Because ν is monotone, we may lower-bound this by

ν(A) ≥
n∑
i=1

ν(A ∩ Fi) + ν(A \ F )

for any n. Sending n→∞ now, we see

ν(A) ≥
∞∑
i=1

ν(A ∩ Fi) + ν(A \ F ),

but then countable subadditivity of ν kicks in and tells us that

ν(A) ≥ ν(A ∩ F ) + ν(A \ F ),

so we are done by Remark 6.20.

6. Countably additive: we show ν|M(ν) is countably additive. Well, given some countable pairwise dis-
joint collection of ν-measurable sets {Ei}ni=1 ⊆M(ν), we see that the previous step has told us

ν(A) ≥
∞∑
i=1

ν(A ∩ Ei) + ν

(
A \

n⊔
i=1

Ei

)
≥ ν

(
A ∩

n⊔
i=1

Ei

)
+ ν

(
A \

n⊔
i=1

Ei

)
≥ ν(A).

ButM(ν) is a σ-ring, so may set A :=
⊔∞
i=1Ei so that the above equalities actually read

ν(A) =

n∑
i=1

ν(Ei),

which is what we wanted. ■

The previous theorem has an annoying hypothesis thatM(ν) is nonempty. In the cases we’re interested
in, this is no issue.

Theorem 6.24. Fix a setX and a preringP onX equipped with a premeasure µ onP . ThenP ⊆M(µ∗).

Proof. Fix some E ∈ P , and we need to show that E ∈ M(µ∗). By Remark 6.20, it suffices to pick up any
A ∈ H(P) and show

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A \ E).

If µ∗(A) = ∞, then there is nothing to say. Otherwise, we have µ∗(A) < ∞. As usual, fix some ε > 0, and
we will show that µ∗(A ∩ E) + µ∗(A \ E) ≤ µ∗(A) + ε.
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Well, by definition of µ∗(A), we can find some collection {Ei}∞i=1 ⊆ P such that

µ∗(A) + ε >

∞∑
i=1

µ(Ei).

We now decompose each µ(Ei). Note that Ei = (Ei ∩ E) ⊔ (Ei \ E) is a disjoint union because an element
of Ei is exactly one of in E or not. Further, by the prering property, we can write

E \ Ei =
ni⊔
j=1

Fij

for some disjoint {Fij}∞j=1 ⊆ P . In total, we see thatEi = (Ei∩E)⊔
⊔ni

j=1 Fij is a disjoint union becauseEi∩E
is certainly disjoint from each of the Fij ⊆ E \ Ei, and the Fij are disjoint from each other by construction.
In total, we use the countable additivity of µ to write

µ∗(A) + ε >

∞∑
i=1

µ(Ei) ≥
∞∑
i=1

(
µ(Ei ∩ E) +

ni∑
j=1

µ(Fij)

)
=

∞∑
i=1

µ(Ei ∩ E) +

∞∑
i=1

ni∑
j=1

µ(Fij).

Now, we note that A ∩ E ⊆
⋃∞
i=1(Ei ∩ E) and A \ E ⊆

⋃∞
i=1(Ei \ E) ⊆

⋃∞
i=1

⋃ni

j=1 Fij , so countable
subadditivity of µ∗ (by Lemma 6.15) lets us conclude

µ∗(A) + ε > µ(A ∩ E) + µ(A \ E).

Note that we have implicitly used the fact that µ∗|P = µ from Lemma 6.16. Anyway, sending ε → 0+

completes the proof. ■

6.2.2 Completeness
We have a notion of completeness for our measures; here is the definition.

Definition 6.25 (Compelete). Fix a set X and a family F ⊆ P(X). Then a function ν : F → [0,∞] is
complete if and only if any E ∈ F with F ⊆ E and ν(E) = 0 must have F ∈ F and ν(F ) = 0.

Remark 6.26. If µ is a complete measure on a σ-ring S on X, then we claim that any countable subset
in S has measure zero. Indeed, if A ∈ S is countable, we can write

µ(A) = µ

( ⊔
a∈A
{a}

)
=
∑
a∈A

µ({a}) =
∑
a∈A

0 = 0.

We will continue this after the midterm.

6.3 October 21
I did poorly on the midterm, and I’m too tired to be okay with it.

6.3.1 Miscellaneous Outer Measures
We quickly complete an example from last class.

Lemma 6.27. Fix an outer measure ν on a hereditary σ-ring H. Then any set E ∈ H with ν(E) = 0 is
ν-measurable.
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Proof. Fix any A ∈ H. Because outer measures are monotone, we see

ν(A \ E) + ν(A ∩ E) ≤ ν(A) + ν(E) = ν(A),

so we conclude that ν(A \ F ) + ν(A ∩ F ) = ν(A) by Remark 6.20. ■

Lemma 6.28. If ν is an outer measure on a hereditary σ-ringH, then ν|M(ν) is complete whenM(ν) is
nonempty.

Proof. Given E ∈ M(ν) with ν(E) = 0, we note that any F ⊆ E is ν-measurable and has ν(F ) = 0. Well,
we certainly have 0 ≤ ν(F ), and then we see that ν(F ) ≤ ν(E) = 0 because ν is monotone, so we conclude
that ν(F ) = 0. Thus, F is ν-measurable by Lemma 6.27. ■

We take a moment to acknowledge that our restricted outer measures are in fact extending our premeasures
when appropriate.

Lemma 6.29. Fix a premeasure µ on a σ-ring S (viewed as a prering). Then, for any B ∈ H(S), there
exists some E ∈ S such that B ⊆ E and µ∗(B) = µ(E).

Proof. Recall that

µ∗(B) = inf

{ ∞∑
i=1

µ(Ei) : {Ei}∞i=1 ⊆ S and B ⊆
∞⋃
i=1

Ei

}
.

Notably, if we have some {Ei}∞i=1 coveringB, then we are told that µ∗(B) ≤
∑∞
i=1 µ(Ei), but in fact S being

a σ-ring forces E :=
⋃∞
i=1Ei to be in S, so B ⊆ E forces the stronger inequality

µ∗(B) ≤ µ∗(E) = µ(E) ≤
∞∑
i=1

µ(Ei).

Note that we have used countable subadditivity from Lemma 6.2 and µ∗(E) = µ(E) from Lemma 6.16. It
follows that inf{µ(E) : B ⊆ E} ≤ µ∗(B). But of course B ⊆ E forces µ∗(B) ≤ µ(E) from definition of µ∗,
so in fact

µ∗(B) = inf{µ(E) : B ⊆ E}. (6.1)

It remains to show that this infimum is achievable. Certainly if µ∗(B) =∞, then any E ∈ S with B ⊆ E will
have µ∗(E) =∞, finishing.

Otherwise, take µ∗(B) < ∞. From (6.1), we can a sequence {Ei}∞i=1 ⊆ S such that Ei ⊆ B and µ(Ei) <
µ∗(B) + 1

i for each i. We now define

E :=

∞⋂
i=1

Ei,

which is an element of S by Remark 5.24. However, because µ∗ is monotone by Lemma 6.15, we see that
B ⊆ E forces µ∗(B) ≤ µ∗(E) while E ⊆ Ei for each i forces

µ∗(E) ≤ µ∗(Ei) < µ∗(B) + 1/i

for each i. Sending i→∞ recovers µ(E) = µ∗(E) = µ∗(B), where we have used Lemma 6.16 to finish. ■
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6.3.2 Uniqueness of Extensions
It is not always true that the extension of a measure must be unique.

Example 6.30. Give an uncountable set X the discrete topology, and let S denote the σ-ring of count-
able sets. Then the zero function µ on S is a measure; however, we have the following two extensions
ν to a measure on all of P(X).

• We could set ν(E) = 0 for any uncountable E.

• We could set ν(E) =∞ for any uncountable E.

Example 6.31. Let P be the prering of right-half-open intervals of R. Then the measure µ on P by
µ([a, b)) =∞ for a < b while µ(∅) = 0. Then here are two extensions of µ.

• We could set µ to be infinite for any nonempty subset of R.

• We could set µ(E) be the counting measure on R.

The issue in these examples is that there is too much allowed∞. To deal with this, we have the following
definition.

Definition 6.32 (σ-finite). Fix a setX and a prering P onX. Then a premeasure µ on P is σ-finite if and
only if E ⊆ P has some countable collection {Ei}∞i=1 ⊆ P with E =

⋃∞
i=1Ei and µ(Ei) <∞ for each i.

Remark 6.33. In the above situation, we note that any E ∈ H(P) can be covered by {Gi}∞i=1 ⊆ P with
µ(Gi) <∞ for each i. Indeed, we can at least cover E ∈ H(P) by some {Ei}∞i=1 ⊆ P , and then each Ei
has a cover

Ei ⊆
∞⋃
j=1

Fij

where µ(Fij) < ∞ because µ is σ-finite. Reordering our countable union of countable unions covering
E into some sequence {Gi}∞i=1, we see E ⊆

⋃∞
i=1Gi while µ(Gi) <∞.

It will now turn out that σ-finite things have unique extensions. Let’s first see that our outer measure ex-
tension is special, though it need not be the only extension yet.

Lemma 6.34. Fix a set X and a prering P on X equipped with a premeasure µ. Then for any σ-ring
containing P and contained inM(µ∗), we have µ∗|S is the largest measure on S extending µ on P . In
other words, if ν is any measure extending P to S, then ν(E) ≤ µ∗(E) for any E ∈ S.

Proof. Note that µ∗ extends µ by Lemma 6.16.
Now, suppose that ν is a measure on S extending the premeasure ν on P . Now, for any G ∈ S the fact

that S ⊆ H(P), we may find some {Ei}∞i=1 contained in P covering G. This tells us

ν(G) ≤
∞∑
i=1

ν(Ej) =

∞∑
i=1

µ(Ei) =

∞∑
i=1

µ∗(Ei) =

∞∑
i=1

µ(Ei).

Taking the infimum allows us to conclude ν(G) ≤ µ∗(G). ■

Now, here is our main result.
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Theorem 6.35. Fix a setX and a preringP onX equipped with a σ-finite premeasure µ onX. Then, for
some σ-ring S ⊆M(µ∗), our µ∗|S is the unique extension of µ to a measure on S.

Proof. Let ν be some measure on S extending µ. Note that we really only have one inequality here, thanks
to Lemma 6.34. Anyway, we proceed in steps. Fix any G ∈ S.

1. If G ∈ S has ν(G) = ∞, then our bound µ∗(G) ≥ ν(G) from Lemma 6.34 forces equality. So we may
now assume that ν(G) <∞.

2. Otherwise, we take ν(G) < ∞. Suppose that G ∈ S and G ⊆ E where E ∈ P . Note that we at least
still know ν(G) ≤ µ∗(G) ≤ µ∗(E) = µ(E) because µ∗ is monotone by Lemma 6.15. On the other hand,
we know that E ∈ P is measurable by Theorem 6.24, so we can use additivity to write

ν(E) = ν(G) + ν(E \G) ≤ µ∗(G) + µ∗(E \G) = µ∗(E)
∗
= µ(E) = ν(E).

Note that we have used Lemma 6.16 in ∗
=. Thus, equalities must follow everywhere, so in particular

ν(G) = µ∗(G) is forced.

3. Lastly, we take ν(G) < ∞ with any G ∈ S. We now use the σ-finite hypothesis: by Remark 6.33, we
may cover G with a countable collection {Fi}∞i=1 ⊆ P covering G such that ν(Fi) <∞ for each i.
Now, as usual, we set

F ′
i := Fi

∖⊔
j<i

Fj

so that theF ′
i are now disjoint (if i ̸= i′, say with i < i′ without loss of generality, thenF ′

i′ ⊆ Fi′\Fi) even
though G is still covered by the F ′

i (any x ∈ G lives in some least Fi, so x ∈ F ′
i follows). Additionally,

F ′
i ∈ S by Remark 5.24, so the previous step tells us that G ∩ F ′

i ⊆ F ′
i implies ν(G ∩ F ′

i ) = µ∗(G ∩ F ′
i )

and thus

ν(G) =

∞∑
i=1

ν(G ∩ F ′
i ) =

∞∑
i=1

µ∗(G ∩ F ′
i ) = µ∗(G)

by using additivity. ■

6.4 October 24
The midterms were all graded. The mean was 15.68, and the standard deviation was 7.64. Roughly speak-
ing, a score of 15 (and continuing to work at that level for the rest of the class) should roughly correspond
to a B+.

We completed the proof of Theorem 6.35 from last class, but I have simply completed the proof there
for continuity reasons.

6.4.1 Continuity Properties
Let’s discuss continuity a little.

Proposition 6.36. Fix a σ-ring S on a set X equipped with a measure µ on S. A collection {Ei}∞i=1 ⊆ S
such that En ⊆ En+1 for each i will have

lim
n→∞

µ(En) = µ

( ∞⋃
i=1

Ei

)
.
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Proof. Set E :=
⋃∞
i=1Ei, for brevity, and we define

Fi := Ei \ Ei−1,

whereE0 := ∅. Note that the Fi are now pairwise disjoint: if i ̸= j, then without loss of generality say i < j,
so Fi ⊆ Ei ⊆ Ej−1 while Fj = Ej \ Ej−1 is disjoint from Ej−1, so Fi ∩ Fj = ∅. Thus, we note that

En =

n⊔
k=1

Fk.

Indeed, certainly each k ≤ n has Fk ⊆ Ek ⊆ En; and conversely any x ∈ En belongs to some Ek with k ≤ n
minimal, implying x /∈ Fk−1 and so x ∈ Fk. In particular, we note that

E =

∞⋃
n=1

En =

∞⋃
n=1

n⋃
i=1

Fi =

∞⋃
i=1

⋃
n≥i

Fi =

∞⋃
i=1

Fi =

∞⊔
i=1

Fi

is still a disjoint union because the Fi are pairwise disjoint.
Thus, by the countable additivity of µ, we compute

lim
n→∞

µ(En) = lim
n→∞

µ

(
n⊔
k=1

Fk

)

= lim
n→∞

n∑
k=1

µ(Fk)

=

∞∑
k=1

µ(Fk)

= µ

( ∞⊔
k=1

Fk

)
= µ(E),

which is what we wanted. ■

Corollary 6.37. Fix a σ-ring S on a setX equipped with a measure µ on S. Suppose we have a collection
{Ei}∞i=1 ⊆ S such that µ(E1) <∞ and En ⊇ En+1 for each i. Then we have

lim
n→∞

µ(En) = µ

( ∞⋂
i=1

Ei

)
.

Proof. Set

E :=

∞⋂
i=1

Ei.

Then we define Fi := E1 \ Ei so that

F :=

∞⋃
i=1

Fi =

∞⋃
i=1

(E1 \ Ei) = E1

∖ ∞⋂
i=1

Ei = E1 \ E.

On the other hand, we note Ei ⊇ Ei+1 implies E1 \ Ei ⊇ E1 \ Ei+1, so Fi ⊆ Fi+1.
Thus, applying Proposition 6.36, we see

lim
n→∞

µ(Fn) = F.
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Rearranging gets the needed result. However, we note that µ(Ei) ≤ µ(E1) < ∞ for each i because µ is
monotone by Lemma 5.51, so we can say

lim
n→∞

µ(En) = lim
n→∞

µ(E1 \ Fn)
∗
= lim
n→∞

(µ(E1)− µ(Fn))

= µ(E1)− lim
n→∞

µ(Fn) = µ(E1)− µ(F )
∗
= µ(E1 \ F ) = µ(E),

where we have used Remark 5.21 at each ∗
=. This finishes. ■

Remark 6.38. If we do not requireµ(E1) <∞, then the statement is false: setα(t) := t be an increasing,
left-continuous function, and let µ be the corresponding measure coming as a restricted outer measure
from the premeasure measure µα of Proposition 5.48.

Then set Ei := [i,∞), which is measurable by Theorem 6.24. Here are our checks.

• Note µ(Ei) = ∞. Indeed, for any positive integer N , we note that µ(Ei) ≥ µ([i, i + N)) = N
because µ is monotone by Lemma 5.51 and restricts properly by Lemma 6.16. It follows µ(Ei) >
∞.

• On the other hand, note
⋂∞
i=1Ei = ∅ because no real number is larger than every positive integer,

and µ(∅) = µ([0, 0)) = 0 using Lemma 6.16.

6.4.2 Borel Measures
We take a moment to recognize that we’ve actually built a measure.

Definition 6.39 (Lebesgue–Stieltjes measure). LetP be the prering of Exercise 5.46 and some increas-
ing, left-continuous function α : R → R. Then the measure µ∗

α|M(µ∗
α) restricted by Remark 5.40 from

the premeasure of Proposition 5.48 is the Lebesgue–Stieltjes measure. The Lebesgue measure is the
measure coming from α(t) = t.

The measurable sets for each µα might be difficult to handle, so let’s find some subsets which are always
measurable.

Definition 6.40 (Borel set). The σ-ring generated by the prering P of Exercise 5.46 is called the σ-ring
of Borel sets. A measure on the Borel sets is called a Borel measure.

Let’s go find some Borel sets.

Example 6.41. Here are some Borel sets of R. Let a, b ∈ R.

• Note (−∞, a) =
⋃∞
n=1[a− n, a), so (−∞, a) is a Borel set.

• Note (a,∞) =
⋃∞
i=1[a + 1/i, a + i), so (a,∞) is a Borel set. Namely, if b > a, then there is some

positive integer i > max{1/(b− a), b− a}, so b ∈ [a+ 1/i, a+ i).

• From Remark 5.24, we note that (a, b) = (−∞, b) ∩ (a,∞) is a Borel set.

Exercise 6.42. Any open subset U ⊆ R is a Borel set.
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Proof. If U = R, there is nothing to say because R = (−∞, 1] ∪ [1,∞), so we are done by Example 6.41.
Thus, suppose that we have some y ∈ R \ U .

Otherwise, given some x ∈ U , we note that there is some ε > 0 such that B(x, ε) ⊆ U . Note that
ε < |x− y| because ε > |x− y|will force y ∈ B(x, ε) \U . As such, we may let rx be the supremum of all such
ε, which we see is finite. Note rx > 0 because ε > 0 always.

We now note that B(x, rx) ⊆ U . Indeed, if x′ ∈ B(x, rx), then

|x− x′| < rx

implies that |x−x′| is not an upper-bound for our set of εs, so we can find some ε > 0 such thatB(x, ε) ⊆ U
and |x− x′| < ε, so x′ ∈ B(x, ε) ⊆ U .

We now proceed with the proof directly. The rationals are countable, so enumerate the rationals in U as
{qn}∞n=1. For each qn, set rn := rqn . We now claim that

U
?
=

∞⋃
n=1

B(qn, rn).

Certainly B(qn, rn) ⊆ U for each n, as shown above. Conversely, if x ∈ U , find r > 0 such that B(x, r) ⊆ U .
Because the rationals are dense in R, we may find some rational q ∈ B(x, r/3). But now we see that

B(q, 2r/3) ⊆ B(x, r) ⊆ U,

so rq ≥ 2r/3. Thus, x ∈ B(q, 2r/3) ⊆ B(q, rq), so x ∈
⋃∞
n=1B(qn, rn) follows because each rational q is some

qn. ■

Example 6.43. Any closed subset V ⊆ R has V = R \ U for some open U , so V is a measurable set by
Exercise 6.42.

Definition 6.44 (Borel–Stieltjes measure). Let S be the σ-ring of Borel sets. Given some increasing,
left-continuous function α : R → R, we note thatM(µ∗

α) contains P by Theorem 6.24 and is a σ-ring
by Theorem 6.21 and thus contains S by definition of S. Thus, we define µ∗

α|S (which is a measure from
Remark 5.40) to be the corresponding Borel–Stieltjes measure.

We now note that these are actually all the measures.

Proposition 6.45. Fix a Borel measure µ on the Borel setsB of R such that µ([a, b)) <∞ for any a, b ∈ R.
Then there exists an increasing, left-continuous function α : R→ R such that µ = µα.

Proof. Define the function α : R→ R by

α(t) :=

{
µ([0, t)) t ≥ 0,

−µ([t, 0)) t ≤ 0.

Notably, at t = 0, µ([0, 0)) = 0 = −µ([0, 0)). We now run our checks.

• Suppose a, b ∈ R has a ≤ b. We claim µ([a, b)) = α(b)− α(a); there’s nothing to say if a = b. We have
the following cases.

– If a ≥ 0, then we note b ≥ a ≥ 0, so

µ([a, b)) = µ([0, b) \ [0, a)) ∗
= µ([0, b))− µ([0, a)) = α(b)− α(a),

where ∗
= is by Remark 5.21.
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– If b ≥ 0 ≥ a, then

µ([a, b)) = µ([a, 0) ⊔ [0, b)) = µ([a, 0)) + µ([0, b)) = −α(a) + α(b).

– Lastly, if 0 ≥ b ≥ a, then

µ([a, b)) = µ([a, 0) \ [b, 0)) ∗
= µ([a, 0))− µ([b, 0)) = −α(a) + α(b),

where ∗
= is by Remark 5.21.

• Increasing: given real numbers a, b ∈ R such that a ≤ b, then we note α(b) − α(a) = µ([a, b)) ≥ 0, so
α(b) ≥ α(a) follows.

• Left-continuous: fix some real number b ∈ R and some ε > 0 so that we need some δ > 0 such that
b − δ < a ≤ b implies |α(b) − α(a)| < ε. To begin, we at least note that α(a) ≤ α(b), so α(b) − α(a) ≥
0 > −ε, so it suffices for

b− δ < a ≤ b =⇒ µ([a, b)) = α(b)− α(a) < ε.

To begin, we note µ([b − 1, b)) < ∞ by hypothesis on µ (here is where we use this hypothesis!), so
we set an := b − 1

n and En := [an, b) so that µ(E1) < ∞ and En ⊇ En+1 for each n. It follows from
Corollary 6.37 that

lim
n→∞

µ(En) = µ

( ∞⋂
i=1

Ei

)
= µ(∅) = 0.

Indeed, we note that
⋂∞
i=1Ei = ∅ because any x ∈ Ei for each i must have x < b, but then any

i > 1/(b− x) will force x /∈ Ei. And also, µ(∅) = 0 by Remark 5.39 because µ(∅) ≤ µ([b− 1, b)) <∞,
where we are using the fact that µ is monotone from Lemma 5.51.
In total, we see that there is someN such thatn ≥ N impliesµ(En) < ε. Set δ := 1

N so that b−δ < a ≤ b
implies that a ∈ EN , so [a, b) ⊆ En, so

µ([a, b)) ≤ µ(EN ) < ε

by Lemma 5.51.

• Lastly, we show µ = µα|B. Let P be the prering of right-half-open intervals. Note that µα at least
makes sense from the above checks, so the fact that B ⊆ M(µ∗

α) as discussed in the definition of the
Borel–Stieltjes measure µ∗

α|B.
Now, we note that µα([a, b)) = α(b)− α(a) = µ([a, b)) as checked above (we have used Lemma 6.16),
so µ∗

α|B and µ are both extensions of the premeasure µα onP , so Theorem 6.35 follows µ∗
α|B = µ. This

finishes. ■

6.4.3 The Haar Measure
Let’s build up to talking about the Haar measure.

Remark 6.46. We’ll show on the homework that the Lebesgue measure µ on R is translation-invariant:
if E is measurable, and t ∈ R, then E + t = {r + t : r ∈ E} is measurable has the same measure as E.
In fact, any translation-invariant measure on the Borel sets is a multiple of µ.

There is a different definition of Borel sets is a little different in general.

Definition 6.47 (Borel set). Fix a locally compact Hausdorff spaceX. Then the σ-ring of Borel sets is the
σ-ring generated by the compact subsets of X. A Borel measure is a measure on the Borel sets of X.
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Example 6.48. Certainly any compact subset of R is closed by Corollary 4.13 and thus Borel by Exam-
ple 6.43, so the Borel subsets of R coming from the above definition are indeed Borel subsets of R.
Conversely, for any a, b ∈ R, we note that [a, b) = [a, b + 1] \ [b, b + 1] is a Borel subset from the above
definition, so Borel subsets from the above definition are indeed Borel subsets of R.

We quickly note that we have the following uniqueness result.

Theorem 6.49 (Haar). Fix a locally compact Hausdorff topological group G. Then there is a (nonzero)
Borel measure, unique up to scaling, which is finite on compact subsets of X and invariant under left-
translation.

In some sense, the above result explains Remark 6.46.

Remark 6.50. On the homework, we construct the Haar measure on the circle group S1.

In fact, we have the following converse to Theorem 6.49.

Theorem 6.51 (Weil). Fix a group G and a σ-ring S on G equipped with a σ-finite measure µ and some
extra separating property. Given that bothS andµ are suitably translation-invariant, there is a topology
T on G making G into a locally compact Hausdorff topological group where µ is a Haar measure for G.

Despite all our work, it’s not even obvious which sets are Lebesgue-measurable or even that there are sets
which are not Lebesgue-measurable. We will be able to answer at least this second question in the negative
next class.

6.5 October 26
Today we explain why we keep marking our sets as being measurable.

6.5.1 A Non-measurable Set
Here is our result.

Exercise 6.52 (Vitali). LetT = R/Zbe the circle group, and letµbe the translation-invariant measure on
R/Zwithµ(T ) = 1. It turns out thatµ is complete. We produce a subset ofT which is notµ-measurable.

Proof. Let Ttors be the torsion subgroup of T . Namely, r ∈ Ttors if and only if there exists some n ∈ Z>0 for
which nr = 0 in T , which means that nr = k in R for some integer k and so r = k/n. Thus, Ttors = Q/Z; the
important point is that Ttors is countable.

Now, for each coset in T/Ttors, let V ⊆ T be a set of representatives of these cosets.1 In particular, it
follows that

T =
⊔

q∈Ttors

(q + V ).

Indeed, there are two checks.

• To see the union, for any r ∈ T , we see that r ∈ x+ Ttors for some x ∈ V , so r = xq for some q ∈ Ttors,
so r ∈ qV .

• To see that the union is disjoint, suppose q1 + V = q2 + V . Then we can find r1, r2 ∈ V such that
q1 + r1 = q2 + r2. It follows that r1 = r2 + (q2 − q1) ∈ r2 + Ttors, so r1 + Ttors = r2 + Ttors, so r1 = r2
because V is made of representatives of T/Ttors. Thus, q1 + r1 = q2 + r2 has forced q1 = q2.

1 Note that we have used the Axiom of Choice here.
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We are now ready to complete the proof. Suppose for the sake of contradiction that V is measurable. It
follows that

1 = µ(T ) = µ

( ⊔
q∈Ttors

(x+ V )

)
=

∑
q∈Ttors

µ(q + V )
∗
=

∑
q∈Ttors

µ(V ).

Note that we have used the translation-invariance of µ in ∗
=. However, this is impossible: if µ(V ) > 0, then

the rightmost sum does not converge, and if µ(V ) = 0, then the rightmost sum vanishes, so it is impossible
for the sum to actually equal 1. ■

Remark 6.53. The above proof used the Axiom of Choice to construct V . It is a result of Solovay that
there are models of the real numbers where all subsets are measurable. Of course, the model does not
include the Axiom of Choice.
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THEME 7

MEASURABLE FUNCTIONS

Think deeply of simple things.

—The Ross Mathematics Progam, [Pro23]

7.1 October 26
We now transition to integration. Here is a warning about our exposition.

Warning 7.1. We are going to do integration valued in general Banach spaces instead of just R ∪ {∞}.

The above convention is non-standard. See [Lan12] for perhaps another treatment along these lines, but
Professor Rieffel doesn’t like Lang’s exposition.

Example 7.2. The Banach spaces we care about will essentially all be Rn or Cn for some integer n.

Example 7.3. We may also use any completion of a normed vector space (V, ∥·∥), such as the p-adic
rationals Qp or C([0, 1]) using the p-norm ∥·∥p.

7.1.1 Simple Measurable Functions
Let’s begin with the easiest possible functions we might hope to integrate.

Definition 7.4 (Simple measurable function). Fix a ring S on a setX and a normed vector spaceB. Then
a simpleS-measurableB-valued function is a function f : X → B such that im f is finite and f−1({y}) ∈
S for any y ∈ B \ {0}.

Remark 7.5. It is possible to tell a lot of this story by allowing B to be any metric space with a chosen
point 0 ∈ B. (In other words, we may allow B to be a “pointed metric space.”) Professor Rieffel made
some comments about this, but I do not think that keeping track of this is particularly important.
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Example 7.6. Given any y ∈ B andE ∈ S, the function y1E is a simple S-measurable function. For one,
the image is {0, y}, which is finite. Further, if b ∈ B \ {0}, then either b ̸= y as well and so f−1({b}) =
∅ ∈ S or f−1({y}) = E ∈ S.

As from the above example, it turns out that we should think of simple measurable functions as just linear
combinations of indicators.

Lemma 7.7. Fix a ring S on a setX and a normed vector spaceB. Then any simple S-measurable func-
tion f : X → S can be written as

f =
∑

y∈(im f)\{0}

y1f−1({y}).

Proof. Fix any x0 ∈ X, and we want to show that

f(x0) =
∑

y∈(im f)\{0}

y1f−1({y})(x0).

Well, if f(x0) = 0, then note that x0 /∈ f−1({y}) for any y ∈ (im f) \ {0}, so the right-hand sum vanishes.
Otherwise, say that f(x0) = y0 where y0 ∈ (im f) \ {0}. Then note that x0 ∈ f−1({y0}), and further we

see that x0 ∈ f−1({y}) forces y = f(x0) = y0, so y0 is the only y for which x0 ∈ f−1({y0}), so∑
y∈(im f)\{0}

y1f−1({y})(x0) = y01f−1({y0})(x0) = y0 = f(x0),

which is what we wanted. ■

Lemma 7.8. Fix a ring S on a setX and a normed vector spaceB. Then any simple S-measurable func-
tion f : X → S can be written as

f =

n∑
i=1

yi1Ei

where the yi ∈ B are distinct and nonzero and the Ei ∈ S are pairwise disjoint and nonempty. In fact,
we must have {y1, . . . , yn} = (im f) \ {0} and Ei = f−1({yi}).

Proof. We show the claims in sequence.

• Existence: by Lemma 7.7, we can write

f =
∑

y∈(im f)\{0}

y1f−1({y}).

Here, the elements of (im f) \ {0} are surely distinct, and there are finitely many of them, so we enu-
merate them by {y1, . . . , yn}. Then we set Ei := f−1({yi}), which is in S by hypothesis on f .
Lastly, we note that the E• are pairwise disjoint: if x ∈ Ei, then f(x) = yi, so if x ∈ Ei ∩ Ej , then
f(x) = yi = yj , so yi = yj , so i = j because the y• are distinct.

• Uniqueness: suppose we can write

f =

n∑
i=1

yi1Ei

where the yi ∈ B are distinct and nonzero, and the Ei ∈ S are pairwise disjoint. We claim that
{y1, . . . , yn} = (im f) \ {0} and Ei = f−1({yi}) for each i.
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Certainly {y1, . . . , yn} ⊆ (im f) \ {0}. Indeed, if x ∈ Ei, then

f(x) =

n∑
i=1

yi1Ei(x) = yi1Ei(x) = yi

because theE• are pairwise disjoint, so yi ∈ (im f)\{0}. In fact, observe that we have also shown that
x ∈ Ei implies f(x) = yi.
Conversely, if y ∈ (im f) \ {0}, then find x ∈ X with f(x) = y. Because f(x) ̸= 0, some term in the
sum of

f(x) =

n∑
i=1

yi1Ei
(x)

must be nonzero, so say that yi1Ei
(x) ̸= 0, so x ∈ Ei. However, x ∈ Ei now forces f(x) = yi as we

saw above, so y ∈ {y1, . . . , yn}. In fact, observe that we have also shown that f(x) ̸= 0 implies x ∈ Ej
for some j.
It remains to show that Ei = f−1({yi}). Well, above we showed that x ∈ Ei implies f(x) = yi.
Conversely, we showed that f(x) = yi ̸= 0 implies that x ∈ Ej for some j. But then f(x) = yj from
the above, so yj = yi, so i = j because the yi are distinct, so x ∈ Ei. ■

Here’s a sanity check.

Lemma 7.9. Fix a ring S on a set X and a normed k-vector space B. Then the simple S-measurable
functions valued in B form a k-vector space.

Proof. We know that the set of all functionsX → B forms a k-vector space under the pointwise operations,
so we just need to check that we form a subspace. Here are those checks.

• Scalar multiplication: suppose f is a simple S-measurable function, and let r ∈ k, and we show rf is
still a simpleS-measurable function. Well, if r = 0, then rf = 0, so rf = 0·1∅ is a simpleS-measurable
function by Example 7.6.
Otherwise, take r ̸= 0. For one, note that

im(rf) = {rf(x) : x ∈ X} = {ry : y ∈ im f}

is still finite, with cardinality upper-bounded by #(im f).
Further, we need to show that y ∈ B \ {0}will have f−1({y}) ∈ S. Well, we compute

(rf)−1({y}) = {x ∈ X : rf(x) = y} = {x ∈ X : f(x) = 1/r · y} = f−1({1/r · y}),

where we are using the fact that r ̸= 0. Because y ̸= 0, we see 1/r · y ̸= 0, so f−1({1/r · y}) ∈ S still.

• Addition: suppose f and g are simple S-measurable so that we want to show f + g is still a simple
S-measurable function. Indeed, we claim that

im(f + g) ⊆ {b+ c : b ∈ im f and c ∈ im g}.

To see this note that any element of im(f + g) can be written as (f + g)(x) = f(x) + g(x), which does
take the form b+ c where b = f(x) ∈ im f and c = g(x) ∈ im g. Thus, we do indeed see that im(f + g)
is finite, with cardinality at most #(im f) ·#(im g).
Now, suppose that y ∈ B \ {0}, and we show (f + g)−1({y}) ∈ S. Indeed, we see that f(x) + g(x) = y
is equivalent to f(x) = y − g(x), so

(f + g)−1({y}) =
⋃

c∈(im g)

(
f−1({y − c}) ∩ g−1({c})

)
.

Because rings are closed under finite unions, it suffices to show that f−1({y − c}) ∩ g−1({c}) ∈ S for
each c ∈ im g. We have three cases.
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– If y ̸= c and c ̸= 0, then we see that f−1({y − c}), g−1({c}) ∈ S, so their intersection remains in S
by Remark 5.24.

– If y = c, then note that c = y ̸= 0. Here, we are showing f−1({0}) ∩ g−1({y}) ∈ S. Well,
f−1({0}) ∩ g−1({y}) is(

X

∖ ⋃
b∈(im f)\{0}

f−1({b})
)
∩ g−1({y}) = g−1({y})

∖ ⋃
b∈(im f)\{0}

f−1({b}).

Well, f−1({b}) ∈ S for each of the finitely many b ∈ (im f)\{0}, so the full union lives inS because
S is a ring. Lastly, the subtraction still lives in S because g−1({y}) ∈ S, and S is still a ring.

– If c = 0, then we still have y ̸= 0. Here, we are showing that f−1({y}) ∩ g−1({0}) ∈ S, so we may
just reverse the roles of f and g in the above case to finish.

The above cases finish the proof. ■

Corollary 7.10. Fix a ring S on a set X and a normed vector space B. For any sets {Ei}ni=1 ⊆ S and
outputs {yi}ni=1 ∈ B, the function

n∑
i=1

yi1Ei

is a simple S-measurable function.

Proof. Note that each yi1Ei
is a simple S-measurable function by Example 7.6, so the finite sum of these

remains a simple S-measurable function by Lemma 7.9. ■

Lemma 7.11. Fix a ring S on a set X and a normed vector space (B, ∥·∥). If f is a simple S-measurable
function, then the function x 7→ ∥f(x)∥ is as well.

Proof. Set g(x) := ∥f(x)∥ to be a function g : X → R. Because im f is finite, it follows that im g = {∥y∥ : y ∈
im f} is still finite, so it remains to check our fibers. Fix some r ∈ (im g) \ {0}. Because im f is finite, we note
that

Br := {y ∈ im f : ∥y∥ = r}

is still finite; notably, each y ∈ Br is nonzero because r is nonzero. Now,

g−1({r}) = {x ∈ X : ∥f(x)∥ = r}

=
⋃

y∈(im f)

{x ∈ X : f(x) = y and ∥y∥ = r}

=
⋃
y∈Br

{x ∈ X : f(x) = y}

=
⋃
y∈Br

f−1({y}).

Thus, g−1({y}) is the finite union of sets of the form f−1({y}) with y ̸= 0, which are in S by definition of f .
In particular, g−1({y}) ∈ S as well. ■

Lemma 7.12. Fix a ring S on a set X. Given two simple S-measurable functions f, g : X → R, the
function fg is simple S-measurable.
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Proof. By Lemma 7.8, we may write

f =

m∑
i=1

ai1Ei
and g =

n∑
j=1

bi1Fi

for some {ai}mi=1, {bj}nj=1 ⊆ R and {Ei}mi=1, {Fj}nj=1 ⊆ S. Thus, we can write

(fg) =

m∑
i=1

n∑
j=1

(aibj)1Ei1Fj ,

but 1Ei
1Fj

= 1Ei∩Fj
, so

(fg) =

m∑
i=1

n∑
j=1

(aibj)1Ei∩Fj
.

Now, each Ei ∩ Fj lives in S because S is a ring, so fg is simple S-measurable by Corollary 7.10. ■

7.1.2 Simple Integrable Functions
We are finally ready to define integrals.

Definition 7.13 (Simple integrable function). Fix a ring S on a set X and a metric space B. Further, let
µ be a finitely additive measure µ on S. Then a function f : X → B is a simple S-integrable function if
and only if im f is finite, and f−1({y}) ∈ S has finite measure for each y ∈ (im f) \ {0}.

Remark 7.14. In fact, if f : X → B is a simple µ-integrable function, for any subsetE ⊆ B \ {0}, we see

f−1(E) =
⊔

y∈(E∩im f)\{0}

f−1({y}),

where the union is disjoint because x ∈ f−1({y}) ∩ f−1({y′}) implies f(y) = x = f(y′). As such, finite
additivity of µ implies

µ
(
f−1(E)

)
=

∑
y∈(E∩im f)\{0}

µ
(
f−1({y})

)
is a finite sum of finite numbers and is thus finite.

Definition 7.15 (Integral). Fix a ringS on a setX and a metric spaceB. Further, letµbe a finitely additive
measure µ on S. Given a simple µ-integrable function f , we define the integral∫

X

f dµ :=
∑

y∈(im f)\{0}

µ
(
f−1({y})

)
y.

Note this is a finite sum with µ
(
f−1({y})

)
finite, so

∫
X
f dµ is finite.

Example 7.16. Given some E ∈ S with µ(E) < ∞, we note
∫
X
1E dµ = µ(E). This function is simple

µ-integrable: im(1E) = {0, 1}, and 1−1
E ({1}) = E has µ(E) <∞. Thus,∫

X

1E dµ = 1µ(E) = µ(E),

as desired.
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Note that the sum in the above definition is a finite sum by definition of f , and each f−1({y}) is also in S by
definition of f again.

Here are the usual sanity checks once we’ve defined some functions.

Lemma 7.17. Fix a ring S on a setX equipped with a finitely additive measure µ and a normed k-vector
space B. Then the simple µ-integrable functions valued in B form a k-vector space.

Proof. By definition, note that simple µ-integrable functions are also simple S-measurable functions, so it
suffices to show that we form a k-subspace of the space of simpleS-measurable functions (see Lemma 7.9).
We use ideas from Lemma 7.9 to run our checks.

• Scalar multiplication: fix a simpleµ-integrable function f , and let r ∈ k, and we show rf is still a simple
µ-integrable function. As usual, r = 0 gives rf = 0, so checking f−1({y}) ∈ S with finite measure for
y ∈ (im f) \ {0} is vacuous.
Otherwise, we have r ̸= 0. We showed in Lemma 7.9 that any y ∈ (im rf) \ {0}will have

(rf)−1({y}) = f−1({1/r · y}).

Thus, if y ∈ (im rf) \ {0} so that the left-hand side is nonempty, then 1/r · y ∈ (im f) \ {0} as well;
notably, 1/r · y = 0 would force y = 0, so we must have 1/r · y ̸= 0. Now, f−1({1/r · y}) ∈ S has finite
measure by hypothesis on f , so (rf)−1({y}) has finite measure as well.

• Addition: suppose f and g are simple µ-integrable functions so that we want to show f + g is still a
simple µ-integrable function. We showed in Lemma 7.9 that any y ∈ B \ {0}will have

(f + g)−1({y}) =
⋃

c∈(im g)

(
f−1({y − c}) ∩ g−1({c})

)
.

In particular, (f + g)−1({y}) ∈ S as we discussed in Lemma 7.9, and then Lemma 5.55 tells us that

µ
(
(f + g)−1({y})

)
≤

∑
c∈(im g)

µ
(
g−1({c})

)
,

which is a finite sum of finite real numbers and therefore finite. It follows that f + g is in fact a simple
µ-integrable function. ■

Lemma 7.18. Fix a ring S on a set X equipped with a finitely additive measure µ and a normed vector
space (B, ∥·∥). If f is a simple µ-integrable function, then x 7→ ∥f(x)∥ is also a simple µ-integrable
function.

Proof. As before, we continue from Lemma 7.11. Namely, we set g(x) := ∥f(x)∥, and we know that g is
already a simple S-measurable function.

Thus, we pick up any r ∈ (im g) \ {0}, and we need to show that g−1({r}) has finite measure. Well, in
Lemma 7.11, we defined

Br := {y ∈ im f : ∥y∥ = r}

and showed that
g−1({r}) =

⋃
y∈Br

f−1({y}).

Now, each f−1({y}) has finite measure by hypothesis on f , so the total finite union g−1({r}) will have finite
measure by Lemma 5.55. ■
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7.2 October 28
We continue our story with integration by defining what we mean by a measurable function.

7.2.1 Measurable Functions
The following definition is non-standard but is how to think about our integrals in practice.

Definition 7.19 (Measurable function). Fix a setX and a σ-ring S onX. Given a normed vector spaceB,
anS-measurable function is a function f : X → B such that there is a sequence of simpleS-measurable
functions {fn}n∈N which converge to f pointwise.

Remark 7.20. Later in life, when we take B = R, we will allow the functions fn to output at∞, but we
will not do so while we allow B to be a normed vector space.

Sometimes we won’t converge “on the nose,” so we will want a little freedom.

Definition 7.21 (Null set). Fix a set X and a σ-ring S on X equipped with a measure µ. A null set is a
subset N ⊆ X such that there is some E ∈ S such that N ⊆ E and µ(N) = 0.

Definition 7.22 (Almost everywhere). Fix a set X and a σ-ring S on X equipped with a measure µ. A
property P (x) for points x ∈ X holds almost everywhere if and only if {x ∈ X : ¬P (x)} is a null set.

Definition 7.23 (Converges almost everywhere). Fix a setX and a σ-ring S onX equipped with a mea-
sure µ. Given a metric spaceB, a sequence of functions fn : X → B with n ∈ N converges to a function
f : X → B almost everywhere if and only if fn(x)→ f(x) almost everywhere.

Definition 7.24 (Measurable function). Fix a set X and a σ-ring S on X equipped with a measure µ.
Given a metric space B, a µ-measurable function is a function f : X → B such that there is a sequence
of simple S-measurable functions {fn}n∈N which converge to f almost everywhere.

Here is the usual sanity check.

Lemma 7.25. Fix a normed k-vector space B and a set X with a σ-ring S on X. Then the set of all
S-measurable functions forms a k-vector space under pointwise operations.

Proof. We already know that the set of all functionsX → B will form a k-vector space under the pointwise
operations, so we just need to show that we have a subspace. Well, pick up S-measurable functions f and
g and some scalars a, b ∈ k. We show that h := af + bg is still S-measurable.

Well, f being S-measurable promises simple S-measurable functions {fn}n∈N with fn → f pointwise;
similarly, we get simple S-measurable functions {gn}n∈N with gn → g pointwise. Now, we define

hn := afn + bgn,

which is a simple S-measurable function by Lemma 7.9.
It remains to check that hn → h as n → ∞. Let | · | be the norm on k, and let ∥·∥ be the norm on B, and

fix some x ∈ X. Now, for any ε > 0, find Nf > 0 such that

n > Nf =⇒ ∥f(x)− fn(x)∥ <
ε

2(|a|+ 1)
,
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where we note that |a|+ 1 > 0 makes this division legal. Similarly, we find Ng > 0 such that

n > Nf =⇒ ∥f(x)− fn(x)∥ <
ε

2(|b|+ 1)
.

Thus, n > max{Nf , Ng}will have

∥h(x)− hn(x)∥ ≤ |a| · ∥f(x)− fn(x)∥+ |b| · ∥g(x)− gn(x)∥ < |a| ·
ε

2(|a|+ 1)
+ |b| · ε

2(|b|+ 1)
< ε,

which finishes. ■

Lemma 7.26. Fix a ring S on a set X. Given two S-measurable functions f, g : X → R, the function fg
is S-measurable.

Proof. We are given sequences of simple S-measurable functions {fn}n∈N and {gn}n∈N such that fn → f
and gn → g pointwise. Thus, for each x ∈ X, we see (fngn)(x)→ (fg)(x) by taking products of limits, so we
conclude fngn → fg pointwise. However, fngn is simple S-measurable by Lemma 7.12. ■

7.2.2 Properties of Simple Measurable Functions
Something annoying about our definition is that we can only work simpleS-measurable functions “directly.”
One might wonder, for example, if a looking at limits fn → f asn→∞where each fn isS-measurable might
give a function f which is not S-measurable. This turns out to not be the case, but it will take some work to
prove.

In particular, we will want a better description of S-measurable functions. For today, we will content
ourselves with necessary conditions.

Definition 7.27 (Separable). A topological spaceM is separable if and only if there is a countable dense
subset of M . As such, a subset A ⊆ M is separable if and only if A is separable with the restricted
metric; in other words, A ⊆ M is separable if and only if there is a countable subset B ⊆ A such that
A ⊆ B.

Example 7.28. If A ⊆M is countable, then we can see that A ⊆ A by definition of the closure, so A is a
countable dense subset with A ⊆ A.

Here is a quick sanity check.

Lemma 7.29. Fix a metric space (M,d). A subset A ⊆ M is separable if and only if there is a countable
subset B ⊆M such that A ⊆ B.

Proof. In the forward direction, having a countable subset B ⊆ A with A ⊆ B will certainly imply having a
countable subset B ⊆M with A ⊆ B.

In the reverse direction, we begin with a countable subset B ⊆M with A ⊆ B. For now, fix some ε > 0.
Then each a ∈ A hasB(a, ε/2) ∩B ̸= ∅ by Lemma 2.57, so choose some ba ∈ B with d(a, bε,a) < ε/2. Now,
the subset

Bε := {bε,a : a ∈ A} ⊆ B

must be countable, so enumerate its elements by Bε = {bε,1, bε,2, . . .}, and for each bε,k, we select some
aε,k ∈ A such that d(bε,k, aε,k) < ε/2, which exists by construction of Bε.

We now go back to letting ε > 0 vary. As our countable subset, we now set

B′ :=

∞⋃
n=1

{a1/n,k : k ∈ Z>0}.
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Indeed, we claim that A ⊆ B′, which shows density by Lemma 2.57. For this, we pick up any a ∈ A and
ε > 0, and we show that B(a, ε) ∩ B′ ̸= ∅. Well, find some N with N > 1/ε. By construction of B1/N , we
may find some k with b1/N,k = b1/N,a, which means that

d(a, a1/N,k) ≤ d(a, b1/N,k) + d(b1/N,k, a1/N,k) <
1

2N
+

1

2N
< ε.

Thus, a1/N,k ∈ B′ is the element we are looking for. ■

Example 7.30. We give R the usual metric. Then any subset A ⊆ R is separable: set B := Q. Then
B = R contains A, but B is countable, so we are done by Lemma 7.29.

Remark 7.31. To help our intuition that this should be a smallness condition, we note that if M is a
separable space, then any subspace A ⊆ M is still separable. Indeed, there is some countable subset
B ⊆M with B =M , so A ⊆M follows.

Example 7.32. Given countably many separable subsets {An}n∈N of a metric space B, the union A :=⋃
n∈NAn is separable. Indeed, each An has a countable Bn ⊆M with An ⊆ Bn.

Now, set B :=
⋃
n∈NBn, which is countable; we claim that A ⊆ B, which will finish. Because Bn ⊆

B ⊆ B, we see that B is a closed subset containing Bn, so An ⊆ Bn ⊆ B follows. Thus, A ⊆ B.

Here is why we just defined separable subsets.

Lemma 7.33. Fix a normed vector space B and a set X with σ-ring S on X. Any simple S-measurable
function f : X → B has im f ⊆ B separable.

Proof. By definition of simple measurable functions, im f is finite and hence separable by Example 7.28. ■

Here is a last moderately silly check.

Lemma 7.34. Fix a normed vector space B and a set X with σ-ring S on X. Any simple S-measurable
function f : X → B has f−1(U \ {0}) ∈ S for any open U ⊆ B.

Proof. Recall that im f is finite by definition, so enumerate im f by (im f) ∩ (U \ {0}) = {y1, . . . , yn}. Then
we note that

f−1(U \ {0}) = f−1((im f) ∩ (U \ {0})) =
n⋃
k=1

f−1({yk}).

However, f−1({yk}) ∈ S for each k, so the total union lives in S because S is a ring. ■

7.2.3 Properties Preserved by Limits
Now, to upgrade from simple S-measurable functions to S-measurable functions, we take limits. Here is
the separability check.

Lemma 7.35. Fix a metric spaceM and a setX. Suppose a sequence of functions fn : X → B for n ∈ N
have a pointwise limit fn → f as n→∞. If each im fn ⊆M is separable, then im f ⊆M is separable as
well.
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Proof. For each n, find the countable subset Cn ⊆ im fn with im fn ⊆ Cn. Then we set

C :=
⋃
n∈N

Cn,

and we note that C is the countable union of countable subsets and hence countable. We thus claim that
im f ⊆ C, which will finish by Lemma 7.29.

Well, fix any y ∈ im f , and find some x ∈ X with y = f(x). For any ε > 0, we need to show that
B(y, ε) ∩ C ̸= ∅; this is enough by Lemma 2.57. For this, we note that there is some N such that n ≥ N
implies

d(f(x), fn(x)) < ε/2,

where d is the metric of M ; set n := N . Further, we recall im fn ⊆ Cn, so Lemma 2.57 promises us some
c ∈ Cn such that d(fn(x), c) < ε/2. In total,

d(y, c) ≤ d(f(x), fn(x)) + d(fn(x), c) <
ε

2
+
ε

2
= ε,

which is what we wanted. ■

Corollary 7.36. Fix a normed vector spaceB and a setX withσ-ringS onX. AnyS-measurable function
f : X → B has im f ⊆ B separable.

Proof. By definition of beingS-measurable, there is a sequence of simpleS-measurable functions fn : X →
B with fn → f as n → ∞ pointwise. Each fn has im fn separable by Lemma 7.33, so f does as well by
Lemma 7.35. ■

Making Lemma 7.34 work in limits requires a little more care.

Lemma 7.37. Fix a normed vector spaceB and a setX with σ-ring S onX. Suppose that a sequence of
functions fn : X → B have f−1

n (U \{0}) ∈ S for each openU ⊆ B. Then satisfy the following conditions
for each fn. If fn → f pointwise as n→∞, then f−1(U \ {0}) ∈ S for each open U ⊆ B as well.

Proof. This is a little tricky. We will replace U with U \ {0} and simply remember that 0 /∈ U .
The main point is that any x ∈ f−1(U) will have f(x) ∈ U , and elements of U should have some small

positive distance away from B \ U . Namely, we set

Um := {x ∈ U : d(x,B \ U) > 1/m}

for any m ≥ 1; here, d is the metric of B, and d(x,B \ U) = infy∈B\U d(x, y). Here are a few checks.

• As an intermediate claim, we note that d(x, y) + d(y,B \ U) ≥ d(x,B \ U). Indeed, for any a ∈ B \ U ,
note that

d(x, y) + d(y, a) ≥ d(b, a) ≥ d(x,B \ U),

so
d(y, a) ≥ d(x,B \ U)− d(x, y).

Letting a ∈ B \ U vary in this last inequality tells us that d(y,B \ U) ≥ d(x,B \ U)− d(x, y).

• Note that each Um is open. Indeed, if x ∈ Um, then set ε := d(x,B \ U) − 1/m > 0. This means that
d(x, y) < ε implies, from the previous check,

d(y,B \ U) ≥ −d(x, y) + d(x,B \ U) > −ε+ d(x,B \ U) = 1/m,

so y ∈ Um. Thus, B(x, ε) ⊆ U .
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• We claim

U
?
=

∞⋃
m=1

Um.

In one direction, x ∈ Um implies d(x,B \ U) ̸= 0 by Lemma 3.13, so x /∈ B \ U , so x ∈ U .
In the other direction, notex ∈ U implies there is some ε > 0withB(x, ε) ⊆ U , soB(x, ε)∩(B\U) = ∅,
so d(x,B \ U) ≥ ε. Thus, there is some m > 1/ε with d(x,B \ U) > 1/m and so x ∈ Um for this m.

• From the above claim, we note that 0 /∈ Um for each m because 0 /∈ U .

• We claimUm ⊆ Um+1 for eachm; set ε := 1
m−

1
m+1 > 0. Now, if x ∈ Um, then we seeB(x, ε)∩Um ̸= ∅

by Lemma 2.57, so we may find y ∈ Um with d(x, y) < ε. It follows from the first check that

d(x,B \ U) ≥ −d(x, y) + d(y,B \ U) > −ε+ 1

m
=

1

m+ 1
,

so x ∈ Um+1 follows.

Now, we see from the above that

f−1(U) =

∞⋃
m=1

f−1(Um).

Thus, x ∈ f−1(Um) implies that there is some ε > 0 withB(x, ε) ⊆ Um; because fn → f as n→∞ pointwise
(!), there is some N for which fn(x) ∈ B(x, ε) ⊆ Um for each n ≥ N , so

f−1(U) ⊆
∞⋃
m=1

∞⋃
N=1

⋂
n≥N

f−1
n (Um).

Conversely, if x lives in this right-hand set, we have somem andN with fn(x) ∈ Um ⊆ Um for all n ≥ N . So
f(x) ∈ Um by Lemma 2.50, so f(x) ∈ Um+1 ⊆ U follows. Thus, equality in the above containment follows.

In total, we see that

f−1(U) =

∞⋃
m=1

∞⋃
N=1

⋂
n≥N

f−1
n (Um).

Notably, f−1
n (Um) ∈ S for each n and m, by construction of the fns, so this full union of unions of intersec-

tions is still in S, using the fact that S is a σ-ring and Remark 5.24. ■

Corollary 7.38. Fix a normed vector spaceB and a setX withσ-ringS onX. AnyS-measurable function
f : X → B has f−1(U \ {0}) ∈ S for each open U ⊆ B.

Proof. Any simple S-measurable function satisfies the conclusion by Lemma 7.34. However, because S-
measurable functions are limits of simple S-measurable functions, S-measurable functions satisfy the con-
clusion as well by Lemma 7.37. ■

Remark 7.39. Note that the case of B = R, we see that f−1(U) is measurable for any open U ⊆ R,
where f is an S-measurable function. By taking unions and complements appropriately, we in fact see
that f−1(U) is measurable for any Borel set U ⊆ R. This is the usual definition of a (Borel) measurable
function X → R, and we will show it is equivalent to the one we gave next class.

7.3 October 31
We continue our discussion of measurable functions by giving an alternate definition.
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7.3.1 A Better Measurable
Last class, we saw that measurable functions have some nice properties. Today we show that these prop-
erties actually characterize our measurable functions.

Theorem 7.40. Fix a normed vector spaceB and a setX with aσ-ringS onX. Then a function f : X → B
is S-measurable if and only if

(i) im f is separable, and

(ii) for any open U ⊆ B, we have f−1(U \ {0}) ∈ S.

Remark 7.41. Using ideas of Proposition 2.31, it suffices to check (ii) on a sub-base for the topology on
B. In particular, it suffices to check (ii) on open balls.

Proof. Last class we provided the forward direction; namely, (i) follows from Corollary 7.36, and (ii) follows
from Corollary 7.38. Today we show that (i) and (ii) imply that f is the limit of simpleS-measurable functions.
There are two steps.

1. We construct our simple S-measurable functions {fn}n∈N. Because im f is separable by (ii), we may
find some countable subset {bi}∞i=1 ⊆ im f dense in im f . Now, for each i, j ∈ N, define

Cji := f−1(B(bi, 1/j) \ {0}),

which is always inS by (ii). Our goal is to carefully make theCji disjoint in order to define our sequence
{fn}n∈N of simple S-measurable functions, and we prefer Cji with j large because these will give a
finer approximation of f . In particular, we order Cji lexicographically by (j, i): namely, (j, i) < (ℓ, k) if
and only if j < ℓ or j = ℓ and i < k.
We now fix n and define our fn. To make our Cji appropriately disjoint, we will focus on the (j, i)
bounded above by (n, n). Namely, for (j, i) ∈ {1, 2, . . . , n}2, we set

Enji := Cji

∖ ⋃
(j,i)<(ℓ,k)
1≤ℓ,k≤n

Cℓk.

For example, Ennn = Cnn and En,n−1 = Cn,n−1 \ Cn,n and En,n−2 = Cn,n−2 \ (Cn,n ∪ Cn,n−2) and so
on.
Notably, Enji ⊆ Cji always, which means that the En• are all disjoint: note (j, i) ̸= (j′, i′) implies that
(j, i) < (j′, i′) or (j′, i′) < (j, i). Taking (j, i) < (j′, i′) without loss of generality, we see that Enji ⊆
Cji \ Cj′i′ is disjoint from Enj′i′ ⊆ Cj′i′ .
With this in mind, we define

fn :=

n∑
j=1

n∑
i=1

bi1En
ji
.

Note that im fn = {0, b1, . . . , bn} because the Enji are disjoint, which we see is finite. Further, for any
bi, we can compute

f−1
n ({bi}) =

n⋃
j=1

Enji,

which is in S because S is a ring. Thus, fn is in fact a simple S-measurable function.

2. It remains to check that fn → f pointwise as n→∞. If x /∈ f−1(B \ {0}), then f(x) = 0 while x /∈ Cji
always and so x /∈ Enji always and so fn(x) = 0 for all n; so fn(x) → f(x) follows with nothing to say
in this case. Thus, we may assume f(x) ̸= 0.

131



7.4. NOVEMBER 2 202A: TOPOLOGY AND ANALYSIS

Now, take ε > 0, and we need to find N such that n > N implies |f(x) − fn(x)| < ε for n > N .
This has two steps: first, take some j with 1

j < ε, and second, we choose i0 by density such that
f(x) ∈ B(bi0 , 1/j).1 As such, set N := max{j, i0} + 1 so that 1

N < 1
j < ε and i0 < N . Notably,

f(x) ∈ B(bi0 , 1/h) \ {0} implies that
x ∈ Cj0i0 .

We now begin our check. If n > N , then x ∈ Enℓk, where

(ℓ, k) := max{(j, i) : x ∈ Cji and 1 ≤ j, i ≤ n}.

Namely, there is certainly some (j, i) with x ∈ Cji and 1 ≤ j, i ≤ n because x ∈ Cj0,i0 while j0, i0 <
N < n, so the maximum certainly exists. And we see x ∈ Enℓk because having (j, i) > (ℓ, k) with
1 ≤ j, i ≤ n will imply that x /∈ Cji by maximality of (ℓ, k).

Now, fn(x) = bk by construction, and (j0, i0) ≤ (ℓ, k) by maximality implies that j0 ≤ ℓ and so

f(x) ∈ B(bk, 1/ℓ) ⊆ B(bk, 1/j0) ⊆ B(bk, ε),

so |f(x)− fn(x)| < ε follows.

The above steps complete the proof. ■

Corollary 7.42. Fix a set X with σ-ring S. A function f : X → R is S-measurable if and only if f−1(U \
{0}) ∈ S for each open U ⊆ R.

Proof. If f is S-measurable, then this follows from Corollary 7.38. Conversely, if f−1(U \ {0}) ∈ S for each
open U ⊆ R, then we note im f ⊆ R is separable by Example 7.30, so f is S-measurable by Theorem 7.40.

■

Corollary 7.43. Fix a set X with σ-ring S. If f : X → R is S-measurable, and g : R → R is continuous
such that g(0) = 0, then g ◦ f is still S-measurable.

Proof. For any open U ⊆ R, we note

(g ◦ f)−1(U \ {0}) = f−1
(
g−1(U \ {0})

)
= f−1

(
g−1(U) \ g−1({0})

)
.

Now, g−1(U) ⊆ R is open because g : R → R is continuous, and 0 ∈ g−1({0}) because g(0) = 0, so
f−1

(
g−1(U) \ g−1({0})

)
∈ S by Corollary 7.38. Thus, g ◦ f is S-measurable by Corollary 7.42. ■

7.4 November 2

We begin class by finishing the proof of Theorem 7.40. I have simply edited that proof for continuity reasons.

7.4.1 Some Measurable Facts
We now use Theorem 7.40 for fun and profit.

1 Note that B(f(x), 1/j)∩{bi : i ∈ N} is nonempty because im f ⊆ {bi : i ∈ N}; we are choosing i0 with bi0 ∈ B(f(x), 1/j), which
means f(x) ∈ B(bi0 , 1/j)
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Corollary 7.44. Fix a normed vector spaceB and a setX with a σ-ringS onX. If a sequence of functions
{fn}n∈N are S-measurable, and fn → f pointwise as n→∞, then f is also S-measurable.

Proof. By Theorem 7.40, we have two checks.

(i) We show that im f is separable. Well, each im fn is separable by Theorem 7.40, so this follows from
Lemma 7.35.

(ii) We show that f−1(U \ {0}) ∈ S for each open U ⊆ B. Well, each fn has f−1
n (U \ {0}) ∈ S for each

open U ⊆ B, so the same holds for f by Lemma 7.35.

The above checks show that f is S-measurable by Theorem 7.40. ■

Corollary 7.45. Fix a normed vector space (B, ∥·∥) and a set X with a σ-ring S on X. If f is an S-
measurable function, then x 7→ ∥f(x)∥ is as well.

Proof. For brevity, set g : X → R by g(x) := ∥f(x)∥. By Theorem 7.40, there are two checks.

(i) Note that im g ⊆ R must be separable by Example 7.30, so there is nothing more to say here.

(ii) For any open U ⊆ R, we see that
U ′ := {x ∈ B : ∥x∥ ∈ U}

is open in B because x 7→ ∥x∥ is continuous by Example 1.38. Thus, g−1(U) = f−1(U ′) ∈ S because f
is S-measurable. ■

Example 7.46. If f : X → R is S-measurable, then Corollary 7.45 tells us that |f | is also S-measurable.
As such, if f, g : X → R are S-measurable, then (f + g) and (f − g) are S-measurable by Lemma 7.25,
so |f − g| is S-measurable, so

min{f, g} = (f + g) + |f − g|
2

and max{f, g} = (f + g)− |f − g|
2

are S-measurable by Lemma 7.25 again. Inducting, for any S-measurable functions {fi}ni=1, the mini-
mum function min{f1, . . . , fn} and maximum function max{f1, . . . , fn} are both S-measurable.

We next talk a little about restriction.

Lemma 7.47. Fix a normed vector spaceB and a measure space (X,S, µ) and a setE ∈ S. If f : X → B
is simple S-measurable or S-measurable or simple µ-integrable, then f1E is as well.

Proof. Before doing anything, we pick up a few facts. Note that

im f1E = {f(x)1E(x) : x ∈ X} ⊆ {0} ∪ {f(x) : x ∈ E} ⊆ {0} ∪ im f.

Also, if S ⊆ B \ {0}, then we claim
(f1E)

−1(S) = E ∩ f−1(S).

In one direction, note x ∈ E ∩ f−1(S) implies that (f1E)(x) = f(x) ∈ S. In the other direction, if x ∈
(f1E)

−1(S), then note x ∈ E is forced because otherwise f(x) = 0 /∈ S. Thus, with x ∈ E, we have
(f1E)(x) = f(x), so (f1E)(x) ∈ S forces x ∈ f−1(S) as well.

We now note that we actually have three claims to show, which we show in sequence.

133



7.4. NOVEMBER 2 202A: TOPOLOGY AND ANALYSIS

• Suppose that f is a simple S-measurable function. As such, im f is finite, so im f1E ⊆ {0} ∪ im f is
also finite.
Further, for each y ∈ (im f1E) \ {0}, we see that (f1E)−1({y}) = E ∩ f−1({y}) as discussed above,
which lives in S because E ∈ S and f−1({y}) ∈ S.

• Suppose that f is anS-measurable function. Then im f is separable, so it follows {0}∪im f is separable
(by Example 7.32), so im f1E ⊆ {0} ∪ im f is separable (by Remark 7.31).
Now, for any open subset U ⊆ B \ {0}, we see (f1E)

−1(U) = E ∩ f−1(U) as discussed above, which
lives in S because E ∈ S and f−1({y}) ∈ S.

• Suppose that f is a simple µ-integrable function. As before, im f is finite implies that im f1E ⊆ {0} ∪
im f is still finite.
Further, for each y ∈ (im f1E) \ {0}, we see (f1E)

−1({y}) = E ∩ f−1({y}), which saw in our first point
to live in S, but now we note that Lemma 5.51 tells us

µ
(
(f1E)

−1({y})
)
≤ µ

(
f−1({y})

)
<∞

is finite. ■

Remark 7.48. On the other hand, if X \ E ∈ S, then we see that f1E still gets the relevant adjectives.
Indeed, each of the classes is a vector space (by Lemma 7.9 and Lemma 7.25 and Lemma 7.17), so it’s
enough to see f1E = f − f1X\E and apply Lemma 7.47.

Corollary 7.49. Fix a measure space (X,S, µ) and a normed vector spaceB. Further, fix aµ-measurable
function f : X → B. Then there is some N ∈ S such that µ(N) = 0 while f1N is S-measurable.

Proof. Because f is µ-measurable, there is a sequence of simple S-measurable functions {fn}n∈N such that
fn → f almost everywhere. Thus, there is some N ∈ S such that µ(N) = 0 while fn(x) → f(x) as n → ∞
for each x ∈ X \N .

We now show that f1N isS-measurable. Indeed, we claim that fn1N → f1N asn→∞ pointwise, which
will finish because each fn1N is simple S-measurable by Lemma 7.47. If x /∈ N , then we’re just asking for
fn(x) → f(x) as n → ∞, which we know. On the other hand, if x /∈ N , then we’re asking for 0 → 0 as
n→∞, for which there’s nothing to say. ■
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THEME 8

INTEGRATION

Having thus refreshed ourselves in the oasis of a proof, we now turn
again into the desert of definitions

—Theodor Bröcker and Klaus Jänich, [BJ82]

8.1 November 2

We now switch gears and begin moving towards integration more directly.

8.1.1 Integrating Simple Functions

We begin by picking up some facts about our integral.

Lemma 8.1. Fix a normed vector spaceB and a ring S on a setX equipped with a finitely additive mea-
sure µ. Then the mapping

f 7→
∫
X

f dµ

from simple µ-integrable functions to B is k-linear.

Proof. Unsurprisingly, we use the ideas of Lemma 7.17 to compute our integrals. We have two checks.

• Scalar multiplication: fix a simple µ-integrable function f and a scalar r ∈ k. If r = 0, then rf = 0, so∫
X
(rf) dµ = 0 = r

∫
X
f dµ vacuously, so there is nothing more to say.

Otherwise, we have r ̸= 0, and we remarked in Lemma 7.17 that we have

(rf)−1({y}) = f−1({1/r · y}).

In other words, im rf = {ry : y ∈ im f}with (rf)−1({ry}) = f−1({y}) for each y ∈ im f .
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Thus, we compute ∫
X

(rf) dµ =
∑

y∈(im rf)\{0}

µ
(
(rf)−1({y})

)
y

=
∑

ry∈(im rf)\{0}

µ
(
(rf)−1({ry})

)
· ry

= r
∑

y∈(im f)\{0}

µ
(
f−1({y})

)
y

= r

∫
X

f dµ.

• Addition: fix simple µ-integrable functions f and g. We remarked in Lemma 7.17 that any y ∈ B \ {0}
will have

(f + g)−1({y}) =
⋃

c∈(im g)

(
f−1({y − c}) ∩ g−1({y})

)
=

⋃
b∈(im f),c∈(im g)

b+c=y

(
f−1({b}) ∩ g−1({c})

)
.

Now, note that this union is in fact disjoint because the fibers f−1({b}) are disjoint. Thus, we may say
that

µ
(
(f + g)−1({y})

)
=

∑
b∈(im f),c∈(im g)

b+c=y

µ
(
f−1({b}) ∩ g−1({c})

)
.

Looping through all y, we see∫
X

(f + g) dµ =
∑

y∈im(f+g)\{0}

µ
(
(f + g)−1({y})

)
y

=
∑

y∈im(f+g)\{0}

∑
b∈(im f),c∈(im g)

b+c=y

µ
(
f−1({b}) ∩ g−1({c})

)
(b+ c)

=
∑

b∈(im f)

∑
c∈(im g)

µ
(
f−1({b}) ∩ g−1({c})

)
(b+ c)

=
∑

b∈(im f)

∑
c∈(im g)

µ
(
f−1({b}) ∩ g−1({c})

)
b+

∑
c∈(im g)

∑
b∈(im f)

µ
(
f−1({b}) ∩ g−1({c})

)
c.

Now, we note that ⊔
b∈(im f)

f−1({b}) = X and
⊔

c∈(im g)

g−1({c}) = X

because the fibers should cover the domain and are disjoint. It follows that from the finite additivity of
µ that ∫

X

(f + g) dµ =
∑

b∈(im f)

µ
(
f−1({b})

)
b+

∑
c∈(im g)

µ
(
g−1({c})

)
c,

which is
∫
X
f dµ+

∫
X
g dµ, which is what we wanted. ■

Lemma 8.2. Fix a normed vector space (B, ∥·∥) and a ring S on a setX equipped with a finitely additive
measure µ. Given a simple µ-integrable function f : X → B, we have∥∥∥∥∫

X

f dµ

∥∥∥∥ ≤ ∫
X

∥f∥ dµ.
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Proof. Note g := ∥f∥ is a simple µ-integrable function by Lemma 7.18. Now, the statement is essentially
the triangle inequality for ∥·∥. Indeed, we compute

∥∥∥∥∫
X

f dµ

∥∥∥∥ =

∥∥∥∥∥∥
∑

y∈(im f)\{0}

µ
(
f−1({y})

)
y

∥∥∥∥∥∥ ≤
∑

y∈(im f)\{0}

µ
(
f−1({y})

)
∥y∥ .

Back in Lemma 7.18, we established that

g−1({r}) =
⋃

y∈im f
∥y∥=r

f−1({y})

for each r ∈ (im g) \ {0}. Note also that the above is a disjoint union: if x ∈ f−1({y}) ∩ f−1({y′}), then
y = f(x) = y′. As such, the finite additivity of µ tells us∥∥∥∥∫

X

f dµ

∥∥∥∥ ≤ ∑
r∈(im g)\{0}

∑
y∈im f
∥y∥=r

µ
(
f−1({y})

)
∥y∥ =

∑
r∈(im g)\{0}

µ
(
g−1({r})

)
∥r∥ =

∫
X

g dµ,

which is what we wanted. ■

Lemma 8.3. Fix a ring S on a setX equipped with a finitely additive measure µ. If a simple µ-integrable
function f : X → R has f(x) ≥ 0 for each x ∈ X, then∫

X

f dµ ≥ 0.

Proof. Note that each y ∈ (im f) \ {0} has y ≥ 0 and so∫
X

f dµ =
∑

y∈(im f)\{0}

µ
(
f−1({y}

)
y

is nonnegative term-by-term, so
∫
X
f dµ ≥ 0 follows. ■

Corollary 8.4. Fix a ring S on a set X equipped with a finitely additive measure µ. Given simple µ-
integrable functions f, g : X → R, if f(x) ≥ g(x) for each x, then

∫
f dµ ≥

∫
f dµ.

Proof. Set h(x) := f(x) − g(x), which is a simple µ-integrable function by Lemma 7.17. Note h(x) ≥ 0 for
each x, so Lemma 8.3 tells us that ∫

X

h(x) dµ ≥ 0.

However, by Lemma 8.1, we conclude that∫
X

h(x) dµ =

∫
X

f(x) dµ−
∫
X

g(x) dµ,

so
∫
X
f(x) dµ ≥

∫
X
g(x) dµ follows. ■

The above positivity result suggests a semi-norm on our space.
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Notation 8.5. Fix a normed vector space B and a ring S on a set X equipped with a finitely additive
measure µ. Given a simple µ-integrable function f : X → B, we define

∥f∥1 :=

∫
X

∥f∥ dµ.

Note ∥f∥ is in fact a simple µ-integrable function by Lemma 7.18.

Lemma 8.6. Fix a normed vector spaceB and a ring S on a setX equipped with a finitely additive mea-
sure µ. Then the function f 7→ ∥f∥1 on simple µ-integrable functions defines a semi-norm on the space
of simple µ-integrable functions.

Proof. Note that simple µ-integrable functions already form a space by Lemma 7.9. Here are our checks.

• Positivity: given a simple µ-integrable function f , note that ∥f(x)∥ ≥ 0 for any x ∈ X, so Lemma 8.3
tells us that

∫
X
∥f∥ dµ ≥ 0.

• Zero: we show ∥z∥1 = 0, where z : X → B is the zero function. Well, ∥0∥ is the zero function X → R
because ∥0∥ = 0, so the linearity of Lemma 8.1 forces

∫
X
∥z∥ dµ = 0.

• Scaling: given a simpleµ-integrable function f : X → B and some scalar r, we need ∥rf∥1 = ∥r∥·∥f∥1.
Well, rf is still a simple integrable function by Lemma 7.17, as is ∥rf∥ by Lemma 7.18.
However, the main point is that ∥rf∥ = ∥r∥ · ∥f∥ by checking pointwise: any x ∈ X has

∥rf∥ (x) = ∥rf(x)∥ = ∥r∥ · ∥f(x)∥ = (∥r∥ · ∥f∥)(x).

Thus, linearity of Lemma 8.1 forces∫
X

∥rf∥ dµ =

∫
X

(∥r∥ · ∥f∥) dµ = ∥r∥ ·
∫
X

∥f∥ dµ.

• Triangle inequality: given simple µ-integrable functions f, g : X → B, we note that the triangle in-
equality gives

∥f + g∥ (x) = ∥f(x) + g(x)∥ ≤ ∥f(x)∥+ ∥g(x)∥ = (∥f∥+ ∥g∥)(x)

for any x ∈ X. Thus, noting as usual that f + g and hence ∥f + g∥ are both simple µ-integrable, we
note Corollary 8.4 tells us ∫

X

∥f + g∥ dµ ≤
∫
X

(∥f∥+ ∥g∥) dµ.

As such, linearity of the integral from Lemma 8.1 tells us that ∥f + g∥1 ≤ ∥f∥1 + ∥g∥1, which is what
we wanted. ■

To make this a norm, we need to remove the problematic functions.

Notation 8.7. Fix a normed vector space B and a ring S on a set X equipped with a finitely additive
measure µ. We define

SN (X,S, µ,B) = {f simple integrable : ∥f∥1 = 0}.

Thus, Proposition 1.13 tells us that we’re going to get a norm on the quotient of all simple integrable func-
tions by SN (X,S, µ). In our story of integration, we are essentially interested in the completion of this
normed vector space.
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Example 8.8. Give [0, 1] the usual Lebesgue measure µ, and let {Ei}∞i=1 be pairwise disjoint Borel sub-
sets of R, where µ(Ei) ≤ 4−i for each i. Then we see that

n∑
i=1

1Ei
→

∞∑
i=1

1Ei

as n→∞, but the function on the right may be potentially quite hard to handle. Namely, we want∫
X

( ∞∑
i=1

1Ei

)
dµ = lim

n→∞

∫
X

(
n∑
i=1

1Ei

)
dµ =

∞∑
i=1

µ(Ei),

but changing the order of this integral and sum is somewhat tricky.

8.1.2 Convergence in Measure

In order to avoid the constant repetition of hypotheses, we pick up the following definition.

Definition 8.9 (Measure space). A measure space is a triple (X,S, µ), where S is a σ-ring and µ is a
measure on S. We also require µ(∅) <∞ so that µ(∅) = 0 by Remark 5.39.

Now, let me tell you the bad news.

Warning 8.10. A sequence {fn}n∈N of simple integrable functions which is Cauchy for ∥·∥1 need not
converge pointwise, at any point!

Example 8.11. Give [0, 1) the usual Lebesgue measure µ, and for k ≥ 1, define Ek :=
[
k−2n

2n , k+1−2n

2n

)
,

where n is the integer such that 2n ≤ k < 2n+1. Then the sequence of functions {1Ek
}k∈Z>0

approaches
0 according to ∥·∥1, but it does not converge to 0 pointwise anywhere! We will be brief.

• To see 1Ek
→ 0 as k →∞ according to ∥·∥1, we note ∥1Ek

∥1 = 1/2n by Example 7.16, which goes
to 0 as k →∞. (Namely, n = ⌊log2 k⌋ → ∞ as k →∞.)

• However, at particular x ∈ [0, 1), there are infinitely many k for which x ∈ Ek (so that 1Ek
(x) = 1)

and x /∈ Ek (so that 1Ek
(x) = 0), meaning 1Ek

(x) does not converge pointwise.
Indeed, fix anyN , and we find somek ≥ N withx ∈ Ek and somek ≥ N withx /∈ Ek. Well, choose
any n ≥ max{N, 2}, and we see that the sets E2n , E2n+1, . . . , E2n+1−1 are disjoint and cover [0, 1)
by construction, so x will live in exactly one of them.

The main point of the above example is that our functions are allowed to look small according to ∥·∥1 but be
relatively large for (say) ∥·∥∞.

To fix this bad news, we have the following definition.

Definition 8.12 (Converge in measure). Fix a measure space (X,S, µ) and normed vector space (B, ∥·∥).
Then a sequence {fn}n∈N of S-measurable functions converges in measure to an S-measurable func-
tion f if and only if all ε > 0 have

lim
n→∞

µ({x ∈ X : ∥f(x)− fn(x)∥ ≥ ε}) = 0.
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Remark 8.13. Notably, f and fn are S-measurable, so f − fn is S-measurable by Lemma 7.25, so g :=
∥f − fn∥ is S-measurable by Corollary 7.45, so

{x : ∥f(x)− fn(x)∥ ≥ ε} = g−1([ε,∞)) = g−1((0,∞)) \ g−1((0, ε))

is in fact in S by Corollary 7.38. In particular, the limit in Definition 8.12 actually makes sense.

Example 8.14. The sequence from Example 8.11 converges in measure to the zero function. Indeed, for
any k, we see

µ({x ∈ X : ∥0− 1Ek
(x)∥ ≥ ε}) = µ(Ek) =

1

2⌊log2 k⌋

by Example 7.16, which goes to 0 as k →∞.

Of course, with a notion of convergence, we also have a notion of being Cauchy.

Definition 8.15 (Cauchy in measure). Fix a normed vector space (B, ∥·∥) and a σ-ring S on a set X
equipped with a measure µ. Then a sequence {fn}n∈N of S-measurable functions is Cauchy in mea-
sure if and only if all ε > 0 have

lim
m,n→∞

µ({x ∈ X : ∥fm(x)− fn(x)∥ ≥ ε}) = 0.

Remark 8.16. Again, we note that fn − fm is S-measurable by Lemma 7.25, so g := ∥fm − fn∥ is S-
measurable by Corollary 7.45, so

{x : ∥fm(x)− fn(x)∥ ≥ ε} = g−1([ε,∞)) = g−1((0,∞)) \ g−1((0, ε))

is in fact in S by Corollary 7.38. So we do see the limit in Definition 8.12 actually makes sense.

Remark 8.17. In fact, if fm and fn are simpleµ-integrable functions, then fm−fn is also by Lemma 7.17,
as is g := ∥fm − fn∥ by Lemma 7.18. Thus,

g−1([ε,∞)) =
⋃

y∈(im g)∩[ε,∞)

g−1({y})

is a finite union of sets g−1({y}) of finite measure, so µ
(
g−1([ε,∞))

)
is finite by Lemma 5.55.

8.2 November 4
We continue our journey towards integrating functions.

8.2.1 Sequences Converging in Measure
We pick up some basic tools on sequences converging in measure.

Lemma 8.18. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Now, suppose a se-
quence {fn}n∈N of S-measurable functions converges to both f and g in measure, where f and g are
both S-measurable. Then f = g almost everywhere; i.e., {x ∈ X : f(x) ̸= g(x)} is a null set.
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Proof. Before we do anything at all, we note that f − g is S-measurable by Lemma 7.25, so

N := {x ∈ X : f(x) ̸= g(x)} = (f − g)−1(B \ {0})

is S-measurable by Corollary 7.38.
Now, fix any ε > 0; we show µ(N) < ε. The key observation is that

∥f(x)− g(x)∥ ≤ ∥f(x)− fn(x)∥+ ∥fn(x)− g(x)∥ ,

so it follows that ∥f(x)− g(x)∥ ≥ ε forces ∥f(x)− fn(x)∥ ≥ ε/2 or ∥g(x)− gn(x)∥ ≥ ε/2. Thus,

{x : ∥f(x)− g(x)∥ ≥ ε} ⊆ {x : ∥f(x)− fn(x)∥ ≥ ε/2} ∪ {x : ∥g(x)− fn(x)∥ ≥ ε/2},

so Lemma 5.55 tells us

µ({x ∈ X : ∥f(x)− g(x)∥ ≥ ε}) ≤ µ({x ∈ X : ∥f(x)− fn(x)∥ ≥ ε/2}) + µ({x ∈ X : ∥g(x)− fn(x)∥ ≥ ε/2}).

But now, as n → ∞, we see that the right-hand side goes to 0 + 0 = 0 because fn → f and fn → g in
measure, so it follows that

µ({x ∈ X : ∥f(x)− g(x)∥ ≥ ε}) = 0. (8.1)

We now send ε → 0+. Namely, we see f(x) ̸= g(x) is equivalent to ∥f(x)− g(x)∥ > 0 is equivalent to
∥f(x)− g(x)∥ ≥ 1/n for some n ∈ N, so

N := {x ∈ X : f(x) ̸= g(x)} = {x ∈ X : ∥f(x)− g(x)∥ > 0} =
⋃
n∈N
{x ∈ X : ∥f(x)− g(x)∥ ≥ 1/n}.

Thus,
µ(N) ≤

∑
n∈N

µ({x ∈ X : ∥f(x)− g(x)∥ ≥ 1/n}) ∗
=
∑
x∈X

0 = 0,

so N is in fact a null set. Notably, ∗
= has used (8.1). ■

Lemma 8.19. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Fix sequences of
S-measurable functions {fn}n∈N and {gn}n∈N with fn → f and gn → g in measure as n→∞.

(a) We have fn + gn → f + g in measure.

(b) Given some scalar a ∈ k, we have afn → af in measure.

(c) We have ∥fn∥ → ∥f∥ as n→∞.

Proof. We go ahead and let | · | denote the norm on base field k of B.

(a) Note that the fn + gn and f + g are all S-measurable by Lemma 7.25.
Now, by the triangle inequality, we see

∥(f(x) + g(x))− (fn(x) + gn(x))∥ ≤ ∥f(x)− fn(x)∥+ ∥g(x)− gn(x)∥ .

We now proceed as in Lemma 8.18. Fix ε > 0. If the left-hand side exceeds ε, then one of the terms
on the right-hand side must exceed ε/2, so

{x : ∥(f(x) + g(x))− (fn(x) + gn(x))∥ ≥ ε} ⊆ {x : ∥f(x)− fn(x)∥ ≥ ε/2}
∪ {x : ∥g(x)− gn(x)∥ ≥ ε/2}.

Thus, Lemma 5.55 tells us

µ({x : ∥(f(x) + g(x))− (fn(x) + gn(x))∥ ≥ ε}) ≤ µ({x : ∥f(x)− fn(x)∥ ≥ ε/2})
+ µ({x : ∥g(x)− gn(x)∥ ≥ ε/2}).
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However, ε/2 > 0, so taking n→∞ and using our convergence in measure tells us that

lim
n→∞

µ({x : ∥(f(x) + g(x))− (fn(x) + gn(x))∥ ≥ ε}) ≤ 0 + 0 = 0,

so we are done after noting that µwill only output nonnegative values, so the limit is at least nonneg-
ative.

(b) Note that the afn and af are all S-measurable by Lemma 7.25.
Now, fix some ε > 0 so that we want to show that

L := lim
n→∞

µ({x ∈ X : ∥afn(x)− af(x)∥ ≥ ε})
?
= 0.

If a = 0, then afn(x) = af(x) = 0 for all x ∈ X, so {x ∈ X : ∥afn(x)− af(x)∥ ≥ ε} is empty, so the
result follows.
Otherwise, take a ̸= 0 so that |a| > 0. Now, note ∥afn(x)− af(x)∥ = |a| · ∥fn(x)− f(x)∥, so it follows
∥afn(x)− af(x)∥ ≥ ε if and only if ∥fn(x)− f(x)∥ ≥ ε/|a|. Thus,

L = lim
n→∞

µ({x ∈ X : ∥fn(x)− f(x)∥ ≥ ε/|a|}).

However, ε/|a| > 0 because ε > 0, so the above limit vanishes because fn → f in measure as n→∞.

(c) Observe that the gn and g are all S-measurable by Corollary 7.45.
Now, fix some ε > 0. By the (reverse) triangle inequality,

| ∥f(x)∥ − ∥fn(x)∥ | ≤ ∥f(x)− fn(x)∥ ,

so any ε > 0 has
{x : | ∥f(x)∥ − ∥fn(x)∥ | ≥ ε} ⊆ {x : ∥f(x)− fn(x)∥ ≥ ε}.

Thus, Lemma 5.51 tells us

lim
n→∞

µ({x : | ∥f(x)∥ − ∥fn(x)∥ | ≥ ε}) ≤ lim
n→∞

µ({x : ∥f(x)− fn(x)∥ ≥ ε}).

The right-hand limit vanishes because fn → f in measure, so the left-hand limit must vanish as well
because the limit’s terms are nonnegative. ■

Here is the analogous result for sequences Cauchy in measure.

Lemma 8.20. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Fix sequences of
S-measurable functions {fn}n∈N and {gn}n∈N which are Cauchy in measure.

(a) The sequence {fn + gn}n∈N is Cauchy in measure.

(b) Given some scalar a ∈ k, the sequence {afn}n∈N is Cauchy in measure.

(c) The sequence of functions {∥fn∥}n∈N is Cauchy in measure.

Proof. These proofs are essentially the same as Lemma 8.19 with the appropriate names changed. Again,
we let | · | denote the norm on base field k of B.

(a) Note that the fn + gn are all S-measurable by Lemma 7.25.
Now, by the triangle inequality, we see

∥(fm(x) + gm(x))− (fn(x) + gn(x))∥ ≤ ∥fm(x)− fn(x)∥+ ∥gm(x)− gn(x)∥ .
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Fix ε > 0. As usual

{x : ∥(fm(x) + gm(x))− (fn(x) + gn(x))∥ ≥ ε} ⊆ {x : ∥fm(x)− fn(x)∥ ≥ ε/2}
∪ {x : ∥gm(x)− gn(x)∥ ≥ ε/2},

so Lemma 5.55 tells us

µ({x : ∥(fm(x) + gm(x))− (fn(x) + gn(x))∥ ≥ ε}) ≤ µ({x : ∥fm(x)− fn(x)∥ ≥ ε/2})
+ µ({x : ∥gm(x)− gn(x)∥ ≥ ε/2}).

However, ε/2 > 0, so taking m,n→∞ and using our Cauchy in measure conditions tells us that

lim
m,n→∞

µ({x : ∥(fm(x) + gm(x))− (fn(x) + gn(x))∥ ≥ ε}) ≤ 0 + 0 = 0,

so we are done after noting that µwill only output nonnegative values, so the limit is at least nonneg-
ative.

(b) Note that the afn are all S-measurable by Lemma 7.25.
Now, fix some ε > 0 so that we want to show that

L := lim
m,n→∞

µ({x ∈ X : ∥afm(x)− afn(x)∥ ≥ ε})
?
= 0.

If a = 0, then afn(x) = af(x) = 0 for all x ∈ X, so {x ∈ X : ∥afm(x)− afn(x)∥ ≥ ε} is empty, so the
result follows.
Otherwise, take a ̸= 0 so that |a| > 0. Now, note ∥afm(x)− afn(x)∥ = |a| · ∥fm(x)− fn(x)∥, so it
follows ∥afm(x)− afn(x)∥ ≥ ε if and only if ∥fm(x)− fn(x)∥ ≥ ε/|a|. Thus,

L = lim
m,n→∞

µ({x ∈ X : ∥fm(x)− fn(x)∥ ≥ ε/|a|}).

However, ε/|a| > 0 because ε > 0, so the above limit vanishes because {fn}n∈N is Cauchy in measure.

(c) Observe that the gn are all S-measurable by Corollary 7.45.
Now, fix some ε > 0. By the (reverse) triangle inequality,

| ∥fm(x)∥ − ∥fn(x)∥ | ≤ ∥fm(x)− fn(x)∥ ,

so any ε > 0 has

{x : | ∥fm(x)∥ − ∥fn(x)∥ | ≥ ε} ⊆ {x : ∥fm(x)− fn(x)∥ ≥ ε}.

Thus, Lemma 5.51 tells us

lim
m,n→∞

µ({x : | ∥fm(x)∥ − ∥fn(x)∥ | ≥ ε}) ≤ lim
m,n→∞

µ({x : ∥fm(x)− fn(x)∥ ≥ ε}).

The right-hand limit vanishes because {fn}n∈N is Cauchy in measure, so the left-hand limit must van-
ish as well because the limit’s terms are also nonnegative. ■

We will want a few results on subsequences later on.

Lemma 8.21. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Now, fixS-measurable
functions {fn}n∈N and f . If fn → f in measure as n → ∞, then fni → f in measure as i → ∞ for any
subsequence {fni}i∈N.
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Proof. Fix some ε > 0. Then any δ > 0 has some N for which n ≥ N has

µ({x ∈ X : ∥f(x)− fn(x)∥ ≥ ε}) < δ.

As such, for any i ≥ N , we see ni ≥ i ≥ N , so

µ({x ∈ X : ∥f(x)− fni
(x)∥ ≥ ε}) < δ,

which finishes. ■

Lemma 8.22. Fix a measure space (X,S, µ) and a normed vector space B. Further, fix a sequence of
simple S-measurable functions {fn}n∈N which is Cauchy in measure. If a subsequence {fni

}i∈N con-
verges to a function f in measure, then the full sequences {fn}n∈N converges to f in measure.

Proof. Fix any ε > 0 and δ > 0. We need N such that n ≥ N implies

0 ≤ µ({x ∈ X : ∥f(x)− fn(x)∥ ≥ ε})
?
< δ.

Well, we note that any n and i will have

∥f(x)− fn(x)∥ ≤ ∥f(x)− fni
(x)∥+ ∥fni

(x)− fn(x)∥ ,

so

{x ∈ X : ∥f(x)− fn(x)∥ ≥ ε} ⊆ {x ∈ X : ∥f(x)− fni(x)∥ ≥ ε/2} ∪ {x ∈ X : ∥fni(x)− fn(x)∥ ≥ ε/2}.

Now, {fn}n∈N being Cauchy in measure allows us to pick N such that m,n ≥ N implies

µ({x ∈ X : ∥fm(x)− fn(x)∥ ≥ ε/2}) <
δ

2
.

Additionally, fni
→ f in measure grants N ′ such that i ≥ N ′ implies

µ({x ∈ X : ∥f(x)− fni
(x)∥ ≥ ε/2}) < δ

2
.

Thus, for any n ≥ N , we select any i ≥ max{N,N ′}. Notably, ni ≥ i ≥ N as well, so

µ({x ∈ X : ∥f(x)− fn(x)∥ ≥ ε}) <
δ

2
+
δ

2
= δ,

where we have used the above inequalities in addition to Lemma 5.55. ■

Lastly, here is the expected uniqueness results.

Lemma 8.23. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Further, fix a sequence
{fn}n∈N of S-measurable functions converging in measure to an S-measurable function f : X → B.
Given an S-measurable function g : X → B, we have f = g almost everywhere if and only if fn → g in
measure.

Proof. In one direction, suppose f = g almost everywhere so that we have someE ∈ S with µ(E) = 0 such
that f(x) ̸= g(x) implies x ∈ E. Now, fix some ε > 0. For any δ > 0, we are promised N such that n ≥ N
implies

µ({x ∈ X : ∥f(x)− fn(x)∥ ≥ ε}) < δ.

Now, we note that ∥g(x)− fn(x)∥ ≥ ε implies that either f(x) ̸= g(x) so that x ∈ E or ∥f(x)− fn(x)∥ ≥ ε,
so it follows

{x ∈ X : ∥g(x)− fn(x)∥ ≥ ε} = {x ∈ X : ∥f(x)− fn(x)∥ ≥ ε} ∪ {x ∈ E : ∥g(x)− fn(x)∥ ≥ ε}.

144



8.2. NOVEMBER 4 202A: TOPOLOGY AND ANALYSIS

Notably, µ({x ∈ E : ∥g(x)− fn(x)∥ ≥ ε}) = 0 as a subset of E, so we see that

µ({x ∈ X : ∥g(x)− fn(x)∥) ≤ {x ∈ X : ∥f(x)− fn(x)∥ ≥ ε}+ 0 < δ,

which finishes this direction.
Conversely, suppose fn → g in measure. Note that f(x) ̸= g(x) if and only if ∥f(x)− g(x)∥ > 0 if and

only if ∥f(x)− g(x)∥ ≥ 1/m for some positive integer m. Thus,

{x ∈ X : f(x) ̸= g(x)} ⊆
∞⋃
m=1

{x ∈ X : ∥f(x)− g(x)∥ ≥ 1/m}.

By Lemma 6.2, to show that {x ∈ X : f(x) ̸= g(x)} is a null set, it suffices to show that {x ∈ X :
∥f(x)− g(x)∥ ≥ 1/m} is a null set. Well, note that any positive integer n has

∥f(x)− g(x)∥ ≤ ∥f(x)− fn(x)∥+ ∥g(x)− fn(x)∥ ,

implying

{x : ∥f(x)− g(x)∥ ≥ 1/m} ⊆ {x : ∥f(x)− fn(x)∥ ≥ 1/(2m)} ∪ {x : ∥g(x)− fn(x)∥ ≥ 1/(2m)}.

Now, for any δ > 0, because fn → f and fn → g in measure, we are promised someN large enough so that
n ≥ N has

µ({x : ∥f(x)− fn(x)∥ ≥ 1/(2m)}), µ({x : ∥g(x)− fn(x)∥ ≥ 1/(2m)}) < δ

2
.

It follows by Lemma 5.55 that

µ({x ∈ X : ∥f(x)− g(x)∥ ≥ 1/m}) < δ

2
+
δ

2
= δ

for any δ > 0. Thus, µ({x ∈ X : ∥f(x)− g(x)∥ ≥ 1/m}) = 0 follows. ■

8.2.2 Restricting Measurable Functions
Analogously to Lemma 8.19 and Lemma 8.20, we have the following.

Lemma 8.24. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ), and fix some E ∈ S.
Given a sequence {fn}n∈N of S-measurable functions with fn → f in measure as n→∞, then fn1E →
f1E in measure as n→∞.

Proof. Note that the fn1E and f1E are all S-measurable by Lemma 7.47, so the claim at least makes sense.
For brevity, we set gn := ∥f1E − fn1E∥ for each n. We would like to show

lim
n→∞

µ
(
g−1
n ([ε,∞))

) ?
= 0.

If x /∈ E, then note gn(x) = 0; otherwise, gn(x) = ∥f(x)− fn(x)∥ because 1E(x) = 1. As such, for ε > 0, we
see x ∈ g−1

n ([ε,∞)) requires x ∈ E and then ∥f(x)− fn(x)∥ ≥ ε; conversely, x ∈ E with ∥f(x)− fn(x)∥ ≥ ε
does give gn(x) ≥ ε.

Thus, we note that
g−1
n ([ε,∞)) ⊆ {x : ∥f(x)− fn(x)∥ ≥ ε},

so Lemma 5.51 tells us

lim
n→∞

µ
(
g−1
n ([ε,∞))

)
≤ lim
n→∞

µ ({x : ∥f(x)− fn(x)∥ ≥ ε}) ,

where the right-hand limit vanishes because fn → f in measure as n → ∞. Thus, the left-hand limit also
vanishes because the terms of the limit are nonnegative. ■
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Lemma 8.25. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ), and fix some E ∈ S.
Given a sequence {fn}n∈N of S-measurable functions which is Cauchy in measure, then {fn1E}n∈N is
still Cauchy in measure.

Proof. As usual, the proof is exactly the same as before. Note that the fn1E and f1E are all S-measurable
by Lemma 7.47, so the claim at least makes sense.

For brevity, we set gm,n := ∥fm1E − fn1E∥ for each m and n. We would like to show

lim
m,n→∞

µ
(
g−1
m,n([ε,∞))

) ?
= 0.

If x /∈ E, then note gm,n(x) = 0; otherwise, gm,n(x) = ∥fm(x)− fn(x)∥ because 1E(x) = 1. As such, for
ε > 0, we see x ∈ g−1

m,n([ε,∞)) requires x ∈ E and then ∥fm(x)− fn(x)∥ ≥ ε; conversely, x ∈ E with
∥fm(x)− fn(x)∥ ≥ ε does give gm,n(x) ≥ ε.

Thus, we note that
g−1
m,n([ε,∞)) ⊆ {x : ∥fm(x)− fn(x)∥ ≥ ε},

so Lemma 5.51 tells us

lim
m,n→∞

µ
(
g−1
m,n([ε,∞))

)
≤ lim
m,n→∞

µ ({x : ∥fm(x)− fn(x)∥ ≥ ε}) ,

where the right-hand limit vanishes because {fn}n∈N is Cauchy in measure. Thus, the left-hand limit also
vanishes because the terms of the limit are nonnegative. ■

The above corollary promises the following notation.

Notation 8.26. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Then a simple inte-
grable function f on X and E ∈ S will have∫

E

f dµ :=

∫
X

f1E dµ.

Remark 8.27. One can define
µf (E) :=

∫
E

f dµ,

and it is not too hard to check that this defines a measure on S which is valued inB. This µf will later be
called the “indefinite integral for f .” We will postpone writing this out until we are ready to talk about
what this looks like when f is a general µ-integrable function instead of a simple µ-integrable function.

8.2.3 Almost Uniform Convergence
As we tend to do, we now return to a context which is perhaps too general.

Definition 8.28 (Almost uniformly). Fix a normed vector spaceB and a measure space (X,S, µ). Then a
sequence of functions fn : X → B for n ∈ N converges almost uniformly to f if and only if every ε > 0
has some Eε ∈ S such that µ(Eε) < ε and fn|X\E → f |X\E uniformly.

Remark 8.29. The term “almost” above is different from the “almost everywhere” that we’ve been see-
ing.

As usual, with a convergence definition, we have a Cauchy definition.
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Definition 8.30 (Almost uniformly Cauchy). Fix a measure space (X,S, µ) and a normed vector spaceB.
Then a sequence of functions fn : X → B for n ∈ N is almost uniformly Cauchy if and only if every ε > 0
has some Eε ∈ S such that µ(Eε) < ε and {fn|X\E}n∈N is uniformly Cauchy.

We take a deep breath and run some of our usual checks.

Lemma 8.31. Fix a normed vector space B and a measure space (X,S, µ). Now, suppose a sequence
{fn}n∈N converges almost uniformly to a function f . Then, for a function g : X → B, we have f = g
almost everywhere if and only if fn → g almost uniformly.

Proof. In one direction, suppose f = g almost everywhere so that {x ∈ X : f(x) ̸= g(x)} is contained in
someN ∈ S such that µ(N) = 0. Then for any ε > 0, we note that fn → f almost uniformly promises F ∈ S
such that µ(X \ F ) < ε while fn|F → f |F uniformly. Now, f |X\N = g|X\N , so we note fn|F\N → g|F\N
uniformly (by restricting fn|F → f |F uniformly) while

µ(X \ (F \N)) = µ
(
(X \ F ) ∪N

)
= µ(X \ F ) + µ(N ∩ F ),

where µ(N ∩ F ) = 0 because µ(N) = 0.
The other direction is harder. DefineN := {x ∈ X : f(x) ̸= g(x)}, and we show thatN is a null set. Well,

for any d > 0, we are promised subsets Fd, Gd ∈ S such that µ(Fd), µ(Gd) < 1/d and fn|X\F → f |X\F and
fn|X\G → g|X\G uniformly as n→∞.

In particular, if x /∈ (Fd ∪ Gd), then our uniform convergence will imply pointwise convergence at x, so
fn(x) → f(x) and fn(x) → g(x) as n → ∞. It follows that f(x) = g(x) by properties of convergence. Apply
contraposition, we conclude that N ⊆ Fd ∪Gd; as such, we use Lemma 5.55 to note that

µ(Fd ∪Gd) ≤ µ(Fd) + µ(Gd) <
2

d
.

We now send d→∞. Define
E :=

⋂
d≥1

(Fd ∪Gd),

which lives in S because S is a σ-ring. As above, we see that N ⊆ Fd ∪ Gd for each d, so N ⊆ E. Further,
E ⊆ Fd ∪Gd tells us by Lemma 5.51 that

µ(E) ≤ µ(Fd ∪Gd) <
2

d

for any positive integer d. In particular, sending d → ∞ forces µ(E) = 0, which finishes the proof that N is
a null set. ■

Lemma 8.32. Fix a normed vector space B and a measure space (X,S, µ). Given a sequence of func-
tions {fn}n∈N converging to f : X → B almost uniformly, we have fni → f almost uniformly for any
subsequence {fni}i∈N.

Proof. For any ε > 0, we are promised E ∈ S such that µ(X \ E) < ε and fn → f uniformly on X \ E. This
means that any δ > 0 has some N such that n ≥ N implies

|fn(x)− f(x)| < δ

for each x ∈ X \ E. However, this implies that i ≥ N gives ni ≥ i ≥ N and thus

|fn(x)− f(x)| < δ

for each x ∈ X \ E, so fni
→ f uniformly on X \ E as well. ■
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Lemma 8.33. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Fix sequences of
functions fn : X → B and gn : X → B with fn → f and gn → g almost uniformly as n→∞.

(a) We have fn + gn → f + g almost uniformly.

(b) Given some scalar a ∈ k, we have afn → af almost uniformly.

(c) We have ∥fn∥ → ∥f∥ almost uniformly as n→∞.

Proof. We go ahead and let | · | denote the norm on k. For any ε > 0, we will also go ahead and letFε, Gε ∈ S
denote the subsets of X with µ(Fε), µ(Gε) < ε for which fn|X\Fε

→ f and gn|X\Gε
→ g uniformly.

(a) For any ε > 0, define Eε := Fε/2 ∪Gε/2. Namely, Eε ∈ S, and by Lemma 5.55, we see

µ(Eε) ≤ µ(Fε/2) + µ(Gε/2) = ε.

As such, we claim that (fn + gn)|X\Eε
→ (f + g)|X\Eε

uniformly as n→∞.
Well, for any δ > 0, we are promised Nf such that any n ≥ Nf and x /∈ Fε/2 will have

∥f(x)− fn(x)∥ < δ/2.

We are promised an analogous constant Ng for gn going to g, so we set N := max{Nf , Ng}. Then
n ≥ N implies n ≥ Nf and n ≥ Ng; as such, if x /∈ Eε, then x /∈ Fε/2 and x /∈ Gε/2, so

∥(f + g)(x)− (fn + gn)(x)∥ ≤ ∥f(x)− fn(x)∥+ ∥g(x)− gn(x)∥ <
δ

2
+
δ

2
= δ.

(b) If a = 0, then we see that afn = af = 0. As such, for any ε > 0, we set E = ∅ so that µ(E) = 0 while
afn → af uniformly as n→∞ because afn(x) = 0 = af(x) for any x ∈ X.
Otherwise, we have a ̸= 0 and so |a| > 0. Thus, for any ε > 0, we note Fε will have µ(Fε) < ε, so we
claim that (afn)|X\Fε

→ (af)|X\Fε
uniformly as n→∞.

Well, we already know that fn|X\Fε
→ f |X\Fε

uniformly as n → ∞. Thus, for any δ > 0, there is a
constant N so that any n ≥ N and x /∈ Fε will have

∥f(x)− fn(x)∥ <
δ

|a|
.

It follows that n ≥ N and x /∈ Fε gives

∥(af)(x)− (afn)(x)∥ = |a| · ∥f(x)− fn(x)∥ < |a| ·
δ

|a|
= δ.

(c) Unsurprisingly, for any ε > 0, we note that Fε has µ(Fε) < ε, so we claim that ∥f∥n |X\Fε
→ ∥f∥ |X\Fε

almost uniformly as n→∞.
Well, we know that fn|X\Fε

→ f |X\Fε
as n → ∞. Thus, for any δ > 0, we are promised a constant N

such that n ≥ N and x /∈ Fε will have

∥f(x)− fn(x)∥ < δ.

As such, we note that the (reverse) triangle inequality gives

| ∥f(x)∥ − ∥fn(x)∥ | ≤ ∥f(x)− fn(x)∥ < δ,

which finishes. ■
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Lemma 8.34. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Fix sequences of
functions fn : X → B and gn : X → B which are almost uniformly Cauchy.

(a) The sequence {fn + gn}n∈N is almost uniformly Cauchy.

(b) Given some scalar a ∈ k, the sequence {afn}n∈N is almost uniformly Cauchy.

(c) The sequence {∥fn∥}n∈N is almost uniformly Cauchy.

Proof. As usual, these proofs are basically the same.
We go ahead and let | · | denote the norm on k. For any ε > 0, we will also go ahead and let Fε, Gε ∈ S

denote the subsets of X with µ(Fε), µ(Gε) < ε for which {fn|X\Fε
}n∈N and {gn|X\Gε

}n∈N are uniformly
Cauchy.

(a) For any ε > 0, define Eε := Fε/2 ∪Gε/2. Namely, Eε ∈ S, and by Lemma 5.55, we see

µ(Eε) ≤ µ(Fε/2) + µ(Gε/2) = ε.

As such, we claim that {(fn + gn)|X\Eε
}n∈N is uniformly Cauchy.

Well, for any δ > 0, we are promised Nf such that any m,n ≥ Nf and x /∈ Fε/2 will have

∥fm(x)− fn(x)∥ < δ/2.

We are promised an analogous constant Ng for gn going to g, so we set N := max{Nf , Ng}. Then
m,n ≥ N implies m,n ≥ Nf and m,n ≥ Ng; as such, if x /∈ Eε, then x /∈ Fε/2 and x /∈ Gε/2, so

∥(fm + gm)(x)− (fn + gn)(x)∥ ≤ ∥fm(x)− fn(x)∥+ ∥gm(x)− gn(x)∥ <
δ

2
+
δ

2
= δ.

(b) If a = 0, then we see that afn = afm = 0. As such, for any ε > 0, we set E = ∅ so that µ(E) = 0 while
{afn}n∈N is uniformly Cauchy because afn(x) = 0 = afm(x) for any x ∈ X.
Otherwise, we have a ̸= 0 and so |a| > 0. Thus, for any ε > 0, we note Fε will have µ(Fε) < ε, so we
claim that {(afn)|X\Fε

}n∈N is uniformly Cauchy.
Well, we already know that {fn|X\Fε

}n∈N is uniformly Cauchy. Thus, for any δ > 0, there is a constant
N so that any m,n ≥ N and x /∈ Fε will have

∥fm(x)− fn(x)∥ <
δ

|a|
.

It follows that m,n ≥ N and x /∈ Fε gives

∥(afm)(x)− (afn)(x)∥ = |a| · ∥fm(x)− fn(x)∥ < |a| ·
δ

|a|
= δ.

(c) Unsurprisingly, for any ε > 0, we note that Fε has µ(Fε) < ε, so we claim that {∥f∥n |X\Fε
}n∈N is

uniformly Cauchy.
Well, we know that {fn|X\Fε

}n∈N is uniformly Cauchy. Thus, for any δ > 0, we are promised a constant
N such that m,n ≥ N and x /∈ Fε will have

∥fm(x)− fn(x)∥ < δ.

As such, we note that the (reverse) triangle inequality gives

| ∥fm(x)∥ − ∥fn(x)∥ | ≤ ∥fm(x)− fn(x)∥ < δ,

which finishes. ■

Now, here is the main result, which we will not prove today.
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Theorem 8.35 (Riesz–Weyl). Fix a measure space (X,S, µ) and a normed vector space B. Let {fn}n∈N
be a sequence of S-measurableB-valued functions which are Cauchy in measure. Then there is a sub-
sequence {fn}n∈N which is almost uniformly Cauchy.

In particular, we will be able to define a limit function for the sequence {fn}n∈N outside some null set, which
will finally allow us to take limits of simple integrable functions in a way that makes sense.

8.3 November 7
Today we prove Theorem 8.35.

8.3.1 Rapidly Cauchy Intermission
As an intermission, we introduce the following definition.

Definition 8.36 (Rapidly Cauchy). Fix a metric space (X, d). Then a sequence {xn}n∈N in X is rapidly
Cauchy if and only if all ε > 0 have some N for which

∞∑
k=1

d(xk, xk+1) <∞.

We won’t use this definition in any meaningful way, but it will be enlightening to note that the main idea to
the proof of Theorem 8.35 is similar to the proof that a Cauchy sequence has a rapidly Cauchy subsequence.

As such, let’s see our checks on being rapidly Cauchy.

Lemma 8.37. Fix a metric space (X, d). Then any rapidly Cauchy sequence {xn}n∈N inX is also a Cauchy
sequence.

Proof. Fix any ε > 0. We want N for which n,m ≥ N give d(xn, xm) < ε. Well, set S :=
∑∞
k=1 d(xk, xk+1),

so we note that there is some N for which∣∣∣∣∣S −
n∑
k=1

d(xk, xk+1)

∣∣∣∣∣ < ε

for each n ≥ N . It follows that

S −
n∑
k=1

d(xk, xk+1) < ε

for any n ≥ N . Thus, for any m ≥ n ≥ N + 1, the triangle inequality yields

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1) =

m−1∑
k=1

d(xk, xk+1)−
n−1∑
k=1

d(xk, xk+1)
∗
≤ S −

n−1∑
k=1

d(xk, xk+1) < ε.

Notably,
∗
≤ holds because all terms in the series of S are nonnegative, so the sequence of partial sums is

increasing, so S is greater than or equal to any individual partial sum. ■

Proposition 8.38. Fix a metric space (X, d). Then any Cauchy sequence {xn}n∈N has a rapidly Cauchy
subsequence.
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Proof. We proceed inductively. Set n0 = 1. Next, suppose we already have some nk. Because {xn}n∈N, we
can find a constant nk+1 ≥ ng such that m,n ≥ nk+1 implies d(xm, xn) < 2−k. In particular, we see that
nk+1 ≥ nk in this construction tells us that

d(xnk
, xnk+1

) ≤ 2−k

for j ≥ 1. Summing, we see
∞∑
k=1

d(xk, xk+1) ≤
∞∑
k=1

2−k = 1 <∞,

so {xnk
}k∈N is the desired rapidly Cauchy subsequence. ■

8.3.2 The Riesz–Weyl Theorem
And now, our feature presentation.

Theorem 8.35 (Riesz–Weyl). Fix a measure space (X,S, µ) and a normed vector space B. Let {fn}n∈N
be a sequence of S-measurableB-valued functions which are Cauchy in measure. Then there is a sub-
sequence {fn}n∈N which is almost uniformly Cauchy.

Proof. We proceed as in Proposition 8.38. Set n0 = 1. Then we proceed inductively: suppose we already
know our nk for some k, and we construct nk+1. Note that

lim
m,n→∞

µ
(
{x ∈ X : ∥fm(x)− fn(x)∥ ≥ 2−k}

)
= 0,

so we can find a constant nk+1 > nk such that m,n ≥ nk+1 gives

µ
(
{x ∈ X : ∥fm(x)− fn(x)∥ > 2−k}

)
< 2−k.

We now claim that the sequence {fnk
}k∈N is almost uniformly Cauchy. This has two steps. Fix any ε > 0.

1. We select our small E ∈ S to avoid. Choose N for which
∞∑
k=N

2−k = 2−N+1 < ε.

As such, we set
Ek := {x ∈ X :

∥∥fnk
(x)− fnk+1

(x)
∥∥ ≥ 2−k}

so that µ(Ek) < 2−k by construction of the sequence {nk}k∈N because nk, nk+1 ≥ nk. Thus, we define
our E as

E :=

∞⋃
k=N

Ek.

Indeed, E ∈ S because Ek ∈ S for each k ≥ N , so by Lemma 6.2, we may say

µ(E) ≤
∞∑
k=N

µ(Ek) =

∞∑
k=N

2−k < ε,

where the last inequality is by construction of N .

2. It remains to check that the subsequence {fnk
|X\E}k∈N is uniformly Cauchy. Well, given δ > 0, we

need M so that i, j > M and x /∈ E gives∥∥fni(x)− fnj (x)
∥∥ ?
< δ
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for all x /∈ E. Well, find some M > N such that∑
j≥M

2−j = 2−M+1 < δ.

As such, it follows from the triangle inequality that any j > i > M will have

∥∥fni(x)− fnj (x)
∥∥ ≤ j−1∑

k=i

∥∥fnk
(x)− fnk+1

(x)
∥∥ ∗
≤

j−1∑
k=i

2−k <

∞∑
k=M

2−k < ε,

which is what we wanted. Notably,
∗
≤ holds by construction of E as a subset of Ek. ■

Example 8.39. Even in Example 8.11, there is a subsequence which is almost uniformly converging to
0. Indeed, consider the subsequence {1E2n

}n∈N. Then for any ε > 0, we find someN for which 2−N < ε
and set E :=

[
0, 1/2N

)
to have measure less than ε. But now, for n ≥ N , we see that 1E2n

|X\E = 0
because E2n ⊆ E. Thus, 1E2n

|X\E → 0 uniformly as n→∞.

We are now ready to use the condition that we are integrating into a Banach space!

Lemma 8.40. Fix a measure space (X,S, µ) and a Banach space B. Further, fix an almost uniformly
Cauchy sequence {fn}n∈N of S-measurable functions. Then there is an S-measurable function f : X →
B such that fn → f almost uniformly as n→∞.

Proof. The main idea is that the almost uniformity condition allows us to define f outside a null set, which
is good enough.

For each n ∈ N, we get someEn such that µ(En) < 1/n and such that {fi|X\En
}i∈N is uniformly Cauchy.

We now set

E :=

∞⋂
n=1

En.

Note E ∈ S by Remark 5.24, and Lemma 5.51 tells us that µ(E) ≤ µ(En) < 1/n for each n, so it follows
µ(E) = 0.

Now, for anyx ∈ X\E, we can find k for whichx /∈ Ek. Thus, because {fn|X\Ek
}n∈N is uniformly Cauchy,

we see that {fn(x)|X\Ek
}n∈N is Cauchy; we define f(x) as its limit. Note we have used the fact that B is a

Banach space here! This defines f outside the null set E.
It doesn’t really matter what f does on E, so we just define f(x) = 0 for x ∈ E. We will quickly run

checks to show that f is S-measurable, but they are not terribly important.

• We show fn1X\E is S-measurable for each n. This proof is similar to Lemma 7.47, so we will use the
ideas of that proof. For example, im fn is separable, and as remarked in Lemma 7.47, we have

im fn1X\E ⊆ {0} ∪ im fn.

As such, {0} ∪ im fn is separable by Example 7.32, so im fn1X\E is separable by Remark 7.31.
Further, for any open U ⊆ B \ {0}, we again note from the proof of Lemma 7.47 that

(fn1E)
−1(U) = (X \ E) ∩ f−1

n (U) = f−1
n (U) \ E.

In particular, f−1
n (U) ∈ S because fn is S-measurable, so f−1

n (U) \ E ∈ S follows.

• We show fn1X\E → f pointwise as n → ∞. If x /∈ E, then we recall that we defined f(x) as the limit
of {fn(x)}n∈N, so the result follows by real analysis because (fn1X\E)(x) = fn(x) in this case.
Otherwise, x ∈ E, so (fn1X\E)(x) = 0 for each n, and f(x) = 0 by construction of f . So this case is
just looking at a constant sequence.
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It follows that f is S-measurable by Corollary 7.44.
We now check that fn → f almost uniformly as n→∞. This is done in steps. Fix some ε > 0. We begin

by selecting our small subset to avoid. Choose some N with N > 1/ε. Note µ(EN ) < 1/N < ε, so we will
show that fn|X\EN

→ f |X\EN
uniformly as n→∞.

For this, we proceed as in Proposition 3.24. Fix any δ > 0. Because {fn|X\EN
} is uniformly, we are

promised some M such that m,n ≥M and x /∈ EN gives

∥fm(x)− fn(x)∥ < δ/2.

Now, for any x ∈ X and n ≥M , we see

∥f(x)− fn(x)∥ ≤ ∥f(x)− fm(x)∥+ ∥fm(x)− fn(x)∥ < ∥f(x)− fm(x)∥+ δ

2

for any m ≥ N . However, we see x /∈ EN implies x /∈ E, so f(x) was constructed to be the limit of
{fm(x)}m∈N, so all m sufficiently large have ∥f(x)− fm(x)∥ < δ/2. Ensuring that we choose an m with
m ≥M as well allows us to conclude

∥f(x)− fn(x)∥ < ∥f(x)− fm(x)∥+ δ

2
< δ

for any n ≥ N and x /∈ EN . ■

Remark 8.41. Note that the limit f is unique by Lemma 8.31.

8.4 November 9

Today we define integrable functions. We went through this discussion quickly last class but are now going
through it in more detail, so I have just moved the exposition to today.

8.4.1 Convergence in Mean
We are going to want yet another notion of convergence, to align with our desire to integrate.

Definition 8.42 (Converge in mean). Fix a measure space (X,S, µ) and a normed vector spaceB. Then a
sequence {fn}n∈N of simpleµ-integrable functions converges in mean to a simpleµ-integrable function
f if and only if ∥f − fn∥1 → 0 as n→∞.

Definition 8.43 (Mean Cauchy). Fix a normed vector spaceB and a measure space (X,S, µ). A sequence
of simple µ-integrable functions {fn}n∈N is mean Cauchy if and only if it is Cauchy for the semi-norm
∥·∥1. In other words, we require

lim
m,n→∞

∥fm − fn∥1 = 0.

Remark 8.44. Because simple µ-integrable functions form a vector space by Lemma 7.17, we see that
∥f − fn∥1 and ∥fm − fn∥1 are legal expressions.

Here are the usual checks.
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Lemma 8.45. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Further, fix a se-
quence of simple µ-integrable functions fn : X → B and gn : X → B with fn → f and gn → g in mean
as n→∞.

(a) We have fn + gn → f + g in mean.

(b) Given some scalar a ∈ k, we have afn → af in mean.

(c) We have ∥fn∥ → ∥f∥ in mean.

Proof. For (a) and (b), note the relevant functions are simple µ-integrable by Lemma 7.17; for (c), the rele-
vant functions are simple µ-integrable by Lemma 7.18. Now, (a) and (b) follow directly from Lemma 1.59,
where we are using the fact that ∥·∥1 is a semi-norm by Lemma 8.6.

It remains to show (c). For any ε > 0, we are promised N such that n ≥ N implies

∥f − fn∥1 < ε.

By the reverse triangle inequality, we see

| ∥f(x)∥ − ∥fn(x)∥ | ≤ ∥f(x)− fn(x)∥

for each x ∈ X, so Corollary 8.4 tells us

| ∥f∥ − ∥fn∥ |1 =

∫
X

| ∥f∥ − ∥fn∥ | dµ ≤
∫
X

∥f − fn∥ dµ = ∥f − fn∥1 < ε

for each n ≥ N . This finishes. ■

Lemma 8.46. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Further, fix a se-
quence of simple µ-integrable functions {fn}n∈N and {gn}n∈N which are mean Cauchy.

(a) The sequence {fn + gn}n∈N is mean Cauchy.

(b) Given some scalar a ∈ k, the sequence {afn}n∈N is mean Cauchy.

(c) The sequence {∥fn∥}n∈N is mean Cauchy.

Proof. These proofs are essentially identical. For (a) and (b), note the relevant functions are simple µ-
integrable by Lemma 7.17; for (c), the relevant functions are simpleµ-integrable by Lemma 7.18. As before,
(a) and (b) follow from Lemma 1.65 upon noting ∥·∥1 is a semi-norm by Lemma 8.6.

It remains to show (c). For any ε > 0, we are promised N such that m,n ≥ N implies

∥fm − fn∥1 < ε.

By the reverse triangle inequality, we see

| ∥fm(x)∥ − ∥fn(x)∥ | ≤ ∥f(x)− fn(x)∥

for each x ∈ X, so Corollary 8.4 tells us

| ∥fm∥ − ∥fn∥ |1 =

∫
X

| ∥fm∥ − ∥fn∥ | dµ ≤
∫
X

∥fm − fn∥ dµ = ∥fm − fn∥1 < ε

for each m,n ≥ N . This finishes. ■
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Lemma 8.47. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Given a sequence
of simple µ-integrable function {fn}n∈N which is mean Cauchy and a set E ∈ S, then the sequence
{fn1E}n∈N is still mean Cauchy.

Proof. Fix some ε > 0. We are promised some N such that m,n ≥ N implies ∥fm − fn∥1 < ε. Now, for any
x ∈ X, we see

∥fm1E − fn1E∥ (x) =
(
∥fm − fn∥ 1E

)
(x) ≤ ∥fm − fn∥ (x),

so Corollary 8.4 tells us

∥fm1E − fn1E∥1 =

∫
X

∥fm1E − fn1E∥ dµ ≤
∫
X

∥fm − fn∥ dµ = ∥fm − fn∥1 ,

which is less than ε for m,n ≥ N . This is what we wanted. ■

Lemma 8.48. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). If {fn}n∈N is a mean
Cauchy sequence of simple µ-integrable functions, then any subsequence {fni

}i∈N is a mean Cauchy
sequence of simple µ-integrable functions.

Proof. For any ε > 0, we are given N such that m,n ≥ N implies ∥fm − fn∥1 < ε. Because ni ≥ n for each
i, we see i, j ≥ N has

∥∥fni
− fnj

∥∥
1
< ε as well, which is what we wanted. ■

8.4.2 Comparing Convergences
We are going to want to see the comparative strengths of different convergences. Here is a starting result,
which was moved from an earlier lecture for thematic reasons. Note this generalizes Example 8.14.

Lemma 8.49. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Then a sequence of
simple µ-integrable functions fn : X → B for n ∈ N which is mean Cauchy is also Cauchy in measure.

Proof. Fix ε > 0 and set
Eεm,n := {x ∈ X : ∥fm(x)− fn(x)∥ ≥ ε},

which has finite measure by Remark 8.17. We need to show that

lim
m,n→∞

µ(Eεm,n)
?
= 0.

Notably, for each x ∈ X, we must have

1Eε
m,n

(x) ≤ ∥fm(x)− fn(x)∥
ε

(8.2)

by definition ofEεm,n. Now, both sides of this equation are simple µ-integrable functions: 1Eε
m,n

is by Exam-
ple 7.6; and fm − fn is simple µ-integrable by Lemma 7.17, as is ∥fm − fn∥ by Lemma 7.18, so 1

ε ∥fm − fn∥
is simple µ-integrable by Lemma 7.17 again.

Thus, we may integrate, for which Corollary 8.4 tells us

µ(Eεm,n) =

∫
X

1Eε
m,n

dµ ≤
∫
X

∥fm − fn∥
ε

dµ =
∥fm − fn∥1

ε
,

where the first integral was computed using Example 7.16. But as m,n→∞, the right-hand value goes to
0 because {fn}n∈N is Cauchy for ∥·∥1, so the left-hand value must also go to 0. ■
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Remark 8.50. A similar proof works for when we are Cauchy for ∥·∥p for finite p by taking pth powers of
(8.2). For example, in probability theory, the result for ∥·∥2 is essentially Chebyshev’s inequality.

We now note that converging almost uniformly is stronger than in measure.

Lemma 8.51. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Further, fix a sequence
{fn}n∈N of S-measurable functions and an S-measurable function f .

(a) If fn → f almost uniformly as n→∞, then fn → f in measure.

(b) If {fn}n∈N is almost uniformly Cauchy, then {fn}n∈N is Cauchy in measure.

Proof. Here we go.

(a) For any ε > 0, we need to show that

lim
n→∞

µ({x ∈ X : ∥f(x)− fn(x)∥})
?
= 0.

Well, for any δ > 0, we need N such that n ≥ N has

µ({x ∈ X : ∥f(x)− fn(x)∥)
?
< δ.

Now, by the almost uniform convergence, we are promised F ∈ S such that µ(X \ F ) < δ and fn → f
uniformly as n→∞ onF . Now using our uniform convergence, we chooseN such that n ≥ N implies

∥f(x)− fn(x)∥ < ε

for each x ∈ F . In particular, for n ≥ N , we see

{x ∈ X : ∥f(x)− fn(x)∥ ≥ ε} ⊆ X \ F,

so Lemma 5.51 tells us
µ({x : ∥f(x)− fn(x)∥ ≥ ε}) ≤ µ(X \ F ) < δ,

which finishes.

(b) This proof is essentially the same. For any ε > 0, we need to show that

lim
n→∞

µ({x ∈ X : ∥fm(x)− fn(x)∥})
?
= 0.

Well, for any δ > 0, we need N such that m,n ≥ N has

µ({x ∈ X : ∥fm(x)− fn(x)∥)
?
< δ.

Now, by the almost uniform convergence, we are promisedF ∈ S such that µ(X \F ) < δ and {fn}n∈N
is uniformly Cauchy onF . Now using the fact we’re uniformly Cauchy, we chooseN such thatm,n ≥ N
implies

∥fm(x)− fn(x)∥ < ε

for each x ∈ F . In particular, for m,n ≥ N , we see

{x ∈ X : ∥fm(x)− fn(x)∥ ≥ ε} ⊆ X \ F,

so Lemma 5.51 tells us

µ({x : ∥fm(x)− fn(x)∥ ≥ ε}) ≤ µ(X \ F ) < δ,

which finishes. ■

Further, convergence almost uniformly is stronger than convergence almost everywhere.
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Lemma 8.52. Fix a normed vector space (B, ∥·∥) and a measure space (X,S, µ). Further, fix a sequence
{fn}n∈N of functions which converge to f almost uniformly asn→∞. Then fn → f almost everywhere.

Proof. Let F be the set of points such that {fn(x)}n∈N does not converge to f(x) as n→∞. Now, for each
i, almost uniform convergence promises us some Ei ∈ S such that µ(Ei) < 1/i and fn|X\Ei

→ f |X\Ei

uniformly. In particular, for x /∈ Ei, we have fn(x) → f(x) as n → ∞, so it follows that F ⊆ Ei for each i.
However,

E :=

∞⋂
i=1

Ei

is a set in S (by Remark 5.24) with µ(E) ≤ µ(Ei) < 1/i for each i (by Lemma 5.51), so µ(E) = 0 follows.
Because F ⊆ E, we are done. ■

8.4.3 Integrable Functions
Our payoff to our hard work is a definition of integrable functions. Here it is.

Theorem 8.53. Fix a normed k-vector space (B, ∥·∥) and a measure space (X,S, µ). Then given an S-
measurable function f , the following are equivalent.

(a) There is a mean Cauchy sequence of simpleµ-integrable functions that converges to f in measure.

(b) There is a mean Cauchy sequence of simple µ-integrable functions that converges to f almost
uniformly.

(c) There is a mean Cauchy sequence of simple µ-integrable functions that converges to f almost
everywhere.

Proof. We show our implications in sequence. In all parts, let {fn}n∈N be the requested mean Cauchy se-
quence of simple µ-integrable functions.

• We show (a) implies (b). This holds from the Riesz–Weyl theorem. Namely, by Theorem 8.35, {fn}n∈N
will have a subsequence {fni

}i∈N which is almost uniformly Cauchy; this subsequence remains mean
Cauchy by Lemma 8.48.
It remains to show that fni → f almost uniformly as i → ∞. By Lemma 8.40, we see that fni → g
almost uniformly for some S-measurable function g : X → B, but then Lemma 8.51 tells us fni → g
in measure.
However, fn → f in measure implies that fni

→ f in measure by Lemma 8.21, so f = g almost
everywhere by Lemma 8.23, so fni

→ f almost uniformly by Lemma 8.31.

• We show (b) implies (c) and (a). Well, converging almost uniformly automatically forces us to converge
in measure by Lemma 8.51 and almost everywhere by Lemma 8.52.

• We show (c) implies (a). Well, if {fn}n∈N is mean Cauchy, then the sequence is Cauchy in measure by
Lemma 8.51 and therefore has a subsequence {fni

}i∈N which is almost uniformly Cauchy by Theo-
rem 8.35. Notably, fni

→ f almost everywhere because fn → f almost everywhere, using the same
null set.
However, this subsequence {fni}i∈N will then converge to some S-measurable g : X → B almost
uniformly by Lemma 8.40, so fni → g almost everywhere by Lemma 8.52. It follows that f = g almost
everywhere,1 so fni

→ f almost uniformly by Lemma 8.31. ■

As such, we have the following definition.
1 We know fn → f outside some null set F , and fn → g outside some null set G, so f(x) = g(x) outside the null set F ∪G.
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Definition 8.54 (Integrable). Fix a measure space (X,S, µ) and a normed vector space B. Then an S-
measurable function f : X → B is µ-integrable if and only if one of the equivalent conditions from
Theorem 8.53 is satisfied. This set of integrable functions is often denotedL1(X,S, µ,B), where some
data might be omitted when we want to.

Remark 8.55. Later on, we will define ∫
X

f dµ := lim
n→∞

∫
X

fn dµ.

However, we have not yet checked that this definition is well-defined.

Remark 8.56. Later on we will also define L∞(X,S, µ,B) as the bounded S-measurable functions as
well as more general Lp(X,S, µ,B) for finite p where∫

X

∥f∥p dµ <∞.

As an example fact, we can see that L1(X,S, µ,B) is a module over the ring L∞(X,S, µ, k), where B is
a normed k-vector space. We will not check this here.

Remark 8.57. Morally perhaps, one should define integrable functions to be merely µ-measurable in-
stead ofS-measurable. I have not done this for technical reasons because I find it exceedingly annoying
to have to keep removing a null set. If this distinction is distressing, then replace S with the σ-algebra
generated by S and the null sets of µ.

Example 8.58. If f is a simple µ-integrable function, then the sequence {f}n∈N is mean Cauchy and
converges to f almost everywhere, so f is also a µ-integrable function.

Here are the usual checks.

Lemma 8.59. Fix a measure space (X,S, µ) and a normed k-vector spaceB. Then L1(X,S, µ,B) forms
a k-vector space.

Proof. Here are our checks. For brevity, set L1 := L1(X,S, µ,B).

• Zero: note that the zero function is 1∅ and thus a simple µ-integrable function (by Example 7.16) and
thus a simple µ-integrable function (by Example 8.58).

• Addition: given f, g ∈ L1, we show f + g ∈ L1. Well, pick up mean Cauchy sequences {fn}n∈N and
{gn}n∈N of simple µ-integrable functions which converge in measure to f and g respectively.
Now, note{fn+gn}n∈N is mean Cauchy by Lemma 8.46, andfn+gn → f+g in measure by Lemma 8.20,
so f + g ∈ L1.

• Scalar multiplication: given a scalar a ∈ k and f ∈ L1, we show af ∈ L1. Well, pick up our mean
Cauchy sequence {fn}n∈N of simple µ-integrable functions which converges to f in measure. Then
{afn}n∈N is mean Cauchy by Lemma 8.46 and converges in measure to af by Lemma 8.19. ■

Lemma 8.60. Fix a measure space (X,S, µ) and a normed vector spaceB. Given aµ-integrable function
f : X → B and measurable set E ∈ S, the function f1E is still µ-integrable.
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Proof. As usual, pick up our mean Cauchy sequence {fn}n∈N of simple µ-integrable functions converging
to f in measure. Then Lemma 7.47 tells us that fn1E is still simple µ-integrable. Further, Lemma 8.47 tells
us {fn1E}n∈N is still mean Cauchy, and Lemma 8.24 tells us fn1E → f1E in measure. Thus, f1E is in fact
µ-integrable. ■

Remark 8.61. As in Remark 7.48, we note that E ∈ S will have 1X = 1E + 1X\E , so f1X\E = f − f1E
is still µ-integrable by Lemma 8.60 and Lemma 8.59.

Lemma 8.62. Fix a measure space (X,S, µ) and a normed vector spaceB. Given aµ-integrable function
f : X → B, the function ∥f∥ is still µ-integrable.

Proof. As usual, pick up our mean Cauchy sequence {fn}n∈N of simple µ-integrable functions converging
to f in measure. Then Lemma 7.18 tells us that each ∥fn∥ is still a simple µ-integrable function. As such, we
see Lemma 8.46 tells us {∥fn∥}n∈N is mean Cauchy, and ∥fn∥ → ∥f∥ in measure by Lemma 8.19. It follows
∥f∥ is µ-integrable. ■

Example 8.63. We mimic Example 7.46. If f : X → R is µ-measurable, then Lemma 8.62 tells us that
|f | is also µ-measurable. As such, if f, g : X → R are S-measurable, then (f + g) and (f − g) are S-
measurable by Lemma 8.59, so |f − g| is S-measurable, so

min{f, g} = (f + g) + |f − g|
2

and max{f, g} = (f + g)− |f − g|
2

are µ-measurable by Lemma 8.59 again. Inducting, for any µ-measurable functions {fi}ni=1, the mini-
mum function min{f1, . . . , fn} and maximum function max{f1, . . . , fn} are both µ-measurable.

8.4.4 Towards Defining Integrals
We now move towards defining integration.

Lemma 8.64. Fix a measure space (X,S, µ) and a normed k-vector space B. Further, fix mean Cauchy
sequences of simple µ-integrable functions {fn}n∈N and {gn}n∈N which converges to f and g in mea-
sure, respectively. If ∥fn − gn∥1 → 0 as n→∞, then f = g almost everywhere.

Proof. The key trick is to consider the sequence f1, g1, f2, g2, . . .. To be explicit, define {hn}n∈N by h2n = fn
and h2n−1 = gn. Here are our checks on {hn}n∈N.

• Note that each n ∈ N has hn is either an fi or gi and is therefore a simple µ-integrable functions.

• We claim that {hn}n∈N is Cauchy in measure; it suffices to show that {hn}n∈N is mean Cauchy by
Lemma 8.49.
Well, fix any ε > 0. Because {fn}n∈N and {gn}n∈N are mean Cauchy, we get Nf and Ng such that

m,n ≥ Nf =⇒ ∥fm − fn∥1 < ε and m,n ≥ Ng =⇒ ∥fm − fn∥1 < ε.

Further, ∥fn − gn∥1 → 0 as n→∞, so we get N ′ such that n ≥ N ′ implies ∥fn − gn∥1 < ε.
Combining, set N := max{2Nf , 2Ng + 1, 2N ′}. Then, for m,n ≥ N , we have three cases according to
parity.

– If m = 2k and n = 2ℓ, then k, ℓ ≥ Nf , so ∥hm − hn∥1 = ∥fk − fℓ∥1 < ε.
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– If m = 2k + 1 and n = 2ℓ+ 1

The case with m odd and n even is analogous to the last one, by symmetry. This finishes our check.

• Note h2n = fn for eachn, so the subsequence {h2n}n∈N converges to f in measure. Thus, Lemma 8.22
tells us hn → f in measure.

• Analogously, note h2n−1 = gn for each n, so the subsequence {h2n−1}n∈N converges to g in measure.
Thus, Lemma 8.22 tells us hn → g in measure.

From the above checks, we see from Lemma 8.23 that f = g almost everywhere. ■

The point here is that we can take equivalence classes in L1(X,S, µ,B) to get a bona fide norm from our
semi-norm ∥·∥1.

To finish our discussion of completeness, we will need the following result, which we will state but not
prove today.

Proposition 8.65. Fix a measure space (X,S, µ) and a normed vector space (B, ∥·∥). Suppose {fn}n∈N
and {gn}n∈N are mean Cauchy sequences of simpleµ-integrable functions which both converge to some
S-measurable function f in measure. Then ∥fn − gn∥1 → 0 as n→∞.

Roughly speaking, this will imply that the integral
∫
X
f dµ is well-defined.

8.5 November 14

Today we show that the space L1 is complete. Here is a challenge problem.

Remark 8.66. Here is a challenge problem. Fix a sequence of continuous functions fn : [0, 1] → [0, 1].
Show that if fn → f pointwise, then ∥fn∥1 → 0 as n → ∞, where ∥fn∥1 is defined using the Riemann
integral. There are proofs which do not use any measure theory!

8.5.1 Equivalent Mean Cauchy Sequences
Last class we were about to prove the following result.

Proposition 8.65. Fix a measure space (X,S, µ) and a normed vector space (B, ∥·∥). Suppose {fn}n∈N
and {gn}n∈N are mean Cauchy sequences of simpleµ-integrable functions which both converge to some
S-measurable function f in measure. Then ∥fn − gn∥1 → 0 as n→∞.

For this proof, we will want the following lemma.

Lemma 8.67. Fix a measure space (X,S, µ) and a mean Cauchy sequence of nonnegative simple µ-
integrable functions fn : X → R. If fn → 0 in measure, then ∥fn∥1 → 0.

Proof. By Lemma 8.49, we see {fn}n∈N is Cauchy in measure, so we may use Theorem 8.35 to extract an
almost uniformly Cauchy subsequence {fni}i∈N, which we then see almost uniformly converges to 0 by
Lemma 8.32.

For another reduction, we note that {∥fn∥1}n∈N is a Cauchy sequence: for any ε > 0, find N such that
∥fm − fn∥1 < ε for m,n ≥ N . Then

| ∥fm∥1 − ∥fn∥1 | ≤ ∥fm − fn∥1 < ε
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for m,n ≥ N by the (reverse) triangle inequality from Lemma 8.6. As such, {∥fn∥1}n∈N does converge to
some real number r, and the subsequence {fni}i∈N will also converge to the same real number r. So we will
show that ∥fni

∥1 → 0 as i→∞.
Now, to simplify notation, set gi := fni

so that gi → 0 almost uniformly, and we want to show ∥gi∥1 → 0
as i→∞. Fix ε > 0; we want N such that n ≥ N has

0 ≤ ∥gn∥1
?
< ε.

This means we have to bound an integral, which we do in many pieces. To begin, our sequence {gn}n∈N is
mean Cauchy, so we start with some N1 such that m,n ≥ N1 implies ∥gm − gn∥1 < ε/4. Now here are the
pieces of our integral.

1. Set F := g−1
N1

(B \ {0}), which is in S by Lemma 7.34 and has finite measure by definition of a simple
µ-integrable function. Now, for n ≥ N1, we see any x ∈ X \ F has

gn(x) = |gn(x)− gN1(x)|,

so ∫
X

gn1X\F dµ =

∫
X

|gn(x)− gN (x)|1X\F dµ
∗
≤
∫
X

|gn(x)− gN (x)| dµ = ∥gn − gN∥1 <
ε

4
,

where we have used Corollary 8.4 in
∗
≤. (Note gn1X\F is simple µ-integrable by Remark 7.48.)

2. To continue, we recall gn → 0 almost uniformly, so we use δ := ε
4(1+∥gN∥∞) > 0 to find G ∈ S with

µ(G) < δ and gn → 0 uniformly on X \G.
As such, we can choose N2 for which n ≥ N2 has

gn(x) ≤
ε

4(1 + µ(F ))

for each x ∈ X \G. Integrating, we see n ≥ N2 gives∫
X

gn1F\G dµ ≤
∫
X

(
ε

4(1 + µ(F ))
· 1F\G

)
dµ

by Corollary 8.4. (Note gn1F\G = gn1F −gn1F∩G is a simple µ-integrable function by Lemma 7.47 and
Lemma 7.17.) Using Lemma 8.1 and then Example 7.16 to compute the integral, we see∫

X

gn1F\G dµ ≤
ε

4(1 + µ(F ))
· µ(F \G) < ε

4(1 + µ(F ))
· (1 + µ(F )) ≤ ε

4
,

where µ(F \G) ≤ µ(F ) by Lemma 5.51.

3. It remains to handle what’s happening on F ∩ G. Well, µ(F ∩ G) ≤ µ(G) < δ by Lemma 5.51, so
whatever happens here is pretty small. Indeed, note any n gives

gn1F∩G ≤ |gn − gN |1F∩G + |gN |1F∩G ≤ |gn − gN |+ ∥gN∥∞ 1G,

so Corollary 8.4 and Lemma 8.1 tells us∫
X

gn1F∩G dµ ≤
∫
X

|gn − gN | dµ︸ ︷︷ ︸
∥gn−gN∥1

+ ∥gN∥∞
∫
X

1G dµ.

(As usual, the relevant restricted functions are simple µ-integrable by Lemma 7.47.) By Example 7.16,
we see ∫

X

1G dµ = µ(G) < δ =
ε

4(1 + ∥gN∥∞)
,
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so we have the bound∫
X

gn1F∩G dµ ≤ ∥gn − gN∥1 + ∥gN∥∞ ·
ε

4(1 + ∥gN∥∞)
< ∥gn − gN∥1 +

ε

4
.

As such, n ≥ N1 will give ∫
X

gn1F∩G dµ <
ε

2
.

In total, we set N := max{N1, N2} so that n ≥ N implies∫
X

gn dµ =

∫
X

gn1X\F dµ+

∫
X

gn1F\G dµ+

∫
X

gn1F∩G dµ <
ε

4
+
ε

4
+
ε

2
= ε,

where we have used Lemma 8.1 in the first equality. This finishes. ■

We are now ready to prove Proposition 8.65.

Proof of Proposition 8.65. Unsurprisingly, set hn := fn − gn, which is a simple µ-integrable function by
Lemma 7.17. Note {hn}n∈N is a mean Cauchy sequence by Lemma 8.46 and converges to f − f = 0 in
measure by Lemma 8.19.

We want to show that ∥hn∥1 → 0 as n → ∞, so we define jn := ∥hn∥, which is mean Cauchy by
Lemma 8.46. Furthermore, jn → 0 in measure by Lemma 8.19 (note ∥0∥ = 0), so Lemma 8.67 tells us
that ∥jn∥1 → 0 as n→∞. However, for any n,

∥jn∥1 =

∫
X

|jn| dµ =

∫
X

∥hn∥ dµ = ∥hn∥1 ,

so it follows ∥hn∥1 → 0 as n→∞ as well. ■

The above result grants us a natural bijection between equivalence classes of mean Cauchy sequences of
simple µ-integrable functions and “almost everywhere” equivalence classes of µ-integrable functions. So
we have constructed our completion of simple µ-integrable functions.

Remark 8.68. As an aside, we note that the ∥·∥1 norm is pretty poorly behaved at points. For example,
the function C([0, 1])→ [0, 1] by f 7→ f(1) is not continuous for ∥·∥1. Namely, define fn(x) = xn so that
fn → 0 in mean (we will be able to check this eventually) as n→∞, but fn(1)→ 1 as n→∞.

8.5.2 Defining Integrals
The main use of Proposition 8.65 is the following corollary.

Corollary 8.69. Fix a measure space (X,S, µ) and a normed vector space (B, ∥·∥). Given mean Cauchy
sequences {fn}n∈N and {gn}n∈N of simple µ-integrable functions both converging to an S-measurable
function f in measure, we have

lim
n→∞

∫
X

fn dµ = lim
n→∞

∫
X

gn dµ.

Namely, if the limits exist, then they are equal. If B is a Banach space, then the limits exist.

Proof. There are two claims here, which we will show in sequence.
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• Suppose the limits exist. We show they are equal. Using Lemma 8.1, it suffices to show that

lim
n→∞

∫
X

(fn − gn) dµ

vanishes. Well, by Proposition 8.65, we see ∥fn − gn∥1 → 0 as n → ∞. Thus, for any ε > 0, we are
promised some N for which n ≥ N has ∥fn − gn∥1 < ε. But then Lemma 8.2 implies∥∥∥∥∫

X

(fn − gn) dµ
∥∥∥∥ ≤ ∫

X

∥fn − gn∥ dµ = ∥fn − gn∥1 < ε

for n ≥ N , which is what we wanted.

• Now suppose that B is a Banach space, and we must show the limits exist. By symmetry, it suffices
to show that limn→∞

∫
X
fn dµ exists. Because B is complete, it suffices to show that the sequence∫

X
fn dµ of elements in B is Cauchy.

Well, fix some ε > 0. We see {fn}n∈N is mean Cauchy, so there is someN such thatm,n ≥ N implies
∥fm − fn∥1 < ε. We now bound. Using Lemma 8.1 and Lemma 8.2, we see∥∥∥∥∫

X

fm dµ−
∫
X

fn dµ

∥∥∥∥ =

∥∥∥∥∫
X

(fm − fn) dµ
∥∥∥∥ ≤ ∫

X

∥fm − fn∥ dµ = ∥fm − fn∥1 ,

which is less than ε for m,n ≥ N . This finishes. ■

Remark 8.70. It is not too hard to extend the above proof to show that if just one of the limits exist, then
both of them exist. We will not need this.

As such, we are prepared to finally define integrals.

Definition 8.71 (Integral). Fix a measure space (X,S, µ) and a Banach space B. Given an integrable
function f : X → B, find the corresponding sequence mean Cauchy sequence {fn}n∈N of simple µ-
integrable functions with fn → f in measure. Then we define the integral by∫

X

f dµ := lim
n→∞

∫
X

fn dµ.

Example 8.72. If f : X → B is already a simple µ-integrable function, then {f}n∈N is mean Cauchy with
f → f in measure, so our new integral

∫
X
f dµ takes the intended value.

Note that this limit exists and is well-defined by Corollary 8.69. We now pick up some facts about our inte-
gral. The main theme here is to just reduce these facts to the corresponding one about simple µ-integrable
functions.

Proposition 8.73. Fix a measure space (X,S, µ) and a Banach k-spaceB. Further, fixµ-integrable func-
tions f and g and scalars a, b ∈ k. Then∫

X

(af + bg) dµ = a

∫
X

f dµ+ b

∫
X

g dµ.

Proof. Because f and g are µ-integrable, we are promised mean Cauchy sequences {fn}n∈N and {gn}n∈N of
simple µ-integrable functions such that fn → f and gn → g in measure.

Now, it follows from the proof of Lemma 8.59 that {afn}n∈N and {bgn}n∈N are mean Cauchy sequences
of simple µ-integrable functions converging to af and bg in measure, so {afn + bgn}n∈N is a mean Cauchy
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sequence of simple µ-integrable functions converging to af + bg in measure. As such, we begin by using
Lemma 8.1 to compute ∫

X

(afn + bgn) dµ = a

∫
X

fn dµ+ b

∫
X

gn dµ,

so∫
X

(af + bg) dµ = lim
n→∞

∫
X

(afn + bgn) dµ = a lim
n→∞

∫
X

fn dµ+ b lim
n→∞

∫
X

gn dµ = a

∫
X

f dµ+ b

∫
X

g dµ,

which is what we wanted. ■

Here are the usual bounding results.

Lemma 8.74. Fix a measure space (X,S, µ). Given aµ-integrable function f : X → R, if f(x) ≥ 0 almost
everywhere, we have ∫

X

f dµ ≥ 0.

Proof. The main point is that f = |f | almost everywhere. Indeed, we are promised some E ∈ S such that
µ(E) = 0 and f(x) ≥ 0 for x ∈ X \ E. Now, pick up our mean Cauchy sequence {fn}n∈N of simple µ-
integrable functions such that fn → f in measure. It follows from the proof of Lemma 8.62 that {|fn|}n∈N
is also a mean Cauchy sequence of simple µ-integrable functions but with |fn| → |f | in measure. However,

|f |(x) = |f(x)| = f(x)

for each x ∈ X \ E, so |f | = f almost everywhere, so |fn| → f in measure by Lemma 8.23. Thus,∫
X

f dµ = lim
n→∞

∫
X

|fn| dµ.

However, |fn|(x) ≥ 0 for each x ∈ X, so the integrals on the right-hand side are nonnegative by Lemma 8.3.
It follows

∫
X
f dµ ≥ 0. ■

Lemma 8.75. Fix a measure space (X,S, µ). Given µ-integrable functions f, g : X → R such that f(x) ≥
g(x) almost everywhere, we have ∫

X

f dµ ≥
∫
X

g dµ.

Proof. Quickly, note f − g is µ-integrable by Lemma 8.59. By Proposition 8.73, it suffices to show that∫
X

(f − g) dµ ≥ 0.

However, (f − g)(x) = f(x)− g(x) ≥ 0 almost everywhere, so this follows directly from Lemma 8.74. ■

Lemma 8.76. Fix a measure space (X,S, µ). Given a µ-integrable function f : X → B, we have∥∥∥∥∫
X

f dµ

∥∥∥∥ ≤ ∫
X

∥f∥ dµ.
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Proof. Quickly, note ∥f∥ is µ-integrable by Lemma 8.62. Now, as usual, pick up our mean Cauchy se-
quence {fn}n∈N of simple µ-integrable functions such that fn → f in measure. It follows from the proof of
Lemma 8.62 that {∥fn∥}n∈N is a mean Cauchy sequence of simple µ-integrable functions with ∥fn∥ → ∥f∥
in measure. It follows ∫

X

∥f∥ dµ = lim
n→∞

∫
X

∥fn∥ dµ.

Now, using Lemma 8.2, we see ∫
X

∥f∥ dµ ≥ lim
n→∞

∥∥∥∥∫
X

fn dµ

∥∥∥∥ .
To finish, we note that ∥·∥ : B → R is continuous (Example 1.38), so Lemma 1.57 grants∫

X

∥f∥ dµ ≥
∥∥∥∥ lim
n→∞

∫
X

fn dµ

∥∥∥∥ =

∥∥∥∥∫
X

f dµ

∥∥∥∥ ,
which is what we wanted. ■

8.5.3 A Semi-Norm forL1

Here is our semi-norm.

Notation 8.77. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Given aµ-integrable function,
we define

∥f∥1 :=

∫
X

∥f∥ dµ.

Note ∥f∥ is in fact µ-integrable by Lemma 8.62.

Remark 8.78. As before, we see ∥f∥1 extends our definition from simpleµ-integrable functions because
our definition of integral also extended our definition from simple µ-integrable functions.

And here is the check.

Corollary 8.79. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Then ∥·∥1 defines a semi-
norm on L1(X,S, µ,B).

Proof. Here are our checks.

• Zero: suppose f = 0. Then f is a simple µ-integrable function, so this follows from Lemma 8.6.

• Nonnegative: for some µ-integrable f : X → B, note that ∥f∥ (x) ≥ 0 for each x ∈ X, so Lemma 8.75
tells us

∥f∥1 =

∫
X

∥f∥ dµ ≥
∫
X

0 dµ = 0,

where the relevant functions are µ-integrable by Lemma 8.62.

• Homogeneous: fix a scalar c and a µ-integrable function f : X → B. Then Proposition 8.73 tells us

∥cf∥1 =

∫
X

∥cf∥ dµ =

∫
X

c · ∥f∥ dµ = c

∫
X

∥f∥ dµ = c ∥f∥1 ,

where the relevant functions are µ-integrable by Lemma 8.59 and Lemma 8.62.

165



8.6. NOVEMBER 16 202A: TOPOLOGY AND ANALYSIS

• Triangle inequality: given µ-integrable functions f, g : X → B, we note that

∥f∥ (x) + ∥g∥ (x) = ∥f(x)∥+ ∥g(x)∥ ≥ ∥f(x) + g(x)∥ = ∥f + g∥ (x)

for each x ∈ X, so Lemma 8.75 tells us∫
X

(∥f∥+ ∥g∥) dµ ≥
∫
X

∥f + g∥ dµ = ∥f + g∥1 .

Thus, Proposition 8.73 tells us ∥f∥1 + ∥g∥1 ≥ ∥f + g∥1, which is what we wanted. ■

We will show that L1 is complete in some sense next lecture.

8.6 November 16
Here we go.

8.6.1 Integration Facts
We continue our fact-collection.

Lemma 8.80. Fix a measure space (X,S, µ) and a Banach space B. Further, fix a µ-integrable func-
tion f : X → B with corresponding sequence mean Cauchy sequence {fn}n∈N of simple µ-integrable
functions such that fn → f in measure. Then ∥f − fn∥1 → 0 as n→∞.

Proof. This essentially follows directly from the definition of integration. Indeed, fix some ε > 0. Our se-
quence is mean Cauchy, so choose some N for which m,n ≥ N implies ∥fm − fn∥1 < ε/2.

Now, for some fixed m, define gn := fm − fn for each n ∈ N, which is a simple µ-integrable function
by Lemma 7.17, and we see {gn}n∈N is mean Cauchy by Lemma 8.46 with gn → fm − f in measure by
Lemma 8.19. Now, it follows from the proof that Lemma 8.62 that {∥gn∥}n∈N is still a mean Cauchy se-
quence of simple µ-integrable functions such that ∥gn∥ → ∥fm − f∥ in measure, so

∥fm − f∥1 =

∫
X

∥fm − f∥ dµ = lim
n→∞

∫
X

∥gn∥ dµ = lim
n→∞

∥fm − fn∥1 .

(All the relevant functions are µ-integrable by Lemma 8.59 and Lemma 8.62.) Thus, taking m ≥ N , we see
∥fm − fn∥1 < ε/2 for n ≥ N , so

∥fm − f∥1 = lim
n→∞

∥fm − fn∥1 ≤ ε/2 < ε.

This completes the proof. ■

The point of the above lemma is the following density result.

Corollary 8.81. Fix a measure space (X,S, µ) and a Banach space B. For any µ-integrable function
f : X → B and error ε > 0, there is a simple µ-integrable function g : X → B such that ∥f − g∥1 < ε.

Proof. Because f : X → B is integrable, there is a mean Cauchy sequence {fn}n∈N of simple µ-integrable
functions such that fn → f in measure. But then Lemma 8.80 tells us that

lim
n→∞

∥f − fn∥1 = 0,

so there is some N such that n ≥ N implies ∥f − fn∥1 < ε. Choosing any n ≥ N and setting g := fn thus
finishes. ■
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Lemma 8.82. Fix a measure space (X,S, µ) and a normed vector space (B, ∥·∥). Given a µ-integrable
function f : X → B and bound ε > 0, there is some F ⊆ X with F ∈ S and µ(F ) <∞ such that∫

X

∥f∥ 1X\F dµ < ε.

Proof. Because f : X → B is µ-integrable, we may choose some simple µ-integrable function g : X → B
such that ∥f − g∥1 < ε, where we are using Corollary 8.81. Now, choose F := g−1(B \ {0}), which is in S
again using Lemma 7.34, and we note Lemma 5.51 implies

µ(F ) ≤ µ
(
g−1(B \ {0})

)
,

where µ
(
g−1(B \ {0})

)
is finite by Remark 7.14. Thus, µ(F ) <∞.

It remains to compute
∫
X
∥f∥ 1X\F dµ. Well, we see g(x) = 0 for x /∈ F , so

(∥f∥ 1X\F )(x) = (∥f − g∥ 1X\F )(x) ≤ ∥f − g∥ (x)

for each x ∈ X, so Lemma 8.75 tells us∫
X

∥f∥ 1X\F dµ ≤
∫
X

∥f − g∥ dµ = ∥f − g∥1 < ε,

which is what we wanted. ■

Remark 8.83. The above result basically says that f is almost supported on a set of finite measure.

Lemma 8.84. Fix a measure space (X,S, µ). Given a µ-integrable function f : X → R, givenE ∈ S with
f(x) ≥ 1E(x) almost everywhere, then

µ(E) ≤
∫
X

f dµ.

Proof. The main difficulty here is that we don’t actually know if 1E is an integrable function at the outset.
For convenience, we set F := f−1(B \ {0}). We claim that F is contained in the countable union of sets

of finite measure; this is annoying, so we will brief. Well, because f : X → R is µ-integrable, we can find
a mean Cauchy sequence {fn}n∈N of simple µ-integrable functions such that fn → f in measure. Now,
gn → f almost everywhere (because gn → f in measure), so there is some N ∈ S such that µ(N) = 0 while
gn1X\N → f1X\N . We now define

Gn := g−1
n (B \ {0}),

which is in S has finite measure by Remark 7.14. In particular, f(x) ̸= 0 implies that either x ∈ N or gn(x)→
f(x) as n→∞, which requires gn(x) ̸= 0 for some n and thus x ∈ Gn for some n. As such, we see

F ⊆ N ∪
∞⋃
n=1

Gn,

which competes the proof of the claim.
Now, f(x) ≥ 1E(x) almost everywhere, so select some N ′ ∈ S such that µ(N ′) = 0 and x ∈ X \ N ′

implies f(x) ≥ 1E(x). With this in mind, we define

En := (E \N ′) ∩

(
N ∪

n⋃
i=1

Gi

)
.
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In particular, we see that Lemma 5.51 and Lemma 5.55 imply

µ(En) ≤ µ(N ′) + µ(N) +

n∑
i=1

µ(Gi)

is a finite sum of finite real numbers and is therefore finite.
As such, we note x ∈ E \ N ′ implies f(x) ̸= 0 and thus x ∈ F , so E \ N ′ ⊆ F , so E \ N ′ =

⋃∞
n=1En.

Further, we see En ⊆ En ∪Gn+1 = En+1 straight from the definition, so Proposition 6.36 tells us

µ(E \N ′) = lim
n→∞

µ(En).

However, En ⊆ E \ N ′ implies 1En(x) ≤ 1E\N ′(x) for each x ∈ X, so 1En(x) ≤ f(x) for x ∈ X \ N ′, so
1En(x) ≤ f(x) almost everywhere, so Lemma 8.75 tells us∫

X

1En dµ ≤
∫
X

f dµ.

Noting µ(En) =
∫
X
1En

dµ by Example 7.16, we see µ(En) ≤
∫
X
f dµ for each n. It follows that

µ(E \N ′) ≤
∫
X

f dµ.

However, µ(N ′) = 0, so µ(E ∩ N ′) = 0 by Lemma 5.51, so µ(E \ N ′) = µ(E) − µ(E ∩ N ′) = µ(E). This
finishes. ■

Corollary 8.85. Fix a measure space (X,S, µ) and a normed vector space B. Further, fix a simple S-
measurable function f : X → B and a µ-integrable function g : X → R. If ∥f(x)∥ ≤ g(x) almost every-
where, then f is simple µ-integrable.

Proof. Fixing any y ∈ (im f) \ {0}, we have to show that f−1({y}) has finite measure. Well, by Lemma 5.51,
we can just show E := f−1(B \ {0}) has finite measure, where E ∈ S already.

For this, we note that im f is finite, so {∥y∥ : y ∈ (im f)\{0}} is finite and therefore has a minimum value
r. Note r > 0 because ∥y∥ = 0 implies y = 0. As such, we note that

r1E(x) ≤ ∥f∥ (x)

for all x ∈ X because either x /∈ E and thus f(x) = 0 or x ∈ E and thus r ≤ ∥f(x)∥. It follows 1E(x) ≤
1
r ∥f∥ (x) ≤

1
r g(x) almost everywhere, so Lemma 8.84 tells us that E has finite measure. In particular, 1

r g is
µ-integrable by Lemma 8.59. ■

8.6.2 Convergence in Mean, Again
We now move towards showing that L1 is complete. To state the result, we need to (re)define converging
in mean for our µ-integrable functions.

Definition 8.86 (Converge in mean). Fix a measure space (X,S, µ) and a Banach space B. Then a se-
quence {fn}n∈N of µ-integrable functions converges in mean to a µ-integrable function f : X → B if
and only if ∥f − fn∥1 → 0 as n→∞.

Definition 8.87 (Mean Cauchy). Fix a measure space (X,S, µ) and a Banach space B. Then a sequence
{fn}n∈N of µ-integrable functions is mean Cauchy if and only if ∥fm − fn∥1 → 0 as m,n→∞.
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Remark 8.88. If everything is simple µ-integrable, then we note the fact that ∥f∥1 is the same for µ-
integrable functions as for simple µ-integrable functions means that our definitions above also do not
change.

Remark 8.89. Roughly speaking, convergence in mean lets us compute integrals. Namely, if fn → f in
mean, then we claim

∫
X
fn dµ→

∫
X
f dµ. Indeed, note∥∥∥∥∫

X

f dµ−
∫
X

fn dµ

∥∥∥∥ =

∥∥∥∥∫
X

(f − fn) dµ
∥∥∥∥ ≤ ∫

X

∥f − fn∥ dµ = ∥f − fn∥1

by Proposition 8.73 and Lemma 8.76. Thus, for any ε > 0, we use fn → f in mean to find N such that
n ≥ N implies ∥f − fn∥1 < ε, which implies

∥∥∫
X
f dµ−

∫
X
fn dµ

∥∥ < ε as well. This finishes.

We now take a deep breath and run a few checks. Here is a comparison result.

Lemma 8.90. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Further, fix a sequence of µ-
integrable functions {fn}n∈N and another µ-integrable function f : X → B. If fn → f in mean, then
fn → f in measure.

Proof. We imitate Lemma 8.49; note the statement makes sense because the fn and f are S-measurable.
Now, fix some ε > 0. Then, for any n, we define

En := {x ∈ X : ∥f(x)− fn(x)∥ ≥ ε}

so that we want to show µ(En)→ 0 as n→∞; note En is S-measurable because all the relevant functions
are S-measurable. Well, we see that each x ∈ X has

1En
(x) ≤ ∥f(x)− fn(x)∥

ε
,

so Lemma 8.84 tells us that

µ(En) ≤
∫
X

∥f(x)− fn(x)∥
ε

dµ =
1

ε

∫
X

∥f(x)− fn(x)∥ dµ =
∥f − fn∥1

ε
,

where we have used Proposition 8.73. Thus,

lim
n→∞

µ(En) ≤ lim
n→∞

∥f − fn∥1
ε

=
1

ε
lim
n→∞

∥f − fn∥1 ,

which is 0 because fn → f in mean. The fact that µ(En) ≥ 0 for each n tells us limn→∞ µ(En) ≥ 0, so
µ(En)→ 0 as n→∞ follows. ■

Here is a nice consequence.

Lemma 8.91. Fix a measure space (X,S, µ) and a normed vector spaceB. Given aµ-integrable function
f : X → B, if ∥f∥1 = 0, then f(x) = 0 almost everywhere.

Proof. Let z denote the zero function so that we want to show f(x) = 0 = z(x) almost everywhere. Note
that the sequence {fn}n∈N of functions defined by fn := z are all simple µ-integrable functions (vacuously).
As such, we see that fn → z in measure.

On the other hand, we see fn → f in mean because any ε > 0 can set N = 0 so that n ≥ N has

∥f − fn∥1 = ∥f − 0∥1 = ∥f∥1 = 0 < ε.

However, fn → f in mean implies that fn → f in measure by Lemma 8.90. It follows from Lemma 8.23 that
f(x) = z(x) almost everywhere. ■

And here is the converse.
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Lemma 8.92. Fix a measure space (X,S, µ) and a Banach space B. Given some µ-integrable function
f : X → B, if f(x) = 0 almost everywhere, then ∥f∥1 = 0.

Proof. Define fn : X → B to be the zero function for each n. The main claim is that fn → f in measure.
Indeed, because f(x) = 0 almost everywhere, we can find E ∈ S such that µ(E) = 0 while f(x) = 0 for
x ∈ X \ E. As such, for any ε > 0, we note that any n ≥ 1 has

{x : ∥f(x)− fn(x)∥ ≥ ε} = {x : ∥f(x)∥ ≥ ε} ⊆ {x : f(x) ̸= 0} ⊆ E.

Thus, Lemma 5.51 tells us µ ({x : ∥f(x)− fn(x)∥ ≥ ε}) ≤ µ(E) = 0, finishing.
We now note that each ∥fn∥ is the zero function and hence (vacuously) a simple S-integrable function,

and ∥fn∥ → ∥f∥ by Lemma 8.19. Thus, by definition of our integral,

∥f∥1 =

∫
X

∥f∥ dµ = lim
n→∞

∫
X

∥fn∥ dµ = lim
n→∞

∥fn∥1 = lim
n→∞

0 = 0.

This is what we wanted. ■

And here is the total result.

Lemma 8.93. Fix a measure space (X,S, µ) and a normed vector spaceB. Then two µ-integrable func-
tions f, g : X → B have ∥f − g∥1 = 0 if and only if f(x) = g(x) almost everywhere.

Proof. We let [h] ∈ L1(X,S, µ,B) denote the equivalence class of a µ-integrable function h : X → B.
In one direction, if [f ] = [g], then f − g ∈ N (X,S, µ,B), so ∥f − g∥1 = 0. It follows that f(x)− g(x) = 0

almost everywhere by Lemma 8.91, so we can select E ∈ S such that µ(E) = 0 while f(x) − g(x) = 0 for
x ∈ X \ E. As such, f(x) = g(x) for x ∈ X \ E, so f(x) = g(x) almost everywhere.

In the other direction, suppose f(x) = g(x) almost everywhere. Then we can select E ∈ S such that
µ(E) = 0 while f(x) = g(x) for x ∈ X \E. It follows f(x)− g(x) = 0 for x ∈ X \E, so (f − g)(x) = 0 almost
everywhere. Thus, ∥f − g∥1 = 0 by Lemma 8.92. ■

Remark 8.94. Fix a measure space (X,S, µ) and a normed vector space B. Lemma 8.93 tells us that
µ-integrable functions f, g : X → B equal almost everywhere have ∥f − g∥1 = 0. As an application, we
note Proposition 8.73 and Lemma 8.76 imply∥∥∥∥∫

X

f dµ−
∫
X

g dµ

∥∥∥∥ =

∥∥∥∥∫
X

(f − g) dµ
∥∥∥∥ ≤ ∫

X

∥f − g∥ dµ = ∥f − g∥1 = 0,

so
∫
X
f dµ =

∫
X
g dµ follows.

8.6.3 Completeness of L1

And now for our feature presentation.

Proposition 8.95. Fix a measure space (X,S, µ) and a Banach space B. Then a mean Cauchy sequence
{fn}n∈N of µ-integrable functions converges in mean to some µ-integrable function f : X → B.

Proof. For each n, Corollary 8.81 grants some simple µ-integrable function gn : X → B with ∥fn − gn∥1 <
1/n. We now proceed in steps.
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1. We claim that {gn}n∈N is mean Cauchy. Well, fix any ε > 0. Then we can find some Nf such that
m,n ≥ Nf implies

∥fm − fn∥1 <
ε

3
.

Thus, we define N := max{Nf , 3/ε} so that m,n ≥ N implies (by Corollary 8.79) that

∥gm − gn∥1 ≤ ∥fm − gm∥1 + ∥fm − fn∥1 + ∥fn − gn∥1 <
1

m
+
ε

3
+

1

n
≤ 2

N
+
ε

3
≤ 2ε

3
+
ε

3
= ε,

which finishes.

2. Next, we construct the limit function. Because {gn}n∈N is mean Cauchy, it is Cauchy in measure by
Lemma 8.49, so there is a uniformly Cauchy subsequence {gni

}i∈N by Theorem 8.35. However, this
subsequence {gni

}i∈N will then converge to some S-measurable g : X → B almost uniformly by
Lemma 8.40. Note that g is then µ-integrable by definition.

3. It remains to show that fn → g in mean. Well, note gni → g almost uniformly, so gni → g in measure
by Lemma 8.51, so gni

→ g in mean by Lemma 8.80. (This step is why it is important for the g• to be
simple µ-integrable!) Finishing up, we fix any ε > 0 and note that there is Ng such that i ≥ Ng implies

∥gni
− g∥1 < ε/3.

Further, {fn}n∈N is mean Cauchy, so there is Nf such that m,n ≥ Nf implies

∥fm − fn∥1 < ε/3.

In total, we set N := max{Nf , Ng, 3/ε}. Then n ≥ N implies n ≥ Nf and nn ≥ n ≥ N ≥ Ng, so (using
Corollary 8.79 some more)

∥g − fn∥1 ≤ ∥g − gnn
∥1 + ∥gnn

− fnn
∥1 + ∥fnn

− fn∥1 <
ε

3
+

1

nn
+
ε

3
≤ ε

3
+

1

3/ε
+
ε

3
= ε,

which is what we wanted. ■

Corollary 8.96. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Given a mean Cauchy se-
quence {fn}n∈N of µ-integrable functions converging to some S-measurable function f : X → B al-
most everywhere, we know f is µ-integrable, and fn → f in mean.

Proof. The main annoyance here is proving that f is actually µ-integrable. As such, we divide the proof into
two steps.

1. Note Proposition 8.95 promises some µ-integrable function f ′ : X → B such that fn → f ′ in mean.
However, fn → f ′ in mean implies that fn → f ′ in measure by Lemma 8.90, so fn → f ′ almost
everywhere, so f = f ′ almost everywhere.
However, f ′ is alreadyµ-integrable, so there exists some mean Cauchy sequence {gn}n∈N of simpleµ-
integrable functions such that gn → f ′ almost everywhere. It follows that gn → f almost everywhere
as well, so f is in fact µ-integrable.

2. Now, f = f ′ almost everywhere implies that ∥f − f ′∥1 = 0 by Lemma 8.93. Thus, for any ε > 0, we
use fn → f ′ in mean to find N such that n ≥ N implies

∥f ′ − fn∥ < ε.

However, we now see ∥f − fn∥1 ≤ ∥f − f ′∥1 + ∥f ′ − fn∥ < ε by Corollary 8.79, finishing. ■

In order to actually state this as a completeness result, we need to turn the semi-norm ∥·∥1 into an actual
norm.
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Notation 8.97. Fix a measure space (X,S, µ) and a Banach space B. We set N (X,S, µ,B) := {f ∈
L1(X,S, µ,B) : ∥f∥1 = 0} and

L1(X,S, µ,B) := L1(X,S, µ,B)/N (X,S, µ,B).

Remark 8.98. Givenµ-integrable functions f, g : X → B, we claim that the equivalence classes [f ], [g] ∈
L1(X,S, µ,B) are equal if and only if f(x) = g(x) almost everywhere. Indeed, [f ] = [g] if and only if
f − g ∈ N (X,S, µ,B), which is equivalent to ∥f − g∥1 = 0. However, by Lemma 8.93, ∥f − g∥1 = 0 is
equivalent to f(x) = g(x) almost everywhere.

Lemma 8.99. Fix a measure space (X,S, µ) and a Banach spaceB. The function ∥·∥1 descends to a norm
on L1(X,S, µ,B).

Proof. This is a direct consequence Proposition 1.13, applied to ∥·∥1 on L1(X,S, µ,B). ■

Corollary 8.100. Fix a measure space (X,S, µ) and a Banach space B. Then L1(X,S, µ,B) is the com-
pletion of the vector space of simple µ-integrable functions.

Proof. The normed vector space L1(X,S, µ,B) is complete by Proposition 8.95. Further, the space of sim-
ple µ-integrable functions (modded out by the functions of norm zero) are dense inL1(X,S, µ,B) by Corol-
lary 8.81. ■

Next class we will begin trying to compute integrals.
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THEME 9

INTEGRATION APPLICATIONS

What we didn’t do is make the construction at all usable in practice!
This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

9.1 November 18

There will be at most two more homework assignments.

9.1.1 Measures from Integrals
Now that we have a reasonable notion of what functions to integrate, given a measure, we would like to take
these integrable functions to build measures. It will be convenient to have the following notation.

Notation 9.1. Fix a measure space (X,S, µ) and a Banach spaceB. Given a µ-integrable function f and
some E ⊆ X such that either E ∈ S or X \ E ∈ S, we define

µf (E) :=

∫
E

f dµ :=

∫
X

f1E dµ.

Note that f1E is µ-integrable by Lemma 8.60 when E ∈ S and by Remark 8.61 when X \ E ∈ S.

Remark 9.2. We note that µf has good additivity properties. Namely, given scalars a, b ∈ k, where k is
the base field of B, and two µ-integrable functions f, g : X → B, we have∫

X

(af + bg)1E dµ =

∫
X

(
a(f1E) + b(g1E)

)
dµ

∗
= a

∫
X

f1E dµ+

∫
X

b1E dµ,

where ∗
= is by Proposition 8.73. Thus, µaf+bg(E) = aµf (E) + bµg(E).

Here are a few quick inequalities.
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Lemma 9.3. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Further, fix a µ-integrable func-
tion f : X → B and some E ∈ S.

(a) We have ∥µf (E)∥ ≤ ∥f∥1.

(b) Given a bound M ≥ 0 such that ∥f(x)∥ ≤M almost everywhere for x ∈ E, then

∥µf (E)∥ ≤Mµ(E).

Proof. By Lemma 8.76, we see

∥µf (E)∥ =
∥∥∥∥∫

X

f1E dµ

∥∥∥∥ ≤ ∫
X

∥f1E∥ dµ.

We now approach the two parts separately.

(a) For each x ∈ X, we note that ∥f1E∥ (x) is either 0 or ∥f(x)∥, so ∥f1E∥ (x) ≤ ∥f∥ (x) for each x ∈ X.
Thus, Lemma 8.75 tells us ∫

X

∥f1E∥ dµ ≤
∫
X

∥f∥ dµ = ∥f∥1 ,

which finishes.

(b) We claim that ∥f1E∥ (x) ≤M1E(x) almost everywhere for x ∈ X. Indeed, ∥f(x)∥ ≤M almost every-
where for x ∈ E, so there is someN ∈ S such that µ(N) = 0 and x ∈ E \N implies ∥f(x)∥ ≤M . Thus,
x ∈ X \N either has x ∈ X \ E so that ∥f1E∥ (x) = 0 ≤ 0 =M1E(x) or x ∈ E \N so that

∥f1E∥ (x) = ∥f(x)∥ ≤M =M1E(x).

Finishing up, Lemma 8.75 kicks in to tell us that∫
X

∥f1E∥ dµ ≤
∫
X

M1E dµ.

The right-hand side isM
∫
X
1E dµ by Lemma 8.1, which isMµ(E) by Example 7.16. This finishes. ■

Now, the notation µf is intended to be suggestive that we’re going to have a measure. Finite additivity is
relatively quick.

Remark 9.4. Suppose f : X → B is µ-integrable. It’s pretty fast to see that µf : S → B is finitely ad-
ditive: if E,F ∈ S are disjoint, we need to show that µf (E ⊔ F ) = µf (E) + µf (F ). (By induction, this
extends to any finite collection.) Well, 1E +1F = 1E⊔F because x ∈ E ⊔F if and only if x ∈ E or x ∈ F ,
but only one of x ∈ E or x ∈ F is possible. Thus, Proposition 8.73 tells us

µf (E ⊔ F ) =
∫
X

f1E⊔F dµ =

∫
X

f(1E + 1F ) dµ =

∫
X

f1E dµ+

∫
X

f1F dµ = µf (E) + µf (F ).

In fact, we can extend Remark 9.4 to make µf countably additive.

Proposition 9.5. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Given some µ-integrable
function f : X → B, the function µf : S → B is countably additive.

Proof. Suppose we have a pairwise disjoint collection {Ei}i∈N ⊆ S. Set E :=
⊔∞
i=1Ei (which is in S) so that

we want to show

µf (E)
?
=

∞∑
i=1

µf (Ei). (9.1)

We have two steps.

174



9.1. NOVEMBER 18 202A: TOPOLOGY AND ANALYSIS

1. Suppose f : X → B is a simple µ-integrable function; we show (9.1). Well, by Lemma 7.8, we can
write

f =

n∑
j=1

yj1Fj

for some nonzero distinct points yj ∈ B and pairwise disjoint Fj := f−1({yj}) ∈ S.
Now, we note 1F∩Fj

= 1F 1Fj
for any F ∈ S because (1F 1Fj

)(x) = 1 if and only if 1F (x) = 1 and
1Fj (x) = 1, which is equivalent to x ∈ F and x ∈ Fj . Applying this multiple times, we compute

µf (F ) =

∫
X

f1F dµ

=

∫
X

(
n∑
j=1

yj1Fj
1F

)
dµ

=

∫
X

(
n∑
j=1

yj1Fj∩F

)
dµ

=

n∑
j=1

(
yj

∫
X

1Fj∩F dµ

)

=

n∑
j=1

yjµ(Fj ∩ F ),

where the last two equalities follow from Proposition 8.73 and then Example 7.16. As such, we can
use the fact that µ is countably additive already: for each j, note that {Fj ∩Ei}i∈N is a pairwise disjoint
collection because x ∈ (Fj ∩ Ei) ∩ (Fj ∩ Ei′) implies x ∈ Ei ∩ Ei′ implies i = i′. Thus,

Fj ∩ E = Fj ∩
∞⊔
i=1

Ei =

∞⊔
i=1

(Fj ∩ Ei)

implies

µ(Fj ∩ E) =

∞∑
i=1

µ(Fj ∩ Ei).

Summing over all j, we can write

µf (E) =

n∑
j=1

yjµ(Fj ∩ E)

=

n∑
j=1

(
yj

∞∑
i=1

µ(Fj ∩ Ei)

)

∗
=

∞∑
i=1

(
n∑
j=1

yjµ(Fj ∩ Ei)

)

=

∞∑
i=1

µf (Fj ∩ Ei),

which is what we wanted. Note that we are allowed to switch the order of summation in ∗
= because

the outer sum is finite. (This is effectively just the linearity of limits.)

2. We now let f : X → B be an arbitrary µ-integrable function. Fix any ε > 0, and we need someN such
that n ≥ N implies ∥∥∥∥∥µf (E)−

n∑
i=1

µf (Ei)

∥∥∥∥∥ < ε.
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The idea is to relate f to a simple µ-integrable function: Corollary 8.81 grants us some simple µ-
integrable function g : X → B such that ∥f − g∥1 < ε/3. Now, for any finite n, we can compute∥∥∥∥∥µf (E)−

n∑
i=1

µf (Ei)

∥∥∥∥∥ ≤ ∥µf (E)− µg(E)∥+

∥∥∥∥∥µg(E)−
n∑
i=1

µg(Ei)

∥∥∥∥∥+
∥∥∥∥∥
n∑
i=1

(
µg(Ei)− µf (Ei)

)∥∥∥∥∥
= ∥µf (E)− µg(E)∥+

∥∥∥∥∥µg(E)−
n∑
i=1

µg(Ei)

∥∥∥∥∥+
∥∥∥∥∥µg

(
n⊔
i=1

Ei

)
− µf

(
n⊔
i=1

Ei

)∥∥∥∥∥ ,
where the last equality is because µf and µg are already finitely additive by Remark 9.4. Now, for any
F ∈ S, we note Remark 9.2 tells us

∥µf (F )− µg(F )∥ = ∥µf−g(F )∥ ,

which is upper-bounded by ∥f − g∥1 by Lemma 9.3. Thus,∥∥∥∥∥µf (E)−
n∑
i=1

µf (Ei)

∥∥∥∥∥ ≤ 2 ∥f − g∥1 +

∥∥∥∥∥µg(E)−
n∑
i=1

µg(Ei)

∥∥∥∥∥ .
To finish, we use the previous step to note that there is some N such that n ≥ N implies∥∥∥∥∥µg(E)−

n∑
i=1

µg(Ei)

∥∥∥∥∥ < ε

3
.

In total, ∥∥∥∥∥µf (E)−
n∑
i=1

µf (Ei)

∥∥∥∥∥ < 2 · ε
3
+
ε

3
= ε,

which is what we wanted. ■

Having a notion of countably additive functions encourages us to extend our definition of measure.

Definition 9.6 (Measure). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Then a B-valued
measure µ on S is a countably additive function µ : S → B.

Example 9.7. By Proposition 9.5, we see that a µ-integrable function f : X → B gives aB-valued mea-
sure µf .

We now note that µf cannot be terribly large.

Lemma 9.8. Fix a measure space (X,S, µ) and a normed vector space B. Further, fix a µ-integrable
function f : X → B. For any ε > 0, there is some δ > 0 such that E ∈ S with µ(E) < δ implies
∥µf (E)∥ < ε.

Proof. As usual, use Corollary 8.81 to find some simple µ-integrable function g : X → B with ∥f − g∥1 <
ε/2. Then any E ∈ S grants

∥µf (E)∥ ≤ ∥µf (E)− µg(E)∥+ ∥µg(E)∥ .

We now bound the terms individually.

• By Remark 9.2, we see µf (E)− µg(E) = µf−g(E), so

∥µf (E)− µg(E)∥ = ∥µf−g(E)∥ ≤ ∥f − g∥1 ,

where the inequality is by Lemma 9.3.
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• Note that g has finite image, so we may set M := max{∥g(x)∥ : x ∈ X} so that ∥g(x)∥ ≤ M for each
x ∈ X. Thus, Lemma 9.3 tells us

∥µg(E)∥ ≤Mµ(E).

In total, we see
∥µf (E)∥ ≤ ε

2
+Mµ(E)

for any E ∈ S. Thus, we set δ := ε
2(M+1) so that µ(E) < δ implies

∥µf (E)∥ < ε

2
+M · ε

2(M + 1)
< ε,

which is what we wanted. ■

The above lemma motivates the following definition.

Definition 9.9 (Strongly absolutely continuous). Fix a measure space (X,S, µ) and some Banach space
(B, ∥·∥). Then a B-valued measure ν : S → B is strongly absolutely continuous if and only if each ε > 0
have some δ > 0 such that µ(E) < δ implies ∥ν(E)∥ < ε.

Example 9.10. By Lemma 9.8, each µf coming from a µ-integrable function f is strongly absolutely
continuous.

Remark 9.11. If ν is strongly absolutely continuous, then note that any E ∈ S with µ(E) = 0 will have
ν(E) = 0. Indeed, for any ε > 0, there is δ > 0 such that µ(E′) < δ implies ∥ν(E′)∥ < ε. But we will
always have µ(E) = 0 < δ, so ∥ν(E)∥ < ε for all ε > 0, so ∥ν(E)∥ = 0, so ν(E) = 0. (This condition is
that ν is “absolutely continuous.” We will not need it later.)

Remark 9.12. The Radon–Nikodym theorem says that sufficiently niceB-valued measures ν which are
absolutely continuous will have ν = µf for some µ-integrable function f .

9.1.2 Egorov’s Theorem
To help us later, we pick up the following result on S-measurable functions.

Theorem 9.13 (Egorov’s). Fix a measure space (X,S, µ) and a Banach space B. Further, fix some se-
quence {fn}n∈N of S-measurable functions. Suppose E ∈ S has µ(E) < ∞ such that the {fn}n∈N
converge almost everywhere on E to a function f : X → B. Then fn|E → f almost uniformly on E.

Proof. This is a little tricky. We’ll take this in steps.

1. We begin by removing a few null sets, for psychological reasons. Note we are given someN ∈ S such
that µ(N) = 0 while fk(x)→ f(x) as n→∞ for each x ∈ E \N . As such,

fn1E\N → f1E\N

on E because if x /∈ N , then fn1E\N (x) = 0 = f1E\N (x) for each n.
We thus claim that fn1E\N → f1E\N almost uniformly onE. To see that this is enough, note that any
ε > 0 has some F ⊆ E with µ(E \ F ) < ε while fn1E\N |F → f1E\N |F uniformly. But then we set
F ′ := F \N so that Lemma 5.51 and Lemma 5.55 tells us

µ(E \ F ′) ≤ µ((E \ F ) ∪N) ≤ µ(E \ F ) + µ(N) < δ + 0 = δ.
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But now fn1E\N |F ′ = fn|F ′ and f1E\N |F ′ = f |F ′ because each x ∈ F ′ has x /∈ N already. Thus,
fn|F ′ → f |F ′ uniformly, which is what we needed.
In total, we are given fn1E\N → f1E\N everywhere on E and would like to show this convergence is
almost uniform. As such, we replace each fn1E\N with fn and f1E\N with f to no detriment, except
now we know fn → f everywhere. In particular, f is S-measuralbe by Corollary 7.44.

2. Now, for each m and n, set

Emn :=
⋃
k≥n

{x ∈ E : ∥(f − fk)(x)∥ ≥ 1/m} = {x ∈ E : ∥(f − fk)(x)∥ ≥ 1/m for some k ≥ n}.

Note each ∥f − fk∥ is S-measurable by Lemma 7.25 and Corollary 7.45, so the union Emn is in S by
Corollary 7.38. Now, for fixedm, we note that fk(x)→ f(x) for x ∈ E forces

⋂∞
n=1E

m
n = ∅. However,

µ(E1) ≤ µ(E) <∞ by Lemma 5.51, so Corollary 6.37 tell us that

lim
n→∞

µ (Emn ) = µ

( ∞⋂
n=1

Emn

)
= µ(∅) = 0.

3. We now attack the proof directly. Set ε > 0. For each m, we may choose nm so that µ (Emn ) < ε/2m

for n ≥ nm. As such, we set

F := E

∖ ∞⋃
m=1

Emnm

so that Lemma 6.2 tells us

µ(E \ F ) = µ

( ∞⋃
m=1

Emnm

)
≤

∞∑
m=1

µ
(
Emnm

)
<

∞∑
m=1

ε

2m
= ε.

It remains to show fn|F → f |F uniformly. Fix any δ > 0. To set N , find m with m > 1/δ, and we set
N := nm.
To see that this construction works, fix some n ≥ N and x ∈ F . Well, x ∈ F implies that x /∈ Emnm

for
our m, so

∥f(x)− fk(x)∥ < 1/m < δ

for each k ≥ nm. In particular, n ≥ nm, so ∥f(x)− fn(x)∥ < δ follows. ■

The point of picking up Theorem 9.13 is so that we can prove the Dominated convergence theorem.

Theorem 9.14 (Dominated convergence). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥).
Further, fix some sequence {fn}n∈N of µ-integrable functions converging almost everywhere to a func-
tion f . If there is a µ-integrable function g : X → R such that ∥fn(x)∥ ≤ g(x) almost everywhere for
each n, then {fn}n∈N is in fact mean Cauchy.

We will prove this next class.

Remark 9.15. It will follow from the conclusion that fn → f in mean and so∫
X

f dµ = lim
n→∞

∫
X

fn dµ.

9.2 November 20
Today we prove Theorem 9.14.
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9.2.1 Dominated Convergence
Here is the statement.

Theorem 9.14 (Dominated convergence). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥).
Further, fix some sequence {fn}n∈N of µ-integrable functions converging almost everywhere to a func-
tion f . If there is a µ-integrable function g : X → R such that ∥fn(x)∥ ≤ g(x) almost everywhere for
each n, then {fn}n∈N is in fact mean Cauchy.

Proof. Note that g(x) ≤ |g|(x), so ∥fn(x)∥ ≤ |g|(x) almost everywhere for eachn. Further, |g| isµ-integrable
by Lemma 8.62. Thus, we may replace gwith |g| so that g = |g|. Also, before doing any heavy lifting, for each
n, we select our En ∈ S with µ(En) = 0 while ∥fn(x)∥ ≤ g(x) for each x ∈ X \ En.

Fix any ε > 0. Observe that we are interested in bounding the integral

∥fm − fn∥1 =

∫
X

∥fm − fn∥ dµ

for large m and n. We do this in three steps.

1. Because g is µ-integrable, we use Lemma 8.82 to find E ∈ S such that µ(E) <∞ and∫
X

g1X\E dµ =

∫
X

|g|1X\E dµ <
ε

6
.

In particular, note g1X\E is µ-integrable by Remark 8.61. Now, for any m,n ∈ N, we note

∥fm(x)− fn(x)∥ ≤ ∥fm(x)∥+ ∥fn(x)∥ ≤ 2g(x)

almost everywhere: if x /∈ (Em ∪ En), then ∥fm(x)∥ , ∥fn(x)∥ ≤ 2g(x). However, Em ∪ En is a null set
because µ(Em ∪ En) ≤ µ(Em) + µ(En) = 0 + 0 = 0 by Lemma 5.55. Thus, for any E′ ⊆ X, we see

∥fm(x)− fn(x)∥ 1X\E ≤ 2g(x)1X\E (9.2)

almost everywhere as well because x /∈ (Em ∪ En) has either x /∈ E′ so that both sides are zero or
x ∈ E′ so that we reduce to the inequality.
As such, we use E′ = E and integrate with Lemma 8.75 to get∫

X

∥fm − fn∥ 1X\E dµ ≤
∫
X

2g1X\E dµ
∗
= 2

∫
X

g1X\E dµ <
ε

3
.

Note we have used Proposition 8.73 at ∗
=.

2. It remains to bound what’s happening onE. Note fn → f almost everywhere onE,1 so Theorem 9.13
tells us fn|E → f |E converges almost uniformly. In particular, for any δ > 0, we can find F ⊆ E with
µ(F ) < δ such that fn|E\F → f |E\F uniformly.
We get some choice in this δ, so we use the fact that the measure µg is strongly absolutely continuous
(by Lemma 9.8) to find δ > 0 such that µ(F ) < δ implies µg(F ) < ε/6. As such, using E′ = F in (9.2),
Lemma 8.75 lets us bound∫

X

∥fm(x)− fn(x)∥ 1F dµ ≤
∫
X

2g1F dµ
∗
= 2

∫
X

g1F dµ = 2µg(F ) <
ε

3
.

Again, we have used Proposition 8.73 at ∗
=.

1 Whatever null set witnessed fn(x) → f(x) almost everywhere on X will work for E.
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3. Thus, it now remains to bound what’s happening on E \ F . Well, fn|E\F → f |E\F uniformly, so
{fn|E\F }n∈N is uniformly Cauchy, so we may find N such that m,n ≥ N has

∥fm(x)− fn(x)∥ <
ε

3(1 + µ(E \ F ))

for x ∈ E \ F . (Note µ(E \ F ) <∞ because µ(E \ F ) ≤ µ(E) <∞ by Lemma 5.51.) Thus, Lemma 9.3
grants ∫

X

∥fm(x)− fn(x)∥ 1E\F dµ = µ∥fm−fn∥(E \ F ) ≤
ε

3(1 + µ(E \ F ))
· µ(E \ F ) < ε

3
.

We now add our integrals together. Note X = (X \ E) ⊔ E = (X \ E) ⊔ F ⊔ (E \ F ) because F ⊆ E ⊆ X.
Thus, Remark 9.4 promises

∥fm − fn∥1 = µ∥fm−fn∥(X) = µ∥fm−fn∥(X \ E) + µ∥fm−fn∥(F ) + µ∥fm−fn∥(E \ F ) < ε

for each m,n ≥ N , where N was chosen in item 3. ■

Remark 9.16. We manifest Remark 9.15; we continue in the context of Theorem 9.14 but now assume
that f is S-measurable. In this case, we see that f is µ-integrable and that fn → f in mean by Corol-
lary 8.96. Lastly, Remark 8.89 implies ∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

As an application of Theorem 9.14, we upgrade Corollary 8.85.

Corollary 9.17. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Further, fix an S-measurable
function f : X → B. If there is a µ-integrable function g : X → R such that ∥f(x)∥ ≤ g(x) almost
everywhere, then f is µ-integrable.

Proof. Because f isS-measurable, there is a sequence of simpleS-measurable functions {fn}n∈N such that
fn → f almost everywhere. The main idea is to coerce the fn into being a mean Cauchy sequence of simple
µ-integrable functions, which will finish.

To begin, set C := g−1(B \ {0}) (which is in S by Corollary 7.38), and define gn := fn1C . Each gn is still
simple S-measurable by Lemma 7.47, and we see gn → f almost everywhere still: there is someE ∈ S with
µ(E) = 0 while fn(x)→ f(x) for x ∈ X \E. But then x ∈ X \E implies gn(x)→ f(x) as well: if x ∈ C, then
gn(x) = fn(x) for all n; otherwise if x /∈ C, then gn(x) = 0 for all n while g(x) = 0 and thus f(x) = 0.

Now, the key restriction is to define

En := {x ∈ X : ∥fn(x)∥ ≤ 2|g(x)|}

and hn := gn1En . Notably, 2|g| − ∥fn∥ is S-measurable by Lemma 7.11 and Lemma 7.9, so En ∈ S by
Corollary 7.38, so hn is simple S-measurable by Lemma 7.47. But now we see

∥hn(x)∥ ≤ 2g(x)

for each x ∈ X because x ∈ En grants this inequality for free by definition ofEn, and x /∈ En gives ∥hn(x)∥ =
0 ≤ 2|g(x)|.

Further, we claim hn → f almost everywhere. Fix some x ∈ X \ E so that fn(x) → f(x). There are two
cases.

• If x /∈ C, then hn(x) = 0 for all n while g(x) = 0 and thus f(x) = 0.
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• Otherwise, x ∈ C so that |g(x)| > 0. Now, fn(x) → f(x) for each x, so ∥fn(x)∥ → ∥f(x)∥ by Exam-
ple 1.38, so ∥f(x)∥ < 2|g(x)| tells us there is some Ng with

∥fn(x)∥ < 2|g(x)|

for n ≥ Ng. (Namely, use the error bound |g(x)| > 0 so that n ≥ N implies ∥fn(x)∥ − ∥f(x)∥ < |g(x)|.)
Thus, forn ≥ N , we see x ∈ En, so hn(x) = gn(x) = fn(x). So fn(x)→ f(x) implies that hn(x)→ f(x)
because the sequences match on large terms.2

Finishing up, Corollary 8.85 tells us that each hn is simple µ-integrable (and thus µ-integrable), so Theo-
rem 9.14 tells us {hn}n∈N is mean Cauchy. Thus, hn → f almost everywhere implies f is µ-integrable. ■

9.2.2 Monotone Convergence
We finish class by picking up another convergence theorem, for real-valued functions.

Theorem 9.18 (Monotone convergence). Fix a measure space (X,S, µ). Given µ-integrable functions
fn : X → R such that fm(x) ≥ fn(x) ≥ 0 almost everywhere for eachm ≥ n. If we can find someC ∈ R
such that ∫

X

fn dµ ≤ C

for each n, then {fn}n∈N is a mean Cauchy sequence.

Proof. There are two steps. For brevity, we set In :=
∫
X
fn dµ.

1. We compute ∥fm − fn∥1 when m ≥ n. The main point is that m ≥ n implies |fm − fn| = fm − fn
almost everywhere. Indeed, there exists E ∈ S such that µ(E) = 0 while fm(x) ≥ fn(x) ≥ 0 for each
x ∈ X \ E, so

|fm − fn|(x) = |fm(x)− fn(x)| = fm(x)− fn(x) = (fm − fn)(x)

for each x ∈ X \ E. Thus, Remark 8.94 tells us that

∥fm − fn∥1 =

∫
X

|fm − fn| dµ =

∫
X

(fm − fn) dµ.

As usual, the linearity of integration from Proposition 8.73 gives

∥fm − fn∥1 ≤
∫
X

fm dµ−
∫
X

fn dµ = Im − In.

2. We complete the proof. We know that m ≥ n implies Im − In = ∥fm − fn∥1 ≥ 0 (say, using Corol-
lary 8.79), so Im ≥ In. Thus, {In}n∈N is an increasing sequence, but we are given that In ≤ C for each
n. It follows that {In}n∈N is a Cauchy sequence!

Finishing up, for any ε > 0, we are promised N such that m,n ≥ N implies |Im − In| < ε. Thus,
m ≥ n ≥ N implies

∥fm − fn∥1 ≤ |Im − In| < ε,

which finishes. ■

2 Explicitly, for any ε > 0, find Nf such that ∥f(x)− fn(x)∥ < ε, and define our N as N := max{Nf , Ng}.
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Remark 9.19. We work in the context of Theorem 9.18. Notably, by Proposition 8.95, we are granted
some µ-integrable function f : X → B such that fn → f in mean. Thus, Remark 8.89 tells us∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

If we already know fn → g almost everywhere for some S-measurable g : X → R, then Corollary 8.96
tells us g is µ-integrable and fn → g in mean, so Remark 8.89 again implies∫

X

g dµ = lim
n→∞

∫
X

fn dµ.

9.3 November 28
It’s the last week of class, so it’s time to go off the rails.

9.3.1 Infinite Integrals
As an application of Theorem 9.18, we get the following convention.

Definition 9.20. Fix a measure space (X,S, µ). Given an S-measurable function f : X → R such that
f(x) ≥ 0 always, we say ∫

X

f dµ := +∞

if and only if there is a sequence of µ-integrable functions fn : X → R such that fn+1(x) ≥ fn(x) ≥ 0
for each x and n such that fn → f pointwise and

∫
X
fn dµ→ +∞.

For this definition to make sense, we need a few lemmas.

Lemma 9.21. Fix a measure space (X,S, µ). Given an S-measurable function f : X → R such that
f(x) ≥ 0, there exists some sequence ofµ-integrable functions fn : X → R such that fn+1(x) ≥ fn(x) ≥
0 for each x and n such that fn → f pointwise.

Proof. We have two steps.

1. Because f is S-measurable, we may find a sequence of simple S-measurable functions gn : X →
R such that gn → f pointwise. Thus, by Lemma 7.47, the functions gn1[−n,n] are still simple S-
measurable, but now we claim they are simple µ-integrable. Indeed, for any y ∈ R \ {0}, we see
that (

gn1[−n,n]
)−1

({y}) ⊆ [−n, n+ 1)

because x /∈ [−n, n + 1) gives 1[−n,n](x) = 0; thus, µ
(
(gn1[−n,n])

−1({y})
)
≤ (n + 1) − −n < ∞ by

Lemma 5.51, which is what we wanted.

Further, we claim that gn1[−n,n] → f pointwise as n → ∞. Indeed, for any x ∈ X, fix some ε > 0. We
may find some N1 such that n ≥ N implies

|f(x)− gn(x)| < ε.

As such, we setN := max{N1, |x|} so that n ≥ N ≥ |x| gives gn1[−n,n](x) = gn(x), and so n ≥ N ≥ N1

gives |f(x)− gn(x)| < ε.
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2. Relabeling, the previous step constructed a sequence of simple µ-integrable functions gn : X → R
converging to f pointwise. It remains to deal with our bounding. For this, we delete our sequence of
functions fn recursively. Define f1 = 0, which is µ-integrable by Lemma 8.59.
Now, given fn, we define fn+1 by

fn+1 := max{fn,min{gn+1, f}}.

Note min{gn+1, f} is S-measurable by Example 7.46 and thus µ-integrable by Corollary 9.17 because
min{gn+1(x), f(x)} ≤ gn+1(x) for each x ∈ X. Thus, we see fn+1 is µ-integrable (inductively) by
Example 8.63. We also note fn(x) ≤ fn+1(x) for any n and x by construction, so we get fn(x) ≥
f1(x) = 0.
It remains to check fn → f pointwise; fix any x ∈ X. To begin, note fn(x) ≤ f(x) for each n. For n = 1,
this is by hypothesis on f , and in general we note that fn(x) ≤ f(x) and min{gn+1(x), f(x)} ≤ f(x)
forces fn+1(x) ≤ f(x).
However, for all ε > 0, we can find some N > 0 such that n ≥ N implies |gn(x)− f(x)| < ε. We claim
that |fn(x)− f(x)| < ε for each n ≥ N > 0 as well. There are two cases.

• If gn(x) ≤ f(x), then we note

gn(x) = min{gn(x), f(x)} ≤ fn(x) ≤ f(x),

so |f(x)− fn(x)| = f(x)− fn(x) ≤ f(x)− gn(x) < ε.
• If gn(x) ≥ f(x), then we note fn(x) ≤ f(x) while fn(x) ≥ min{gn(x), f(x)} = f(x), so fn(x) =
f(x).

The above checks complete the proof. ■

Proposition 9.22. Fix a measure space (X,S, µ) and an S-measurable function f : X → R with f(x) ≥ 0
for all x ∈ X. Then exactly one of the following is true.

• f is µ-integrable.

•
∫
X
f dµ = +∞.

Proof. By Lemma 9.21, there certainly exists some sequence of µ-integrable functions fn : X → R such
that fn+1(x) ≥ fn(x) ≥ 0 for each x and n such that fn → f pointwise. As such, note that the sequence of
integrals

In :=

∫
X

fn dµ

are increasing by Lemma 8.75. Thus, if the sequence is bounded above, we note f is µ-integrable by Theo-
rem 9.18. Otherwise, In → +∞ as n→∞, so

∫
X
f dµ = +∞.

Thus, we have so far shown that at least one of the conclusions is true. It remains to show that they
cannot both be true. Well, suppose f : X → R is µ-integrable, and we show

∫
X
f dµ ̸= +∞. If we have any

increasing sequence {gn}n∈N of µ-integrable functions such that gn → f pointwise, then we see gn(x) ≤
f(x) for each x, so we may use Lemma 8.75 to upper-bound∫

X

fn dµ ≤
∫
X

f dµ.

Thus, the sequence
∫
X
fn dµ does not go to +∞. ■

While we’re here, we pick up a few of our standard bounds.
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Lemma 9.23. Fix a measure space (X,S, µ) and some S-measurable functions f, g : X → R such that
f(x), g(x) ≥ 0 for all x ∈ X. If f(x) = g(x) almost everywhere, then∫

X

f dµ =

∫
X

g dµ.

Proof. We are givenE ∈ S such that µ(E) = 0 while f(x) = g(x) for x ∈ X \E. Now, we have the following
cases.

• If f is µ-integrable or g is µ-integrable, then we note f(x) ≤ g(x) and g(x) ≤ f(x) almost everywhere
(namely, on X \ E), so Corollary 9.17 implies that both f and g are both µ-integrable. To finish, note
f(x) = g(x) almost everywhere implies that

∫
X
f dµ =

∫
X
g dµ by Remark 8.94.

• If neither f nor h are µ-integrable, then Proposition 9.22 tells us that
∫
X
f dµ =

∫
X
g dµ =∞. ■

Lemma 9.24. Fix a measure space (X,S, µ). Given S-measurable functions f, g : X → R such that
f(x), g(x) ≥ 0 for all x ∈ X, we have∫

X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ,

where we permit values to be +∞.

Proof. Note that f + g is S-measurable by Lemma 7.25. We have two cases.

• If
∫
X
(f + g) dµ ̸=∞, then (f + g) is µ-integrable by Proposition 9.22. However, we note f(x), g(x) ≤

(f + g)(x) for each x ∈ X because f(x), g(x) ≥ 0, so Lemma 8.75 tells us that f and g are both µ-
integrable. Thus, the result follows from Proposition 8.73.

• Suppose
∫
X
(f + g) dµ = +∞. If f and g are both µ-integrable, (f + g) is µ-integrable by Lemma 8.59,

which violates the hypothesis of this case by Proposition 9.22. Thus, one of f or g is not µ-integrable.
Without loss of generality, we say f is not µ-integrable, so∫

X

f dµ = +∞

follows from Proposition 9.22. Because
∫
X
g dµ ≥ 0 either when g is µ-integrable (by Lemma 8.75 and

Proposition 8.73) or when g is not µ-integrable (by Proposition 9.22), the result follows. ■

Lemma 9.25. Fix a measure space (X,S, µ). Given S-measurable functions f, g : X → R such that
f(x) ≥ g(x) ≥ 0 for all x ∈ X, we have ∫

X

f(x) dµ ≥
∫
X

g(x) dµ,

where we permit values to be +∞.

Proof. We have two cases.

• If f is µ-integrable, then g is µ-integrable by Corollary 9.17, so the result follows from Lemma 8.75.

• If f is not µ-integrable, then
∫
X
f dµ = +∞ by Proposition 9.22, so the result follows. ■
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Lemma 9.26. Fix a measure space (X,S, µ). Given some S-measurable f : X → R with f(x) ≥ 0 for
eachx, suppose there is a sequence ofS-measurable functions fn : X → R such that fn+1(x) ≥ fn(x) ≥
0 for each x and n and fn → f pointwise. Then∫

X

f dµ = lim
n→∞

∫
X

fn dµ.

Proof. The difficulty here is that the fn are merely S-measurable. We quickly check that the limit makes
sense: for any n, note that 0 ≤ fn(x) ≤ fn+1(x) for each x ∈ X tells us 0 ≤

∫
X
fn dµ ≤

∫
X
fn+1 dµ by

Lemma 9.25, so the right-hand limit is either finite or +∞.
Thus, we have two cases to appropriately deal with infinity.

• If each fn is µ-integrable, then this follows from either Remark 9.19 or the definition of an integral
evaluating to+∞. (Technically, we are using the fact that the limit function of {fn}n∈N is unique almost
everywhere by Lemma 8.93, so fn → f in mean.)

• If any fn is not µ-integrable, then Proposition 9.22 tells us
∫
X
fn dµ = +∞.

Now, for any m ≥ n has fm(x) ≤ fn(x) for all x, so

+∞ =

∫
X

fn dµ =

∫
X

fm dµ

by Lemma 9.25, so
∫
X
fm dµ = +∞. It follows that

lim
m→∞

∫
X

fm dµ = +∞.

On the other hand, for any x, we note that fm(x)→ f(x) as m→∞, but fm(x) ≥ fn(x) for m ≥ n, so
fn(x) ≤ f(x) follows. Applying Lemma 9.25 again tells us

∫
X
f dµ = +∞. ■

9.3.2 DefiningLp

Here is our definition.

Definition 9.27 (Lp-space). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Given some p ∈
(0,∞), we define

Lp(X,S, µ,B) := {S-measurablef : ∥f∥p is µ-integrable} .

Lemma 9.28. Fix a measure space (X,S, µ) and a k-Banach space (B, ∥·∥). Then Lp(X,S, µ,B) is a k-
vector space.

Proof. We have the following checks. As usual, let | · | denote the norm on k.

• Zero: note the zero function z : X → B has ∥z∥p (x) = 0 for each x ∈ X, which is µ-integrable by
Lemma 8.59.

• Scalar multiplication: if f ∈ Lp(X,S, µ,B), then ∥f∥p is µ-integrable. However, for r ∈ k, we note that
rf is S-maesurable by Lemma 7.25, and

∥rf∥p (x) = (|r|p · ∥f∥p) (x)

for each x ∈ X, so the fact that ∥f∥p is µ-integrable implies that ∥rf∥p is also µ-integrable. This
finishes.
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• Additive: suppose f, g ∈ Lp(X,S, µ,B) so that we want to show f + g ∈ Lp(X,S, µ,B), which means
that we want ∥f + g∥p ∈ L1(X,S, µ,B). Well, ∥f + g∥p is S-measurable by applying Lemma 7.25
and Corollary 7.45 and Corollary 7.43 (with the continuous function x 7→ |x|p), so we merely need to
upper-bound ∥f + g∥p and use Corollary 9.17.

Indeed, the triangle inequality implies that

∥f(x) + g(x)∥ ≤ ∥f(x)∥+ ∥g(x)∥ ≤ 2max{∥f(x)∥ , ∥g(x)∥}

for each x ∈ X, so

∥f(x) + g(x)∥p ≤ 2p
(
max{∥f(x)∥ , ∥g(x)∥}

)p
= 2p

(
max{∥f(x)∥p , ∥g(x)∥p}

)
≤ 2p (∥f(x)∥p + ∥g(x)∥p) .

However, each ∥f∥p and ∥g∥p are µ-integrable by hypothesis, so 2p ∥f∥p + 2p ∥g∥p is µ-integrable by
Lemma 8.59. Thus, Corollary 9.17 finishes. ■

Here is a reason to care aboutLp: just likeL1, they have a well-behaved semi-norm (in good cases).

Notation 9.29. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). For p ∈ (0,∞) and f ∈
Lp(X,S, µ,B), we define

∥f∥p :=
(∫

X

∥f∥p dµ
)1/p

.

Note that this integral is well-defined by definition of Lp(X,S, µ,B).

Here is the analogue for Lemma 8.93.

Lemma 9.30. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and fix p ∈ (0,∞). Given some
f ∈ Lp(X,S, µ,B), we see ∥f∥p = 0 if and only if f(x) = 0 almost everywhere.

Proof. By Lemma 8.93, we see that

∥f∥pp =
∫
X

∥f∥p dµ

equals zero if and only if ∥f∥p (x) = 0 almost everywhere. However, ∥f∥p (x) = 0 is equivalent to saying
∥f(x)∥p = 0, which is equivalent to ∥f(x)∥ = 0, which is equivalent to f(x) = 0. Thus, one side of

{x ∈ X : ∥f∥p (x) ̸= 0} = {x ∈ X : f(x) ̸= 0}

is a null set if and only if the other is, which finishes. ■

Corollary 9.31. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and fix p ∈ (0,∞). Given
some f, g ∈ Lp(X,S, µ,B), we see ∥f − g∥p = 0 if and only if f(x) = g(x) almost everywhere.

Proof. Note that ∥f − g∥p = 0 is equivalent to (f − g)(x) = 0 almost everywhere by Lemma 9.30, which is
equivalent to {x ∈ X : f(x) ̸= g(x)} being a null set, which is what we wanted. ■

Continuing, we now show that ∥·∥2 is a semi-norm.
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Proposition 9.32. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Then the function ∥·∥2
defines a semi-norm on L2(X,S, µ,B).

Proof. We quickly run our easier checks. Let | · | denote the norm on our base field k, and fix some f ∈
L2(X,S, µ,B).

• Zero: the zero function z : X → B has ∥z∥2 : X → R equal to zero everywhere, so ∥z∥2 = 1∅, so∫
X

∥z∥2 dµ = µ(∅) = 0

by Example 7.16.

• Nonnegative: we note that ∥f∥ (x) ≥ 0 for each x ∈ X, so ∥f∥2 (x) ≥ 0 for each x ∈ X, so∫
X

∥f∥2 dµ ≥ 0

by Lemma 8.74, so ∥f∥2 ≥ 0 follows.

• Homogeneous: if r ∈ k, then we note ∥rf∥ (x) = (|r|·∥f∥)(x) for eachx ∈ X. Thus, by Proposition 8.73
tells us

∥rf∥2 =

(∫
X

∥rf∥2 dµ
)1/2

=

(∫
X

|r| · ∥f∥2 dµ
)1/2

= |r| ·
(∫

X

∥f∥2 dµ
)1/2

= |r| · ∥f∥2 .

It remains to check the triangle inequality, which is harder. We have the following lemma.

Lemma 9.33 (Cauchy–Schwarz). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Given S-
measurable functions f, g ∈ L2(X,S, µ,B), then ∥f∥ · ∥g∥ is µ-integrable, and∫

X

(
∥f∥ · ∥g∥

)
dµ ≤

∥f∥22 + ∥g∥
2
2

2
.

Proof. Quickly, we see ∥f∥ · ∥g∥ is S-measurable by applying Lemma 7.26 to Corollary 7.45. It remains to
upper-bound ∥f∥ · ∥g∥.

Now, the main point is the arithmetic mean-geometric mean inequality: for r, s ∈ R≥0, we see

0 ≤ (r − s)2 = r2 + s2 − 2rs,

so r2 + s2 ≥ 2rs. Applying this to our situation, we see

2 ∥f(x)∥ · ∥g(x)∥ ≤ ∥f(x)∥2 + ∥g(x)∥2

for each x ∈ X, so (
∥f∥ · ∥g∥

)
(x) ≤

(
∥f∥2 + ∥g∥2

2

)
(x)

for each x ∈ X. However, ∥f∥2+∥g∥2

2 is µ-integrable by Lemma 8.59, so we conclude that ∥f∥ · ∥g∥ is µ-
integrable by Corollary 9.17.

Continuing, Lemma 8.75 tells us∫
X

(
∥f∥ · ∥g∥

)
dµ ≤

∫
X

∥f∥2 + ∥g∥2

2
dµ,

and now the right-hand side simplifies to 1
2

(
∥f∥22 + ∥g∥

2
2

)
by Proposition 8.73. This finishes. ■
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We now proceed with the proof of the triangle inequality. Fix f, g ∈ L2(X,S, µ,B). We quickly deal with the
case of ∥f∥2 = 0. Here, ∥f∥2 = 0 implies that f(x) = 0 almost everywhere by Lemma 9.30, so (f + g)(x) =

g(x) almost everywhere, so ∥f + g∥2 (x) ≤ ∥g∥2 (x) almost everywhere, so Lemma 8.75 implies∫
X

∥f + g∥2 dµ ≤
∫
X

∥g∥2 dµ ≤
∫
X

∥f + g∥2 dµ.

Thus, ∥f + g∥2 ≤ ∥g∥2 = ∥f∥2 + ∥g∥2 follows. Note that a similar argument works for ∥g∥2 = 0.
Thus, we may assume that ∥f∥2 , ∥g∥2 ̸= 0, which allows us to set h := f

∥f∥2
and k := g

∥g∥2
. Notably,

∥h∥2 = ∥k∥2 = 1 by the homogeneity check above. As such, Lemma 9.33 grants∫
X

(
∥h∥ · ∥k∥

)
dµ ≤ 1 + 1

2
= 1.

However, ∥h∥ = ∥f∥ / ∥f∥2 and ∥k∥ = ∥g∥ / ∥g∥2, so Proposition 8.73 implies∫
X

(
∥f∥ · ∥g∥

)
dµ ≤ 2 ∥f∥2 · ∥g∥2 .

This now rearranges to the desired inequality: given f, g ∈ L2(X,S, µ,B), we see

∥f + g∥22 =

∫
X

(
∥f + g∥

)2
dµ

∗
≤
∫
X

(
∥f∥+ ∥g∥

)2
dµ

=

∫
X

∥f∥2 dµ+

∫
X

∥g∥2 dµ+ 2

∫
X

(
∥f∥ · ∥g∥

)
dµ

≤ ∥f∥22 + ∥g∥
2
2 + 2 ∥f∥2 · ∥g∥2

=
(
∥f∥2 + ∥g∥2

)2
,

and taking the square root finishes. Notably,
∗
≤ has used the triangle inequality and Lemma 8.75 (and the

following equality used Proposition 8.73). ■

Remark 9.34. In fact, ∥f∥p is a norm in general, but it is somewhat harder to show. Roughly speaking,
the difficulty lies in establishing an analogue for Lemma 9.33.

Remark 9.35. If p ∈ (0, 1), then ∥f∥p is not a norm. In particular, it does not satisfy the triangle inequal-
ity. For that matter, p ∈ (0, 1) do very strange things. For example, if we define

Ur :=

{
f ∈ Lp(X,S, µ,B) :

∫
X

∥f∥p dµ < r

}
,

then the closed convex hull of Ur recovers all of Lp(X,S, µ,B). In particular, one can show that there
are thus no nonzero continuous linear functionals on Lp(X,S, µ,B): the pre-image of an open interval
in R needs to both be open and convex.

9.3.3 Defining Lp

Now that we have a semi-norm, we can mod out to get our norm.
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Notation 9.36. Fix a measure space (X,S, µ) and a Banach space B, and choose p ∈ [1,∞) such that
∥·∥p defines a semi-norm on Lp(X,S, µ,B). We set N (X,S, µ,B) := {f ∈ L2(X,S, µ,B) : ∥f∥2 = 0}
and

L2(X,S, µ,B) := L2(X,S, µ,B)/N (X,S, µ,B).

Remark 9.37. Given f, g ∈ Lp(X,S, µ,B), note that [f ] = [g] inLp(X,S, µ,B) if and only if ∥f − g∥p = 0
by definition, which is equivalent to f(x) = g(x) almost everywhere by Corollary 9.31.

Proposition 9.38. Fix a measure space (X,S, µ) and a Banach spaceB, and choose p ∈ [1,∞) such that
∥·∥p defines a semi-norm on Lp(X,S, µ,B). The function ∥·∥p descends to a norm on Lp(X,S, µ,B).

Proof. This follows from Proposition 1.13. ■

We would like to show that Lp is complete, but this requires some work. Namely, we will require Fatou’s
lemma, a result we will state and prove next class.

9.4 November 30
The final is in about two weeks. Material covered this week may appear on the exam. Material covered in
the topology section of the course may also appear on the exam.

9.4.1 Fatou’s Lemma
We continue moving towards proving the completeness of L2. We pick up the following result.

Lemma 9.39 (Fatou). Fix a measure space (X,S, µ). Further, fix a sequence {fn}n∈N of S-measurable
functions fn : X → Rwith fn(x) ≥ 0 for eachx, and suppose that lim infn→∞ fn(x) is finite for allx ∈ X.
Then the function lim infn→∞ fn is S-measurable, and∫

X

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
X

fn dµ.

Proof. We’ll do this in steps for clarity.

1. We set up variables. For m ≥ n, define

hn,m := min{fn, fn+1, . . . , fm},

which is also S-measurable by Example 7.46, and these have hn,m(x) ≥ 0 for each x.
Notably, for fixed n, the functions hn,n, hn+1,n, hn+2,n, . . . are decreasing as m → ∞ (adding more
terms to this minimum requires values to decrease), so there is a limit function

gn(x) := inf{hn,m(x) : m ≥ n} = lim
m→∞

hn,m(x),

which is S-measurable as the pointwise limit of S-measurable functions. Note that gn(x) is always a
nonnegative real number because the set {hn,m(x) : n ≥ m} is bounded below by 0.
However, we can see that the gn(x) are monotonically increasing (taking fewer terms in our infimum
requires values to increase), so we see(

lim inf
n→∞

fn

)
(x) := lim inf

n→∞
fn(x) = lim

n→∞
gn(x),

which we note is always finite by hypothesis. Thus, lim infn→∞ is S-measurable by Corollary 7.44, and
gn(x) ≥ 0 always tells us lim infn→∞ fn(x) ≥ 0 always as well.
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2. We complete the proof. By Lemma 9.26, we see∫
X

(
lim inf
n→∞

fn

)
dµ = lim

n→∞

∫
X

gn dµ. (9.3)

Now, for any n, we note gn(x) ≤ hn,n(x) = fn(x) for each x ∈ X, so Lemma 9.25 tells us∫
X

gn dµ ≤
∫
X

fn dµ.

It follows that
lim inf
n→∞

∫
X

gn dµ ≤ lim inf
n→∞

∫
X

fn dµ,

which finishes upon noting limn→∞
∫
X
gn dµ = lim infn→∞

∫
X
gn dµ and combining with (9.3). ■

Corollary 9.40. Fix a measure space (X,S, µ) and fix a sequence {fn}n∈N of S-measurable functions
fn : X → R with fn(x) ≥ 0 for each x. Suppose that there is E ⊆ X with E ∈ S or X \ E ∈ S such that
lim infn→∞ fn(x) is finite for all x ∈ E. Then the function (lim infn→∞ fn) 1E is S-measurable, and∫

E

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
X

fn dµ,

where we enforce (lim infn→∞ fn) 1E(x) = 0 when x /∈ E.

Proof. This is a direct consequence of Lemma 9.39. Indeed, for anyn, set gn := fn1E , which isS-measurable
by Lemma 7.47 or Remark 7.48, and we note gn(x) ∈ {0, fn(x)} for each x, so gn(x) ≥ 0 for each x. The
main claim is that (

lim inf
n→∞

fn

)
1E = lim inf

n→∞
gn

as functions. Indeed, if x /∈ E, then both sides are zero. Otherwise, x ∈ E, so gn(x) = fn(x) for all n, so both
lim infs converge to the same finite value.

Thus, Lemma 9.39 implies∫
E

(
lim inf
n→∞

fn

)
dµ =

∫
X

(
lim inf
n→∞

gn

)
dµ ≤ lim inf

n→∞

∫
X

gn dµ.

Now, gn(x) ≤ fn(x) for each x ∈ X, so Lemma 9.25 tells us
∫
X
gn dµ ≤

∫
X
fn dµ, so we see∫

E

(
lim inf
n→∞

fn

)
dµ ≤ lim inf

n→∞

∫
X

gn dµ ≤ lim inf
n→∞

∫
X

fn dµ,

which is what we wanted. ■

Remark 9.41. One can show that, if E contains a set of positive measure, then lim infn→∞
∫
X
fn dµ =

+∞. We will not need this.

9.4.2 Convergence in p-Mean
For L1, we had convergence in mean, so we will not want a generalized notion.

Definition 9.42 (Converge in p-mean). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and
choose p ∈ [1,∞) such that ∥·∥p defines a semi-norm on Lp(X,S, µ,B). A sequence of functions
{fn}n∈N ∈ Lp(X,S, µ,B) converges in p-mean to some f ∈ Lp(X,S, µ,B) if and only if ∥fn − f∥p → 0
as n→∞.
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Definition 9.43 (Cauchy in p-mean). Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and
choose p ∈ [1,∞) such that ∥·∥p defines a semi-norm on Lp(X,S, µ,B). A sequence of functions
{fn}n∈N ∈ Lp(X,S, µ,B) converges in p-mean to some f ∈ Lp(X,S, µ,B) if and only if ∥fn − f∥p → 0
as n→∞.

Note that the relevant functions all stay in Lp by Lemma 9.28.
The main result here is a comparison result. To begin, we pick up Chebyshev’s inequality.

Lemma 9.44 (Chebyshev). Fix a measure space (X,S, µ,B) and a Banach space (B, ∥·∥), and choose
p ∈ [1,∞). Given some h ∈ Lp(X,S, µ,B) and ε > 0, the set E := {x ∈ X : ∥h(x)∥ ≥ ε} has finite
measure with

µ(E) ≤
∥h∥pp
εp

.

Proof. Note that ∥h∥ is S-measurable by Corollary 7.45, so E is S-measurable by Corollary 7.38, so 1E is
simple S-measurable by Example 7.6.

Now, the indicator function has

1E(x) ≤
(
∥h(x)∥
ε

)p
.

Indeed, if x /∈ E, then 1E(x) = 0 while ∥h(x)∥ /ε > 0; otherwise, x ∈ E, so ∥h(x)∥ ≥ ε. Thus, it follows from
Corollary 8.85 that 1E is µ-integrable, and Lemma 8.75 implies∫

X

1E dµ ≤
∫
X

∥h∥p

εp
dµ.

The left-hand side is µ(E) by Example 7.16, and the right-hand side is ∥h∥pp /εp by Proposition 8.73, so we
are done. ■

And here is our comparison result.

Lemma 9.45. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and choose p ∈ [1,∞) such
that ∥·∥p defines a semi-norm on Lp(X,S, µ,B). If a sequence of functions {fn}n∈N ⊆ Lp(X,S, µ,B) is
Cauchy in p-mean, then it is Cauchy in measure.

Proof. We use Lemma 9.44. Indeed, for any m and n, we see

µ({x ∈ X : ∥fn(x)− fm(x)∥ ≥ ε}) ≤
∥fm − fn∥pp

εp
,

but ∥fm − fn∥p → 0 as m,n → ∞. Explicitly, for any δ > 0, choose N so that ∥fm − fn∥p < δ1/pε for
m,n ≥ N so that

µ({x ∈ X : ∥fn(x)− fm(x)∥ ≥ ε}) ≤ δ · εp

εp
= δ

follows for m,n ≥ N . ■

9.4.3 Completeness of Lp

And now here is our result.

Theorem 9.46. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and choose p ∈ [1,∞) such
that ∥·∥p defines a semi-norm onLp(X,S, µ,B). Then a mean Cauchy sequence of functions {fn}n∈N ⊆
Lp(X,S, µ,B) converges in p-mean to some f ∈ Lp(X,S, µ,B).
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Proof. We proceed as in Proposition 8.95; for brevity, set Lp := Lp(X,S, µ,B) and Lp := (X,S, µ,B).
By Lemma 9.45, we see that {fn}n∈N is Cauchy in measure, so there is a uniformly Cauchy subsequence
{fni
}i∈N by Theorem 8.35. However, this subsequence {fni

}i∈N will then converge to some S-measurable
f : X → B almost uniformly by Lemma 8.40.

It remains to show that f ∈ Lp and fn → f in p-mean. Define gi := fni
, and we will actually directly show

that the integrals
In :=

∫
X

∥f − gn∥p dµ

are small. Note that f −gn is S-measurable by Lemma 7.25, so ∥f − gn∥ is S-measurable by Corollary 7.45,
so ∥f − gn∥p is S-measurable by Corollary 7.43 (using x 7→ |x|p). Additionally, ∥f − gn∥p (x) ≥ 0 for each x,
so In is a legal integral with possibly infinite value.

Now, gm → f almost uniformly asm→∞, so gm → f almost everywhere. Thus, we findE ∈ S such that
µ(E) = 0 while gm(x) → f(x) for x ∈ E. Thus, gm1X\E → f1X\E pointwise: if x ∈ E, then gm(x) → f(x)
already, and if x /∈ E, then gm1X\E(x) = 0 = f1X\E(x) for all m. As such, we note (gm − fn)1X\E →
(f − gn)1X\E pointwise, so ∥gm − fn∥ 1X\E → ∥f − gn∥ 1X\E pointwise, so(

lim inf
m→∞

∥gm − gn∥p 1X\E

)
(x) = lim

m→∞
∥gm(x)− gn(x)∥p 1X\E(x) =

(
∥f − gn∥p 1X\E

)
(x)

for each x ∈ X. Thus, by Lemma 9.39, we see∫
X

∥f − gn∥p 1X\E dµ ≤ lim inf
m→∞

∫
X

∥gm − gn∥p 1X\E dµ.

(Note that the relevant functions are nonnegative and S-measurable by Lemma 7.25 and Corollary 7.45 and
Corollary 7.43 and Remark 7.48.) But now we note that ∥f − gn∥p 1X\E = ∥f − gn∥p and ∥gm − gn∥p 1X\E =
∥gm − gn∥p almost everywhere (namely, on X \ E), so Lemma 9.23 tells us∫

X

∥f − gn∥p dµ ≤ lim inf
m→∞

∫
X

∥gm − gn∥p dµ, (9.4)

which will be good enough for our purposes.
We now show the remaining claims in sequence.

• We show f ∈ Lp. Note f is S-measurable by construction. Now, f − gn ∈ Lp by (9.4): namely, there
isN such that ∥gm − gn∥p < 1 for allm,n ≥ N because {fn}n∈N is Cauchy in p-mean, so selecting any
such n implies that∫

X

∥f − gn∥p dµ ≤ lim inf
m→∞

∫
X

∥gm − gn∥p dµ = lim inf
m→∞

∥gm − gn∥pp ≤ 1.

Thus, ∥f − gn∥p is µ-integrable by Proposition 9.22, so f − gn ∈ Lp. It follows from Lemma 9.28 that
f ∈ Lp because gn ∈ Lp already.

• We show fn → f in p-mean. The main point is that (9.4) now reads

∥f − gi∥p ≤ lim inf
j→∞

∥gi − gj∥p

for any i ∈ Z, where we have applied the continuous function x 7→ x1/p everywhere.
Now, fix any ε > 0. To begin, fix someNf such thatm,n ≥ N implies ∥fm − fn∥p < ε/2. Then, for any
n ≥ N , we note nn ≥ n ≥ N , so

∥f − fn∥p ≤ ∥f − gn∥p + ∥fn − fnn∥p < lim inf
j→∞

∥gn − gj∥p +
ε

2
.

However, for j ≥ N , we note ∥gn − gj∥p < ε/2, so it follows ∥f − fn∥p < ε, finishing. ■
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Corollary 9.47. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥), and choose p ∈ [1,∞) such
that ∥·∥p defines a semi-norm on Lp(X,S, µ,B). Then Lp(X,S, µ,B) is complete.

Proof. The metric space structure comes from Proposition 9.38. For brevity, set Lp := Lp(X,S, µ,B) and
Lp := Lp(X,S, µ,B). Now, given a Cauchy sequence {[fn]}n∈N ⊆ Lp, we note that {fn}n∈N ⊆ Lp is Cauchy
in p-mean (by definition) and thus converges in p-mean to some f ∈ Lp by Theorem 9.46, so fn → f in
p-mean. ■

We close class by noting we have made a Hilbert space.

Definition 9.48 (Hilbert space). A Hilbert space is a vector space V over R or C equipped with an inner
product ⟨·, ·⟩ such that V is complete for the norm defined by ∥v∥ := ⟨v, v⟩1/2.

Example 9.49. In the usual set-up, we can make L2(X,S, µ,R) into a Hilbert space by

⟨f, g⟩ :=
∫
X

fg dµ.

Notably, ⟨f, f⟩1/2 = ∥f∥2. A similar definition works for L2(X,S, µ,C) by conjugating g in the integral.

Remark 9.50. One can show thatL2(X,S, µ,R) is “self-dual” in that every linear functional arises in the
form ⟨f, ·⟩. (More generally, the dual of Lp is Lq, where 1

p + 1
q = 1.) This is one reason why L2 is better

than other Lps.

Next class we will discuss L∞.

9.5 December 2
It’s the last lecture. The exam will be cumulative, weighted towards material after the midterm (namely,
measure theory).

9.5.1 DefiningL∞

Let’s talk about L∞.

Notation 9.51. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). ThenL∞(X,S, µ,B) consists
of the S-measurable functions f : X → B such that there exists some M for which

µ({x ∈ X : ∥f(x)∥ ≥ R}) = 0.

Intuitively, these are functions bounded away from a null set.

Note that {x ∈ X : ∥f(x)∥ ≥ R} is in fact in S by Corollary 7.38 because ∥f∥ is S-measurable by Corol-
lary 7.45.

Here is our semi-norm.

Notation 9.52. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Then we define ∥·∥∞ on
L∞(X,S, µ,B) by

∥f∥∞ := inf{M ∈ R : µ({x ∈ X : ∥f(x)∥ ≥ R}) = 0}.
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Remark 9.53. Given f ∈ L∞(X,S, µ,B), we can see that f ∈ Lp(X,S, µ,B) for each p ∈ [1,∞) as well,
and

lim
p→∞

∥f∥p = ∥f∥∞ .

Proposition 9.54. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). Then ∥·∥∞ defines a semi-
norm on L∞.

Proof. Omitted. ■

Proposition 9.55. Fix a measure space (X,S, µ)and a Banach space (B, ∥·∥). With f, g ∈ L∞(X,S, µ,B),
we see f(x) = g(x) almost everywhere if and only if ∥f − g∥∞ = 0.

Proof. Omitted. ■

Proposition 9.56. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). If a sequence of functions
{fn}n∈N is Cauchy in∞-mean, then {fn}n∈N is uniformly Cauchy outside a null set.

Proof. Omitted. ■

Corollary 9.57. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). ThenL∞(X,S, µ,B) is com-
plete.

Proof. This follows from the previous result. ■

Here are some of our usual checks.

Lemma 9.58. Fix a measure space (X,S, µ) and a k-Banach space (B, ∥·∥). Then L∞(X,S, µ,B) is a
k-vector space.

Proof. Omitted. ■

In fact, we have a notion of multiplication!

Lemma 9.59. Fix a measure space (X,S, µ), and let k ∈ {R,C}. If f, g ∈ L∞(X,S, µ, k), then fg ∈
L∞(X,S, µ,B). In fact, ∥f∥∞ · ∥g∥∞ ≤ ∥fg∥∞.

Proof. Omitted. ■

Lemma 9.60. Fix a measure space (X,S, µ), and let B be a k-Banach space where k ∈ {R,C}. Then,
given some p ∈ [1,∞), for any a ∈ L∞(X,S, µ, k) and f ∈ Lp(X,S, µ,B), we see af ∈ Lp(X,S, µ,B).
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Proof. Of course ∥af∥p is nonnegative and S-measurable, so we just have to show that its integral is finite.
The point is that

∥af∥p ≤ ∥f∥p∞ · ∥f∥
p

almost everywhere, so
∥af∥p ≤ ∥f∥∞ · ∥f∥p

after integrating. ■

In other words, Lp is an L∞-module.

Example 9.61. In particular, we see that a ∈ L∞(X,S, µ,B) defines a continuous linear functional
µa : L

p(X,S, µ,B)→ Lp(X,S, µ,B) such that ∥µ(a)∥p ≤ ∥a∥∞ · ∥f∥p.

9.5.2 Bounded Linear Functionals
Let’s generalize Example 9.61.

Definition 9.62 (Bounded). Fix a normed k-vector spaces (V, ∥·∥V ) and (W, ∥·∥W ). Then a linear trans-
formation T : V →W defines

∥T∥ := inf
v∈V \{0}

{∥Tv∥W / ∥v∥V }.

Then T is bounded if and only if ∥T∥ <∞.

Remark 9.63. It turns out that T is continuous if and only if T is a bounded linear functional.

Example 9.64. One can check that ∥µa∥ = ∥a∥∞.

Let’s look at all our bounded linear operators at once.

Notation 9.65. Given a normed k-vector spaces (V, ∥·∥V ) and (W, ∥·∥W ), then we let B(V,W ) denote
the normed k-vector space of bounded linear transformations T : V → W . If V = W , we set B(V ) :=
B(V, V ).

Remark 9.66. One can check that the pointwise operations onB(V ) also give ∥ST∥ ≤ ∥S∥·∥T∥, soB(V )
is a normed algebra as well.

Remark 9.67. It’s also true that V being complete implies that B(V ) is complete. More generally, given
normed vector space (V, ∥·∥V ) and (W, ∥·∥W ), then W is complete implies that B(V,W ) is complete,
where B(V,W ) has been defined in the only way which makes sense.

It turns out that B(V ) is the correct object to discuss representations.

Definition 9.68. Fix a normed algebraA and a normed vector space V . Then a representation ofA in V
is an algebra homomorphism A→ B(V ).

The point is that we would like to respect the topologies on both A and V , so we want a representation to
only output continuous actions on V .

Example 9.69. The map a 7→ µa from earlier is a representation of Lp(X,S, µ,B) for p ∈ [1,∞].
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9.5.3 A Little Duality
Let’s move towards a little duality.

Notation 9.70. Fix a normed k-vector space (V, ∥·∥). Then we set V̂ = V ∨ := B(V, k).

We start with L1.

Notation 9.71. Fix a measure space (X,S, µ) and set k ∈ {R,C}. Then given f ∈ L∞(X,S, µ, k) and
g ∈ L1(X,S, µ, k), we define

φf :=

∫
k

fg dµ.

Remark 9.72. One can see that ∥φf (ξ)∥ ≤ ∥f∥∞ · ∥g∥1. In fact, equality holds. Thus, φf is a bounded
linear functional on L1(X,S, µ, k). As such, we have an isometry

φ• : L
∞(X,S, µ, k)→ L1(X,S, µ, k)∨.

We might want the isometry φ• to be surjective. It turns out that we have to add a few conditions on our
measure space.

Theorem 9.73. Fix a measure space (X,S, µ) and a Banach space (B, ∥·∥). If µ is σ-finite, and S is a
σ-algebra, then φ• defined in Remark 9.72 is an isomorphism of normed vector spaces.

Proof. Take Math 202B. ■

Remark 9.74. There is an injection L1(X,S, µ,B) ↪→ L∞(X,S, µ,B)∨ by something similar to φ•, but
it often fails to be surjective. Namely, we have an injection from L1 to its double-dual, but when L1 is
infinite-dimensional, then the double-dual of a vector space will generally be larger. (One does have to
use the axiom of choice to explicitly show this, however.)

Now let’s talk a little about L2. Suppose (X,S, µ) is a measure space such that S is a σ-algebra and µ is
σ-finite. We still have our isometry of normed algebras

µf : L
∞(X,S, k)→ B

(
L2(X,S, µ, k)

)
,

and one can check that the image of µf is a “von Neumann algebra,” where we are given an adjoint (·)∗ given
by conjugation: µ∗

f := µf . Further, the image is closed, provided the topology is defined correctly: we use
the “strong operator topology” induced by the semi-norms T 7→ ∥Tξ∥ for all ξ.

In fact, these properties are sharp in the following sense.

Theorem 9.75. Every commutative con Neumann algebra is isomorphic (preserving all the data) to some
L∞.

This is perhaps unsatisfying to analysts, who are comfortable removing commutativity hypotheses. We
close the class by saying that non-commutative von Neumann algebras are quite interesting.
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APPENDIX A
APPENDIX

A.1 Connectivity

In this appendix, we collect some results on connectivity.

Warning A.1. This appendix is taken from my homework, placed here because I have found these results
helpful in later courses.

A.1.1 Being Connected
Here is our definition.

Definition A.2 (connected). Fix a topological space X. Then X is disconnected if and only if there exist
disjoint nonempty open subsetsU, V ⊆ X such thatX = U ⊔ V . ThenX is connected if and only ifX is
not disconnected. A subset A ⊆ X is connected if and only if it is connected in the subspace topology.

Remark A.3. Equivalently, we can show that X is connected if and only if X and ∅ are the only subsets
of X which are both open and closed.

• Suppose X is connected, and suppose we have some U ⊆ X is nonempty and both open and
closed. Then

X = U ⊔X \ U.

ThenX being connected implies that one of these sets is empty, butU ̸= ∅ then forcesX \U = ∅
and so U = ∅.

• SupposeX is disconnected so that we can writeX = U ⊔V for disjoint nonempty open subsetsU
and V . Then we see that U = X \ V is also closed and not equal toX, so we have a subset U ⊆ X
which is open, closed, and not in {∅, X}.

We begin by picking up a few lemmas.

Lemma A.4. A subset A ⊆ X is connected if and only if A ⊆ U1 ∪ U2 and A ∩ U1 ∩ U2 ̸= ∅ for open
subsets U1, U2 ⊆ X implies A ∩ U1 = ∅ or A ∩ U2 = ∅.
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Proof. The subset A is disconnected implies that there are two nonempty open subsets V1, V2 ⊆ A (for the
relative topology) such that V1 ∩ V2 = ∅ and A = V1 ∪ V2. However, all open subsets of A take the form
U ∩A for some open subset U ⊆ X, so writing V1 = A ∩ U1 and V2 = A ∩ U2 tells us that

A = V1 ∪ V2 ⊆ U1 ∪ U2 and ∅ = V1 ∩ V2 = A ∩ U1 ∩ U2.

Additionally, V1 and V2 being nonempty implies A ∩ U2 ̸= ∅ and A ∩ U2 ̸= ∅.
Conversely, suppose we have open subsets U1, U2 ⊆ X such that A ⊆ U1 ∪ U2 and A ∩ U1 ∩ U2 = ∅ and

A ∩ U1 ̸= ∅ and A ∩ U2 ̸= ∅. Then set V1 := A ∩ U1 and V2 := A ∩ U2 to be nonempty open subsets so that

Vq ∪ V2 = A ∩ (U1 ∪ U2) = A and V1 ∩ V2 = A ∩ U1 ∩ U2 = ∅,

so A is in fact disconnected. ■

Lemma A.5. Fix a topological space X and point x ∈ X. Then {x} is connected.

Proof. We use Lemma A.4: if we have {x} ∩ U1 ∩ U2 = ∅ for open subsets U1, U2 ⊆ X, we see that we
cannot have both x ∈ U1 and x ∈ U2 for else x ∈ {x}∩U1 ∩U2. So instead x /∈ U1 or x /∈ U2, so {x}∩U1 = ∅
or {x} ∩ U2 = ∅. ■

Lemma A.6. Fix real numbers a, b ∈ R with a < b. Then the closed interval [a, b] ⊆ R is connected.

Proof. For psychological reasons, we use Lemma A.4. Suppose we have open sets U1, U2 ⊆ R with [a, b] ⊆
U1 ∪ U2 and [a, b] ∩ U1 ∩ U2. Note that a ∈ U1 or a ∈ U2, so without loss of generality take a ∈ U1. We claim
that [a, b] ∩ U2 = ∅.

Well, consider the set
S = {r ∈ [a, b] : [a, r] ⊆ U1}.

Note {a} ⊆ U1, so a ∈ S. Also, S is upper-bounded by b, so S has a supremum, so set s := supS. We now
proceed in steps.

1. Note that, for any a ≤ r < s, the fact that s is the supremum forces some r′ ∈ S to have r < r′ < s, so
[a, r] ⊆ [a, r′] ⊆ U1, so r ∈ S. Thus, [a, s) ⊆ S.

2. If s /∈ S, then s ∈ U2, so there is some ε > 0 with (s− ε, s+ ε) ⊆ S. In particular, max{a, s− ε/2} ∈ U2,
so [a, s) ∩ U2 is nonempty, so [a, b] ∩ U1 ∩ U2 is nonempty, which is a contradiction.

3. So we instead have s ∈ S. Thus, s ∈ U1, so there is ε > 0 with (s − ε, s + ε) ⊆ U1. Thus, for any
0 < δ < ε, we see

[a,min{b, s+ δ}] ⊆ U1.

But s < s + δ, so because s = supS, we must have s + δ /∈ S, which in turn forces b < s + δ for each
δ > 0 small enough. It follows b ≤ s, but s ∈ S ⊆ [a, b] enforces s = b. Thus, [a, b] ⊆ U1.

Now that we have [a, b] ⊆ U1, we see [a, b]∩U1∩U2 = ∅ forces [a, b]∩U2 = ∅, which is what we wanted. ■

Lemma A.7. Suppose that f : X → Y is a continuous function actually outputting to a subsetS ⊆ Y ; i.e.,
im f ⊆ S. Then the function f : X → S given by f(x) := f(x) for each x ∈ X is a continuous function,
where S has been given the subspace topology.
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Proof. For a given open subset V ⊆ S, the subspace topology promises an open subset U ⊆ Y such that
V = S ∩ U . Now, we compute

f
−1

(V ) = {x ∈ X : f(x) ∈ V }
= {x ∈ X : f(x) ∈ V }
= {x ∈ X : f(x) ∈ S ∩ U}
∗
= {x ∈ X : f(x) ∈ U}
= f−1(U),

which is an open subset of X by the continuity of f ; note that we have used the fact that im f ⊆ S at the
∗
=. ■

Lemma A.8. A continuous function from one topological space into another carries connected subsets
onto connected subsets.

Proof. Fix a continuous function f : X → Y and a subsetA ⊆ X. Instead of showing thatA being connected
implies that f(A) is connected, we proceed by contraposition: suppose that f(A) is disconnected, and we
show that A is connected.

Well, f(A) being connected promises by Lemma A.4 open subsets V1, V2 ⊆ Y such that V1 ∩ f(A), V2 ∩
f(A) ̸= ∅ and f(A) ⊆ V1 ∪ V2 and f(A) ∩ V1 ∩ V2 = ∅. We now set U1 := f−1(V1) and U2 := f−1(V2), which
are open in X because f is continuous. Here are our checks.

• Note V1 ∩ f(A) ̸= ∅ promises some a ∈ A with f(a) ∈ V1, so a ∈ A ∩ f−1(V1), so A ∩ U1 ̸= ∅.
Symmetrically, we have A ∩ U2 ̸= ∅.

• If we had a ∈ A ∩ U1 ∩ U2, we see f(a) ∈ V1 and f(a) ∈ V2, so f(a) ∈ A ∩ f−1(V1) ∩ f−1(V2), so
A∩f−1(V1)∩f−1(V2) is nonempty. However, by construction, f(A)∩V1∩V2 = ∅, so we must instead
have A ∩ U1 ∩ U2 = ∅.

• Note f(A) ⊆ V1 ∪V2 means that each a ∈ A has f(a) ∈ V1 or f(a) ∈ V2, so a ∈ f−1(V1) or a ∈ f−1(V2),
so a ∈ U1 ∪ U2. Thus, A ⊆ U1 ∪ U2.

The above points show that A is disconnected by Lemma A.4. ■

Lemma A.9. The closure of a connected subset of a topological space is connected.

Proof. Fix a topological spaceX and subsetA ⊆ X. We proceed by contraposition. Suppose that the closure
A is disconnected, and we show that A is disconnected.

Well,A being connected promises by Lemma A.4 open subsetsU1, U2 ⊆ X such thatA∩U1, A∩U2 ̸= ∅
and A ⊆ U1 ∪ U2 and A ∩ U1 ∩ U2 = ∅. We show that U1 and U2 also witness A being disconnected.

• Note
A ∩ U1 ∩ U2 ⊆ A ∩ U2 ∩ U2 = ∅,

so A ∩ U1 ∩ U2 = ∅.

• Note A ⊆ A ⊆ U1 ∪ U2, so A ⊆ U1 ∪ U2.

• Lastly, we showA∩U1 ̸= ∅, andA∩U2 ̸= ∅will follow by symmetry. Well, supposing for contradiction
that A ∩ U1 = ∅, we would have A ⊆ X \ U1, but X \ U1 is closed because U1 is open, so A ⊆ X \ U1,
so A ∩ U1 = ∅. But by construction we have A ∩ U1 ̸= ∅, so we must instead have A ∩ U1 ̸= ∅.

The above points show that A is disconnected by Lemma A.4. ■
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Lemma A.10. Suppose F is a (possibly infinite) collection of connected subsets of a topological space.
If there is a point x0 that is contained in every element ofF , then the union of all the elements ofF is a
connected subset.

Proof. We use Lemma A.4. LetF be a nonempty1 collection of connected subsets containing some common
point x0, and let C denote the union of all the (connected) subsets A ∈ F . We need to show that C is
connected. Well, suppose that we have open subsets U1, U2 ⊆ X such that C ⊆ U1 ∪ U2 and C ∩ U1 ∩ U2,
and we need to show C ∩ U1 = ∅ or C ∩ U2∅.

Well, for any A ∈ F , we see that

A ⊆ C ⊆ U1 ∪ U2 and A ∩ U1 ∩ U2 ⊆ C ∩ U2 ∩ U2 = ∅,

so the connectivity of A implies by Lemma A.4 that A ∩ U1 = ∅ or A ∩ U2 = ∅. Now fixing a particular
A0 ∈ F , we see say that without loss of generality A0 ∩ U2 = ∅, so in fact we see that x0 /∈ U2; however,
x0 ∈ A0 ⊆ U1 ∩ U2, so we must instead have x0 ∈ U1.

We now claim thatA ⊆ U1 for eachA ∈ F . We showed above thatA ∩ U1 = ∅ orA ∩ U2 = ∅. If we had
A ∩ U1 = ∅, then this would imply x0 ∈ A has x0 /∈ U1, which is false as shown above. So instead we have
A ∩ U2 = ∅, so all a ∈ A ⊆ U1 ∪ U2 cannot have a ∈ U2 and therefore must have a ∈ U1, so A ⊆ U1 follows.

In total, we see
C =

⋃
A∈F

A ⊆
⋃
A∈F

U1 = U1.

As such, we claim C ∩ U2 = ∅: any c ∈ C ⊆ U1 ∪ U2 now has c ∈ C = C ∩ U1, but C ∩ U1 ∩ U2 = ∅ then
forces c /∈ U2. As such, C ∩ U2 = ∅. This finishes by Lemma A.4. ■

We now discuss connected components.

Lemma A.11. LetX be a topological space. Declare that two points ofX are equivalent if there is some
connected of subset of X that contains both of them. Then this is an equivalence relation, and the
equivalence classes are connected.

Proof. Define the relation∼ onX by x ∼ x′ if and only if there is a connected subsetA ⊆ X containing both
x and x′. We need to show that∼ is an equivalence relation.

• Reflexive: given x ∈ X, we see that {x} is connected by Lemma A.5. Thus, {x} is a connected subset
containing x and x, so x ∼ x.

• Symmetric: given x, x′ ∈ X with x ∼ x′, there is a connected subset A ⊆ X containing x and x′. But
then A ⊆ X is connected subset containing x′ and x, so x′ ∼ x follows.

• Transitive: given x, x′, x′′ ∈ X with x ∼ x′ and x′ ∼ x′′, there are connected subsets A and A′ with
x, x′ ∈ A and x′, x′′ ∈ A′. Then we set

B := A ∪A′.

Thus, we see B by definition is the union of two connected subsets of X both containing x′, so B is
connected by Lemma A.10. Further, x ∈ B and x′′ ∈ B is telling us that there is a connected subset B
containing both x and x′′, so x ∼ x′′ follows.

Now letC ⊆ X be an equivalence class of the equivalence relation∼; say thatC is represented by a particular
x0 ∈ C. We proceed in steps.

1. We claim that any connected subset C ′ ⊆ X containing x0 is a subset of C. Indeed, any x ∈ C ′ has
that C ′ ⊆ X is a connected subset containing both x and x0, so x ∼ x0, so x ∈ C. Thus, C ′ ⊆ C.

1 If F is empty, then the union of elements of F is ∅, which is vacuously connected by Lemma A.4: there are no open subsets
U1, U2 ⊆ X with ∅ ∩ U1 ∩ U2 ̸= ∅.
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2. We show C is connected. For each x ∈ C, by definition x ∼ x0, so there is a connected subset Ax
containing both x and x0; by the previous point, we see Ax ⊆ C. Thus, we may write

C =
⋃
x∈C
{x} ⊆

⋃
x∈C

Ax ⊆
⋃
x∈C

C = C,

so
C =

⋃
x∈C

Ax

follows. However, eachAx is a connected subset ofX containing x0, so Lemma A.10 tells us that their
union C must be connected. ■

And here is our definition.

Definition A.12 (connected component). Fix a topological space X. Then the equivalence classes of
Lemma A.11 are called the connected components of X.

Lemma A.13. Fix a connected component A of a topological space X. Then C is closed.

Proof. Note C is connected by construction, so C is a connected subset (by Lemma A.9) which contains x0.
Thus, as shown in the first point, we see C ⊆ C, but C ⊆ C will imply C = C. But C is closed, so it follows
C is closed. ■

A.1.2 Being Path-Connected
Here is our definition.

Definition A.14 (path-connected). Fix a topological space X. Then X is path-connected if and only if
any p, q ∈ X have some continuous function f : [a, b]→ X (for a < b) such that f(a) = p and f(b) = q.

Remark A.15. Because there is a homeomorphism [0, 1] ∼= [a, b] (for a < b) by x 7→ a+ x(b− a), we may
as well assume that our continuous functions are f : [0, 1]→ X.

Lemma A.16. A path-connected topological space is connected.

Proof. Suppose thatX is a path-connected topological space. IfX is empty, thenX is vacuously connected
becauseX has nonempty open subsets. Otherwise, we may fix a pointx ∈ X, and letC ⊆ X be its connected
component as found in Lemma A.11; by Lemma A.11, we see C is connected.

Now, for any point y ∈ X, we are promised a path p : [a, b] → X such that p(a) = x and p(b) = y.
However, [a, b] is connected by Lemma A.5, so p([a, b]) is connected by Lemma A.8. Thus, p([a, b]) ⊆ X is a
connected subset containing both x = p(a) and y = p(b), so x ∼ y under the equivalence relation defining
C, so y ∈ C follows.

It follows that X ⊆ C, so in fact we have X = C. Thus, X is connected because C is connected. (The
relative topology onX fromX is just the original topology onX; alternatively, the test for Lemma A.4 simply
says that X is connected directly.) ■

We would like to define path-connected components. The following lemma will be helpful to “concatenate”
paths.
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Lemma A.17. Fix a topological space X. Given real numbers a < b < c and two continuous functions
φ : [a, b]→ X and ψ : [b, c]→ X such that φ(b) = ψ(b), the function γ : [a, c]→ X defined by

γ(t) :=

{
φ(t) t ∈ [a, b],

ψ(t) t ∈ [b, c]

is also continuous.

Proof. Fix an open subset U ⊆ X. We need to show that γ−1(U) is an open subset of [a, c]. The main claim
is that, for each t ∈ γ−1(U), we need to find some ε > 0 such that (t − ε, t + ε) ∩ [a, c] ⊆ γ−1(U). We have
the following starting remarks.

• Suppose that t ∈ [a, b]. We now note that φ−1(U) is an open subset of [a, b] and contains t. Because
φ−1(U) ⊆ [a, b] is open, there is an open subset V ′ ⊆ R with φ−1(U) = V ′ ∩ [a, b]. However, t ∈ V , so
there is ε > 0 such that (t− ε, t+ ε) ⊆ V and so

(t− ε, t+ ε) ∩ [a, b] ⊆ φ−1(U) ⊆ γ−1(U).

• Analogously, for any t ∈ [b, c], the above argument with a replaced with b and b replaced with c and φ
replaced with ψ shows that there is some ε > 0 such that

(t− ε, t+ ε) ∩ [b, c] ⊆ ψ−1(U) ⊆ γ−1(U).

We now have the following three cases.

• Take t ∈ [a, b). We are provided with some ε > 0 such that

(t− ε, t+ ε) ∩ [a, b] ⊆ γ−1(U).

This property doesn’t change if we make ε smaller, so we may assume that ε < b− t; notably, b− t > 0
by hypothesis. So in fact z ∈ (t− ε, t+ ε) implies z ≤ b, so (t− ε, t+ ε) ∩ [a, b] = (t− ε, t+ ε) ∩ [a, c].
So we see

(t− ε, t+ ε) ∩ [a, c] ⊆ γ−1(U).

• Analogously, take t ∈ (b, c]. We are provided with some ε > 0 such that

(t− ε, t+ ε) ∩ [b, c] ⊆ γ−1(U).

This property doesn’t change if we make ε smaller, so we may assume that ε < t− b; notably, t− b > 0
by hypothesis. So in fact z ∈ (t − ε, t + ε) implies z ≥ b, so (t − ε, t + ε) ∩ [b, c] = (t − ε, t + ε) ∩ [a, c].
So we see

(t− ε, t+ ε) ∩ [a, c] ⊆ γ−1(U).

• Lastly, we have t = b. We are provided with ε− > 0 such that

(t− ε−, t+ ε−) ∩ [a, b] ⊆ γ−1(U)

and ε+ > 0 such that
(t− ε+, t+ ε+) ∩ [b, c] ⊆ γ−1(U).

Setting ε := min{ε−, ε+} > 0, we see that (t− ε, t+ ε) ∩ [a, b] is contained in (t− ε−, t+ ε−) ∩ [a, b] ⊆
γ−1(U), and (t− ε, t+ ε)∩ [b, c] is contained in (t− ε+, t+ ε+)∩ [b, c] ⊆ γ−1(U), so taking the union of
these we see

(t− ε, t+ ε) ∩ [a, c] ⊆ γ−1(U).
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We now finish the proof. For each t ∈ [a, c], we have been promised εt > 0 such that (t− εt, t+ εt) ∩ [a, c] is
a subset of γ−1(U), so we see

γ−1(U) ⊆ [a, c] ∩
⋃

t∈γ−1(U)

(t− εt, t+ εt) ⊆ γ−1(U),

so we have shown that γ−1(U) is [a, c] ∩ V where V is some arbitrary union of open subsets of R and hence
open. Thus, γ−1(U) is open in [a, c]. ■

Lemma A.18. LetX be a topological space. Declare that two points ofX are equivalent if there is a path
from one to the other. This is an equivalence relation, and the equivalence classes are path-connected.

Proof. For x, x′ ∈ X, define the relation ∼p by x ∼p y if and only if there is a path γ : [a, b] → R (for some
reals a > b) such that γ(a) = x and γ(b) = y. We claim that∼p is an equivalence relation.

• Reflexive: given any x ∈ X, we define the function γ : [0, 1]→ X by γ(t) = x for each t ∈ [0, 1]. To see
that γ is continuous, we pick up some open U ⊆ X, for which we have two cases.

– If x ∈ U , then γ−1(U) = [0, 1], which is open.
– If x /∈ U , then γ−1(U) = ∅, which is still open.

Thus, γ is continuous, so γ(0) = x and γ(1) = x witnesses x ∼p x.

• Symmetric: given x, y ∈ X with x ∼p y, we know there is a continuous function γ : [a, b]→ X such that
γ(a) = x and γ(b) = y. We now define the function r : R→ R by r(t) := b+ a− x, which is continuous
because it is a polynomial. Restricting, we see that r : [a, b]→ R is continuous, and we see that t ∈ [a, b]
implies that a ≤ t ≤ b and so a ≤ b+a− t ≤ b, so we may restrict the image to see that r : [a, b]→ [a, b]
is a continuous function as well.
Now, composing, we see that (γ ◦ r) : [a, b]→ X is a continuous function such that γ(r(a)) = γ(b) = y
and γ(r(b)) = γ(a) = x. It follows y ∼p x.

• Transitive: fix x, y, z ∈ X with x ∼p y and y ∼p z so that we have continuous functions α : [a, b] → X
and β : [c, d]→ X such that α(a) = x and α(b) = y and β(c) = y and β(d) = z.
Very quickly, we define r : R→ R by t 7→ t− b+c, which is continuous and hence polynomial. Restrict-
ing, we see that r : [b, d+b−c]→ R is also continuous, so restricting the image we note b ≤ t ≤ d+b−c
if and only if c ≤ t− b+ c ≤ d, so our function r : [b, d+ c− b]→ [c, d] is still continuous.
Thus, we define γ by Lemma A.17 by concatenating the continuous functions α : [a, b] → X and (β ◦
r) : [b, d+ c− b]→ X (note α(b) = y and (β ◦ r)(b) = β(c) = y) to give a continuous function

γ : [a, d+ c− b]→ X

such that γ(a) = α(a) = x and γ(d+ c− b) = β(d) = z. It follows that x ∼p z.

Thus,∼p is in fact an equivalence relation.
Now, given some x0, let P be the path-connected component containing x0. To finish, we need to show

that P is path-connected (when given the subspace topology). Well, given x, y ∈ P , we need to show that
there is continuous function γ : [a, b]→ P such that γ(a) = x and γ(b) = y. We have three steps.

1. Notably, we see that x ∼p x0 and x0 ∼p y, so the transitivity check tells us that

x ∼p y,

so there is a continuous function γ : [a, b]→ X such that γ(a) = x and γ(b) = y.
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2. We show that im γ ⊆ P . Indeed, fix some γ(t) ∈ im γ, and we note that the restricted path

γ|[a,t] : [a, t]→ X

is a continuous function2 with γ|[a,t](a) = x and γ|[a,t](t) = γ(t). Thus, γ|[a,t] witnesses a ∼p γ(t), so
γ(t) ∈ P because P is an equivalence class for∼p.

3. Thus, we can restrict the codomain of γ to give a function γ̃ : [a, b] → P by γ̃(t) := γ(t) for each t.
Continuing, note that γ̃ is continuous by Lemma A.7.

Thus, the above proof has taken any two points x, y ∈ P and exhibited a continuous function γ : [a, b] → P
such that γ(a) = x and γ(b) = y. ■

And here is our definition.

Definition A.19 (path-connected component). Fix a topological space X. Then the equivalence classes
of Lemma A.18 are the path-connected components.

It is worthwhile to have an example of a space which is connected but not path-connected, showing that the
inclusion of Lemma A.16 is strict.

Exercise A.20. Let A ⊆ R2 be the union of the y-axis and the graph of the function f(t) = sin(1/t) for
0 < t ≤ 1. (Draw a picture of A.) Prove that A, with the relative topology, is connected but not path-
connected. What are the path-connected components of A? What can you conclude about whether
path-connected components must be closed?

Proof. Here is our picture.

Namely,
A = {(0, y) : y ∈ R} ∪ {(t, sin(1/t)) : 0 < t ≤ 1}.

For brevity, define Y := {(0, y) : y ∈ R} and G := {(t, sin(1/t) : 0 < t ≤ 1}. We show the requirements of
the problem in sequence.

• We show that Y ⊆ A is path-connected. Well, note that the function f : R → R2 by f(y) := (0, y) is
a polynomial and therefore continuous; notably f(y) = (0, y) ∈ Y for each Y , so we may restrict the
image of f to Y ⊆ A, and the resulting function will still be continuous by Lemma A.7.
Now, for any two distinct points (0, y1) and (0, y2) of Y , we assume without loss of generality that
y1 < y2 and consider the restriction

f |[y1,y2] : [y1, y2]→ Y.

2 The restriction f |S of a continuous function f : X → Y is still continuous: for any open U ⊆ U , we see that (f |S)−1(U) =
S ∩ f−1(U) is open in S.
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This function is continuous because f is, and it has f(y1) = (0, y1) and f(y2) = (0, y2). Thus, we
conclude that any two distinct points in Y have a continuous path connecting them, which means that
Y is path-connected.

• We show that G ⊆ A is path-connected. Well, note that the function g : (0, 1] → R2 by g(t) :=
(t, sin(1/t)) is a polynomial in the x-coordinate and the composite of two continuous functions in the
y-coordinate, so g in total is continuous.
Additionally, we see somewhat directly that the image of g is exactlyGby definition, so we may restrict
the image of g to a continuous function outputting toG. Now, for any two distinct points (t1, sin(1/t1))
and (t2, sin(1/t2)) inG, we would like to find a path between them; without loss of generality, we take
t1 < t2. Then we note that the restricted function

g|[t1,t2] : [t1, t2]→ G

is a continuous function with g(t1) = (t1, sin(1/t1)) and g(t2) = (t2, sin(1/t2)). Thus, any two distinct
points of G have a continuous path between them, so we conclude that G is path-connected.

• We show thatA is connected. Indeed, it suffices to show that the connected componentC containing
(0, 0) ∈ Y ⊆ A is all of A. We split this in two pieces.

– To begin, note that Y is path-connected, so Lemma A.16 tells us that Y is connected. It follows
from what we showed in Lemma A.11 that Y ⊆ C.

– Quickly note that (0, 0) ∈ G. Indeed, it suffices to show that any open set U ⊆ A containing
(0, 0) has nonempty intersection withG. Well, U ⊆ A comes from an open set in R2, so using the
product basis for R2, we conclude that there is some ε > 0 with

B((0, 0), ε) ∩A ⊆ U.

It suffices to show that B((0, 0), ε) ∩G ̸= ∅ because this will imply that

B((0, 0), ε) ∩G = B((0, 0), ε) ∩A ∩G ⊆ U ∩G

is also nonempty.
Well, find some integer n > 0 with 2πn > 1/ε, and set t := 1

2πn > 0. Then

(t, sin(1/t)) =

(
1

2πn
, sin(2πn)

)
=

(
1

2πn
, 0

)
,

which lives in B((0, 0), ε) because 1/(2πn) < ε. So (t, sin(1/t)) ∈ G ∩B((0, 0), ε).
Now, we note that G is path-connected as shown above, so G is connected by Lemma A.16, so
G is connected by Lemma A.9. Now, G is a connected set containing (0, 0), so G ⊆ C by our
discussion in Lemma A.11.

Thus, we see thatA = Y ∪G ⊆ Y ∪G ⊆ C, soC = A. It follows thatA is connected because connected
components are connected by Lemma A.11.

• We claim that Y and G are the path-connected components of A. Note we have A = Y ∪ G already,
and (x, y) ∈ G implies x > 0 and so (x, y) /∈ Y , so Y ∩ G = ∅; thus, Y and G do partition A and will
induce some equivalence relation∼ on A with Y and G as equivalence classes.
It remains to show that ∼ aligns with the correct equivalence relation ∼p on A. Namely, we need to
show that a, a′ ∈ A have a ∼p a′ if and only if either a, a′ ∈ Y or a, a′ ∈ G. We have already shown that
Y and G are path-connected above, so it follows that a, a′ ∈ Y or a, a′ ∈ G both imply a ∼p a′.
It remains to show the reverse implication. Suppose a = (0, y) ∈ Y and a′ = (t, sin(1/t)) ∈ G, and we
need to show that there is no continuous path γ : [s, t] → A with γ(s) = a and γ(t) = a′. We proceed
by contradiction, in steps.
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1. Observe that projecting γ onto the x-axis (by π : R2 → R) makes a continuous function [s, t]→ R.
Notably, π(γ(s)) = π(a) = 0, but π(γ(t)) = π(a′) > 0, so we let t0 be the supremum of all values
x ∈ [s, t] such that πγ([s, x]) = {0}, which is really just the supremum of the values of x with

[s, x] ⊆ (πγ)−1({0}).

(In particular, t0 < t because π(γ(t)) ̸= 0.) Notably, (πγ)−1({0}) is closed and therefore contains
its limit points, so because t0 is a supremum of some subset of (πγ)−1({0}), we conclude that
t0 ∈ (πγ)−1({0}).

2. Now, we have that any sufficiently small δ > 0 has πγ([t0, t0 + δ]) ̸= {0}; thus, we have some
x > 0 with x ∈ πγ([t0, t0 + δ]). However, πγ is still continuous, and [t0, t0 + δ] is connected, so the
image must also be connected, so [0, x] ⊆ πγ([t0, t0 + δ]).

3. To finish, we note that the continuity of γ implies that some δ > 0 has

|t0 − t′| < δ =⇒ d(γ(t0), γ(t
′)) < ε,

for any given ε > 0; in particular, any two points p, p′ ∈ γ([t0, t0 + δ]) must have

d(p, p′) ≤ d(p, γ(t0)) + d(γ(t0), p
′) < 2ε.

However, this will derive contradiction with ε = 0.4: any δ > 0 induces some closed subset [0, x] ⊆
πγ([s, t0 + δ/2]) where x > 0. Notably, choosing some n large enough so that 1/(2πn+π/2) < x,
we see the points (

1

2πn+ π/2
, sin(2πn+ π/2)

)
=

(
1

2πn+ π/2
, 1

)
,(

1

2πn+ 3π/2
, sin(2πn+ 3π/2)

)
=

(
1

2πn+ 3π/2
,−1

)
live in γ([t0, t0 + δ/2]), but the distance between these two points is at least 2 and greater than
2ε = 0.8.

The above steps complete the proof. Notably,A is not path-connected, as shown above, because it has
two path-connected components. Additionally, we note that G ⊆ A is a path-connected component
which is not closed; notably (0, 0) ∈ G \G. (We showed (0, 0) ∈ G above.) ■

A.1.3 Products
We go ahead and show that the product of two connected spaces is connected. This is surprisingly techni-
cal.

Lemma A.21. LetX andY be topological spaces, and letπ be a continuous function fromX ontoY such
that the topology of Y is the quotient topology from X. If Y is connected, and if the pre-image in X of
each point of Y for π is connected, then X is connected.

Proof. By definition of the quotient topology, V ⊆ Y is open if and only if π−1(V ) ⊆ X is open. We are also
assuming that π : X → Y is surjective because the question specified that π is onto.

We proceed by contraposition. Suppose that X is disconnected but that π−1({y}) is connected for each
y ∈ Y . We show thatY is disconnected. BecauseX is disconnected, we may disjoint nonempty open subsets
U1, U2 ⊆ X such that X = U1 ∪ U2. We now set

V1 := π(U1) and V2 := π(U2).

The main claim is that π−1(V1) = U1. We have two inclusions.

• Certainly any x ∈ U1 has π(x) ∈ V1, so x ∈ π−1(V1), so U1 ⊆ π−1(V1).
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• Conversely, suppose that x ∈ π−1(V1) so that y := π(x) lives in V1. Now, π−1({y}) is connected. Thus,
because π−1({y}) ⊆ X = U1 ∪U2 and π−1({y})∩U1 ∩U2 ⊆ U1 ∩U2 = ∅, we conclude by Lemma A.4
that π−1({y}) ∩ U1 = ∅ or π−1({y}) ∩ U2 = ∅.
However, π(x) = y, sox ∈ π−1({y})whilex ∈ U1, soπ−1({y})∩U1 ̸= ∅, so instead we haveπ−1({y})∩
U2 = ∅. Thus, each x′ ∈ π−1({y}) ⊆ U1 ∩ U2 = X must have x′ /∈ U2, so x′ ∈ U1 instead. It follows
π−1({y}) ⊆ U1.

Because π−1(V1) = U1, we see that V1 ⊆ Y is open by definition of the quotient topology. By symmetry,
we can replace all 1s with 2s and vice versa in the above argument to show that π−1(V2) = U2, thus making
V2 ⊆ Y also open.

We now run our checks on V1 and V2.

• Because U1 is nonempty, we can find some x ∈ U1, so π(x) ∈ V1, so V1 is nonempty. Symmetrically,
V2 is nonempty.

• Because π is surjective, every y ∈ Y has some x ∈ X with π(x) = y. However,X = U1 ∪U2 now forces
x ∈ U1 or x ∈ U2, so y = π(x) ∈ V1 or y = π(x) ∈ V2. Thus, Y = V1 ∪ V2.

• We show V1 and V2 are disjoint. Indeed, if we had some y ∈ V1 ∩ V2, then go find some x ∈ X with
π(x) = y by the surjectivity of π. But now x ∈ π−1(V1) = U1 and x ∈ π−1(V2) = U2, so U1 ∩ U2 is
nonempty, which is a contradiction to their construction.

The above checks witness that Y is disconnected. ■

Proposition A.22. LetX and Y be connected topological spaces. ThenX×Y with the product topology
is connected.

Proof. IfX = ∅ or Y = ∅, thenX × Y is empty, soX × Y is vacuously connected: X × Y has no nonempty
open subsets, so X × Y is not the union of two disjoint open subsets.

Otherwise, make X and Y both nonempty. Let π : X × Y → Y be the canonical projection. We use
Lemma A.21. For this, we have the following checks.

• We check π is surjective. Indeed, note that X is nonempty, so find some x ∈ X. Now, for any y ∈ Y ,
we see (x, y) ∈ X × Y has π((x, y)) = y.

• We check that the topology on Y is the quotient topology from π : X ×Y → Y . Namely, given V ⊆ Y ,
we need to know that V ⊆ Y is open if and only if π−1(V ) ⊆ X × Y is open. Before doing any work,
we compute

π−1(V ) = {(x, y) ∈ X × Y : π((x, y)) ∈ V } = {(x, y) ∈ X × Y : y ∈ V } = X × V.

As such, if V = ∅, then π−1(V ) = ∅, for which there is nothing more to say, so we may assume that
V ̸= ∅. We now show our implications.

– Suppose V ⊆ Y is open. Then, by definition of the product topology on X × Y , the open subset
π−1(V ) = X×V is an open subset (in fact, a sub-basis element) ofX×Y . Thus, π−1(V ) is in fact
open.

– Suppose π−1(V ) = X × V is open. Recalling that the product topology onX × Y has basis given
by UX × UY where UX ⊆ X and UY ⊆ Y are both open subsets. Thus, we can find a collection
{UX,α × UY,α}α∈λ such that

X × V =
⋃
α∈λ

(UX,α × UY,α),

where the UX,α ⊆ X and UY,α ⊆ Y are both open; we may assume that UX,α ̸= ∅ for each α ∈ λ,
for otherwise weUX,α×UY,α ̸= ∅, and then we could just throw out this term entirely. (Certainly
not all the UX,α will be empty because then X × V = ∅, which is false because X,V ̸= ∅.)
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Now, we thus claim that
V =

⋃
α∈λ

UY,α,

which will finish because this implies that V is the union of open subsets of Y and therefore open.
In one direction, if y ∈ V , fix some x ∈ X (recall X ̸= ∅) so that (x, y) ∈ X × V , so there is some
α ∈ λ such that (x, y) ∈ (UX,α × UY,α), so y ∈ UY,α follows, so y ∈

⋃
β∈λ UY,β .

In the other direction, if y ∈
⋃
β∈λ UY,β , then there is some UY,α containing y. Because UX,α is

nonempty, find some x ∈ UX,α. Thus, (x, y) ∈ UX,α × UY,α, so (x, y) ∈ X × V , so y ∈ V follows.

• For each y0 ∈ Y , we need to show that π−1({y0}) is connected when given the subspace topology from
X × Y . We proceed in steps.

1. Note π−1({y0}) = {(x, y) ∈ X × Y : π((x, y)) = y0} = {(x, y) ∈ X × Y : y = y0} = X × {y0}.
2. Define the map ι : X → X×Y by x 7→ (x, y0). We check that ι is continuous. It suffices to run this

check on an arbitrary basis set UX × UY ⊆ X × Y , where UX ⊆ X and UY ⊆ Y are open. There
are two cases.

– If y0 /∈ UY , then we note that all x ∈ X give ι(x) = (x, y0) /∈ UX ×UY because y0 /∈ UY . Thus,
ι−1(UX × UY ) = ∅, which is open.

– If y0 ∈ UY , then we note

ι−1(UX × UY ) = {x ∈ X : ι(x) ∈ UX × UY }
= {x ∈ X : (x, y0) ∈ UX × UY }
= {x ∈ X : x ∈ UX and y0 ∈ UY }
∗
= {x ∈ X : x ∈ UX}
= UX ,

which is indeed an open subset of X; note we have used the fact that y0 ∈ UY in ∗
=.

Thus, ι−1(UX × UY ) is open in all cases, so we conclude that ι is in fact continuous.
3. However, we note that im ι ⊆ π−1({y0}): indeed, for any x ∈ X, we have π(ι(x)) = π((x, y0)) =

y0. Thus, we may restrict the codomain of ι to a function ι : X → π−1({x}), which is continuous
by Lemma A.7.

4. In fact, we note that ι is actually surjective: for any (x, y0) ∈ X × {y0} = π−1({y0}), we see that
ι(x) = (x, y0).

5. Combining the above facts, we note that we have a continuous surjection ι : X → π−1({y0}), so
because X is connected, we conclude that π−1({y0}) is connected by Lemma A.8.

So indeed, we have found that all the fibers in X × Y at a point in Y are connected.

The above checks make Lemma A.21 kick in, so we conclude that X × Y is connected. ■
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Almost everywhere, 126
Almost uniformly, 146
Almost uniformly Cauchy, 147

Ball, 29
Banach space, 63
Base, 37
Borel set, 115, 117
Borel–Stieltjes measure, 116
Bounded, 58, 195

Category, 12
Cauchy, 19
Cauchy in measure, 140
Cauchy in p-mean, 191
Chain, 71
Closed, 40
Closure, 42
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Compact support, 84
Compelete, 110
Complete, 20
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connected, 197
connected component, 201
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Lipschitz continuous, 14
Lipschitz constant, 15
Lipschitz isomorphism, 16

Uniformly continuous, 16
Converge, 17
Converge in mean, 153, 168
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Converges almost everywhere, 126
Countably additive, 94

Countably subadditive, 102
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Directed set, 78
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Finite intersection property, 69
Finitely additive measure, 91

Group action, 52

Hausdroff, 53
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Hereditary σ-ring, 103
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Homeomorphism, 50
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Integrable, 158
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Lebesgue–Stieltjes measure, 115
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Measurable function, 126, 126
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Measure space, 139
Metric, 7

Extended metric, 7
Semi-metric, 7
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Norm, 8
Normal, 54
Null set, 126

Open cover, 64
Open set, 30
Open subcover, 64
Orbit, 52
Outer measure, 107

path-connected, 201
path-connected component, 204
Pointwise totally bounded, 81
Poset, 70
Pre-image, 30
Premeasure, 96
Prering, 95

Rapidly Cauchy, 150
Regular, 67
Ring, 91

Semi-norm, 9
Separable, 127

σ-algebra, 92
σ-finite, 112
σ-ring, 92

Generated σ-ring, 93
Simple integrable function, 124
Simple measurable function, 120
Strongly absolutely continuous, 177
Sub-base, 34
Subposet, 70
Support, 84

Topology, 32
Discrete topology, 32
Final topology, 48
Generated topology, 34
Indiscrete topology, 32
Induced topology, 39
Product topology, 44
Quotient topology, 49
Relative topology, 39

Totally bounded, 77

Uniform metric, 58
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