202A: Introduction to Topology and Analysis

Nir Elber

Fall 2022



CONTENTS

How strange to actually have to see the path of your journey in order to
make it.

—Neal Shusterman, [Shul6]

Contents 2
1 Metric Spaces 6
1.1 August 24 . . o o e e e e e e e e e e e e e e e 6
1.1.1 Administrative Notes . . . . . . . . . i i i i e e e e e e e e e e e e e 6

1.1.2 MetricSpaces . . . . o o it e e e e e e e e e e 7

1.1.3 NormsonVectorSpaces . . . . . . i i i i i i e e e e e e e 8

1.1.4 AHintof LPSpaces . . . . . . . i i i i i e e e e e e e e e 11

1.2 August26 . . . o . e e e e e e e e e e 12
1.2.1 Isometries . . . . . . e e e e e e e e e e e e 12

1.2.2 Lipschitz Continuity . . . . . . . . . o o e e e e e e e e e 14

1.2.3 FunwithContinuity . . . . . . . . o e e e e e e e e e e 16

1.2.4 ConvergentSequenCes . . . . . . . i i i i e e e e e e e e e e e e 17

1.2.5 CauchySequences . . . . . . i i i i i i it e e e e e e e e e e e e 19

1.2.6 Existenceof Completions . . . . . . . . .. e e e 21

1.2.7 Uniquenessof Completions .. . . . . . . . . . . i i i i 23

1.3 August29 . . . o e e e e 25
1.3.1 SomeExamples . . . . . .. e e e e e e e e e 25

I Topology 28
2 Building Topologies 29
2.1 August29 . . e e e e 29
2.1.1 MetricTopology . . . v v v i it e e e e e e e e e 29

2.1.2 0pensSets . ... e e e e e e e e e e 31

2.2 August 3L . L e e e e e e e e 33
2.2.1 Intersectionsof Topologies . . . . . . . . o v v i i i e 33

2.2.2 Sub-bases . ... e e 34

2.2.3 Bases . .. e e e e e e e e e e e e e 37



CONTENTS

2.2.4 Induced Topologies . . ... ... ... ....
2.3 September2 ... ... e
231 ClosedSets . . . . ... ...
2.3.2 Closures . .. .. i i ittt
2.3.3 TheProductTopology . . . . ... ... ....
2.3.4 Commentsonthe DualSpace .........
2.4 September7 . .. ... e
2.4.1 QuotientSpaces . . ... ... ... ......
2.4.2 Homeomorphism . ...............
243 GroupActions . ... ... oo
3 Building Functions
3.1 September9 . ... ... ...
3.1.1 NormalSpaces ... ... ... ... ......
3.1.2 Urysohn's Lemma: Metric Spaces . ... ...
3.1.3 Urysohn's Lemma: The General Case
3.2 September12 .. ... e
3.2.1 Urysohn's Lemma: The General Case
3.2.2 Bounded Functions . ..............
3.3 Septemberl4 ... ...
3.3.1 The Tietze Extension Theorem . . .. ... ..
3.4 Septemberl6 ... ... ... ... o
3.4.1 The Tietze Extension Theorem: Proof
3.4.2 Existence of Completions, Again . . ... ...
4 Compactness
4.1 Septemberl6 . ... ...
411 Compactness. . . ... ... ...
4.2 September19 . ... ... .
4.2.1 Compact HausdorffSpaces . . . ... .....
4.2.2 Compactlmages . . . ... ... ... .....
4.2.3 CompactnessviaClosedSets . . ... .....
4.3 September2l . .. ... ...
4.3.1 CommentsonChoice ... ...........
4.4 September23 ... ... .
4.4.1 Tychonoff's Theorem . ... ..........
4.5 September26 ... ... ... ... o o
4.5.1 Remarks on Tychonoff’s Theorem . . ... ..
4.5.2 Tychonoff's Theorem and Choice. . . ... ..
4.6 September28 . . ... ... o .
4.6.1 Totally BoundedSpaces . . .. .........
46.2 Nets. .. ... ...
4.6.3 A"Metric”" Completeness . . . ... ......
4.7 September30 . ... ... ...
4.7.1 Totally Bounded for Function Spaces
4.7.2 Arzeld—Ascoli's Theorem . . . ... ......
48 October3 . ... ... ... o
4.8.1 Locally CompactSpaces. . .. ... ......
4.8.2 Supports . . ... ..

202A: TOPOLOGY AND ANALYSIS



CONTENTS

5

Measure Theory

Defining Measures

5.1

5.2

5.3

5.4

October5 . . . . . . . . e
5.1.1 EvaluationMaps . ... ... .. ... ......
5.1.2 The Gelfand—Naimark Theorem . .. ... ...
5.1.3 Finitely Additive Measures . . . .. ... ....
October7 . . . . . . . e
52.1 o-Things . . ... ...
522 Measures . . . . . . i e e
5.2.3 Premeasures . . ... ... ...,
October10 . . . . . . . . . e
5.3.1 The Lebesgue Premeasure . . ... .......
October12 . . . . . . . . . . e
5.4.1 Premeasure Subtraction .. ...........
5.4.2 Finite Subadditivty . . . . ... ... ... ...,

Building Measures

6.1

6.2

6.3

6.4

6.5

October14 . . . . . . .. e
6.1.1 Countable Subadditivity . . . ... ... .....
6.1.2 HereditaryRings . . . . .. ... ... ... ...
6.1.3 OuterMeasures . ... ... ... ........
October17 . . . . . . . e
6.2.1 Restricting Outer Measures . . . . .. ... ...
6.2.2 Completeness . ... ... ... .........
October21 . ... ... . . .

6.3.2 Uniquenessof Extensions . . . . .. ... ....
October24 . . . . . . . . . . e
6.4.1 Continuity Properties . . ... ... ... ....
6.4.2 BorelMeasures . ... ..............
6.4.3 TheHaarMeasure . ... ... ... .......
October26 . . . .. . . . . e
6.5.1 ANon-measurableSet . .............

Measurable Functions

7.1 October26 . .. ... ..,
7.1.1 Simple Measurable Functions . . ... .....
7.1.2 Simple Integrable Functions . .. ... ... ..

7.2 October28 . .. . . .. .. ..
7.2.1 Measurable Functions . . . . ... ... ... ..
7.2.2 Properties of Simple Measurable Functions
7.2.3 Properties Preserved by Limits . . . . ... ...

7.3 October31 . . . . . ... .
7.3.1 ABetterMeasurable. .. ... ... .......

7.4 November2 . ... .. ... .. ... ..
7.4.1 Some MeasurableFacts . . . ... ... .....

Integration

8.1 November2 . ... ... .. ... ... ...
8.1.1 Integrating Simple Functions . . . . .. ... ..
8.1.2 ConvergenceinMeasure . ............

8.2 November4d ... ..... ... ... ... ... ...
8.2.1 Sequences Convergingin Measure . . . . .. ..
8.2.2 Restricting Measurable Functions . . . ... ..

202A: TOPOLOGY AND ANALYSIS



CONTENTS

202A: TOPOLOGY AND ANALYSIS

8.2.3 Almost Uniform Convergence . . . . . . . . i i v it ittt e 146

8.3 November7 . . . . . e e e 150
8.3.1 Rapidly Cauchy Intermission . . . . . . . . . . 150
8.3.2 TheRiesz—WeylTheorem . . . . . . . . i i e e e e e e e e e e e e 151

8.4 November9 . . . . . e e e e e 153
8.4.1 ConvergenceinMean . . . . . . . . i e e e e e e 153
8.4.2 Comparing ConvergenCes . . . . v v v v it v i e e e e e e e e e e e e e e e 155
8.4.3 Integrable Functions. . . . . . . . . e 157
8.4.4 Towards DefininglIntegrals . . . . . . . . . e 159

8.5 November 14 . . . . . e e e e e e e 160
8.5.1 Equivalent Mean Cauchy Sequences . . . . . . . . o i i i i i i e 160
8.5.2 DefininglIntegrals . . . . . . . . e e e e 162
8.5.3 ASemi-Normfor £l . . . . . . . e 165

8.6 Novemberlh . . . . . . . e e e e e e e e 166
8.6.1 IntegrationFacts. . . . . . . . . e 166
8.6.2 ConvergenceinMean, Again . . . . . . . . . e e e e e e 168
8.6.3 Completenessof L1 . . . . . . . . e 170

9 Integration Applications 173
9.1 Novemberl8 . . . . . . e e e e e e 173
9.1.1 Measuresfromintegrals . . .. .. .. . . .. e 173
9.1.2 Egorov'sTheorem . . . . . . . o i i i it e e e e e 177

9.2 November20 . . . . . o e e e e e e e e 178
9.2.1 Dominated CONVErgence . . . . v v v v v v e e e e e e e e e e e e e e e 179
9.2.2 Monotone Convergence . . . . . . .t i i e e e e e e e e e e e 181

9.3 November28 . . . . . . e e e e 182
9.3.1 Infinitelntegrals . . . . . . . . L e e e 182
9.3.2 Defining LP . . . . o e e e e e e e 185
9.3.3 Defining LP . . . o i i e e e e e e e e e e e e e 188

9.4 November30 . . . . . . e e e e e e e 189
9.4.1 Fatou'slemma. . . . . . e e e 189
9.4.2 Convergenceinp-Mean . . . . . . . i i e e e e e 190
9.4.3 Completenessof LP . . . . . . @ i i i e e e e e e e e e 191

9.5 December2 . . . . e e e e e e e e e 193
9.5.1 Defining £ . . . L e e e e e e 193
9.5.2 Bounded Linear Functionals . . ... ... .. ... ... 195
9.5.3 AlittleDuality . . . . . o e e 196

A Appendix 197
Al Connectivity . . . o . e e e e e e e e e e e 197
A1l BeingConnected . . . . o o i i e e e e e e e e 197
A.1.2 Being Path-Connected . . . . . . . . . ... .. 201
AL Products . . .ttt e e e e e e e e e e e e e 206
Bibliography 209
List of Definitions 210



THEME 1

METRIC SPACES

My personal view on spaces is that every space | ever work with is
either metrizable or is the Zariski topology.

—Evan Chen, [Che22]

1.1 August24

Good morning everyone. This is my first class of the semester.

1.1.1 Administrative Notes

Here are some housekeeping remarks.
» The webpage for this classismath.berkeley.edu/ rieffel/202AannF22.html.

« The midterm date is negotiable. We will have a vote on Friday. The possible dates are Friday 14 Oc-
tober, Monday 17 October, or Wednesday 19 October.

There will be no vote on the final exam. It is on 15 December at 7PM.

« Homework will be due Fridays by midnight, approximately every week.

« There is no particular text for this course, and any given text covers more than we have time for. That
said, we will (very) loosely follow [Lan12], but it is helpful to have a number of different expositions
around.

» Please wear a mask during lectures and office hours.
Here is a summary of the course.
+ We will spend the next couple of lectures talking about metric spaces.

« We will then spend the first half of the course on general topology. The second half of the course will
be on measure and integration.

» Throughout we will see a little on functional analysis.
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1.1.2 Metric Spaces

Hopefully we remember something about metric spaces. Here's the definition.

Definition 1.1 (Metric). A metric d on a set X is a function d: X x X — R satisfying the following
rules forany z,y, z € X.
(@) Zero: d(z,z) = 0.
(b) Zero: d(x,y) = 0impliesz = y.
(c) Symmetry: d(z,y) = d(y, ).
(d) Triangle inequality: d(z,y) + d(y, 2) > d(z, 2).
We call (X, d) a metric space.
Remark 1.2. It is occasionally helpful to think about a “reversed” triangle inequality: note d(z,z) <
d(z,y) + d(y, z) implies d(z, 2) — d(x,y) < d(y, z). Similarly, d(z,y) — d(z, z) < d(y, 2), so it follows
ld(y, @) - d(z,2)| < d(y, 2).
We will want some “almost” metrics as well. Here are their names.
Definition 1.3 (Semi-metric). A semi-metric d on a set X satisfies (a), (c), and (d) of Definition 1.1. We

call (X, d) a semi-metric space.

Definition 1.4 (Extended metric). An extended metric d on a set X is a functiond: X x X — RZ, satis-
fying (a)—(d) of Definition 1.1. We call (X, d) an extended metric space. -

Intuitively, we might want extended metrics if we have points that we never want to be able to get to from
other ones.
We can turn spaces with a semi-metric into a space with a metric.

Lemma 1.5. Fix a semi-metric space (X, d), and define the relation ~ on X by  ~ y if and only if
d(z,y) = 0. Then ~ is an equivalence relation.

Proof. We run these checks by hand. Fixany z,y, z € X.
+ Reflexive: d(x,2) = 0 means that z ~ z.
» Symmetry: if z ~ y, thend(x,y) = 0,s0d(y,z) =0,s0y ~ z.
 Transitive: if x ~ yand y ~ z, then
0<d(z,2) <d(z,y) +d(y,z) =0,
sod(z,z) =0,s0x ~ z. ]

As such, given a semi-metric space (X, d), we may look at the set of equivalence classes under ~, which we
will denote X/~.1

1 The notation of /~ is intended to make us think of quotients.
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Proposition 1.6. Fixa semi-metric space (X, d) and define ~asin Lemma 1.5. Then d naturally descends
to a metric d on X/~.

Proof. Let [z] denote the equivalence class of € X under ~. We claim that the function

d([z], [y)) = d(w,y)
is a well-defined metric. We have the following checks; fixany z,y, 2 € X.
» Well-defined: if z ~ 2’ and y ~ ¢/, then note that
d(z,y) < d(z,2') +d(2',y) = d(2',y) <d(z',y) +d(y',y) = d(z",y).

By symmetry, we also have d(z’,y’) < d(x,y), so equality follows. So d does descent properly to the
quotient X /~.

» Zero: note that d([z], [y]) = 0if and only if d(x,y) = 0 if and only if z ~ y if and only if [z] = [y].

« Symmetry: note that

d([z], [y]) = d(z,y) = d(y, x) = d([y], [x]).
+ Triangle inequality: note that

d([z], [2]) = d(z,z) < d(z,y) +d(y, z) = d([z], [y]) + d([y]. [2]),
which finishes. [ |

Here are some examples of metric spaces.

Example 1.7. Given a connected graph G = (V, E)) with a weighting function w: E — R, we can build
a metric as follows: define the “shortest-path” functiond: V' x V' — R>( sending two verticesv,w € V
to the length of the shortest path. If the graph G is not connected, we merely have an extended metric.

Example 1.8 (Euclidean metric). The function d: R™ x R™ — Rxg

d((xh"'7xn)7(y1a'~'7yn)) = Z(mz_yl)Q

is a metric.

Observe that it is not completely obvious that Example 1.8 satisfies the triangle inequality, but this will
follow from the theory of the next subsections.

1.1.3 Norms on Vector Spaces

Norms provide convenient ways to build metrics.

Definition 1.9 (Norm). Fix a vector space V over a normed field (k,| - |). A norm |-||: V — Rx¢ is a
function satisfying the following, foranyr € Rand v,w € V.

(@) Zero: ||0]| = 0.
(b) Zero: if ||v]| = 0, then v = 0.
(c) Scaling: [|ro|| = [r] - [[v]].

(d) Triangle inequality: ||v + w|| < ||v]| + |Jw]|-
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Remark 1.10. We can probably work with a more general normed field instead of “merely” R or C.
There is also an analogous notion of “semi-norm.”

Definition 1.11 (Semi-norm). Fix a vector space V over Ror C. A semi-norm ||-||: V' — Rx¢ is a function
satisfying (a), (c), and (d) of Definition 1.9.

And here is our result.
Proposition 1.12. Given a vector space V with a (semi-)norm ||-|| : V' — R>, then the function
d(v, w) = [lv — w

defines a (semi-)metricon V.

Proof. We run the checks directly. Let z,y, z € V be points. Quickly, we note that d(z,y) = ||z — y|| > 0 by
hypothesis on |||

(a) Zero: note that d(z, x) = 0 because d(z,z) = ||z — z|| = ||0]| = 0.
(b) Zero:ifd(z,y) =0, then ||z —y|| =0,s02x —y =0,s0x = y.
(c) Symmetry: note that
dx,y) = llv—yll = =1 lly =z =1-|ly — 2] = d(y, ).
(d) Triangle inequality: note that
d(x,2) = [lv =zl = [(z —y) + (y = 2)|| < llz =yl + ly — 2[| = d(z,y) + d(y, 2),

which finishes the check.

Thus, if ||-|| is a full norm, then d is a full metric. But if ||-|| is only a semi-norm satisfying (a), (c), and (d) of
Definition 1.9, then the corresponding d only satisfies (a), (c), and (d) of Definition 1.1 and makes a semi-
metric. |

As an aside, we note that what's nice about semi-norms is that they will “algebraically” encode the equiva-
lence relation of Lemma 1.5.

Proposition 1.13. Fix a vector space V over a normed field (&, | - |) and a semi-norm ||-|| on V. Then the
set N .= {v € V : ||lv|| = 0} is a subspace of V. In fact, the semi-norm ||-|| descends to a well-defined
normon V/N.

Proof. To show that N C V is a subspace, we pick up v,w € N and scalars r, s € k. Then we note

lrv + sw|| < [lrof] + [lswl| = |r| - [[o]] + |s| - [Jw]} = 0,

so it follows ||rv + sw|| = 0and so rv 4+ sw € N.
It remains to descend ||-|| to V/N. Here are our checks; fixv,w € Vand r € k.

» Well-defined: if v + N = w + N, we need ||v|| = ||w]||. Well, v + N = w + N tells us that there is some
z € N withv=w+ zand so

o]l = flw + 2| < [lw]l + [|2]| = [lw]-
Similarly, v + (—z) = wimplies that ||w|| < ||v]|, so ||v|| = |Jw]|| follows.

9
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+ Zero: note thatv + N = 0 + N implies that ||[v + N| = ||0 + N|| = ||0]| = 0.

Zero: if [u+ N| =0, then ||v]| =0,sov € N,sov+ N =0+ N.

Scaling: note [|r(v + N)|| = [lrv + N|| = [[rv]| = |r[ - [Jv]| = |r[ - [l + N].

+ Triangle inequality: note [|(v + N) + (w + N)|| = [|[(v + w) + N|| = |lv + w|| < |Jv|| +|Jw| = |lv + N|| +
lw+ NJ|.

]
Here are the usual examples.

Example 1.14. Set V := R" or V := C". Then the following are normson V.

@, mn)lly = (25 |f?)

M@ mn)lly =200 il

1/2

Here are some more esotetric examples.

Example 1.15.Set V .= R" or V := C™. Then

(1, s )l o = sup{laal, ..., [zal}

providesanormon V.

Example 1.16. Set V :=R" or V := C". Then, givenp > 1,

B 1/p
(1, zn)ll, = <le¢p>
i=1

providesanormon V.

Remark 1.17. Taking the limit as p — oo of || f[|, gives || f|| .. This justifies the notation.

Remark 1.18. Despite having lots of examples, all of these norms are equivalent in a topological sense.

These normed vector spaces actually allow us to define a metric on any subset.

Proposition 1.19. Given a metric space (X,d) and a subset Y C X, the restrictionof dtoY x Y is a
metric.

Proof. All the requirements for d on Y x Y are satisfied for any points in X, so we are done by doing no
work. |

Example 1.20. Any subset X C R™ has an induced metric by restricting the (say) Euclidean metric.

10
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1.1.4 AHintof L? Spaces

Here is a more complicated example of a metric.

Example 1.21. Define V' := C([0, 1]) to be the R-vector space of R-valued (or C-valued) continuous
functions on [0, 1]. The following are norms.

o [Ifllo = sup{|f()|: = € [0,1]}.
 IFlly = ) 1F(8)] dt.
= (R 1repa)”

« More generally, givenp > 1

i, = ([ 150 |Pdt)

These integrals are finite because [0, 1] is compact, forcing f to achieve a finite maximum on [0, 1].
Remark 1.22. We can tell the same story for C(X), for any measurable compact space X.

Remark 1.23. Note the analogy of Example 1.21 with Example 1.16. To see this more rigorously, set X
to be the finite set {1,...,n} so that C(X) = R".

We should probably justify the claims of this subsection, so here is our result.

Proposition 1.24. Define V' := (C([0, 1]) to be the vector space of R-valued (or C-valued) continuous
functions on [0, 1]. Then, given p > 1, the function ||-[| , : €' — Rx by

EA |f<t>|pdt)l/p

isanorm.

Proof. We run the checks directly.
« Zero: if f = 0, then of course f01 |f(t)Pdt = 0.

« Zero: suppose that f € C([0,1]) has f(to) # 0 foranyt, € [0,1]; sety :== f(to). Then f~1((y/2,3y/2))
is a nonempty open subset of X and hence contains a nonempty open interval (a,b) with a < b. As

such, , \
/X (0P dt > / F(O)P dt > / ly/217 dt > 0,

» Scaling: given f € C([0, 1]) and a scalar r, we have

s = ( 1 Irf(t)lpdt)l/p ~ (v [ 1 If(t)lpdt)l/p —Ir

» Triangle inequality: we borrow from [Tao09]. Given f, g € C(]0, 1]), for psychological reasons we will
assume that f and g are nonzero (else this is clear); then || f||, [lg|| # 0, so we may scale everything so
that || f|| + |lg|| = 1. In fact, we may again use scaling to find a,b € V such that

f=0-0)a and g=06b

so we are done.

A1

11
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where 6 € (0,1) and ||a|| = ||b|| = 1. Now, the triangle inequality translates into showing

/ (1= 0)a(t) + 000 dt = (1~ O)a+ 00]2 < (I|(1 ~ D)all, + ],,)" =

Well, because p > 1, the function ¢ — t? is convex, so we get to write

/|1— £+ ()| dt < (1— 0 /|a |pdt+9/ bt dt,

which is what we wanted.

The above checks complete the proof; note that the proof of the triangle inequality was nontrivial. [ |

Remark 1.25. Now, to show Remark 1.23, replace all fol with 37 | and adjust all the language accord-
ingly. The point is that "“integrating over [0, 1]” is analogous to "“integrating over {1,...,n}."” A more
thorough understanding of measure theory will allow us to rigorize this.

Next class we will talk about completeness.

1.2 August26

Today we're talking about completeness of metric spaces.

1.2.1 Isometries

In mathematics, we are interested in objects not in isolation but as they relate to each other. Namely, we
are interested also in the maps between our objects.

The philosophy here comes from category theory, where one is really most interested in the “mor-
phisms” between "objects” instead of the objects themselves. For concreteness, here is a definition of a
category.

Definition 1.26 (Category). A categoryC consists of a class of objects Ob C and class of morphisms Mor C
such that any two objects A, B € ObC have a morphism class Mor(A, B). This data satisfy the following
properties.

« Composition: given objects A, B, C' € ObC(, there is a binary composition operation
o: Mor(B,C) x Mor(A, B) — Mor(A,C).
Explicitly, given f € Mor(A, B) and g € Mor(B, C), there is a composition (g o f) € Mor(4, C).
« Given A € ObC, there is an identity morphism id4 € Mor(4, A).
« Identity: any f € Mor(A4, B) has foidg = f =idgo f.
« Associativity: any f € Mor(A, B)and g € Mor(B,C)and h € Mor(C, D) has (hog)o f = ho(go f).

Example 1.27. There is a category of groups, where the morphisms are group homomorphisms. The
identity function gives the identity morphism, and composition of functions gives the required compo-
sition.

For completeness, we check that composition is well-defined: given homomorphisms f: A — B
andg: B — C,weneed (go f): A— Ctobeagroup homomorphism. Well,

(go flla-a’)=g(f(a-a)) =g(f(a)- fa') = g(f(a)) - g(f(a)) = (g0 f)(a) - (g0 f)(d).

12
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In our discussion of metric spaces, there are many possible kinds of morphisms for us to consider. Here is
the strongest type.

Definition 1.28 (Isometry). Given metric spaces (X, dx)and (Y, dy ), anisometryisafunction f: X —» Y
preserving the metric as

Example 1.29. The 90° rotation r: R? — R? given by r(z,y) — (y, —) is an isometry, where R? is given
the Euclidean metric. Indeed, any (z,y), (z,y’) € R? have

d(r(x,y),r(',y")) = ((y, ) ( 1"))
=y - —z — —x')?
= /(@ - (y—v)?
= d((x,y) ( '))

Notation 1.30. Fix two metric spaces (X, dx) and (Y, dy). Given a function f: X — Y with extra struc-
ture respecting some aspect of the metric, we might write f: (X,dx) — (Y, dy) to emphasize this.

To show that isometries are valid morphisms, we need to check that the identity functionidy: X — X is
an isometry (which of course it is) and that the composition of two isometries is an isometry. We check this
last one in a quick lemma.

Lemma 1.31. Given two isometries f: (X,dx) — (Y,dy)and g: (Y,dy) — (Z,dz), the composition
g o fisanisometry.

Proof. Well, any two points z, 2’ € X have

dz(9(f(x)), g(f(z")) = dy (f(x), f(2")) = dx (2,2),
which is what we wanted. |

One canrestrict further to surjective isometries, where the main point is that (again) the composition of two
surjective functions remains surjective. (Note that the identity is of course surjective.) The following is the
reason why a surjective isometry is a good notion.

Lemma 1.32. A surjective isometry f: (X,dx) — (Y, dy) is bijective, and its inverse function is also an
isometry.

Proof. To see that f is bijective, we only need to know that f is injective. Well, given z,2" € X, note that
f(z) = f(«') ifand only if dy (f(z), f(2')) = 0ifand only if d(x,2") = 0ifand only if z = x’ 2

Thus, fisindeed bijective; letg: Y — X beitsinverse. We now need to show that gisanisometry. Well,
giveny,y’ € Y, we mayfind z,2’ € X suchthat f(z) =yand f(2’) = ¢'. Then

dx(9(y),9(y") = dx((g© f)(x), (g0 f) (@) = dx(z,2') = dy (f(2), f(2")) = dy (y.9/),

where in = we have used the fact that f is an isometry. |

2 |n fact, this argument shows that all isometries are injective. We will shortly see that all actually Lipschitz continuous functions are
injective.

13
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Remark 1.33. The above result is somewhat subtle in its importance: the inverse function of a bijection
is only an inverse in the category of sets. The above result is saying that this inverse morphism in the
category of sets is lifting to an inverse morphism in the category of metric spaces with isometries as
morphisms. In general, it is not always true that bijective morphisms are invertible, as we shall soon
see.

1.2.2 Lipschitz Continuity

Isometries are somewhat restrictive, so we might weaken this as follows.

Definition 1.34 (Lipschitz continuous). Given metric spaces (X, dx) and (Y, dy), a function f: X —» Y
is a Lipschitz continuous if and only if there is a constant ¢ € R such that

dy (f(z), f(z)) < c-dx(z,2").

Remark 1.35. Equivalently, we are asking for the ratio

dy (f(x), f (=)

dX (l‘, xl)

to be uniformly bounded above for all z # z’. Notably, the inequality is trivially satisfied whenever
x = ', or equivalently whenever d(z, z') = 0.

Example 1.36. Any isometry f: (X,dx) — (Y,dy) is Lipschitz continuous: indeed, set ¢ := 1 so that,
foranyz,z’ € X,
dy(f(l’),f(xl)) = dx(l‘,zl) <1 dX(‘T7x/)'

Example 1.37. Provide R and R? their usual Euclidean metrics. Then the projection 7: R> — R by
7: (x,y) — x is Lipschitz continuous: indeed, set ¢ := 1 so that, forany (z, ), (z/,3’) € R?, we have

dr2 ((z,), (@, 9)) = V(@ — 22 + (y — ¢)? > V(. — @) = dr(z,2') = dr (7 ((z, ), 7((z',%))).

Example 1.38. Fix a normed vector space (B, ||-||). We show the function ||-|| : B — R is Lipschitz con-
tinuous. Well, observe that ||z|| < ||z — y|| + [ly||, so by symmetry, it follows that

[zl =Nyl | < llz =yl -

Again, one can see that the identity function idx : (X,dx) — (X, dx) is Lipschitz continuous (with ¢ := 1),
and here is our composition check.

Lemma1.39.If f: (X,dx) — (Y,dy)and g: (Y,dy) — (Z,d) are Lipschitz continuous, then the com-
position (go f): (X,dx) — (Z,dy) is also Lipschitz continuous.

Proof. We are given constants cand d such thatany z,2’ € X and y,y’ € Y have

dy (f(x), f(z")) < c-dx(z,2")  and  dz(g(y),9(y") < d-dy(y.9)

As such, we use the constant cd to witness our Lipschitz continuity: any z, 2’ € X have

dz(g(f(x)),9(f(2")) < d-dy(f(z), f(2')) < ed - dx (x,2"),

which is what we wanted. [ ]

14
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It will be shortly worth our time to talk about the constant c appearing in Definition 1.34.

Lemma 1.40. Fix a Lipschitz continuous function f: (X,dx) — (Y, dy). Then there exists a constant ¢
(possibly —oo) such that any real number ¢ > ¢y is equivalent to the following property: any z, 2" € X
have

dY(f('r)7 f(l’/)) <c: dX(SL‘,ZCI).

Proof. Let S denote the set of all constants ¢ such that any z, 2’ € X have
dy (f(x), f(z)) < ¢-dx(z,a").

Equivalently, using Remark 1.35, S is the set of upper-bounds for

rom {SLELED ot e w2,

dX (l‘, $')

Now, S is nonempty because f is Lipschitz continuity, so we set ¢ := sup R to be the least upper bound for
R—observe that ¢; = —o0o is permissible when X has one point. It is now pretty clear that S = [¢;,00). W

Note that ¢; the property stated in the lemma automatically implies that c; is the least possible constant
and is unique. Being least is immediate (by the backwards direction), and being unique follows from being
least. So because we have some uniqueness, we get a definition.

Definition 1.41 (Lipschitz constant). Given a Lipschitz continuous function f: (X,dx) — (Y,dy), the
Lipschitz constant ¢ for f is the least real number ¢ such that

dy (f(), f(2")) < ¢ dx(z,2").

We could, as before, look at surjective Lipschitz continuous functions, but these need not be bijective any-
more as shown by Example 1.37. What's worse is that, as warned possible in Remark 1.33, bijective Lipschitz
continuous functions need not even have a Lipschitz continuous inverse.

Exercise 1.42. We exhibit a function between metric spaces which is bijective and Lipschitz continuous,
but its inverse function is not Lipschitz continuous.

Proof. Set X = (0,1) and Y := (1, 00), both metric spaces with the Euclidean (subspace) metric, and set
f:(0,00) = (0,00) by f: & — 1/x. Notably, x € X implies f(z) € Y,andy € Y implies f(y) € X.

» Note f|y is bijective with inverse f|x because f(f(x)) = f(1/z) = z forallz € (0, 00).

» Note f|y is Lipschitz continuous: set ¢ := 1 and note that any y, ¢’ € Y have

/

<ly -]

‘y—y
vy’

« But f|x is not Lipschitz continuous: suppose for contradiction that fx is Lipschitz continuous, and use
Lemma 1.40 to recover the needed constant ¢y. Then set ¢ := max{cg, 4}, which must also work as a
constant, and set z := 1/cand 2’ := 1/(3¢) so that

F(@) = f(@)] = |e = 3| = 2¢ > ¢ o — .

This is a contradiction, so we are done. |

15
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Remark 1.43 (Nir). In some sense, the problem here is that the definition of Lipschitz continuity allows
dy (f(z), f(z")) to be “too small,” which permits the inverse function to have distances which blow up.

In light of Exercise 1.42, we introduce a new definition.

Definition 1.44 (Lipschitz isomorphism). Give metric spaces (X, dx) and (Y, dy), a function f: X —» Y
is a Lipschitz isomorphism if and only if f is Lipschitz continuous and has an inverse function which is
also Lipschitz continuous.

Remark 1.45. A good reason to care about this notion of continuity (and isomorphism) is that all normed
R-vector spaces of some finite dimension n are Lipschitz isomorphic.

1.2.3 Fun with Continuity

Here is yet a weaker notion of morphism.

Definition 1.46 (Uniformly continuous). Given metric spaces (X, dx ) and (Y, dy), a function f: X — Y
is uniformly continuous if and only if every ¢ > 0 has some § > 0 such that

dx(z,2") <6 = dy(f(x), f(z) <e

forallz,z’ € X.

Example 1.47. Any Lipschitz continuous function f: (X,dx) — (Y,dy) is also uniformly continuous:
indeed, forany ¢ > 0, set § := max{cy,1}e > 0 (where ¢; is the Lipschitz constant) so that

dx(z,2') <e = dy(f(z), f(z')) <ecp-d(z,2") <.

Example 1.48. Give [0, 1] the Euclidean (subspace) metric, and set f: [0,1] — [0, 1] by f(z) = /.
« Note f is uniformly continuous because it is continuous on a compact set.

« However, f is not Lipschitz continuous: for any constant ¢ > 0, setz = 1/(c+ 1)? and 2’ = 0 so

that
f(z) = f(@')

Tz —x

=lc+1] >

‘ 1/(c+1)
1/(c+1)2

so Remark 1.35 tells us that we are not Lipschitz continuous.

By rearranging quantifiers, we get another useful (but weaker) notion.

Definition 1.49 (Continuous). Given metric spaces (X, dx) and (Y, dy), a function f: X — Y is contin-
uous atx € X ifand only ifalle > 0 have some ¢, > 0 such that

dx(z,2') < 6, = dy(f(z), f(z))) <e.

Then f is continuous if and only if it is continuous at all x € X.

16
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Example 1.50. All uniformly continuous functions f: (X,dx) — (Y, dy) are continuous. Indeed, at any
xg € X with e > 0, uniform continuity promises § > 0 so that

lz—2'| <6 = |f(z) - f(z')| <&

forallz, 2’ € X. Setting 2’ to =y recovers continuity.

Example 1.51. Give R the usual Euclidean metric, and set f: R — R by f(z) = 22.
« Note f(z) is continuous because it is a polynomial.

» However, f(x) is not uniformly continuous: take ¢ = 1. Now, foranyd > 0, setz = 1/¢ and
2’ =1/6 + /2 sothat |x — 2’| < §, but

2 2
(@) — f() :((15+g> —5—12:1+5Z>a.

As usual, the identity function is uniformly continuous and continuous (it's an isometry), and these conti-
nuities are preserved by composition. We will have a different way to see that continuous functions remain
continuous under composition later, so for now we will focus on uniform continuity.

Lemma 1.52. Fix uniformly continuous morphisms f: (X,dx) — (Y,dy) and g: (Y,dy) — (Z,dz).
Then the function (g o f) is uniformly continuous.

Proof. Foranye > 0, the uniform continuity of g promises §, > 0 such that

dy(y,y') <6y = dz(9(y).9(y)) <e

forany y,y’ € Y. Continuing, the uniform continuity of f promises é; > 0 such that

dx(z,2') <ox = dy(f(x), f(2')) <by = dz(9(f(2)),9(f(2"))) <e

forany z, 2’ € X, which is what we wanted. [ ]

Remark 1.53. In some sense, isometries and Lipschitz continuous functions have their definition funda-
mentally interrelated with the metric. In contrast, the weaker notion of continuity will readily generalize
to general topological spaces. Uniform continuity also generalizes to “uniformities,” which is a different
notion.

1.2.4 Convergent Sequences

To discuss completeness, we need to talk about convergence.

Definition 1.54 (Converge). Fix a semi-metric d on a set X. A sequence of points {z, }nen € X con-
verges tox € X if and only if, forany e > 0, we can find N > 0 such that

n>N = d(z,,z) <e.

We might write this as “z,, — xasn — 00" or "lim, ., z, = x.” In this event, we may say that the
sequence {x, }nen converges, and its limit is x.

17
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Remark 1.55 (Nir). As a sanity check, the limit of a sequenceis uniqueif (X, d) isa metricspace: ifz,, — =
and x,, — 2’ asn — oo, then any ¢ > 0 can find some large n so that d(z,,, z), d(x,, ") < /2. As such,

d(z,2") < d(zp,z) + d(zn,2') =€

foranye > 0, so d(z,2') = 0and thus x = 2’ is forced.

Example 1.56. Given = € X, define the sequence {z, } ,en by x,, := x for each n. Then d(z,,,z) = 0 for
eachn, soanye > 0 may set N = 0 sothatn > N implies d(z,,z) < e. Thus, x,, — zasn — oc.

We have no reason yet to be convinced that any of our morphisms described previously are good notions,
so let’s start with continuity.

Lemma 1.57. Fix a continuous function between metric spaces f: (X,dx) — (Y,dy). Then, if the se-
quence {x, }neny C X converges to z € X, then the sequence {f(x,)}neny C Y convergesto f(x) € Y.

Proof. Foranye > 0,the continuity of f implies that we can find §,, > 0 so that
dx(xn, ) < 0y = dy(f(zn), f(z)) <e
for any z,,. But the fact that z,, — x asn — oo means that thereis N > 0 so that
n>N = dx(z,,z) < d, = dy(f(zn), f(z)) <e,
soindeed, f(x,) — f(z)asn — oc. [ |

In fact, the converse also holds.

Lemma 1.58. Fix metric spaces (X, dx) and (Y,dy), and fix a point z € X. Then suppose a function
f: X — Y satisfies that any convergent sequence {x,, } neny With 2, — 2 asn — oo has f(x,) — f(z) as
n — oo. Then f is continuous at z.

Proof. We proceed by contraposition. If f is not continuous at z, then any n € N can find z,, such that
dx(z,z,) < 1/n even though dy (f(x,), f(z)) > 1. In particular, z, — zasn — oo (for any ¢, choose
N =1/¢), butthesequence {f(x,) }nen does not converge to f(z) because non hasdy (f(z), f(z,)) <1. W

We will want the following fact (much) later, but we prove it now while ideas are fresh.

Lemma 1.59. Fix a semi-norm ||-|| on a k-vector space V. Further, fix sequences {v, }nen and {wy, }rnen
of vectors and two more vectors v, w € V such that v,, — vand w,, — wasn — oo.

(a) We have v,, +w,, — v +wasn — oco.

(b) Forany scalara € k, we have av,, — avasn — oc.

Proof. Here we go. Let | - | denote the norm on &.

(@) Foranye > 0, having v,, — v promises N,, such thatn > N, has
lv— v, <e/2.
Similarly, w, — w promises N,, such thatn > N,, has

lw —wyll; <e/2.

18



1.2. AUGUST 26 202A: TOPOLOGY AND ANALYSIS

As such, we set N := max{N,,, Ny, } so thatn > N impliesn > N, andn > N,, and thus

e €
1w +w) = (on +wa)lly < o =vally +llw —wall, <5+ 5 =e

by the triangle inequality.
(b) Ifa=0,thenav, = av =0, s0av — av, =0, so ||av — av,|; = 0. Thus, av,, — av.

Otherwise, take a # 0 so that |a| > 0. Now, having v,, — v promises N such thatn > N has

[ I < —
vV — 0 —_—.
Thus, n > N has

€
lav — avnl; = lla(v = va)ll; = lal - v = vall; <lal - o e

where = is because |- is a semi-norm. |

1.2.5 Cauchy Sequences
We would like a notion of convergence which only uses data internal to the sequence, and this leads to the

following definition.

Definition 1.60 (Cauchy). Fix a semi-metric d on a set X. A sequence of points {2, }»en € X isa Cauchy
sequence if and only if, for any € > 0, we can find N > 0 such that

n,m>N = d(zp,Tm) <E€.

Example 1.61. Given z € X, define the sequence {x,, }nen by z,, = 2« for each n. Then d(z,,2,) = 0
foreach n, soanye > 0 may set N = 0 so thatn > N implies d(z,, z,,) < €. Thus, {z,, }nen is Cauchy.
More generally, we will see that convergent sequences are Cauchy in Lemma 1.64.

It would be rude if continuity was always the best kind of morphism, so this time around preserving Cauchy-
ness requires something stronger.

Lemma 1.62. Fix a uniformly continuous function between metric spaces f: (X,dx) — (Y,dy). Then,
if the sequence {z, }»en C X is Cauchy, then the sequence { f(z,) }nen C Y is also Cauchy.
Proof. Foranye > 0, the uniform continuity of f promises § > 0 so that
dx (Tn,xm) <d = d(f(zn), f(zm)) <e
forany z,, z,,. However, the fact that {z,, },en is Cauchy promises N so that
n,m>N = dx(Tn,Tm) <0 = d(f(xn), f(zm)) <&,

which is what we wanted. ]

Example 1.63. Continuous functions do not need to preserve Cauchy sequences: f: (0,00) — (0, c0) by
f(z) == 1/x is continuous, and the sequence {1/n},en C (0, 00) is Cauchy (it converges to 0 in R) even
though {f(1/n)}nen = {n}nen certainly does not converge.

Anyway, it is quick to check that convergent sequences are Cauchy.
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Lemma 1.64. Fix a metric space (X, d). Then all convergent sequences are Cauchy.

Proof. Suppose that the sequence {z,, }nen € X convergestox € X. Then, foranye > 0, find N so that
d(xn,x) <e/2
foralln > N.Thenanyn,m > N has
AT, Tm) < d(xp, ) + d(@m, x) < &,
so the sequence {x,, } nen is Cauchy. |

As before, we will want the following fact later.

Lemma 1.65. Fix a semi-norm ||-|| on a k-vector space V. Further, fix Cauchy sequences {v, },en and
{wy, }nen of vectors.

(@) The sequence {v,, + wy, }nen is Cauchy.

(b) Foranyscalara € k, the sequence {av, },en is Cauchy.

Proof. These proofs are essentially the same as Lemma 1.59. As usual, let | - | denote the norm on k.
(@) Foranye > 0, having {v, } nen Cauchy promises N, such thatn > N, has
|vm — vnll; < €/2.
Similarly, {w,, }nen Cauchy promises N,, such that n > N,, has
|wm — wyl|; <e/2.

As such, we set N := max{N,,, Ny, } sothatn > N impliesn > N, andn > N,, and thus

g €
[(Vm + wm) = (vn + wa)|l; < [Jvm = vnlly + [[wm —wa|; < ) + 5= €

by the triangle inequality.

(b) Ifa =0, then av,, = avy, = 0, so av,, — av, = 0, so |lav,, — av,||; = 0. Thus, the sequence {av,, }nen
in Cauchy.

Otherwise, take a # 0 so that |a| > 0. Now, having {v,, }»en Cauchy promises N such that n > N has

€
[[vm _”nHl < r

al’
Thus, n > N has
€

lal

where = is because ||-|| is a semi-norm. [ |

lave — avally = lla(vm = va)lly = lal - Jom = vally < lal - = =,
We in general hope that our Cauchy sequences converge. As such, we have the following definition.

Definition 1.66 (Complete). A metric space (X, d) is complete if and only if every Cauchy sequence in X
converges to a pointin X.

We are sad when a metric space is not complete, so we hope to have a way to make it complete. The most
natural way to do this is by using the notion of density.
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Definition 1.67 (Dense). Fix a metric space (X, d). Then S C X is dense if and only if, givenany z € X
and e > 0, we may find 2’ € S with d(z,2") < e.

And here is our completion.

Definition 1.68 (Completion). A completion of the metric space (X, d) is a metric space (X, d) equipped
with anisometry ¢: X — X such that (X, d) is complete and im ¢ is dense in X.

One can show that any metric space has a completion and that they are all isometric and therefore in some
sense the same. We'll do these separately.

1.2.6 Existence of Completions

Let's start with existence.

Theorem 1.69. Any metric space (X, d) has a completion.

Proof. Let X denote the set of all Cauchy sequences in X. We hope to make X into our completion, but this
requires a little care. To begin, we have the following lemma.

Lemma 1.70. Given a metric space (X, d) with two Cauchy sequences {z;, } nen and {yn» }nen, then the
sequence
{d(@n; yn) fnen SR

converges.
Proof. Because Risacomplete metric space, it suffices to show that the sequence {d(z, y») }nen is Cauchy.
Well, for any € > 0, find a sufficiently large N so that
n,m >N = d(zn,Tm), d(Yn,Ym) < €/2.

Then any n,m > N has

(2, yn) < d(Tn, Tm) + d(Zm, Ym) + dYm, yn) < €+ d(Ym, Yn),
and d(zp,, ym) < d(xy, yn) + € as well by symmetry. It follows that any n,m > N has

(20, yn) — d(@m, ym)| <&,

verifying that our sequence is Cauchy. |

Remark 1.71. Here is a quick motivational remark for the definition of our metric below: if (X, d) is a
metric space with z,, — x and y,, — y as n — oo, then we claim d(z,, y,) — d(z,y) as n — co. Indeed,
forany e > 0, we can find N large enough so that d(z,, z), d(yn, y) < €/2 foranyn > N. As such,

d(znayn) < d(mn,x) + d(:z:,y) + d(y, yn) < d(:z:,y) +e.

By symmetry, we get d(z, y) < d(zn, yn) + € as well, finishing.

Thus, we define d: X x X — R>¢ by
d({wn}, {yn}) = lim d(an,yn).
n—oo
We claim that dis a semi-metric on X. We have the following checks; fix Cauchy sequences {z,, }, {yn }, {zn }-
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o Zero: note B
d({mn}, {xn}) = 1i_>m d(zy,x,) = 0.

« Symmetry: note

d({zn}, {yn}) = nlggo d(Zn, Yn) = nhan;o d(Yn, Tn) = d[{yn '}, {20 }).

« Triangle inequality: note

Arad, () + (o). 20)) = lim dlan) + lim dly, )

> lim d(zp, 2n)
n—oo

= (xna Zn)v
where we have implicitly used a number of limit laws.

So because d is a semi-metric, Proposition 1.6 tells us that d will descend naturally to a metric d on X :=
X /~, where {z,} ~ {y,} ifand only if d({z;.}, {yn}) = 0. We will let [{z, }] denote the equivalence class of

the Cauchy sequence {z,,} € X in X.
We now show that (X, d) can be made into a completion for X.

« Given z € X, note that the constant sequence {z} is Cauchy (forany e > 0, set N = 0), so we define
t: X = X by
v(z) = [{a}].

To see that v is an isometry, note any z, 2’ € X have

d(e), (') = dl{e}, {y}) = lim d(z,y) = d(z,y).

« We show that im ¢ is dense in X. Indeed, fix some [{z,,}] € X and & > 0. Then there is some N so that
n,m > N has
A(xp, Tm) < €/2.

Fixing a particular ng with ng > N, we set z == z,,, so that
a([{xn}L Uz)) = d({zn}, 2ny) = nh_>H010 d(Tp, Tn, ).
Now, forn > N, we have d(x,,, z,,) < /2, so we conclude that this limit must be less than .

« We show that (X, d) is a complete metric space. Fix a Cauchy sequence {;} in X. To find the Cauchy
sequence we are supposed to converge to, we use our density result: for each k¥ € N, we can find
yr € X such that d(zg, t(yr)) < 1/k.

We claim that {y; } is Cauchy. Indeed, forany e > 0, we can find N such that k, ¢ > Ny has
d(Tk, Tp) < /3.
Then, setting N := max{3/e, Ny}, we note that k, £ > N has
d(yk,ye) = d(u(yr), e(de)) < d(Tk, (yr)) + d(Te, e(ye)) + d(Th, Te) < e
Lastly, we claim that Z, — [{y,}] in X. Indeed, for any ¢ > 0, find some sufficiently large NV so that
k>N = d(yk,ye) < €/2.

Then k > max{N,2/e} has
@, [{gn ) < A lon)) + Ay} o)) < 5 + Timn dlyn, ).

Because k > N, we have d(y,, yx) < £/2 foranyn > N, so the entire right-hand side must be upper-
bounded by e. This finishes.
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The above checks complete the proof. |

Remark 1.72 (Nir). One might complain that we used the completeness of R in this proof because one
common way to construct the real numbers is as the completion of Q under the Euclidean metric. To
remedy this, one ought to define the equivalence relation on Cauchy sequences more directly, saying
that two Cauchy sequences {z, }nen and {y, }nen of real numbers are equivalent under ~ if and only if

lim dg(zn,yn) =0.
n— oo

1.2.7 Uniqueness of Completions

We now show that any two completions of a metric space (X, d) are isometric, which is our uniqueness
result. Here is the main intermediate result.

Lemma 1.73. Fix a metric space (X, d) and a completion (X, d) with its isometry ¢: (X,d) — (X,d).
Then, for any complete metric space (Y, d’) and isometry : (X, d) — (Y, d'), thereis a unique isometry
¥: (X,d) = (Y,d") making the following diagram commute.

L2 «
N

X

~ <‘j§“ |

Proof. We start by showing the uniqueness of 1. Well, for any 7 € X, note that any n € N allows us to find
T, € X with 7

d(Z, 1(zn)) < 1/n
because im . is dense in X. Now, we notice that ¢(z,) = Tasn — oo because any e > 0 canset N = 1/e. As
such, we see that Lemma 1.57 applied to any possible ¢: X — Y forces

0() = Jim 1()) = Jim p(e(x) = Jim plen).
Note that, a priori, we do not know if the sequence {¢(z,) }nen converges, but this argument tells us that it
must; the limit is unique by Remark 1.55, so ¢/(Z) is unique as well.
We now show that 1) exists. As before, any Z € X can find a sequence {z,,} C X suchthat(z,) — T as
n — oo. Thus, we note that {¢(z,,)} is Cauchy by Lemma 1.62, so the completeness of Y gives it a limit; we

set
Y(T) = lim @(x,).

n— oo

We have the following checks on ).

» Well-defined: if we have two sequences {z,} and {z/,} such that ¢«(x,,) = zand «(z],) = xasn — oo,
we need to show that

. T ’
Jim p(zn) = lim p(zy,).

For brevity, set y and 3’ to be the limits of {x(x,,)} and {p(z],)}, respectively. Then, forany e > 0, we
note that there is a sufficiently large N such that

n>N = dy(y,o(zn)), dy (¥, ¢(ay,)) < e/4.
Further, we can make N even larger so that
n>N = d(T,u(z,)),dT,(x),)) < e/4.
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As such, anyn > N has
dy (y,) < dy (y,0(2n)) + dy (¢(an), ¢(@7,)) + dy (¥, (27,))

<ef/d+dx(n,2),)+e/4
=¢/2+d(i(an), ()
<e/2+d(@, u(wn)) + d(T, 1(2],))
<e.

It follows dy (y,y') = 0,s0y = y'.

« Isometry: given 7,7’ € X, find sequences {z,,} and {2/} in X so that «(z,,) — T and «(z})) — @ as

n — oo. Thus,

dy (@), 0(@)) = dy ( lm_p(ea), lm ()
= lim dy (p(xn), p(a7,))
= li_>m d(zp, )

= lim d(u(z), (z))

n

3 . . 1

= (_tim o), Jim (')
= d(z,7),

where we have used Remark 1.71 at the =.

» Foranyz € X, we see that the (constant) Cauchy sequence {:(z)} converges to ¢(z), so

$(u@)) = Tim p(z) = ().

n—oo
It follows ¢ o1 = .
Thus, we have finished establishing the existence of an isometry ¢: X — Y such that o = v o .. |
Remark 1.74. One can also replace all isometries with uniformly continuous functions in the statement.

And here is our uniqueness result.

Theorem 1.75. Fix a metric space (X,d) and two completions ¢: (X,d) — (X,d) and /: (X,d) —
(X',d). Then there is a surjective isometry v: (X,d) — (X ,d ).

/

Proof. Applying Lemma 1.73 twice, we get isometries ¢: (X,d) — (X ,d)and': (X ,d) — (X, d) mak-

ing the following diagrams commute.
X =X X 45X
A N
X' X
In particular, we see that ¢/’ o ¢ makes the following diagram commute.

X 4 X

N
X
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However, using Lemma 1.73 again, this isometry ¢’ o ¢ is unique to make the diagram commute, and we
could of course put the isometry id here if we wanted to. Thus,
Vo =idy

By symmetry, ¢ o 9" = id%, so we do see that 1) and ¢ are inverse isometries. This finishes the proof. W

1.3 August29

Good morning everyone.

1.3.1 Some Examples

Let’s give some more examples of metric spaces. Let’s start with spaces of continuous functions.

Definition 1.76. Given a (normed) topological field &, such as R or C, we denote the k-vector space of
k-valued continuous function from a topological space X as C(X). By convention, we will take k = C
unless otherwise specified.

And here are our two examples. The first is of a complete metric space.

Exercise 1.77. Give V := C([0, 1]) the uniform norm

1flloo = sup{|f ()] : ¢ € [0,1]}.

Then V' is complete.

Proof. This is merely the statement that a sequence of continuous functions which are uniformly Cauchy
will converge uniformly to a continuous function. We will prove this for completeness. Fix a sequence of
continuous function { f,, }»en Which are Cauchy with respect to ||-|| .. In other words, for each e > 0, there
exists N, so that

n,m>Ne = ||fo — fillo <&,

which means that | f,,(t) — fm.(t)] < eforallt € [0,1].
In particular, for any fixed ¢ € [0, 1], the sequence {f,,(t) } nen is Cauchy in R (using the same N.), so we
use the completeness of R to let this sequence converge to f(t) € R. We have the following checks.

» Toseethat f, — fasn — oo (under our metric), select any ¢ > 0, and then find N so that
n,m >N = | fn— fmll <e/3.

Further, forany ¢ € [0, 1], we see that we can find a large enough n, > N so that | f(t) — f.,(t)| < &/3.
Butthenn > N has

|fu(t) = FO)] <N fa() = fa, O]+ | fu, () — F(B)] < 2¢/3,
SO ||f — fulloo < 2¢/3 <e.

» To see that f is continuous, fix ¢t € [0, 1] so that we want to show f is continuous at ¢. Well, for any
e > 0, find N large enough so that

n,m >N = |fn— fmll <e/4

Now, select n, > N large enough so that |f(t) — fn,(t)] < /4, and the continuity of f,,, promises us
0 > 0so that
L=t <6 = |fn.(t) = fn, ()] < /4
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In particular, for any ¢’ with [t — #'| < ¢, find ni > N large enough so that [f(t') — fu, ()] < /4, and
then we see

1F() = L 1F@) = Fae O] + | fon (8) = far () + 1 fas (@) = fopy @) + [ fr, () = F(E)] <e,
which is what we wanted. [ |

The second example is the same space, but it is no longer complete.

Example 1.78. Fix p > 1 finite. Give V := C(]0, 1]) the L? norm as

Hf1ﬁ==<AIfGﬂpﬁ)Up.

Then V is not complete.

Proof. For eachn > 2, define f,, as the piecewise continuous function

0 0<t< 3,
— 1 1 1 1
fn(t) T n(t7§) §§t§§+;,
1 i+l<i<t

Here is the image.

The pointis that f,, is trying to converge to a discontinuous function. To help us with the proof here, we pick
up the following lemma.

Lemma 1.79. Fix V := C([0, 1]) and some finite p > 1. If we have a convergent sequence f, — f
asn — oo in the [|-||, metric, and f,(t) = g() for all sufficiently large n and ¢ € U for some open
U ¢ C([0,1]), then flu (t) = g(t).

Proof. Suppose for the sake of contradiction that we have ¢y € U with f(ty) # ¢(to); we show that {f,}
does not converge to f. Sete = | f(to) — g(to)|, which is nonzero. The continuity of f — g now promises that
thereis ¢ > 0 for which

t—tol <6 = |(f —9)(to) = (f —9)(B)] <&/2,
soin particular |(f — g)(t)| > /2. It follows that, for sufficiently large n, we have
1
5
£ = £l = [ 150 = futolrde= [ (7 - g)0la= [ .
0 U Uﬁ(to*ﬁ,t0+5)

Because U N (tp — d,to + 0) is open, it has nonzero measure, so this entire right-hand quantity is nonzero,
thus violating that f,, — fasn — oco. |
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Now suppose for the sake of contradiction that f,, — fasn — coforsome f € V. Then, usingU = (0,1/2),
we conclude that f(t) = 0forall¢ € (0,1/2). Similarly, for any n, we set U,, = (1/2 4+ 1/n,1), so fm|u,
returns 1 always for sufficiently large m; this then implies f(t) = 1 foranyt € U,, foranyn, so f(t) = 1 for
anyt e (1/2,1).

However, the sequences a,, := 3 — 2 and b, := 3 + 2 (forn > 3) havea,, — % and b, — J bothasn —
while the continuity of f would require

n—oo

which is a contradiction. [ |

Remark 1.80. In an attempt to make this metric space complete, we can try to specify which functions
we want to look at, which motivates the theory of measure and integration.

Remark 1.81. The ||-||, norm on C'(X) for some (say) subset X C R with finite measure as coming from
an inner product

(f.g) = /X F(O90@ dt.

When ||-||, is complete, we would then get a Hilbert space, which are very nice normed vector spaces,
and we'll see more of them in Math 202B.

Remark 1.82 (Nir). In contrast to the finite case, we see that the ||-| . norm induces a different (metric)
topology on C([0, 1]) than the ||-||, norms with p finite because the former is complete while the latter
are not. In fact, all the norms [|-|| , induce different topologies on C([0, 1]).
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THEME 2

BUILDING TOPOLOGIES

Sets are not doors.

—Munkres

2.1 August29

We continue lecture by shifting to topology.

2.1.1 Metric Topology

We close our discussion of metric spaces with a taste of topology. Recall the following definition.

Definition 1.49 (Continuous). Given metric spaces (X, dx) and (Y, dy), a function f: X — Y is contin-
uous atx € X ifand only ifalle > 0 have some d, > 0 such that

dx(z,2) < 8, = dy(f(z), f(z)) < e.

Then f is continuous if and only if it is continuous at all x € X.

We are going to want to extend this definition to more general topological spaces. To step in that direction,
we will want to talk about open sets, so we start with open balls.

Definition 2.1 (Ball). Fix a metric space (X, d). Then the open ball of radius r centered at zyp € X is

B(zg,r) ={z € X : d(z,z0) < r}.

The closed ballis B(xzg,r) = {x € X : d(z,z9) < r}.
We can now restate continuity as follows.

Definition 2.2 (Continuous). Given metric spaces (X, dx) and (Y, dy), a function f: X — Y is continu-
ousatz € X ifand only if, given any nonempty open ball B(f(zy), ), there exists a nonempty open ball
B(xg,d) such that

f(B(x0,0)) € B(f(0),€)-
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Namely, we've really only restated our inequalities.
To continue our generalization, we define the pre-image.

Definition 2.3 (Pre-image). Fix a function f: X — Y. Then we define the pre-image f~!: P(Y) —
P(X) by
f7Y(B)={rxeX: f(z) € B}.

Note that our pre-image notation matches with the notation of an inverse function. In general, no confusion
will arise by confusing these two.

As such, let's restate continuity again: observe that A C X and B C Y has f(A) C B if and only if all
a € Ahave f(a) € Bifandonlyifalla € Ahavea € f~(B)ifandonlyif A C f~(B).

Definition 2.4 (Continuous). Given metric spaces (X, dx) and (Y, dy), a function f: X — Y is continu-
ousat z € X if and only if, given any nonempty open ball B(f(z), ), there exists a nonempty open ball
B(x, ) such that

B(z,0) € f~H(B(f(x),e)).

We defined open balls and promised open sets, so now let's define our open sets.

Definition 2.5 (Open set). Fix a metric space (X, d). Then a subset U C X is openif and only if, for each
x € U, there exists some ¢ > 0 such that B(x,¢) C U. In other words, each point in U has an open ball
around it.

Example 2.6. Open balls are open sets. Indeed, given an open ball B(z,r), note that any 2o € B(z,r)
has d(zg, z) < r, so we take e :== r — d(xq, z). To see this works, observe z’ € B(xg, ) will have

d(z',z) < d(z',z0) + d(xg, ) <e+(r—g)=m,

so B(xg,e) C B(xz,r) follows. Here is the image for what just happened.

e ~N
7 N
/ 7 TN
/ Y N\
/ / '8/\
/ | I\
€T /
! r 3 o N
L e N P |
| B == |
\ /
\ /
\ /
\ /
AN Ve
N 7

And here is our definition of corresponding definition of continuity.

Lemma 2.7. Given metric spaces (X,dx) and (Y,dy), a function f: X — Y is continuous at z € X if
and only if, given any open set U C Y with f(z) € U, there is an open ball B(z, J), such that

B(z,8) C f~HU).

Proof. Taking f to be continuous, note that we can find e > 0 such that B(f(z),e) C U because U is open.
Thus, continuity promises § > 0 such that

B(z,6) € f71(B(f(x),e)) € f71(U).
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Conversely, if f satisfies the conclusion of the statement, we can take U = B(f(z),e) foranye > 0 by
Example 2.6, and the conclusion promises § > 0 such that

B(m,é) c f_l(U> = f_l(B(f(x),E)),
which is what we wanted. |

Itis cleaner to talk about the entire function being continuous instead of at a point.

Lemma 2.8. Given metric spaces (X, dx) and (Y, dy), a function f: X — Y is continuous if and only if,
given any open set U C Y with f(x) € U, the pre-image f~1(U) is open.

Proof. This is a matter of rearranging our quantifiers correctly. Lemma 2.7 tells us that, forall z € X, all
open U C Y with f(z) € U has some ¢ > 0 such that B(z,d) C U. Equivalently, for all open U C Y, any
x € X withx € f~1(U) has some § > 0 such that B(z,d) C U. But by definition of being open, we're just
saying thatallopen U C Y has f~1(U) also open. |

So we have the following definition.

Definition 2.9 (Continuous). A function f: X — Y between metric spaces is continuous if and only if,
for any open set U C Y, the pre-image f~1(U) is open.

The philosophy here is to try to understand open sets instead of trying to understand the metrics. This is the
idea of topology.

2.1.2 OpenSets
Thus, we are motivated to understand open sets. Here are some basic properties.

Proposition 2.10. Fix a metric space (X, d), and let T be the collection of open sets.
(@) Wehave X e Tando € T.

(b) Arbitrary union: given a collection/ C T, the arbitrary union

Uvu

Ueu
is open.
(c) Finite intersection: given a finite collection {Uy,...,U,} € T, we have
n
o
i=1
is open.

Proof. We go in sequence.

(@) Toshow X € T, note thatany z € X has B(z,1) C X by definition. To show @ € T, note that any
x € @has B(z,1) C @ because thereisnoz € @ atall.

(b) Foranyx € (Jy ¢, U, we have » € V for some particular V' € U. Then the openness of V tells us we
can find e > 0 such that
Bz,e)cV e U,
veu
which finishes.
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(c) Fix z in the common intersection. Then, for any 4, we have x € U;, so we have some g; > 0 such that
B(z,e;) C U, and so we set
€:= min é&;.
1<i<n
In particular, € > 0 because n is finite, and we have
B(l‘,E) g B(l‘,&i) g Ul

for each i, so B(z,¢) is a subset of our intersection. [ |

Remark 2.11. The arbitrary intersection of open sets need not be open: working in R with the usual
metric,

ﬂ B(0,1/n) = {0},

which is not open. (Namely, noe > 0 has B(z,¢) C {0}.)

Motivated by Proposition 2.10, we have the following definition.

Definition 2.12 (Topology). Fix a set X. Then a topology T on X is a collection of subsets 7 C P(X)
satisfying the following.

(@) Wehave@ e Tand X € T.
(b) Arbitrary union: given a collection/ C T, the arbitrary union J;,,, U livesin T.
(c) Finite intersection: given a finite collection {U1, ..., U, } C T, the intersection ;_, U; lives in T.

We will say that the ordered pair (X, T) is a topological space. We say that the sets in 7 are open.

Example 2.13. By Proposition 2.10, metric spaces with their open sets form a topological space.
Here are some more basic examples.

Definition 2.14 (Discrete topology). Given a set X, the discrete topology is the topology P (X).

Definition 2.15 (Indiscrete topology). Given a set X, the indiscrete topology is the topology {&, X }.

It is fairly routine to check that the above collections form topologies. In fact, they are closed under both
arbitrary union and arbitrary intersection.

Remark 2.16. The discrete topology can be defined by the metricd: X x X — R by
1 /
d(z,2") = { zFET,

Indeed, forany z € X, we see B(z,1/2) = {z}, soany subset U C X is the open set

U= U {z} = U B(z,1/2).

zelU zelU
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Remark 2.17. If #X > 2, the indiscrete topology cannot be given a metric. Indeed, find distinct points
a,b € X and setr := d(a,b), soa # bimpliesr > 0. Now, a € B(a,r), butb ¢ B(a,r), so B(a,r) is an
open set distinct from both @ and X.

Remark 2.18. One can give topologies a partial order by inclusion. Then the discrete topology is the
maximal one (definitionally, any topology is a subset of P(X)), and the indiscrete topology is the mini-
mal one (definitionally, any topology contains @ and X).

And so here is our general definition of continuity.

Definition 2.19 (Continuous). Fix topological spaces (X, Tx) and (Y, 7y). Then a function f: X — Yis
continuous if and only if, for any Uy € Ty, we have f~1(Uy) € Tx.

2.2 August3l

It is once again the morning.

2.2.1 Intersections of Topologies

We will want to have lots of topologies to work with. Here is a basic way to build them.

Proposition 2.20. Let X be a set, and pick up some collection of topologies {75} acx. Then the intersec-
tion
=7

aEA

is also a topology on X.

Proof. This is mostly a matter of writing out the axioms.
(a) Notethato, X € 7, foreacha,so@, X € T.

(b) Arbitrary union: given a collection/ C T, we have i C 7, for each o, so |y, U € 7o foreach o, so

UveT

Ueu
as well.

(c) Finite intersection: given a finite collection {Uy,...,U,} C T, we have {Uy,...,U,} C 7, foreach «,
SO ﬂ?zl U; € T, for each o, so

ﬁUz eT
=1

follows. [ |

Corollary 2.21. Fix a set X. Given a collection S C P(X), there is a smallest topology 7 containing S.
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Proof. Certainly there is some topology containing S, namely the discrete topology P(X). Thus, we can set
our topology to be

TS)= (1 T
728
T atopology
which is a topology (by Proposition 2.20) which contains S (because each topology in the intersection con-
tains S), and of course any topology 7 containing S will have 7(S) C 7. |

To codify this idea, we have the following idea.

Definition 2.22 (Generated topology). Fix a set X. We say that a collection § C P(X) generates its
smallest topology 7. We will write 7(S) for this topology.

Remark 2.23 (Nir). The topology 7 (S) is unique. Indeed, suppose two topologies 7 and 7" are minimal
topologies containing S. Then 7 N 7" is also a topology containing S by Proposition 2.20, but 7T N7’ C
T,T forcesT=TNT' =T".

Remark 2.24 (Nir). Given collections S C &', then T(S) C 7(S’). Indeed, we have

T(S) = ﬂ T C ﬂ T=T(S).
T2S8 728’
T atopology To a topology

Remark 2.25 (Nir). If 7 is already a topology on X, then 7(7) = 7. Indeed, of course T C T(T), but
then also
(M= () T<cT
T'2T
T atopology

because 7T is a topology containing 7.

2.2.2 Sub-bases
On the other side of things, we pick up the following definition.

Definition 2.26 (Sub-base). Let (X, 7") be a topological space. A collection S C T is a sub-base for T if
and only if the following hold.

(a) Scovers X, inthat X = (J;;csU.
(b) T is generated by S.

The point is that collections S are easy to find, so we have therefore found many topologies.
It will be useful to give a more concrete description of the topology generated by a collection S. We start
by taking finite intersections.

Lemma 2.27. Fixa set X and a collection S € P(X) with X = (J;;cs U. Then set

I° = { (n] U {U}", C 5}.

Then S C Z¢ and Z¢ is closed under finite intersection. Further, the topology generated by Z¢ is also
the topology generated by S.
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Proof. We show the claims in sequence
« That {U} C Sforany U € S implies that U € Z° forany U € S, so S C Z° follows.

« Toshow Z¢ is closed under finite intersection, pick up some finite collection {Uy,...,U,} C Z5. Then,
for each 7, we can find some finite collection ¢4; C S such that

Ui:ﬂV.

Veu,
Setting U = |J"_, U;, we see that ¢/ is finite and that
u=NNNv=NV
= i=1VeU,

=1 Veu
must live in Z°5.
+ Because S C 7%, Remark 2.24 tells us T(S) C T (Z°). In the other direction, note that any finite
collection {Uy,...,U,} C Salso livesin T(S), so
(Ui € T(S).
i=1

It follows 7 C T(S), so T (Z°) € T(T(S)) = T(S) by Remark 2.25. [ |

After taking finite intersections, we take arbitrary unions.

Lemma 2.28. Fix a set X and a collection Z C P(X) closed under finite intersection with | J,;., U = X.
Then the collection of (arbitrary) unions of elements in Z, denoted

T:z{ U U:UCI},

Uveu

isT(Z).

Proof. If T" is a topology containing Z, then note any collection &/ C 7 lives in 77, so the arbitrary union
Uvu
Ueu
lives in 7. It follows that 7 C 77, so
T C ﬂ T =T().

T'2T
T atopology

Thus, it remains to show that 7 is in fact a topology, which willimply fromZ C T that T(Z) C 7(T) =T by
Remark 2.24. Here are our checks.

* SettingUd = @ C Z, we see that | J,;,, U = @, s0 & € T. Also, by hypothesis, we have

X:UUGT.

Uel
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« Arbitrary union: let &/ C T be a subcollection. Forany U € U, we can find a collection Vi C Z such

that
v=J v
Vevy
Now, we set V to be the union of all the collections of V;; for each U € U, which is still contained in Z,

so that
Ur=U Uv=UVverT
Ueu UeU Vevy Vey

« Finite intersection: by induction, it suffices to pick up twosets U,V € T andshow U NV e 7. Well,
we can find collections 4,V C 7 such that

v=Juv ad v=|JV,
U'eu Viey
from which it follows (by distribution) that
Umv_( U U’>ﬂ< U V’) = U <U’m U V’> = J wnv).
Ureu VeV Ueu Viev U'eu
V'ey

Now, Z is closed under finite intersection, so U’ NV’ € Z, so we have witnessed U NV as an arbitrary
union of elementsof Z, soU NV & T follows. [ |

Corollary 2.29. Fixa set X and a collection S C P(X) with X = ;.5 U. Letting Z¢ be the collection of
finite intersections of S and then 7 be the collection of arbitrary unions of Z¢, we have that 7 = T(S).

Proof. By Lemma 2.27, we have T(S) = T (Z¥). Plugging Z into Lemma 2.28 (which applies because 78
is closed under finite intersection and covers X because S C Z), we see that T (IS) = T, finishing. ]

We quickly point out that the point of discussing sub-bases is that we will be allowed to check continuity on
only a sub-base.

Lemma 2.30. Fix a topological space (X, Tx) and a set Y. Given a function f: X — Y, the collection
T(f)={UCY:f'(U) eTx}

forms a topologyon Y.

Proof. Here are our checks.
« Note f[71(@) =@ € Tx,s0 € T(f). Also, f~1(Y) =X € Tx,soY € T(f).
« Arbitrary union: given a collection/ C T (f), we see that
f1< U U) =Y ro
Ueu Uveu

is a union of elements of Tx and therefore in Tx. Thus, Jy ¢, U € T(f).

« Finite intersection: thisisidentical to the previous check. Given afinite collection {U;,...,U,} € T(f),
we see that
a ( N UZ‘) - N w)
i=1 =1
is a finite intersection of elements of Tx and therefore in Tx. Thus, N, U; € T(f). [ |
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Proposition 2.31. Fix topological spaces (X, 7x) and (Y, 7y ), and let S be a sub-base for 7y-. Then a
function f: X — Y is continuous if and only if

FHU) € Tx

forallU € S.

Proof. Certainly if f is continuous then the pre-image of any openset U € S C Ty must be open. On the
other hand, let T(f) C P(Y) be the collection of subsets U for which f~1(U) € Tx. This is a topology by
Lemma 2.30, and it contains S by hypothesis, so it follows

Ty =T(S) € T(f).

Thus, f~Y(U) € Tx forany U € Ty, so f is continuous. [ |

2.2.3 Bases

Having defined a sub-base, we should be rightly upset that we have not defined a base.

Definition 2.32 (Base). Fix a set X. A collection B C P(X) is a base (for a topology on X) if and only if
the collection of arbitrary unions of B form a topology on X.

This definition is a little hard to access because we still don't have a good notion of what a topology is.

Example 2.33. Fix a set X. Given any collection S C P(X), the collection of finite intersections Z¢ is a
base by Lemma 2.28.

However, in general we do not require a base to be closed under finite intersection.

Example 2.34. Fix a metric space (X, d). Then the collection of open balls 5 forms a topology by Exam-
ple 2.13. Notably, the intersection of two open balls need not be an open ball, as follows.

Even though bases are not closed under finite intersection, we do have the following.

Proposition 2.35. Fix a set X and a collection B C P(X). Then Bis a base if and only if
(@) X =Ugep B, and

(b) any B1, B> € B has some collection 4 C B such that

BiN By = U B.
Beu

Proof. In one direction, suppose that B is a base generating the topology 7.
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(a) Because X € T, we see that X is the union of some subcollection ¢/ C B, so it follows

X = U UC UBQX.
veu BeB

(b) Given By, By € B C T,we see that B N By € T, so because T is made of arbitrary unions of 5, there
is a collection U/ C B such that
BinB,= | B
Beu

We now go in the other direction. Suppose B satisfies (a) and (b), and define

T::{ U U:ugB}.

Ueu
We now check that 7 is a topology.
 Usingld = @ C B, sowe see that | J,;,, U = @isin T. Also, by (a), we have

X = UBeT.

BeB

« Arbitrary union: this is the same as the check in Lemma 2.28. Given a collectioni/ C T,eachU € U
has some collection Viy C Bsuch that ¢y, V = U. Letting V C B be the union of all the Vi;, we see

Uv-U Uv-Uv

Uel Ueu vevy Vey
livesin 7.
« Finite intersection: by induction, it suffices to pick up U;,Us € T and show U; N U, € T. Well, find
By, By C B such that
Ul = U Bl and U2 = U B27

B,eB; B2€B>
which implies
UlﬂUQZ U (BlmB2)-

BieB:

By€Bs
Now, (b) implies that B; N By for any By, By € B is a union of elements in B, so By N By € 7. Thus,
Ui N U, is the arbitrary union of elements in 7, so U; N Us € T by the previous check. [ ]

Remark 2.36 (Nir). Careful readers might realize that we could rearrange the given exposition to show
that, given a sub-base S, the collection of finite intersections Z¥ is a base instead of going through
Lemma 2.28.

Remark 2.37. Of course, any base is also a sub-base. Notably, sub-bases only requirethat X = ( J,;.s U,
which must be satisfied for bases.

Example 2.38. Set X = R with the usual topology 7. Then the collection B of open intervals (a, b) form
a base for the usual topology (these are our open balls). In contrast, the collection
S={(-00,a):a e R} U{(a,0) :a € R}

forms a sub-base for the usual topology. Namely, certainly S C 7, and B C 7 (S) because of the finite
intersection (—oo, b) N (a, ) = (a,b) forany a,b € R. Namely, 7 = T(B) C T(T(S)) = T(S) follows.
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2.2.4 Induced Topologies

We start with the following motivating example.

Example 2.39. Fix a set X, and give it the discrete topology. Then, for any topological space (Y, Ty ),
any function f: X — Y is continuous because the pre-image of any open subset Uy C Y is openin X.

In general, we might have some smallish collection of functions which we want to force to be continuous,
so we might ask what topology is forced by their continuity.

Definition 2.40 (Induced topology). Fix a set X and a collection of topologies { (Y, 7o) }aca With some
functions f,: X — Y, foreacha € \. Then

U {£2'(Ua) : Ua € Ta}

aEA

is a sub-base for an induced topology.

The one thing to check is that X belongs to the arbitrary unions of our collection, which is clear because
X = f;l(ya)-

Definition 2.41 (Relative topology). Fix (Y, T') a topological space. Then the relative topology for a sub-
set X C Y is the topology induced by the natural embedding ¢: X — Y.

We have the following more concrete description.

Lemma 2.42. Fix (Y, Ty) a topological space. Then the relative topology for a subset X C Y consists of
the subsets
{XNU:UeTy}.

Proof. Let:: X — Y be the natural embedding. Then we are given the sub-base
S={"U):UeTyv}.

Now, :~1(U) = X N U, and then we can check directly that this collection S gives a topology and finish by
Remark 2.25. Here are the checks, which should be completely routine by now.

» Note @ € Ty impliesg =X N@ e S.Also, Y € Ty impliesX =X NY € S.

« Arbitrary union: given a collection C S, foreach U € U find Uy € Ty suchthat U = X N Uy. Then

U=v=Uxnoyv=xnJuov

veu veu veu
——
€Ty

livesin S.
« Finite intersection: given a finite collection {U1,...,U,} C S, findV; € Ty suchthatU; = X NV,. Then
Ui=XnV)=Xn(V;
i=1 i=1 i=1

——
€Ty

livesin S. [ |
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2.3 September2

There are no questions about anything.

2.3.1 Closed Sets

We begin, as always, with a definition.

Definition 2.43 (Closed). Fix a topological space (X, 7). Asubset V' C X is closedifand onlyif (X\V) €
T.

Here are some basic properties.
Lemma 2.44. Fix a topological space (X, 7).
(a) The set @ and X are both closed.
(b) Arbitrary intersection: given a collection of closed sets V, the intersection (1, ,, V'is closed.

(c) Finite union: given a finite collection of closed sets {V1,. .., V,}, the union | JI_, V; is closed.

Proof. We proceed in sequence.
(@) Notethat X \ @ = X and X \ X = @ are both open so @ and X are closed.
(b) Arbitrary intersection: observe that

X\ Av=UJx\v

vey vey

is an arbitrary union of open sets and therefore open. Thus, (., V is closed.

(c) Finite union: observe that
X\ Uvi=N&x\m)
=1 i=1

is the finite intersection of open sets and therefore open. Thus, | J"_, V; is closed. [ |

Remark 2.45. Observe that both X and @ are both open and closed. This is allowed.

Example 2.46. Fix a metric space (X, d). Then any closed ball B(zg, r) is closed: we need to show

U:= X\ B(xy,r) ={zx € X : d(x, ) > r}
is open. Well, forany y € U, we see d(y,z9) > r, so sete, = d(y,z9) — 7,50y € B(y,ey) has
d(zo,y’) > d(zo,y) — d(y,y’) > r. Thus,any y € U has B(y,&,) C U, finishing.

Remark 2.47. In R2 with the Euclidean metric,

s

B(0,e) = {z € R? : d(0,z) < e forsomee < 1} = B(0,1)
<1

™

is not closed. Indeed, we need to show U := X \ B(0,1) = {x € R?:d(0,z) > 1} is not open. Well,
note (1,0) € U, butanye > 0has (1—¢/2,0) € B((1,0),¢) despite (1 —¢/2,0) ¢ U. Thus, U is not open.
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Remark 2.48. One can define a topology by defining its closed sets to satisfy the axioms of Lemma 2.44.
Then one defines the open sets as the complements of open sets.

Remark 2.49. Aligned with Remark 2.48, one can show that a function f: (X, Tx) — (Y, Ty) is contin-
uous if and only if f~(V) is closed for all closed subsets V' C Y.

« If f is continuous, then note any closed subset V' C Y has Y \ V open, so f~1(Y\V) = X\ f~1(V)
is open, so f~1(V) is closed.

« If f preserves closed sets, then any open subset U C Y has Y \ U closed, so f~1(Y \ U) = X \
f~1(U)is closed, so f~*(U) is open.

In the case of metric spaces, we also have the following characterization of metric spaces.

Lemma 2.50. Fix a metric space (X, d) and V C X. The following are equivalent.
(@) Visclosed.

(b) Any sequence {x,, }nen in V which converges to a point z € X actually convergestoz € V.

Proof. Inone direction, suppose V' is closed, and suppose x,, — x asn — oo withz ¢ V. Then we show that
somen € Nhasz, ¢ V.Well,z € X\ V,and X \ V is open, so there is some ¢ > 0 with

Blz,e) C X\ V.

However, x,, — x asn — oo promises some large n such that d(z, z,,) < ¢, implying that z,, € X \ V and so
Tn & V.

In the other direction, suppose V is not closed. Then X \ V is not open, so we can findz € X \ V for
which there is no ¢ > 0 with B(x,e) C X \ V. Assuch, z ¢ V but B(z,1/n) NV # @ foralln € N, so just
pick up some

xn, € B(z,1/n)NV

foreachn € N. Assuch, d(z,z,) < 1/nforalln € N,soz,, — zasn — oo (take N = 1/¢),and z,, € V forall
n € N, but the limit 2 does not live in V. |

Remark 2.51. The reason we are not generalizing the above lemma to arbitrary topological spaces is
because we haven't generalized convergence yet.

Corollary 2.52. Fix a complete metric space (X, d). Then a closed subset V' C X given the restricted
metric is also complete.

Proof. Suppose a sequence of points {z,, }»en in V is Cauchy. Embedding back in X, this sequence is still
Cauchyin X, so it has a limit z € X. But Lemma 2.50 then promises « € V, so {z,, }nen does in fact have a
limitzinV. |

2.3.2 Closures

Given a general set, we can define the closure as follows.
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Definition 2.53 (Closure). Fix a topological space (X, 7). Given a subset S C X, we define the closure

as
S = ﬂ V.
VDS
V closed

Lemma 2.54. Fix a topological space (X, 7). Given asubset S C X, the closure S is the unique smallest
closed set containing S.

Proof. Note that

g::mV

VDS
V closed

is closed as the arbitrary intersection of closed sets, by Lemma 2.44. To see that S is a minimal such closed
set, note that any closed V' containing S must have S C V by definition of S.

Lastly, to see that S is unique, note that if we have two minimal closed sets S; and S, containing S, then
note S, N S, are both closed sets containing S by Lemma 2.44, so minimality forces S, = S1NS; = S,. A

Example 2.55. If S C X is closed, then we see

sc () ves
VDS
V closed

because S is a closed set containing S. Thus, S = S.

Here is a more concrete way to work with the closure.

Lemma 2.56. Fix a topological space (X, 7) and a subset A C X. Then z € A if and only if every open
subset U C X containingz hasU N A # &.

Proof. In one direction, if there exists an open subset U C X containing x such that U N A # &, then
A C X \ U. By definition of the closure, it follows A C X \ U,sox ¢ X \ U ensures = ¢ A.
In the other direction, suppose z ¢ A. Then X \ A is an open subset containing z (note A is closed by
Lemma 2.54), and
AN(X\A) CAN(X\A) =g,

so we have found an open set containing z disjoint from A. |

With the notation, we note that we can move our notion of density from metric spaces to general topol-
ogy.

Lemma 2.57. Fix a metric space (X, d). Then S C X is dense if and only if S = X.
Proof. In one direction, suppose that S is not dense in X, and we show S C X. Well, we are granted z € X
and e > Osuch that SN B(z,e) = @,505 C X \ B(x,¢). However, X \ B(z,¢) is closed, so
S C X\ B(z,¢) C X,
as needed.
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In the other direction, suppose S ¢ X, and we show that S is not dense in X. Well, findz € X \ S.
Because X \ S is open, we may find e > 0 such that B(z,¢) C X \ S, implying that
B(x,e)NS C B(x,e)NS =@,
making S not dense in X. |

Thus, we can generalize our definition as follows.

Definition 2.58 (Dense). Fix a topological space (X, T). Given subsets A C B, we say A is densein B if
andonlyif B C A.

Remark 2.59. We are not requiring that B be closed for the definition of density. For example, Q C R
is dense in Q.

2.3.3 TheProduct Topology

Let's see more examples of induced topologies. We start with the easiest example of the product topol-
ogy.

Definition 2.60 (Product topology). Fix topological spaces (X1, 71) and (X2, 72). The product topology
on X; X X5 is the topology induced by the canonical projection mappings

7T12X1XX2*>X1 and 7T25X1XX2*>X2.
We now give the following more concrete description of the product topology.

Lemma 2.61. Fix topological spaces (X1, 71) and (X3, 72). The product topology 7 on X = X; x X,
has a base given by
B = {Ul x Uy : U 67-1,U2 67—2}

Proof. The product topology is the minimal topology making 7r1: X1 x Xo — Xjand m: X3 X Xo — Xo
continuous. Namely, the product topology has a sub-base given by the sets

7T1_1(U1)=U1><X2 and 7T2_1(U2):X1XU2

forany U; € T; and Uy € Ts. Using Example 2.33, we let Z denote the finite intersections of these open sets
and note 7 is a base for our topology.

Now, we finish by claiming B = Z. Onone hand, any U; x Us € BwithU; € 71 and U € 75 can be written
as the finite intersection

U x Uy = (Uy x X2) N (Xy x Us) =7y H(U) Ny H(Uy) € T.

On the other hand, pick finitely many sets of the form 7! (U ) and 7, ! (Us); dividing them into their classes,
we can write our finite collection of sets as in {Ul(z) X Xo}m, or {X; x UQ(”};PZI. Their intersection is

(ﬁU{“ ><X2> n (ﬁxl ><U2(j)> = (ﬁUﬁ) m(ﬁUé”) :
i=1 j=1 i=1 j=1

Ur:= Us:=

Now, U; C X7 and U, C X are finite intersection of open sets and therefore open, so our finite intersection
takes the form U; x U, and thus lives in B. [ ]
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Remark 2.62. Later in life we will discuss measurable sets, which are not quite topologies but will have
similar ideas in spirit. For example, they will also care deeply about “rectangles.”

We can define this more generally.

Definition 2.63 (Product topology). Fix a collection of topological spaces {(X4, 7o) }acx- The product
topology on X = [, X« isinduced by the canonical projection maps
To: X = Xg.

Here is our more concrete description.

Lemma 2.64. Fix a collection of topological spaces {(X4, 7o) }acxr- Then the product topology on X :=
[1.c\ Xa hasabase

B = { H U, : U, € To, Uy = X, for all but finitely many a}.

a€EX

Proof. We are immediately given the sub-base of S := {7 }(U,) : U, € T, }. Using Example 2.33, we let T
denote the finite intersections of S so that Z is a base for our product topology.
As before, we finish by claiming Z = B. To stay organized, we proceed in steps.

» We show B C Z. Namely, forany ]
finite. Then

acxUain B,weset \' := {a : U, # Xo}, which we know must be

[[Ua=N7"Wa)= ) 7' (Ua)

aEX aEA aeN

because 771 (X,) = X. The right-hand side is indeed a finite intersection of elements of S and there-
foreinZ.

« We show S C B. Foragiven fand Ug € 73, set U, = X, for each o # /5. Then we see that
w5 (Us) = ] Vs
aEX
isin B because U, = X, forall but asingle a € A.

+ We show B is closed under finite intersection. By induction, it suffices to pick up U, U’ € B and show
that U N U’ € B. Indeed, write

U=]JJU« and U =]]U.,

aEX aEA

where A\g = {a : U, # Xo} and X = {« : U/, # X, } are both finite. Then

Unu' = [[Wan0}),

aEA

and we have U, N U/, = X, whenever a ¢ (Ao U A}), which is only finitely many exceptions because
both \g and )\ are finite.

« We show Z C B. Indeed, 7 is made of the finite intersections of S, and we see that B does indeed
contain the finite intersections of S because B contains the finite intersections of itself,andS C B. A
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Remark 2.65. If ) is finite, then the arguments of Lemma 2.61 generalize to give the cleaner base

{HUazUaen}.

aEX

This also follows directly from Lemma 2.64, where we note that the “finitely many exceptions” actually
permits all « € X to be an exception because A is finite.

Example 2.66. Give {0, 1} the discrete topology. Then the space X := {0, 1}" given the product topol-
ogy does not have
U= []{o0}

neN

open in X even though {0} C {0,1} is always open. To see this, we note U has only a single element.
On the other hand, for U to be open, Lemma 2.64 tells us U must contain a basis element B of the form

B = H U,
neN
where U,, = {0,1} for all but finitely many n. However, B is infinite as the infinite product of sets
containing more than 1 element, so B € U.

We quickly remark that the product topology satisfies the following universal property.

Lemma 2.67. Fix a collection of topological spaces { (X4, 7a) }aex, and give the product X =[]\ Xa
the projections 7,: X — X, and the product topology 7. Given a topological space (Y, 7y) and con-
tinuous maps f,: Y — X,, thereis a unique continuous map f: Y — X such that f, = 7, o f for each
a € A

Proof. We show uniqueness and existence separately.

» Uniqueness: suppose both f and f’ satisfy that f, = 7, o f = 7, o f’ for each a € \. Then, for some
y € Y, weseethat f(y) = (za)aer and f'(y) = (2}, )acx have
xg = (mg 0 )(y) = fa(y) = (w50 f)(y) = 5
for each 8 € A. So we conclude that f(y) = f/(y) on all inputs. Observe that we have not used conti-
nuity anywhere.

» Existence: define f: Y — X by
fy) = (fa(y))aer-

We now need to check that f is continuous. By Proposition 2.31, it suffices to check this on the subbase
of Lemma 2.64. In particular, pick up some finite \' C Aand set U, € T, foreach a € Awhile U, = X,
fora ¢ X. Then our basis element is

U= H U,.

Q€N
In particular,

FHU)={y €Y : foly) € U, foralla € \}

= ﬂ fojl(Ua)
aEX

= fojl(Ua)>ﬁ ( fo?l(Ua ))v
((Ig/ a@/ X,
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which is open because the left term is a finite intersection of open sets and the right termisjustY. W

Corollary 2.68. Fix a collection of topological spaces {(Xq, 7a)}aex. Give the product X = [],c\ Xa
the projections 7, : X — X, and the product topology 7. Given a topological space (Y, 7y ), a function
f:Y — X is continuous if and only if the compositions 7, o f are continuous.

Proof. Certainly if f is continuous, then the continuity of 7, means that each 7, o f is continuous.
Conversely, set f, = m, o f to be a continuous map f,: Y — X,. Then Lemma 2.67 promises us a
unique continuous map f: Y — X such that

ﬂ'aof:fa:ﬂ'(xof~

However, the uniqueness proof of Lemma 2.67 showed that there is in fact one unique map of sets whose
projections under 7, are f,, so we conclude f = f. Thus, f is continuous. [ ]

2.3.4 Commentson the Dual Space

Given a vector space V with a norm ||-||, we might be interested in the linear functionals on V, but because V
is a metric space, we should actually be looking at the continuous linear functional. One can show (in Math
202B) that one has “plenty” of continuous linear functionals. Here is a lemma we will use a few times.

Lemma2.69. Let ||-|| be a norm onanR-vector space V. Thenalinear functional f: V' — Ris continuous
if and only if there exists a real number ¢ > 0 such that

|f ()] < ellv]] (2.1)

forallv e V.

Proof. In one direction, suppose that we can find a real number ¢ > 0 satisfying (2.1) forallv € V. To show
fis continuous, we use Lemma 1.58: suppose that we have a sequence {v,, }»en such that v, — vasn — cc.
Then, forany e > 0, find N such thatn > N implies

|lv —vn| <e/e
so that

|f(v) = f(vn)] < cllv—vn| <e.

Conversely, suppose that f is continuous. Note that we don't have to worry about v = 0 because this gives
equality. Now, we can find § > 0 such that |[v|| < ¢ implies | f(v)| < 1. It follows that any nonzero v € V will
have

SO we see

)
=227 (G0)| < 3o

so ¢ := 2/ will do the trick. |

Here is an example.

Exercise 2.70. Give V := C([0,1]) a p-norm ||-|, for some p > 1 or p = co. Then g € C([0, 1]) defines a
continuous linear functional

s 1 / F(t)g(t) dt.
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Proof. To show g, is linear, pickup any ri,r, € Rand fi, fo € V; then

1 1 1
g(rifi +T2f2):/0 (rf1 +T2f2)(t)g(f)dt:?"1/0 fl(t)g(t)dtJrTz/O fa(t)g(t) dt = r1py(f1) + 2004 (f2)

Checking continuity is a little more involved. Note |g| is a continuous function on a compact set [0, 1] and
therefore has a maximum M. We now use Lemma 2.69; we have two cases.

« Suppose p = oo. Then, forany f € V, we see

MN7=AﬂM@ﬂSMAV®W§MVM,

which finishes by Lemma 2.69.

» Suppose p > 1is finite. To begin, we note

wmw\fﬂm®ASMfuww

Now, because the function z — P is convex, we see that

</01f(t)|dt>p</01|f(t)|pdt:||f|z’

so g (f)| < M || f]|,- Lemma 2.69 finishes. -

Even though the linear functionals we found were continuous for all |-[| , it is possible to find linear func-
tionals continuous for some of our norms but not others.

Exercise 2.71. Fix V := C([0, 1]), and select some ¢y € [0,1]. Then

o: f = f(to)

defines a linear functional on V which is continuous for ||-|| _ but not for [|-|| , for any finite p > 1.

Proof. To see continuity with |||, we note thatany f € V has

oD =1f(to)| < Iflls »

so Lemma 2.69 finishes.
We now show that ¢ is not continuous for a fixed ||-||,, where p > 1is finite. Using Lemma 2.69, we just
have to show that the ratio [¢(v)|/ [|v]|,, is unbounded for v € V. For this, we define f.: [0, 1] — R by

f(t) = max{0,c — Pt (t —t)?}.

The idea here is that f has a sharp bump at ¢5. Now, f is a continuous function on [0, 1] because it is the
composition of continuous functions, so f € V. We can compute

|ﬂ@=(£ﬂﬂﬂfﬁfm.

Now, f(t) will only be nonzero when ¢ — ¢??T1(t — t3)? > 0, which is equivalent tot — ty € (—¢7P,c¢7P), so
we bound

—P

1 c
1= [ ordas [ -y s <o
0

_c—P

Notably, as ¢ — oo, we have that || f|, < 21/7 - ¢!/P~1 is bounded, but |¢(f)| = ¢ grows unbounded. Thus, ¢
is discontinuous. [ |
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Remark 2.72. Now, we have exhibited many continuous functions
Pg: C([07 1]) — R,

so we can ask for the topology on C([0, 1]) induced by these. It turns out that this induced topology is
much weaker than any individual norm topology; this topology is often called the weak topology deter-
mined by C([0, 1]).

Remark 2.73. By the end of the class, we will have a reasonable notion of the dual space of ||-||; and ||-||,.
The dual space for ||-|| ., will come up in Math 202B.

Remark 2.74. Still working with C([0, 1]) given a specific norm ||-|| ,, one can show that any g € C([0, 1])
has some 7, € R with
q(B(0,1)) € B(0, ).

It turns out to be helpful to be able to consider the product topology on the (very large) product

I By

g€C([0,1])

2.4 September?7

It's another day of sun.

2.4.1 Quotient Spaces

Here is a different way to induce a topology, the reverse of the induced topology.

Definition 2.75 (Final topology). Fix a set Y and some topological spaces {(X,, 7a)}acx- Given func-
tions f,: X, — Y, we define the final topology on Y to be the “strongest” (i.e., with the most open
sets) making the f, continuous.

Remark 2.76. Note that certainly some topology on Y exists making the f,, continuous because we can
give Y the indiscrete topology, where f; (@) = @ and f;}(Y) = X, are open for each o € \.

Here is a more concrete description.

Lemma2.77. Fixaset Y and some topological spaces { (X, Ta) }aca, With functions f,: X, — Y. Then
the final topology is

T={SCY:fi'(S)eTa}.

aEX

Proof. Certainlyeach {S C Y : f;(S) € 7.} isatopology by Lemma 2.30, as is their intersection by Propo-
sition 2.20. Thus, T is a topology.

It remains to show that 7 is the strongest topology making each of the f,, continuous. Well, suppose 7’
is a topology making each of the f, continuous. Then, for each U € T, we have

fHU) € T, foreacha € A,
soU < T follows. Thus, 7' C T. [ |

48



2.4. SEPTEMBER 7 202A: TOPOLOGY AND ANALYSIS

We will be primarily interested in the case with just one function.

Remark 2.78. In the case of one function, which is Lemma 2.30, note that we might as well assume
that f: X — Y is onto for otherwise we might as well just pass to the relative topology on im f. To be
explicit, we see U C Y is open if and only if f=1(U) is open if and only if f~1(U Nim f) is open if and
only if U Nim f is open.

We are now ready to define the quotient space.

Lemma 2.79. Given sets f: X — Y, there is an equivalence relation ~ on X with z ~ z’ if and only if

fx) = f(a).

Proof. We check the conditions one at a time. Find z,2’, 2" € X.
+ Reflexive: note f(x) = f(z), sox ~ x.
» Symmetric: if x ~ 2/, then f(z) = f(a'), so f(z') = f(x),soa’ ~ x.
» Transitive: if z ~ 2’ and 2’ ~ 2", then f(z) = f(a’) = f(z"), so f(z) = f(a"),sox ~ a”. |

With an equivalence relation, we may consider the set of equivalence classes X/~.

Remark 2.80. Conversely, given some partition P C P(X) of X, we candefine f: X — Pby f: z — [z],
where [z] € P is the element of P containing z. (Note [z] € P exists and is well-defined because P is
a partition.) The point is that surjective functions give rise to equivalence relations, and equivalence
relations give rise to surjective functions.

Anyway, here is our definition.

Definition 2.81 (Quotient topology). Fix an equivalence relation ~ on a set X with a topology 7. Then
the quotient topology on X/~ is the final topology for the natural projection X — X/~.

It turns out that we can talk about the quotient space by universal property as well.

Proposition 2.82. Fix an equivalence relation ~ on a set X with a topology 7; let 7: X — (X/~) be the
natural projection. Then, for any continuous map f: X — Z such thatany z ~ 2" has f(z) = f(2'),
there is a unique continuous map f: (X/~) — Z such that

f=Fonr.

Proof. We show uniqueness and existence separately.

+ Uniqueness: for any [z] € (X/~), we see that we must have

f(la]) = fn(z)) = f(a),
so f([z]) is forced by our other data.
« Existence: for each [z] € (X/~), define f([z]) := f(z). Note that this is well-defined: if [z] = [2'], then
x ~a',so f(x) = f(z') by hypothesis.
It remains to show that f is continuous. Well, for an open set U C Z, we note that
1

I W) ={lz]: J(l=]) e Uy = {[a] : f(2) €U} =7 (J71 (V).

Now, 7! (7 (f~1(U))) = f~*(U) because z € 7~ (7 (f~1(U))) if and only if w(z) € = (f~*(U)),
which is equivalent to there being 2’ € f~1(U) with n(z) = w(2’), which is equivalent to there being 2’
with z ~ 2’ while f(z) = f(2') € U.

Thus, 7= (7 (f~1(U))) is open, so it follows 7 (f~1(U)) C (X/~) is open. [ |
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2.4.2 Homeomorphism

Homeomorphisms are isomorphisms in our category Top. To be technical, here is our definition.

Definition 2.83 (Homeomorphism). A function f: X — Y between topological spaces (X, 7x) and
(Y, Ty) is a homeomorphism if and only if f is continuous and has a continuous inverse. Formally, we
require a continuous map g: Y — X such that

fog:idy and gOfZIdX

Warning 2.84. It is not enough for f to be continuous and bijective to be a homeomorphism. The hy-
pothesis that the inverse function be continuous is necessary.

Remark 2.85. The definition above does not require that f be bijective, but this follows from f having
aninverse.

Here are some examples.

Example 2.86. Fix a nonzero real number a and a real number b. Then the function ¢,;: R — R by
©a.b(x) = ax + bis continuous: checking this on the subbase (which is enough by Proposition 2.31), we
compute cp;})((c, d)) = ((c=b)/a,(d—b)/a). Theinverse functionis 1 /4, —5/a—N0Ote 1 /0t /0 (Pa,b(T)) =
©a,b(1/a,~b/a()) = x—which is continuous for the same reason, so this function ¢, 4 is a homeomor-
phism.

Lemma 2.87. Fix a homeomorphism f: (X, Tx) — (Y, Ty). Further, for any subset S C X, give S and
f(S) their respective relative topologies. Then the restriction f|s: S — f(S)is a homeomorphism.

Proof. Forclarity, let g: Y — X be the inverse function for f; note that g(f(S)) = {g9(f(x)) : z € S} =S, so
glresy: f(S) — S. Observe that we still have g(f(x)) = z and f(g(y)) foreachx € X andy € Y, so f|s and
g|s are inverse functions by restricting these equations.

It remains to see that f and g are continuous. We will show that f is continuous, and g will follow by
symmetry. Well, for an open subset U N f(S) C f(S) (where U C X is open), we see

fS'UNf(S) ={zeS: flx) cUNf(S)y =Sn{z e X : f(z) e U}n{z € S f(z) € f(S)} = SNf~H(U),
which is indeed open in the relative topology of S. |

Example 2.88. Fix real numbers b > a. Continuing from Example 2.86, ¢, ,: R — R restricts by
Lemma 2.87 to a homeomorphism

SDb—a,a|[O,1] : [07 1] - [a7 b]
Namely, z € [0,1] ifandonlyif 0 <z < lifandonlyifa < (b—a)xr+a < bifandonly if g;_, () € [a, d].
Example 2.89. Give R the Euclidean topology, and let R, be the real numbers with the discrete topology.

Then the identity function .: R; — R is continuous because all functions from the discrete topology are
continuous. However, ¢ is its own inverse, and the inverse function

m: R —= Ry

(which is also the identity on R) is not continuous. For example, 7=1({0}) = {0} is not open in R (by
Remark 2.11) even though R \ {0} C R, is open.
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Here are some more exotic examples.

Exercise 2.90. Give X := [0, 1] the subspace topology, and define the equivalence relation ~ as having
equivalence classes {0,1} and {r} foreachr € (0,1). Then the quotient topology X/~ is homeomorphic
to S* C C.

Proof. We note that ~ is an equivalence relation because its equivalence classes are a partition. Now, we
define the maps
(X/~) = 8"
t — eQ‘n’it
0/21 < e

which we can see to be well-defined inverse. Note that R — C by ¢ + ¢ is continuous by complex analysis
(it's in fact holomorphic). Restricting, we get the continuous map [0, 1] — S*, and then we can see that we
can mod out by 0 ~ 1 because they both go to the same place (using Proposition 2.82). One can check by
hand that the inverse map is continuous, but we won't bother. |

Remark 2.91 (Nir). Here is a quick way to see that the inverse map is continuous: any continuous bi-
jection f: (X/~) — S* with (X/~) compact—which is true because X is compact—and S* Hausdorff
will send closed subsets V' C (X/~) (which are compact) to compact subsets of S* (which are closed).
Thus, f is a closed map, so its inverse is continuous because f is bijective.

For the next few examples, we won't be very rigorous because we haven't provided good definitions of the
relevant spaces.

Example 2.92. Give X := [0, 2] x [0, 1] the subspace topology, and define the equivalence relation ~ as
requiring (0,7) ~ (2,r) only. Then X is homeomorphic to a circle by gluing its edges. One might draw
X as follows.

is the Mobius strip.

Remark 2.94. Note that these homeomorphisms do not care for the metric of our spaces. All that mat-
ters is the continuity.

Example 2.95. Let X be the unit sphere in R? with the subspace topology, and define the equivalence
relation on X by equivalence classes {v, —v} for each v € X. Then X/~ turns out to be RP?, which is
hard to visualize.

2.4.3 Group Actions

A space might even have interesting homeomorphisms to itself.
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Example 2.96. Fix a real number . The circle S* in C (given the subspace topology) has the rotation

homeomorphism

ro: et — et (t+o0)

Remark 2.97. In general, given a topological space (X, T), we can make the group of homeomorphisms
Aut(X) of homeomorphisms whose operation is composition.

This gives the following definition.

Definition 2.98 (Group action). A group action by a group G on a topological space X is a group homo-
morphism
ve: G — Aut(X).

Example 2.99. The group (o) ~ 7 /27 acts on a normed vector space (V, |-||) by sending ¢* to

ok - v = (=1)Fv.

Notably, ¢, is continuous and its own inverse for any k, so it is a homeomorphism. In fact, we can see
directly that p x 0 @ e = Qor+te.

Notably, with a group action comes a partition.

Definition 2.100 (Orbit). Let G act on a topological space X by p.: G — Aut(X). Then the G-orbit Gz
of a point z € z is the set

Gz = {p4(z) : g € G}.
We denote the set of all orbits O, be X/G.

Remark 2.101. Note that the map z — O, is a well-defined (surjective) map X — X/G. In particular,
we need to know that z € O, implies that O, = O, so that there is exactly one orbit containing z.
Well, 2 € O,» means we can find go € G such that z = ¢4, (2'), so

Oz = {py() : g € G} = {pg(pg, () :9€G} = {®4g0 (2'): g€ G} C Oy

Conversely, we note that 2/ = Pyt (z),s0 O, C O, follows, giving equality.

Thus, the G-orbits partition X, so we can give the set X/G the quotient topology as the final topology of the
natural projection X — X/G.
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THEME 3
BUILDING FUNCTIONS

| can assure you, at any rate, that my intentions are honourable and my
results invariant, probably canonical, perhaps even functorial.

—Andre Weil, [Wei59]

3.1 September9

The fun continues. The next problem set is going to be long but only in words, not in what we actually have
to prove. We are being told not to be intimidated.

Remark 3.1. We are about to transition from making topologies to coming up with adjectives which will
give “lots” of continuous maps to, say, the real numbers. A rigorization of this shall be provided shortly.

3.1.1 NormalSpaces

Last class we briefly mentioned the Hausdorff property.

Definition 3.2 (Hausdroff). Fix a topological space (X, 7). Then (X, T) is Hausdorff if and only if, for
any two distinct points =, 2’ € X, there are disjoint open sets U and U’ suchthatz € Uand z’ € U'.

Example 3.3. A metric space (X,d) is Hausdorff. Indeed, given distinct points z,2’ € X, we have

d(z,2') > 0, so we setr = id(z,2’). Thenz € B(z,r)and 2’ € B(z',r) (which are open sets by

Example 2.6), we see B(z,r)NB(z',r) = @. Indeed, if we had y € B(z,r) N B(z,r), then we must have
d(z,2') < d(z,y) +d(a’,y) < 2r = d(z,2'),

which is a contradiction.

Here is the image
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U U’
Here is another adjective.

Definition 3.4 (Normal). Fix a topological space (X, T). Then (X, T) is Hausdorff if and only if, for any
two disjoint closed sets V, V' C X, there are disjoint open sets U and U’ suchthat V C Uand V' C U'.

Remark 3.5. Intuitively, Hausdorff is approximately the normal property with singleton sets. In partic-
ular, some authors require “Hausdorff” in the definition of a normal space. We will not do this.

Example 3.6. Any set X giventheindiscrete topologyis normal. The problem hereis that the only closed
sets {&, X }, so the only possible pair of disjoint closed sets have V; := @ or V5 := &, for which the open
sets U; := V5 and U, := V5 are disjoint and cover these.

Example 3.7. A set X with more than 2 elements given the indiscrete topology is normal, as shown in
the previous example, but it is not Hausdorff. Namely, finding distinct points 21, 22 € X, the only open
subset of X containing z; or x5 is X, so there are no disjoint open subsets U; containing 1 and Us
containing .

Here is the image.

U U’
It is not completely obvious that metric spaces are normal, but we will see that they are.
Here is the main result for today.

Theorem 3.8 (Urysohn’s lemma). Fixa topological space (X, 7). If (X, T) is normal, then for any disjoint
closed subsets V,, V7 C X, there is a continuous function f: X — [0,1] such that f(V5) = {0} and

f) ={1}.

So the point here is to realize Remark 3.1, where being normal is implying that we have “lots” of continuous
functions.

Remark 3.9. Certainly if a topological space (X, T) satisfies the conclusion of Theorem 3.8, then (X, T)
is normal. Indeed, for any disjoint closed subsets V5, V7 C X, pick up the promised continuous function
f-Then

Vo C fY((-1/2,1/2)) and V4 C f1((1/2,3/2))

are disjoint open sets; namely, these are open because f is continuous, and they are disjoint because

F7H(=1/2,1/2)) N f7H((1/2,3/2)) = £~1((-1/2,1/2) N (1/2,3/2)) = f~(2) = &.
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3.1.2 Urysohn's Lemma: Metric Spaces

Let's see Theorem 3.8 for metric spaces, which will prove that metric spaces are normal by Remark 3.9. We
pick up the following definition.

Definition 3.10. Fix a metric space (X, d). Then we define, forany z € X and nonempty subset A C X,
da(z) = ing d(z,a).

ac

Remark 3.11. The infimum here exists because A is nonempty, so the set {d(z,a) : a € A} is nonempty
(and bounded below by 0).

The image is that d 4 (z) is the distance from z to A.

dA(x) // R
Tl A

We have the following continuity check.

Lemma 3.12. Fix a metric space (X, d). Then, for any nonempty subset A C X, the functiond,: X — R
is Lipschitz continuous.

Proof. Fixany x,y € X. Then, forany givena € A, we find that
da(z) < d(z,a) < d(z,y) +d(y,a).
Thus, da(z) — d(z,y) < d(y,a) foralla € A, so we conclude that
da(w) —d(w,y) < inf d(y, a) = da(y),
soda(z) —da(y) < d(z,y). By symmetry, we also have d4(y) — da(z) < d(z,y), so it follows
|da(z) = da(y)] < d(z,y),
which is what we need for our Lipschitz continuous. |

As a sanity-check that this function behaves like it should, we pick up the following.

Lemma 3.13. Fix a metric space (X, d). Then, for any nonempty subset A C X, we have

d3'({0}) = A.

Proof. Certainly A C d;'({0}) because d4(a) = 0foralla € A. (In particular, da(z) > 0 everywhere, and
a € Aimpliesthatda(a) < d(a,a) = 0.) Because d 4 is continuous by Lemma 3.12, we see d ;' ({0}) is closed,
so containing A forces

Acdy' ({oh).

Conversely, suppose that ¢ X \ A4, and we show that d4(z) > 0. Indeed, X \ A is open, so there is some
open ball B(z, ) with e > 0 such that B(z,¢) C X \ A. It follows B(z,e)N A = &, so

d(a,z) > ¢

foralla € A. Thus, d4(x) > e > 0,s0d4(x) # 0. [ ]
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Example 3.14. If A C X is a dense subset, then A = X,sod,: X — R is the constantly zero function.

Example 3.15. If A C X is closed, then A = A by Example 2.55, so d;'({0}) = A. In other words, we
havez € Aifandonlyifda(z) = 0.

Let's now show Theorem 3.8 for metric spaces.

Proposition 3.16. Fix a metric space (X, d). For any disjoint closed subsets V;, V; C X, there is a con-
tinuous function f: X — [0,1] such that f(V;) = {0} and f(V1) = {1}.

Proof. The point is to use the Lipschitz continuous functions dy,, dy,. Then we define

._ dVo (I)
@)= G @) + v @)

Note that defining f: X — R does not have division-by-zero problems: because dy,(z), dv, (z) > 0, the
only way to get zero in the denominator is by dy, () = dy, () = 0. However, this forces z € V, N V; by
Lemma 3.13 because Vy and V; are closed, butinfact Vo NV, = @.

We now run our checks on f.

» Because the quotient of two continuous functions is still continuous, we see that f is continuous.

» Using the fact that d4(z) > 0 for any nonempty A C X and z € X, we find

_ dVo (ﬂf)
0= g v =

and

R R e R

soim f C [0, 1].

o Ifz € Vp, thendy,(z) = 0,50 f(x) = 0/(0 + dy,(z)) = 0. Ifx € V4, then dy, (xz) = 0, so f(z)

dvy (2)/(dv, () +0) = 1.
And here is our check.
Corollary 3.17. Any metric space (X, d) is normal.
Proof. Plug Proposition 3.16 into Remark 3.9. [ |

3.1.3 Urysohn’s Lemma: The General Case

We will not prove the general case of Theorem 3.8 today, but we will make some progress. Here is a useful
lemma.

Lemma 3.18. Fix a normal topological space (X, 7). Given a closed subset V' C X and an open subset
Uy C X withV C Uy, there is an open set U such that

VCUCUCU,.
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Proof. Because V C Uy, we define V' := X \ Uy, which is closed because Uy is open. Further, V! C X\ Uy C
X \ Vforces VNV’ = @. Thus, using the normality of (X, 7'), we are promised disjoint open sets U and U’
such that

VCcU and V' CU'.

In particular, we see that
UCX\U

while X \ U’ is closed by definition. Thus, by definition of the closure, U C X \ U’ C X \ V' = U,. This
finishes the proof. |

3.2 September12

There are still no questions.

3.2.1 Urysohn's Lemma: The General Case
We continue the proof from last class.

Theorem 3.8 (Urysohn’s lemma). Fix a topological space (X, T). If (X, T) is normal, then for any disjoint
closed subsets V;, V3 C X, there is a continuous function f: X — [0, 1] such that f(V5) = {0} and

f(1) = {1}.

Proof. To begin, define U; := X \ Vi, which is open because V; is closed; notably V5 C U;. The idea here is
that the points of U; will take value at most 1. Now, by Lemma 3.18, we find U, /, with

Vo C Uy C U2 C UL

Intuitively, we are going to let f take values at most 1/2 on Uy /5. Using Lemma 3.18 again, we can find U, /,
with
Vo CUyyg C ULy C Uy,

and now our function will take values at most 1/4 on U; /4. On the other side, we can use the containment
Uij2 € Uy in Lemma 3.18 to find Us /4 such that

Uija CUszjq C Uy C Un,

and here U, our function should take values less than 3/4.

We can then continue the process for eights and then off to infinity. Let's describe what we have at the
end of thisinductive process. Set A := {k/2" : 0 < k < 2"} tobe the set of “dyadic” rationalsin (0, 1]; notably
Aisdensein [0,1].r Then eachr € A, we get an open set U,. C X. These have the following properties.

« Anyr,s € Awithr < shasU, C Us,.
» By constructionU; = X \ V1.
e Also, Vy C U, forallr € A.

We now define

fla)=1: Ten
" linf{reA:zeU} x¢V,

where z ¢ V4 in the second case promises z € U; so that the infimum in the second line makes sense. We
now run the following checks on f.

1 The fact we need is that a, b € [0, 1] with a < bhave r € A between them. Well, multiply b — a by a suitably large power of 2 so
that 2 (b — a) > 1, so there is an integer k in this interval between 2"a and 2"b, so a < k/2™ < b.
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Note that im f(z) C A = [0, 1].
By the construction of these open sets, we have f(z) = 1ifx € V4.
Further, f(z) < rforallr € Aifz € Vp, so f(z) = 0forz € V4.

It remains to check that f is continuous. For this, we use Proposition 2.31 to check the continuity on a
subbase. Specifically, we use sets of the form [0, a) and (a, 1] fora € (0, 1). Indeed, note [0,a) N (b, 1] =
(a,b), so intersections of these can give all open intervals strictly contained [0, 1]; adding in the “open”
intervals [0, a) and (a, 0] make all the open intervals in [0, 1], which are a basis for our topology.

We now proceed with our check; fix some a € (0,1).

- Notethatx € X has f(x) < aifand only if there is some r € A suchthat f(z) < r < a (by density
of A)if and only if there is some r € A such that z € U, and r < a (by definition of the infimum).
As such,

7 (0.0) = |J U

r<a

- Notethatx € X has f(z) > aifand only if thereisanr,s € A with f(z) > r > s > a (by density).
It follows z ¢ U,., which contains Uy, so z ¢ U, for some s € A with s > a.

On the other hand, = ¢ U, for some s € A with s > a implies that z ¢ U, forany r € A with
r > s> a,soitfollows f(z) > s > a.

Thus, f(z) > aifand only if z ¢ U, for s € A with s > a, implying

5 (@) = Jx\T).

s>a

The above checks complete the proof. |

Remark 3.19. We could not have f output to @ N [0, 1] because we used the completeness of R in the
construction of f.

Remark 3.20. It is somewhat noticeable that we have not discussed sequences at all in this class yet,
even though they were featured prominently in metric space topology. The reason we have been avoid-
ing them is that we prefer to use open sets and not points to study general topological spaces.

3.2.2 Bounded Functions

We are going to want a little functional analysis before we continue.

Definition3.21 (Bounded). Fixa metric space (X, d) and anonempty set A. Asubset A C X is boundedif
and only if there is an open ball B(z, ) containing A. More generally, a function f: A — X is bounded if
and only ifim f C X is bounded, and we let B(A4, X) denote the set of all bounded functions f: A — X.

We will be particularly interested in the case where X is a normed vector space.
The point of defining bounded functions is that we can provide them with a metric.

Definition 3.22 (Uniform metric). Fix a nonempty set X and a metric space (Y, d). Then the uniform
metricis the function d,,: B(X,Y)? — R defined by

du(f,g) = sup{d(f(z), 9(z)) : x € X}.
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Lemma 3.23. Fix a set X and a metric space (Y, d). Then the uniform metric d,, on B(X,Y) is a metric.

Proof. Here are our checks; fix f,g,h € B(X,Y).

» Well-defined: because f and g bounded, we can find open balls B(a, r) and B(b, s) containing im f and
im g respectively. It follows that, for any z € X, we have

d(f(x),9(x)) < d(f(z),a) +d(a,b) +d(b, g(x)) <7+ d(a,b) + s,
so the set {d(f(x),g(z)) : # € X} has an upper bound and hence a supremum.
« Nonnegative: fixing a particular 2 € X, note d,(f,g) > d(f(x), g(x)) > 0.
« Zero: note d,,(f, f) is sup{d(f(z), f(z)) : x € X} = sup{0: z € X} = 0.

» Zero: note d,(f,g) = 0 implies that sup{d(f(z),g(z)) : . € X} =0, sod(f(z),g(z)) < O0forallz € X,
sod(f(x),g(x)) =0forallz € X,so f(x) = g(x) forallz € X.

« Symmetric: note
du(f,g) = sup{d(f(z),9(z)) : © € X} = sup{d(g(z), f(x)) : © € X} = du(g, f)-
« Triangle inequality: note that
d(f(z), h(z)) < d(f(z),9(x)) + d(g(x), h(z)) = du(f, g) + du(g, h)
forall z € X, so it follows dy,(f, ) < du(f,g) + du(g, h) by taking the supremun. ]

Here is why we like this metric.

Proposition 3.24. Fixa set X and a complete metricspace (Y, d). Then B(X,Y') given the uniform metric
is complete.

Proof. Fix a Cauchy sequence {f,, }nen in B(X,Y). Namely, foralle > 0, there exists some N so that
n,m >N = d(fu(z), fm(z)) <€

forallz € X. In particular, fixing some particular z € X, we see that {f,,(z) }».en is @ Cauchy sequence in Y,
so the completeness of Y promises some limit f(x).

It remains to check that the data of f assembles to a function f € B(X,Y). Well, any (fixed) e > 0
promises an N so thatn,m > N forces d(f,(x), fm(z)) < eforallz € X. Now, fixingsomez € X,anyd > 0
has some N’ large enough so that m > N’ has d(f,,(z), f(z)) < &, meaning that n, m > max{N, N’} gives

d(fn(2), f(2)) < d(fn(2), fm(2)) + d(fim(2), f(2)) <e+0

forall 4 > 0. Thus, fixing some n > N, we see d(f.(z), f(z)) < eforallz € X.
To finish, we note f,, € B(X,Y) is bounded, so there is an open ball B(a, r) containing im f,,. Thus, for
allz € X,

d(a, f(z)) < d(a, fu(2)) + d(fa(2), f(2)) <7 +¢,
soim f C B(a,r +¢€). ]

We close with the following result.

59



3.3. SEPTEMBER 14 202A: TOPOLOGY AND ANALYSIS

Proposition 3.25. Fix a topological space (X, 7) and a metric space (Y,d). Let B.(X,Y) C B(X,Y)
denote the metric subspace of bounded continuous functions f: X — Y. Then B.(X,Y) is a closed
subspace of B(X,Y). In particular, if (Y, d) is complete, then B.(X,Y) is also complete.

Proof. Note that the second claim follows from the first claim by Corollary 2.52; thus, we focus on the first
claim. For this, we use Lemma 2.50: fix a sequence {f, }nen of bounded continuous functions such that
fn— fasn — cowhere f: X — Y is just some bounded function. We need to show that f is continuous.

Well, fix an open set U C Y so that we need to show f~1(U) C X is open. For this, we pick up any
element x € f~1(U), and we find an open neighborhood U, C f~!(U) containing x; this will finish because
it shows

oy Ju. i,

zeU

so f~1(U) is the arbitrary union of open sets.
We now proceed with the proof directly.

1. Because f(z) € U,and U is open, there is some £ > 0 such that B(f(z),e) C U.

2. Because {f, }nen converges to f, there is a sufficiently large N so that n > N has d(f.(v), f(y)) < &/2
forally € X. Fixsomen > N.

3. Now, forally € f,,*(B(f(z),£/2)), we see

d(f(y), f(x)) < d(f(y); faw)) +d(fuly), f(2)) <e/2+e/2 =,

so f(y) € U. As such, we see that f, 1 (B(f(z),e/2)) is open (because f, is continuous), it contains z,
and it is contained in f~1(U).

The above open neighborhood completes the proof of the first claim. |

3.3 September 14

The march continues.

3.3.1 The Tietze Extension Theorem

Here is the main result for today.

Theorem 3.26 (Tietze extension). Fix a normal topological space (X, 7'), and give some closed subset
A C X the relative topology from X. Given a continuous function f: A — R, there exists a continuous

function f: X — Rsuchthat f|4 = f. In fact, if im f C [a, b], then we may enforce im f C [a, b] as well.

This property is quite special to R shared by a few other spaces.

Example 3.27. Take X = B(0,1) C R? given the relative topology, and let A = 9X be the bound-
ary, which is the unit circle. Then the identity functionid,s: A — A does not extend continuously to a

functionida: X — A. To see this rigorously, take a course in algebraic topology.

Example 3.28. Of course, any set Y given the indiscrete topology will be such that a continuous function
f: A — Y can be extended to continuously to a function f: X — Y because all functions to Y are
continuous for free.

60



3.3. SEPTEMBER 14 202A: TOPOLOGY AND ANALYSIS

Remark 3.29. The condition of im f C [a,b] might as well be replaced by im f C [0, 1] by using the
homeomorphism R — R by z — (2 — a)/(b — b) which will send [a, ] to [0, 1].

Here is a lemma which will help the proof of Theorem 3.26.

Lemma 3.30. Fix a normal topological space (X, 7), and give some closed subset A C X the relative
topology from X. Given a continuous function f: A — [0,7] (where r > 0), there exists a continuous
function g: X — [0,7/3] such that

0< f(a) —g(a) <2r/3

foreacha € A.

Proof. Set B :={z € A: f(z) <r/3} = f~1([0,r/3])and C = {x € A : f(z) > 2r/3} = f~1([(2r/3,7]).
Both B,C C A and C are closed because they are the pre-image of closed subsets under f: A — R. In fact,
by the relative topology, we can write B = B’ N A where B’ C X is closed. However, B’ and A are both
closedin X, so B C X is closed. Similar holds for C.

Thus, so Urysohn's lemma provides (Theorem 3.8) a continuous function g: X — [0,1] suchthatg|p =0
and g|c = 1. As such, we define g: X — [0,7/3] by

g(x) = (r/3) - g(),

which is still continuous because the map = — (r/3)x isahomeomorphism [0, 1] — [0, /3] by Example 2.88.
We can now see that g satisfies the needed properties. Fix some a € A.

« Ifa € B, then g(a) = 0 while f(a) < 7/3,500 < f(a) — g(a) < r/3.
» Ifa € C, then g(a) = r/3 while f(a) € [2r/3,7],500 < f(a) — g(a) < 2r/3.

e Lastly, a ¢ Banda ¢ C meansthatr/3 < f(a) < 2r/3 while 0 < g(a) < r/3, so it follows 0 <
f(a) = g(a) < 2r/3still.

The above checks finish. [ |

We now show the following special case of Theorem 3.26.

Proposition 3.31. Fixa normaltopological space (X, 7)), and give some closed subset A C X therelative
topology from X. Given a continuous function f: A — [0, 1], there exists a continuous function f: X —
[0,1] such that f|4 = f.
Proof. For brevity, define o := 2/3. Taking r = 1 in Lemma 3.30, we get a function g; : X — [0,1/3] with
0< f(a) —g1(a) <o

foralla € A, so define f; == g1. Next applying Lemma 3.30 to (f — fl\A): A — [0,0] withr = o, we get
promised a function g2: X — [0,0/3] with

0< f(a) - fi(a) - g2(a) < 0

foranya € A, so define fg = fl + 2.
In general, suppose given a function f,,: X — [0, 1] with

0< f(a) = fula) < o™
fora € A, we can use Lemma 3.30to (f — f|a): A — [0,0"] to get a function g,1: X — [0,0" /3] with
0< f(a) = fala) = gnta(a) < o™
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3.4. SEPTEMBER 16 202A: TOPOLOGY AND ANALYSIS

fora € A, allowing us to then set f, 41 = fn + gni1.
Applying the above process inductively, we get a function

Fa=_ o
k=1

going to [0, 1] such that ||gx||, < c¥71/3and 0 < f(a) — fn(a) < (2/3)" for eacha € Aand n > 1. Notably,
using the uniform metric d,,, we see that any n > m has

du nyJm) =S < — k71<7 kii' == o
(o ) sup< 3 gk<x>>_ > ot Za T - \3)

zeX k=m+1 k=m+1

which gets arbitrarily small. Thus, {ﬁ}neN is a Cauchy sequence: forany e > 0, we can find N withn > N
having (2/3)" < &, meaning n,m > N will have d,,(fy, fm) < e. Now, because [0,1] C R is a closed subset
of a complete metric space and hence complete by Corollary 2.52, the sequence {ﬁl}neN converges to a
continuous function f: X — [0, 1] by Proposition 3.25.

It remains to check that f\A = f.Well,anya € Aandn € N have

2

@) - Fl@)l < 1@ - Fota)l +1Fule) = Fl < (3) +1Fula) - Sl

Because f,, — f asn — oo under the metric d,, we see that |f,(a) — f(a)] = 0asn — oco. Additionally,

(2/3)™ — 0asn — oo, so the entire right-hand side goes to 0 as n — oo, meaning that | f(a) — f(a)| < € for

alle > 0. Thus, f(a) = f(a) foreacha € A. [ |

3.4 September 16

We continue the proof from last class.

3.4.1 The Tietze Extension Theorem: Proof

And here is the proof of the general case of Theorem 3.26.

Theorem 3.26 (Tietze extension). Fix a normal topological space (X, 7), and give some closed subset
A C X therelative topology from X. Given a continuous function f: A — R, there exists a continuous
function f: X — Rsuchthat f|4 = f. Infact, ifim f C [a, b], then we may enforce im f C [a, b] as well.

Proof. Fix a continuous function f: A — R. Note that there is a homeomorphism ¢: R = (—1,1), so we
name composite

ALRE (“1,1) C[o,1]
g and then extend it to a function go: X — [—1,1] by Proposition 3.31. We would like to go back to (—1,1)
and then back to R, but it is possible for —1,1 € im gq.
Isolating the problem, we set B := g, ' ({—1,1}) and note that AN(ByUB;) = @ because go(A) = g(A) C
(—1,1). Now, by normality of X, we get promised by Theorem 3.8 a continuous function §: X — R such
that 6| = 0and §|4 = 1. Thus, we define

9(x) = 6(x)go(x)-

Notably, gla = 0]a - Gola = 1-g = g. But now |g(z)| = 1 would force |go(x)| = 1, but this implies é(x) = 0 by
construction and so g(z) = 0; thus, £1 ¢ im g, so we can pull back g through o: R = (—1,1) to R. |
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3.4. SEPTEMBER 16 202A: TOPOLOGY AND ANALYSIS

3.4.2 Existence of Completions, Again

We quickly provide another proof of the existence of completions. We begin with the following exam-
ple.

Example 3.32. Given any topological space (X, 7)), the metric space (B.(X,R), d,,) of bounded contin-
uous functions is complete by Proposition 3.25 because R is complete.

More generally, we will want to remember the following definition.

Definition 3.33 (Banach space). A normed vector space (V, ||-||) is a Banach space if and only if it is com-
plete.

As such, we pick up the following tool.

Lemma 3.34. Fix an isometry f: (X,d) — (Y, dy) of metric spaces such that (Y, dy) is complete. Then
f(X) equipped with the induced metricfrom Y isa complete metric space, anditis actually a completion
of (X, d) when equipped with the natural embedding ¢: X — f(X) from f.

Proof. For brevity, define X = f(X) and set d to be the metric on X induced by (Y, dy). In particular,
X CYisaclosed subset, and so (X, d) is complete by Corollary 2.52. Now, note that:: (X,d) — (X,d) is
an isometry because, forany z, 2’ € X,

d(z,2") = dy (f(2), f(2)) = dy (u(2), u(2")) = d(e(@), ¢(2"))

using our various restriction maps. o
Lastly, we have to show that im: C X is dense. Well, by Lemma 2.57, it suffices to note

im.= f(X) =X,
which is what we wanted. [ |

We are now ready to prove Theorem 1.69.

Theorem 1.69. Any metric space (X, d) has a completion.

Proof. Let our metric space be (X, d). For each z € X, define f,(y) := d(x,y). To embed f, into B.(X,R),
we would need f, to be bounded, but it need not be. To fix this, we choose a base-point zy € X, and define
he = fo — faco'

Inparticular,anyy € X willhave |, (y)| = |d(z, y)—d(z0, y)| < d(z,x0), so h, isbounded, anditis continuous
as the sum of two continuous functions. More explicitly, foranye > 0, take 6 = e sothatd(z1,z2) < d implies
|he(x1) — hy(x2)| = |d(z, 21) — d(z, 22)| < d(x1,22) <0 =¢.

We now need to show that the map ke : (X, d) — (B.(X,R),d,) is an isometry. Indeed,

du (hays hay) = sUp{ha, (2) = hay (2)} = sup{d(z1, z) — d(z2, )}
reX zeX

This is certainly upper-bounded by d(x1, 23) by the triangle inequality, and we do achieve d(z1, z2) at x =
because d(x1, x3) — d(z2, 22) = d(x1, z2). Soindeed, dy, (hy,, hy,) = d(21, 22).
Thus, we have provided an isometry he: (X,d) — (B.(X,R),d,) from (X, d) to the complete metric

space (B.(X,R),d,) (see Example 3.32), so he(X) is a completion for (X, d) by Lemma 3.34. [ |

Remark 3.35. Despite the above construction, it is actually fairly non-obvious what functions really are
in he(X).
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THEME 4

COMPACTNESS

That something so small could be so beautiful.

—Anthony Doerr, [Doel4]

4.1 September 16

We continue the lecture, into compactness.

4.1.1 Compactness

The following is perhaps the most important definition in point-set topology.

Definition 4.1 (Open cover). Fix a topological space (X, T). An open cover of X is a collectioni/ C T of
open sets such that
x=|Ju

veu

Definition 4.2 (Open subcover). Fix a topological space (X, 7). An (open) subcoverU’ of an open cover
U is an open cover U’ of X such that’ C U.

And here is the relevant definition.

Definition 4.3 (Compact). Fix a topological space (X, 7). We say that (X, 7) is compact if and only if
every open cover of X has a finite subcover.

Example 4.4. The subset [0, 1] C R given the relative topology is compact.
In light of the previous example, it is helpful to extend our definition to subsets of a topological space.

Definition 4.5 (Compact). Fix a topological space (X, 7). A subset A C X is compact if and only if A is
compact when given the relative topology from X.
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Lemma 4.6. Fix a topological space (X, 7). Then A is compact if and only if any &/ C T covering A has
a finite subcover covering A.

Proof. The point is to use Lemma 2.42. In one direction, suppose A is compact. Then a cover {U,}aer €T
of A provides the open cover by
Vo =ANU,

of A. Indeed, ANU, C Aisopen,and |J,c, Vo = U,ex(ANU,) = A. Thus, compactness provides a finite
subset X C A such that {V,, },c still covers A so

A= JAnU) € | Va,
ae) aeN

meaning that the finite subcover {U, }aex € {Uq }aca still covers A.

In the other direction, suppose that each open cover of A from T has afinite subcover. Now, give A some
open cover {V, }aex from the relative topology on A. Each open subset V,, can be written as U, N A where
U, C X isopen by Lemma 2.42, so we define

U= {Ua}ae)\'

V,, whichis A, solf covers A and hence has a finite subset A’ C X such that

A= JANU) = | Ve,

acN ac)N

Notably, J,c» Ua contains |J
{Uq}aex covers A. But then

aEA

so {V, }aex provides a finite subcover of {V,,}aea. [ ]

In light of the above proof, it will be helpful to extend our notion of an open cover.

Notation 4.7. Given a topological space (X, 7)), we will say that some open sets/ C T form an open
cover for a subset A C X if and only if
Ac v

Ueu
Remark 4.8. We will freely use Lemma 4.6 as a “definition” of compactness without reference.

Example 4.9. Given compact subsets A;, A5 C X of a topological space (X, T), we see that A; U Ay
is also compact. Indeed, given an open cover U of A; U Ay, we see that U is an open cover for both
A; and Ay, so we can find our finite subcovers U; C U and Us C U by the compactness of A; and As,
respectively. Thus, U, UlUs C U is a finite collection covering A; and A, and therefore covering A; U As.

Here is a quick fact about compactness.

Lemma 4.10. Fix a compact topological space (X, 7). Then any closed subset A C X is compact.

Proof. By Lemma 4.6, pick up an open cover U/ of A, and we would like to find a finite subcover. Then we set
V=UU{X\ A}
Notably, X \ Aisopenin X because A is closed, so we see

Uuv=x\Au|JUv2a2X\4ua=X,

vevy Ueu
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so Vis an open cover for X. As such, we can find a finite subcover V' for X, and we set/' := V N U.

We claim that I/’ is a finite subcover of i/; indeed, &’ C V is finite, and i/’ C U is a subset. It remains to
check that ¢4’ covers A. Well, for any a € A, we can find some U’ € V' containing a because V' covers X.
However,a ¢ X \ A,s0U’ # X \ 4, soactually U’ € U’. Thus,

Ac Ju

veu’

which is what we wanted. ]

Example 4.11. Give X = R the indiscrete topology. Then X has only two open sets, so any nonempty
subset S C X canonly be covered by { X'}, which is its own finite subcover. For example, {0} is compact
in X, but it is not closed because R \ {0} is not open.

4.2 September19

There are questions today.

4.2.1 Compact Hausdorff Spaces

Last class we saw in Example 4.11 that compact subsets of a topological space need not be compact. It turns
out that compact subsets of Hausdorff spaces are in fact closed. Let's see this.

Lemma 4.12. Fix a Hausdorff topological space (X, 7), and let A C X be compact. Then, foranyz ¢ A4,
there are disjoint opensets U and VwithACUandz € V.

Proof. Foreachy € (X\ A), the Hausdorff condition promises disjoint open sets V;, and U, such thaty € U,
and z € V,,. We would like to take the union of all the U, and the intersection of all the U,, but the arbitrary
intersection of open sets need not be open.

To fix this, we note that {U, },c 4 are some open sets which cover A4, so the compactness of A allows us
some finite subset Y C A such that {U,},cy covers A. As such, we set

U= U U, and V= ﬂ Vy-

yey yey
Here are our checks.

« Both U and V are open because these are a finite union and a finite intersection of open sets, respec-
tively.

« By construction of Y, we seethat A C U.
* Notex € V, forally e Y C A, sox € Vaswell.

« Lastly, we see that U and V are disjoint: for each z € U, we can find some y € Y such that z € U,, but
then z ¢ V,, by construction, so z ¢ V. |

Corollary 4.13. Fix a Hausdorff topological space (X, 7)), and let A C X be compact. Then A is closed.
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Proof. Foreachz ¢ A, Lemma 4.12 grants us an open subset V. containing = which is disjoint from A. It
follows V, C X \ A, so we may say

e U ne U xva=x\4

yeX\A yeX\A

so X \ A = U,ex\a Vy shows that X \ A is a union of open sets and therefore open. It follows that A is
closed. |

Corollary 4.14. Fix a compact Hausdorff topological space (X, 7). Then all closed subsets A C X and
x ¢ Ahave disjoint open subsets U and V withAC Uandz € V.

Proof. Lemma 4.10 says that A is compact, so Lemma 4.12 finishes. |

The above property is useful enough to deserve a definition.

Definition 4.15 (Regular). A topological space (X, T) is regular if and only if each closed subset A C X
and x ¢ A have disjoint open subsets U and V with A CUandz € V.

Example 4.16. Every compact Hausdorff space is regular by Corollary 4.14.

Example 4.17. Any normal, Hausdorff space is regular. For example, metric spaces are regular.

In fact, compact Hausdorff spaces are not just regular but also normal.

Proposition 4.18. Fix a compact Hausdorff space (X, 7). Then (X, T) is normal.

Proof. Fix disjoint closed subsets A and B. Then A and B are compact by Lemma 4.10.

Now, foranyy € B, we see y ¢ A, so Lemma 4.12 grants us disjoint open subsets U, and V,, such that
U, contains A and V, contains y. As before, we see {V, },cp forms an open cover of B, so the compactness
of B promises a finite subset Y C B such that {V, },cy still covers B. Thus, we set

U=(U, and V=[]V,

yey yey
Here are our checks again.

« Note U is open as a finite intersection of open sets. Similarly, V' is open as a union of open sets.

By construction A C U, foreachy,so A C U.

By construction {V, },cy covers B,so B C V.

Lastly, to see that U and V are disjoint, note thatany z € V has z € V,, forsome y € Y, so z ¢ U,, so
z¢U. [ ]
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4.2.2 CompactlImages

We continue our fact-collection for compact spaces.

Lemma 4.19. Fix a continuous map f: (X, 7x) — (Y, Ty). If (X, Tx) is compact, thenim f C Y is also
compact.

Proof. For psychological reasons, we may assume that im f = Y, though we will not do this.
Suppose we have an open cover {V, }4ex C Ty forim f. Then we set

U= {f_l(vo‘)}QG)\

In particular, the continuity of f promises that everyone is U/ is open. We claim U covers X: forany z € X,
we see f(x) € im f, so f(z) € V, forsomea € \,sox € f~1(V,) e U.

Thus, the compactness of X promises a finite subset X' C Aso that { f~1(V,)}
for X. Thus, we can see that the finite collection of open subsets

aen 1S still an open cover

{Va}ae)\’ g {VQ}QGA

still covers im f. Indeed, forany y € im f, find 2 € X with f(z) = y, so place x € f~1(V,) forsomea € X,
soy € V,. ]

Corollary 4.20. Fix a continuous function f: R — R. Then, for any closed interval [a, b], f achieves its
maximum on [a, b].

Proof. Note that f([a,b]) is compact, and R is Hausdorff, so f([a,b]) is also closed. Further, f([a,b]) is
bounded because it is compact. Thus, f([a,]) has all of its limit points and in particular contains its supre-
mum. ]

We take a moment to use this machinery to build an easier test for homeomorphisms; namely, we manifest
Remark 2.91.

Proposition 4.21. Fix a compact topological space (X, Tx) and a Hausdorff topological space (Y, 7y ).
Then any continuous bijection f: X — Y is a homeomorphism.

Proof. The bijectivity of f promises some inverse function g: Y — X, which we need to show is continuous.
Well, for an open subset U C X, we need to show that g~ (U) is open. But because g is the inverse of f, we
see

g (U)={yeY 1 g(y) €U} ={f(z) €Y : g(f(2)) € U} = f(V),

so we need to show that f(U) is open. Taking compliments, we set A := X \ U so that A is closed, and we
will show that f(A) is closed; this will finish because the bijectivity of f forces

fU) = F(X\NA) = F(X)N\F(A) =Y\ f(4)

to be open.

We are now ready to finish the proof. Because (X, Tx) is compact, A being closed implies that A is
compact by Lemma 4.10. It follows by Lemma 4.19 that f(A) is compact, so because (Y, Ty) is Hausdorff,
we see Lemma 4.12 forces f(A) to be closed. This finishes. [ |

68



4.2. SEPTEMBER 19 202A: TOPOLOGY AND ANALYSIS

4.2.3 Compactness via Closed Sets

It will be helpful to be able to discuss compact sets in terms of closed sets.

Lemma 4.22. A set X is covered by a collection S C P(X) if and only if

N\ =2

Ses

Proof. Note
N (X\9) X\
ses ses
which is empty if and only if [ Jg. s X = X. |

Corollary 4.23. Fix a topological space (X, T). Then (X, T) is compact if and only if any collection of
closed subsets V with (;,.,, V' = @ has some finite subcollection V' C V with (.., V = @.

Proof. If X is compact, then note any collection of closed subsets V with(,,.,, V' = @ has

X = X\ﬂv— (X\ V),

vey vey

soU = {(X\V):V € V}isanopen cover. Thus, we can find a finite subset V' C Vsuch that/’ = {(X\V) :
V € V'} covers X, so it follows that (.., V = & by taking complements, as above.

Conversely, we show that X is compact. Well, pick up an open cover/ of X. Then Lemma 4.22 says that
V={(X\V):VeV}thas(), .,V = @. By hypothesis on X, we get some finite subcollection &/’ C U such
that (¢ (X \ U) = @, so Lemma 4.22 says U’ covers X. [ ]

It will be useful to have some language to describe this.

Definition 4.24 (Finite intersection property). Fix a set X. A collection S C P(X) has the finite inter-
section property if and only if any nonempty finite subcollection &’ C S has

) S #e.

Ses
In particular, we get the following.

Proposition 4.25. Fix a topological space (X, 7). Then (X, T) is compact if and only if any collection V
of closed subsets with the finite intersection property has

NV#e

Vevy

Proof. Applying contraposition to the conclusion, we are saying that any collection V with (., V = &
has some finite subcollection V' C V with ., V = @. This is equivalent to (X, 7) being compact by
Corollary 4.23. |

Remark 4.26. It is somewhat important to notice that the proof of Proposition 4.25 does not require
the Axiom of Choice to prove. It is purely moving around definitions cleverly.
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4.3 September21

Today we begin talking about Tychonoff’s theorem.

4.3.1 Comments on Choice

Here is our main result for today.

Theorem 4.27 (Tychonoff). Fix a collection {(X4, 7o) }acx of compact topological spaces, and give the
product space X := ][], X the product topology. Then X is compact.

Notably, we are not requiring the spaces X,, to be Hausdorff.

Warning 4.28. The proof of Theorem 4.27 will be the hardest part of this course.

Remark 4.29. The reason for Warning 4.28 is that we need to at least know that X is nonempty to say
anything about X at all, and an arbitrary product being nonempty is equivalent to the Axiom of Choice.
In fact, Theorem 4.27 (notably not assuming that the X, are Hausdorff!) actually implies the Axiom of
Choice, as shown by John Kelly.

To prepare ourselves, we will point out a few of the main ingredients we will use. We will use the Axiom of
Choice, which we will go ahead and state now.

Axiom 4.30 (Choice). Given a collection of nonempty sets {S,, }.cx, the product [] ., S, is nonempty.

a€A

We will also use Zorn's lemma. To state Zorn's lemma, we begin by defining a partially ordered set and its
chains.

Definition 4.31 (Poset). A partially ordered set or poset is a set P equipped with a reflexive, antisym-
metric, and transitive relation < C P x P.

Example 4.32. Given a set X, the power set P(X) is a partially ordered set under inclusion C. Here are
the checks.

* Reflexive: for A € P(X), wesee A C A.
« Antisymmetric: for A, B € P(X), wesee A C Band B C Aimplies A = B.
« Transitive: for A, B,C € P(X),wesee A C Band B C C implies A C C.

Replacing all the Cs with Os shows that P(X) is also a partially ordered set under containment D.
Posets have very natural subposets.

Definition 4.33 (Subposet). Given a partially ordered (P, <), a subposetisasubset S C P equipped with
the restricted partial order <N (S x 9).

All the checks for (S, < N (S x S)) being a partially ordered set are inherited directly from P, so the proof
amounts to just writing them down.

Example 4.34. Given a topological space (X, T), we see that 7 is a subposet of P(X), where P(X) can
be given the partial order C or D from Example 4.32.

And here are our chains.
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Definition 4.35 (Chain). Fix a partially ordered set (P, <). Then a chainis a subset C' C P such that the
subposet (C, <) is totally ordered.

Zorn's lemma is interested in special kinds of partially ordered sets.

Definition 4.36 (Inductively ordered). A partially ordered set (P, <) is inductively ordered if and only if
every chain C' C P has an upper bound in P. In other words, there is an elementp € P suchthatc <p
forallc € C.

And hereis Zorn's lemma.

Axiom 4.37 (Zorn's lemma). An inductively ordered partially ordered set (P, <) has a maximal element.

Remark 4.38. It turns out that the Axiom of Choice (in the form of Zorn's lemma) is also equivalent to
every vector space having a basis. (In one direction, given a vector space V, one can build a basis by
taking a maximal linearly independent set of vectors in V.) One can get a feeling for the other direction
because the Q-vector space R doesn’t have any “constructible” basis.

Remark 4.39. The fact that every (commutative) ring has a maximal ideal containing any given proper
ideal is also equivalent to the Axiom of Choice (in the form of Zorn's lemma). Here are two examples.

« Given any set S, finding a maximal ideal of the ring R := F§ (whose operations are pointwise from
IF,) which contains the ideal FJ® requires knowing that R is nonempty.

» Thering R := C([0, >)) of continuous R-valued functions has the ideal
= {feR:xlijgof(x):0}

doesn’t have any constructible maximal ideals containing it.

For our next example, we define a filter.

Definition 4.40 (Filter). Fix a set X. A filter F on X is a collection of nonempty subsets of X satisfying
the following conditions.

(a) Fis closed under finite intersection.

(b) f Ae Fand AC B C X, then B € F.

Example 4.41. Given a topological space (X, 7) and a subset A C X, the subposet 7 of (P(X), C) has
a filter F of all those open subsets containing A.

Example 4.42. Given a set X, the collection of subsets containing a given point p € X is a filter and in
fact a “maximal” filter.

The point is that Zorn's lemma automatically promises us maximal filters, or “ultrafilters.”

Example 4.43. Fix X := [0, 00). Then the collection F of the subsets of A C X which contain [n, oo) for
some integer n is a filter. However, there is no obvious maximal filter.
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4.4 September 23

We continue discussing Tychonoff’s theorem.

4.4.1 Tychonoff's Theorem

Here is our statement.

Theorem 4.27 (Tychonoff). Fix a collection {(X., 7o) }acx of compact topological spaces, and give the

product space X := ][], Xa the product topology. Then X is compact.

Proof. We will use Proposition 4.25. For each ¢, let 7, : X — X, denote the canonical projection. Let V be
a collection of closed subsets of X satisfying the finite intersection property, and we will show that (., V/
is nonempty. We proceed in steps.

1. The beginning of this proof does not use topology. Let 2, be the collection of families of subsets F of
X which contain V and have the finite intersection property. We claim that Wy, is inductively ordered
under D.

Well, let Q C Qy, be some chain, and we define the collection
U = U F,

which we claim is the required upper bound for Q. Of course, each F contains V, and i/ O F for each
F,solU both contains V and is an upper bound for Q. It remains to show U/ € §y,, for which we need to
show that ¢/ has the finite intersection property.

Forthis, find some finite subcollection of nonempty subsets {A; }7_, € U which we would like to show
have nonempty intersection. Now, for each k, there is some Fj, € €2 containing A, by construction of
U as the union over Q. Because the number of subsets is finite, and because Q is totally ordered, we
may find the largest of the F, which we call F.

Now, F € 2 C 0y must have the finite intersection property, so {A;}7_, C F forces

) Ax # 2,

k=1
which is what we wanted. This completes the proof.
2. From the previous step, Zorn's lemma promises a maximal family M. We claim that M is closed

under taking finite intersections. Indeed, define M’ as the set of all finite intersections of M, and we
will show that M’ = M.

Well, certainly M C M’ because intersections of exactly one set F' € M will just recover F' € M’.
Thus, if we can show M’ € Qy;, the desired equality M’ = M will follow by maximality.

Certainly, we of course have M D V, so M’ D V as well. So to show M’ € Qy,, it remains to show
the finite intersection property. Well, let {Ax}}!_; € M’ be some finite subcollection of nonempty
subsets, and we show their intersection is nonempty. By definition of M’, each k lets us write

nk

Ay = ﬂ By s
=1

for some subsets By, ; € M; because A, € M’ is nonempty, we see that B, , € M is nonempty, so
the finite intersection property on M tells us that

4=
k=1 k=1

is nonempty, which is what we wanted.

k

By e
1

DX

14
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3. We claim that if a subset B C X has BN A # @ for each A € M, thenin fact B € M. Indeed, define
M = M U{B}, and we show M" = M.

Certainly M C M”, so it is enough by maximality of M to show M” € Qy,. Certainly Y C M C M”,
so it remains to show that M"’ satisfies the finite intersection property.

For this, pick up some finite subcollection of nonempty subsets {A;}}_;, € M”, and we show their
intersection is nonempty. If none of these subsets are B, then in fact {A;}7_; € M, so the finite
intersection property for M forces

(A # 2.
k=1

Otherwise, say B = A; without loss of generality. Then we may assume B # A foreach k& > 1, so

A € Mforeachk > 1, so we note
ﬂ A, =Bn m Ay,
k=1 k=2

However, M is closed under finite intersection, so in fact (,_, A; € M, and by the finite intersection
property, we have that ();'_, Ay is nonempty. Thus, by hypothesis on B, we see

BﬂﬁAk#@,
k=2

which is what we wanted.

4. We now begin touching our product. For given a € Aand F € Qy, we claim that
To(F) ={ma(A) : Ac F}

satisfies the finite intersection property. Fix a finite subcollection of nonempty subsets {7, (Ax)}}_;
of 7 (F), and we will show its intersection is nonempty. Then we must have A, being nonempty for
each k, so the finite intersection property on F forces

() A # 2.

k=1
Finding some «a in this intersection, we see 7, (a) € 74 (Ay) for each k, so 7, (a) belongs in

n

m 7Toz(«Ak)v

k=1
thus making this intersection nonempty.

5. And now the topology begins. For given «, note that

My = {ma(4): A € M}

has the finite intersection property by the previous step. Namely, any finite subcollection of nonempty
subsets {m, A }}7_, has a nonempty intersection, so writing

5 # () 7a(4r) € (] 7alA)
k=1 k=1

gives what we want. However, X, is compact (!), so Proposition 4.25 tells us that

(| Ao

AeM,
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6. Directly invoking the Axiom of Choice, we may find some z,, € ﬂAeﬂa Aforeach a. Setz = (24)aex
to be the corresponding element of X.

We claim that each nonempty A € M has z € A. By Lemma 2.56, it suffices to show that every open
subset U containing = has nonempty intersection with A. Because each open subset U containing «
has a(n open) basis set B C U containing z, it suffices to check B N A # & for basis elements, and
BN ACUN Awill give the result.

There are three steps. Observe that we must invoke the definition of the product topology on X to talk
topologically about X, so we do so here.

(a) We begin by checking this on the sub-base. For each a € ), fix some sub-base element 7 }(U,,)
(where U, C X, is open) containing x, and we claim

?
. UL) NA# 2.

Well, z € ;1 (U,) requires z, € U,, but A € M forces z, € 7,(A). Thus, U, N7 (A) # @ by
Lemma 2.56, so there is some a € A with ,(a) € Uy, so w1 (U,) N Ais in fact nonempty.

(b) We show that each basis set containing x lives in M. Part (a) above added to item 3 directly
shows that every sub-base open set containing x lives in M. Thus, item 2 tells us that any finite
intersection of sub-basic sets containing x live in M as well, but these are exactly the basic sets
containing z. (Namely, any basic set is the intersection of sub-basic sets, and z living in the basic
set forces x to still live in those sub-basic sets.)

(c) Itfollows from the finite intersection property for M that any basic set B containing 2 has B € M
and therefore AN B # @ because A is nonempty.

The above steps finish this part.

7. We finish the proof. Any V € Vis closed and has V' € M. By the above point, weseex € V,sox € V
by Example 2.55, so we have exhibited

V+#e

vey

The above steps have showed that (,.,, V # @ from V having the finite intersection property, so we con-
clude that X is compact by Proposition 4.25. |

4.5 September 26

We begin class by finishing the proof of Tychonoff's theorem (Theorem 4.27). | have gone ahead and just
edited Friday's lecture for continuity.

4.5.1 Remarks on Tychonoff’s Theorem

Here are some remarks.

Remark4.44. Intuitively, the maximal element M is constructed in order to become some filter focused
around the single point z. Similar to maximal ideals corresponding to points, adding in all the “maxi-
mality” constraints for M hones in our focus to the single constructed point z.
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Remark 4.45. Here is an application of Theorem 4.27. One can show that any normed vector space
(V,|I-]]) has “lots” of continuous functionals by extending those found on a finite-dimensional subspace;
let V' be the complete normed vector space of continuous linear functionals. (The norm of some v’ € V’
is its Lipschitz constant, using Lemma 2.69.) Fixing the unit ball B of V', one can give V'’ the weakest
topology making all the linear functionals “from V" continuous (this is the weak-* topology), which one
can show is both Hausdorff and compact (!). This is the Banach—Alaoglu theorem, and it follows from
Theorem 4.27 by showing the space we want is a closed subspace of the compact space

TT=lolts ol

veV

Remark 4.46 ($-compactification). Let A := C([0,00)) be the space of bounded continuous function
[0,00) — R, which we can see directly is an R-algebra by taking r to the constant function r. Let A’ be
the set of continuous functions A — R. Notably, any z € R gives a continuous ring homomorphism
A — Rby f— f(z), sowe let Y be the set of all homomorphisms A — R. Again, A’ is compact using
the weak-* topology, and so Y as a closed subset of A’ can be given a compact topology. Then one can
show that A is homeomorphicto C(Y).

4.5.2 Tychonoff's Theorem and Choice

We now show that Tychonoff's theorem implies the Axiom of Choice.

Theorem 4.47 (Kelley). Tychonoff's theorem implies the Axiom of Choice.

Proof. Assume Theorem 4.27 is true. Let { X, },c be a collection of nonempty sets. We want to show that
X =[] Xa
aEA

is nonempty.
The trick is to enlarge the X, to be able to give them a suitable topology. Choose some (set) w which
does not livein|J,, X,; for example, setting w to be equal to this set will do (using the Axiom of Foundation).

Then we set
Y, = X, U{w},

which we give the topology 7, = {Ya, @, X4, {w}}. We quickly check that this is a topology.
» Note @ and Y, are open.

o Arbitrary union: let &/ C 7, be a collection. Note that I/ is necessarily finite, so it suffices by induction
to show that U UU’ € T, forany U,U’ € T,. We have the following cases.
- fU=gorU =g, thenwegetUUU’' € {U,U'} C7T,.
-fU=Y,orU' =Y, thenUUU' =Y, € T,.
- NoteU =U'givesUUU' =U € T,.
- We have left to deal with {U, U’} C {X,, {w}} where U and U’ are distinct, which means we just
have to check 7, U {w} =Y, is open.

« Finite intersection: note that U € 7, implies Y, \ U € T, because Y, \ {w} = X, and ¥, \ @ =Y,, and
the other checks follow. Thus, we note any finite collection 4 C 7 has

Ya\ U=\

veu agA

is a union of open sets and hence open. It follows that our intersection also lives in 7.
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Additionally, because T, has only finitely many sets, the space (Y,, 7,) is compact: any subcollection of T,
is finite, so all open covers of Y,, are automatically finite. It follows that the product

Y::HYQ

aEA

is compact by applying Theorem 4.27 (!).

We will now extract out our element of X using compactness of Y via Proposition 4.25. Let,: Y — Y,
be the canonical projection. Note that Y,, \ X, = {w} isopeninY,, so X, C Y, is closed, so V,, = 7, 1(X,)
is a closed subset of Y by the continuity of 7, (using Remark 2.49).

We now claim that the closed sets {V,, }.ex satisfy the finite intersection property: given a finite subcol-
lection {V,, }~,, one may finitely (!) choose a point z,, € X,,. So we define

o {xai a€{a,...,an},
Yo =

w aé{ag,...,an},

so the point (ya)aex € Y has my, (y) € X,, foreach a;, so ya, € 7,1 (Xo) = Vi, so

n
y € ﬂ V-
i=1

So we have verified the finite intersection property.
It follows from Proposition 4.25 that we can find

RS ﬂVa.

aEA

However, this implies that each a € A has y € V,, and so 7, (y) € X,. It follows that

Y€ HXOM

aEX

which finishes the proof. |

Remark 4.48. The topology on Y, need not be Hausdorff, so we needed Theorem 4.27 to allow non-
Hausdorff spaces.

4.6 September 28

Today we discuss compactness for metric spaces.

4.6.1 Totally Bounded Spaces

Here is a quick lemma.

Lemma 4.49. Fix a compact metric space (X, d). For any ¢ > 0, there are finitely many points {z;}? ,
such that

n

X = B(ai,e).

=il
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Proof. Note that of course

x=Jlztc | Be) = x,

zeX zeX

so {B(x,¢) }sex is an open cover for X (see Example 2.6). The result follows by extracting a finite subcover.
|

This is a pretty nice finiteness property for a metric space to have, so we give it a name.

Definition 4.50 (Totally bounded). Fix a metric space (X, d). A subset A C X is totally bounded if and
only ifany e > 0 has a finite set {z;}7_; C A for which

AC 0 B(z;,¢).
i=1

If X is totally bounded, we say that (X, d) is totally bounded.

Example 4.51. Any compact metric space is totally bounded by Lemma 4.49.
It's going to turn out that totally bounded is pretty close to compactness. Here is a quick sanity check.

Lemma 4.52. A totally bounded metric space (X,d), and A C X, then A with the induced metric is
totally bounded.

Proof. Foranye > 0, we see that there is a finite set S C X for which

because (X, d) is totally bounded. Now, let T' C S be the subset for which B(z,e) N A # @ foreachz € S,
and we then find some y,, € B(x,¢) N A for each x € T. We now claim that

AC (] B(ys:o),
xzeT

which will finish the proof. Indeed, if a € A, thena € X, so we can find some 2y € S with a € B(zg,e/2). It
follows that

e g
d(a’aymo) < d(a,xo) —+ d(x07y$0> < § + 5 =&

so we get

a G B(y.’toae) g U B(yﬂ’:7€)7
zeT

which is what we wanted. ]

Lemma 4.53. Fix a metric space (X, d) and a subset A C X which is totally bounded. Then A is also
totally bounded.

Proof. Fixanye > 0. Because A is totally bounded, we may find {a;}? ; C A for which
AC | JB(ai,e/2).
i=1
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We now claim that
_ 2 "
A Q U B(ai7€),
i=1

which will finish the proof. Indeed, if z € A, then Lemma 2.56 tells us that B(x,£/2) N A is nonempty, so
place a € AN B(x,e/2). By hypothesis on the a;, there exists some a; such that a € B(a;,</2) as well, so

d(JC,CL,L-) S d('raa) + d(a,ai) < % —+ E =g,

2
S0 .
x € B(a;,e) C U B(a;,€).
=1
The claim follows. n
4.6.2 Nets

It will be beneficial to us to be able to talk about nets for convergence instead of just sequences.
Definition 4.54 (Directed set). A partially ordered set A is a directed set if and only if any a,b € A have

some ¢ € A for whichc¢ > a,b.

Example 4.55. Any totally ordered set is a directed set. In particular, any a,b € A will have a > b or
b > a, so we just set c to be the larger of the two.

Definition 4.56 (Net). Fix a topological space (X, 7). Given a directed set A, a net is a A-indexed se-
quence {z4 }aca in X.

Definition 4.57 (Cluster point). Fix a topological space (X, 7)and anet {z, }oca. Thenz € X isa cluster
pointifand only if, forany open subset U containingzand a € A, thereissome o’ > aforwhichz, € U.

Remark 4.58. Fix a metric space (X, d). Then a cluster point « of a Cauchy sequence {z, },en in X is
in fact a limit point. Indeed, for any ¢ > 0, find some N; for which m,n > Ny has d(z,,z,) < /2.
Additionally, being a cluster point means there is Ny > Nj with d(z,zn,) < €/2. Thus, setting N =
max{Ny, Nao}, any n > max{Ny, Ny} has

d(xp,r) < d(zp,zN,) +d(TN,,T) < % + % =e.

Here is the application to metric spaces.

Proposition 4.59. Fix a compact topological space (X, 7). Then any net {z, }nea has a cluster point.

Proof. Define
Ay ={zp: > a}.
Observe 8 > « implies Ag C A,,s0 Ag C A,, 50 Ag C A,.
Additionally, we note that any finite subset of the A, have a nonempty intersection. Indeed, for any finite
S C A, inductively applying the fact that A is a directed set promises us some w € A withw > « for each
a € S. Itfollowsthatz, € A, foreacha € S, so
) An,

nes
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contains z,, and hence is not empty. o
Now, because A, C A,, we see that the A, also have the finite intersection property: for any finite

S C A, see
o# () 4a € () 4o

a€csS a€eS

But now the A, are closed, so the compactness of X (!) tells us that there is an element
ve () Aa

by Proposition 4.25.

It remains to check that x is a cluster point. Indeed, for any open set U containing x, we see that x € A,
andso U N A, # @ for each a by Lemma 2.56. As such, forany a € A, we are being promised U N A, # &,
so there is x5 with 8 > a with zg € U. This finishes. |

Corollary 4.60. Any compact metric space (X, d) is complete.

Proof. Fixa Cauchy sequence {x,, },cn of X. Because X is compact as a topological space, Proposition 4.59
promises us some cluster point € X. But then z is our limit point by Remark 4.58. |

4.6.3 A "Metric” Completeness

Here is our capstone result: a converse for Lemma 4.49 combined with Corollary 4.60.

Theorem 4.61. Fix a metric space (X, d). If X is complete and totally bounded, then X is compact.

Proof. Suppose that X is not compact and totally bounded. We show that X is not complete. Because X is
not compact, we can find an open cover U/ of X with no finite subcover.

Notice that, for any fixed ¢ > 0, being totally bounded means we can find some finite S C X for which X
is covered by the {B(z,¢)},es. If it were the case that each z € S has B(z,¢) covered by some finite cover
{U,,i}i=, € U, then we could write

XQUBW@§U<6%07

reS zeS \i=1

giving our finite subcover of Y. However, this violates the fact that &/ has no finite subcover, so there must
be some z € S not covered by any finite subset of /.

We canrun the above argument starting withe = 1/2and find our ;. Then we replace X with B(z1,1/2)
where B(z1,1/2) has no finite subcover by i/, so running the argument with e = 1/22 on the totally bounded
space B(z1,1/2) grants us zo € B(x1,1/2) such that B(z2,1/22) still has no finite subcover by 4. Going
again, we run the argument with ¢ = 1/23 on the totally bounded space B(z2,1/2?), so we get a totally
bounded ball B(z3,1/2%) with no finite subcover by U.

We can continue this process inductively, which gives a sequence {z, },en such that each n € N has
B(zy,1/2™) with no finite cover by I/ and

Ay, pp1) < 1/2™.

A standard argument shows that {z,, }.ex is a Cauchy sequence.! To finish the proof, we claim that it has no
limit point.

LForany m > n, note that d(zm,an) < S0t d(zpsr,zr) < Sl 1/28 < 3092 1/2F = 1/27~1. Namely, we see that
m,n — oo makes d(zm,xn) — 0.
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Indeed, suppose for the sake of contradiction that ,, — x asn — co. Then we find some U € U contain-
ing z, and by definition of a set being open, we can find some open ball B(z, ) contained in U. We now find
some n large enough so that 1/2™ < ¢/2 and d(z,,,z) < /2 so thatany y € B(z,,1/2") has

d(a,y) < d(, ) +d(way) < 5+ 5 =¢,

2
soy € B(x,e). It follows B(z,,1/2") C B(z,e) C U, which is a contradiction to the construction of
B(zy,1/2™). This completes the proof. |

Corollary 4.62. Fix a complete metric space (X, d). Then a subset A C X is compact if and only if A is
closed and totally bounded.

Proof. In the forward direction, if A is compact, then A is totally bounded by Lemma 4.49, and A is closed
by Corollary 4.13 because (X, d) is a metric space and thus Hausdorff. In the reverse direction, if A is closed
and totally bounded, then A is complete by Corollary 2.52 and therefore compact by Theorem 4.61. |

4.7 September 30

There are no questions.

4.7.1 Totally Bounded for Function Spaces

We continue our discussion of compactness in metric spaces. Fix a topological space (X,7) and a metric
space (M, d) so that we can give the space of bounded continuous functions B.(X, M) the uniform metricd,,
by Proposition 3.25. We would like to understand the compact subset of B.(X, M), so Corollary 4.62 tells
us that we are really interested in totally bounded subsets, and we’ll take the closure afterward to get our
compact sets.

Here are a few lemmas.

Lemma 4.63. Fix a topological space (X, 7) and a metric space (M, d) so that we can give the space of
bounded continuous functions B.(X, M) the uniform metric d,,. Fixing a totally bounded subset F C
B.(X, M), the set

{s(z) : s € F}

totally bounded for any fixed z € X.

Proof. Foranye > O hasafiniteset{f1,..., fn} C Fsothat Fiscoveredbythe B(s;,¢/2). Thisis equivalent
to saying that any f € F has some f; with

d(f(x), fi(x)) < e/2
forallz € X, so

{(f(@): s e FY | B(fil).),

=1
so the claim follows. [ |

Lemma 4.63 motivates the following definition.
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Definition 4.64 (Pointwise totally bounded). Fix topological spaces (X, 7Tx ) and a metric space (M, d),
and let F be a family of continuous functions f: X — M. Then F is pointwise totally bounded if and
only if any z € F makes the set

{f(@): feF}
totally bounded.

Example 4.65. By Lemma 4.66, any totally bounded subset of B.(X, M) is pointwise totally bounded.

Lemma 4.66. Fix a topological space (X, T) and a metric space (M, d) so that we can give the space of
bounded continuous functions B.(X, M) the uniform metric d,,. Fixing a totally bounded subset 7 C
B.(X, M) and a pointz € X, any e > 0 has some open subset U C X containing = such that

d(f(z), f(y)) <e
foranyy € X and f € F.

Proof. Fix any e > 0 and use our totally boundedness to extract { f1,..., fn} C F such that the B(f;,¢/3)
cover F. Now, forany f € F, find some f; with d(f;, f) < /3, we see that any y € F can write

d(f(x), f(y)) < d(f(x), fi(x)) +d(fi(z), fi(y) + d(fi(y), f(y)) < 2¢/3+d(fi(z), fi(y)).

Now, by the continuity of f;, we see that there is an open subset U; containing x such that y € U, implies

d(fi(x), fi(y)) < &/3,s0d(f(x), f(y)) < e follows.
We now let f vary, which allows the U; to vary. Defining

we see U is an open subset of X containing , and each y € U has d(f(z), f(y)) < eforany () f € F. [ |

Lemma 4.66 motivates the following definition.
Definition 4.67 (Equicontinuous). Fix topological spaces (X, 7x) and a metric space (M, d), and let F

be a family of continuous functions f: X — M. We say that the family F is equicontinuous at some
x € X ifand only if any £ > 0 has some open subset U C X containing = such that y € U has

d(f(y), f(z)) <e

forall f € F. The entire family F is equicontinuous if any only if it is equicontinuous at all z € X.

Example 4.68. By Lemma 4.66, any totally bounded subset of B.(X, M) is equicontinuous.

4.7.2 Arzela-Ascoli's Theorem
We might hope for a converse of our given lemmas. Here is the result.
Theorem 4.69 (Arzela—Ascoli). Fix a compact topological space (X,7) and a metric space (M, d) so

that we can give the space of bounded continuous functions B.(X, M) the uniform metric d,,. Then any
equicontinuous and pointwise totally bounded family 7 C B.(X, M) is totally bounded.
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Proof. Fix some e > 0 so that we want to cover F with finitely balls of radius & > 0.

The point is to use compactness on the equicontinuous statement. Indeed, for any z € X, we are
promised an open subset U, C X such thatanyy € U, and f € F has d(f(x), f(y)) < e/4. However,
this means

xcyu

rzeX

gives us an open cover of X, so compactness tells us that there is some finite sequence of points {z;}?;
such that the U; := U,, cover X.
Now, fixing any particular ¢, we use the pointwise totally bounded condition to note

{f(z:i): feF}
is totally bounded, so we get a finite subset S; C F such that
{f(zi): f e FY < U Blglxi),e/4).
geS;

We now define S as the union of all the S;, which is finite as the finite union of finite sets.

To finish the proof, we will need to do a little bookkeeping. Let ¥ denote the set of sequences of elements
of S'indexed by {1,...,n}. The idea is that any function f € F can choose some functions from S close to
it at each of the points z; (via the previous paragraph), and ¥ keeps track of how to choose these functions.
Let’s explain this in more detail. For each ¢ € ¥, define

Fyp ={f € F: f(z;) € B¢i(x;),e/4) foreachl <i <n}.

The main claim is that the F, cover F: fix some f € F, and we will construct 1. Well, for each i, the con-
struction of S; promises some g; € S; such that f(z;) € B(g;(x;),e/4). With this in mind, we simply take
1; = g; for each ¢, and then f € F,, by the construction.

We will finish upon showing that F,, has diameter less than €. Well, for any f, g € F, we need to show
that d,(f, g) < e. Well, fixany z € X and find some ¢ with « € U;. Then we see

d(f (), g(x)) < d(f(x), f(2:)) + d(f (2:), 9(w:)) + d(g(xi), 9(x)) < /2 + d(f (2:), g(:))-

Now, by construction of ¢, we see

d(f(xi),g9(x:)) < d(f(wi),¥i(x3)) + d(i(x:), 9(4)) < €/2,

so we see that d(f(x),g(x)) < eintotal. It follows || f — g]|, < ¢, so, say, dividing all es by two will give Fy
all with radius less than e. ]

4.8 October3

It's spooky season. We begin class by finishing the proof of Theorem 4.69. | have edited the proof from
yesterday for continuity reasons.

4.8.1 Locally Compact Spaces
Here is our definition.
Definition 4.70 (Locally compact). A topological space (X, T) is locally compact if and only if each point

x € X has some open subset U € T containing x such that U is compact.

Example 4.71. The set of real numbers R with the usual topology is locally compact. Indeed, any z € R
has the open neighborhood (z — 1,x + 1) with closure [z — 1,2 + 1], and [z — 1,z + 1] is compact.
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Example 4.72. For the same reason, the space [a, b) is also locally compact.

Remark4.73. Even though compact Hausdorff spaces are normal (by Proposition 4.18), locally compact
Hausdorff spaces do not have to be.

For today, we are going to look at only locally compact Hausdorff spaces.

Lemma 4.74. Fix a locally compact Hausdorff space (X, 7). Then any x € X and open subset U € T
containing « has some open subset U, C X containing x such that U, is compactand U, C U.

Proof. We begin by finding our promised U’ containing = with U” compact. Thus, it suffices to find some
open subset V containing x such that V' is compact and V' C U N U’, but now we see that

Uvnu cu’

is a closed subset of the compact space U’ and therefore compact by Lemma 4.10. In particular, we can
replace U with U N U’ and assume that U is compact.

Now, let U = U \ U be the boundary of U. Notably, U is a closed subset of the compact space U, so
OU is compact by Lemma 4.10. Because {z} is a closed subset in U (note X \ {«} is open, so U \ {z} is open
in the relative topology), the fact that compact Hausdorff spaces are normal (Proposition 4.18) grants open
subsets U, and Uy of U with z € U, and OU C U,.

Now, U, CU\ Uy C U\ dU,sowesee U, C U\ Uy because U \ Uy is a closed subset of U. Further, U,
is a closed subset of a compact space U, so U, is compact by Lemma 4.10, so we are done. |

Remark 4.75. Lemma 4.74 basically says that open subspaces of locally compact Hausdorff spaces are
locally compact.

We can extend the previous result past points to full compact sets.

Proposition 4.76. Fix a locally compact Hausdorff space (X, 7)) and some compact subset C' C X. Then
any open subset U containing C' has some open subset U¢ containing C such that Ue is compact and
Uc CU.

Proof. We use Lemma 4.74. For each z € C, find some U, by Lemma 4.74 with U, containing = with U,
compactand U, C U. Then we see that

cc|Ju.

zeC

so we have provided an open cover for C, so we can choose finitely many {z;}? ; C C with U; := U,, so that

CC U; CUc.

-

1=1

Now, we see that

Ju=Um
=1 i=1

is a compact subset of U because being compact is closed under finite unions (by inductively applying Ex-
ample 4.9), so | J-_, U; is the required open subset. |
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4.8.2 Supports

A nice thing about locally compact Hausdorff spaces is that they let us talk about supports.

Definition 4.77 (Support). Fix a locally compact Hausdorff space (X, 7) and a normed vector space
(VL |I-Il)- Then the support of a continuous function f: X — V'is

supp f ={z € X : f(z) #0}.

Notably, {z € X : f(z) # 0} = f~1(V'\ {0}) is the pre-image of an open subset and is therefore open by the
continuity of f. In particular, normed vector spaces are metric spaces and therefore Hausdorff, so {0} C V/
is in fact a closed subset.

Here are some quick checks about the support.

Lemma 4.78. Fix a locally compact Hausdorff space (X, 7) and a normed k-vector space (V, ||-]|). Then,
given two continuous functions f,g € C(X,V) and a,b € k, we have that

supp(af + bg) C (supp f Usupp g)

Proof. Because supp f U supp g is the union of two closed sets, it's closed, so it suffices by definition of the
closure to show that

{2 € X : (af +bg)(x) # 0} C (supp f Usuppg).

Well, if f(z) = 0and g(z) = 0, then we see (af +bg)(x) = af(x)+bg(x) = 0, sox ¢ supp(af +bg). Applying
contraposition, we see x € supp(af + bg) implies f(z) # 0or g(x) # 0, s0x € supp f orx € suppg. |

Lemma4.79. Fixa locally compact Hausdorff space (X, 7)) and anormed k-algebra (R, ||-||). Then, given
two continuous functions f,g € C(X, R) and a, b € k, we have that

supp fg C (supp f Nsupp g)

Proof. Again, because supp fNsupp g is the intersection of closed sets, it's closed, so it suffices to show that

{z € X : (fg)(x) # 0} C (supp f Nsuppyg).

Well, if f(z) = 0org(z) = 0, then (fg)(x) = f(x)g(xz) = 0. Thus, by contraposition, if (fg)(x) = 0, then
f(z) #0and g(x) #0, soz € (supp f Nsupp g). [ |

We tend to like small things, so here are our small functions.

Definition 4.80 (Compact support). Fix a locally compact Hausdorff space (X,7) and a normed vec-
tor space (V,||-]|)- A continuous function f: X — V has compact support if and only if its support is
compact. We let C.(X, V') denote the continuous functions of compact support.

Here is a quick sanity check.

Lemma 4.81. Fix a locally compact Hausdorff space (X, 7) and a normed kvector space (V, ||-||). Then
C.(X,V)isak-subspace of C(X, V). If Vis a normed k-algebra, then C.(X, V) is a k-subalgebra.

Proof. We have the following checks.
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+ Zero: note that the zero function z: X — V by z(z) = 0forallz € X has
{reX:2(z) #0} =@.

The closure of the empty set is still empty (certainly @ C & by definition of the closure), so we conclude
that suppz = @. Now, @ is compact because any open cover can take the empty subcover, which is
certainly finite. Thus, z € C.(X, C).

« Linear combination: given f,g € C.(X,V) and a,b € k, we see from Lemma 4.78 that supp(af + bg)
is a closed subset of supp f U supp g. However, supp f U supp g is the union of two compact sets and
therefore compact by Example 4.9, so supp(af + bg) is a closed subset of a compact space and hence
compact by Lemma 4.10.

« Multiplication: given f,g € C.(X, V), we see from Lemma 4.79 that supp(fg) is a closed subset of

supp f Nsupp g C supp f.
However, supp f is compact, so supp fg is a closed subset of a compact space and hence compact by
Lemma 4.10.

The first two checks tell us that we have a subspace, and the last check uses the algebra structure to get a
subalgebra. |

Of course, we would like to know that there are a nontrivial number of functions of compact support, so here
we go.

Proposition 4.82. Fix a locally compact Hausdorff space (X, 7') and a normed vector space (V. ||-||). For
any compact subset C C X and opensubset U C X containing C, thereis a continuous function f: X —
R of compact support such that f|c = 1and f|x\y = 0.

Proof. The point is to apply Theorem 3.8. By Proposition 4.76, we may find an open subset V' containing C
such that V' is compact and V' C U. Then we see C and V' \ V are disjoint closed subsets of V—note C' is
closed because X is Hausdorff, using Corollary 4.13.

Thus, because V is a normal space (it's compact and Hausdorff, so Proposition 4.18 applies), we are
promised a continuous function f-: V' — R such that fi7|c = 1 and f#l7v = 0. We now extend V to all of

X by
_ fr(x) zeV,
J(@) = {OV r¢V.

Indeed, if z € C,weseex € V, so f(x) = 1; similarly, if z ¢ U, thenx ¢ V and so f(x) = 0. Lastly, to see
that f is continuous, we pick up some open closed W C V; we have the following cases.

« If 0 ¢ W, then we see that f(z) € W forcesz € V, so
FHW) = £
is a closed subset of V by the continuity of fi>. Closed subsets of closed subspaces are still closed,

though, so we see that f~(W) is closed in X.

« If 0 € W, then we do casework. If z € V, then actually = € fgl(W), which is closed in V and hence

closed in X by continuity of fi. Otherwise, z ¢ V, but then we see thatz € X \ V as well; conversely,
ifx € V\V,theneitherz € Vandso f(x) =0 € W,orz ¢ Vandso f(z) =0€ W.

In total, we see
FTHH0Y) = frW) U (X \ V)
is the union of closed sets and thus closed.

Lastly, we see that supp f C V, so supp f is a closed subset of a compact set, so we conclude supp f is
compact by Lemma 4.10, so f has compact support. |
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Remark 4.83. By Proposition 3.25, the space of bounded continuous functions X — R is complete
under ||-|| .. We note that C.(X,R) is a subalgebra, but it is not a closed subset. It turns out that its
closure is C (X, R), which is the space of functions which vanish at infinity: namely, for any e > 0,
there is a compact set C C X such that |f(x)| < eforeachz ¢ C.
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THEME 5
DEFINING MEASURES

One fish, two fish, red fish, blue fish.

—Dr. Suess, [Gei60]

5.1 October5

We begin today by making some motivating remarks on C*-algebras and the like. | hope it's not important
because | didn’t understand it very well.

5.1.1 Evaluation Maps

Forthis subsection, we will want to work with the fields R and C at the same time, so we pick up the following
definition.

Definition 5.1. An archimedean field is either R or C.

We now recall the following piece of notation, which we will state in the case we now care about.

Notation 5.2. Fix an archimedean field ¥ and a compact Hausdorff space X. Then we let C(X) denote
the continuous functions X — k.

Remark 5.3. Note that C'(X) is a k-subalgebra of k¥ because the constantly one function is continuous
and the sum and product of two continuous functions is still continuous.

It will turn out that C'(X) can tell us a lot about X. For example, homomorphisms we can use X to build
homomorphisms C(X) — k.

Example 5.4. Given any z € X, the functionev,: C(X) — k by f — f(x) is a homomorphism. To see
that this is a homomorphism, note that ev,(1) = 1, and ev,(f + g) = (f + g)(z) = f(z) + g(z), and
eva(f9)(z) = (fg)(z) = f(z)g(x).

In fact, these are all the homomorphisms!
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Theorem 5.5. Fix an archimedean field k£ and a compact Hausdorff space X. Then all homomorphisms
C(X) — k take the form ev, for some z € X.

Proof. Fix some homomorphism ¢: C(X) — k, and suppose for the sake of contradiction that ¢ := ev,, for
each z € X. To relate our geometry and our algebra, we will use the fact that the “algebraic” set k \ {0} is
open.
Now, we can find f, € C(X) with o(f;) # fo(x) foreach z € X. However, (f, — ¢(fz)lx): X — kisa
continuous function, so
Up={y € X : (fo — o(fa)1lx)(y) # 0}

is the preimage of the open subset & \ {0} through the continuous function (f, — ¢(fz)1x)-

Further, x € U, because (¢(f:)1x)(z) = ¢(fz) # fz(x), so the open sets {U,}.cx produce an open
cover of X, so we can finitely many of these points in {z1,...,z,} so that the open sets U; := U, cover X.
Thus, the function

f=> (fa—o(fa)1x)’
=1

is nonzero everywhere and thus a unitin C(X). Onthe other hand, o(f. —¢(fz)1x) = o(fz) —e(f2)p(1x) =
0, sosumming gives ¢(f) = 0, whichis a contradiction because ring homomorphisms send units tounits! B

Remark5.6. Via Theorem 5.5, we can give C'(X)* a topology such that the map X — C(X)* defined by
x — ev, is a homeomorphism.

The point of the above example is that the algebra C(X) and its evaluation maps are able to fully recover the
topological space X!

5.1.2 The Gelfand-Naimark Theorem

By adding in a little more data, we can read even more information off C(X).

Remark 5.7. With k = C, note that complex conjugation extends to a function C(X) — C(X) by f +— f.
Then one can check that

17 flloe = 1715 -
In fact, the converse is true!

Theorem 5.8 (Gelfand—Naimark). Suppose that A is a commutative Banach R-algebra or C-algebra
equipped with an involution a — a* such that |laa*|| = ||a||®. Then there is an isomorphism

A~C(A").
In particular, all of these Banach algebras come from a topological space!

Example 5.9. When X is locally compact, set C.(X) to be the set of continuous functions X — k which
vanish at infinity. Even though C,(X) has no multiplicative unit, it is still the case that Coo (A*) =
C(X), and in fact A* = X. Not having a unit turns out to not be a problem because we can have a
function be 1 over a large interval, which is topologically close enough to a unit.

Example 5.10. In contrast, the bounded continuous functions A := C,(X) have A = C(A*) still, even
though A* is compact. This is weird: the embedding X < A* is going to have elements not live in the
image, but the elements outside the image require the Axiom of Choice to see.
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The above example is why we prefer to work with C, (X)) when we talk about locally compact spaces X.
Before jumping into measure theory, we will want to pick up the following definition.

Definition 5.11. A Hilbert space is a complete inner product R- or C-vector space.

Example 5.12. Given a Hilbert space H, the set of linear operators B(H ) on H has a conjugation again,

giving us an involution T — T'. One still has ||TT| = T°, so Theorem 5.8 applies, and we can think
about these spaces as spaces of functions.

The above example will generalize to the study of C* algebras, but we won't discuss this further.

5.1.3 Finitely Additive Measures

We begin with a motivating example. Consider the set of functions f,: [0,2] — R, given by the following
image.

Jn

More precisely, we can write
fn(x) = min{1l,max{0,1 —n(z —1)}}.

These functions are all continuous by definition, but we can also give them a piecewise definition as

1 r <1,
fal@)=q¢1—-n(z—1) 1<z<1+1/n,
0 1+1/n<z<2

In particular, we can see that f,, — 1j9 1) as n — oo with respect to the [|-|| , norm for p € [1, 00): the erroris

» 2 14+1/n 14+1/n
100 = falh = / 1j0,.1/2)(8) = Fu ()P dt = / [ fa(B)P dt < / dt =1/n,
0 1 1

which goes to 0 as n — oco. Namely, to complete the set of our continuous functions C([0, 1]) equipped
with [|-[|, for p € [1,00), we need to add in these indicator functions. Nonetheless, we just integrated over
110,17 just fine above, so we will want to build a class of functions which includes 1}, ;) both for completeness
reasons but also for integration reasons.

It turns out that not all sets should be able to be integrated over; this leads to the notion of measurable
sets. Sowe will have some collection of subsets R C P(R) and then some measuring function u: R — [0, 00]
(we must allow infinity!). Let's discuss what we want to be true of p.

« Additivity: if E, F € R are disjoint, then F LI F' should be in R, and we had better have u(F LU F) =
w(E) + p(F). Namely, the sum of the sizes of two disjoint sets had better just be size of the disjoint
union.

« Splitting: if E, F € R with F' C F, then we want (from the above)
w(E) = w(ENF)+ pu(E\ F),

where the ideais that we can look at just the size of ENF and E'\ Findividually to more locally compute
our sizes.
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We can view the above rules as first dictating what sets should be measured at all. As such, we have the
following definition.

Definition 5.13 (Ring). Fix a set X. A ring is a nonempty collection R C P(X) with the following prop-
erties.

e Union:if E,F € R, thenEUF € R.
 Subtraction: if E, F € R, then E\ F' € R.

Example 5.14. Of course, the full collection P(X) is a ring. More generally, given a subset S C X, the
collection of subsets of S'is aring: if E, F are subsets of S, we see EU F and E \ F are both subsets of
F.

Example 5.15. Of course, {&} is aring.

Example 5.16. The set of all finite subsets of X is aring. Indeed, if E, FF C X are finite, then both EU F’
and E \ F are finite as well.

Remark 5.17. Fixaring R andsome E, F' € R. Notethat ENF = E\ (E\ F),so ENF € R as well.
Remark 5.18. Given a ring R, we note that @ € R: we know there is some E € R, so it follows & =
E\FEeR.

Adding in the desired properties for our u, we can now define “small” measures.

Definition 5.19 (Finitely additive measure). Fix a set X and ring R C P(X). Then a finitely additive
measure is a function p: R — [0, oo] such that any disjoint E, F' € R have

w(EUF) = uE) + pu(F)
Remark 5.20. Note that u(@) = u(@ U @) = 2u(2), so it follows p(2) = 0.

Remark 5.21. Note that being finitely additive tells us that E C F implies E = F LI (E \ F) because an
element of F is either in F' or not in F'. Thus, we see u(E) = u(F) + u(E \ F), soif u(F) < oo, we may
write u(E\ F) = p(E) — p(F).

It turns out that being finitely additive is not good enough.

Example 5.22. We use the usual measure i on R. Fix a sequence of disjoint intervals {E;}52, in [0,1],
and we see that we should have

Z p(Es) < oo.

Defining F,, = |,.,, Bi and F := | |;~, E;, we see that the characteristic functions 1p, is a Cauchy
sequence converging to 1, but we don’t immediately have access to 17 because it's an infinite union!

So next class we will discuss how adding a countably additive condition will help us.

91



5.2. OCTOBER7 202A: TOPOLOGY AND ANALYSIS

5.2 October?7

We continue our discussion into measure theory.

5.2.1 o-Things

Motivated by Example 5.22, we see that we want to be able to measure countable unions. As such, we have
the following definitions.

Definition 5.23 (o-ring). Fix a set X. Then aring R C P(X) is a o-ring if and only if R is closed under
countable unions.

Remark 5.24. As in Remark 5.17, we note o-rings S have countable intersections. Fix some {E;}3°, C
S. Then we note

oo oo

El\U(El \E) =B\ (BL\ E)) = (BLNE:) = E1 N ﬂE = ﬂE

=1 =1

lives in S, finishing.

Definition 5.25 (o-algebra). Fixaset X. Thenaring R C P(X) isao-algebraifand only if Risa o-ring
and contains X.

Example 5.26. Given a set X, we see P(X) is a o-ring because a countable union of subsets of X is still
a subset of X. Further, P(X) is a o-algebra because X € P(X).

Example 5.27. Fixa set X. Then the collection § C P(X) of countable subsets of X isa o-ring; here are
our checks.

» Countable union: suppose {E;}2, C S. Then

oo

U &

i=1
is the countable union of countable subsets of X and therefore countable. It follows that | J;~, E; €
S.

« Subtraction: if E, F' € S, then E and F are both countable, so F \ F C FE is still countable, so
E\F€S.

Notably, if X itself is not an uncountable set, then X ¢ S, so S is not a o-algebra.

As usual, we may give the collection of all o-rings (and o-algebras) the subposet structure coming from
inclusion on P(X). For example, P(X) is the largest collection in P(X) and is thus the largest o-ring and
also the largest o-algebra.

Analogous to our discussion of topologies in Proposition 2.20, we pick up the following lemma to make
our o-rings smaller.
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Lemma 5.28. Fix a set X, and fix a collection ¥ of rings, o-rings, or o-algebras. Then

S::ﬂR

ReEX

is another ring, o-ring, or o-algebra, respectively.

Proof. We show the axioms get inherited individually.

(@) Suppose that each R € ¥ is closed under finite unions. Then forany E, F € S, wesee E, F' € R for
eachReX,soEUF € RforeachRe X, soEUF €8.

(b) Suppose that each R € X is closed under subtraction. Then forany E, F € S, wesee E, F € R for
eachR e X, soE\ FecRforeachRe3,soE\FeS.

(c) Supposethateach R € X is closed under countable union. Then for any countable collection {E;}5°, €
S,wesee {E;}2, € RforeachR € ¥,s0J;o, E; \ F € RforeachR € ¥,s0J:2, E; € S.

(d) Suppose that each R € ¥ contains X. Then X € S.

The above checks complete the proof. For example, if ¥ contains o-rings, then checks (a)—(c) show S is still
ao-ring. |

Corollary 5.29. Fix a set X and a collection C C P(X). Then there is a unique smallest ring, o-ring, or
o-algebra containing C.

Proof. Let ¥ denote the collection of all rings, o-rings, or o-algebras containing C. We want to show that &
contains a unique minimum element. Well, we set

S = ﬂR

ReEX

Notably, S € ¥ by Lemma 5.28, and § is its minimum somewhat directly: forany R € X, we have S C R by
construction of S. |

This gives us the following definition.

Definition 5.30 (¢-ring generated by). Fixaset X. Then give a collectionC, we let S(C) denote the o-ring
generated by C, as conjured by Corollary 5.29.

There are analogous definitions for ring and o-algebra, but we won't state them explicitly.

Remark 5.31. As usual, we note that C C €’ implies S(C) C S(C’) because S(C’) is a o-ring containing
C.

Remark 5.32. Also as usual, if S is already a o-ring, then §(S) = S. Of course, S C §(S), butalso Sisa
o-ring containing S, so §(S) C S follows.
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Example 5.33. Fix a set X. We claim o-ring generated by the collection F finite subsets of X is the
o-ring S of countable subsets of X. Certainly S(F) C S because S is a o-ring by Example 5.27. On the
other hand, any countable subset ¥ C X has

E=|J{}

rEE

while {z} € F C S(F) and therefore E € S(F). Thus, S C S(F).

5.2.2 Measures
We are now ready to define measures.

Definition 5.34 (Countably additive). Fix a set X and a collection of subsets C C P(X). A function
w: C — [0,00] is countably additive if and only if any pairwise disjoint subcollection {E;}52, C C with

L2, B; € Chas
u( L Ez-) =D n(E).
i=1

i=1

Notably, we are allowed to have the right-hand side diverge to oo if the left-hand side is co.

Remark 5.35. In general, it is pretty difficult to actually show that a function is countably additive, but
one can take advantage of the fact that

L&

i=1

might not actually be in C.
And here is our definition.

Definition 5.36 (Measure). Fix a set X and o-ring S. Then a measure on S is a function u: S — [0, 0]
which is countably additive.

Remark 5.37. Note that the countable unions of sets in S to check the countably additive condition are
always in S because S is a o-ring. Namely, the trick suggested in Remark 5.35 doesn’t help us.

Remark 5.38. In general, it is not a good idea to ask for unions larger than countable. Approximately
speaking, we really want to have countable unions, but we need to be careful adding any other infinities.
The main problem is that those infinite sums don’t have easy notions of convergence. Even if we don't
want to work with something like nets to allow larger convergences, then allowing arbitrary unions for

E C X gives
u(E) = ul{a}),

which intuitively should vanish if we make our points have measure 0.

Remark 5.39. Fix a set X and measure p: S — [0, 00]. If (&) < oo, then note @ = | |2, @ implies that
the sum >~°°, (@) = (o) converges, so (&) = 0 is forced. Otherwise, if u(&) = oo, thenany E € S
has E = E U@, so u(E) = pu(E) + u(2) = oo.
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Remark 5.40. If u is a measure a o-ring S, then p|7 remains a measure on any o-ring 7 C S. Indeed,
any pairwise disjoint subcollection {7;}32, C T also lives in S, so we maintain having

M|T< L] Ti) = M( L] Ti) = ZM(Ti) = ZMT(TD-

i=1 i=1
Let's see some examples.

Exercise 5.41. More generally, fix a set X using the o-ring § := P(X) of countable subsets of X. Fora
function f: X — [0, 00), we define

ur(E) =Y _ f(x)

zEE

for each countable subset E C X. Then iy is a measure.

Proof. Note that the order of the sum over x € X doesn’t matter because if the sum converges, then it
absolutely converges because all the terms in the sum are positive. Now, to see that we have a measure,
pick up some countably many pairwise disjoint countable subsets { E;}5°, of X. Then

SR IFEE 3 oEES Wt

i=1 zel |52, E; i=1z€E;

where = holds because each z € | |72, E; lives in exactly one of the E;. u

Example 5.42. Fix a set X with o-ring § := P(X). Then we set u(E) := #E for each E C X; namely, if
w(E) = oo if and only if E is infinite. We claim that p is a measure: if {E;}5°, is a countable collection
of pairwise disjoint subsets of X, then it's a property of cardinality that the cardinality of the (disjoint)
union is the sum of the cardinalities.

5.2.3 Premeasures

We are going to want to build measures, but this is somewhat difficult. So we begin with something a little
weaker. We begin by weakening our rings.

Definition 5.43 (Prering). Fixa set X. A prering of a set X is a nonempty collection P C P(X) satisfying
the following.

« Intersection: if B, FF € P,then ENF = P.
« Decomposition: if E, F' € P, then we can write
E\F=||G;
i=1

for some finite disjoint union on the right-hand side with G; € P for each i.

Remark 5.44. Fix a prering P. Noteany E € P has E \ E = &, so @ € P always because P is required
to be nonempty.

And now here are our weaker measures.
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Definition 5.45 (Premeasure). Fix a set X and a prering P C P(X). A premeasure on P is a countably
additive function p: P — [0, oc].

It will turn out that premeasures on prering will give measures on the generated o-ring. This is nicer because
the countably additive condition might be easier to check on a prering, using ideas of Remark 5.35.
Here is our main example.

Exercise 5.46. Fix our set X := R, and let P be the collection of half-open intervals [a, b) where a, b € R.
Then P is a prering.

Proof. We begin by checking that P is a prering.

« Intersection: suppose that [a, b), [a’, ") € P; without loss of generality, take a < a’ so thatz € [a,b) N
[a',b') requires ' < z. Now, note

[a,b)N[a, ) ={r eR:a<zandd <zandz <bandz <V}
= [max{a,a’}, min{b,b'}).

» Decomposition: suppose that [a, b), [a’, ") € P. Now, note

[a,b)\ [a',b))={reR:a<zandz <band (¢ >xzorz>"b)}
={reR:a<zandz<bandz<d}U{reR:a<zandz <bandl <z}
= [a, min{b, a’}) U [max{a,b'},b).

The above checks complete the proof. |
Continuing from Exercise 5.46, it will turn out that the function u: P — R given by
n(la,b) =b—a

will give a premeasure, but we will not show this today. (We will say that one should use ideas of Exer-
cise 5.46.) This is surprisingly annoying to prove.

Example 5.47. Give Q N [0,1) an enumeration {g}ren. Then define the interval Fy, = [qx, qx+1) U
[@k+1, qx) and “disjoint-ize” these intervals by taking

k—1
Ek = Fk\ U Fg
(=1

and then decompose E}, into a finite disjoint union of Gis so that the Gys are now disjoint. Any proof
that p is a premeasure must account for pathologies like this.

5.3 October 10

The midterm exam is coming. It will cover topology things.

5.3.1 TheLebesgue Premeasure

We continue with our attempts to construct measures.
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Proposition 5.48. Fix a left-continuous, increasing function a: R — R, and let P C P(R) as the prering
of half-open intervals [a, b) for a < b. Then

pa([a, b)) = a(b) — a(a)

is a premeasure on P.

Proof. Quickly, note that the fact that « is increasing implies that u([a, b)) = a(b) — a(a) > 0forany [a,b) €
P.
Fix some [a, b) € P which has been decomposed into an infinite disjoint union

oo

[a, b) = |_|[ai7 bl)

i=1
We need to show that p([a, b)) is the sum of all the i ([a;, b;))s. We will show our two inequalities sepa-
rately.

+ Inthe easy direction, we show >~°°, pia([ai, b)) < pa(la,b)). It suffices to show that, forany n € N, we
have

> halas, ) < io([a.5)),

which will finish by taking the limitas n — co. Well, leto: {1,...,n} — {1,...,n} be the permutation
such that a,(1) < ay2) < -++ < ag(n). Notably, asiy < ap(ig1) implies that by < a,(i41) because
[ao(i), ba(i)) n [ao(i+1)7 ba(7;+1)) = requires Qo (i+1) ¢ [aa(i), bﬁ(z))

ThUS, ba(i) < g (i4+1) |mpl|es a(ba(i)) < a(aa(i_,_l)), SO

ZMQ([% bi)) = Z (albo)) = alao())) = —alagm)) + Z_: (= alao(it1)) + albo(s)) + abo(n))

has —a(as(i4+1)) + @(bs(:)) < 0 for each i. Finishing up,

Z pa([ai, b)) < —alag)) + albom)) < a(b) — ala) = pa(la, b)),

where we have used a < a,(1) and b, () < bin our bounding.

« In the difficult direction, we show i, ([a, b)) < Y02, pia([ai, b;)). Fixany e > 0, and we will actually
show pia([a, b)) < D02 pallai, b)) + &, which will be enough upon sendinge — 07.
To set up the proof, set ¢; := £/2*! so that

1

o0 o0
13 13 g
2E= g 52 e Ty

=1 =1
(This is a surprise tool which will help us later.)
We now proceed in steps. The idea is to approximate all of our [a;, b;) by open intervals to use com-

pactness of closed intervals.

1. Find somed’ < bsuchthat a(b) —e/2 < a(b’) < a(b), using the left-continuity of a.. Similarly, for
each i € N, we may select a} < a; such that a(a;) — &; < a(al) < a(a;). Thus,

(kb)) 2 | Jlai,0:) 2 [a,) 2 [a,0].
i=1 i=1
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Thus, we have given [a, b'] a countable open cover! So compactness (!) provides us with a finite

subcover given by indices {i1,...,4,}. Letting N be the largest of the indices, then, we see that
N n
Uaib) 2 U, ) 2 [a.)
=1 k=1

2. We now inductively relabel our intervals. Some open interval must contain a, so we find j; €
{1,...,N} sothata € (a},,b;,). If b;, > V', then we are done because we have covered [a, V'].
Otherwise, b;, € [a,b'], sowefind j, € {1,..., N} sothatb;, € (¢ ajy s bj,). If bj, > V', then we are
done because we have covered [a, V']; otherW|se we find j3 and contlnue
The above inductive process must terminate because each of the j; are distinct—at each point,
b;, is strictly greater than all previous b;, s—and we were already promised that the indices up to

N will produce a finite subcover. So we have produced some open cover

m

U jk’ Jk 2 a, b/]

3. We are finally able to give the argument that everyone always wants to. Observe that

m m—1
Y (a a(d},)) = —ala) + ) (ab;) —ald), ) +alb;,)
k=1 k=1
by some re-indexing. However, a’, . <bj,,so a(b;,) — a(a), ) > 0always, so
> (o a(d),)) > a(b;,) —ald,) > a) - a(a),
k=1

where at the end we have used the fact that b;,, > b’ and a’ > a;,. But now (') > «(b) — /2, so
we get

> (e a(aj,)) > a(b) — a(a) — /2. (5.1)

k=1
4. Now, on the other side, we write
Z (a(b.]k) Z a]k) + Ejk)
k=1 k=1
using the fact that a(aj, ) > a(a;,) — €;,. We can now just add in all the indices to get

m

Z (Oz(bj,C i — afa;) +Z€'L < Zua a;,b;) ;: (5.2)
k=1 i=1

5. Intotal, we combine (5.1) and (5.2) to get

Zﬂa au z +5>Na([a b))

Sending ¢ — 07 finishes the proof. [ |

Remark 5.49. The “easy” part of the above proof works fine without using the completeness of R, but
it is very necessary for the harder part.
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5.4 October12

The midterm exam is still coming. It is closed-book. Only bring writing implements. He might ask for defi-
nitions, statements of theorems, proofs of theorems, and relatively quick applications of theorems.

5.4.1 Premeasure Subtraction

Last class, in Proposition 5.48, we showed that p,: P — [0, 00] gave a suitable premeasure. We are now
going to embark on a somewhat long story to show that u,, (and premeasures in general) can turn into a full
measure.

To begin our journey, we pick up some annoying facts about prerings and premeasures.

Lemma 5.50. Fix a set X and a prering P. Forany set E € P and any {E;}>, C P, there exist finitely
many {F};}}_; C P which are pairwise disjoint and satisfy

m

\UE_UF

Proof. We induct on m, using the prering condition. When m = 0, set F; = E, and there is nothing else to
say.
Now suppose that we can write

m

\UEUF

Picking up some other E,,,11 € P, we note

m+1 m m m m
E\LJEL—(E\LJ&)\EMJ—<LJE>QLX\EH1iLJFrWX\Em4 UF\E,,H1

j=1
where we have used the distributivity of intersection over union in =. For each j, because P is a prering, we
may find pairwise disjoint {G; ; },-2, C P such that

mj

Fj\Em+1 = |_| Gj,k

so that » o
P\ Ur=UUan
j=1k=1

We now claim that the {G; 1.} are pairwise disjoint, which will finish the proof. Indeed, if we can find z €
GjxrNGj i, thenGj, C Fjand Gy C Fy tellsus z € F; N Fj, so j = j' because the F, are pairwise
disjoint. Thus, z € G; xNG, s furtherimplies k = k' because the G; , are pairwise disjoint. So (4, k) = (j/, k'),
and we are done. |

Lemma 5.51. Fix a prering P on X and a finitely additive function u: P — [0, 00]. Given E, F € P, then
w(E) > pu(ENF). Inparticular, if E D F, then u(E) > u(F).

Proof. Note that an element of E is always exactly one of in F'ornot,so £ = (ENF) U (E \ F). Now, we
use the prering condition on P to write

E\F:|i|GZ—

=1
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for some pairwise disjoint Gy, ..., G, € P. We also note that G; C X \ F foreachi, soG;N(ENF) = & for
eachi, sothesets (ENF),Gy,...,G, are pairwise disjoint and grant

W(E) =w(ENF)+ Y u(Gi).

i=1

However, u(G;) > 0 always, so the first assertion follows. The second assertion follows upon noticing
EDFimpliesENF =F. |

The above result motivates the following definition.

Definition 5.52 (Monotone). Fix a collection F of subsets of a set X. A function u: F — [0, o0] is mono-
toneifand only ifany E, F € F with E C F have u(E) < u(F).

Example 5.53. Finitely additive premeasures on prerings are monotone by Lemma 5.51.

5.4.2 Finite Subadditivty

We now pick up some subadditivity lemmas.

Lemma 5.54. Fix a prering P on X and a finitely additive function p: P — [0, 00]. Given E € P and some
pairwise disjoint { E;}?_; C P such that E; C E for such ¢, we have

> n(E) < u(E).

Proof. By Lemma 5.50, we note that we may write

E\ CJ E;, = |i| F;
i=1 j=1

for pairwise disjoint {F;}72; C P. We now note that all the £; and F} are pairwise disjoint from each other:
note that E; N E; # @ implies ¢ = j by hypothesis on the E,, and F; N F; # @ implies ¢ = j by hypothesis on
the F,. Further, we note that E; N F; C E; N (E \ E;) = @ for each i and j, by construction of the F.

In total, we see that we have a disjoint union

== (L)< ()

so the finite additivity of i tells us

which is what we wanted. [ |

Lemma 5.55. Fix a prering P on a set X and a finitely additive function u: P — [0, oc]. Given E € P and

some {F;}72, C P covering E, we have

w(E) < Zu(Fj)-
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Proof. To begin, we note ' = J;_, (E N F}), so we note that it suffices for

m

WE) <> w(ENF),
k=1

which will finish because u(E N F;) < p(Fj) for each j by Lemma 5.51. Thus, we just replace each F}; with
ENnFjsothat E=J/., F;.
Next, we force the F to be disjoint, using Lemma 5.50 to write

Jj—1 nj
Hi=F\|JF=]]Gx
k=1 k=1

where the G; ;. C H; live in P and are pairwise disjoint for each fixed j. Now, we note that each z € E will
live in some F; with least j, so x € H; for this j, so the H; cover E.

We now note that all the G; ;. are disjoint. Indeed, if 2 € G, N Gj i/, we see that G, C H; and
Gy C Hy,sox € Hy C Hj. If j # j', say that j < j" without loss of generality, so z € H; C F; while
x € Hj has Hj disjoint from Fj;, so we have a contradiction. So instead we see j = j/,soz € G, NG, i,
and it follows that k£ = £k’ because the G, , are disjoint.

In total, we see that

E=[][]G
j=1k=1
so the finitely additive condition tells us that
m ng
WE) = > u(Gjw)-
j=1k=1

However, we note that the G} ;, are disjoint for any fixed j and have G ;. C F} for each k, so we see that

2

> Gix) < p(Fy)

k=1

for each j by Lemma 5.54, so we conclude

W(E) =35 (G0 < 3 u(Ey).
j=1k=1 j=1

which is what we wanted. [ |
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THEME 6
BUILDING MEASURES

So the man gave him the bricks, and he built his house with them.

— Joseph Jacobs, “The Story of the Three Little Pigs” [Jac90]

6.1 October14

We will probably still have homework next week, despite the midterm.

6.1.1 Countable Subadditivity

Continuing our story from last time, we pick up the following definition. The above result motivates the
following definition.

Definition 6.1 (Countably subadditive). Fixa set X and a collection 7 C P(X). A function u: F — [0, o0]
is countably subadditive if and only if

EC|JE = wE) <) uE)

forany E € Fand {E;}2, C F.

Lemma6.2. Fixa prering P ona set X, and let x be a premeasure on P. Then p is countably subadditive.

Proof. We repeat the proof of Lemma 5.55, essentially verbatim, replacing the bound m with co. Indeed,
pickup any E € P and some {F};}22, C P with E C {J;Z, Fj, and we want to show that

W(E) <> u(Fy).
j=1
To begin, we note ' = [ J;Z, (E N F}), so we note that it suffices for

WE) <> wENF),
k=1
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which will finish because u(E N F;) < p(F;) for each j by Lemma 5.51. Thus, we just replace each F; with
ENFjsothat E=J/_, F;.
Next, we force the F; to be disjoint, using Lemma 5.50 to write

Jj—1 7
Hi=F\|JF=]]Gx
k=1 k=1

where the G, C H; live in P and are pairwise disjoint for each fixed j. Now, we note that each z € E will
live in some F; with least j, so x € H; for this j, so the H; cover E.

We now note that all the G; ;. are disjoint. Indeed, if 2 € G, N Gj i/, we see that G, C H; and
Gy C Hp,sox € Hy C Hj. If j # j', say that j < j" without loss of generality, so z € H; C F; while
x € Hj has Hj disjoint from Fj;, so we have a contradiction. So instead we see j = j/, soz € G, NG, i,
and it follows that &k = £k’ because the G, , are disjoint.

In total, we see that

E=L][]Gx
j=1k=1
so the finitely additive condition tells us that
m ng
n(E) = 1(Gjk)
j=1k=1

However, we note that the G . are disjoint for any fixed j and have G . C F} for each k, so we see that

ni

> uGix) < p(Fy)
k=1
for each j by Lemma 5.54, so we conclude
p(E) =3 u(Gix) <> ulFy),
j=1k=1 j=1
which is what we wanted. u

6.1.2 Hereditary Rings

We continue trying to move from premeasures to measures. Our next step is to add in lots and lots of sets
to our prering, which we will later filter out to get our actual measure.

Definition 6.3 (Hereditary o-ring). Fix a set X and nonempty family 7 C P(X). Then the hereditary -

ring H(F') generated by F consists of all subsets ' C X such that there exists a countable subcollection
{F;}22, C F such that

Remark 6.4. Because F is nonempty, find some E € F. Then @ C E C X tells us that & € H(F).

Here's a quick sanity check.

Lemma 6.5. Fix a set X and a family 7 C P(X). Then H(F) is a o-ring.
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Proof. Here are our checks.

+ Union: suppose {E;}2,; C H(F). Then, for each 4, we can write

E=JF;
j=1
where F;; € F for each j. So

£-UUs,

i=1 i=1j=1

shows that | J;2, E; is contained in a countable union of elements F;; € F, so |J;~, E; € H(F).

(@

« Subtraction: suppose E, F' € H(F). Indeed, we can write E C | J;-, E; for some E; € F, so
E\FCEC|JE
i=1
has covered E' \ F by countably many elements E; of F, so we conclude E'\ F € H(F). ]

Example 6.6. Take X = R and P the prering from Exercise 5.46. But now we see that

R=|Jiii+1),

1€Z

so any subset & C R C |J,czli,% 4 1) is contained in a countable union of elements from P. Thus,
H(P) = P(R).

Example 6.7. Fix a set X and P the prering of finite set of X. Then any set in H(P) is countable as
contained in a countable union of finite sets, and conversely any countable subset £ C X can write

E= |}

zeE

to show that E is covered by countably many finite sets {x} € P. Thus, H(P) contains exactly the
countable subsets of X.

It might feel like taking all the subsets of R makes us too big, but there are measures here anyway.

Example 6.8. Fix a set X and an element 2 € X. Then we define the measure ¢,.: P(X) — [0, oo] by

s@={; 5k

To see that this is a measure, fix disjoint { E;}2° |, and set E := | || E;. We have two cases.
o« Ifz ¢ E,; foreachi,thenz ¢ E,s06,(E) =0=> ", 6,(E;).

» If x € E;, for some i, then note z € E; for exactly one i because the E; are disjoint. Also, z € E
because E;, C E,500,(E) =1 =0,(E;,) = > o 1(Es).

The term “hereditary” comes from the following definition.

Definition 6.9 (Hereditary). Fix a set X and nonempty family G C P(X). Then G is hereditary if and only
if Ae Gand A’ C Aimplies A’ € G.
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Example 6.10. Indeed, given a collection F C P(X), we can see that H#(F) is hereditary. To see this,
note E € H(F) can be contained as E C | J;2, E; for some {E;}$2, C F, butthenany E/ C E has

E/gEg Ei;

s

=1

so E’ is covered by a countable union of elements of 7, so E € H(F).

Remark 6.11. Note that the intersection of hereditary rings is still hereditary. Indeed, fixing our set X
for hereditary rings {# }acx of X, we need to show

M=) Ha

aEA

is still hereditary. Well, forany £ € Hand E' C E, wesee E € H, foreacha € )\, so E' C F forces
E' € H, foreach a € A, so actually E' € H.

Remark 6.12. Thus, we can see that the hereditary o-ring H(F) generated by a family 7 C P(X) is
in fact the smallest hereditary o-ring H containing F, where H is the intersection of all the hereditary
o-rings containing F. (Note H is hereditary by Remark 6.11 and a o-ring by Lemma 5.28.)

« Certainly #(F) isao-ring by Lemma 6.5, and H(F) is hereditary by Example 6.10, so H C H(F).

» Conversely, any E € H(F) is contained in some countable unionas E C | J;2, E; where {E;}$°, C
F. Butthen E; € H for each i, so|J;~, E; € H because H is a o-ring, so E € H because H is
hereditary.

6.1.3 Outer Measures

We now have the following construction.

Notation 6.13. Fix a set X and nonempty family 7 C P(X). Then give u: F — [0, o], we will define
w: H(F) — [0, 00] by

=1

i=1

Remark 6.14. Note that F € H(F) tells us that the set we are taking the infimum of is in fact nonempty
because E € H(F) is contained in some countable collection of elements from F. And in fact, for any
subcollection {E;}$2, C F covering E € H(F), we see that

Z:L"(Ez) >0

by definition of x, so u*(E) > 0forany E € H(F).

Here are some quick facts.
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Lemma 6.15. Fix a set X and nonempty family 7 C P(X). Further, fix some p: F — [0, 00]. Then we
have the following.

(@ pw*(E) < u(F)forany E € F.
(b) p*is monotone.

(c) w*is countably subadditive.

Proof. Here we go.
(a) Notethat{E} C F covers E, so u*(F) < u(F) follows.
(b) Suppose E C F with E, F € H(F). We need to show p*(E) < p*(F); certainly, if u*(F) = oo, then

there is nothing to say. Otherwise, pick up any € > 0, and we show
p(E) < p*(F) +e,
which will be enough upon sendinge — 0.
Now, the definition of y*(F') as an infimum promises some countable subcollection {F;}32, C F cov-

ering F' such that
> uF) < pt(F) +e.
i=1

Butnow E C F C U;’il F;, so the definition of u* lets us conclude

E) < Z,UJ(FZ') < p*(F) +e,

which finishes because we may now take e — 0.

This requires some effort. Suppose that A € H(F) and some {B;}32,; C H(F) covering A. We need

to show that
<>
i=1

Well, fix any e > 0, and we will actually show that

A <e4 Y w8y

which will be enough upon sending e — 0. Certainly if u*(B;) is infinite for any ¢, then there is nothing
to say. Otherwise, each p*(B;) is finite, so we may use the definition of 1* as an infimum to find some
countably subcollection {E;;}52, such that

B, C| | E; d Ei;) < pi( =
Uy and Dl <80+
because £/2' > 0 always. It follows that

00
U i

AC

ECS
HCg

so the definition of p* lets us say

2D % SN of CREY) BRI WY

1=1 j=1 1=1

which is what we wanted. [ ]
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It seems somewhat frustrating that we don't get equality in part (a) of Lemma 6.15, but we need a few more
adjectives to make the proof go through.

Lemma 6.16. Fix a set X and a prering P on X equipped with a premeasure pon P. Then pu*(E) = pu(E)
forany E € P.

Proof. Fix some E € F. Note that u*(E) < u(FE) already from Lemma 6.15, so we just need the other
inequality. Well, for any cover

oo
EC UEi,

=1

where {E;}°, C F, countable subadditivity tells us that
w(E) < ZN(EZ)
i=1

by Lemma 6.2. Thus, u(E) < p*(E), which is what we wanted. [ |

The above results motivate the following definition.

Definition 6.17 (Outer measure). Fix a set X and a hereditary o-ring H. An outer measure is a function
w*: H — [0, oo] which is monotone and countably subadditive.

Example 6.18. From Lemma 6.15, we note that if 1z is a premeasure on a prering P, then p* is an outer
measure on the hereditary o-ring H(P).

6.2 October17

Please write neatly on the exam.

6.2.1 Restricting Outer Measures

Last time, in Example 6.18, we constructed an outer measure from a premeasure. We might hope that this
outer measure is actually countably additive, thus giving us our measure, but most of the time it is not.

Instead, we are going to restrict our outer measure to some “o-subring” which will then be a measure.
The following definition is due to Carathéodory.

Definition 6.19. Fix a set X and a hereditary o-ring # on X, and fix an outer measure v: H — [0, c0].
Thenaset E C H is v-measurable if and only if

v(A)=v(ANE)+v(A\E)

forany A € H. We will let M(v) denote the set of v-measurable sets.

Remark 6.20. Because v is already an outer measure, it is countably subadditive, sov(A) < v(ANE) +
v(A\ E). Thus, we really only need to focus on proving

v(A) > v(ANE) +v(A\ E).

Here are the main results.
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Theorem 6.21. Fix a set X and a hereditary o-ring  on X, and fix an outer measure v: H — [0, o0]. If
nonempty, M(v) is a o-ring, and v|q(,) is a measure.

Remark 6.22. Later, we will also show that, give a premeasure pon a prering P, we willsee P C M(u*),
so 11| s(p) will be a measure on S(P) extending 1. We won't be precise about this until we need to, but
we do want to see that we are close to the finish line.

Remark 6.23. It is indeed possible for M(v) to be empty. For example, the outer measure v: P(X) —
[0,00] by ¥(E) := 1 forany E C X has no v-measurable sets.

Let's begin our proof.
Proof of Theorem 6.21. We proceed in steps.
1. Finite union: given E, F € M(v), we show E U F € M(v). Well, forany A € H, we compute
V(AN(EUF))+v(A\ (FUF))=v(ANE)U((A\E)NF))+v((A\ E)\ F)
<Vv(ANE)+v(A\E)NF)+v((A\ E)\ F),
where we have used subadditivity at the end.

Because F' is v-measurable, the last two pieces become v(A \ E), wherewenote A\ E C E € H
implies A\ E € H. Thus, because E is v-measurable, this in total collapses down to v(A4), which is
enough by Remark 6.20.

2. Subtraction: given E, F € M(v), we show E \ F € M(v). Well, for any A € H, we compute
V(AN(E\F))+v(A\(E\F))=v((ANE)\F)+v(A\E)U(ANENF))
<Vv(ANE)\F)+v(A\E)+v(ANE)NF),

where we have used subadditivity at the end.

Now, because F'is v-measurable, we see v((ANE)\ F)+v((ANE)NF) = v(ANE), where ANEC E
isin H because E € H. Thus, because F is v-measurable, this in total collapses down to v(A), which
is enough by Remark 6.20.

3. Strong finitely additive: for any A € H and disjoint £, F' € M(v), we claim
V(AN(EUF)) £ v(ANE)+v(ANF).
Well, because E is measurable, we note AN (E U F) C A must livein H and so
V(AN(EUF))=v(AN(EUF)NE)+v(AN(EUFR)\E)=v(ANE)+v(ANF),
where the last equality has used the fact that EN F = &.

By induction, for finitely many pairwise disjoint v-measurable subsets {E;}7 ;, C M(v), we see

n

V<Aﬂ|i|El> :ZV(AﬂEi).

=1

4. Finitely additive: we show v/| () is finitely additive: for finitely many pairwise disjoint v-measurable
subsets {E;}" ,E; € M(v), we note A := |J_, E; € M(v) because M(v) is a preserved by finite
unions, so we set A := [ J;_, E; to give

=1 i=1 =1 i=1
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5. Countable union: given some countable subcollection {E;}3°, C M(v), and let F be their union. Now,

we set
Fi = Ei \ U Ej
7<i
so that F'is the union of the F; (certainly F; C E; C F forany, and converselyanyx € Fisinsome E;,
for i as small as possible, so z € Fj;), and the F; are pairwise disjoint (if i # j, then i < j without loss
of generality, so F; C E; \ F} is disjoint from Fj). The point is that we are now dealing with pairwise
disjoint subsets.

We now need to show that F'is v-measurable. Well, fixany A € H. Then, for any n, we note that M(v)
is already aring, so | |\, F; is in M(v) for any finite n, so

I/(A)_V<Am|i|Fi>+l/<A\|i|Fi> _iV(AﬂFi)‘FV(A\IiIFi),

i=1 =1 i=1 i=1

where we have used finite additivity. Because v is monotone, we may lower-bound this by

v(A) > V(ANF;)+v(A\F)

-

Il
—

?

for any n. Sending n — co now, we see
> V(ANF)+v(A\F),
i=1

but then countable subadditivity of v kicks in and tells us that
v(A) >v(ANF)+v(A\F),
so we are done by Remark 6.20.

6. Countably additive: we show v/| () is countably additive. Well, given some countable pairwise dis-
joint collection of v-measurable sets {E;}7_; C M(v), we see that the previous step has told us

2§:VAOE +V<A\|_| ) 2u<Aﬂ|i|Ei> +U<A\|Z|Ei> > v(A).

But M(v) is a o-ring, so may set A := | |2 | E; so that the above equalities actually read
v(A) = v(E),
i=1
which is what we wanted. [ ]

The previous theorem has an annoying hypothesis that M(v) is nonempty. In the cases we're interested
in, this is no issue.

Theorem 6.24. Fix a set X and a prering P on X equipped with a premeasure yonP. Then P C M(u*).

Proof. Fix some E € P, and we need to show that E € M(u*). By Remark 6.20, it suffices to pick up any
A € H(P) and show
p(A) = p (ANE) + p (A\ E).

If u*(A) = oo, then there is nothing to say. Otherwise, we have u*(A4) < co. As usual, fix some e > 0, and
we will show that p* (AN E) + p*(A\ E) < p*(A) +e.
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Well, by definition of ,*(A4), we can find some collection {E;}?°, C P such that

A)+e> Z“(E
i=1

We now decompose each u(E;). Note that E; = (E; N E) U (E; \ E) is a disjoint union because an element
of E; is exactly one of in E or not. Further, by the prering property, we can write

E\E;=| | F;
j=1

forsomedisjoint {F;;}52; C P. Intotal, we seethat E; = (E; OE)I_I|_| 1 Fijisadisjointunion because E;NE
is certainly disjoint from each of the F;; C E \ E;, and the Fj; are d|510|nt from each other by construction.
In total, we use the countable additivity of ;. to write

A)+5>§:u( Z( (E;NE) +§:u 2]> ZuEﬂE +i§:u Fij)
i=1

j=1 =1 j=1

Now, we notethat AN E C JZ,(E; N E)and A\ E C UZ,(E: \ E) € U;Z, UL, Fij, so countable
subadditivity of u* (by Lemma 6.15) lets us conclude

WA +e> u(ANE) + u(A\ E).

Note that we have implicitly used the fact that p*|p = p from Lemma 6.16. Anyway, sendinge — 07
completes the proof. [ |

6.2.2 Completeness

We have a notion of completeness for our measures; here is the definition.

Definition 6.25 (Compelete). Fix a set X and a family #/ C P(X). Then a function v: F — [0, 0] is
completeif and only ifany E € F with F C E and v(E) = 0 must have F € Fand v(F) = 0.

Remark 6.26. If ;1 is a complete measure on a o-ring S on X, then we claim that any countable subset
in S has measure zero. Indeed, if A € Sis countable, we can write

u(A)—u<|_|{a}> =S ufap =Y 0=0.

a€cA acA acA

We will continue this after the midterm.

6.3 October21

| did poorly on the midterm, and I'm too tired to be okay with it.

6.3.1 Miscellaneous Outer Measures

We quickly complete an example from last class.

Lemma 6.27. Fix an outer measure v on a hereditary o-ring H. Then any set £ € H with v(E) = 0 is
v-measurable.
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Proof. Fixany A € H. Because outer measures are monotone, we see
v(A\E)+v(ANE) <v(4)+v(E)=v(A),

so we conclude that v(A\ F) + v(AN F) = v(A) by Remark 6.20. [ ]

Lemma 6.28. If v is an outer measure on a hereditary o-ring H, then v| (. is complete when M(v) is
nonempty.

Proof. Given E € M(v) with v(E) = 0, we note that any F' C E is v-measurable and has v(F) = 0. Well,
we certainly have 0 < v(F'), and then we see that v(F') < v(E) = 0 because v is monotone, so we conclude
that v(F) = 0. Thus, F is v-measurable by Lemma 6.27. [ |

We take a moment to acknowledge that our restricted outer measures are in fact extending our premeasures
when appropriate.

Lemma 6.29. Fix a premeasure p on a o-ring S (viewed as a prering). Then, for any B € #H(S), there
exists some E € S suchthat B C Eand pu*(B) = u(E).

Proof. Recallthat

i=1

p*(B) = inf { i,u(E,-) AE;}2, CSand B C G Et}

Notably, if we have some { E;}5°, covering B, then we are told that p*(B) < Y2, u(E;), butin fact S being
aco-ring forces E :== | J;2, E; tobein S, so B C E forces the stronger inequality

15 (B) < p(E) = p(E) < Z.U(Ei)'

Note that we have used countable subadditivity from Lemma 6.2 and p*(E) = u(E) from Lemma 6.16. It
follows that inf{u(F) : B C E} < p*(B). But of course B C FE forces p*(B) < p(E) from definition of u*,
so in fact

w*(B) = inf{u(E) : BC E}. (6.1)
It remains to show that this infimum is achievable. Certainly if 4*(B) = oo, then any E' € S with B C F will
have u*(E) = oo, finishing.
Otherwise, take p*(B) < co. From (6.1), we can a sequence {E;}°, C Ssuchthat E; C Band u(E;) <
1*(B) + 1 for each i. We now define

E = ﬁ Ei7
i=1

which is an element of S by Remark 5.24. However, because p* is monotone by Lemma 6.15, we see that
B C E forces u*(B) < p*(E) while E C E; for each i forces

p(E) < p(B;) <p*(B)+1/i
for each i. Sending i — oo recovers u(E) = p*(E) = pu*(B), where we have used Lemma 6.16 to finish. H
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6.3.2 Uniqueness of Extensions

It is not always true that the extension of a measure must be unique.

Example 6.30. Give an uncountable set X the discrete topology, and let S denote the o-ring of count-
able sets. Then the zero function i on S is a measure; however, we have the following two extensions
v to a measure on all of P(X).

« We could set v(F) = 0 for any uncountable E.

« We could set v(F) = oo for any uncountable E.

Example 6.31. Let P be the prering of right-half-open intervals of R. Then the measure p on P by
w([a, b)) = oo for a < b while (@) = 0. Then here are two extensions of .

» We could set y to be infinite for any nonempty subset of R.

« We could set y(F) be the counting measure on R.

The issue in these examples is that there is too much allowed oco. To deal with this, we have the following
definition.

Definition 6.32 (o-finite). Fix a set X and a prering P on X. Then a premeasure pon P is o -finite if and
only if E C P has some countable collection {E;}:2, C P with E = |J;2, E; and p(E;) < oo for each i.

Remark 6.33. In the above situation, we note that any E € H(P) can be covered by {G;}2, C P with
1(G;) < oo for eachi. Indeed, we can at least cover E € H(P) by some {E;}$2; C P, and then each E;
has a cover

E; C U Fi;
5=

where p(F;;) < oo because 1 is o-finite. Reordering our countable union of countable unions covering
F into some sequence {G;}5°,, we see E C |J;2, G; while u(G;) < cc.

It will now turn out that o-finite things have unique extensions. Let’s first see that our outer measure ex-
tension is special, though it need not be the only extension yet.

Lemma 6.34. Fix a set X and a prering P on X equipped with a premeasure p. Then for any o-ring
containing P and contained in M(u*), we have p*|s is the largest measure on S extending pon P. In
other words, if v is any measure extending P to S, then v(E) < u*(E) forany E € S.

Proof. Note that p* extends p by Lemma 6.16.
Now, suppose that v is a measure on S extending the premeasure v on P. Now, for any G € S the fact
that § C H(P), we may find some {E;}52, contained in P covering G. This tells us

v(G) < ZV(EJ‘) = ZM(Ei) = ZM*(Ei) = ZM(Ei)~
i=1 i=1 i=1 i=1
Taking the infimum allows us to conclude v(G) < p*(G). ]

Now, here is our main result.
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Theorem 6.35. Fix a set X and a prering P on X equipped with a o-finite premeasure pon X. Then, for
some o-ring S C M (u*), our u*|s is the unique extension of i to a measure on S.

Proof. Let v be some measure on S extending p. Note that we really only have one inequality here, thanks
to Lemma 6.34. Anyway, we proceed in steps. Fixany G € S.

1. If G € Shasv(G) = oo, then our bound p*(G) > v(G) from Lemma 6.34 forces equality. So we may
now assume that v(G) < co.

2. Otherwise, we take v(G) < oo. Suppose that G € Sand G C E where E € P. Note that we at least
stillknow v(G) < p*(G) < p*(E) = u(E) because p* is monotone by Lemma 6.15. On the other hand,
we know that E € P is measurable by Theorem 6.24, so we can use additivity to write

v(E) = v(G) +v(E\ G) < p*(G) + 1" (E\ G) = u*(E) = u(E) = v(E).

Note that we have used Lemma 6.16 in =. Thus, equalities must follow everywhere, so in particular
v(G) = p*(G) is forced.

3. Lastly, we take v(G) < oo with any G € S. We now use the o-finite hypothesis: by Remark 6.33, we
may cover G with a countable collection {F;}°, C P covering G such that v(F;) < oo for each i.
Now, as usual, we set

E:E\Uﬂ
j<i

sothatthe F are now disjoint (if i # 4/, say with ¢ < i’ without loss of generality, then F}, C Fj/\ F;) even
though G is still covered by the F/ (any 2 € G lives in some least F;, so z € F/ follows). Additionally,
F! € S by Remark 5.24, so the previous step tells us that G N F} C F implies v(GN F}) = p*(GN F))
and thus

V(@) =3 vGNF) =3 w(GNF)=u(G)

i=1

by using additivity. |

6.4 October24

The midterms were all graded. The mean was 15.68, and the standard deviation was 7.64. Roughly speak-
ing, a score of 15 (and continuing to work at that level for the rest of the class) should roughly correspond
toaB+.

We completed the proof of Theorem 6.35 from last class, but | have simply completed the proof there
for continuity reasons.

6.4.1 Continuity Properties

Let’'s discuss continuity a little.

Proposition 6.36. Fix a o-ring S on a set X equipped with a measure pon S. A collection {E;}°, C S
such that E,, C E,, 1, for each i will have

lim (B, = u( U E)

g=il
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Proof. Set E := | J;-, E;, for brevity, and we define
Fi=E;\ Ei_1,

where Ey := &. Note that the F; are now pairwise disjoint: if i # j, then without loss of generality say i < 7,
so F; C E; C E;_; while F; = E; \ E;_4 is disjoint from E;_1, so F; N F; = @. Thus, we note that

- |_| Fy
k=1

Indeed, certainly each £ < n has F}, C E;, C E,; and conversely any z € E, belongs to some Ej, withk <n
minimal, implying x ¢ Fy_; and so x € Fy. In particular, we note that

-Ue-0Ur-Uyr-Unr-[ln
n=1 n=11i=1 1=1n>i =1 =1

is still a disjoint union because the F; are pairwise disjoint.
Thus, by the countable additivity of u, we compute

i, 4(En) = nlgr;oﬂ< LI i )

=, > w(E)

which is what we wanted. ]

Corollary 6.37. Fixa o-ring S on a set X equipped with a measure p on S. Suppose we have a collection
{E;}32, € Ssuchthat u(E;) < coand E,, D E,, 1 for each i. Then we have

7g&MEﬂ=u<ﬂEQ-

i=1

Proof. Set .
E:ﬂ&
i=1

Then we define F; :== E; \ E; so that

F = Lﬁ? UEﬂE \ﬂE Ei\ E.
1=1
On the other hand, we note E; D E; ;1 implies E1 \ E; 2 E1 \ E;11,50 F; C Fiy;.

Thus, applying Proposition 6.36, we see

lim wp(F,)=F.

n—oo
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Rearranging gets the needed result. However, we note that u(E;) < p(E;) < oo for each i because p is
monotone by Lemma 5.51, so we can say

Jim p(E,) = lim p(Er\ )
= lim (u(E1) — p(Fn))
p(Ey) = lim p(Fy) = p(Er) — p(F)

p(EL\ F) = p(E),

where we have used Remark 5.21 at each =. This finishes. [ |

Remark 6.38. If we do not require u(E;) < oo, then the statement is false: set a(t) := ¢ be anincreasing,
left-continuous function, and let u be the corresponding measure coming as a restricted outer measure
from the premeasure measure p, of Proposition 5.48.

Then set E; := [i, 00), which is measurable by Theorem 6.24. Here are our checks.

» Note p(F;) = oo. Indeed, for any positive integer N, we note that u(E;) > u(fi,i + N)) = N
because p is monotone by Lemma 5.51 and restricts properly by Lemma 6.16. It follows u(E;) >
0.

+ Ontheotherhand, note(;2, E; = @ because no real number is larger than every positive integer,
and u(2) = u([0,0)) = 0 using Lemma 6.16.

6.4.2 Borel Measures

We take a moment to recognize that we've actually built a measure.

Definition 6.39 (Lebesgue—Stieltjes measure). Let P be the prering of Exercise 5.46 and some increas-
ing, left-continuous function a: R — R. Then the measure uj, | p(,2) restricted by Remark 5.40 from
the premeasure of Proposition 5.48 is the Lebesgue-Stieltjes measure. The Lebesgue measure is the
measure coming from a(t) = ¢.

The measurable sets for each 1, might be difficult to handle, so let’s find some subsets which are always
measurable.

Definition 6.40 (Borel set). The o-ring generated by the prering P of Exercise 5.46 is called the o-ring
of Borel sets. A measure on the Borel sets is called a Borel measure.

Let's go find some Borel sets.

Example 6.41. Here are some Borel sets of R. Let a,b € R.
+ Note (—o0,a) = ;2 ,la — n,a), so (—oo, a) is a Borel set.

+ Note (a,00) = s, [a+ 1/i,a + i), so (a,0) is a Borel set. Namely, if b > q, then there is some
positive integer i > max{1/(b—a),b—a},sob € [a+ 1/i,a+1).

« From Remark 5.24, we note that (a,b) = (—o0,b) N (a, c0) is a Borel set.

Exercise 6.42. Any open subset U C R is a Borel set.
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Proof. If U = R, there is nothing to say because R = (—o0,1] U [1,0), so we are done by Example 6.41.
Thus, suppose that we have somey € R\ U.

Otherwise, given some = € U, we note that there is some ¢ > 0 such that B(z,e) C U. Note that
e < |z —y| because e > |z —y| will forcey € B(x,e) \ U. As such, we may let r,, be the supremum of all such
¢, which we see is finite. Note r, > 0 because ¢ > 0 always.

We now note that B(xz,r,) C U. Indeed, if 2’ € B(x,r,), then

|z — 2’| <7y
implies that |z — 2’| is not an upper-bound for our set of s, so we can find some e > 0 such that B(z,¢) C U
and |z — 2’| <¢,sox’ € B(z,e) CU.
We now proceed with the proof directly. The rationals are countable, so enumerate the rationals in U as

{gn}y%,. Foreach ¢y, setr, =r,,. We now claim that

o0

U :? U B(Qnarn)'

n=1

Certainly B(gy, ) C U for each n, as shown above. Conversely, if x € U, find r > 0 such that B(z,r) C U.
Because the rationals are dense in R, we may find some rational ¢ € B(x,r/3). But now we see that

B(q,2r/3) € B(z,r) C U,
sor, > 2r/3.Thus, z € B(q,2r/3) C B(q,7q),s0x € |J,—, B(gn, ) follows because each rational ¢ is some

qn- ]

Example 6.43. Any closed subset V' C Rhas V = R\ U for some open U, so V is a measurable set by
Exercise 6.42.

Definition 6.44 (Borel-Stieltjes measure). Let S be the o-ring of Borel sets. Given some increasing,
left-continuous function a: R — R, we note that M(u?) contains P by Theorem 6.24 and is a o-ring
by Theorem 6.21 and thus contains S by definition of S. Thus, we define p}; |s (which is a measure from
Remark 5.40) to be the corresponding Borel-Stieltjes measure.

We now note that these are actually all the measures.

Proposition 6.45. Fix a Borel measure 1, on the Borel sets B of R such that u([a, b)) < coforanya,b € R.
Then there exists an increasing, left-continuous function a: R — R such that u = p,.

Proof. Define the function a: R — R by
>
wpy o {m0) 20
—u(t,0)) <0,
Notably, att = 0, ([0,0)) = 0 = —x([0,0)). We now run our checks.

+ Suppose a,b € Rhasa < b. We claim p([a, b)) = a(b) — a(a); there's nothing to say if a = b. We have
the following cases.

- Ifa > 0,thenwenoteb>a >0, so
p([a, b)) = p([0,5) \ [0, ) = u([0,0)) = u([0,a)) = a(b) — a(a),
where = is by Remark 5.21.
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- Ifb>0 > a, then
p([a, b)) = p([a, 0) L [0,0)) = u([a,0)) + p([0,)) = —a(a) + a(b).
- Lastly, if 0 > b > q, then

p(la, b)) = p(la,0) \ [b,0)) = p([a,0)) — p([b,0)) = —a(a) + a(b),
where = is by Remark 5.21.

» Increasing: given real numbers a,b € R such that a < b, then we note «(b) — a(a) = p([a, b)) > 0, so
a(b) > a(a) follows.

o Left-continuous: fix some real number b € R and some € > 0 so that we need some § > 0 such that
b—4d < a<bimplies |a(b) — a(a)| < e. To begin, we at least note that a(a) < a(b), so a(b) — a(a) >
0 > —¢, so it suffices for

b—d<a<b = p(la,d)) =ad) —ala) <e.

To begin, we note u([b — 1,b)) < oo by hypothesis on p (here is where we use this hypothesis!), so
we seta, = b — % and E,, := [a,,b) so that u(E;) < oo and E,, O E, 11 for each n. It follows from
Corollary 6.37 that

Jim p(En) = p (ﬂ E) = (@) =0.
i=1

Indeed, we note that ();2, E; = @ because any z € E; for each i must have z < b, but then any
i>1/(b—x)willforce x ¢ E;. And also, ;1(@) = 0 by Remark 5.39 because (@) < pu([b— 1,b)) < o0,
where we are using the fact that p is monotone from Lemma 5.51.

Intotal, we see that there is some N such thatn > N implies u(E,,) < e. Setd := & sothatb—§ < a <b
implies thata € Ey, so [a,b) C E,,, so

p(la, b)) < p(En) <e
by Lemma 5.51.

« Lastly, we show p = p,|p. Let P be the prering of right-half-open intervals. Note that . at least
makes sense from the above checks, so the fact that B C M(p}) as discussed in the definition of the
Borel-Stieltjes measure p? | 5.

Now, we note that u4([a, b)) = a(b) — a(a) = u([a, b)) as checked above (we have used Lemma 6.16),
so u’|g and p are both extensions of the premeasure p,, on P, so Theorem 6.35 follows u% |5 = w. This
finishes. |

6.4.3 The Haar Measure

Let’s build up to talking about the Haar measure.

Remark 6.46. We'll show on the homework that the Lebesgue measure p on R is translation-invariant:
if £ is measurable, andt € R, then E +t¢ = {r + ¢ : r € E} is measurable has the same measure as E.
In fact, any translation-invariant measure on the Borel sets is a multiple of .

There is a different definition of Borel sets is a little different in general.

Definition 6.47 (Borel set). Fix a locally compact Hausdorff space X. Then the o-ring of Borel setsis the
o-ring generated by the compact subsets of X. A Borel measure is a measure on the Borel sets of X.
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Example 6.48. Certainly any compact subset of R is closed by Corollary 4.13 and thus Borel by Exam-
ple 6.43, so the Borel subsets of R coming from the above definition are indeed Borel subsets of R.
Conversely, forany a,b € R, we note that [a,b) = [a,b + 1] \ [b,b + 1] is a Borel subset from the above
definition, so Borel subsets from the above definition are indeed Borel subsets of R.

We quickly note that we have the following uniqueness result.
Theorem 6.49 (Haar). Fix a locally compact Hausdorff topological group G. Then there is a (nonzero)

Borel measure, unique up to scaling, which is finite on compact subsets of X and invariant under left-
translation.

In some sense, the above result explains Remark 6.46.

Remark 6.50. On the homework, we construct the Haar measure on the circle group S*.

In fact, we have the following converse to Theorem 6.49.

Theorem 6.51 (Weil). Fix a group G and a o-ring S on G equipped with a o-finite measure  and some

extra separating property. Given that both S and i are suitably translation-invariant, there is a topology
T on G making G into a locally compact Hausdorff topological group where 1 is a Haar measure for G.

Despite all our work, it's not even obvious which sets are Lebesgue-measurable or even that there are sets
which are not Lebesgue-measurable. We will be able to answer at least this second question in the negative
next class.

6.5 October 26

Today we explain why we keep marking our sets as being measurable.

6.5.1 A Non-measurable Set

Here is our result.

Exercise 6.52 (Vitali). Let T' = R/Z be the circle group, and let i be the translation-invariant measure on
R/Z with u(T) = 1. Itturns out that i is complete. We produce a subset of T'which is not u-measurable.

Proof. Let T;,.s be the torsion subgroup of T. Namely, r € Ty if and only if there exists some n € Z+ for
which nr = 0in T, which means that nr = k in R for some integer k and so r = k/n. Thus, Tio,s = Q/Z; the
important point is that T}, is countable.
Now, for each coset in T/T;o:s, let V' C T be a set of representatives of these cosets.! In particular, it
follows that
T = |_| (g+V).

q€Tors
Indeed, there are two checks.

» To see the union, foranyr € T, we see that r € x + Ti,,s forsome x € V,sor = zq for some ¢ € Tios,
soreqV.

« To see that the union is disjoint, suppose ¢g; + V = ¢2 + V. Then we can find r1,7, € V such that
q1 +ry = q2 —+ ro. It follows that rT =19+ (QQ — C]1) € ro+ Ttors: sory + Ttors =19 + Ttors, SO7T1 =T9
because V is made of representatives of T//Tiors. Thus, g1 + 71 = ¢ + 75 has forced ¢; = go.

1 Note that we have used the Axiom of Choice here.
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We are now ready to complete the proof. Suppose for the sake of contradiction that V is measurable. It

follows that
1=u(T)=u< | | (w+V)>= Dooulg+V)E DT u(v).

q€T ors q€ T ors q€Tvors

Note that we have used the translation-invariance of 1 in =. However, this is impossible: if (V) > 0, then
the rightmost sum does not converge, and if 4(V') = 0, then the rightmost sum vanishes, so it is impossible
for the sum to actually equal 1. |

Remark 6.53. The above proof used the Axiom of Choice to construct V. It is a result of Solovay that
there are models of the real numbers where all subsets are measurable. Of course, the model does not
include the Axiom of Choice.
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THEME 7
MEASURABLE FUNCTIONS

Think deeply of simple things.

—The Ross Mathematics Progam, [Pro23]

7.1 October 26
We now transition to integration. Here is a warning about our exposition.
@ | Warning 7.1. We are going to do integration valued in general Banach spaces instead of just R U {oco}.

The above convention is non-standard. See [Lan12] for perhaps another treatment along these lines, but
Professor Rieffel doesn’t like Lang’s exposition.

Example 7.2. The Banach spaces we care about will essentially all be R or C™ for some integer n.

Example 7.3. We may also use any completion of a normed vector space (V, ||-||), such as the p-adic
rationals Q, or C([0, 1]) using the p-norm ||-[| ..

7.1.1 Simple Measurable Functions

Let's begin with the easiest possible functions we might hope to integrate.

Definition 7.4 (Simple measurable function). Fixa ring S on a set X and a normed vector space B. Then
a simple S-measurable B-valued functionis afunction f: X — Bsuchthatim fisfiniteand f~*({y}) €
Sforanyy € B\ {0}.

Remark 7.5. It is possible to tell a lot of this story by allowing B to be any metric space with a chosen
point 0 € B. (In other words, we may allow B to be a “pointed metric space.”) Professor Rieffel made
some comments about this, but | do not think that keeping track of this is particularly important.
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Example7.6. Givenanyy € Band F € S, the function y1g is a simple S-measurable function. For one,
the image is {0, y}, which is finite. Further, if b € B\ {0}, then either b # y as welland so f~1({b}) =
geSorfl({y})=E€S.

As from the above example, it turns out that we should think of simple measurable functions as just linear
combinations of indicators.

Lemma 7.7. Fix a ring S on a set X and a normed vector space B. Then any simple S-measurable func-
tion f: X — S can be written as
f=2 ¥l

y€(im £)\{0}

Proof. Fixany zo € X, and we want to show that

flwo)=" > ylp-ryy (@)
ye(m F\{0}

Well, if f(x¢) = 0, then note that zg ¢ f~*({y}) foranyy € (im f) \ {0}, so the right-hand sum vanishes.
Otherwise, say that f(zo) = yo where gy € (im f) \ {0}. Then note that 2o € f~*({yo}), and further we
seethatxg € f~1({y}) forcesy = f(xo) = yo, SO Yo is the only y for which zo € f~1({yo}), so

Yo yliiqn (@) = Yol gy (@) = yo = (o),
ye(im 1)\{0}

which is what we wanted. ]

Lemma 7.8. Fix a ring S on a set X and a normed vector space B. Then any simple S-measurable func-
tion f: X — S can be written as
f= ZyilEi
g=il

where the y; € B are distinct and nonzero and the E; € S are pairwise disjoint and nonempty. In fact,
we must have {y1,...,y,} = (im f) \ {0} and E; = f~({w:}).

Proof. We show the claims in sequence.

« Existence: by Lemma 7.7, we can write

f= > Yl
ye(im H\{0}

Here, the elements of (im f) \ {0} are surely distinct, and there are finitely many of them, so we enu-
merate them by {y1,...,y.}. Thenwe set E; .= f~1({y;}), which is in S by hypothesis on f.

Lastly, we note that the E, are pairwise disjoint: if z € E;, then f(z) = y;, soif z € E; N Ej}, then
f(xz) =y =y;,s0y; =yj;, 501 = j because the y, are distinct.

« Uniqueness: suppose we can write

= Z Yile,
=1

where the y; € B are distinct and nonzero, and the E; € S are pairwise disjoint. We claim that
{1, yn} = (im )\ {0} and E; = f~L({y:}) for each .
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Certainly {y1,...,yn} C (im f) \ {0}. Indeed, if z € E;, then
fla) = ZyzlE (x) = vilg (z) = y;
i=1

because the E, are pairwise disjoint, soy; € (im f) \ {0}. In fact, observe that we have also shown that
x € E; implies f(z) = y,.

Conversely, if y € (im f) \ {0}, then find z € X with f(z) = y. Because f(z) # 0, some term in the
sum of

Fla) =Y wile @)

must be nonzero, so say that y;1g,(z) # 0, so z € E;. However, © € E; now forces f(x) = y; as we
saw above, soy € {y1,...,yn}. In fact, observe that we have also shown that f(x) # 0 implies z € E;
for some j.

It remains to show that E; = f~'({y;}). Well, above we showed that = € E; implies f(z) = ;.
Conversely, we showed that f(z) = y; # 0 implies that € E; for some j. But then f(z) = y; from
the above, so y; = y;, so i = j because the y; are distinct, so x € E;. |

Here's a sanity check.

Lemma 7.9. Fix a ring S on a set X and a normed k-vector space B. Then the simple S-measurable
functions valued in B form a k-vector space.

Proof. We know that the set of all functions X — B forms a k-vector space under the pointwise operations,
so we just need to check that we form a subspace. Here are those checks.

« Scalar multiplication: suppose f is a simple S-measurable function, and let » € k, and we show rf is
stillasimple S-measurable function. Well, ifr = 0, thenrf = 0,sorf = 0-14 isasimple S-measurable
function by Example 7.6.

Otherwise, take r # 0. For one, note that
im(rf)={rf(z):2 € X} ={ry:y €im f}
is still finite, with cardinality upper-bounded by #(im f).
Further, we need to show that y € B\ {0} willhave f~({y}) € S. Well, we compute
rH7 ) ={re X rfa) =yt ={z e X : f(a) =1/r-y} = FT ({1/r-y}),
where we are using the fact that r # 0. Because y # 0, wesee 1/r -y #0,s0 f~1({1/r - y}) € S still.

« Addition: suppose f and g are simple S-measurable so that we want to show f + ¢ is still a simple
S-measurable function. Indeed, we claim that

im(f+g) C{b+c:beimfandce€img}.

To see this note that any element of im(f + g) can be written as (f + g)(z) = f(z) + g(«), which does
take the form b 4+ cwhere b = f(z) € im f and ¢ = g(z) € im g. Thus, we do indeed see that im(f + g)
is finite, with cardinality at most #(im f) - #(im g).

Now, suppose thaty € B\ {0}, and we show (f + ¢)~!({y}) € S. Indeed, we see that f(z) + g(z) =y
is equivalentto f(z) = y — g(z), so
(f+9 ' = U (Fdyv—chng'{e}).

c€(im g)

Because rings are closed under finite unions, it suffices to show that f~1({y — ¢}) Ng~1({c}) € S for
each ¢ € im g. We have three cases.
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- Ify # cand ¢ # 0, thenwe see that f~1({y — c}),g7*({c}) € S, so their intersection remains in S
by Remark 5.24.

- If y = ¢, then note that ¢ = y # 0. Here, we are showing f~1({0}) N g~ *({y}) € S. Well,
SO Nng ' ({yh) is

X U  7deh ) ng ' yh) =9 yh) U .
( \bE(imf)\{O} ) \bE(imf)\{O}

Well, f~1({b}) € Sforeach of the finitely many b € (im f)\ {0}, so the full union lives in S because
Sis aring. Lastly, the subtraction still lives in S because g~ !({y}) € S, and S is still a ring.

- If ¢ = 0, then we still have y # 0. Here, we are showing that f~!({y}) N g~1({0}) € S, so we may
just reverse the roles of f and g in the above case to finish.

The above cases finish the proof. |

Corollary 7.10. Fix a ring S on a set X and a normed vector space B. For any sets {E;}" ; C S and
outputs {y;}?, € B, the function

ZyilEi

i=1

is a simple S-measurable function.

Proof. Note that each y;1g, is a simple S-measurable function by Example 7.6, so the finite sum of these
remains a simple S-measurable function by Lemma 7.9. |

Lemma 7.11. Fix a ring S on a set X and a normed vector space (B, ||-||). If f is a simple S-measurable
function, then the function = — || f(z)|| is as well.

Proof. Set g(z) :== || f(x)]|| to be a function g: X — R. Because im f is finite, it follows that im g = {||y|| : v €
im f} is still finite, so it remains to check our fibers. Fixsome r € (img) \ {0}. Because im f is finite, we note
that

Byi={ycimf:|y|=r}

is still finite; notably, each y € B,. is nonzero because r is nonzero. Now,

g ({rh) ={z e X | f(@)l =r}
= U {zeX:f@)=yand ||yl =r}

y€E(im f)

= J{zeX:fla)=y}

yeB,

= U |

yEB,

Thus, g71({y}) is the finite union of sets of the form f~!({y}) with y # 0, which are in S by definition of f.
In particular, g7 ({y}) € S as well. [ |

Lemma 7.12. Fix a ring S on a set X. Given two simple S-measurable functions f,g: X — R, the
function fg is simple S-measurable.
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Proof. By Lemma 7.8, we may write

f:iailEq‘, and g:ibilm
i=1 J=1

forsome {a;};2;,{b;}}—; CRand {E;}]2,,{F;}}_; €. Thus, we can write

(f9) =D (ab)lg1p,
i=1 j—1
but 1Ei1Fj = 1Eiij, SO
(f9) =D > (ab)lpnr-

i=1 j=1

Now, each E; N F; lives in S because S is aring, so fg is simple S-measurable by Corollary 7.10.

7.1.2 Simple Integrable Functions

We are finally ready to define integrals.

Definition 7.13 (Simple integrable function). Fix a ring S on a set X and a metric space B. Further, let
w be a finitely additive measure pon S. Then a function f: X — Bis a simple S-integrable function if
and only if im f is finite, and f~'({y}) € S has finite measure for each y € (im f) \ {0}.

Remark 7.14. In fact, if f: X — Bisasimple u-integrable function, for any subset £ C B\ {0}, we see

f7H(EB) = Ll b,

y€(ENim f)\{0}

where the union is disjoint because z € f~1({y}) N f~1({¢'}) implies f(y) = = = f(v'). As such, finite

additivity of p implies
p(fHE)) = Y w(Fwd)

y€(ENim f)\{0}

is a finite sum of finite numbers and is thus finite.

Definition 7.15 (Integral). Fixaring S ona set X and a metric space B. Further, let u be afinitely additive
measure p on S. Given a simple p-integrable function f, we define the integral

/deu: > w( )y

y€(im f)\{0}

Note this is a finite sum with o (f = ({y})) finite, so [, f dp is finite.

Example 7.16. Given some E € S with u(E) < oo, we note [, 15 dp = p(E). This function is simple
p-integrable: im(1g) = {0,1}, and 1;'({1}) = E has u(E) < cc. Thus,

/ 1 dpt = 1u(E) = p(E),
X

as desired.
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Note that the sum in the above definition is a finite sum by definition of f, and each f~*({y}) is also in S by
definition of f again.
Here are the usual sanity checks once we've defined some functions.

Lemma 7.17. Fix aring S on a set X equipped with a finitely additive measure p and a normed k-vector
space B. Then the simple p-integrable functions valued in B form a k-vector space.

Proof. By definition, note that simple u-integrable functions are also simple S-measurable functions, so it
suffices to show that we form a k-subspace of the space of simple S-measurable functions (see Lemma 7.9).
We use ideas from Lemma 7.9 to run our checks.

« Scalar multiplication: fixa simple u-integrable function f, and letr € k, and we show r f is stilla simple
p-integrable function. As usual, 7 = 0 gives 7 f = 0, so checking f~!({y}) € S with finite measure for
y € (im f) \ {0} is vacuous.

Otherwise, we have r # 0. We showed in Lemma 7.9 thatany y € (imrf) \ {0} will have

) {yh) = {1/ yh).

Thus, if y € (imrf) \ {0} so that the left-hand side is nonempty, then 1/r -y € (im f) \ {0} as well;
notably, 1/7 -y = 0 would force y = 0, so we must have 1/r - y # 0. Now, f~1({1/r - y}) € S has finite
measure by hypothesis on f, so (rf)~1({y}) has finite measure as well.

« Addition: suppose f and g are simple p-integrable functions so that we want to show f + g is still a
simple p-integrable function. We showed in Lemma 7.9 that any y € B\ {0} will have

(f+9 "= U (Fdyv—chng'{c}).

c€(img)

In particular, (f + g) "' ({y}) € S as we discussed in Lemma 7.9, and then Lemma 5.55 tells us that

p((f+9) " )< Do nlg'ded),

c€(im g)

which is a finite sum of finite real numbers and therefore finite. It follows that f + g is in fact a simple
u-integrable function. [ |

Lemma 7.18. Fix a ring S on a set X equipped with a finitely additive measure p and a normed vector
space (B, ||-||). If f is a simple u-integrable function, then = — | f(z)]| is also a simple p-integrable
function.

Proof. As before, we continue from Lemma 7.11. Namely, we set g(z) = ||f(x)||, and we know that g is
already a simple S-measurable function.

Thus, we pick up any r € (img) \ {0}, and we need to show that g~ ({r}) has finite measure. Well, in
Lemma 7.11, we defined

B, ={yeimf:|y|=r}
and showed that

b= U e

yeB,

Now, each f~1({y}) has finite measure by hypothesis on f, so the total finite union g1 ({r}) will have finite
measure by Lemma 5.55. |
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7.2 October28

We continue our story with integration by defining what we mean by a measurable function.

7.2.1 Measurable Functions
The following definition is non-standard but is how to think about our integrals in practice.
Definition 7.19 (Measurable function). Fixa set X and a o-ring S on X. Given a normed vector space B,

an S-measurable functionis a function f: X — Bsuch thatthereisasequence of simple S-measurable
functions { f,, }»en Which converge to f pointwise.

Remark 7.20. Later in life, when we take B = R, we will allow the functions f,, to output at co, but we
will not do so while we allow B to be a normed vector space.

Sometimes we won't converge “on the nose,” so we will want a little freedom.

Definition 7.21 (Null set). Fix a set X and a o-ring S on X equipped with a measure . A null setis a
subset N C X such that there is some E € S such that N C F'and u(N) = 0.

Definition 7.22 (Almost everywhere). Fix a set X and a o-ring S on X equipped with a measure p. A
property P(z) for points 2 € X holds almost everywhere if and only if {x € X : =P(z)} is a null set.

Definition 7.23 (Converges almost everywhere). Fix a set X and a o-ring S on X equipped with a mea-
sure u. Given a metric space B, a sequence of functions f,,: X — B withn € N converges to a function
f: X — B almost everywhere if and only if f,,(z) — f(x) almost everywhere.

Definition 7.24 (Measurable function). Fix a set X and a o-ring S on X equipped with a measure .
Given a metric space B, a u-measurable function is a function f: X — B such that there is a sequence
of simple S-measurable functions { f,, } ,en Which converge to f almost everywhere.

Here is the usual sanity check.

Lemma 7.25. Fix a normed k-vector space B and a set X with a g-ring S on X. Then the set of all
S-measurable functions forms a k-vector space under pointwise operations.

Proof. We already know that the set of all functions X — B will form a k-vector space under the pointwise
operations, so we just need to show that we have a subspace. Well, pick up S-measurable functions f and
g and some scalars a, b € k. We show that h := af + bg is still S-measurable.

Well, f being S-measurable promises simple S-measurable functions { f,, }nen With f,, — f pointwise;
similarly, we get simple S-measurable functions {g,, }.en With g,, — g pointwise. Now, we define

hyp = afn + bgn,

which is a simple S-measurable function by Lemma 7.9.
It remains to check that h,, — hasn — oo. Let| - | be the norm on k, and let ||-|| be the norm on B, and
fix some z € X. Now, forany e > 0, find Ny > 0 such that

w> Ny = 1) - 5l < g
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where we note that |a| + 1 > 0 makes this division legal. Similarly, we find N, > 0 such that

n> Ny = 5@~ @)l < gy

Thus, n > max{Ny, Ny} will have

1h(z) = ha(@)]| < lal - (z) = fa(@)]| + 6] - lg(2) = gn(2)]] <lal - 5 + 18- 5 j <&

€ €
(la] +1) (|o] +1
which finishes. [ ]

Lemma 7.26. Fix a ring S on a set X. Given two S-measurable functions f,g: X — R, the function fg
is S-measurable.

Proof. We are given sequences of simple S-measurable functions { f,, }nen and {g, }nen such that f,, — f
and g, — g pointwise. Thus, foreach z € X, we see (fng,)(z) — (fg)(x) by taking products of limits, so we
conclude f,g, — fg pointwise. However, f, g, is simple S-measurable by Lemma 7.12. |

7.2.2 Properties of Simple Measurable Functions

Something annoying about our definition is that we can only work simple S-measurable functions “directly.”
One might wonder, for example, if alooking at limits f,, — fasn — cowhere each f,, is S-measurable might
give a function f which is not S-measurable. This turns out to not be the case, but it will take some work to
prove.

In particular, we will want a better description of S-measurable functions. For today, we will content
ourselves with necessary conditions.

Definition 7.27 (Separable). A topological space M is separable if and only if there is a countable dense
subset of M. As such, a subset A C M is separable if and only if A is separable with the restricted
metric; in other words, A C M is separable if and only if there is a countable subset B C A such that
ACB.

Example 7.28. If A C M is countable, then we can see that A C A by definition of the closure, so A is a
countable dense subset with A C A.
Here is a quick sanity check.

Lemma 7.29. Fix a metric space (M, d). A subset A C M is separable if and only if there is a countable
subset B C M such that A C B.

Proof. In the forward direction, having a countable subset B C A with A C B will certainly imply having a
countable subset B C M with A C B.

In the reverse direction, we begin with a countable subset B C M with A C B. For now, fix some ¢ > 0.
Then eacha € A has B(a,e/2) N B # @ by Lemma 2.57, so choose some b, € B with d(a, b ,) < £/2. Now,
the subset

B, ={bey:a€ A} CB

must be countable, so enumerate its elements by B. = {b.1,b:2,...}, and for each b, j, we select some
ac 1 € Asuchthatd(be i, ac 1) < €/2, which exists by construction of B..
We now go back to letting £ > 0 vary. As our countable subset, we now set

B = U {a1/ni k€ Zso}.

n=1
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Indeed, we claim that A C B’, which shows density by Lemma 2.57. For this, we pick up any @ € A and
€ > 0, and we show that B(a,e) N B" # @. Well, find some N with N > 1/¢. By construction of By, we
may find some k with b, /n 1, = b1/n,4, which means that

1 1
d(aval/N,k) < d(a,bl/]\/"k) + d(bl/N,k,al/N,k) 2N + ﬁ <€

Thus, a1y, € B’ is the element we are looking for. [ ]

Example 7.30. We give R the usual metric. Then any subset A C R is separable: set B := Q. Then
B =R contains A4, but B is countable, so we are done by Lemma 7.29.

Remark 7.31. To help our intuition that this should be a smallness condition, we note that if M is a
separable space, then any subspace A C M is still separable. Indeed, there is some countable subset
B C M with B =M, so A C M follows.

Example 7.32. Given countably many separable subsets {A,, },en of a metric space B, the union A =
U,en An is separable. Indeed, each A,, has a countable B,, C M with A,, C B,,.

Now, set B = J,,cy Bn, Which is countable; we claim that A C B, which will finish. Because B,, C
B C B, we see that B is a closed subset containing B,,, so A,, C B,, C B follows. Thus, A C B.

Here is why we just defined separable subsets.

Lemma 7.33. Fix a normed vector space B and a set X with o-ring S on X. Any simple S-measurable
function f: X — Bhasim f C B separable.

Proof. By definition of simple measurable functions, im f is finite and hence separable by Example 7.28. B

Here is a last moderately silly check.

Lemma 7.34. Fix a normed vector space B and a set X with o-ring S on X. Any simple S-measurable
function f: X — Bhas f~}(U \ {0}) € SforanyopenU C B.

Proof. Recall that im f is finite by definition, so enumerate im f by (im f) N (U \ {0}) = {v1,...,¥Yn}. Then

we note that
n

HUN\A0}) = f7H((im £) N (U \ {0})) U "))

However, f~1({yx}) € S for each k, so the total union lives in S because S is a ring. |

7.2.3 Properties Preserved by Limits
Now, to upgrade from simple S-measurable functions to S-measurable functions, we take limits. Here is

the separability check.

Lemma 7.35. Fix a metric space M and a set X. Suppose a sequence of functions f,,: X — Bforn e N
have a pointwise limit f,, — fasn — co. If eachim f,, C M is separable, thenim f C M is separable as
well.
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Proof. For each n, find the countable subset C,, C im f,, with im f,, C C,,. Then we set

C = Cn,

neN

and we note that C is the countable union of countable subsets and hence countable. We thus claim that
im f C C, which will finish by Lemma 7.29.

Well, fix any y € im f, and find some z € X withy = f(x). Forany e > 0, we need to show that
B(y,e) N C # o; this is enough by Lemma 2.57. For this, we note that there is some N such thatn > N
implies

d(f(x), fulz)) <e/2,

where d is the metric of M; set n := N. Further, we recall im f,, € C,,, so Lemma 2.57 promises us some
¢ € Cy, suchthatd(f,(x),c) < /2. In total,

d(y.c) < d(f (@), fu(@)) +d(fa(@).c) < 5+ 5 = ¢,

which is what we wanted. [ |

Corollary7.36. Fixa normed vector space B and aset X with o-ring S on X. Any S-measurable function
f: X — Bhasim f C B separable.

Proof. By definition of being S-measurable, thereis a sequence of simple S-measurable functions f,,: X —
B with f, — fasn — oo pointwise. Each f, has im f, separable by Lemma 7.33, so f does as well by
Lemma 7.35. u

Making Lemma 7.34 work in limits requires a little more care.

Lemma 7.37. Fix a normed vector space B and a set X with o-ring S on X. Suppose that a sequence of
functions f,,: X — Bhave f,,}(U\{0}) € SforeachopenU C B. Then satisfy the following conditions
for each f,. If f, — f pointwise asn — oo, then f~1(U \ {0}) € S for each open U C B as well.

Proof. Thisis a little tricky. We will replace U with U \ {0} and simply remember that 0 ¢ U.
The main point is that any z € f~}(U) will have f(z) € U, and elements of U should have some small
positive distance away from B \ U. Namely, we set

Up ={x€U:dx,B\U)>1/m}
forany m > 1; here, dis the metric of B, and d(x, B\ U) = inf ¢ p\y d(7,y). Here are a few checks.

+ Asan intermediate claim, we note that d(x,y) + d(y, B\ U) > d(z, B\ U). Indeed, foranya € B\ U,
note that
d(z,y) +d(y,a) > d(b,a) = d(z, B\ U),

SO
d(yaa) Z d(va \ U) - d(l’7y)

Letting a € B\ U vary in this last inequality tells us that d(y, B\ U) > d(x, B\ U) — d(z, y).

+ Note that each U,, is open. Indeed, if z € U,,, thensete := d(z, B\ U) — 1/m > 0. This means that
d(z,y) < e implies, from the previous check,

soy € Up,. Thus, B(z,e) C U.
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 We claim -
U= Un
m=1

In one direction, z € U,, implies d(z, B\ U) # 0 by Lemma 3.13,sox ¢ B\ U,soz € U.

Inthe otherdirection, note 2z € U implies thereissomee > 0with B(x,¢) C U, so B(x,e)N(B\U) = &,
sod(x, B\ U) > e. Thus, thereissome m > 1/e with d(z, B\ U) > 1/m and so z € U,, for this m.

« From the above claim, we note that 0 ¢ U,, for each m because 0 ¢ U.

« WeclaimU,, C Uy,41 foreachm;sete .= L — 1> 0. Now, ifz € U,,, then we see B(z,£)NU,, # @
by Lemma 2.57, so we may find y € U,, with d(z,y) < . It follows from the first check that

1
m—+1

)

d(z, B\U) > ~d(z,y) +d(y, B\ U) > _5+%:

sox € U, follows.

Now, we see from the above that
oy = o,
m=1

Thus, z € f~1(U,,) implies that there is some e > 0 with B(z,¢) C U,,,; because f,, — f asn — oo pointwise
(1), there is some N for which f,,(z) € B(z,¢) C U, foreachn > N, so

el U N L.

m=1 N=1n>N

Converﬁy, if x lives in this right-hand set, we have some m and N with £, (z) € U,, C U,, foralln > N. So
f(z) € Uy, by Lemma 2.50, so f(z) € Up41 C U follows. Thus, equality in the above containment follows.

In total, we see that
roy=U U N .

m=1 N=1n>N

Notably, £, *(U,,) € S for each n and m, by construction of the f,,s, so this full union of unions of intersec-
tions is still in S, using the fact that S is a o-ring and Remark 5.24. [ |

Corollary 7.38. Fixa normed vector space B and aset X with o-ring S on X. Any S-measurable function
f: X = Bhas f~}(U\ {0}) € SforeachopenU C B.

Proof. Any simple S-measurable function satisfies the conclusion by Lemma 7.34. However, because S-
measurable functions are limits of simple S-measurable functions, S-measurable functions satisfy the con-
clusion as well by Lemma 7.37. |

Remark 7.39. Note that the case of B = R, we see that f~1(U) is measurable for any open U C R,
where f is an S-measurable function. By taking unions and complements appropriately, we in fact see
that f=1(U) is measurable for any Borel set U C R. This is the usual definition of a (Borel) measurable
function X — R, and we will show it is equivalent to the one we gave next class.

7.3 October 31

We continue our discussion of measurable functions by giving an alternate definition.
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7.3.1 A Better Measurable

Last class, we saw that measurable functions have some nice properties. Today we show that these prop-
erties actually characterize our measurable functions.

Theorem 7.40. Fixa normed vector space Bandaset X withao-ringSon X. Thenafunction f: X — B
is S-measurable if and only if

(i) im f is separable, and

(ii) foranyopenU C B, we have f~1(U \ {0}) € S.

Remark 7.41. Using ideas of Proposition 2.31, it suffices to check (ii) on a sub-base for the topology on
B. In particular, it suffices to check (ii) on open balls.

Proof. Last class we provided the forward direction; namely, (i) follows from Corollary 7.36, and (ii) follows
from Corollary 7.38. Today we show that (i) and (ii) imply that f is the limit of simple S-measurable functions.
There are two steps.

1. We construct our simple S-measurable functions { f,,},.en. Because im f is separable by (ii), we may
find some countable subset {b;}5°, C im f dense inim f. Now, for each i, j € N, define

Cji = f~H(B(bi, 1/5) \ {0}),

which is always in S by (ii). Our goal is to carefully make the C}; disjoint in order to define our sequence
{fn}nen of simple S-measurable functions, and we prefer C;; with j large because these will give a
finer approximation of f. In particular, we order C}; lexicographically by (7, ¢): namely, (j,7) < (¢, k) if
andonlyifj <forj=~/¢andi < k.

We now fix n and define our f,,. To make our C}; appropriately disjoint, we will focus on the (3, )
bounded above by (n,n). Namely, for (j,7) € {1,2,...,n}?, we set

Ejnl = Cji U Czk .

(5,8)<(£,k)
1<t,k<n

For example, E;rLLn = Cnn and En,n—l = 071,,17,—1 \ Cn,n and En,n—Q = 071,,77,—2 \ (Cn,n ) Cn,n—Q) and so
on.

Notably, £7; C Cj; always, which means that the E7 are all disjoint: note (j,4) # (j',4’) implies that
(J,1) < (4'4") or (§',i') < (4,4). Taking (j,4) < (j',4’) without loss of generality, we see that £7; C
Cji \ Cjriv is disjoint from E7,,, C Cjryr.

With this in mind, we define
fn = Z Z bllE;’L
j=11i=1

Note that im f,, = {0,01,...,b,} because the E7; are disjoint, which we see is finite. Further, for any
b;, we can compute

fot o) = U B

which isin S because S is aring. Thus, f,, isin fact a simple S-measurable function.

2. It remains to check that f,, — f pointwise asn — occ. If z ¢ f~(B\ {0}), then f(z) = 0 whilez ¢ C};
always and so = ¢ E7; always and so f,,(z) = 0 for all n; so f,.(z) — f(z) follows with nothing to say
in this case. Thus, we may assume f(z) # 0.
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Now, take ¢ > 0, and we need to find N such that n > N implies |f(z) — fn(z)] < e forn > N.
This has two steps: first, take some j with Jl < ¢, and second, we choose iy by density such that

f(x) € B(bi,,1/4)." As such, set N := max{j,io} +1sothat y < ; < eandiyp < N. Notably,
f(z) € B(bi,,1/h) \ {0} implies that
x e Cjoio'

We now begin our check. If n > N, then z € EJ,, where
(¢, k) =max{(j,i) :x € Cjyand 1 < j,i < n}.
Namely, there is certainly some (j,4) withx € Cj; and 1 < j,i < n because z € Cj, ;, while jo,i0 <

N < n, so the maximum certainly exists. And we see x € E}, because having (j,i) > (¢, k) with
1 < j,i < nwillimply that z ¢ C}; by maximality of (¢, k).

Now, fn(x) = by, by construction, and (jo,%0) < (¢, k) by maximality implies that jo < /and so
f(x) € B(bi, 1/£) € B(br, 1/jo) € B(by,e),
so |f(z) — fu(x)| < e follows.

The above steps complete the proof. |

Corollary 7.42. Fix a set X with o-ring S. A function f: X — R is S-measurable if and only if f~1(U \
{0}) € S for each open U C R.

Proof. If f is S-measurable, then this follows from Corollary 7.38. Conversely, if f~*(U \ {0}) € S for each
open U C R, then we note im f C R is separable by Example 7.30, so f is S-measurable by Theorem 7.40.
|

Corollary 7.43. Fix a set X with o-ring S. If f: X — R is S-measurable, and g: R — R is continuous
such that g(0) = 0, then g o f is still S-measurable.

Proof. ForanyopenU C R, we note

(go HTHUN{OY) = (g7 WUN{0}) =/ (g (U) \ g™ ({0}) -

Now, ¢g~1(U) C R is open because g: R — R is continuous, and 0 € ¢~ '({0}) because g(0) = 0, so
f7 (971 (U) \ 971 ({0})) € S by Corollary 7.38. Thus, g o f is S-measurable by Corollary 7.42. [ ]

7.4 November2
We begin class by finishing the proof of Theorem 7.40. | have simply edited that proof for continuity reasons.

7.4.1 Some Measurable Facts

We now use Theorem 7.40 for fun and profit.

1 Note that B(f(z),1/5)N{b; : i € N} is nonempty becauseim f C {b; : i € N}; we are choosing ig withb;, € B(f(z), 1/5), which
means f(z) € B(b;,,1/7)
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Corollary 7.44. Fixa normed vector space B and a set X witha o-ring S on X. Ifa sequence of functions
{fn}nen are S-measurable, and f,, — f pointwise asn — oo, then f is also S-measurable.

Proof. By Theorem 7.40, we have two checks.

(i) We show thatim f is separable. Well, each im f,, is separable by Theorem 7.40, so this follows from
Lemma 7.35.

(i) We show that f=1(U \ {0}) € S for each open U C B. Well, each f,, has f,,*(U \ {0}) € S for each
open U C B, so the same holds for f by Lemma 7.35.

The above checks show that f is S-measurable by Theorem 7.40. |

Corollary 7.45. Fix a normed vector space (B, ||-||) and a set X with a o-ring S on X. If f is an S-
measurable function, then z — || f(z)|| is as well.

Proof. For brevity, set g: X — Rby g(z) = | f(z)||. By Theorem 7.40, there are two checks.
(i) Note thatim g C R must be separable by Example 7.30, so there is nothing more to say here.

(ii) ForanyopenU C R, we see that
U'={zxeB:|z|| U}

is open in B because x — ||z|| is continuous by Example 1.38. Thus, g~ (U) = f~1(U’) € S because f
is S-measurable. [ ]

Example 7.46. If f: X — Ris S-measurable, then Corollary 7.45 tells us that | f| is also S-measurable.
As such, if f,g: X — R are S-measurable, then (f + g) and (f — g) are S-measurable by Lemma 7.25,
so |f — g| is S-measurable, so

(f+9) —I|f -4l
2

(f+9) +1f -yl
2

min{f,g} = and max{f,g} =

are S-measurable by Lemma 7.25 again. Inducting, for any S-measurable functions {f;}?_,, the mini-
mum function min{ f1, ..., f»} and maximum function max{fi, ..., f,} are both S-measurable.

We next talk a little about restriction.

Lemma 7.47. Fix a normed vector space B and a measure space (X,S,u)andaset E€ S.If f: X —» B
is simple S-measurable or S-measurable or simple p-integrable, then f1g is as well.

Proof. Before doing anything, we pick up a few facts. Note that
imflg ={f(x)lg(z) :2 € X} C{0U{f(z) :x € E} C{0}Uim f.
Also, if S C B\ {0}, then we claim
(f12)71(8) = EN f71(9).

In one direction, note z € E N f~1(S) implies that (f1g)(x) = f(x) € S. In the other direction, if z €
(f1g)~%(9), then note » € E is forced because otherwise f(z) = 0 ¢ S. Thus, with z € E, we have
(flg)(z) = f(z),so (f1g)(z) € Sforcesz € f~1(S)as well.

We now note that we actually have three claims to show, which we show in sequence.
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» Suppose that f is a simple S-measurable function. As such, im f is finite, so im f1g C {0} Uim f is
also finite.

Further, for each y € (im f1z) \ {0}, we see that (f1x)"*({y}) = E N f~1({y}) as discussed above,
which lives in S because E € Sand f~!({y}) € S.

» Supposethat fisan S-measurable function. Thenim f is separable, so it follows {0}Uim f is separable
(by Example 7.32), soim f1g C {0} Uim f is separable (by Remark 7.31).
Now, for any open subset U C B\ {0}, we see (f1g) 1 (U) = EN f~}(U) as discussed above, which
lives in S because E € Sand f~1({y}) € S.

+ Suppose that f is a simple pu-integrable function. As before, im f is finite implies that im f15 C {0} U
im f is still finite.

Further, foreachy € (im f1g)\ {0}, wesee (f1r) ' ({y}) = EN f~*({y}), which saw in our first point
to live in S, but now we note that Lemma 5.51 tells us

p((f1e) " ({yh) < (f{y)h) < oo
is finite. u
Remark 7.48. On the other hand, if X \ E € S, then we see that f1g still gets the relevant adjectives.

Indeed, each of the classes is a vector space (by Lemma 7.9 and Lemma 7.25 and Lemma 7.17), so it's
enoughtosee flgp = f — flx\g and apply Lemma 7.47.

Corollary 7.49. Fix a measure space (X, S, 1) and a normed vector space B. Further, fixa yu-measurable
function f: X — B. Then thereissome N € S such that u(N) = 0 while f1y is S-measurable.

Proof. Because f is u-measurable, there is a sequence of simple S-measurable functions { f,, },en such that
fn — [ almost everywhere. Thus, there is some N € S such that u(N) = 0 while f,(z) — f(z)asn — o
foreachz € X \ N.

We now show that f1 is S-measurable. Indeed, we claimthat f,,1y — f1y asn — oo pointwise, which
will finish because each f,,1y is simple S-measurable by Lemma 7.47. If x ¢ N, then we're just asking for
fa(x) = f(x) asn — oo, which we know. On the other hand, if x ¢ N, then we're asking for 0 — 0 as
n — oo, for which there’s nothing to say. [ |
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THEME 8
INTEGRATION

Having thus refreshed ourselves in the oasis of a proof, we now turn
again into the desert of definitions

—Theodor Brocker and Klaus Janich, [BJ82]

8.1 November?2

We now switch gears and begin moving towards integration more directly.

8.1.1 Integrating Simple Functions

We begin by picking up some facts about our integral.

Lemma 8.1. Fix a normed vector space B and aring S on a set X equipped with a finitely additive mea-
sure u. Then the mapping
£ [ fan
b's

from simple p-integrable functions to B is k-linear.

Proof. Unsurprisingly, we use the ideas of Lemma 7.17 to compute our integrals. We have two checks.

+ Scalar multiplication: fix a simple u-integrable function f and ascalarr € k. If r = 0, thenrf = 0, so
Jx(rf)du=0=r [y fduvacuously, so there is nothing more to say.

Otherwise, we have r # 0, and we remarked in Lemma 7.17 that we have
() {yh) = FH {1/ -y
In other words, imrf = {ry : y € im f} with (rf)"*({ry}) = f~1({y}) foreachy € im f.
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Thus, we compute

/X thdu= S w(H D)y

y€(imrf)\{0}

= > w(H | ryp) -y

ry€(imrf)\{0}

=r > ey

y€(im f)\{0}

—r/ fd.

+ Addition: fix simple u-integrable functions f and g. We remarked in Lemma 7.17 thatany y € B\ {0}

will have
f+9 ' = U (Fdv-chng'(y}) = U (FH ) N ({e})) -
c€(im g) be(im f),c€(im g)
b+c=y

Now, note that this union is in fact disjoint because the fibers f~1({b}) are disjoint. Thus, we may say

that
p((f+o) Ew)) = > e {)ng ' {ce}).

be(im f),ce(im g)
b+c=y

Looping through all y, we see

/X Fradu= S w((F+9 ()

y€im(f+9)\{0}

= > > w (e N {e})) (b+ )
y€im(f+g)\{0} bG(ime;)c-,C_Gy(im 9)
= > > (Y NgT {) (b +0)

be(im f) ce(im g)

SO (DN e b+ S () g ({eh) e

be(im f) ce(im g) c€(im g) be(im f)

Now, we note that

L] /@ =x and || ¢'()=

be(im f) ce(im g)

because the fibers should cover the domain and are disjoint. It follows that from the finite additivity of

1 that
[rad= 3wl @b+ X nl e
X be(im §) c€(img)
whichis [, fdu+ [y gdp, whichis what we wanted. [ |

Lemma 8.2. Fix a normed vector space (B, ||-||) and aring § on a set X equipped with a finitely additive
measure p. Given a simple p-integrable function f: X — B, we have

| ra < [ nsia
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Proof. Note g := || f]| is a simple p-integrable function by Lemma 7.18. Now, the statement is essentially
the triangle inequality for ||-||. Indeed, we compute

TRER

S ou(F )y S w7 Hw)) -

y€(im f)\{0} ye(im f)\{0}
Back in Lemma 7.18, we established that
= U ey
y€im f
lyll=r

for each r € (img) \ {0}. Note also that the above is a disjoint union: if z € f~1({y}) N f~1({y'}), then
y = f(z) = y'. As such, the finite additivity of p tells us

H/ fd“H S > nUTWl= XD wle D) il = /X gdp,

€(im g)\{0} ?ﬂehmf r€(im g)\{0}
y||l=r

which is what we wanted. [ |

Lemma 8.3. Fix a ring S on a set X equipped with a finitely additive measure . If a simple p-integrable
function f: X — Rhas f(z) > 0foreach z € X, then

[ fdnzo

Proof. Note that each y € (im f) \ {0} hasy > 0 and so

/ fdp= () y

y€(im f)\{O}

is nonnegative term-by-term, so [ f du > 0 follows. |

Corollary 8.4. Fix a ring S on a set X equipped with a finitely additive measure u. Given simple p-
integrable functions f,g: X — R, if f(z) > g(x) for each z, then [ fdu > [ fdpu.

Proof. Set h(z) := f(x) — g(x), which is a simple u-integrable function by Lemma 7.17. Note h(xz) > 0 for
each z, so Lemma 8.3 tells us that
/ h(z)du > 0.
X

However, by Lemma 8.1, we conclude that

| n@au= [ raan= [ owan

so [y f(x)dp > [y g(x) dp follows. [ |

The above positivity result suggests a semi-norm on our space.
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Notation 8.5. Fix a normed vector space B and a ring S on a set X equipped with a finitely additive
measure p. Given a simple p-integrable function f: X — B, we define

Tk :=/X 1£1 ds.

Note || f| is in fact a simple u-integrable function by Lemma 7.18.

Lemma 8.6. Fix a normed vector space B and aring S on a set X equipped with a finitely additive mea-
sure u. Then the function f — || f||, on simple p-integrable functions defines a semi-norm on the space
of simple p-integrable functions.

Proof. Note that simple u-integrable functions already form a space by Lemma 7.9. Here are our checks.

» Positivity: given a simple p-integrable function f, note that || f(x)|| > 0 forany z € X, so Lemma 8.3
tells us that [ | f|| du > 0.

 Zero: we show ||z||; = 0, where z: X — B is the zero function. Well, ||0]| is the zero function X — R
because [|0]| = 0, so the linearity of Lemma 8.1 forces [ ||z|| du = 0.

« Scaling: given asimple u-integrable function f: X — Bandsomescalarr, weneed | f|, = 7| fll;-
Well, r f is still a simple integrable function by Lemma 7.17, asis ||r f|| by Lemma 7.18.

However, the main point is that ||rf|| = ||7]| - || f]| by checking pointwise: any 2 € X has

lr £l (@) = lirf @) = N7l - 1 @)1= el - 111D ().

Thus, linearity of Lemma 8.1 forces

/X £l dys = /X Al 11 ds = ] - /X 171 d.

« Triangle inequality: given simple u-integrable functions f,g: X — B, we note that the triangle in-
equality gives

I+ gl (2) = [If(2) + g(@)[| < [f @) + lg(@)Il = I+ [lgl) ()

forany x € X. Thus, noting as usual that f + g and hence || f + g|| are both simple u-integrable, we
note Corollary 8.4 tells us

[+l du< [ Q151+ gl do
X X

As such, linearity of the integral from Lemma 8.1 tells us that ||f + g, < || £]l; + llgll;, which is what
we wanted. u

To make this a norm, we need to remove the problematic functions.

Notation 8.7. Fix a normed vector space B and a ring S on a set X equipped with a finitely additive
measure u. We define

SN(X,S,u, B) = {f simple integrable : || f||, = 0}.
Thus, Proposition 1.13 tells us that we're going to get a norm on the quotient of all simple integrable func-

tions by SN (X, S, u). In our story of integration, we are essentially interested in the completion of this
normed vector space.
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Example 8.8. Give [0, 1] the usual Lebesgue measure y, and let { E;}52, be pairwise disjoint Borel sub-
sets of R, where p(E;) < 4~% for each i. Then we see that

=1 =1

asn — oo, but the function on the right may be potentially quite hard to handle. Namely, we want

but changing the order of this integral and sum is somewhat tricky.

8.1.2 Convergencein Measure

In order to avoid the constant repetition of hypotheses, we pick up the following definition.

Definition 8.9 (Measure space). A measure space is a triple (X, S, 1), where S is a o-ring and p is a
measure on S. We also require p(@) < oo so that (@) = 0 by Remark 5.39.

Now, let me tell you the bad news.

Warning 8.10. A sequence { f,, }ren of simple integrable functions which is Cauchy for [|-||; need not
converge pointwise, at any point!

Example 8.11. Give [0, 1) the usual Lebesgue measure y, and for k > 1, define Ej, = [£52, EH1=20)
where n is the integer such that 2" < k < 2"T!. Then the sequence of functions {1g, }rcz., approaches

0 according to ||-||;, but it does not converge to 0 pointwise anywhere! We will be brief.

» Toseelp, — 0ask — ooaccordingto ||-||,, we note ||1g, ||, = 1/2™ by Example 7.16, which goes
to0as k — oo. (Namely, n = |log, k| — coas k — 0.)

» However, at particular z € [0, 1), there are infinitely many & for which « € Ej, (sothat 1, (z) = 1)
and x ¢ Ej, (so that 1g, (z) = 0), meaning 1g, (x) does not converge pointwise.

Indeed, fixany N, and we findsome k > N withz € Eandsomek > N withz ¢ Ei. Well, choose
any n > max{N, 2}, and we see that the sets Fon, Fon1,..., Eyni1_; are disjoint and cover [0,1)
by construction, so = will live in exactly one of them.

The main point of the above example is that our functions are allowed to look small according to ||-||; but be
relatively large for (say) ||| .-

To fix this bad news, we have the following definition.

Definition 8.12 (Converge in measure). Fix a measure space (X, S, ) and normed vector space (B, ||-||).
Then a sequence { f,, }nen of S-measurable functions converges in measure to an S-measurable func-
tion fifand onlyifalle > 0 have

lim p({e € X+ () = fale)]| 2 }) = 0.
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Remark 8.13. Notably, f and f,, are S-measurable, so f — f,, is S-measurable by Lemma 7.25,so0 g :=
Ilf — fnll is S-measurable by Corollary 7.45, so

{z:1f(@) = fal@)ll = €} = 97" ([e,00)) = g7"((0,00)) \ g~ ((0,))

isin factin S by Corollary 7.38. In particular, the limit in Definition 8.12 actually makes sense.

Example 8.14. The sequence from Example 8.11 converges in measure to the zero function. Indeed, for
any k, we see

p({z € X |0 = 1g, (2)|| = e}) = p(Ex) = QLI%M

by Example 7.16, which goes to 0 as k — oc.

Of course, with a notion of convergence, we also have a notion of being Cauchy.

Definition 8.15 (Cauchy in measure). Fix a normed vector space (B, ||-||) and a o-ring S on a set X
equipped with a measure p. Then a sequence {f, }nen of S-measurable functions is Cauchy in mea-
sureifand only if alle > 0 have

im p({e € X : || f(@) - fula)] > £}) = 0.

m,n— 0o

Remark 8.16. Again, we note that f,, — f,, is S-measurable by Lemma 7.25, so g = || fm — fnl| is S-
measurable by Corollary 7.45, so

{z: [ fm(2) = fa(@)]l 2 €} = g7 ([e;0)) = g7 ((0,00)) \ g7 ((0,€))

isin fact in S by Corollary 7.38. So we do see the limit in Definition 8.12 actually makes sense.

Remark8.17. In fact, if f,, and f,, are simple pu-integrable functions, then f,,, — f, isalsoby Lemma 7.17,
asis g == ||fm — fnl by Lemma 7.18. Thus,

g eo))= U g

y€(im g)N[e,00)

is a finite union of sets g~*({y}) of finite measure, so . (97 ([¢, 00))) is finite by Lemma 5.55.

8.2 November4

We continue our journey towards integrating functions.

8.2.1 Sequences Converging in Measure

We pick up some basic tools on sequences converging in measure.

Lemma 8.18. Fix a normed vector space (B, |-||) and a measure space (X, S, ). Now, suppose a se-
quence {f, }nen of S-measurable functions converges to both f and g in measure, where f and g are
both S-measurable. Then f = g almost everywhere;i.e., {x € X : f(x) # g(x)} is a null set.
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Proof. Before we do anything at all, we note that f — g is S-measurable by Lemma 7.25, so

N={zeX:f(x)#g(@)}=(f-9) " (B\{0}

is S-measurable by Corollary 7.38.
Now, fix any e > 0; we show p(N) < e. The key observation is that

1f(2) = g(@)| < |[f(2) = ful@)| + [l fu(2) — g(@)],
so it follows that || f(z) — g(x)|| > € forces || f(z) — fn(z)]| > €/2 or ||g(x) — gn(z)]| > €/2. Thus,
{z:[If(x) —g(@)| Z e} SH{z: If(2) = fal@)| Z e/2} ULz - [lg(z) — fu(z)l] = €/2},
so Lemma 5.55 tells us
nfe € X« [f(2) — g(@)l| > e}) < plfe € X : [[f(2) = fula)]| = /2}) + ul{z € X : |lg(a) — ful@)] = /2}).

But now, as n — oo, we see that the right-hand side goes to 0 + 0 = 0 because f, — fand f, — gin
measure, so it follows that
p{z e X« |[f(x) —g(x)l| =2 €}) = 0. (8.1)

We now send ¢ — 0*. Namely, we see f(z) # g(z) is equivalent to || f(z) — g(z)|| > 0 is equivalent to
|| f(x) — g(z)]| > 1/n for somen € N, so

N={zeX:f(x)#g(x)}={rcX:|f()-g(x)| >0} = |J{z € X :|f(2) - g(x)|| = 1/n}.

neN
Thus,
PN) <Y plfr e X | f(@) = g@)| = 1/n}) = > 0=0,
neN zeX
so N is in fact a null set. Notably, = has used (8.1). [ |

Lemma 8.19. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, u). Fix sequences of
S-measurable functions {f, }nen and {g, }nen with f,, — fand g, — ¢g in measure as n — oc.

(@) We have f,, + g, — f + g in measure.
(b) Given some scalara € k, we have af,, — af in measure.

(c) We have ||f.]| — || f]l asn — oo.

Proof. We go ahead and let | - | denote the norm on base field & of B.
(@) Note thatthe f,, + g, and f + g are all S-measurable by Lemma 7.25.
Now, by the triangle inequality, we see
(@) + 9(2)) = (Fa(@) + galo)] < 1) = Fulo)]| + l9(2) = gu(a)]].

We now proceed as in Lemma 8.18. Fix ¢ > 0. If the left-hand side exceeds ¢, then one of the terms
on the right-hand side must exceed £/2, so

{z: I(f(2) + 9(2)) = (ful2) + gn(@))]| = e} S {22 [[f(2) — fulo)]| = €/2}
U{z: lg(z) — gn(z)l| = €/2}.

Thus, Lemma 5.55 tells us

p{z = 1(f(2) + () = (fal@) + gn(@))]| = €}) < p({z: [[f(2) = ful2)] = £/2})
+ p{z - llg(@) = gn(2)|| = £/2}).
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However, £/2 > 0, so taking n — oo and using our convergence in measure tells us that

lim pu({e s )|(f(2) + (@) — (fu() + gu(@))] 2 }) <O+ 0 =0,

n—oQ

so we are done after noting that u will only output nonnegative values, so the limit is at least nonneg-
ative.

(b) Notethattheaf, and af are all S-measurable by Lemma 7.25.

Now, fix some ¢ > 0 so that we want to show that
. ?
L= lim p({z € X : [afa() — af ()] > £}) Lo,

Ifa =0,thenaf,(z) =af(x) =0forallz € X,so{z € X : |laf.(z) —af(x)|] > &} is empty, so the
result follows.

Otherwise, take a # 0 so that |a| > 0. Now, note |laf.(x) — af(z)]| = |a| - || fn(z) — f(x)]|, so it follows
lafn(z) —af(z)| > eifand only if || fn(x) — f(z)|| > €/|al. Thus,

L= lm u({r € X ¢ |fule) - F@)] = /lal}).
However, ¢/|a| > 0 because € > 0, so the above limit vanishes because f,, — f in measure asn — co.

(c) Observe that the g,, and g are all S-measurable by Corollary 7.45.

Now, fix some ¢ > 0. By the (reverse) triangle inequality,

HIF@I = (@) T < N1 (@) = fu(2)]]

soanye > 0 has

{z: [If @ = [[fa(@)I] = e} S {z - [[f(2) = fa(@)]] = €},

Thus, Lemma 5.51 tells us
Jim p({z: [f @) = Ifa(@)l[ = €}) < lim u({z: |[f(2) = ful2)]| = €}).

The right-hand limit vanishes because f,, — f in measure, so the left-hand limit must vanish as well
because the limit's terms are nonnegative. |

Here is the analogous result for sequences Cauchy in measure.

Lemma 8.20. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, u). Fix sequences of
S-measurable functions {f,, }nen and {g,, }nen Which are Cauchy in measure.

(@) The sequence {f, + gn}nen is Cauchy in measure.
(b) Given some scalara € k, the sequence {af, }nen is Cauchy in measure.

(c) The sequence of functions {|| f, || }nen is Cauchy in measure.

Proof. These proofs are essentially the same as Lemma 8.19 with the appropriate names changed. Again,
we let | - | denote the norm on base field k of B.

(a) Note that the f,, + g, are all S-measurable by Lemma 7.25.

Now, by the triangle inequality, we see
[(fm () + gm (@) = (fn(2) + gn (@) < [ fm(2) = fr(@)]] + [gm(z) — gn (@)
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Fix e > 0. As usual

{z 2 [1(fm(2) + gm(2)) = (fu(2) + gn(@))|| = e} S {2 2 [[fm(2) — fu(@)]| = £/2}
Uz [lgm(x) = gn(2)ll = €/2},

so Lemma 5.55 tells us

p{z [(fm (@) + gm(2) = (fa(@) + gn (@) = €}) < p({z : [|fm(2) = fu(2)|| = €/2})
+p{z: llgm(z) — gn(2)l| = £/2}).

However, £/2 > 0, so taking m,n — oo and using our Cauchy in measure conditions tells us that

im p({z : [|(fm(2) + gm(2) = (fu(2) + gn(2))l| Z €}) <0+ 0=0,

m,n—co

so we are done after noting that u will only output nonnegative values, so the limit is at least nonneg-
ative.

Note that the af,, are all S-measurable by Lemma 7.25.

Now, fix some € > 0 so that we want to show that

L= lim p({e € X : |lafu(®) —afu(@)] 2 c}) = 0.

m

Ifa =0,thenaf,(z) =af(x) =0forallz € X,so{z € X : ||afm(z) — afn(x)| > €} is empty, so the
result follows.

Otherwise, take a # 0 so that |a|] > 0. Now, note ||afi(2) — afn ()| = la| - |fm(z) — fu(z)|], so it
follows |lafm(x) — afn ()| > eifand only if || fr.(x) — fn(2)]| > €/|al. Thus,

L= lm u({z €X:|fm(z) = ful@)l = c/lal}).

m
However, ¢/|a| > 0 because ¢ > 0, so the above limit vanishes because { f,, }nen is Cauchy in measure.

Observe that the g,, are all S-measurable by Corollary 7.45.

Now, fix some ¢ > 0. By the (reverse) triangle inequality,

soanye > 0 has

{z: [[[fm(@) = [[fa(@)| = e} S{z: [[fm(x) = ful2)] = €}

Thus, Lemma 5.51 tells us
plim p({z s [ (@)l = (@)1 2 €}) < lim p({z: | fm(@) = fu(@)]] = €}).

The right-hand limit vanishes because { f,, }nen is Cauchy in measure, so the left-hand limit must van-
ish as well because the limit's terms are also nonnegative. |

We will want a few results on subsequences later on.

Lemma 8.21. Fix a normed vector space (B, ||-||) and a measure space (X, S, i). Now, fixS-measurable
functions {f,}nen and f. If f,, — fin measure as n — oo, then f,,, — f in measure as i — oo for any
subsequence { fy, }ien-
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Proof. Fixsomee > 0. Thenany d > 0 has some N for whichn > N has

{z € X ¢ [|f(2) - ful@)]| > €}) <.

As such, foranyi > N, weseen; >1i> N, so

p{z € X :||f(z) — fu(@)|| = €}) <6,
which finishes. [ ]

Lemma 8.22. Fix a measure space (X, S, 1) and a normed vector space B. Further, fix a sequence of
simple S-measurable functions { f,, } nen Which is Cauchy in measure. If a subsequence {f,, };en con-
verges to a function f in measure, then the full sequences { f,, },en converges to f in measure.

Proof. Fixanye > 0and d > 0. We need N such that n > N implies

0<u({z e X :|f(z) - fal@)]| > c}) < 6.

Well, we note that any n and 7 will have

1f (@) = fu(@)]| < (@) = fr: @) + [ e (2) = fu ()]

so
{re X |f(x) - ful@)l =} S{ze X |f(2) - fu, (@) = /2t U{a € X : | fu,(2) — fu(2)]] = €/2}.
Now, { fn }nen being Cauchy in measure allows us to pick N such that m,n > N implies
5
p{z € X ¢ [[fm(z) = fal@)ll 2 €/2}) < 5
Additionally, f,,, — f in measure grants N’ such that > N’ implies
)
p{z € X o |[f(2) = fui (@)l 2 €/2}) < 5.

Thus, forany n > N, we select any i > max{N, N'}. Notably, n; > i > N as well, so

d 4
plo € X 1f @) — fa@l 2 D) < S+ 5 =5,
where we have used the above inequalities in addition to Lemma 5.55. |

Lastly, here is the expected uniqueness results.

Lemma 8.23. Fix a normed vector space (B, ||||) and a measure space (X, S, ). Further, fix a sequence
{fn}nen of S-measurable functions converging in measure to an S-measurable function f: X — B.
Given an S-measurable function g: X — B, we have f = g almost everywhere if and only if f,, — gin
measure.

Proof. In one direction, suppose f = g almost everywhere so that we have some E € S with u(E) = 0 such
that f(z) # g(z) implies z € E. Now, fix some e > 0. Forany é > 0, we are promised N such thatn > N
implies

p{z e X o |[f (@) = fu(2)]| = €}) < 6.

Now, we note that ||g(z) — f.(z)|| > ¢ implies that either f(z) # g(x) sothata € For | f(z) — fn(2)| > &,
so it follows

{reX:llgla) - fu(@)l| Z e}t ={z e X :|[f(z) - fu(@)[| Z e} U{z € E: [lg(x) — fu(2)]| = }.
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Notably, u({z € E : ||g(z) — fn(z)| > £}) = 0 as a subset of E, so we see that

pfz € X o lg(e) = fa(0)]) <{z e X :|[f(2) - ful@)| = e} +0 <4,

which finishes this direction.
Conversely, suppose f,, — g in measure. Note that f(z) # g(z) if and only if | f(z) — g(x)|| > 0if and
only if || f(z) — g(z)|| > 1/m for some positive integer m. Thus,

{eeX:fl@)#£g@)} C Jlee X |f@)—g@)] =1/m}.

By Lemma 6.2, to show that {# € X : f(x) # g(z)} is a null set, it suffices to show that {x € X :
If(xz) — g(z)|]| > 1/m} is a null set. Well, note that any positive integer n has

1f (@) = g(@)| < [[f (@) = fal@)]| + llg(@) = ful@)],
implying
{z:[lf(2) —g(@)| = 1/m} S {a - [[f(2) = fulo)| = 1/(2m)} Uiz : [lg(z) = fu(2)]] = 1/(2m)}.

Now, forany ¢ > 0, because f,, — f and f,, — gin measure, we are promised some N large enough so that
n > N has

p{z 1 f(@) = ful@)ll = 1/(2m)}), p({z « [lg(z) — ful2)|| = 1/(2m)}) < g-
It follows by Lemma 5.55 that

]

plfr € X /(@) - g(@)l| 2 1/m}) < 3 + 2 =3

foranyd > 0. Thus, u({z € X : ||f(z) — g(z)|| > 1/m}) = 0 follows. |

8.2.2 Restricting Measurable Functions

Analogously to Lemma 8.19 and Lemma 8.20, we have the following.

Lemma 8.24. Fix a normed vector space (B, ||-|) and a measure space (X, S, ), and fix some E € S.
Given a sequence { f,, }nen of S-measurable functions with f,, — f in measure asn — oo, then f, 15 —
flg in measure asn — oo.

Proof. Note thatthe f,,1g and f1g are all S-measurable by Lemma 7.47, so the claim at least makes sense.
For brevity, we set g,, := || f1g — fn1E|| for each n. We would like to show

lim 4 (g, ([, 00))) = 0.

n—oo

If x ¢ E, then note g, (z) = 0; otherwise, g, (z) = ||f(z) — fn(z)|| because 1g(z) = 1. As such, fore > 0, we
seex € g, ([, 0)) requires x € E and then || f(z) — fn ()| > €; conversely, z € E with || f(z) — fu(2)| > €
does give g, (x) > e.

Thus, we note that

9n ([e,00)) S {z : If (@) = ful2)]l > €},

so Lemma 5.51 tells us

lim 41 (g ([£,00))) < lim g ({z: [If(2) — fu(@)l| = £}),

n—roo

where the right-hand limit vanishes because f,, — f in measure as n — oo. Thus, the left-hand limit also
vanishes because the terms of the limit are nonnegative. |
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Lemma 8.25. Fix a normed vector space (B, ||-||) and a measure space (X, S, ), and fix some E € S.
Given a sequence { f, }nen of S-measurable functions which is Cauchy in measure, then {f,1g}nen is
still Cauchy in measure.

Proof. As usual, the proof is exactly the same as before. Note that the f,,1r and f1g are all S-measurable
by Lemma 7.47, so the claim at least makes sense.
For brevity, we set g, , = || fm1E — fnlgl| for each m and n. We would like to show

2

lim g1 (g7 (2. 0))) 2 0.

m,n— oo

If z ¢ E, then note g,, ,(x) = 0; otherwise, g, n(2) = || fm(z) — fn(z)|| because 1g(x) = 1. As such, for
e > 0,weseex € gl ([,00)) requires z € E and then ||f,n(z) — fu(z)| > &; conversely, z € E with
[fm(2) = fu(2)]| = £ does give gm n(z) > ¢

Thus, we note that
g;zln([gﬂoo)) CHa || fn(2) = fu(2)]] > €},

so Lemma 5.51 tells us

lim g (gt ((500) € lim p({a: [ fn(@) = ful@)l] = ),

m,n— oo m,n— oo

where the right-hand limit vanishes because {f,, },.en is Cauchy in measure. Thus, the left-hand limit also
vanishes because the terms of the limit are nonnegative. |

The above corollary promises the following notation.

Notation 8.26. Fix a normed vector space (B, ||-||) and a measure space (X, S, i). Then a simple inte-
grable function f on X and E € S will have

/Efdu:/xflEdu-

Remark 8.27. One can define
us(B)= [ 1
E
and it is not too hard to check that this defines a measure on S which is valued in B. This p will later be

called the "indefinite integral for f."” We will postpone writing this out until we are ready to talk about
what this looks like when f is a general p-integrable function instead of a simple p-integrable function.

8.2.3 Almost Uniform Convergence
As we tend to do, we now return to a context which is perhaps too general.
Definition 8.28 (Almost uniformly). Fix a normed vector space B and a measure space (X, S, ). Thena

sequence of functions f,,: X — B forn € N converges almost uniformly to f if and only if everye > 0
has some £ € S such that u(E®) < eand f,|x\g — f|x\g uniformly.

Remark 8.29. The term “almost” above is different from the “"almost everywhere” that we've been see-
ing.

As usual, with a convergence definition, we have a Cauchy definition.
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Definition 8.30 (Almost uniformly Cauchy). Fix a measure space (X, S, 1) and a normed vector space B.
Then a sequence of functions f,,: X — B forn € Nis almost uniformly Cauchy if and only if everye > 0
has some £ € S such that u(E®) < e and { fu|x\ g }nen is uniformly Cauchy.

We take a deep breath and run some of our usual checks.
Lemma 8.31. Fix a normed vector space B and a measure space (X, S, u). Now, suppose a sequence

{fn}nen converges almost uniformly to a function f. Then, for a function g: X — B, we have f = ¢
almost everywhere if and only if f,, — g almost uniformly.

Proof. In one direction, suppose f = g almost everywhere so that {x € X : f(z) # g(z)} is contained in
some N € Ssuchthat u(N) = 0. Then foranye > 0, we note that f,, — f almost uniformly promises F' € S
such that (X \ F) < e while f,|r — f[r uniformly. Now, f|x\n = g|x\n, 5O We note f,|p\nv — glm\ N
uniformly (by restricting f,,|F — f|r uniformly) while

X\ (F\N)) = p((X \ FYUN) = p(X \ F) + u(N A F),

where (N N F) = 0 because p(N) = 0.

The other direction is harder. Define N := {x € X : f(z) # g(x)}, and we show that IV is a null set. Well,
forany d > 0, we are promised subsets Fy,Gq € S such that u(Fy), u(Gq) < 1/dand fu|x\r — flx\r and
Jnlx\¢ = 9]x\¢ uniformly as n — oo.

In particular, if z ¢ (Fy U Gg4), then our uniform convergence will imply pointwise convergence at x, so
fu(x) = f(2z) and fr(x) — g(x) asn — oo. It follows that f(x) = g(z) by properties of convergence. Apply
contraposition, we conclude that N C F; U Gy; as such, we use Lemma 5.55 to note that

p(FU Ga) < p(Fa) + p(Ga) < 2.

We now send d — oco. Define
E = m (Fd @] Gd),

d>1

which lives in § because S is a o-ring. As above, we see that N C F; U G, for each d, so N C E. Further,
E C F3 UGy tells us by Lemma 5.51 that

H(E) < p(FqUGq) <

ISHIL

for any positive integer d. In particular, sending d — oo forces u(E) = 0, which finishes the proof that N is
anull set. [ |

—~

Lemma 8.32. Fix a normed vector space B and a measure space (X, S, ). Given a sequence of func-
tions {f,}nen converging to f: X — B almost uniformly, we have f,,, — f almost uniformly for any
subsequence { f,, }ien-

Proof. Foranye > 0, we are promised £ € S such that u(X \ E) < eand f,, — f uniformlyon X \ E. This
means that any § > 0 has some N such thatn > N implies

[fn(2) = f(2)]| <6

foreach z € X \ E. However, this implies that i > N givesn; > i > N and thus

|fulz) = f(z)] <6
foreachz € X \ E, so f,, — f uniformly on X \ FE as well. |
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Lemma 8.33. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, ). Fix sequences of

nctions f,,: X — Bandg,: X — Bwith f,, — fand g, — g almost uniformly as n — cc.

(@) We have f,, + g, — f + g almost uniformly.

(b) Given some scalara € k, we have af,, — af almost uniformly.

(c) We have || f,|| — || f|l almost uniformly as n — oo.

Proof. We go ahead and let | -| denote the norm on k. Foranye > 0, we willalso goaheadand let F.,G. € S
denote the subsets of X with u(F.), u(G:) < e for which f,|x\r. — fand gn|x\¢. — g uniformly.

(a)

Foranye > 0, define E. := I, UG, /5. Namely, E. € S, and by Lemma 5.55, we see

1(Ee) < p(Fej2) +p(Geje) = €.

As such, we claim that (f,, + gn)|x\6. = (f + 9)x\ . uniformly asn — oc.

Well, for any 6 > 0, we are promised Ny such thatanyn > Ny and = ¢ F,/, will have

1f(2) = fu(@)l] < 0/2.

We are promised an analogous constant N, for g,, going to g, so we set N := max{Ny, N;}. Then
n > N impliesn > Nyandn > Ng;assuch,ifz ¢ E. thenz ¢ F,,andx ¢ G. /5, SO

)

I(F +9)(@) = (fa + gu) @) < £ (2) = fal(@)| + llg(2) = gu(@)ll < 5 + 5 =4

If a = 0, then we see that af,, = af = 0. As such, forany e > 0, we set E = & so that u(E) = 0 while
afn — af uniformly as n — oo because af,(z) =0 =af(x)foranyz € X.

Otherwise, we have a # 0 and so |a| > 0. Thus, for any e > 0, we note F; will have u(F.) < ¢, so we
claimthat (af,)|x\r. — (af)|x\r uniformlyasn — oc.

Well, we already know that f,,[x\r. — f|x\r. uniformly asn — occ. Thus, forany d > 0, thereis a
constant N so thatanyn > N and z ¢ F. will have

1£(@) = ful@)] < |‘5

It follows that n > N and = ¢ F. gives

[(af)(x) = (afa)(@)] = |a| - || f(z) = ful2)]| < |a] - (‘; -5

Unsurprisingly, for any ¢ > 0, we note that F. has u(F;) < ¢, so we claim that || f[|,, [x\r. = |[f]l |x\~.
almost uniformly as n — oc.

Well, we know that f,,|x\r. — f|x\r. @asn — oo. Thus, forany ¢ > 0, we are promised a constant N
such thatn > N and z ¢ F. will have

I f(x) = fu(z)] < 0.

As such, we note that the (reverse) triangle inequality gives

HF@I = I fn@) | < Nf () = fal@)]] <9,

which finishes. n
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Lemma 8.34. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, ). Fix sequences of
functions f,,: X — Band g,: X — B which are almost uniformly Cauchy.

(@) The sequence {f, + gn }nen is almost uniformly Cauchy.

(b) Given some scalara € k, the sequence {af, }nen is almost uniformly Cauchy.

(c) The sequence {|| f|| }rnen is almost uniformly Cauchy.

Proof. As usual, these proofs are basically the same.

We go ahead and let | - | denote the norm on k. For any ¢ > 0, we will also go ahead and let F.,G. € §
denote the subsets of X with u(F.), u(G.) < e for which {f.|x\r. }nen and {gn|x\c. }nen are uniformly
Cauchy.

(a) Foranye > 0, define £, := F, /5 UG, /5. Namely, E. € S, and by Lemma 5.55, we see

1(Ee) < p(Fej2) + p(Gej2) = €.

As such, we claim that {(f,, + gn)|x\ £. }nen is uniformly Cauchy.
Well, forany § > 0, we are promised Ny such thatany m,n > Nyand = ¢ I/, will have

[ fm () = fn (@) < 6/2.

We are promised an analogous constant N, for g,, going to g, so we set N := max{N;, N;}. Then
m,n > N impliesm,n > Nyandm,n > Ny;assuch,ifx ¢ £, thenz ¢ F.;andz ¢ G, /3, 50

4]

[+ gm) (@) = (fn + gn) (@) < [[fm(2) = fu(@) ]| + [lgm (2) — gn(2)]| < g t5 =0

(b) If a =0, then we see that af,, = af,,, = 0. Assuch, foranye > 0, we set F = @ so that u(E) = 0 while
{afn}nen is uniformly Cauchy because af, () = 0 = af,, () forany z € X.

Otherwise, we have a # 0 and so |a|] > 0. Thus, forany £ > 0, we note F. will have u(F.) < ¢, so we
claim that {(afy)|x\ £, }nen is uniformly Cauchy.

Well, we already know that { f,,| x\ 7. }nen is uniformly Cauchy. Thus, forany ¢ > 0, there is a constant
N sothatanym,n > N and z ¢ F. will have
)
[ fm (@) = fu(@)]| < o’

It follows that m,n > N and z ¢ F. gives

l(afm)(@) = (afo)(@)]| = a] - [ fm(z) = fu(x)]| <la]- 2| = 0.

(c) Unsurprisingly, for any e > 0, we note that F; has u(F.) < ¢, so we claim that {||f|,, |x\r. }nen is
uniformly Cauchy.

Well, we know that { f,,| x\ 7. }nen is uniformly Cauchy. Thus, forany § > 0, we are promised a constant
N suchthatm,n > N and z ¢ F. will have

| frm(z) = ful@)]| < 6.

As such, we note that the (reverse) triangle inequality gives

[ fm @) = L@ < [ fm(z) = ful@)]| <9,
which finishes. [ ]

Now, here is the main result, which we will not prove today.
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Theorem 8.35 (Riesz—Weyl). Fix a measure space (X, S, 1) and a normed vector space B. Let {f,, }nen
be a sequence of S-measurable B-valued functions which are Cauchy in measure. Then there is a sub-
sequence { f, }nen Which is almost uniformly Cauchy.

In particular, we will be able to define a limit function for the sequence { f,, },en outside some null set, which
will finally allow us to take limits of simple integrable functions in a way that makes sense.

8.3 November?7

Today we prove Theorem 8.35.

8.3.1 Rapidly Cauchy Intermission

As an intermission, we introduce the following definition.

Definition 8.36 (Rapidly Cauchy). Fix a metric space (X, d). Then a sequence {z, }nen in X is rapidly
Cauchyif and only if all e > 0 have some N for which

oo
g d(xk, Try1) < 0.
k=1

We won't use this definition in any meaningful way, but it will be enlightening to note that the main idea to
the proof of Theorem 8.35 is similar to the proof that a Cauchy sequence has a rapidly Cauchy subsequence.
As such, let's see our checks on being rapidly Cauchy.

Lemma 8.37. Fixa metric space (X, d). Then any rapidly Cauchy sequence {z,, },cn in X isalso a Cauchy
sequence.

Proof. Fixanye > 0. We want N for which n,m > N give d(z,,x,) < . Well, set S := 220:1 d(xg, Trt1),
so we note that there is some N for which

n

S — Z d(xk, a:k_H)

k=1

<e€

foreachn > N. It follows that

S — Zd(xk’xkﬂ) <é€

k=1

foranyn > N. Thus, forany m > n > N + 1, the triangle inequality yields

m—1 m—1 n—1 n—1
*
AT, ) < d(@g, wp1) = Y dlar, hp1) — Y d(@k, 1) < S — Y d(@, wp41) <E
k=n k=1 k=1 k=1

Notably, < holds because all terms in the series of S are nonnegative, so the sequence of partial sums is
increasing, so S is greater than or equal to any individual partial sum. |

Proposition 8.38. Fix a metric space (X, d). Then any Cauchy sequence {x,, } ,en has a rapidly Cauchy
subsequence.
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Proof. We proceed inductively. Set ny = 1. Next, suppose we already have some ny. Because {z,, } nen, We
can find a constant ny1 > ny such that m,n > ny4q implies d(2,,,,z,,) < 27*. In particular, we see that
ngi1 > ng in this construction tells us that

d(Jan ’ xnk+1) S 27]6

for j > 1. Summing, we see

oo (oo}
D d(wkwppn) <D 27 =1< o,
k=1

k=1

so {Zn, }ren is the desired rapidly Cauchy subsequence. |

8.3.2 The Riesz—Weyl Theorem

And now, our feature presentation.

Theorem 8.35 (Riesz—Weyl). Fix a measure space (X, S, 1) and a normed vector space B. Let {f,, }nen
be a sequence of S-measurable B-valued functions which are Cauchy in measure. Then there is a sub-
sequence { f, }nen Which is almost uniformly Cauchy.

Proof. We proceed as in Proposition 8.38. Set ny = 1. Then we proceed inductively: suppose we already
know our ny for some k, and we construct ny, 1. Note that

lim g ({z € X :[|fm(z) - fal2)| 227"}) =0,

m,n—o0
so we can find a constant ng1 > ng such that m,n > ngq gives

p({z € X 1| fm(@) = fula)| >277}) <278,
We now claim that the sequence { f,, }xen is almost uniformly Cauchy. This has two steps. Fixany e > 0.

1. We select our small £ € S to avoid. Choose N for which

o0
Z 27k — 9= N+l ¢
k=N

As such, we set
By ={z € X : || fu, (@) = furyu(@)]| = 27%}

so that u(FE}) < 27F by construction of the sequence {n;, }r.en because ny,, npy1 > ny. Thus, we define
our F as

o0
E = U Ej.
k=N

Indeed, E € S because E}, € S foreach k > N, so by Lemma 6.2, we may say

W(E)< Y u(B) =Y 27" <,
k=N k=N

where the last inequality is by construction of N.

2. It remains to check that the subsequence { f,,, |x\ £ }xen is uniformly Cauchy. Well, given § > 0, we
need M sothati,j > M and = ¢ F gives

Hf”z(x) - fnj (CC)H ; 1)
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forallz ¢ E. Well, find some M > N such that

Z 271 =9~ M+1l 5

j>M

As such, it follows from the triangle inequality that any j > ¢ > M will have

j—1 " Jj—1 0o
[ fni(@) = fo; @) <D (@) = @) D278 < Y 270 <,
k=i k=i k=M
which is what we wanted. Notably, ; holds by construction of E as a subset of E}. |

Example 8.39. Even in Example 8.11, there is a subsequence which is almost uniformly converging to
0. Indeed, consider the subsequence {1z,, }nen. Then forany e > 0, we find some N for which2=% < ¢
and set E := [0,1/2") to have measure less than . But now, forn > N, we see that 1p,,|x\g = 0
because Ey» C E. Thus, 1g,,|x\g — 0 uniformly as n — oo.

We are now ready to use the condition that we are integrating into a Banach space!
Lemma 8.40. Fix a measure space (X, S, 1) and a Banach space B. Further, fix an almost uniformly

Cauchy sequence { f,, }nen of S-measurable functions. Then there is an S-measurable function f: X —
B such that f,, — f almost uniformly as n — oc.

Proof. The main idea is that the almost uniformity condition allows us to define f outside a null set, which
is good enough.
Foreachn € N, we get some E,, such that u(E,,) < 1/n and such that { f;| x\ g, }ien is uniformly Cauchy.

We now set -
E = ﬂ FE,.
n=1

Note ' € S by Remark 5.24, and Lemma 5.51 tells us that u(E) < u(E,) < 1/n for each n, so it follows
w(E) =0.

Now, forany z € X\ E, we canfind k forwhichz ¢ Ej. Thus, because { f,.| x\ g, }nen is uniformly Cauchy,
we see that { f,,(z)|x\ g, }nen is Cauchy; we define f(z) as its limit. Note we have used the fact that Bis a
Banach space here! This defines f outside the null set F.

It doesn’t really matter what f does on E, so we just define f(z) = 0 forz € E. We will quickly run
checks to show that f is S-measurable, but they are not terribly important.

« We show f,,1x\ g is S-measurable for each n. This proof is similar to Lemma 7.47, so we will use the
ideas of that proof. For example, im f, is separable, and as remarked in Lemma 7.47, we have

As such, {0} Uim f, is separable by Example 7.32, so im f, 1x\ g is separable by Remark 7.31.
Further, for any open U C B\ {0}, we again note from the proof of Lemma 7.47 that

(fale)"'(U) = (X\E)Nf7H(U) = f'(U)\ E.
In particular, f,1(U) € S because f,, is S-measurable, so f,,}(U) \ E € S follows.

« We show f,1x\g — f pointwise asn — oo. If z ¢ E, then we recall that we defined f(z) as the limit
of { fn()}nen, so the result follows by real analysis because (f,1x\g)(x) = fa(z) in this case.

Otherwise, z € F, so (f,1x\g)(z) = 0for each n, and f(x) = 0 by construction of f. So this case is
just looking at a constant sequence.
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It follows that f is S-measurable by Corollary 7.44.

We now check that f,, — f almost uniformly as n — oco. This is done in steps. Fix some e > 0. We begin
by selecting our small subset to avoid. Choose some N with N > 1/e. Note u(Ex) < 1/N < ¢, so we will
show that f,|x\gy — flx\&y uniformly asn — oc.

For this, we proceed as in Proposition 3.24. Fix any 0 > 0. Because {f,|x\g, } is uniformly, we are
promised some M such thatm,n > M and x ¢ Ey gives

[ fm (@) = fru(@)]| < d/2.
Now, forany z € X andn > M, we see

1f (@) = fn(@)| < I f (@) = fm (@) + [ fm (@) = (@) | <[[f(2) = fm (@) + g

forany m > N. However, we see z ¢ Ey implies z ¢ E, so f(x) was constructed to be the limit of
{fm (@) }men, so all m sufficiently large have || f(z) — fm(2z)|| < /2. Ensuring that we choose an m with
m > M as well allows us to conclude

1 @) = fal@)ll < [1£(&) = fm(@)]| + g <5

foranyn > Nandz ¢ Ey. [ |

Remark 8.41. Note that the limit f is unique by Lemma 8.31.

8.4 November9

Today we define integrable functions. We went through this discussion quickly last class but are now going
through it in more detail, so | have just moved the exposition to today.

8.4.1 Convergencein Mean

We are going to want yet another notion of convergence, to align with our desire to integrate.

Definition 8.42 (Converge in mean). Fix a measure space (X, S, 1) and a normed vector space B. Thena
sequence { f,, }nen of simple u-integrable functions converges in meanto a simple u-integrable function
fifandonlyif ||f — fu|l; = 0asn — occ.

Definition 8.43 (Mean Cauchy). Fix a normed vector space B and a measure space (X, S, 11). A sequence
of simple p-integrable functions { f,, }».cn is mean Cauchy if and only if it is Cauchy for the semi-norm
l|-I;- In other words, we require

lim | fm — full, =0.

m,n— oo

Remark 8.44. Because simple p-integrable functions form a vector space by Lemma 7.17, we see that
I|f = fully and || s — fnll; are legal expressions.

Here are the usual checks.
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Lemma 8.45. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, i). Further, fix a se-
quence of simple p-integrable functions f,,: X — Bandg,: X — B with f, — fand g, — ¢gin mean
asn — o0o.

(@) We have f,, + g, — f + g in mean.
(b) Given some scalara € k, we have af,, — af in mean.

(c) We have || fn| = ||f]| in mean.

Proof. For (a) and (b), note the relevant functions are simple p-integrable by Lemma 7.17; for (c), the rele-
vant functions are simple p-integrable by Lemma 7.18. Now, (a) and (b) follow directly from Lemma 1.59,
where we are using the fact that ||-||; is a semi-norm by Lemma 8.6.

It remains to show (c). For any e > 0, we are promised N such thatn > N implies

”f - fn“l <E.
By the reverse triangle inequality, we see
@I = (@) | < 1 (@) = ful2)]

foreach z € X, so Corollary 8.4 tells us

|||fH*Ilfnllll:/Xlllfl\*llfn\\ldué/Xllfffnl\ dii=f = full, <e

for each n > N. This finishes. [ ]

Lemma 8.46. Fix a normed k-vector space (B, |-||) and a measure space (X, S, i). Further, fix a se-
quence of simple p-integrable functions {f,, }nen and {g, } nen Which are mean Cauchy.

(@) The sequence {f, + gn }nen is mean Cauchy.
(b) Given some scalara € k, the sequence {af,, }nen is mean Cauchy.

(c) The sequence {|| f»|| }nen is mean Cauchy.

Proof. These proofs are essentially identical. For (a) and (b), note the relevant functions are simple pu-
integrable by Lemma 7.17; for (c), the relevant functions are simple u-integrable by Lemma 7.18. As before,
(a) and (b) follow from Lemma 1.65 upon noting |[|-||; is a semi-norm by Lemma 8.6.

It remains to show (c). Forany e > 0, we are promised N such that m,n > N implies

Hfm - fn”l <Eé.

By the reverse triangle inequality, we see

Hfm @ = [l fn (@) < [1f () = fal2)]]

for each z € X, so Corollary 8.4 tells us

|||me—||an|1=/X|||fm|\—IIanIdMS/XIIfm—an Ao = || fu — full, <€

for each m,n > N. This finishes. [ ]
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Lemma 8.47. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, ). Given a sequence
of simple p-integrable function {f,,}»en Which is mean Cauchy and a set £ € S, then the sequence
{fnlE}nenis stillmean Cauchy.

Proof. Fixsome e > 0. We are promised some N such that m,n > N implies || f,, — fn||; < €. Now, forany
r € X, we see

I fmle = fulpll (@) = ([1fm = full 16) (@) < [1fm = full (),

so Corollary 8.4 tells us

”fmlE - er1E||1 = /X ”fmlE - fnlE” dp < /X ”fm - an dp = ||fm - fn||17

which is less than e for m,n > N. This is what we wanted. [ |

Lemma 8.48. Fix a normed vector space (B, ||-||) and a measure space (X, S, u). If {fn}nen is @ mean
Cauchy sequence of simple p-integrable functions, then any subsequence {f,, }icy is @ mean Cauchy
sequence of simple p-integrable functions.

Proof. Foranye > 0, we are given N such that m,n > N implies || f, — fn||; < €. Because n, > n for each
i,weseei,j > N has || fn, — fn, ||, <easwell, which is what we wanted. [ |

8.4.2 Comparing Convergences
We are going to want to see the comparative strengths of different convergences. Here is a starting result,

which was moved from an earlier lecture for thematic reasons. Note this generalizes Example 8.14.

Lemma 8.49. Fix a normed vector space (B, ||-||) and a measure space (X, S, ). Then a sequence of
simple p-integrable functions f,,: X — B for n € N which is mean Cauchy is also Cauchy in measure.

Proof. Fixe > 0and set
B ={r € X 1| fm(z) — fu(@)]| > €},

which has finite measure by Remark 8.17. We need to show that

?

wlm (B ) = 0-
Notably, for each x € X, we must have
1Efn,n(x) < ”fm('r) ; fn(x)” (82)

by definition of E7, .. Now, both sides of this equation are simple pi-integrable functions: 1g:  is by Exam-

ple 7.6; and f,, — f, is simple u-integrable by Lemma 7.17, as'is || f;» — fx|| by Lemma 7.18, so % I fr — foll
is simple p-integrable by Lemma 7.17 again.
Thus, we may integrate, for which Corollary 8.4 tells us

R R B
X X 3 3

where the first integral was computed using Example 7.16. But as m,n — oo, the right-hand value goes to
0 because { f,, }en is Cauchy for ||-||;, so the left-hand value must also go to 0. [ ]
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Remark 8.50. A similar proof works for when we are Cauchy for ||-||, for finite p by taking pth powers of
(8.2). For example, in probability theory, the result for ||-||, is essentially Chebyshev’s inequality.

We now note that converging almost uniformly is stronger than in measure.

Lemma 8.51. Fix a normed vector space (B, ||-||) and a measure space (X, S, u). Further, fix a sequence
{fn}nen of S-measurable functions and an S-measurable function f.

(@) If f,, = falmost uniformly asn — oo, then f,, — f in measure.

(b) If { fn}nen is almost uniformly Cauchy, then { f,, },en is Cauchy in measure.

Proof. Here we go.

(@) Foranye > 0, we need to show that

i p{e € X 21 (2) = fale) 1) =0

Well, forany 0 > 0, we need N such thatn > N has

u({z € X 1 [f(@) = ful@)]) < 6.

Now, by the almost uniform convergence, we are promised F' € S such that (X \ F) < dand f, — f
uniformly asn — oo on F. Now using our uniform convergence, we choose N such thatn > N implies

1f(z) = fu(2)] <€
foreach z € F. In particular, forn > N, we see
{ze X |f(x)— fal)] 2} S X\F,

so Lemma 5.51 tells us
({1 F@) = fal@)] = €}) < u(X \ F) <,
which finishes.

(b) This proof is essentially the same. Forany e > 0, we need to show that
. ?
lim p({r € X+ [ fnle) — a@)}) 2 0.

Well, forany § > 0, we need N such that m,n > N has

1z € X ¢ | fm(w) = fu(@)]) < 6.

Now, by the almost uniform convergence, we are promised F' € S suchthat u(X \ F) < dand {5, }nen
is uniformly Cauchy on F'. Now using the fact we're uniformly Cauchy, we choose N suchthatm,n > N
implies

[fm(z) — fu(2)ll <&

foreach z € F. In particular, for m,n > N, we see
{z e X | fm(x) — fu(@)]| = e} C X\ F,
so Lemma 5.51 tells us
p{z : [[fm(z) = fa(@)]| Z €}) < W(X\ F) <4,
which finishes. [ ]

Further, convergence almost uniformly is stronger than convergence almost everywhere.
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Lemma 8.52. Fix a normed vector space (B, ||||) and a measure space (X, S, ). Further, fix a sequence
{fn}nen of functions which converge to f almost uniformlyasn — oco. Then f,, — f almost everywhere.

Proof. Let F be the set of points such that { f,,(x) }.eny does not converge to f(z) as n — co. Now, for each
i, almost uniform convergence promises us some E; € S such that u(E;) < 1/iand fu|x\e, — flx\&,
uniformly. In particular, for xz ¢ E;, we have f,(z) — f(z)asn — oo, so it follows that F' C E; for each .

However,
E:=()E;
i=1
is a setin S (by Remark 5.24) with u(F) < p(E;) < 1/ifor each i (by Lemma 5.51), so u(E) = 0 follows.
Because I' C E, we are done. |

8.4.3 Integrable Functions

Our payoff to our hard work is a definition of integrable functions. Here it is.

Theorem 8.53. Fix a normed k-vector space (B, ||-||) and a measure space (X, S, u). Then given an S-
measurable function f, the following are equivalent.

(@) Thereisamean Cauchysequence of simple p-integrable functions that convergesto f in measure.

(b) There is a mean Cauchy sequence of simple u-integrable functions that converges to f almost
uniformly.

(c) There is a mean Cauchy sequence of simple u-integrable functions that converges to f almost
everywhere.

Proof. We show our implications in sequence. In all parts, let { f,, }nen be the requested mean Cauchy se-
quence of simple p-integrable functions.

+ We show (a) implies (b). This holds from the Riesz—Weyl theorem. Namely, by Theorem 8.35, { f;, }nen
will have a subsequence { f,,, }:eny Which is almost uniformly Cauchy; this subsequence remains mean
Cauchy by Lemma 8.48.

It remains to show that f,,, — f almost uniformly as i — co. By Lemma 8.40, we see that f,,, — ¢
almost uniformly for some S-measurable function g: X — B, but then Lemma 8.51 tellsus f,,, — ¢
in measure.

However, f,, — f in measure implies that f,,, — f in measure by Lemma 8.21, so f = g almost
everywhere by Lemma 8.23, so f,,, — f almost uniformly by Lemma 8.31.

« We show (b) implies (c) and (a). Well, converging almost uniformly automatically forces us to converge
in measure by Lemma 8.51 and almost everywhere by Lemma 8.52.

» We show (c) implies (a). Well, if { f,, }.en is mean Cauchy, then the sequence is Cauchy in measure by
Lemma 8.51 and therefore has a subsequence {f,, }ieny Which is almost uniformly Cauchy by Theo-
rem 8.35. Notably, f,, — f almost everywhere because f,, — f almost everywhere, using the same
null set.

However, this subsequence {f,,}ien Will then converge to some S-measurable g: X — B almost
uniformly by Lemma 8.40, so f,,, — g almost everywhere by Lemma 8.52. It follows that f = g almost
everywhere,! so f,, — f almost uniformly by Lemma 8.31. |

As such, we have the following definition.

1 We know f, — f outside some null set F, and f,, — g outside some null set G, so f(z) = g(x) outside the null set F U G.
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Definition 8.54 (Integrable). Fix a measure space (X, S, 1) and a normed vector space B. Then an S-
measurable function f: X — B is u-integrable if and only if one of the equivalent conditions from
Theorem 8.53 is satisfied. This set of integrable functions is often denoted £!(X, S, 1, B), where some
data might be omitted when we want to.

Remark 8.55. Later on, we will define

/fd,u:: lim/fnd,u.
X n—oo X

However, we have not yet checked that this definition is well-defined.

Remark 8.56. Later on we will also define £L>(X, S, i, B) as the bounded S-measurable functions as
well as more general £P(X, S, u, B) for finite p where

J 17 du < o0,
X

As an example fact, we can see that £!(X, S, i, B) is a module over the ring £L>°(X, S, u, k), where B is
a normed k-vector space. We will not check this here.

Remark 8.57. Morally perhaps, one should define integrable functions to be merely p-measurable in-
stead of S-measurable. | have not done this for technical reasons because | find it exceedingly annoying
to have to keep removing a null set. If this distinction is distressing, then replace S with the o-algebra
generated by S and the null sets of .

Example 8.58. If f is a simple p-integrable function, then the sequence {f},cn is mean Cauchy and
converges to f almost everywhere, so f is also a u-integrable function.
Here are the usual checks.

Lemma 8.59. Fix a measure space (X, S, 1) and a normed k-vector space B. Then £}(X, S, u, B) forms
a k-vector space.

Proof. Here are our checks. For brevity, set £! := £L1(X, S, uu, B).

+ Zero: note that the zero function is 15 and thus a simple p-integrable function (by Example 7.16) and
thus a simple p-integrable function (by Example 8.58).

« Addition: given f,g € L', we show f + g € L. Well, pick up mean Cauchy sequences {f, },en and
{gn }nen of simple p-integrable functions which converge in measure to f and g respectively.
Now, note { f,,+¢n } nen is mean Cauchy by Lemma 8.46, and f,,+¢g, — f+ginmeasure by Lemma 8.20,
sof+geLl.

« Scalar multiplication: given a scalara € kand f € L', we show af € L. Well, pick up our mean
Cauchy sequence { f,, }nen of simple p-integrable functions which converges to f in measure. Then
{afn}nen is mean Cauchy by Lemma 8.46 and converges in measure to af by Lemma 8.19. |

Lemma 8.60. Fix a measure space (X, S, ;1) and a normed vector space B. Given a u-integrable function
f: X — Band measurable set E € S, the function f1g is still u-integrable.
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Proof. As usual, pick up our mean Cauchy sequence {f, }.cn of simple u-integrable functions converging
to f in measure. Then Lemma 7.47 tells us that f,, 1z is still simple p-integrable. Further, Lemma 8.47 tells
us {fnlg}nen is still mean Cauchy, and Lemma 8.24 tells us f,1r — f1g in measure. Thus, f1g is in fact
pu-integrable. |

Remark 8.61. As in Remark 7.48, we note that £ € Swillhave 1x = 1g + 1x\g, 50 flx\g = f — flEg
is still u-integrable by Lemma 8.60 and Lemma 8.59.

Lemma 8.62. Fixa measure space (X, S, 1) and a normed vector space B. Given a u-integrable function
f: X — B, the function || || is still u-integrable.

Proof. As usual, pick up our mean Cauchy sequence {f, }.en of simple u-integrable functions converging
to f in measure. Then Lemma 7.18 tells us that each || f,,|| is stilla simple p-integrable function. As such, we
see Lemma 8.46 tells us {|| f. || }nen is mean Cauchy, and || f,.|| — || f]| in measure by Lemma 8.19. It follows
I £|l'is p-integrable. [ ]

Example 8.63. We mimic Example 7.46. If f: X — R is u-measurable, then Lemma 8.62 tells us that
|f| is also u-measurable. As such, if f,g: X — R are S-measurable, then (f + ¢g) and (f — g) are S-
measurable by Lemma 8.59, so |f — g| is S-measurable, so

(f+9) —If -4l
2

(f+9)+1f -4l
2

and max{f,g} =

min{ f, g} =

are u-measurable by Lemma 8.59 again. Inducting, for any u-measurable functions {f;}?_,, the mini-
mum function min{ f1, ..., f,} and maximum function max{fi, ..., f,} are both y-measurable.

8.4.4 Towards Defining Integrals
We now move towards defining integration.
Lemma 8.64. Fix a measure space (X, S, 1) and a normed k-vector space B. Further, fix mean Cauchy

sequences of simple p-integrable functions { f,, }»en and {g, }nen Which converges to f and g in mea-
sure, respectively. If || f,, — gn|l; = 0asn — oo, then f = g almost everywhere.

Proof. The key trick is to consider the sequence f1, g1, f2, go, - . .. To be explicit, define {h, }nen bY hon = fn
and ha,,—1 = gn. Here are our checks on {h;, } nen-

« Note that each n € N has h,, is either an f; or g; and is therefore a simple p-integrable functions.

» We claim that {h,}nren is Cauchy in measure; it suffices to show that {A, },cn is mean Cauchy by
Lemma 8.49.

Well, fix any ¢ > 0. Because { f,, }neny and {gn }nen are mean Cauchy, we get Ny and N, such that
m,n> Ny = ||fm — fall; <€ and m,n >Ny = | fm — full; <e.

Further, || f, — gnll; = 0asn — oo, so we get N’ such that n > N’ implies || f,, — gn|; <e.
Combining, set N := max{2Ny,2N, + 1,2N'}. Then, for m,n > N, we have three cases according to
parity.

- Ifm=2kandn =2¢ thenk,{ > Ny, s0 ||hpm — hnll; = || fx — fell; <e.
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- Ifm=2k+1landn=20+1
The case with m odd and n even is analogous to the last one, by symmetry. This finishes our check.

« Note ho,, = f,, for eachn, so the subsequence {hs, } ,en converges to f in measure. Thus, Lemma 8.22
tells us h,, — f in measure.

» Analogously, note hg,—1 = g, for each n, so the subsequence {hs,,—1}nen cONverges to g in measure.
Thus, Lemma 8.22 tells us h,, — ¢ in measure.

From the above checks, we see from Lemma 8.23 that f = g almost everywhere. |

The point here is that we can take equivalence classes in £!(X, S, u, B) to get a bona fide norm from our
semi-norm ||-||;.

To finish our discussion of completeness, we will need the following result, which we will state but not
prove today.

Proposition 8.65. Fix a measure space (X, S, 1) and a normed vector space (B, ||-||). Suppose {f }nen
and { g, }nen are mean Cauchy sequences of simple p-integrable functions which both converge to some
S-measurable function f in measure. Then || f,, — gn|; = 0asn — oo.

Roughly speaking, this will imply that the integral [ f du is well-defined.

8.5 November 14
Today we show that the space L! is complete. Here is a challenge problem.
Remark 8.66. Here is a challenge problem. Fix a sequence of continuous functions f,: [0,1] — [0,1].

Show that if f,, — f pointwise, then ||f,||, = 0asn — oo, where | f,||, is defined using the Riemann
integral. There are proofs which do not use any measure theory!

8.5.1 Equivalent Mean Cauchy Sequences

Last class we were about to prove the following result.

Proposition 8.65. Fix a measure space (X, S, ;1) and a normed vector space (B, ||-||). Suppose {fn }nen
and {g,, }nen are mean Cauchy sequences of simple p-integrable functions which both converge to some
S-measurable function f in measure. Then || f,, — gn|; = 0asn — oco.

For this proof, we will want the following lemma.

Lemma 8.67. Fix a measure space (X, S, 1) and a mean Cauchy sequence of nonnegative simple pu-
integrable functions f,,: X — R. If f, — 0in measure, then || f,[|; — 0.

Proof. By Lemma 8.49, we see {f, }nen is Cauchy in measure, so we may use Theorem 8.35 to extract an
almost uniformly Cauchy subsequence {f,, }icn, Which we then see almost uniformly converges to 0 by
Lemma 8.32.

For another reduction, we note that {|| .||, }nen is @ Cauchy sequence: for any ¢ > 0, find NV such that
| frn — fnll; <eform,n > N.Then

I fmlly = M fnlly | < W fm = fully <e
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for m,n > N by the (reverse) triangle inequality from Lemma 8.6. As such, {|| f»|; }nen does converge to
some real number r, and the subsequence { f,,, };cn will also converge to the same real number r. So we will
show that || f,,,]|; = 0asi — occ.

Now, to simplify notation, set g; := f,, so that g; — 0 almost uniformly, and we want to show ||g;||; — 0
asi — oo. Fixe > 0; we want N such thatn > N has

?
0< ||9n||1 <é&.

This means we have to bound an integral, which we do in many pieces. To begin, our sequence {g, }nen is
mean Cauchy, so we start with some N, such that m,n > N; implies ||g., — gnll; < /4. Now here are the
pieces of our integral.

1. Set F = g;hl(B \ {0}), which is in § by Lemma 7.34 and has finite measure by definition of a simple
u~-integrable function. Now, forn > N;, weseeanyz € X \ F has

gn () = |gn(2) — gn, ()],

SO

* g
/inx\Fdﬂz/ |gn<x>—gN<sc>uX\qus/ 19n(2) — g5(@)| ds = llgn — g ll; < 5
X X X 4

where we have used Corollary 8.4 in % (Note g, 1x\r is simple pu-integrable by Remark 7.48.)

2. To continue, we recall g, — 0 almost uniformly, so we use ¢ = T > 0tofind G € S with

v T
w(G) < dand g, — Ouniformly on X \ G.
As such, we can choose N, for whichn > N, has

e

gn(m) < m

foreachz € X \ G. Integrating, we see n > N, gives

/Xgan\G du < /X <4(1+€M(F)) : 1F\G> dp

by Corollary 8.4. (Note g, 1 p\¢ = gnlr — gnlrnc is asimple u-integrable function by Lemma 7.47 and
Lemma 7.17.) Using Lemma 8.1 and then Example 7.16 to compute the integral, we see

g 13 €
[t < g WG < g () < 5,

where u(F'\ G) < u(F') by Lemma 5.51.

3. It remains to handle what's happening on F N G. Well, u(F N G) < u(G) < § by Lemma 5.51, so
whatever happens here is pretty small. Indeed, note any n gives

Inlrne < |gn — gn|lrne + l9n]1rng < |gn — gn| + ll9n]l & Lo,

so Corollary 8.4 and Lemma 8.1 tells us

/gnlpmcdnﬁ/ \gn—gzv\dqullgNIIoo/ lg dp.
X X X

Hgn*gN Hl

(As usual, the relevant restricted functions are simple p-integrable by Lemma 7.47.) By Example 7.16,
we see

£
lodp=p(@) <d= —FO
/X & dp=1C) <0 = T onlD)
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so we have the bound

13
/ gnlrnc di < |lgn —gnll; + llgnl < ||gn—gN||1+1~
X

&
* 41+ gnlls)
As such, n > N; will give
€
/ Inlrng dp < 5
X

In total, we set N := max{Ny, N} so thatn > N implies

9 9 9
/gnd/‘:/ QTLIX\qu+/ gan\Gd/""'/ gnlrngdp < -+~ + - =g,

where we have used Lemma 8.1 in the first equality. This finishes. |
We are now ready to prove Proposition 8.65.

Proof of Proposition 8.65. Unsurprisingly, set h,, = f, — gn, which is a simple u-integrable function by
Lemma 7.17. Note {h,}ren is @ mean Cauchy sequence by Lemma 8.46 and convergesto f — f = 0in
measure by Lemma 8.19.

We want to show that ||h,|; — 0asn — oo, so we define j,, := |h,]||, which is mean Cauchy by
Lemma 8.46. Furthermore, j, — 0 in measure by Lemma 8.19 (note ||0]] = 0), so Lemma 8.67 tells us
that ||j,||; — 0asn — oco. However, for any n,

||jn|\1=/ |jn|du=/ all dpt = o],
X X

so it follows ||h,[|; — 0asn — oo as well. |

The above result grants us a natural bijection between equivalence classes of mean Cauchy sequences of
simple p-integrable functions and “almost everywhere” equivalence classes of p-integrable functions. So
we have constructed our completion of simple p-integrable functions.

Remark 8.68. As an aside, we note that the ||-||; norm is pretty poorly behaved at points. For example,
the function C([0, 1]) — [0,1] by f — f(1) is not continuous for ||-||;. Namely, define f,,(z) = =™ so that
frn. — 0in mean (we will be able to check this eventually) as n — oo, but f,,(1) = 1asn — oo.

8.5.2 Defining Integrals

The main use of Proposition 8.65 is the following corollary.

Corollary 8.69. Fix a measure space (X, S, 1) and a normed vector space (B, ||-||). Given mean Cauchy
sequences { f,, tnen and {g, }nen of simple p-integrable functions both converging to an S-measurable
function f in measure, we have

lim fndp = lim / gn dp.

Namely, if the limits exist, then they are equal. If B is a Banach space, then the limits exist.

Proof. There are two claims here, which we will show in sequence.
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« Suppose the limits exist. We show they are equal. Using Lemma 8.1, it suffices to show that

hm (fn - gn) dﬂl

n—oo X

vanishes. Well, by Proposition 8.65, we see || f, — gn|l; = 0asn — oo. Thus, forany e > 0, we are
promised some N for whichn > N has || f,, — gnl||; < €. But then Lemma 8.2 implies

H/ <fn—gn>duH < [ o= gl de =150 = gl <
X X

forn > N, which is what we wanted.

« Now suppose that B is a Banach space, and we must show the limits exist. By symmetry, it suffices
to show that lim,,_, o fX fn du exists. Because B is complete, it suffices to show that the sequence
Jx fndp of elements in B is Cauchy.

Well, fixsome e > 0. We see { f,, }nen is mean Cauchy, so there is some N such that m,n > N implies
| fro — frll; < e. We now bound. Using Lemma 8.1 and Lemma 8.2, we see

| [ mtn= [ | <[ [ =] < [ 1= bl = 5= 11

which is less than e for m,n > N. This finishes. [ ]

Remark 8.70. Itis not too hard to extend the above proof to show that if just one of the limits exist, then
both of them exist. We will not need this.

As such, we are prepared to finally define integrals.

Definition 8.71 (Integral). Fix a measure space (X, S, 1) and a Banach space B. Given an integrable
function f: X — B, find the corresponding sequence mean Cauchy sequence {f, }.cn of simple u-
integrable functions with f,, — fin measure. Then we define the integral by

/fd,u:: lim/fndu.
X n—o0 X

Example8.72.If f: X — Bisalready asimple u-integrable function, then { f},.cn is mean Cauchy with
f — fin measure, so our new integral fX f du takes the intended value.

Note that this limit exists and is well-defined by Corollary 8.69. We now pick up some facts about our inte-
gral. The main theme here is to just reduce these facts to the corresponding one about simple p-integrable
functions.

Proposition 8.73. Fix a measure space (X, S, 1) and a Banach k-space B. Further, fix p-integrable func-
tions f and g and scalars a,b € k. Then

[isvgyin=a [ san+s [ gan

Proof. Because f and g are u-integrable, we are promised mean Cauchy sequences { f,, }nen and {gn }nen of
simple p-integrable functions such that f,, — fand g, — g in measure.

Now, it follows from the proof of Lemma 8.59 that {af,, } nen and {bg,, } nen are mean Cauchy sequences
of simple p-integrable functions converging to af and bg in measure, so {af, + bg, }nen is @ mean Cauchy
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sequence of simple p-integrable functions converging to af + bg in measure. As such, we begin by using

Lemma 8.1 to compute
/ (afn +bgn) du = a/ Jndp+ b/ Gn A,
X X X

SO
[ (a4 vgydu= 1w [ (ot +bon)du=atin [ fodpsdlin [ gidu=a [ sauso [ gdn
which is what we wanted. [ ]

Here are the usual bounding results.

Lemma 8.74. Fix a measure space (X, S, ). Given a u-integrable function f: X — R, if f(z) > 0almost

everywhere, we have
/ fdu>0.
X

Proof. The main point is that f = |f| almost everywhere. Indeed, we are promised some E € S such that
w(E) = 0and f(z) > 0forz € X \ E. Now, pick up our mean Cauchy sequence {f, }nen of simple p-
integrable functions such that f,, — f in measure. It follows from the proof of Lemma 8.62 that {| f,|}nen
is also a mean Cauchy sequence of simple u-integrable functions but with | f,,| — | f| in measure. However,

[f1(z) = |f ()] = f(=)

foreachz € X \ E, so |f| = f almost everywhere, so | f,,| — f in measure by Lemma 8.23. Thus,

However, |f,|(z) > 0foreachz € X, sotheintegrals on the right-hand side are nonnegative by Lemma 8.3.
It follows [ fdu > 0. [ ]

Lemma 8.75. Fix a measure space (X, S, u). Given u-integrable functions f,g: X — Rsuch that f(z) >

g(z) almost everywhere, we have
| rdu= [ gdn.
b's b's

Proof. Quickly, note f — g is p-integrable by Lemma 8.59. By Proposition 8.73, it suffices to show that

/(f—g)duztl
X

However, (f — g)(x) = f(z) — g(z) > 0 almost everywhere, so this follows directly from Lemma 8.74. W

Lemma 8.76. Fix a measure space (X, S, ). Given a p-integrable function f: X — B, we have
[ rau < [ 1s0 an
X b's
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Proof. Quickly, note || f]|| is u-integrable by Lemma 8.62. Now, as usual, pick up our mean Cauchy se-
quence {f, }nen of simple p-integrable functions such that f,, — f in measure. It follows from the proof of
Lemma 8.62 that {|| .|| }nen is @ mean Cauchy sequence of simple u-integrable functions with || .|| — || f]]

in measure. It follows
J s dn = i 15l
X n—oo Jx

Now, using Lemma 8.2, we see

stz | [ 5a

To finish, we note that ||-|| : B — R is continuous (Example 1.38), so Lemma 1.57 grants
Joustau={ i [ pad <] [ ra].
X nTeeJXx X
which is what we wanted. |

8.5.3 A Semi-Norm for (!

Here is our semi-norm.
Notation 8.77. Fixa measure space (X, S, ) and a Banach space (B, ||-||). Given a u-integrable function,

we define
1£1, ::/ 11 d
X

Note || f| is in fact u-integrable by Lemma 8.62.

Remark 8.78. As before, we see || f||, extends our definition from simple z-integrable functions because
our definition of integral also extended our definition from simple p-integrable functions.

And here is the check.

Corollary 8.79. Fix a measure space (X, S, ) and a Banach space (B, ||-||). Then ||-||; defines a semi-
normon LY(X, S, u, B).

Proof. Here are our checks.
« Zero: suppose f = 0. Then f is a simple u-integrable function, so this follows from Lemma 8.6.

» Nonnegative: for some p-integrable f: X — B, note that || f|| () > 0 foreach z € X, so Lemma 8.75

tells us
Hf||1:/ T duZ/ 0dyu =0,
X X

where the relevant functions are u-integrable by Lemma 8.62.

« Homogeneous: fix a scalar ¢ and a p-integrable function f: X — B. Then Proposition 8.73 tells us

||cf\|1:/X||cfH du:/XC~Hf|| dMZC/XIIfH dp=c|fll,.

where the relevant functions are u-integrable by Lemma 8.59 and Lemma 8.62.
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« Triangle inequality: given p-integrable functions f, g: X — B, we note that

111 () + gl () = 1F @) + llg@@)| = [1f () + g(@) | = [If + gl ()

foreachz € X, so Lemma 8.75 tells us

/(||f||+||9||)du2/ 1 +gll du=1If +gll,.
X X

Thus, Proposition 8.73 tells us || f||, + llg|l; > [|f + gll,, which is what we wanted. [ |

We will show that £! is complete in some sense next lecture.

8.6 November 16

Here we go.

8.6.1 Integration Facts

We continue our fact-collection.

Lemma 8.80. Fix a measure space (X, S, ) and a Banach space B. Further, fix a u-integrable func-
tion f: X — B with corresponding sequence mean Cauchy sequence { f, } nen of simple p-integrable
functions such that f,, — fin measure. Then || f — f,||; = 0asn — occ.

Proof. This essentially follows directly from the definition of integration. Indeed, fix some ¢ > 0. Our se-
quence is mean Cauchy, so choose some N for which m,n > N implies || f,, — fall; < €/2.

Now, for some fixed m, define g,, .= f,, — fn for each n € N, which is a simple p-integrable function
by Lemma 7.17, and we see {g, }nen is mean Cauchy by Lemma 8.46 with g, — f,, — f in measure by
Lemma 8.19. Now, it follows from the proof that Lemma 8.62 that {||g,||}nen is still a mean Cauchy se-
quence of simple p-integrable functions such that ||g. || — || fm — f]| in measure, so

I = £l = [ Vo= dis= i [ Ngull du = Jim I = £l
X X

(All the relevant functions are u-integrable by Lemma 8.59 and Lemma 8.62.) Thus, taking m > N, we see
| fm — full; <e/2forn > N, so

||fm - f||1 = T}LHOIO Hfm - fn||1 < 5/2 <e.

This completes the proof. |

The point of the above lemma is the following density result.

Corollary 8.81. Fix a measure space (X, S, i) and a Banach space B. For any p-integrable function
f: X — Banderrore > 0, there is a simple p-integrable function g: X — Bsuchthat | f —g||; <e.

Proof. Because f: X — B is integrable, there is a mean Cauchy sequence { f,, }»en of simple p-integrable
functions such that f,, — f in measure. But then Lemma 8.80 tells us that

Jim [|f = full, =0,

so there is some N such thatn > N implies ||f — f,||; < . Choosing any n > N and setting g :== f, thus
finishes. [ |
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Lemma 8.82. Fix a measure space (X, S, ) and a normed vector space (B, ||-||). Given a u-integrable
function f: X — Band bounde > 0, thereissome F' C X with F' € § and p(F) < oo such that

/Hﬂﬂxwdu<a
X

Proof. Because f: X — B is u-integrable, we may choose some simple p-integrable function g: X — B
such that ||f — g||; < &, where we are using Corollary 8.81. Now, choose F := g~ (B \ {0}), whichisin S
again using Lemma 7.34, and we note Lemma 5.51 implies

w(F) < (g (B\{0})),

where 11 (g7 (B \ {0})) is finite by Remark 7.14. Thus, u(F) < occ.
It remains to compute [ ||| 1x\r du. Well, we see g(z) = 0forz ¢ F, so

A r) (@) = (1f = gl 1x\p) (@) < If = gll (2)

foreachz € X, so Lemma 8.75 tells us

/|uwxwdus/Wu—mum=nf—mh<a
X X

which is what we wanted. ]

Remark 8.83. The above result basically says that f is almost supported on a set of finite measure.

Lemma 8.84. Fix a measure space (X, S, ). Given a u-integrable function f: X — R, given E € S with
f(z) > 1g(x) almost everywhere, then

MDSAfW

Proof. The main difficulty here is that we don’t actually know if 1 is an integrable function at the outset.
For convenience, we set F' := f~1(B\ {0}). We claim that F is contained in the countable union of sets
of finite measure; this is annoying, so we will brief. Well, because f: X — R is u-integrable, we can find
a mean Cauchy sequence {f, }nen of simple u-integrable functions such that f,, — f in measure. Now,
gn — f almost everywhere (because g,, — f in measure), so there is some N € S such that u(N) = 0 while
gnlx\n = flx\n. We now define
Gn = 9771(3 \ {0})7

which isin S has finite measure by Remark 7.14. In particular, f(z) # 0 implies that either z € N or g,,(z) —
f(x)asn — oo, which requires g, (x) # 0 for some n and thus = € G,, for some n. As such, we see

o0
FCNuUlJ G,

n=1

which competes the proof of the claim.
Now, f(x) > 1g(x) almost everywhere, so select some N’ € S such that y(N’') = 0andz € X \ N’
implies f(z) > 1g(x). With this in mind, we define

E,=(E\N)n (NUOGZ-)

i=1
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In particular, we see that Lemma 5.51 and Lemma 5.55 imply
w(Ey) < p(N') + p(N +Zu

is a finite sum of finite real numbers and is therefore finite.
As such, we note z € E \ N’ implies f(z) # 0andthusz € F,so E\N' C F,so E\ N' = J,_, E,.
Further, we see E,, C E,, UGy11 = E,1 straight from the definition, so Proposition 6.36 tells us
p(E\N') = lim p(Ey,).
n—oo
However, £, C E\ N’ implies 1g, (z) < 1g\n/(z) foreachz € X, s01g, (x) < f(z) forz € X \ N', so
1g, (z) < f(x) almost everywhere, so Lemma 8.75 tells us

/1Endus/ fdp.
X X

Noting u(Ey,) = [y 1k, du by Example 7.16, we see ju(E,,) < [y f dp for each n. It follows that

(E\N') < /deu~

However, u(N’) = 0, so u(E N N') = 0 by Lemma 5.51, so u(E \ N') = u(E) — w(EN N') = p(E). This
finishes. [ |

Corollary 8.85. Fix a measure space (X, S, 1) and a normed vector space B. Further, fix a simple S-
measurable function f: X — Band a u-integrable function g: X — R. If | f(z)|| < g(z) almost every-
where, then f is simple pu-integrable.

Proof. Fixinganyy € (im f) \ {0}, we have to show that f~!({y}) has finite measure. Well, by Lemma 5.51,
we can just show E := f~1(B\ {0}) has finite measure, where E € S already.

For this, we note thatim f is finite, so {||y|| : ¥ € (im f)\ {0}} is finite and therefore has a minimum value
r. Note r > 0 because ||y|| = 0 implies y = 0. As such, we note that

rig(z) <|[|f]l ()

forall z € X because either z ¢ E and thus f(z) = Oorz € E and thusr < ||f(x)]. It follows 1g(z) <
L1 £Il (z) < Lg(z) almost everywhere, so Lemma 8.84 tells us that E has finite measure. In particular, g is
p-integrable by Lemma 8.59. |

8.6.2 Convergencein Mean, Again

We now move towards showing that £! is complete. To state the result, we need to (re)define converging
in mean for our p-integrable functions.

Definition 8.86 (Converge in mean). Fix a measure space (X, S, 1) and a Banach space B. Then a se-
quence {fy }nen of p-integrable functions converges in mean to a u-integrable function f: X — B if
andonlyif || f — fu|l; = 0asn — oo.

Definition 8.87 (Mean Cauchy). Fix a measure space (X, S, 1) and a Banach space B. Then a sequence
{fn}nen of u-integrable functions is mean Cauchy if and only if || f,, — fu||, — 0asm,n — co.
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Remark 8.88. If everything is simple p-integrable, then we note the fact that || |, is the same for p-
integrable functions as for simple p-integrable functions means that our definitions above also do not
change.

Remark 8.89. Roughly speaking, convergence in mean lets us compute integrals. Namely, if f,, — fin
mean, then we claim [ f, du — [ fdp. Indeed, note

[ sau= [ suas| =] [ .5~ sy < [ 07 sl o= sy

by Proposition 8.73 and Lemma 8.76. Thus, for any e > 0, we use f,, — f in mean to find NV such that
n > Nimplies || f — full; < e, whichimplies || [y fdu — [ fndp| < £as well. This finishes.

We now take a deep breath and run a few checks. Here is a comparison result.

Lemma 8.90. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Further, fix a sequence of pu-
integrable functions { f,, }eny and another p-integrable function f: X — B. If f, — fin mean, then
fn — finmeasure.

Proof. We imitate Lemma 8.49; note the statement makes sense because the f,, and f are S-measurable.
Now, fix some ¢ > 0. Then, for any n, we define

En={ze X :|[|f(x) - ful@)] = &}

so that we want to show u(E,) — 0asn — oco; note E,, is S-measurable because all the relevant functions
are S-measurable. Well, we see that each x € X has

Ly (o) < @) = £l

so Lemma 8.84 tells us that

/ ”f /”f )H d,u,— ”f_eanl’

where we have used Proposition 8.73. Thus,

. = fally
< L onl_ -
i, () < Jiog, = = 2 i W = Sl
which is 0 because f,, — f in mean. The fact that u(E,) > 0 for each n tells us lim,, o u(E,) > 0, so
w(E,) — 0asn — oo follows. [ |

Here is a nice consequence.

Lemma 8.91. Fixa measure space (X, S, 1) and a normed vector space B. Given a u-integrable function
f: X = B,if||f|l; =0, then f(z) = 0 almost everywhere.

Proof. Let z denote the zero function so that we want to show f(z) = 0 = z(x) almost everywhere. Note
that the sequence { f,, } nen of functions defined by f,, := z are all simple p-integrable functions (vacuously).
As such, we see that f,, — z in measure.

On the other hand, we see f,, — f in mean because anye > 0 canset N = 0 so thatn > N has

1f = fally = If =0l = lIfl, =0 <e.

However, f,, — finmeanimplies that f,, — f in measure by Lemma 8.90. It follows from Lemma 8.23 that
f(x) = z(z) almost everywhere. [ |

And here is the converse.
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Lemma 8.92. Fix a measure space (X, S, 1) and a Banach space B. Given some p-integrable function
f: X — B,if f(z) = 0almost everywhere, then || ||, = 0.

Proof. Define f,,: X — B to be the zero function for each n. The main claim is that f,, — f in measure.
Indeed, because f(x) = 0 almost everywhere, we can find E € S such that u(E) = 0 while f(z) = 0 for
x € X\ E. Assuch, forany e > 0, we note thatany n > 1 has

{z:1f(2) = fu(@)| Z e} ={z: [[f(2)| = e} S{x: f(x) #0} C E.

Thus, Lemma 5.51 tellsus u ({z : || f(x) — fo(2)|| > €}) < p(E) =0, finishing.
We now note that each || f,,]| is the zero function and hence (vacuously) a simple S-integrable function,
and || f»]| = ||f|l by Lemma 8.19. Thus, by definition of our integral,

190y = [ 10 = tsn [ gl doa =l £ =t 0 =0,

X n oo X n oo n oo

This is what we wanted. ]
And here is the total result.

Lemma 8.93. Fix a measure space (X, S, 1) and a normed vector space B. Then two p-integrable func-
tions f,g: X — B have ||f —g||; = 0ifand only if f(z) = g(z) almost everywhere.

Proof. We let [h] € L}(X,S, u, B) denote the equivalence class of a u-integrable function h: X — B.

In one direction, if [f] = [g], then f — g € N(X,S, 11, B), so ||f — g||; = 0. It follows that f(z) — g(z) =0
almost everywhere by Lemma 8.91, so we can select E € S such that u(FE) = 0 while f(z) — g(z) = 0 for
x € X\ E. Assuch, f(z) = g(x) forz € X \ E, so f(z) = g(x) almost everywhere.

In the other direction, suppose f(z) = g(z) almost everywhere. Then we can select E € S such that
w(E) = 0while f(z) = g(x) forx € X \ E. It follows f(x) — g(z) =0forxz € X\ E,so (f — g)(x) = 0 almost
everywhere. Thus, || f — ¢||; = 0 by Lemma 8.92. ]

Remark 8.94. Fix a measure space (X, S, ;) and a normed vector space B. Lemma 8.93 tells us that
p-integrable functions f, g: X — B equal almost everywhere have || f — g||; = 0. As an application, we
note Proposition 8.73 and Lemma 8.76 imply

H/deu—/xgduH=H/X(f—g)duH</X||f—g|| dp=|f—gl, =0,

so [y fdp = [y gdpufollows.

8.6.3 Completenessof !

And now for our feature presentation.

Proposition 8.95. Fix a measure space (X, S, 1) and a Banach space B. Then a mean Cauchy sequence
{fn}nen of u-integrable functions converges in mean to some u-integrable function f: X — B.

Proof. For each n, Corollary 8.81 grants some simple p-integrable function g,,: X — B with || f, — gx|l; <
1/n. We now proceed in steps.
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1. We claim that {g, }nen is mean Cauchy. Well, fix any e > 0. Then we can find some Ny such that
m,n > Ny implies

€
m— JInll1 < 3-
= fally < 5
Thus, we define N := max{Ny, 3/¢} so that m,n > N implies (by Corollary 8.79) that
1 e 1 2 e 2 ¢
- < - - - T e T Qe

which finishes.

2. Next, we construct the limit function. Because {g, }nen is mean Cauchy, it is Cauchy in measure by
Lemma 8.49, so there is a uniformly Cauchy subsequence {g,, }:en by Theorem 8.35. However, this
subsequence {g,, }:en Will then converge to some S-measurable g: X — B almost uniformly by
Lemma 8.40. Note that g is then u-integrable by definition.

3. It remains to show that f,, — ¢ in mean. Well, note g,, — g almost uniformly, so g,, — ¢ in measure
by Lemma 8.51, so g,,, — ¢ in mean by Lemma 8.80. (This step is why it is important for the g, to be
simple p-integrable!) Finishing up, we fix any ¢ > 0 and note that there is N, such thati > N, implies

gn; — gll; <e/3.

Further, { f» }nen is mean Cauchy, so there is Ny such that m,n > Ny implies

Hfm - fn”l < 5/3'

In total, we set N := max{Ny, Ng,3/e}. Thenn > N impliesn > Nyandn, > n > N > N, so (using
Corollary 8.79 some more)

3

lg = Fally < llg = gnolly + llgn, = frnlly + 1 fn, = fully < 3

1
+—+
Tin,
which is what we wanted. ]

Corollary 8.96. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Given a mean Cauchy se-
quence { f,, }nen of u-integrable functions converging to some S-measurable function f: X — B al-
most everywhere, we know f is u-integrable, and f,, — f in mean.

Proof. The main annoyance here is proving that f is actually u-integrable. As such, we divide the proof into
two steps.

1. Note Proposition 8.95 promises some p-integrable function f’: X — B such that f,, — f’in mean.
However, f, — f’ in mean implies that f,, — f’ in measure by Lemma 8.90, so f,, — f’ almost
everywhere, so f = f’ almost everywhere.

However, f’isalready pu-integrable, so there exists some mean Cauchy sequence {g;, } nen of simple p-
integrable functions such that g, — f’ almost everywhere. It follows that g,, — f almost everywhere
as well, so fisin fact pu-integrable.

2. Now, f = f"almost everywhere implies that || f — f'[|; = 0 by Lemma 8.93. Thus, forany e > 0, we
use f,, — f’inmean to find N such thatn > N implies

If" = fall <e.
However, we now see [|f — fol; < [|f — f'll, + lf" = fall < &by Corollary 8.79, finishing. [ |

In order to actually state this as a completeness result, we need to turn the semi-norm ||-||; into an actual
norm.
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Notation 8.97. Fix a measure space (X, S, i) and a Banach space B. We set N(X,S, 1, B) = {f €
Ll(X785H7B) : Hf“l = 0} and

LYX,S,u,B) = LYX,S,u, B)/N(X,S, i, B).

Remark 8.98. Given p-integrable functions f, g: X — B, we claim that the equivalence classes [f], [g] €
LY(X,8, u, B) are equal if and only if f(x) = g(z) almost everywhere. Indeed, [f] = [g] if and only if
[ —g9€eN(X,S,u, B), which is equivalent to || f — g||; = 0. However, by Lemma 8.93, || f — g||; = 0is
equivalent to f(x) = g(x) almost everywhere.

Lemma 8.99. Fixa measure space (X, S, 1) and a Banach space B. The function ||-||; descends to anorm
on LY(X,S, u, B).

Proof. This is a direct consequence Proposition 1.13, applied to ||-||, on £}(X, S, u, B). |

Corollary 8.100. Fix a measure space (X, S, 1) and a Banach space B. Then L' (X, S, i, B) is the com-
pletion of the vector space of simple p-integrable functions.

Proof. The normed vector space L(X, S, u, B) is complete by Proposition 8.95. Further, the space of sim-
ple p-integrable functions (modded out by the functions of norm zero) are dense in L' (X, S, u, B) by Corol-
lary 8.81. |

Next class we will begin trying to compute integrals.
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THEME 9
INTEGRATION APPLICATIONS

What we didn’t do is make the construction at all usable in practice!
This time we will remedy this.

—Kiran S. Kedlaya, [Ked21]

9.1 November 18

There will be at most two more homework assignments.

9.1.1 Measures from Integrals

Now that we have a reasonable notion of what functions to integrate, given a measure, we would like to take
these integrable functions to build measures. It will be convenient to have the following notation.

Notation 9.1. Fix a measure space (X, S, 1) and a Banach space B. Given a p-integrable function f and
some E C X such that either E € Sor X \ FE € S, we define

s (E) ¢=/Efdu :=/Xf1Edu-

Note that f1g is u-integrable by Lemma 8.60 when E € S and by Remark 8.61 when X \ E € S.

Remark 9.2. We note that i1y has good additivity properties. Namely, given scalars a,b € k, where k is
the base field of B, and two u-integrable functions f,g: X — B, we have

/X (af +bg) s dyt = /X (alf15) + blgLE)) du ~ a /X flpdu+t /X bl da,

where = is by Proposition 8.73. Thus, paf+be(E) = apif(E) + bug(E).
Here are a few quick inequalities.
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Lemma 9.3. Fixa measure space (X, S, 1) and a Banach space (B, ||-||). Further, fixa u-integrable func-
tion f: X —» Bandsome E € S.

(a) We have [[uf(E)[| < [|£];-

(b) Givenabound M > 0suchthat ||f(z)|] < M almost everywhere for z € E, then

g (BN < Mu(E).

Proof. By Lemma 8.76, we see

|uf<E>||—H /X flEduHS /X 1FLsl du.

We now approach the two parts separately.

(@) Foreachz € X, we note that || f1g| (x) is either 0 or || f(z)||, so || f1gl|l (x) < ||f|| (z) for each 2 € X.

Thus, Lemma 8.75 tells us
[l an< [ 151 du= 111,
X X

(b) We claimthat || f1g]|| (z) < M1g(x)almost everywhere for x € X. Indeed, || f(z)| < M almost every-
where forz € E, sothereissome N € S suchthat u(N) =0andz € E\ Nimplies || f(z)|| < M. Thus,
x € X\ N eitherhasz € X \ Esothat|[flg||(z) =0< 0= Mlg(z)orz € E\ N sothat

1 1ell (2) = [If ()| < M = M1p(z).

Finishing up, Lemma 8.75 kicks in to tell us that

/ 1f1el dp < / M1g dp.
X b's
The right-hand side is M [ 1 du by Lemma 8.1, which is M (E) by Example 7.16. This finishes. W

which finishes.

Now, the notation py is intended to be suggestive that we're going to have a measure. Finite additivity is
relatively quick.

Remark 9.4. Suppose f: X — B s u-integrable. It's pretty fast to see that uy: S — B is finitely ad-
ditive: if E, F' € S are disjoint, we need to show that s (E U F) = pus(E) + pus(F). (By induction, this

extends to any finite collection.) Well, 1z + 1p = 1g r becausez € ELI Fifandonlyifz € Eorz € F,
but only one of x € E orx € Fis possible. Thus, Proposition 8.73 tells us

i BUF) = [ Poordu= [ fer1e)dn= [ frdus [ flrdi= )+ ).

In fact, we can extend Remark 9.4 to make ¢ countably additive.

Proposition 9.5. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Given some p-integrable
function f: X — B, the function py: S — B is countably additive.

Proof. Suppose we have a pairwise disjoint collection {E; };en C S. Set E == | |;2, E; (which is in §) so that
we want to show

2 o0
pr(B) =Y pus(E). (9.1)
i=1
We have two steps.
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1. Suppose f: X — B is a simple u-integrable function; we show (9.1). Well, by Lemma 7.8, we can

write .
f= Zylej
j=1
for some nonzero distinct points y; € B and pairwise disjoint F; :== f~!({y;}) € S.
Now, we note 1pnr, = lplp, forany F' € S because (1rplp,)(xz) = 1ifand only if 1p(x) = 1 and

1, (x) = 1, which is equivalent to z € F'and = € F};. Applying this multiple times, we compute

p(F) = /Xledu

X j=1

=/ (Z%‘h@mF) dp
x \o

> (yg/ 1ijFdM>
i=1 X

yiu(Fy N F),

I
NER

<.
Il
—_

where the last two equalities follow from Proposition 8.73 and then Example 7.16. As such, we can
use the fact that p is countably additive already: for each j, note that { F; N E; },cw is a pairwise disjoint
collection because = € (F; N E;) N (F; N Ey) implies z € E; N Ey implies i = 4’. Thus,

FjﬂE:ijDqu:El(ijEi)

i=1 i=1

implies
p(Fj N E) =" u(F; N E).
i=1
Summing over all j, we can write
pur(E) = yu(F; N E)

which is what we wanted. Note that we are allowed to switch the order of summation in = because
the outer sum is finite. (This is effectively just the linearity of limits.)

2. Wenow let f: X — B be an arbitrary u-integrable function. Fix any e > 0, and we need some N such
thatn > N implies

<eE.

pp(E) = py(E;)
i=1
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The idea is to relate f to a simple u-integrable function: Corollary 8.81 grants us some simple u-
integrable function g: X — B suchthat || f — g||; < ¢/3. Now, for any finite n, we can compute

pp(B) =" pp(E)|| < g (B) = pg(B)| + || (B) =Y pg(E)|| + 1D (ng(E7) — Mf(Ez'))H
i=1 =1 =1
= |l (E) = pg(E)|| + || g (E) — ZNg(Ei) + |[ g ( |_| E) — uy ( |_| E) :

where the last equality is because pr and i, are already finitely additive by Remark 9.4. Now, for any
F € S, we note Remark 9.2 tells us

1 (F) = pg ()| = llpg—g (F)II

which is upper-bounded by || f — g]|, by Lemma 9.3. Thus,

§2||f—9H1+

pp(E) = pp(E;) pg(E) = png(E7)
=1 1=1

To finish, we use the previous step to note that there is some N such that n > N implies

- €
pg(E) — Zﬂg(Ei) < 3
i=1
In total,
- €
pr(E) =Y pp(E| <2<+ 376
=1
which is what we wanted. [ |

Having a notion of countably additive functions encourages us to extend our definition of measure.

Definition 9.6 (Measure). Fix a measure space (X, S, u) and a Banach space (B, ||-||). Then a B-valued
measure i on S is a countably additive function u: S — B.

Example 9.7. By Proposition 9.5, we see that a u-integrable function f: X — B gives a B-valued mea-
sure fuf.

We now note that py cannot be terribly large.

Lemma 9.8. Fix a measure space (X, S, ) and a normed vector space B. Further, fix a p-integrable
function f: X — B. Foranye > 0, there is some § > 0 such that £ € S with u(E) < § implies

s (B <.

Proof. As usual, use Corollary 8.81 to find some simple p-integrable function g: X — B with || f —gl|; <
€/2. Thenany E € S grants

() < Mg (B) = pg (BN + [l g (B -
We now bound the terms individually.

« ByRemark 9.2, we see py(E) — pg(E) = py—g(E), so

1 (E) = pg(E) | = llg—g(E) < | = glly

where the inequality is by Lemma 9.3.
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» Note that g has finite image, so we may set M = max{||g(z)|| : # € X} so that ||g(z)| < M for each
x € X. Thus, Lemma 9.3 tells us
g (E)| < Mp(E).

In total, we see
€
lees (B < 5 + Mu(E)

forany E € S. Thus, we set § := 5577y so that pu(E) < §implies
g IS
B <=4M —
Ins (B < 5 +M - g <
which is what we wanted. n

The above lemma motivates the following definition.

Definition 9.9 (Strongly absolutely continuous). Fix a measure space (X, S, 1) and some Banach space
(B,||-]])- Then a B-valued measure v: S — B is strongly absolutely continuous if and only if eache > 0
have some ¢ > 0 such that u(E) < ¢ implies |[v(E)|| < e.

Example 9.10. By Lemma 9.8, each py coming from a p-integrable function f is strongly absolutely
continuous.

Remark 9.11. If v is strongly absolutely continuous, then note that any E € S with u(E) = 0 will have
v(E) = 0. Indeed, forany e > 0, thereis § > 0 such that u(E’) < ¢ implies |[v(E’)|| < e. But we will
always have u(E) = 0 < §,so |[v(E)|| < eforalle > 0, so [[v(E)| = 0, so v(E) = 0. (This condition is
that v is "absolutely continuous.” We will not need it later.)

Remark 9.12. The Radon—Nikodym theorem says that sufficiently nice B-valued measures v which are
absolutely continuous will have v = pf for some p-integrable function f.

9.1.2 Egorov’'s Theorem

To help us later, we pick up the following result on S-measurable functions.

Theorem 9.13 (Egorov’s). Fix a measure space (X, S, 1) and a Banach space B. Further, fix some se-
quence {f,}nen of S-measurable functions. Suppose E € S has u(FE) < oo such that the {f,}nen
converge almost everywhere on F to a function f: X — B. Then f,|g — f almost uniformly on E.

Proof. This is a little tricky. We'll take this in steps.

1. We begin by removing a few null sets, for psychological reasons. Note we are given some N € S such
that u(N) = 0 while fi(z) — f(x)asn — oo foreachx € E'\ N. As such,

fnle\ny = fle\w

on E becauseifz ¢ N, then f,1p\n(2) = 0= flg n(x) foreachn.

We thus claim that f, 15\ n — f1g\n almost uniformly on E. To see that this is enough, note that any
e > 0hassome F' C Ewith u(E\ F) < ewhile f,1p\n|r — flg\n|F uniformly. But then we set
F’ = F\ N sothat Lemma 5.51 and Lemma 5.55 tells us

W(E\F') < p((E\ F)UN) < u(E\ F) + p(N) < 3+0 =6,
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But now fulp\n|p = fulrr and flp\w|rr = f|p because each z € F" hasz ¢ N already. Thus,
fulrr = fl# uniformly, which is what we needed.

In total, we are given f,1p\n — flg\ n everywhere on E and would like to show this convergence is
almost uniform. As such, we replace each f,, 1\ n with f,, and f1pg\ y with f to no detriment, except
now we know f,, — f everywhere. In particular, f is S-measuralbe by Corollary 7.44.

2. Now, for each m and n, set

By = J{ee B I(f — )@ = 1/m} = {a € E: |(f - fi) ()] = 1/m for some k > n}.

k>n

Note each || f — fx|| is S-measurable by Lemma 7.25 and Corollary 7.45, so the union E]* is in S by
Corollary 7.38. Now, for fixed m, we note that fj,(z) — f(z) forz € Eforces(,_, EI" = @. However,
#(E1) < p(E) < oo by Lemma 5.51, so Corollary 6.37 tell us that

lim p (B u( N Eﬁ”) = u(@) = 0.

n=1

3. We now attack the proof directly. Set ¢ > 0. For each m, we may choose n,, so that . (E*) < £/2™
forn > n,,. As such, we set
\ U Ennl
so that Lemma 6.2 tells us
o0 o0 o0 €
v r o U ) < i) < 3 5 -

It remains to show f,|r — f|r uniformly. Fixany d > 0. To set N, find m with m > 1/4, and we set

N = n,,.
To see that this construction works, fixsomen > N and z € F. Well, z € F implies thatz ¢ E]" for
our m, so
1f(@) = fr(x)l] <1/m <§
for each k > n,,. In particular, n > n,,, so || f(z) — fu(z)|| < & follows. [ |

The point of picking up Theorem 9.13 is so that we can prove the Dominated convergence theorem.
Theorem 9.14 (Dominated convergence). Fix a measure space (X, S, ) and a Banach space (B, ||]|)-
Further, fix some sequence { f,, }.en of u-integrable functions converging almost everywhere to a func-
tion f. If there is a u-integrable function g: X — R such that || f,(z)|| < g(z) almost everywhere for
each n, then {f,, }nen is in fact mean Cauchy.

We will prove this next class.

Remark 9.15. It will follow from the conclusion that f,, — f in mean and so

/fdu: lim/fndu.
X n— o0 X

9.2 November20

Today we prove Theorem 9.14.
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9.2.1 Dominated Convergence

Here is the statement.

Theorem 9.14 (Dominated convergence). Fix a measure space (X, S, 1) and a Banach space (B, |||))-
Further, fix some sequence { f,, }.en of u-integrable functions converging almost everywhere to a func-
tion f. If there is a u-integrable function g: X — R such that || f.(z)|| < g(z) almost everywhere for
each n, then {f,, }nen is in fact mean Cauchy.

Proof. Notethat g(x) < |g|(z), so ||f»(2)|| < |g|(z) almost everywhere for each n. Further, |g| is u-integrable
by Lemma 8.62. Thus, we may replace g with |g| so that g = |g|. Also, before doing any heavy lifting, for each
n, we select our E,, € S with u(E,) = 0while || f.(z)|| < g(z) foreachz € X \ E,,.

Fix any £ > 0. Observe that we are interested in bounding the integral

Hfm - an1 = /X ”fm - fn” du

for large m and n. We do this in three steps.
1. Because g is u-integrable, we use Lemma 8.82 to find E' € S such that u(F) < oo and

3

/ng\EdM:/ l9llx\g du < 5
X X

In particular, note g1 x\ g is u-integrable by Remark 8.61. Now, for any m,n € N, we note

[fm (@) = fo(@)]] < [lfm ()| + [ fn(2)]| < 29(z)

almost everywhere: if z ¢ (E,,, U Ey,), then || fi ()], || fn(2)]] < 2¢g(x). However, E,,, U E,, is a null set
because u(E,, U Ey) < p(Enm) + p(E,) = 040 = 0by Lemma 5.55. Thus, forany E/ C X, we see

[fm(2) = fu(@)[[ 1x\5 < 29(2)1x\k (9.2)
almost everywhere as well because = ¢ (E,, U E,,) has either ¢ E’ so that both sides are zero or
x € E' so that we reduce to the inequality.

As such, we use F’ = E and integrate with Lemma 8.75 to get

* 1>
/ [ fn = full 1x\e du < / 291x\pdp = 2/ glx\gdu < 3
X X X

Note we have used Proposition 8.73 at =.

2. It remains to bound what's happening on E. Note f,, — f almost everywhere on E,* so Theorem 9.13
tellsus f,|g — f|E converges almost uniformly. In particular, for any é > 0, we can find ' C FE with
u(F) < o0 suchthat f,|p\p — flg\r uniformly.

We get some choice in this 6, so we use the fact that the measure (., is strongly absolutely continuous
(by Lemma 9.8) to find 6 > 0 such that p(F) < ¢ implies py(F) < €/6. As such, using E' = F'in (9.2),
Lemma 8.75 lets us bound

/XHfm(x)—fn(x)H lpd/LS/)(291qu;2/)(glpdu=2ug(F)<§.

Again, we have used Proposition 8.73 at =.

1 Whatever null set witnessed f,, (z) — f(z) almost everywhere on X will work for E.
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3. Thus, it now remains to bound what's happening on E \ F. Well, f,|pr — f|g\r uniformly, so
{fnlE\F }nen is uniformly Cauchy, so we may find N such that m,n > N has

3

[ frn () = ful@)]| < 301 w(E\F)

forz € E\ F.(Note u(E \ F) < oo because u(E \ F) < pu(E) < oo by Lemma 5.51.) Thus, Lemma 9.3
grants

£

/X (@) = fu (@ Lpnr i = g, (BN F) € = u(B\ F) <

g
= 3(1+u(E\F)) 3

We now add our integrals together. Note X = (X \ E)UE = (X \E)UFU(E\ F)because F C F C X.
Thus, Remark 9.4 promises

1fm = falls = b= ) (X)) = 1 = £t (XN E) A+ 1) = (F) + = ) (BN F) <€

for each m,n > N, where N was chosen in item 3. [ ]

Remark 9.16. We manifest Remark 9.15; we continue in the context of Theorem 9.14 but now assume
that f is S-measurable. In this case, we see that f is py-integrable and that f,, — f in mean by Corol-
lary 8.96. Lastly, Remark 8.89 implies

/fdu: lim/fndu.
X n—oo X

As an application of Theorem 9.14, we upgrade Corollary 8.85.

Corollary 9.17. Fix a measure space (X, S, ;1) and a Banach space (B, ||-||). Further, fixan S-measurable
function f: X — B. If there is a u-integrable function g: X — R such that || f(z)|| < g(«) almost
everywhere, then f is u-integrable.

Proof. Because fis S-measurable, there is a sequence of simple S-measurable functions { f,, } nen such that
fn — f almost everywhere. The main idea is to coerce the f,, into being a mean Cauchy sequence of simple
u~-integrable functions, which will finish.

To begin, set C := g~ (B \ {0}) (which is in S by Corollary 7.38), and define g,, := f,1¢. Each g, is still
simple S-measurable by Lemma 7.47, and we see g,, — f almost everywhere still: there is some E € S with
w(E) = 0while f,(z) — f(z)forz € X \ E.Butthenz € X \ E implies g,,(x) — f(x) aswell: if z € C, then
gn(z) = fn(x) forall n; otherwise if z ¢ C, then g,,(z) = 0 for all n while g(z) = 0 and thus f(z) = 0.

Now, the key restriction is to define

En = {re X :||fu(x)]l < 2lg(z)[}

and h,, = g,1g, . Notably, 2|g| — || f.|| is S-measurable by Lemma 7.11 and Lemma 7.9, so E,, € S by
Corollary 7.38, so h,, is simple S-measurable by Lemma 7.47. But now we see

[ ()] < 2g(2)

foreachx € X because z € E,, grants this inequality for free by definition of E,,, and x ¢ E,, gives ||h,(2)| =
0 < 2/g(x).

Further, we claim h,, — f almost everywhere. Fixsome z € X \ E so that f,,(x) — f(z). There are two
cases.

» Ifz ¢ C, then h,(z) = 0 forall n while g(z) = 0 and thus f(z) = 0.
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» Otherwise, z € C so that |g(z)| > 0. Now, f,,(z) — f(z) for each z, so || f.(z)|| — ||f(z)| by Exam-
ple 1.38, so || f(z)| < 2|g(z)] tells us there is some N, with

[fn (@) < 2[g()]
forn > N,. (Namely, use the error bound |g(x)| > 0 so that n > N implies || f,,(z)|| — || f(=)]] < |g(z)].)
Thus, forn > N,weseex € E,, 50 hy(x) = gn(x) = fn(x). So f,(x) — f(zx)impliesthat h,(z) — f(x)
because the sequences match on large terms.?

Finishing up, Corollary 8.85 tells us that each h,, is simple u-integrable (and thus p-integrable), so Theo-
rem 9.14 tells us {h,, } nen is mean Cauchy. Thus, h,, — f almost everywhere implies f is u-integrable. 1

9.2.2 Monotone Convergence
We finish class by picking up another convergence theorem, for real-valued functions.

Theorem 9.18 (Monotone convergence). Fix a measure space (X, S, ). Given p-integrable functions
fn: X — Rsuchthat f,,(z) > f.(x) > 0almost everywhere for each m > n. If we can find some C € R

such that
/ fodu<C
X

for each n, then {f,, } nen is @ mean Cauchy sequence.

Proof. There are two steps. For brevity, we set I, .= [ f, dp.

1. We compute || f,, — fnll; when m > n. The main point is that m > n implies |f,, — fu| = fmn — fn
almost everywhere. Indeed, there exists E € S such that u(E) = 0 while f,, () > f.(x) > 0for each
x€ X\ E, so

|[fn = fal(@) = |fm(@) = fa(@)] = fim(@) = fulz) = (fm — fo)(@)
foreachz € X \ E. Thus, Remark 8.94 tells us that

Hfm_fn”l:/X‘fm_fn‘dﬂf:/x(fm_fn)dﬂ~

As usual, the linearity of integration from Proposition 8.73 gives

IIfm—fn||1S/Xfmdu—/xfnduzfm—fn‘

2. We complete the proof. We know that m > n implies I,,, — I,, = || fm — fall; > 0 (say, using Corol-
lary 8.79), so I, > I,,. Thus, {I,, }ren is an increasing sequence, but we are given that I,, < C for each
n. It follows that {I,, },,cn is a Cauchy sequence!

Finishing up, for any e > 0, we are promised N such that m,n > N implies |I,,, — I,| < €. Thus,
m >n > N implies

Hfm - fn||1 < |Im - In| <§g,

which finishes. [ ]

2 Explicitly, for any e > 0, find Ny such that || f(z) — fn(z)|| < €, and define our N as N := max{Ny, Ng}.
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Remark 9.19. We work in the context of Theorem 9.18. Notably, by Proposition 8.95, we are granted
some p-integrable function f: X — B such that f,, — f in mean. Thus, Remark 8.89 tells us

/fdu: lim/fndu.
X n— o0 X

If we already know f,, — g almost everywhere for some S-measurable g: X — R, then Corollary 8.96
tells us g is p-integrable and f,, — g in mean, so Remark 8.89 again implies

/gdu: lim/fndu.
X n—o0 X

9.3 November 28
It's the last week of class, so it's time to go off the rails.
9.3.1 Infinite Integrals
As an application of Theorem 9.18, we get the following convention.
Definition 9.20. Fix a measure space (X, S, 11). Given an S-measurable function f: X — R such that
f(z) > 0always, we say

/ fdu = 4oc0

b'e

if and only if there is a sequence of u-integrable functions f,,: X — R such that f,+1(z) > fu.(x) >0
for each z and n such that f,, — f pointwise and [ f, du — +oo.

For this definition to make sense, we need a few lemmas.

Lemma 9.21. Fix a measure space (X, S, u). Given an S-measurable function f: X — R such that
f(z) > 0, there exists some sequence of p-integrable functions f,,: X — Rsuchthat f,,+1(z) > fo(z) >
0 for each = and n such that f,, — f pointwise.

Proof. We have two steps.

1. Because f is S-measurable, we may find a sequence of simple S-measurable functions g,: X —
R such that g, — f pointwise. Thus, by Lemma 7.47, the functions g,1;_,, ) are still simple S-
measurable, but now we claim they are simple u-integrable. Indeed, forany y € R\ {0}, we see
that

(9nli—nm) " ({y}) C [=n,n+ 1)

because # ¢ [—n,n + 1) gives 1[_, ,(z) = 0; thus, u ((gnlj—pnn) '({y})) < (n+1) — —n < oo by
Lemma 5.51, which is what we wanted.

Further, we claim that g, 1{_,, ) — f pointwise asn — oo. Indeed, forany z € X, fixsome e > 0. We
may find some N; such thatn > N implies

[f(z) = gn(@)| <e.

As such, we set N := max{Ny, |z|} sothatn > N > |z| gives g,1|_,, »j(®) = gn(x),andson > N > N;
gives |f(z) — gn(z)] < e.
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2. Relabeling, the previous step constructed a sequence of simple u-integrable functions g,,: X — R
converging to f pointwise. It remains to deal with our bounding. For this, we delete our sequence of
functions f,, recursively. Define f; = 0, which is u-integrable by Lemma 8.59.

Now, given f,,, we define f,,.1 by

fn+1 = max{fnv min{gn+1v f}}

Note min{g,+1, f} is S-measurable by Example 7.46 and thus u-integrable by Corollary 9.17 because
min{g,+1(z), f(x)} < gnt1(z) for each z € X. Thus, we see f,41 is p-integrable (inductively) by
Example 8.63. We also note f,(z) < f,41(x) for any n and x by construction, so we get f,(z) >

fl (l‘) =0.

It remains to check f,, — f pointwise; fixany x € X. To begin, note f,,(z) < f(x) foreachn. Forn =1,
this is by hypothesis on f, and in general we note that f,,(z) < f(z) and min{gn4+1(z), f(z)} < f(z)
forces foi1(z) < f(x).

However, foralle > 0, we can find some N > 0 such thatn > N implies |g,(z) — f(x)] < e. We claim
that | f,,(z) — f(z)| < eforeachn > N > 0 as well. There are two cases.

o If g, (z) < f(x), then we note
gn () = min{g, (z), f(z)} < fu(z) < f(2),

so|f(x) — fa(@)] = f(z) — fulz) < f(z) — gn(z) <e.
. Lf(g,s(x) > f(z), then we note f,,(z) < f(z) while f,(z) > min{g,(z), f(z)} = f(z), so fn(z) =

The above checks complete the proof. |

Proposition 9.22. Fix a measure space (X, S, ) and an S-measurable function f: X — Rwith f(z) >0
forallz € X. Then exactly one of the following is true.

o fis pu-integrable.

o [x fdp=+oo.

Proof. By Lemma 9.21, there certainly exists some sequence of u-integrable functions f,,: X — R such
that f,+1(z) > f.(x) > 0foreach z and n such that f,, — f pointwise. As such, note that the sequence of

integrals
I, ::/ frndu
b's

are increasing by Lemma 8.75. Thus, if the sequence is bounded above, we note f is u-integrable by Theo-
rem 9.18. Otherwise, I, = +o0asn — o0, 50 [y fdu = +oo.

Thus, we have so far shown that at least one of the conclusions is true. It remains to show that they
cannot both be true. Well, suppose f: X — Ris u-integrable, and we show [, f du # +oc. If we have any
increasing sequence {g, }nen Of u-integrable functions such that g, — f pointwise, then we see g, (z) <
f(z) for each z, so we may use Lemma 8.75 to upper-bound

/andug/xfdu.

Thus, the sequence [, f, du does not go to +co. |

While we're here, we pick up a few of our standard bounds.
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1) and some S-measurable functions f,g: X — R such that
) almost everywhere, then

/deu=/ngu~

Proof. We are given E € S such that u(E) = 0 while f(z) = g(z) forz € X \ E. Now, we have the following
cases.

Lemma 9.23. Fix a measure space (X, S,
f(@),g(z) > 0foralle € X.If f(z) = g(x

« If fis u-integrable or g is p-integrable, then we note f(z) < g(x) and g(z) < f(x) almost everywhere
(namely, on X \ E), so Corollary 9.17 implies that both f and g are both p-integrable. To finish, note
f(z) = g(«x) almost everywhere implies that [, fdu = [ gdu by Remark 8.94.

« If neither f nor h are pi-integrable, then Proposition 9.22 tells us that [, fdu = [ gdu = . |

Lemma 9.24. Fix a measure space (X,S, ). Given S-measurable functions f,g: X — R such that
f(x),g(x) > 0forallz € X, we have

/X(f+g)du=/xfdﬂ+/xgdu,

where we permit values to be +oo.

Proof. Note that f + g is S-measurable by Lemma 7.25. We have two cases.

o« If [ (f+9)dp # oo, then (f + g) is u-integrable by Proposition 9.22. However, we note f(z), g(x) <
(f + g)(z) for each z € X because f(z),g(z) > 0, so Lemma 8.75 tells us that f and g are both p-
integrable. Thus, the result follows from Proposition 8.73.

« Suppose [ (f + g) du = +o0. If f and g are both pi-integrable, (f + g) is pu-integrable by Lemma 8.59,
which violates the hypothesis of this case by Proposition 9.22. Thus, one of f or g is not u-integrable.
Without loss of generality, we say f is not u-integrable, so

[ fdu=oc

X

follows from Proposition 9.22. Because [, g du > 0 either when g is p-integrable (by Lemma 8.75 and
Proposition 8.73) or when g is not u-integrable (by Proposition 9.22), the result follows. |

Lemma 9.25. Fix a measure space (X,S, ). Given S-measurable functions f,g: X — R such that
f(z) > g(x) > 0forallz € X, we have

Aﬂ@wzéaww,

where we permit values to be +ooc.

Proof. We have two cases.
o If fis u-integrable, then g is u-integrable by Corollary 9.17, so the result follows from Lemma 8.75.

« If fis not pu-integrable, then [ fdu = +oc by Proposition 9.22, so the result follows. |

184



9.3. NOVEMBER 28 202A: TOPOLOGY AND ANALYSIS

Lemma 9.26. Fix a measure space (X, S, ). Given some S-measurable f: X — R with f(z) > 0 for
each z, suppose there is a sequence of S-measurable functions f,,: X — Rsuchthat f,,+1(z) > fn(z) >
0 for each z and n and f,, — f pointwise. Then

/fdu: lim/fndu.
X n—oo X

Proof. The difficulty here is that the f,, are merely S-measurable. We quickly check that the limit makes
sense: for any n, note that 0 < f,,(z) < fuqi(z) foreachz € X tellsus 0 < [y fodp < [y foy1du by
Lemma 9.25, so the right-hand limit is either finite or +oo.

Thus, we have two cases to appropriately deal with infinity.

« If each f,, is u-integrable, then this follows from either Remark 9.19 or the definition of an integral
evaluating to +oco. (Technically, we are using the fact that the limit function of { f,, }.en is unique almost
everywhere by Lemma 8.93, so f,, — fin mean.)

« Ifany f, is not p-integrable, then Proposition 9.22 tells us [ f, dpu = +oc.

Now, for any m > n has f,,,(z) < fn(z) forallz, so

+oo=/andu=/Xfmdu

by Lemma 9.25, s0 [ fm dp = +o0. It follows that

m—o0

lim fm dp = 400.
X

On the other hand, for any z, we note that f,,,(z) — f(z) asm — oo, but f,,(x) > f.(x) form > n, so
fn(x) < f(z) follows. Applying Lemma 9.25 again tells us [ fdu = +oc. |

9.3.2 Defining £?
Here is our definition.

Definition 9.27 (L?-space). Fix a measure space (X, S, u) and a Banach space (B, ||-||). Given some p €
(0, 00), we define

LP(X,8,u, B) = {S-measurablef : || f||” is u-integrable} .

Lemma 9.28. Fix a measure space (X, S, i) and a k-Banach space (B, ||-||). Then £7(X,S, i, B) is a k-
vector space.

Proof. We have the following checks. As usual, let | - | denote the norm on k.

« Zero: note the zero function z: X — B has ||2||” (z) = 0 for each x € X, which is p-integrable by
Lemma 8.59.

« Scalar multiplication: if f € LP(X, S, u, B), then || f||” is u-integrable. However, for r € k, we note that
rf is S-maesurable by Lemma 7.25, and

I 17 () = (Irl? - I1£17) ()

for each z € X, so the fact that || f||” is u-integrable implies that | f||” is also p-integrable. This
finishes.
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« Additive: suppose f,g € LP(X,S, i, B) so that we want to show f + g € £LP(X, S, i1, B), which means
that we want || f +g[|” € L£'(X,S,p, B). Well, ||f +g||” is S-measurable by applying Lemma 7.25
and Corollary 7.45 and Corollary 7.43 (with the continuous function = — |z|P), so we merely need to
upper-bound || f + g||” and use Corollary 9.17.

Indeed, the triangle inequality implies that

11 (2) + g(@)[| < [f @)l + llg(@)]| < 2max{|[f(z)[|, g(=)I[}

foreachz € X, so

1f (@) + (@) < 2 (max{[|f(2)I], |g(x)]})"
= 2" (max{||f()|I", lg(=)II"})
<27 (IF @)I" + lg@)[") -

However, each || f||” and ||g||” are u-integrable by hypothesis, so 27 || f||” + 27 ||g||” is u-integrable by
Lemma 8.59. Thus, Corollary 9.17 finishes. |

Here is a reason to care about £P: just like £, they have a well-behaved semi-norm (in good cases).
Notation 9.29. Fix a measure space (X, S, 1) and a Banach space (B, |||). Forp € (0,00) and f €

LP(X,S, u, B), we define
1/p
191, = ([ 1P )
X

Note that this integral is well-defined by definition of LP(X, S, u, B).

Here is the analogue for Lemma 8.93.

Lemma 9.30. Fix a measure space (X, S, ) and a Banach space (B, ||-||), and fix p € (0, 00). Given some
f e LP(X,S,u,B), wesee||f|, =0ifand only if f(z) = 0 almost everywhere.

Proof. By Lemma 8.93, we see that
1915 = [ 1717 dn
b'e

equals zero if and only if || f||” (z) = 0 almost everywhere. However, ||f||” (x) = 0 is equivalent to saying
|l f(z)||” = 0, which is equivalent to || f(x)|| = 0, which is equivalent to f(z) = 0. Thus, one side of

{ze X |IfI" () #0} ={z € X : f(x) #0}

is a null set if and only if the other is, which finishes. |

Corollary 9.31. Fix a measure space (X, S, 1) and a Banach space (B, ||-||), and fix p € (0,00). Given
some f,g € LP(X,S, u, B), we see || f — g[|, = 0if and only if f(z) = g(z) almost everywhere.

Proof. Note that || f — g[|, = Ois equivalent to (f — g)(z) = 0 almost everywhere by Lemma 9.30, which is
equivalentto {z € X : f(z) # g(z)} being a null set, which is what we wanted. |

Continuing, we now show that ||-||, is a semi-norm.
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Proposition 9.32. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Then the function ||-||,
defines a semi-norm on £2(X, S, i, B).

Proof. We quickly run our easier checks. Let | - | denote the norm on our base field k, and fix some f €
L3(X,S,u, B).

« Zero: the zero function z: X — Bhas||z||> : X — R equal to zero everywhere, so ||z||* = 14, so

J P du = @) =0
X

by Example 7.16.

- Nonnegative: we note that || f|| (z) > 0 for each z € X, so || f||* (z) > 0 for each z € X, so

JNEREY
X
by Lemma 8.74, so || f||, > 0 follows.

» Homogeneous: ifr € k, thenwe note ||rf|| (x) = (|r|-|| f||)(z) foreachz € X. Thus, by Proposition 8.73
tells us

1/2 1/2 1/2
||rf||2=(/X ||7‘f2du> =(/X |r|-|f||2du) :"""</X ||f2du> — Il £l

It remains to check the triangle inequality, which is harder. We have the following lemma.

Lemma 9.33 (Cauchy—Schwarz). Fix a measure space (X, S, ) and a Banach space (B, ||-||). Given S-
measurable functions f, g € £?(X,S, i, B), then || f|| - ||g|| is p-integrable, and

2 2
[ QU1 ol < W Dl

Proof. Quickly, we see || f|| - |lg]| is S-measurable by applying Lemma 7.26 to Corollary 7.45. It remains to
upper-bound [ £ - {|g]|-
Now, the main point is the arithmetic mean-geometric mean inequality: for r, s € R>, we see

0<(r—s)?=r?+s%—2rs,
sor? + 52 > 2rs. Applying this to our situation, we see

2(|£ (@)l - llg(@)ll < 1@ + llg()]?

(151 gl (@) < (W) (@)

IS +llg 11
2

foreachz € X, so

for each z € X. However, is u-integrable by Lemma 8.59, so we conclude that || f| - |lg] is p-

integrable by Corollary 9.17.
Continuing, Lemma 8.75 tells us

2+ 2
[ s tghyan < [ LT,

and now the right-hand side simplifies to 1 (||fH§ + Hg||§) by Proposition 8.73. This finishes. ]
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We now proceed with the proof of the triangle inequality. Fix f, g € £L2(X, S, u, B). We quickly deal with the
case of || f||, = 0. Here, || f||, = 0 implies that f(z) = 0 almost everywhere by Lemma 9.30, so (f + g)(z) =
g(z) almost everywhere, so || f + g||* () < ||| (z) almost everywhere, so Lemma 8.75 implies

/||f+g||2 dMS/ HgHQdué/ 17 + gll? du.
X X X

Thus, || f + gll, < llglly = If]l5 + |lg]l, follows. Note that a similar argument works for | g, = 0.

Thus, we may assume that || f||,,[|g]|; # 0, which allows us to set h = ﬁ and k = ”;’HQ. Notably,

|h]]y = ||k||, = 1 by the homogeneity check above. As such, Lemma 9.33 grants

1+1
JR(CREIETEES=
X

However, [|a[| = [|f]| /|l and [kl = llgll / |9l so Proposition 8.73 implies

/X(IIfH-||g||)duS2Hf||2-HgH2-

This now rearranges to the desired inequality: given f,g € £L2(X, S, u, B), we see

I£+al3= [ 17+l d
* 2

d

< [ U1+l d

- / 171 du + / lglI? dpu+2 / (IF1 - gl ) dye
X X X
< 1A+ Nall2 + 20£1L - Nl

= (11l + lglls),

and taking the square root finishes. Notably, % has used the triangle inequality and Lemma 8.75 (and the
following equality used Proposition 8.73). |

Remark 9.34. In fact, || f||,, is a norm in general, but it is somewhat harder to show. Roughly speaking,
the difficulty lies in establishing an analogue for Lemma 9.33.

Remark 9.35. If p € (0,1), then || f[|,, is not a norm. In particular, it does not satisfy the triangle inequal-
ity. For that matter, p € (0, 1) do very strange things. For example, if we define

U, = {f e (.5, B)s [ 61 du < }

then the closed convex hull of U,. recovers all of £LP(X, S, i, B). In particular, one can show that there
are thus no nonzero continuous linear functionals on £P(X, S, i, B): the pre-image of an open interval
in R needs to both be open and convex.

9.3.3 Defining L?

Now that we have a semi-norm, we can mod out to get our norm.
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Notation 9.36. Fix a measure space (X, S, i) and a Banach space B, and choose p € [1,00) such that
||-||p defines a semi-norm on £?(X, S, u, B). We set N (X, S, u, B) = {f € L*(X,S,u, B) : || f|, = 0}
and

L*(X,S,u, B) = L*(X,S,u, B)/N (X, S, i1, B).

Remark 9.37. Given f, g € LP(X, S, u, B), note that [f] = [g] in LP(X, S, yi, B) ifand only if || f — g||, = 0
by definition, which is equivalent to f(z) = g(x) almost everywhere by Corollary 9.31.

Proposition 9.38. Fix a measure space (X, S, ) and a Banach space B, and choose p € [1, 00) such that
|||, defines a semi-norm on L?(X, S, u, B). The function [|-[|, descends to a norm on LP(X, S, p1, B).

Proof. This follows from Proposition 1.13. |

We would like to show that L? is complete, but this requires some work. Namely, we will require Fatou's
lemma, a result we will state and prove next class.

9.4 November 30

The final is in about two weeks. Material covered this week may appear on the exam. Material covered in
the topology section of the course may also appear on the exam.

9.4.1 Fatou’'sLemma

We continue moving towards proving the completeness of L2. We pick up the following result.
Lemma 9.39 (Fatou). Fix a measure space (X, S, u). Further, fix a sequence {f, },en of S-measurable

functions f,,: X — Rwith f,,(x) > 0foreach z, and suppose that lim inf,,_, f,(z) isfinite forallz € X.
Then the function lim inf,, , f,, is S-measurable, and

/ (lim inf fn> dy < lim inf / Fn dis.
X n— oo n— o0 X

Proof. We'll do this in steps for clarity.

1. We set up variables. For m > n, define

hn,m = min{f’ru fn-‘rla ey fm}’

which is also S-measurable by Example 7.46, and these have h,, ,,,(z) > 0 for each z.
Notably, for fixed n, the functions h,, 5, hpt1,n; Bnton, . .. are decreasing as m — oo (adding more
terms to this minimum requires values to decrease), so there is a limit function
gn(x) = inf{hp m(z) :m >n} = lim hym(x),
m—r o0
which is S-measurable as the pointwise limit of S-measurable functions. Note that g, (x) is always a
nonnegative real number because the set {h,, ., (x) : n > m} is bounded below by 0.

However, we can see that the g, (z) are monotonically increasing (taking fewer terms in our infimum
requires values to increase), so we see

(lim inf fn) (z) == liminf f,(z) = lim g¢,(z),

n— oo n— 00 n—oo

which we note is always finite by hypothesis. Thus, lim inf,,_, -, is S-measurable by Corollary 7.44, and
gn(z) > 0 always tells us lim inf,,_, o fr(z) > 0 always as well.
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2. We complete the proof. By Lemma 9.26, we see

/ (hminffn) dp = lim / Gn djt. (9.3)
X n—oo n—oo X

Now, for any n, we note g,,(z) < hy, n(z) = fn(z) foreachz € X, so Lemma 9.25 tells us

/gndué/fndu~
X X

liminf/ gndp < liminf/ fndu,
X n— oo X

It follows that

n—oo

which finishes upon noting lim,, o [ gn dp = liminf,,_, o [ g, dp and combining with (9.3). [ ]

Corollary 9.40. Fix a measure space (X, S, ) and fix a sequence { f,, }nen of S-measurable functions
fn: X — Rwith f,(x) > 0for each x. Suppose that thereis E C X with E € Sor X \ E € S such that
liminf, o fn(z) is finite forallz € E. Then the function (liminf,,_, f) 15 is S-measurable, and

/ (liminf fn) dy < lim inf / o dis,
E n— 00 n— oo X

where we enforce (liminf, _, f») 1g(x) = 0whenz ¢ E.

Proof. Thisisadirect consequence of Lemma9.39. Indeed, foranyn, setg, := f,1g, whichis S-measurable
by Lemma 7.47 or Remark 7.48, and we note g, (z) € {0, f,(z)} for each z, so g,(x) > 0 for each z. The
main claim is that
(lim inf fn) 1g = liminf g,
n—oo n—oo

as functions. Indeed, if z ¢ E, then both sides are zero. Otherwise, © € E, so g, (x) = f,,(z) foralln, so both
lim infs converge to the same finite value.
Thus, Lemma 9.39 implies

, (mant ) = [ (imint ) do < it | i

Now, gn(x) < fn(x) foreachz € X, so Lemma 9.25tells us [y g, du < [y fn dp, SO we see

/ (lim inf fn) dp < liminf [ g, dp <liminf [ f, dpy,
E n—oo X X

n—oo n—00

which is what we wanted. [ ]

Remark 9.41. One can show that, if F contains a set of positive measure, then lim inf,,_, o, fx fndu =
+00. We will not need this.

9.4.2 Convergenceinp-Mean

For L', we had convergence in mean, so we will not want a generalized notion.

Definition 9.42 (Converge in p-mean). Fix a measure space (X, S, 1) and a Banach space (B, ||-||), and
choose p € [1,00) such that ||-[|, defines a semi-norm on LP(X, S, u, B). A sequence of functions
{fntnen € LP(X, S, pu, B) converges in p-mean to some f € LP(X,S, u, B) if and only if || f,, — f[|, — 0
asn — oo.
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Definition 9.43 (Cauchy in p-mean). Fix a measure space (X, S, 1) and a Banach space (B, ||-||), and
choose p € [1,00) such that |-, defines a semi-norm on LP(X, S, u, B). A sequence of functions
{fa}nen € LP(X, S, u, B) converges in p-mean to some f € LP(X, S, u, B) ifand only if || f,, — f|, — 0
asn — oo.

Note that the relevant functions all stay in £P by Lemma 9.28.
The main result here is a comparison result. To begin, we pick up Chebyshev’s inequality.

Lemma 9.44 (Chebyshev). Fix a measure space (X, S, u, B) and a Banach space (B, ||-||), and choose

p € [1,00). Givensome h € LP(X,S,u,B)ande > 0,theset E := {x € X : ||h(z)| > €} has finite
measure with

wE) < Lk

= —

Proof. Note that ||h|| is S-measurable by Corollary 7.45, so E is S-measurable by Corollary 7.38, so 1 is

simple S-measurable by Example 7.6.
Now, the indicator function has
p
L) < (nh(:)l) |

Indeed, if z ¢ E, then 1g(z) = 0 while ||h(z)|| /e > 0; otherwise, z € E, so ||h(z)|| > €. Thus, it follows from
Corollary 8.85 that 1 is u-integrable, and Lemma 8.75 implies

hP
[z [ B0,
X x ¢€P

The left-hand side is 1(E) by Example 7.16, and the right-hand side is Hh||5 /€P by Proposition 8.73, so we
are done. ]

And here is our comparison result.

Lemma 9.45. Fix a measure space (X, S, i) and a Banach space (B, ||-||), and choose p € [1,0) such
that ||-||,, defines a semi-norm on LP(X, S, i, B). If a sequence of functions { f,, }ren C LP(X, S, u, B) is
Cauchy in p-mean, then it is Cauchy in measure.

Proof. We use Lemma 9.44. Indeed, for any m and n, we see

1o — full?
7’

cb

p{z € X |[fn(z) = fm(@)] Z €}) <

but || fm — full, = 0asm,n — oo. Explicitly, forany 6 > 0, choose N so that || f,, — full, < §1/7e for

m,n > N so that 5
. P
p({o € X5 [ fa(@) — fnlo)]| 2 2}) < 2

follows form,n > N. [ ]

=9

9.4.3 Completeness of [.”
And now here is our result.
Theorem 9.46. Fix a measure space (X, S, 1) and a Banach space (B, ||-||), and choose p € [1,o0) such

that ||-|| , defines a semi-normon £L?(X, S, i, B). Then a mean Cauchy sequence of functions { f,, }nen C
LP(X,S, u, B) converges in p-mean to some f € LP(X,S, u, B).
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Proof. We proceed as in Proposition 8.95; for brevity, set £P = LP(X,S,u,B) and L? = (X,S,u, B).
By Lemma 9.45, we see that {f, }nen is Cauchy in measure, so there is a uniformly Cauchy subsequence
{fn; }ien by Theorem 8.35. However, this subsequence { f,, }:cn Will then converge to some S-measurable
f: X — Balmost uniformly by Lemma 8.40.

It remains to show that f € £P and f,, — finp-mean. Define g; := f,,, and we will actually directly show
that the integrals

I, :=/ 1 = gull? du
X

are small. Note that f — g,, is S-measurable by Lemma 7.25, so || f — gx|| is S-measurable by Corollary 7.45,
so || f — gu||” is S-measurable by Corollary 7.43 (using = + |z|P). Additionally, || f — g,||” (x) > 0 for each z,
so I, is a legal integral with possibly infinite value.

Now, g, — falmostuniformlyasm — oo, so g, — f almost everywhere. Thus, we find E € S such that
u(E) = 0 while g,,(z) — f(x) forz € E. Thus, g lx\g — flx\g pointwise: if z € E, then g,,(z) — f(z)
already, and if z ¢ E, then g,,1x\g(z) = 0 = flx\g(z) for all m. As such, we note (g, — fu)lx\g —
(f = 9n)1x\E pointwise, so |lgm — ful 1x\5 = [|f = gnll 1x\ & pointwise, so

(tminf g — gul” 1xv2) (@) = Tim_[lgm(z) = gu (@) 1x\5(2) = (1 = all” 1x\5) (2)

foreach z € X. Thus, by Lemma 9.39, we see

/ 1 = gall” L\s du < limin / 19m — gall” L\s d
X m—r 00 X

(Note that the relevant functions are nonnegative and S-measurable by Lemma 7.25 and Corollary 7.45 and
Corollary 7.43 and Remark 7.48.) But now we note that || f — g, ||” 1x\£ = ||f — gxl|” and |lgm — gnll” 1x\£ =
llgm — gn||” almost everywhere (namely, on X \ E), so Lemma 9.23 tells us

/ 1f = gnll” du < liminf/ lgm — gnll” dps, (9.4)
X m—00 X

which will be good enough for our purposes.
We now show the remaining claims in sequence.

« We show f € LP. Note f is S-measurable by construction. Now, f — g, € LP by (9.4): namely, there
is N such that [|g,, — gn, < 1forallm,n > N because {f, }nen is Cauchy in p-mean, so selecting any
such n implies that

/ I — gall” dyu < limin / lgm — gull” djt = limin [|gm — gull? < 1.
X m—0oQ X m—r 00

Thus, || f — gn||” is p-integrable by Proposition 9.22, so f — g,, € LP. It follows from Lemma 9.28 that
f € LP because g,, € LP already.

+ We show f,, — fin p-mean. The main point is that (9.4) now reads
1f=aill, < hjrggolf lgi — g5,

forany i € Z, where we have applied the continuous function = + z'/? everywhere.

Now, fixany e > 0. To begin, fix some Ny such that m,n > N implies || f,,, — fn||p < €/2. Then, for any
n > N,wenoten, >n > N, so

.. £
1 = full, < 1F = gnlly + 1 = fa ll, <liminfllgn = g;ll, + 5.

However, for j > N, we note [|g,, — g;|,, < &/2, so it follows || f — f,||, < ¢, finishing. ]
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Corollary 9.47. Fix a measure space (X, S, 1) and a Banach space (B, ||-||), and choose p € [1,00) such
that [|-||, defines a semi-norm on LP(X, S, u, B). Then LP(X, S, u1, B) is complete.

Proof. The metric space structure comes from Proposition 9.38. For brevity, set £? := £P(X,S, u, B) and
L? .= LP(X,S, u, B). Now, given a Cauchy sequence {[f»]}nen € L?, we note that { f,, }nen C £P is Cauchy
in p-mean (by definition) and thus converges in p-mean to some f € £P by Theorem 9.46, so f,, — fin
p-mean. |

We close class by noting we have made a Hilbert space.

Definition 9.48 (Hilbert space). A Hilbert space is a vector space V over R or C equipped with an inner
product (-, -) such that V is complete for the norm defined by |[v|| := (v, v)!/2.

Example 9.49. In the usual set-up, we can make L?(X, S, u, R) into a Hilbert space by
(f,9) = / fgdp.
X

Notably, (f, £)}/? = || f||,- A similar definition works for L?(X, S, i1, C) by conjugating g in the integral.

Remark 9.50. One can show that L?(X, S, u, R) is “self-dual” in that every linear functional arises in the
form (f,-). (More generally, the dual of L? is L4, where % + % = 1.) This is one reason why L? is better

than other LPs.

Next class we will discuss L°°.

9.5 December?2

It's the last lecture. The exam will be cumulative, weighted towards material after the midterm (namely,
measure theory).

9.5.1 Defining £~

Let’s talk about L*°.

Notation 9.51. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Then £L>°(X, S, 1, B) consists
of the S-measurable functions f: X — B such that there exists some M for which

p{z e X ||f(@)ll = R}) = 0.

Intuitively, these are functions bounded away from a null set.

Note that {x € X : ||f(z)|| > R} isin factin S by Corollary 7.38 because || f|| is S-measurable by Corol-
lary 7.45.
Here is our semi-norm.

Notation 9.52. Fix a measure space (X, S, ) and a Banach space (B, ||-||). Then we define |-|| . on

£>(X, S, u, B) by
[ flloo =inf{M € R: u({z € X : ||f(z)|| > R}) = 0}.
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Remark 9.53. Given f € £L*°(X, S, u, B), we can see that f € £P(X, S, u, B) foreachp € [1,00) as well,
and
Tim 11l = 1/l

Proposition 9.54. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Then [|-|| ., defines a semi-
norm on L.

Proof. Omitted. [ ]

Proposition 9.55. Fixa measure space (X, S, 1) andaBanach space (B, ||-||). With f,g € L (X, S, u, B),
we see f(x) = g(x) almost everywhere if and only if || f — g|| ., = 0.

Proof. Omitted. [ ]

Proposition 9.56. Fix a measure space (X, S, ) and a Banach space (B, ||-||). If a sequence of functions
{fn}nen is Cauchy in co-mean, then { f,, }cn is uniformly Cauchy outside a null set.

Proof. Omitted. [ |

Corollary 9.57. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). Then L>*(X, S, i, B) is com-
plete.

Proof. This follows from the previous result. |
Here are some of our usual checks.

Lemma 9.58. Fix a measure space (X, S, ¢) and a k-Banach space (B, |-||). Then L*(X,S,u, B) is a
k-vector space.

Proof. Omitted. [ ]

In fact, we have a notion of multiplication!

Lemma 9.59. Fix a measure space (X,S,pu), and let k € {R,C}. If f,g € L>(X,S,pu,k), then fg €
L2(X, 8, p, B). Infact, || fllo - 9]l < 159l

Proof. Omitted. [ |

Lemma 9.60. Fix a measure space (X, S, 1), and let B be a k-Banach space where k € {R,C}. Then,
givensome p € [1,00), foranya € £L2°(X,S, u, k) and f € LP(X,S, u, B), weseeaf € LP(X,S, u, B).
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Proof. Of course ||af|” is nonnegative and S-measurable, so we just have to show that its integral is finite.
The point is that
laf1l” < 1% - I1FIP

almost everywhere, so

lafll, < 1l - I1£1L,
after integrating. [ |

In other words, £? is an £>°-module.

Example 9.61. In particular, we see that a € L*(X,S, u, B) defines a continuous linear functional
pa: LP(X, 8, p, B) = LP(X, S, p, B) such that [[u(a)||, < llallo - [[f1],-

9.5.2 Bounded Linear Functionals

Let's generalize Example 9.61.

Definition 9.62 (Bounded). Fix a normed k-vector spaces (V. [|-||\,) and (W, ||-||4/). Then a linear trans-

formation T: V — W defines

T| := inf T .
17l = _int  (ITolhy /ol }

Then T is bounded if and only if | T']| < cc.
Remark 9.63. It turns out that 7' is continuous if and only if T is a bounded linear functional.

Example 9.64. One can check that || e = ||a| -
Let’s look at all our bounded linear operators at once.
Notation 9.65. Given a normed k-vector spaces (V. [|-||\,) and (W, ||-||1/), then we let B(V, W) denote

the normed k-vector space of bounded linear transformations 7: V. — W. If V = W, we set B(V) =
BV, V).

Remark 9.66. One can check that the pointwise operations on B(V') also give ||ST|| < ||S]|-||T]|, so B(V)
is a normed algebra as well.

Remark 9.67. It's also true that V being complete implies that B(V) is complete. More generally, given
normed vector space (V. |-||,,) and (W, [|-||), then W is complete implies that B(V, W) is complete,
where B(V, W) has been defined in the only way which makes sense.

It turns out that B(V') is the correct object to discuss representations.

Definition 9.68. Fix a normed algebra A and a normed vector space V. Then a representation of Ain V'
is an algebra homomorphism A — B(V).

The point is that we would like to respect the topologies on both A and V, so we want a representation to
only output continuous actionson V.

Example 9.69. The map a — p, from earlier is a representation of £LP(X, S, u, B) forp € [1, x].
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9.5.3 A Little Duality

Let’'s move towards a little duality.
Notation 9.70. Fix a normed k-vector space (V, |-||). Thenwe set V = V'V = B(V, k).

We start with L.

Notation 9.71. Fix a measure space (X, S, ) and set & € {R,C}. Then given f € £L>(X,S, u, k) and
g € LY(X,S, u, k), we define

W:Amm

Remark 9.72. One can see that ||of(£)|| < || fllo - llgll;- In fact, equality holds. Thus, ¢ is a bounded
linear functional on £1(X, S, i, k). As such, we have an isometry

e: L®(X, 8, p, k) = LY X, S, u, k).

We might want the isometry ¢, to be surjective. It turns out that we have to add a few conditions on our
measure space.

Theorem 9.73. Fix a measure space (X, S, 1) and a Banach space (B, ||-||). If u is o-finite, and S is a
o-algebra, then ¢, defined in Remark 9.72 is an isomorphism of normed vector spaces.

Proof. Take Math 202B. [ |

Remark 9.74. There is an injection £L}(X, S, u, B) — L>(X,S, u, B)" by something similar to ,, but
it often fails to be surjective. Namely, we have an injection from £! to its double-dual, but when £ is
infinite-dimensional, then the double-dual of a vector space will generally be larger. (One does have to
use the axiom of choice to explicitly show this, however.)

Now let's talk a little about L2. Suppose (X, S, 1) is a measure space such that S is a o-algebra and p is
o-finite. We still have our isometry of normed algebras

Hr: LOC(X7Sak) — B(L2(X387N7k)) ’

and one can check that the image of 14/ is a “von Neumann algebra,” where we are given an adjoint (-)* given
by conjugation: u} = pz. Further, the image is closed, provided the topology is defined correctly: we use
the “strong operator topology” induced by the semi-norms T' — || T¢|| for all €.

In fact, these properties are sharp in the following sense.

Theorem 9.75. Every commutative con Neumann algebraisisomorphic (preserving allthe data) to some
Lo,

This is perhaps unsatisfying to analysts, who are comfortable removing commutativity hypotheses. We
close the class by saying that non-commutative von Neumann algebras are quite interesting.
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APPENDIX A
APPENDIX

A.1 Connectivity

In this appendix, we collect some results on connectivity.

@ Warning A.1. This appendix is taken from my homework, placed here because | have found these results
helpful in later courses.

A.1.1 Being Connected

Here is our definition.

Definition A.2 (connected). Fix a topological space X. Then X is disconnected if and only if there exist
disjoint nonempty open subsets U,V C X suchthat X = UU V. Then X is connected if and only if X is
not disconnected. A subset A C X is connected if and only if it is connected in the subspace topology.

Remark A.3. Equivalently, we can show that X is connected if and only if X and & are the only subsets
of X which are both open and closed.

« Suppose X is connected, and suppose we have some U C X is nonempty and both open and
closed. Then
X=UuUXx\U.

Then X being connected implies that one of these sets is empty, but U # & then forces X \U = &
andsoU = &.

« Suppose X is disconnected so that we can write X = U UV for disjoint nonempty open subsets U
and V. Thenwe seethat U = X \ V is also closed and not equal to X, so we have asubset U C X
which is open, closed, and not in {&, X }.

We begin by picking up a few lemmas.

Lemma A.4. A subset A C X is connected if and only if A C U; UUs and ANU; NUy; # @ for open
subsets Uy, U C X implies ANU; = orANUs; = 2.
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Proof. The subset A is disconnected implies that there are two nonempty open subsets V3, V> C A (for the
relative topology) such that V1 N Vo = @ and A = V; U V5. However, all open subsets of A take the form
U N A for some open subset U C X, so writing V; = ANU; and V5 = AN U tells us that
A=V1UV, CULUU, and =ViNVea=ANU; NU,.
Additionally, V; and V5 being nonempty implies AN U # @and ANUs # &.
Conversely, suppose we have open subsets Uy, U; C X suchthat AC Uy UUsand ANU; NU; = g and
ANUy; # @and ANU; # @. Thenset V; := ANU; and Vo := AN Us to be nonempty open subsets so that
VouVa=ANn(UhUlUy)=A and VinVa=AnU NU; = @,

so A is in fact disconnected. |

Lemma A.5. Fix a topological space X and point 2 € X. Then {z} is connected.

Proof. We use Lemma A.4: if we have {z} N U; N U = & for open subsets U, U C X, we see that we
cannot have bothz € Uy and x € Us forelsex € {x} NU; NUs. Soinstead z ¢ Uy ora ¢ Uz, so{a}NU; = @
or{z}NU; = @. |

Lemma A.6. Fix real numbers a,b € R with a < b. Then the closed interval [a,b] C R is connected.

Proof. For psychological reasons, we use Lemma A.4. Suppose we have open sets Uy, U; C R with [a,b] C
Uy UUsz and [a,b] N Uy N Us. Note that a € Uy or a € Us, so without loss of generality take a € U;. We claim
that [a, 0] N Uy = 2.
Well, consider the set
S=A{re€la,b:|a,r] CU}.

Note {a} C U, soa € S. Also, S is upper-bounded by b, so S has a supremum, so set s := sup.S. We now
proceed in steps.

1. Note that, foranya < r < s, the fact that s is the supremum forces some r’ € Stohaver <1’ < s, so
[a,r] C [a,7] CU;y, sor € S. Thus, [a,s) C S.

2. If s ¢ S, then s € Uy, so thereis somee > 0 with (s —e,s+¢) C S. In particular, max{a, s —e/2} € Uy,
so [a, s) N Uy is nonempty, so [a, b] N Uy N Uz is nonempty, which is a contradiction.

3. So we instead have s € S. Thus, s € Uy, so thereise > 0 with (s — e,s + &) C U;. Thus, for any
0<d<e wesee

[a, min{b, s + 6}] C U;.

But s < s+ J, so because s = sup .S, we must have s + § ¢ S, which in turn forces b < s + § for each
0 > 0 smallenough. It follows b < s, but s € S C [a,b] enforces s = b. Thus, [a,b] C U;.

Now that we have [a,b] C Uy, we see [a, ))NU; NUs = & forces [a, )] NUs = &, which is what we wanted. W

LemmaA.7. Supposethat f: X — Y isacontinuous function actually outputtingtoasubset S C Y;i.e.,
im f C S. Then the function f: X — S given by f(z) := f(z) for each z € X is a continuous function,
where S has been given the subspace topology.
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Proof. For a given open subset V' C S, the subspace topology promises an open subset U C Y such that
V =5nU. Now, we compute

T ={reX:T@) eV}
={reX: f(x)eV}
={zeX: flx)e SNU}
Z{reX: fzx)eU}
= f(U),

which is an open subset of X by the continuity of f; note that we have used the fact that im f C S at the
=, [ ]

Lemma A.8. A continuous function from one topological space into another carries connected subsets
onto connected subsets.

Proof. Fixa continuous function f: X — Y andasubset A C X. Instead of showing that A being connected
implies that f(A) is connected, we proceed by contraposition: suppose that f(A) is disconnected, and we
show that A is connected.

Well, f(A) being connected promises by Lemma A.4 open subsets V1, Vo, C Y suchthat Vi N f(4),V2 N
f(A) #oand f(A) CViUVzand f(A)NVINVa = @. Wenow set Uy := f~1(V;) and Uy := f~1(V3), which
are open in X because f is continuous. Here are our checks.

« Note V; N f(A) # @ promises some a € A with f(a) € Vi, s0a € AN f~1(V1),so ANU; # @.
Symmetrically, we have ANU; # @.

« Ifwehada € ANU; NU,y, wesee f(a) € Vi and f(a) € Vo, 50 f(a) € An f~1(V1) N f~1(Va), so
AN f=Y (V)N f~1(V,) is nonempty. However, by construction, f(A)NV; NV, = &, so we must instead
have ANUL NU; = @.

+ Note f(A) C V1 UVa meansthateacha € Ahas f(a) € Vi or f(a) € Vo,s0a € f~1(Vi)ora € f~1(Va),
soa € Uy UUs. Thus, A C Uy U Us.

The above points show that A is disconnected by Lemma A.4. |
Lemma A.9. The closure of a connected subset of a topological space is connected.

Proof. Fixatopologicalspace X and subset A C X. We proceed by contraposition. Suppose that the closure
A is disconnected, and we show that A is disconnected.

Well, A being connected promises by Lemma A.4 open subsets Uy, Uy C X suchthat ANU,, ANU, # @
and A C U, UUy and ANU;, NU, = @. We show that U; and U, also witness A being disconnected.

» Note o
ANUINU, CANUNUy =2,

soAﬂUlﬁUQ:Q.
. NoteAngUlng,soAgUlng.

« Lastly, we show ANU; # @, and ANU; # @ will follow by symmetry. Well, supposing for contradiction
thaiA NU; = &, we would have A C X'\ Uldaut X \ U; is closed because U, is open,so A C X \ Uy,
so ANU; = @. But by construction we have AN U; # &, so we must instead have ANU; # @.

The above points show that A is disconnected by Lemma A.4. |
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Lemma A.10. Suppose F is a (possibly infinite) collection of connected subsets of a topological space.
If there is a point z( that is contained in every element of F, then the union of all the elements of Fisa
connected subset.

Proof. Weuse Lemma A.4. Let F be anonempty? collection of connected subsets containing some common
point xg, and let C denote the union of all the (connected) subsets A € F. We need to show that C'is
connected. Well, suppose that we have open subsets Uy, Uy C X suchthat C C Uy UUyand CNUy N U,
and we needtoshow CNU; = @ or CNU-@.

Well, forany A € F, we see that

ACCCULUU, and ANUINU, CCNUNU, =@,

so the connectivity of A implies by Lemma A4that ANU; = @ or AN Us = @. Now fixing a particular
Ay € F, we see say that without loss of generality Ao N Us = @, so in fact we see that zy ¢ Us; however,
zo € Ag C Uy N Usy, so we must instead have zy € U;.

We now claim that A C U; foreach A € F. We showed abovethat ANU; = @ or ANU; = &. If we had
ANU; = @, then this would imply 2y € A has zy ¢ Uy, which is false as shown above. So instead we have
ANUy=@,so0alla € A C U; UU, cannot have a € U, and therefore must have a € Uy, so A C U, follows.

In total, we see
c=JAacYu=u.

AeF AeF
As such,weclaimCNU; = @:anyce C CU;UUsnowhasce C =CNU, butCNU NU; = @ then
forces ¢ ¢ Us. As such, C N Uy = @. This finishes by Lemma A.4. [ ]

We now discuss connected components.

Lemma A.11. Let X be a topological space. Declare that two points of X are equivalent if there is some
connected of subset of X that contains both of them. Then this is an equivalence relation, and the
equivalence classes are connected.

Proof. Define therelation ~ on X by z ~ 2’ ifand only if there is a connected subset A C X containing both
xz and z’. We need to show that ~ is an equivalence relation.

+ Reflexive: given z € X, we see that {z} is connected by Lemma A.5. Thus, {«} is a connected subset
containing z and z, so x ~ .

« Symmetric: given z, 2’ € X with z ~ 2/, there is a connected subset A C X containing z and z’. But
then A C X is connected subset containing 2’ and z, so 2’ ~ x follows.

» Transitive: given z,2’, 2" € X withz ~ 2/ and 2’ ~ z”, there are connected subsets A and A’ with
z,x' € Aandz’, 2" € A’. Then we set
B=AUA.

Thus, we see B by definition is the union of two connected subsets of X both containing 2/, so B is
connected by Lemma A.10. Further, z € Band z” € B is telling us that there is a connected subset B
containing both z and z”, so z ~ z” follows.

Now let C' C X be an equivalence class of the equivalence relation ~; say that C'is represented by a particular
xo € C. We proceed in steps.

1. We claim that any connected subset C/ C X containing ¢ is a subset of C. Indeed, any z € C’ has
that ¢’ C X is a connected subset containing both z and zg, so z ~ zg,so z € C. Thus, C' C C.

1if F is empty, then the union of elements of F is @, which is vacuously connected by Lemma A.4: there are no open subsets
Ui, Us C XwithonU; NU; # 2.
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2. We show C'is connected. For each x € C, by definition z ~ 1z, so there is a connected subset A,
containing both z and xg; by the previous point, we see A, C C. Thus, we may write

c=JlsrcJaclJe=c

zeC zeC zeC

C:UAI

zeC

SO

follows. However, each A, is a connected subset of X containing x, so Lemma A.10 tells us that their
union C' must be connected. ]

And here is our definition.

Definition A.12 (connected component). Fix a topological space X. Then the equivalence classes of
Lemma A.11 are called the connected components of X.

Lemma A.13. Fix a connected component A of a topological space X. Then C'is closed.

Proof. Note C'is connected by construction, so Cisa connected subset (by Lemma A.9) which contains .
Thus, as shown in the first point, we see C' C C, but C' C C willimply C = C. But C'is closed, so it follows
C'is closed. [ ]

A.1.2 BeingPath-Connected
Here is our definition.
Definition A.14 (path-connected). Fix a topological space X. Then X is path-connected if and only if

any p,q € X have some continuous function f: [a,b] — X (for a < b) such that f(a) = pand f(b) = q.

Remark A.15. Because there is a homeomorphism [0, 1] 2 [a, b] (for a < b) by z — a + (b — a), we may
as well assume that our continuous functions are f: [0,1] — X.

Lemma A.16. A path-connected topological space is connected.

Proof. Suppose that X is a path-connected topological space. If X is empty, then X is vacuously connected
because X has nonempty open subsets. Otherwise, we may fixa pointz € X, and let C C X beits connected
component as found in Lemma A.11; by Lemma A.11, we see C' is connected.

Now, for any point y € X, we are promised a path p: [a,b] — X such that p(a) = z and p(b) = y.
However, [a, b] is connected by Lemma A.5, so p([a, b]) is connected by Lemma A.8. Thus, p([a,b]) C X isa
connected subset containing both © = p(a) and y = p(b), so x ~ y under the equivalence relation defining
C,soy € C follows.

It follows that X C C, so in fact we have X = C. Thus, X is connected because C' is connected. (The
relative topology on X from X isjust the original topology on X; alternatively, the test for Lemma A.4 simply
says that X is connected directly.) |

We would like to define path-connected components. The following lemma will be helpful to “concatenate”
paths.

201



A.1. CONNECTIVITY 202A: TOPOLOGY AND ANALYSIS

Lemma A.17. Fix a topological space X. Given real numbers a < b < ¢ and two continuous functions
@: [a,b] = X and ¥: [b,c] — X such that p(b) = ¥(b), the function v: [a, ¢] — X defined by

is also continuous.

Proof. Fix an open subset U C X. We need to show that v~ (U) is an open subset of [a, c]. The main claim
is that, for each ¢t € v~1(U), we need to find some e > O such that (t —¢,t +¢) N [a,c] C v 1(U). We have
the following starting remarks.

« Suppose that ¢ € [a,b]. We now note that ¢! (U) is an open subset of [a, b] and contains . Because
0 Y(U) C [a,b] is open, there is an open subset V' C R with =1 (U) = V' N [a, b]. However, t € V, so
thereise > Osuchthat (t —e,t+¢) C Vandso

(t—e,t+e)Na,b] C o 1 (U) S~ ().

+ Analogously, forany t € [b, ¢], the above argument with a replaced with b and b replaced with cand ¢
replaced with ¢ shows that there is some ¢ > 0 such that

(t—et+e)n[bc Sy~ (U) Sy 1)

We now have the following three cases.

» Taket € [a,b). We are provided with some & > 0 such that
(t —&t+ E) n [aa b] - 7_1<U)

This property doesn’t change if we make  smaller, so we may assume thate < b—¢t; notably,b—¢ > 0
by hypothesis. Soinfact z € (t —e,t +¢) implies z < b, so (t —e,t + &) NJ[a,b] = (t —e,t +¢)NJa,c].
So we see

(t—e,t+e)Na,c] Sy HU).

+ Analogously, take ¢t € (b, c]. We are provided with some ¢ > 0 such that
(t—e,t+e)Nb,c 1 U).
This property doesn't change if we make e smaller, so we may assume thate < ¢ — b; notably, t —b > 0
by hypothesis. Soinfact z € (t —¢,t +¢) impliesz > b,so (t —e,t + )N [b,c] = (t —e,t + ) NJa,c].

So we see
(t—e,t+e)Na,c] Sy HU).

« Lastly, we have t = b. We are provided with e~ > 0 such that
(t—e ,t+e)N[a,b] €~y V)

and ™ > 0O such that
(t—et,t+et)N[b,c C 7_1(U).

Setting ¢ := min{e~,e"} > 0, we seethat (t —,t +¢) N [a, b] is contained in (t —e~,t +e7) N [a,b] C
v~ 1(U),and (t —e,t +¢&) N [b,c] is contained in (t —e*,t+eT)N[b,c] £y 1(U), so taking the union of
these we see

(t—e,t+e)Na,c €y HU).
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We now finish the proof. For each t € [a, ¢], we have been promised ¢, > 0 such that (t — &;,t +¢¢) N [a, ] is
a subset of y~1(U), so we see

YO Sladn |J (t—ent+e) Sy,
tey=1(U)

so we have shown that y~}(U) is [a, c] N V where V is some arbitrary union of open subsets of R and hence
open. Thus, v~ *(U) is openin [a, c]. [ |

LemmaA.18. Let X be a topological space. Declare that two points of X are equivalent if there is a path
from one to the other. This is an equivalence relation, and the equivalence classes are path-connected.

Proof. For z,z' € X, define the relation ~, by z ~, y if and only if there is a path 7: [a,b] — R (for some
reals a > b) such that y(a) = z and v(b) = y. We claim that ~,, is an equivalence relation.

+ Reflexive: given any x € X, we define the function v: [0,1] — X by «(t) = « foreach ¢ € [0, 1]. To see
that « is continuous, we pick up some open U C X, for which we have two cases.
- Ifz € U, theny~1(U) = [0, 1], which is open.
- Ifx ¢ U, theny 1(U) = @, which is still open.

Thus, «y is continuous, so y(0) = z and y(1) = z witnesses = ~,, .

» Symmetric: given z,y € X with z ~,, y, we know there is a continuous function v: [a, ] — X such that
v(a) = x and v(b) = y. We now define the function r: R — R by r(¢) := b + a — z, which is continuous
becauseitis a polynomial. Restricting, we see thatr: [a,b] — R is continuous, and we see that ¢ € [a, ]
impliesthata <t < bandsoa < b+a—t < b, so we may restrict the image to see thatr: [a,b] — [a, ]
is a continuous function as well.

Now, composing, we see that (yor): [a,b] — X is a continuous function such that y(r(a)) = v(b) = y
and y(r(b)) = y(a) = . It follows y ~,, z.

» Transitive: fix z,y,z € X withz ~, yand y ~, z so that we have continuous functions «: [a,b] — X
and $3: [¢,d] — X suchthat a(a) = z and a(b) = y and S(¢) = yand 3(d) = =.

Very quickly, we definer: R — Rbyt — ¢t —b+c, which is continuous and hence polynomial. Restrict-
ing, we seethatr: [b,d+b—c] — Risalso continuous, so restricting theimagewenoteb <t < d+b—c
ifand onlyif c <t — b+ ¢ < d, so our function r: [b,d + ¢ — b] — [c, d] is still continuous.

Thus, we define v by Lemma A.17 by concatenating the continuous functions «: [a,b] — X and (8 o
r): [b,d+ ¢ — b — X (note a(b) = yand (8 or)(b) = B(c) = y) to give a continuous function

vila,d+c—b— X
such that y(a) = a(a) = x and y(d + ¢ — b) = B(d) = z. It follows that = ~,, 2.

Thus, ~,, is in fact an equivalence relation.

Now, given some xg, let P be the path-connected component containing z,. To finish, we need to show
that P is path-connected (when given the subspace topology). Well, given z,y € P, we need to show that
there is continuous function «y: [a,b] — P such that y(a) = x and v(b) = y. We have three steps.

1. Notably, we see that z ~,, zyp and =g ~,, y, so the transitivity check tells us that
€T Np y)

so there is a continuous function v: [a,b] — X such that y(a) = z and v(b) = y.
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2. We show thatim~ C P. Indeed, fix some v(¢) € im~, and we note that the restricted path
YN lat] = X

is a continuous function? with 7|, ;(a) = @ and ][, 4 () = Y(t). Thus, |(, Witnesses a ~, (t), so
v(t) € P because P is an equivalence class for ~,,.

3. Thus, we can restrict the codomain of + to give a function 5: [a,b] — P by 5(¢) := ~(t) for each t¢.
Continuing, note that 7 is continuous by Lemma A.7.

Thus, the above proof has taken any two points z,y € P and exhibited a continuous function v: [a,b] — P
such that y(a) = z and v(b) = y. |

And here is our definition.

Definition A.19 (path-connected component). Fix a topological space X. Then the equivalence classes
of Lemma A.18 are the path-connected components.

It is worthwhile to have an example of a space which is connected but not path-connected, showing that the
inclusion of Lemma A.16 is strict.

Exercise A.20. Let A C R? be the union of the y-axis and the graph of the function f(t) = sin(1/t) for
0 < t < 1. (Draw a picture of A.) Prove that A, with the relative topology, is connected but not path-
connected. What are the path-connected components of A? What can you conclude about whether
path-connected components must be closed?

Proof. Here is our picture.

Namely,
A={(0,y) :y e R}U{(t,sin(1/t)) : 0 < t < 1}.

For brevity, defineY := {(0,y) : y € R} and G := {(¢,sin(1/¢t) : 0 < t < 1}. We show the requirements of
the problem in sequence.

« We show that Y C A is path-connected. Well, note that the function f: R — R2 by f(y) == (0,y) is
a polynomial and therefore continuous; notably f(y) = (0,y) € Y for each Y, so we may restrict the
image of f to Y C A, and the resulting function will still be continuous by Lemma A.7.

Now, for any two distinct points (0,y1) and (0,y2) of Y, we assume without loss of generality that
y1 < y2 and consider the restriction

Fliyiwe): 1, 92] = Y-

2 The restriction f|s of a continuous function f: X — Y is still continuous: for any open U C U, we see that (f|s)~*(U) =
SN f~Y(U)isopeninS.
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This function is continuous because f is, and it has f(y1) = (0,y1) and f(y2) = (0,y2). Thus, we
conclude that any two distinct points in Y have a continuous path connecting them, which means that
Y is path-connected.

« We show that G C A is path-connected. Well, note that the function g: (0,1] — R? by g(¢) =

(t,sin(1/t)) is a polynomial in the z-coordinate and the composite of two continuous functions in the
y-coordinate, so g in total is continuous.
Additionally, we see somewhat directly that the image of g is exactly G by definition, so we may restrict
the image of g to a continuous function outputting to G. Now, for any two distinct points (¢1, sin(1/¢1))
and (t2,sin(1/t2)) in G, we would like to find a path between them; without loss of generality, we take
t1 < to. Then we note that the restricted function

9‘[t1,t2]1 [tl,ﬁz] -G

is a continuous function with g(t1) = (¢1,sin(1/¢1)) and g(t2) = (t2,sin(1/t2)). Thus, any two distinct
points of G have a continuous path between them, so we conclude that G is path-connected.

» We show that A is connected. Indeed, it suffices to show that the connected component C containing
(0,0) € Y C Aisall of A. We split this in two pieces.

- To begin, note that Y is path-connected, so Lemma A.16 tells us that Y is connected. It follows
from what we showed in Lemma A.11thatY C C.

- Quickly note that (0,0) € G. Indeed, it suffices to show that any open set U C A containing
(0,0) has nonempty intersection with G. Well, U C A comes from an open set in R?, so using the
product basis for R2, we conclude that there is some ¢ > 0 with

B((0,0),e)nACU.
It suffices to show that B((0,0),¢) N G # @ because this will imply that
B((0,0),e) NG = B((0,0),e) NANGCUNG

is also nonempty.
Well, find some integer n > 0 with 2 > 1/¢,and sett := -1~ > 0. Then

2mn

(¢, sin(1/)) = (%,m(zm) _ (271”10) ,

which lives in B((0,0), ) because 1/(2mn) < . So (¢,sin(1/t)) € GN B((0,0),¢).
Now, we note that G is path-connected as shown above, so G is connected by Lemma A.16, so

G is connected by Lemma A.9. Now, G is a connected set containing (0,0), so G C C by our
discussion in Lemma A.11.

Thus, weseethat A = Y UG C YUG C C, soC = A. It follows that A is connected because connected
components are connected by Lemma A.11.

« We claim that Y and G are the path-connected components of A. Note we have A = Y U G already,
and (z,y) € G impliesz > 0andso (z,y) ¢ Y,soY NG = &; thus, Y and G do partition A and will
induce some equivalence relation ~ on A with Y and G as equivalence classes.

It remains to show that ~ aligns with the correct equivalence relation ~, on A. Namely, we need to
show that a,a’ € Ahavea ~, d’ ifand only if eithera,a’ € Y ora,a’ € G. We have already shown that
Y and G are path-connected above, so it follows that a,a’ € Y or a,a’ € G both imply a ~, a’.

It remains to show the reverse implication. Suppose a = (0,y) € Y and &’ = (¢,sin(1/t)) € G, and we
need to show that there is no continuous path «: [s,t] — A with y(s) = aand y(t) = a’. We proceed
by contradiction, in steps.
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1. Observe that projecting v onto the z-axis (by 7: R? — R) makes a continuous function [s, t] — R.
Notably, 7(y(s)) = w(a) = 0, but 7(v(t)) = w(a’) > 0, so we let ¢y be the supremum of all values
x € [s,t] such that 7([s, z]) = {0}, which is really just the supremum of the values of = with

[s,2] € (7)1 ({0}).

(In particular, ty < t because 7(v(t)) # 0.) Notably, (7y)~1({0}) is closed and therefore contains
its limit points, so because t; is a supremum of some subset of (7v)~1({0}), we conclude that
to € (m7) 71 ({0}).

2. Now, we have that any sufficiently small 6 > 0 has 7y([to, to + d]) # {0}; thus, we have some
x > 0with z € 7y ([to, to + 0]). However, 7y is still continuous, and [tg, tg + d] is connected, so the
image must also be connected, so [0, z] C 7y([to, to + J]).

3. Tofinish, we note that the continuity of v implies that some 6 > 0 has
‘to - tl| <0 = d(7<t0)a7(t/)) <g,
for any given e > 0; in particular, any two points p,p’ € ¥([to, to + d]) must have

d(p,p’) < d(p,¥(to)) + d(v(to),p") < 2e.

However, this will derive contradiction withe = 0.4: any § > 0induces some closed subset [0, z] C
7my([s,t0 + /2]) where z > 0. Notably, choosing some n large enough so that 1/(2mn +7/2) < z,
we see the points

1 1
- sin(2 N)=(— 1
<27Tn—|—77/2’sm( mnt )/ )) (27rn+7r/2’ >’

1 1
—— sin(2 N)=(— 1
(27rn+37r/275m( mn + 3/ )> <27m+37r/2’ )

live in v([to, to + 6/2]), but the distance between these two points is at least 2 and greater than
2e =0.8.

The above steps complete the proof. Notably, A is not path-connected, as shown above, because it has
two path-connected components. Additionally, we note that G C A is a path-connected component
which is not closed; notably (0,0) € G \ G. (We showed (0,0) € G above.) [ |

A.1.3 Products

We go ahead and show that the product of two connected spaces is connected. This is surprisingly techni-
cal.

LemmaA.21. Let X and Y betopological spaces, and let  be a continuous function from X onto Y such
that the topology of Y is the quotient topology from X. If Y is connected, and if the pre-image in X of
each point of Y for 7 is connected, then X is connected.

Proof. By definition of the quotient topology, V C Y is open if and only if 7=1(V) C X is open. We are also
assuming that 7: X — Y is surjective because the question specified that 7 is onto.

We proceed by contraposition. Suppose that X is disconnected but that 7= ({y}) is connected for each
y € Y. WeshowthatY isdisconnected. Because X is disconnected, we may disjoint nonempty open subsets
Uy,Us C X such that X = U; U Uy. We now set

Vi = n(Uy) and Vo == m(Us).
The main claim is that 7=(V;) = U;. We have two inclusions.

« Certainlyany z € Uy has w(z) € Vi, sox € 7= 1(V4),so Uy C 7 1(W4).
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« Conversely, suppose that z € 7=1(V}) so that y := 7 (z) lives in V1. Now, 7= ({y}) is connected. Thus,
because 71 ({y}) C X =U; UUzand = *({y}) NU; NUz C U; NU, = @, we conclude by Lemma A.4
that 7= !({y})NUL =@ ormt({y}) NUs = @.

However, m(z) = y,soz € m~}({y}) whilex € Uy, sor~}({y})NU; # @, soinstead we have 7~ ({y})N
Uy = @. Thus, each 2’ € 771 ({y}) C Uy NUy = X must have 2’ ¢ Uy, so 2’ € U; instead. It follows

= '({y}) € Uh.

Because 77 1(V1) = Uy, we see that V; C Y is open by definition of the quotient topology. By symmetry,
we can replace all 1s with 2s and vice versa in the above argument to show that 7=1(V3) = Uy, thus making
V5 CY also open.

We now run our checks on V7 and V5.

+ Because U; is nonempty, we can find some = € Uy, so w(x) € Vi, so V; is nonempty. Symmetrically,
V4 is nonempty.

+ Because mis surjective, everyy € Y hassome z € X with 7(z) = y. However, X = U; UU; now forces
xeUyorzx €Uy soy=m(z) e Viory=mn(x) € Vo. Thus, Y =V, U Vs,

« We show V; and V5 are disjoint. Indeed, if we had some y € V4 N V4, then go find some z € X with
7(x) = y by the surjectivity of . Butnow z € 7= 1(V}) = Uy andx € 7= 1(Va) = U, soU; N Uz is
nonempty, which is a contradiction to their construction.

The above checks witness that Y is disconnected. [ |

Proposition A.22. Let X and Y be connected topological spaces. Then X x Y with the product topology
is connected.

Proof. If X = @orY = &, then X x Y isempty, so X x Y is vacuously connected: X x Y has no nonempty
open subsets, so X x Y is not the union of two disjoint open subsets.

Otherwise, make X and Y both nonempty. Let 7: X x Y — Y be the canonical projection. We use
Lemma A.21. For this, we have the following checks.

» We check 7 is surjective. Indeed, note that X is nonempty, so find some z € X. Now, foranyy € Y,
we see (z,y) € X x Y hasn((z,y)) = v.

+ We check that the topology on Y is the quotient topology from 7: X x Y — Y. Namely, givenV C Y/,
we need to know that V' C Y is open if and only if 7=1(V) C X x Y is open. Before doing any work,
we compute

7t (V) ={(z,y) e X xY :7((z,9) €V} ={(z,y) e X xY :y €V} =X x V.

As such, if V = @, then 71(V) = &, for which there is nothing more to say, so we may assume that
V # @&. We now show our implications.

— Suppose V' C Y is open. Then, by definition of the product topology on X x Y, the open subset
7~ 1(V) = X x V is an open subset (in fact, a sub-basis element) of X x Y. Thus, 7= (V) isin fact
open.

- Suppose 7~ }(V) = X x V is open. Recalling that the product topology on X x Y has basis given
by Ux x Uy where Uy C X and Uy C Y are both open subsets. Thus, we can find a collection
{Ux,a X Uy,q}aex such that

X xV = U (UX@ X UY,a);
aEX
where the Ux , € X and Uy,, C Y are both open; we may assume that Ux o, # @ for each a € ),
for otherwise we Uy o X Uy, # @, and then we could just throw out this term entirely. (Certainly
not all the Ux ,, will be empty because then X x V = @&, which is false because X,V # &.)
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Now, we thus claim that

V=] Ura,
aEX

which will finish because this implies that V' is the union of open subsets of Y and therefore open.
In one direction, if y € V, fixsome z € X (recall X # @) so that (z,y) € X x V, so there is some
a € Asuchthat (z,y) € (Ux,a X Uy,a), 50y € Uy,q follows, soy € Ugcy, Uy,s-

In the other direction, if y € UﬂEA Uy g, then there is some Uy, containing y. Because Ux , is
nonempty, find some z € Ux . Thus, (z,y) € Ux.o X Uy,a, 50 (z,y) € X x V,soy € V follows.

« Foreachy, € Y, we need to show that 7 =!({y}) is connected when given the subspace topology from
X x Y. We proceed in steps.

1. Note 7~ ({yo}) = {(z,y) € X x Y : w((z,y)) = yo} = {(z,9) € X x Y :y =yo} = X x {yo}.
2. Definethemap:: X — X xY byz — (x,y0). We check that ¢ is continuous. It suffices to run this

check on an arbitrary basisset Ux x Uy C X x Y, where Ux C X and Uy C Y are open. There
are two cases.

- Ifyo ¢ Uy, then we note thatall x € X give c(z) = (x,yo) ¢ Ux x Uy because yy ¢ Uy. Thus,
=Y (Ux x Uy) = @, which is open.
- Ifyg € Uy, then we note

TN Ux xUy) ={r e X :1(z) € Ux x Uy}
={rxeX:(z,y0) € Ux x Uy}
={reX:zeUxandy, € Uy}
Z{reX xecUy}

which is indeed an open subset of X; note we have used the fact that yg € Uy in =,
Thus, .71 (Ux x Uy) is open in all cases, so we conclude that ¢ is in fact continuous.

3. However, we note that im¢ C 7~ ({yo}): indeed, for any x € X, we have 7(:(z)) = 7((z,y0)) =
Yo Thus, we may restrict the codomain of « to a functionz: X — 7~1({z}), which is continuous
by Lemma A.7.

4. In fact, we note that 7 is actually surjective: for any (z,y0) € X x {yo} = 77 '({y0}), we see that
() = (, y0)-

5. Combining the above facts, we note that we have a continuous surjectionz: X — 7= !({yo}), so
because X is connected, we conclude that 7=!({y}) is connected by Lemma A.8.

So indeed, we have found that all the fibersin X x Y ata pointinY are connected.

The above checks make Lemma A.21 kick in, so we conclude that X x Y is connected. |
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LIST OF DEFINITIONS

Almost everywhere, 126
Almost uniformly, 146
Almost uniformly Cauchy, 147

Ball, 29

Banach space, 63

Base, 37

Borelset, 115,117
Borel-Stieltjes measure, 116
Bounded, 58, 195

Category, 12

Cauchy, 19

Cauchy in measure, 140

Cauchy in p-mean, 191

Chain, 71

Closed, 40

Closure, 42

Cluster point, 78

Compact, 64, 64

Compact support, 84

Compelete, 110

Complete, 20

Completion, 21

connected, 197

connected component, 201

Continuous, 16, 31, 33
Lipschitz continuous, 14

Lipschitz constant, 15

Lipschitz isomorphism, 16

Uniformly continuous, 16
Converge, 17
Converge in mean, 153, 168
Converge in measure, 139
Converge in p-mean, 190

Converges almost everywhere, 126

Countably additive, 94

Countably subadditive, 102

Dense, 21,43
Directed set, 78

Equicontinuous, 81

Filter, 71
Finite intersection property, 69
Finitely additive measure, 91

Group action, 52

Hausdroff, 53
Hereditary, 104
Hereditary o-ring, 103
Hilbert space, 193
Homeomorphism, 50

Inductively ordered, 71
Integrable, 158
Integral, 124, 163
Isometry, 13

Lebesgue-Stieltjes measure, 115
Locally compact, 82
LP-space, 185

Mean Cauchy, 153, 168
Measurable function, 126, 126
Measure, 94,176
Measure space, 139
Metric, 7
Extended metric, 7
Semi-metric, 7
Monotone, 100

Net, 78



LIST OF DEFINITIONS

Norm, 8
Normal, 54
Null set, 126

Open cover, 64
Open set, 30

Open subcover, 64
Orbit, 52

Outer measure, 107

path-connected, 201
path-connected component, 204
Pointwise totally bounded, 81
Poset, 70

Pre-image, 30

Premeasure, 96

Prering, 95

Rapidly Cauchy, 150
Regular, 67
Ring, 91

Semi-norm, 9
Separable, 127
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o-algebra, 92
o-finite, 112
o-ring, 92

Generated o-ring, 93
Simple integrable function, 124
Simple measurable function, 120
Strongly absolutely continuous, 177
Sub-base, 34
Subposet, 70
Support, 84

Topology, 32
Discrete topology, 32
Final topology, 48
Generated topology, 34
Indiscrete topology, 32
Induced topology, 39
Product topology, 44
Quotient topology, 49
Relative topology, 39

Totally bounded, 77

Uniform metric, 58
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