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THEME 1

BUILDING MANIFOLDS

So the man gave him the bricks, and he built his house with them.

—Joseph Jacobs, “The Story of the Three Little Pigs” [Jac90]

1.1 January 16
Let’s just get started.

1.1.1 Course Structure
Here are some quick notes.

• There is a bCourses page: https://bcourses.berkeley.edu/courses/1533116. For example,
it has the syllabus.

• The textbook is Lee’s Introduction to Smooth Manifolds [Lee13]. We will read most of it.

• Our instructor is Professor Eric Chen, whose email can be reached at ecc@berkeley.edu. Office
hours are after class in Evans 707.

• There is a GSI, who is Tahsia Saffat, whose email is tahsin saffat@math.berkeley.edu. He will
have some office hours and grade some homeworks.

• Homework will in general be due at 11:59PM on Thursdays via Gradescope.

• There will be an in-class midterm and a final.

• Grading is 30% homework, 30% midterm, and 40% final.

• This is a math class, not so geared towards applied subjects.

• In particular, we will assume a fair amount of topology, for which we use [Elb22] as a reference.
Let’s also give a couple of notes on the course content. This course is on differential topology. The topology
of interest will come from manifolds, and the differential part comes from some smoothness properties.

In some sense, our goal is to “do calculus” (e.g., differentiation, integration, vector fields, etc.) on spaces
which look locally like some Euclidean space, such as a sphere. We also want to understand (smooth) mani-
folds on their own terms, such as understanding the maps between them and understanding some classical
examples and constructions such as Lie groups or quotient manifolds.
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1.1.2 Topology Review
Anyway let’s get started. This is a class on manifolds, so perhaps we should begin by defining a manifold.
These are going to form a special kind of topological space, so let’s review topologies. We will freely use
topological facts which we are too lazy to prove from [Elb22].

Definition 1.1 (topological space). A topological space is a pair (X, T ) where X is a set and T ⊆ P(X)
is a collection of subsets of X satisfying the following.

• ∅ ∈ T and X ∈ T .

• Finite intersection: given U, V ∈ T , we have U ∩ V ∈ T .

• Union: for any subcollection U ⊆ T , we have the union
⋃
U∈U U ∈ T .

We say that the collection T is the collection of open sets of X. We will also suppress the collection T
from the notation as much as possible.

Here is some helpful language.

Definition 1.2 (open, closed, neighborhood). Fix a topological space (X, T ).

• An open subset U ⊆ X is a subset in T .

• A closed subset V ⊆ X is one with X \ V ∈ T .

• A neighborhood of a point p ∈ X is an open subset U ⊆ X containing p.

Example 1.3. Fix a metric space (X, d). Then there is a topology given by the metric. To be explicit, a
set U ⊆ X is open if and only if each p ∈ U has some ε > 0 such that

{x ∈ X : d(x, p) < ε} ⊆ U.

See [Elb22, Example 2.13] for the details.

Sometimes it is easier to generate a topology from some subcollection.

Definition 1.4 (base). Fix a topological space (X, T ). A subcollection B ⊆ T is a base for T if and only if
the following holds: for each open U ⊆ X and point p ∈ U , there is some B ∈ B such that p ∈ B and
B ⊆ U .

Example 1.5. Fix a metric space (X, d). Then the collection B of open balls

B(p, ε) :=,

over all p ∈ X and ε > 0, forms a base of the topology. This is immediate from the construction of the
topology in Example 1.3. In fact, one can merely take ε ∈ Q+ because Q is dense in R.

With our objects of topological spaces in hand, we should discuss the maps between them.

Definition 1.6 (continuous). Fix topological spaces X and X ′. A function φ : X → X ′ is continuous if
and only if φ−1(U ′) is open for each open U ′ ⊆ X ′.

Definition 1.7 (homeomorphism). Fix topological spacesX andX ′. A function φ : X → X ′ is a homeo-
morphism if and only if φ is a bijection and both φ and φ−1 are continuous. We may write X ∼= X ′.

6
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Remark 1.8. There is a continuous bijection [0, 2π) → S1 by θ 7→ (cos θ, sin θ), but it is not a homeomor-
phism. (Here, both sets have the metric topology.) In particular, the inverse map is not continuous at
1 because the pre-image of [0, π) is the subset

{
(x, y) ∈ S1 : y > 0

}
∪ {(0, 0)}, which is not open in S1

(because no ε > 0 has B((0, 0), ε) lying in
{
(x, y) ∈ S1 : y ≥ 0

}
).

Exercise 1.9. Fix a nonnegative integer n ≥ 0. Then B(0, 1) ∼= Rn.

Proof. We proceed as in [use14]. Define the functions f : B(0, 1) → Rn and g : Rn → B(0, 1) by

f(x) :=
x

1− |x|
and g(y) :=

y

1 + |y|
.

Notably, |g(y)| < 1 always, so g does indeed always output to B(0, 1). These functions are both continu-
ous, which can be checked on coordinates because they are rational functions in the coordinates, and the
denominators never vanish on the domains. So we will be done once we show that f and g are inverse. In
one direction, we note

f(g(y)) =
g(y)

1− |g(y)|
=

y

1 + |y|

1−
∣∣∣∣ y

1 + |y|

∣∣∣∣ =
y

1 + |y| − |y|
= y.

In the other direction, we note

g(f(x)) =
f(x)

1 + |f(x)|
=

x

1− |x|

1 +

∣∣∣∣ x

1− |x|

∣∣∣∣ =
x

1− |x|+ |x|
= x,

as desired. ■

We would also like to be able to build new topologies from old ones.

Definition 1.10 (subspace). Fix a topological space (X, T ). Given a subset S ⊆ X, we form a subspace
topology by declaring the open subsets to be

{U ∩ S : U ∈ T }.

Example 1.11. The metric topology on R and the subspace topology on X := R× {0} ⊆ R2 are home-
omorphic. Namely, the homeomorphism sends x 7→ (x, 0), and the inverse map is (x, 0) 7→ x. Here are
our continuity checks.

• The map x 7→ (x, 0) is continuous: the pre-image V of an open subset U ⊆ X is open. Namely,
for any x ∈ V , we see (x, 0) ∈ V , so there is ε > 0 such that B((x, 0), ε) ∩X ⊆ U , so B(x, ε) ⊆ V .

• The map (x, 0) 7→ x is continuous: the pre-image V of an open subsetU ⊆ R is open. Namely, for
each (x, 0) ∈ V , we see x ∈ U , so there is ε > 0 such that B(x, ε) ⊆ V , so B((x, 0), ε) ∩X ⊆ U .

Lastly, we will want some adjectives for our topologies.

Definition 1.12 (compact). Fix a topological space X. A subset K ⊆ X is compact if and only if any
open cover can be reduced to a finite subcover. Explicitly, any collection U of open sets of X such that
K ⊆

⋃
U∈U U (this is called an open cover) has some finite subcollectionU ′ ⊆ U such thatK ⊆

⋃
U∈U ′ U .

7
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Example 1.13. The interval [0, 1] ⊆ R is compact. See [Elb22, Example 4.4].

Definition 1.14 (Hausdorff). Fix a topological spaceX. ThenX is Hausdorff if and only if any two distinct
points p1, p2 ∈ X have disjoint open subsets U1, U2 ⊆ X such that p1 ∈ U1 and p2 ∈ U2.

Example 1.15. Any metric space (X, d) is Hausdorff. Namely, for distinct points p, q ∈ X, we see
d(p, q) > 0, so set ε := d(p, q)/2, and we see that p ∈ B(p, ε) and q ∈ B(q, ε), but B(p, ε) ∩ B(q, ε) = ∅.
For this last claim, we note r living in the intersection would imply

d(p, q) ≤ d(p, r) + d(r, q) < 2ε,

which is a contradiction to the construction of ε.

1.1.3 Topological Manifolds
For intuition, we state but not prove the following result.

Theorem 1.16 (Topological invariance of dimension). Fix open subsets U ⊆ Rm and V ⊆ Rn. If there is
a homeomorphism U ∼= V , then m = n.

Proof. The usual proofs go through (co)homology, which we may cover later in the class. For the interested,
see [Elb23, Proposition 3.50]. ■

We will soon define topological manifolds. The main adjective we want is being “locally Euclidean.”

Definition 1.17 (locally Euclidean). Fix a topological space X. Then X is locally Euclidean of dimension
n at p if and only if there is an open neighborhood U ⊆ X and open subset Ũ ⊆ Rn such that U ∼= Ũ .
We say that X is locally Euclidean of dimension n if and only if it is locally Euclidean of dimension n at
each point.

Remark 1.18. One can always take Ũ to be either B(0, 1) ⊆ Rn or even all of Rn. Indeed, for x ∈ X, we
are given an open neighborhood U of x and Û ⊆ Rn with a homeomorphism φ : U ∼= Û . We produce
open neighborhoods of x homeomorphic to B(0, 1) and Rn.

• B(0, 1): there is ε > 0 such that B(φ(x), ε) ⊆ Û . Then we let U ′ := φ−1(B(φ(x), ε)) so that we
have a chain of homeomorphisms

U ′ φ∼= B(φ(x), ε) ∼= B(0, ε) ∼= B(0, 1),

where the second homeomorphism is a translation, and the last homeomorphism is a dilation.

• Rn: in the light of the previous point, it suffices to note that Exercise 1.9 provides a homeomor-
phism B(0, 1) ∼= Rn and then post-compose with this homeomorphism.

Let’s explain why we want Theorem 1.16.

Lemma 1.19. Fix a locally Euclidean space X. For each p ∈ X, there is a unique nonnegative integer n
such that there exists an open neighborhood U ⊆ X and open subset Ũ ⊆ Rn such that U ∼= Ũ .

8
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Proof. Suppose there are two such nonnegative integersm and n, so we get open neighborhoodsU, V ⊆ X

and Ũ ⊆ Rm and Ṽ ⊆ Rn. Let φ : U ∼= Ũ and ψ : V ∼= Ṽ be the needed homeomorphisms. Then the point is
to use the intersection U ∩ V : there is a composite isomorphism

φ(U ∩ V ) ∼= U ∩ V ∼= ψ(U ∩ V )

from an open subset in Rm to an open subset in Rn. So Theorem 1.16 completes the proof. ■

Anyway, here is our definition of a topological manifold.

Definition 1.20 (topological manifold). Ann-dimensional topological manifold is a topological spaceM
with the following properties.

• M is Hausdorff.

• M is locally Euclidean of dimension n at each point.

• M is second countable (i.e., has a countable base).

We may abbreviate “n-dimensional topological manifold” to “topological n-manifold.”

Let’s give a few quick constructions.

Lemma 1.21. For each n ≥ 0, the space Rn is an n-dimensional topological manifold.

Proof. Let’s be quick. Being a metric space yields Hausdorff, locally Euclidean is immediate because it’s Rn,
and second-countability follows by using the base{

B(q, ε) : q ∈ Qn, ε ∈ Q+
}
.

This is indeed a base because Q is dense in R. Explicitly, for each p ∈ Rn living in some open subsetU ⊆ Rn,
begin by replacing U with a smaller open subset of the form B(p, ε) where ε > 0; by perhaps making ε
smaller, we may assume that ε > 0 is rational. Now, choosing coordinates p = (x1, . . . , xn), choose rational
numbers q1, . . . , qn so that |xi − qi| < ε/(2

√
n) for each i. Then q := (q1, . . . , qn) has d(p, q) < ε/2 and so

p ∈ B(q, ε/2) ⊆ B(p, ε) ⊆ U,

so B(q, ε/2) is the needed open subset in our base. ■

The following lemma will be helpful in the sequel.

Lemma 1.22. Fix a topological space M and nonnegative integer n ≥ 0. Suppose that there is a count-
able open cover {Ui}i∈N of M such that each i has a homeomorphism Ui ∼= Ũi where Ũi ⊆ Rn is open.
Then M is locally Euclidean of dimension n at each point, and M is second countable.

Proof. For locally Euclidean, we note that each p ∈ M lives in some Ui, so we are done. As for second
countability, we note that each Ũi is second countable as a subspace of a second countable space (see
Lemma 1.21), so each Ui is second countable by moving back through the homeomorphism, and so M is
second countable by taking the union of the bases of the Ui.

To make this last step more explicitly, we note that each Ui has a countable base Bi, so we claim that
B :=

⋃
i∈N Bi becomes a countable base ofM . Certainly B is countable, and every set in B is in one of the Bi

and hence open in M . Lastly, to check that we have a base, we note that any open U ⊆ M and p ∈ M will
have p ∈ Ui for some i, so there is some B ∈ Bi ⊆ B such that p ∈ B ⊆ U ∩ Ui. ■

9
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1.1.4 Examples and Non-Examples
Here are some non-examples to explain why we want all of these hypotheses.

Exercise 1.23. Consider the spaceX defined asR×{0, 1}where we identify (x, 0) ∼ (x, 1)wheneverx ̸=
0. (The topology on X is the quotient topology [Elb22, Definition 2.81].) This space is not Hausdorff,
but it is locally Euclidean and second countable.

Proof. We run our checks.

• This space is not Hausdorff because the points (0, 0) and (0, 1) are “infinitely close together.” Explicitly,
any open neighborhoods U and V of (0, 0) and (0, 1), respectively, the induced topology yields some
ε > 0 such thatB((0, 0), ε) ⊆ U andB((0, 1), ε) ⊆ V , but then (−ε/2, 0) = (−ε/2, 1) is in bothU and V .

• This space is locally Euclidean and second countable by Lemma 1.22. Explicitly, we note that R ∼=
R× {0} ⊆ X and R ∼= R× {1} ⊆ X by an argument similar to Example 1.11. So we have a finite cover
by open subsets of Rn, completing the check in Lemma 1.22. ■

Exercise 1.24. Consider the space X defined as R × {0, 1} where we identify (x, 0) ∼ (x, 1) whenever
x ≤ 0, again where we are using the quotient topology. ThenX is Hausdorff and second countable, but
it is not Euclidean of dimension 1 at 0 ∈ X.

Proof. We run our checks.

• This space is Hausdorff. We check this directly by casework.

– Suppose we have distinct points p = (x, a) and q = (y, b) with x ̸= y; for example, this includes
the case where we may take a = b and hence includes the case when x, y ≤ 0. Then we may set
ε := 1

2 |x− y| so that B(p, ε) and B(q, ε) are disjoint.
– We now may assume that x = y; then a ̸= b. Thus, we must have x > 0 or y > 0. As such, we may

as well take ε := min{|x| , |y|} so that B(p, ε) and B(q, ε) are disjoint.

• This space is not locally Euclidean at 0. Indeed, suppose that there is open subset U ⊆ X around 0
which is homeomorphic to an open subset of R. By shifting, we may as well assume that the homeo-
morphism sends 0 to 0. Additionally, the same statement will be true by any open subset of U , so we
may as well as assume that U is of the form (−ε, ε)× {0, 1} (in X). In particular, U is connected.

But then the image Û ofU in R is a connected open subset of R, which must be an interval. Now, inter-
vals have the property that deleting any point of an interval makes produces a topological space with
two connected components. However, deleting 0 from U will produce three connected components:
(−ε, 0)× {0, 1} and (0, ε)× {0} and (0, ε)× {1}. So Û and U cannot actually be homeomorphic!

• This space is second countable by Lemma 1.22. Again, we note that R ∼= R × {0} ⊆ X and R ∼=
R × {1} ⊆ X by an argument similar to Example 1.11. So we have a finite cover by open subsets of
Rn, completing the check in Lemma 1.22. ■

Remark 1.25. Essentially the same argument implies that the above space fails to be locally Euclidean
of any dimension at 0 ∈ X. Namely, a connected open subset of Rn for n ≥ 2 will remain connected
after removing any point, so it cannot be homeomorphic to (−ε, ε)× {0, 1} in X.

Morally, the second countability is being required as a smallness condition; let’s see some pathological ex-
amples without second countability. The following lemma approximately explains the problem.

10
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Lemma 1.26. Fix a topological space X. Suppose that there is an uncountable subset Y ⊆ X such that
each y ∈ Y has an open neighborhood Uy ⊆ X where the Uy are pairwise disjoint. Then X fails to be
second countable.

Proof. Suppose we have a base B; we show B is uncountable. Each y ∈ Uy has some By ∈ B with By ⊆ Uy.
However, y ̸= y′ implies that By ̸= By′ because y ∈ By while py /∈ Uy′ implies py /∈ By′ . So {By}y∈Y is an
uncountable subcollection of B. ■

Exercise 1.27. Consider an uncountable setS with the discrete topology (namely, every subset is open),
and then we form the product X := R × S. Then X is Hausdorff, locally Euclidean of dimension 1, but
it is not second countable.

Proof. Here are our checks.

• Note that X is a product of Hausdorff spaces and hence is Hausdorff.

• This space is locally Euclidean of dimension 1: for each (x, s) ∈ X, we note that R × {s} is an open
subset of X (because S is discrete) where R× {s} ∼= R by an argument similar to Example 1.11.

• This space is not second countable by Lemma 1.26. Namely, we have the uncountably many points
ps := (0, s) (one for each s ∈ S) contained in the pairwise disjoint open neighborhoods Us := R ×
{s}. ■

Exercise 1.28. Consider the first uncountable ordinal ω1. Then define X := (S × [0, 1)) \ {(0, 0)}, and
we give X the order topology where the ordering is lexicographic. (Namely, the base consists of the
“intervals” {x : x < b} or {x : a < x} or {x : a < x < b}.) This space is Hausdorff, locally Euclidean 1,
but it is not second countable.

Proof. Here are our checks.

• This space is Hausdorff because it is a dense linear order. Explicitly, for (s, a), (t, b) ∈ X, we have the
following cases.

– Suppose s = t. In this case, a ̸= b; suppose a < b without loss of generality. Then {x : x <
(s, (a+ b)/2)} and {x : x > (s, (a+ b)/2)} are the needed open sets.

– Suppose s ̸= t; take s < t without loss of generality. If a > 0, then {s} × (0, (a + 1)/2) and
{s} × ((a+ 1)/2, 1)∪ {t} × [0, 1) provide the needed open sets. Otherwise, if a = 0, then {x : x <
(s, 1/2)} and {x : x > (s, 1/2)} provide the needed open sets.

• This space is locally Euclidean of dimension 1: fix any (s, r) ∈ X. Note that s ∈ ω1 is countable, so we
claim that

(s+ 1)× [0, 1) ∼= [0, 1),

sending (0, 0) to 0, from which the claim follows by deleting (0, 0). Because the relevant orders produce
the needed topologies, we are really asking for an order-preserving bijection from (s + 1) × [0, 1) to
[0, 1).
Well, for any t ∈ ω1, we claim that there is an increasing sequence {pα}α<t ⊆ [0, 1) of order type twith
p0 = 0, from which the claim will follow by taking s = t and sending α × [0, 1) ⊆ (s + 1) × [0, 1) to
[pα, pα+1) (where we define ps := 1). To see this claim, we argue by induction on s. For s = 0, take
p0 := 0. If s is a successor ordinal, divide all the existing pα by 2 and then set ps+1 := 1/2.
Lastly, if s is a limit ordinal, it is still only a countable limit ordinal, so we can find an increasing sequence
of countable ordinals {si}i∈ω approaching s. The sequence corresponding to s0 will fit into [0, 1/2) after
scaling; then the sequence corresponding to s1 but after s0 will fit into [1/2, 2/3) after scaling. We can
continue this process inductively to complete the claim for s. I won’t bother to write out the details.

11
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• This space is not second countable by Lemma 1.26. Namely, we have the uncountably many points
ps := (s, 1/2) (one for each s ∈ S) contained in the pairwise disjoint open neighborhoods Us := {s} ×
(0, 1). ■

Remark 1.29. What makes the locally Euclidean check above annoying is that we must show (ω, 0) ∈ X
has a neighborhood isomorphic to an open subset of R, which is not totally obvious.

Let’s return to examples.

Example 1.30. Consider the unit circle S1. We check that S1 is a 1-dimensional topological manifold.

• S1 is a metric space, so it is Hausdorff.

• S1 is second countable: it is a subspace of R2, and R2 is second countable by Lemma 1.21 again.

• S1 is locally Euclidean: we proceed explicitly. Define U±
1 :=

{
(x, y) ∈ S1 : ±x > 0

}
; then U±

1
∼=

(−1, 1) by (x, y) 7→ y. Similarly, define U±
2 :=

{
(x, y) ∈ S1 : ±y > 0

}
; then U±

2
∼= (−1, 1) by

(x, y) 7→ x.

1.2 January 18
The first homework has been posted. It is mostly a review of point-set topology things. It is due on the 25th
of January.

Remark 1.31. Please read the section on fundamental groups of manifolds on your own. We will not
discuss it in class.

To review, our current goal is to define smooth manifolds. Thus far we have defined a topological space and
provided enough adjectives to turn it into a topological manifold. To proceed, we need to add smoothness
to our structure. We will do this later.

1.2.1 Connectivity
For now, we will content ourselves with some extra adjectives for our topological manifolds which will later
be helpful. Here are two notions of connectivity.

Definition 1.32 (connected). Fix a topological spaceX. ThenX is disconnected if and only if there exist
disjoint nonempty open subsets U, V ⊆ X such that X = U ⊔ V . If X is not disconnected, we say that
X is connected.

Example 1.33. The interval [0, 1] is connected. See [Elb22, Lemma A.6].

Remark 1.34. Equivalently, we can say that X is connected if and only if X and ∅ are the only subsets
of X which are both open and closed.

Definition 1.35 (path-connected). Fix a topological space X. Then X is path-connected if and only if
any two points p, q ∈ X has some continuous map γ : [0, 1] → X such that γ(0) = p and γ(1) = q.

12
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Example 1.36. The space B(0, 1) ⊆ Rn is path-connected. Indeed, we show that the path-connected
component of 0 is all of B(0, 1); see [Elb22, Definition A.19]. In other words, we must exhibit a path
from 0 to v for any v ∈ B(0, 1). Well, define γ : [0, 1] → B(0, 1) by γ(t) := tv. This is continuous because
it is linear, and it has γ(0) = 0 and γ(1) = v as desired.

In general, these two notions do not coincide.

Example 1.37. Consider the topological space

X := {(x, sin(1/x)) : x ∈ (0, 1)} ∪ {(0, y) : y ∈ R}.

Then X is connected, but it is not path-connected. See [Elb22, Exercise A.20].

But one does in general apply the other.

Lemma 1.38. Fix a topological space X. If X is path-connected, then X is connected.

Proof. See [Elb22, Lemma A.16], though we will sketch the proof. We proceed by contraposition. Suppose
that X is disconnected, so we may write X = U ⊔ V where U, V ⊆ X are disjoint nonempty open subsets.
Now choose some p ∈ U and q ∈ V , and we claim that there is no path γ : [0, 1] → X. Indeed, γ−1(U) and
γ−1(V ) would then be nonempty disjoint open subsets of [0, 1] covering [0, 1], which is a contradiction. ■

However, for topological manifolds, these notions do coincide.

Proposition 1.39. Fix a topological spaceM which is locally Euclidean of dimension n. ThenM is path-
connected if and only if it is connected.

Proof. The forward direction is by Lemma 1.38. Thus, we focus on showing the converse. Fix some p ∈M ,
and we define the subset

Up := {q ∈M : there exists a path from p to q}.

This is the path-connected component of p in M ; see [Elb22, Definition A.19]. The main claim is that Up is
open.

Suppose q ∈M , and we need to find an open neighborhoodBq ⊆M of q living insideUp. Noting then that
Up =

⋃
q∈Up

Bq will complete the proof of this claim. Well, q has some open neighborhoodB ⊆M equipped
with a homeomorphism φ : B ∼= B(0, 1) by Remark 1.18. Then B(0, 1) is path-connected by Example 1.36,
so B is path-connected by going back through the homeomorphism. Thus, because Up is an equivalence
class, it is also the path-connected equivalence class of q, so Up must contain B.

Now, let U denote the collection of path-connected components of M . This is a collection of disjoint
open subsets covering M . Certainly it is nonempty, so select U ∈ U . Then we write

M = U ∪
⋃

U ′∈U\{U}

U ′.

This is a decomposition of M into disjoint open subsets, so because M is connected, one of these must
be empty. But U is empty, so instead the union of the U ′ must be nonempty. However, everything in U is
nonempty, so instead we see that U \ {U} is empty, so M = U is path-connected. ■

1.2.2 Local compactness
Here is our definition.

13
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Definition 1.40 (local compactness). Fix a topological space X. Then X is locally compact if and only
if any x ∈ X has some open neighborhood U ⊆ X such that there exists a compact subset K ⊆ X
containing U .

Remark 1.41. If X is Hausdorff, then compact subsets are closed [Elb22, Corollary 4.13], and closed
subsets of a compact space are still compact [Elb22, Lemma 4.10], so we may as well take K = U in
the above definition.

The above remark motivates the following definition.

Definition 1.42 (precompact). Fix a topological space X. An open subset U ⊆ X is precompact if and
only if U is compact.

Remark 1.43. Here is a quick check which will prove to be useful: if X is Hausdorff and U ⊆ X is pre-
compact, and V ⊆ U , then V is still precompact. Indeed, U is compact, and V ⊆ U is a closed subset
and hence compact [Elb22, Lemma 4.10].

Example 1.44. The topological space R is locally compact; see [Elb22, Example 4.71].

Non-Example 1.45. Infinite-dimensional normed vector spaces fail to be locally compact. Namely,
open balls fail to be precompact, so local compactness fails.

Non-Example 1.46. The space Q is not locally compact. Indeed, suppose for the sake of contradiction
that we have a precompact nonempty open neighborhood U ⊆ Q of 0 ∈ Q. Now, Q is Hausdorff (it’s
a metric space), so we can find some ε > 0 such that (−ε, ε) ⊆ U while ε /∈ Q, so Remark 1.43 tells us
that (ε/2, ε) is precompact so that [ε/2, ε] is actually compact.

However, this is false. Let {αi}i≥1 be an increasing sequence of irrationals in [ε/2, ε] with αi → ε.
Explicitly, we can take αi := i

i+1 · ε. Then we define

Ui := [αi, αi+1]

for each i ≥ 1. Note [αi, αi+1] = (αi, αi+1), so the U•s provide a countable sequence of disjoint open
subsets covering [ε/2, ε]. Thus, [ε/2, ε] cannot be compact.

One can check that manifolds are locally compact.

Proposition 1.47. Fix a topological n-manifold M . Then M is locally compact.

Proof. This follows from being locally Euclidean. Fix p ∈ M , and then we are promised some open subset
U ⊆ M and Û ⊆ Rn with a homeomorphism φ : U ∼= Û . Then there is an open ball B(φ(p), ε) ⊆ Û . Then
B(φ(p), ε/2) ⊆ Û is closed and bounded in Rn and hence compact, so φ−1(B(φ(p), ε/2)) is a subset of the
compact subset φ−1(B(φ(p), ε/2)). ■

Being locally compact approximately speaking allows one to understand a space by building it up from com-
pact ones. Here is one way to do this.

14
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Definition 1.48 (exhaustion). Fix a topological spaceX. Then an exhaustion ofX is a sequence {Ki}i∈N
of compact subsets of X satisfying the following.

• Ascending: K0 ⊆ K1 ⊆ · · · .

• Covers: X =
⋃
i∈NKi.

• Not too close: Ki ⊆ K◦
i+1.

Example 1.49. The space Rn has an exhaustion by Ki := B(0, i).

Here is a way to build an exhaustion.

Proposition 1.50. Fix a topological spaceX. IfX is second-countable, locally compact, and Hausdorff.
Then X has an exhaustion. In particular, topological n-manifolds have an exhaustion.

Proof. The second claim follows from the first by Proposition 1.47 and the definition of a manifold. So we
will focus on showing the first claim.

Fix a countable base B ofX, and let B′ be the subcollection of precompact open base elements. Quickly,
we note that B′ is still a base: certainly everything in B′ is open, and then for any p ∈ X and open neighbor-
hood U ⊆ X, we need some B′ ∈ B′ such that B′ is precompact.

Well, because X is locally compact, there is a precompact open neighborhood U ′ of p by Remark 1.41.
Then U ∩ U is an open neighborhood of p, so we can find a base element B ∈ B containing p and inside
U ′ ∩ U . Then B ⊆ U ′ is precompact by Remark 1.43.

We now construct our exhaustion. Enumerate B = {B0, B1, . . .}, and we proceed as follows.

1. Set K0 := B0, which is compact by construction of B0.

2. Now suppose we have a compact subsetKi ⊆ X, and we constructKi+1. Note that B is an open cover
of Ki, which can be reduced to a finite subcover, so there is some Mi+1 such that Ki is covered by
{Bi : i ≤Mi+1}. We may as well suppose that Mi+1 ≥ i+ 1. Then we define

Ki+1 :=

M⋃
i=1

Bi.

Note that the finite union of compact sets remains compact.

The above construction produces an exhaustion. Here are our checks, which will complete the proof.

• Ascending: by construction, we see that

K◦
i+1 ⊇

M⋃
i=1

Bi ⊇ Ki.

• Covers: any x ∈ X lives in some Bi, and by construction, we have Bi ⊆ Ki, so x ∈ Ki. ■

1.2.3 Paracompactness
We will want to talk about covers in some more detail.

Definition 1.51 (cover). Fix a topological space X. A cover is a collection U ⊆ P(X) such that

X =
⋃
U∈U

U.

15
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Definition 1.52 (locally finite). Fix a topological spaceX. A cover U ofX is locally finite if and only if any
p ∈ X has some open neighborhood U ⊆ X intersecting at most finitely many elements of U .

Definition 1.53 (refinement). Fix a cover U of a topological space X. Then a refinement of U is a cover
V such that any V ∈ U is contained in some U ∈ U .

And here is our definition.

Definition 1.54 (paracompact). Fix a topological space X. Then X is paracompact if and only if every
open cover has a locally finite open refinement.

Approximately speaking, the point of desiring paracompactness is that it allows “reducing to Euclidean”
arguments in the future will not have to deal with intersections which are infinitely bad. Anyway, here is our
result.

Proposition 1.55. Fix a topological n-manifold M . Then M is paracompact.

Proof. In fact, we are only going to use the fact that M has an exhaustion, proven in Proposition 1.50.
Fix an open cover U , and we want to produce a locally finite open refinement. To set us up, fix an exhaus-

tion {Ki}i∈N, which exists by Proposition 1.50, and define the following sets for each i ∈ N.

• For i ≥ −1, defineVi := Ki+1\K◦
i , which is a closed subset of the compact setKi+1 and hence compact

[Elb22, Lemma 4.10]; take K−1 = ∅ without concern.

• For i ≥ 0, define Wi := K◦
i+2 \Ki−1, which is open; here, take K−1 = ∅ without concern.

For intuition, we should think about theW•s as being a locally finite cover from which we will build the locally
finite cover refinement of U .

For the construction, we fix some j ≥ 0 for the time being. For each x ∈ Vj , find someUx ∈ U containing
x. Note that {Ux}x∈Vj is an open cover of Vj , and because Vj ⊆ Wj , in fact {Ux ∩Wj}x∈Vj is an open cover.
Because Vj is compact, we can thus reduce this open cover to a finite subcover Aj .

Now letting j vary, we define
V :=

⋃
j≥0

Aj .

Here are our checks.

• Open cover: each x ∈ X lives in some Ki+1 because we have an exhaustion, so lives in some Vi, so it
lives in some open subset in Aj , so it lives in some open subset in V .

• Refinement: by construction, each open set in Aj is a subset in U .

• Locally finite: this is essentially by construction. The main point is that any x ∈ X lives in some Ki, so
by choosing the least such Ki places x in some Vi ⊆ Wi. We now show that only finitely many open
subsets in V intersect Wi. Note Wi ⊆ Ki+2, so Wi ∩Wj = ∅ for j ≥ i + 2. Thus, if V ∩Wi ̸= ∅, we
must have V ∈ Aj for j < i + 2. But this is only finitely many indices, and each Aj is finite, so this is
only finitely many candidates. ■

1.2.4 Products
We now discuss an in-depth example.
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Proposition 1.56. Fix finitely many topological manifolds M1, . . . ,Mk. Then the product

M1 × · · · ×Mk

is also a topological manifold of dimension dimM1 + · · ·+ dimMk.

We will do this via a sequence of lemmas.

Lemma 1.57. Fix a collection of Hausdorff topological spaces {Xα}α∈Λ. Then the product∏
α∈Λ

Xα

is also Hausdorff.

Proof. Fix distinct points (xα)α∈Λ and (yα)α∈Λ in the product. Then there is an indexβ ∈ Λ such thatxβ ̸= yβ ,
so because Xβ is Hausdorff, there are disjoint open neighborhoods Uβ , Vβ ⊆ Xβ of xβ and yβ , respectively.
Then we define Uα = Vα := Xα for α ̸= β, and we note that the open subsets∏

α∈Λ

Uα and
∏
α∈Λ

Vα

are disjoint open neighborhoods of (xα)α∈Λ and (yα)α∈Λ, respectively, so we are done. (These are disjoint
because any point in the intersection will have the β coordinate in Uβ ∩ Vβ = ∅.) ■

Lemma 1.58. Fix finitely many second countable topological spaces {Xi}ni=1. Then the product

n∏
i=1

Xi

is also second countable.

Proof. Let the product be X. For each i, let Bi be a countable base for Xi. Then define

B :=

{
n∏
i=1

Bi : Bi ∈ Bi for each i

}
.

We claim that B is a base for the topology on the X. Indeed, suppose (x1, . . . , xn) ∈ X lives in some open
subset U ⊆ X. From the standard base on X, we know that there are open subsets Ui ⊆ Xi for each i such
that (x1, . . . , xn) ∈ U1 × · · · × Un. Now, for each Ui, we note that xi ∈ Ui must have some Bi ∈ Bi such that
xi ∈ Bi and Bi ⊆ Ui. But then

(x1, . . . , xn) ∈ B1 × · · · ×Bn ⊆ U,

so B1 × · · · ×Bn ∈ B is the desired base element. ■

We now prove Proposition 1.56.

Proof of Proposition 1.56. We get Hausdorff from Lemma 1.57 and second countable from Lemma 1.58.
So it remains to check that we are locally Euclidean. For brevity, let M be the product, and set ni := dimMi

for each i, and let n := n1 + · · ·+ nk.
Now, fix some point (x1, . . . , xk) ∈ M . For each i, we get some open neighborhood Ui ⊆ Mi of xi and

some open Ûi ⊆ Rni with a homeomorphism φi : Ui ∼= Ûi. Now, we see that the product map

(φ1 × · · · × φk) : U1 × · · · × Uk → Û1 × · · · × Ûk

17
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is still a homeomorphism, and the target is an open subset of

Rn1 × · · · × Rnk ∼= Rn,

where this last homeomorphism is obtained by simply concatenating the coordinates. So we have con-
structed a composite homeomorphism from an open neighborhood of (x1, . . . , xk) to an open subset of Rn,
as desired. ■

Example 1.59. Example 1.30 established S1 as a topological 1-manifold, so the n-torus

Tn := S1 × · · · × S1︸ ︷︷ ︸
n

is a topological n-manifold. Note that the covering space p : R → S1 will induce the covering space
pn : Rn → Tn, so we can also view Tn as Rn/Zn; in other words, we have the unsurprising homeomor-
phism Rn/Zn → (R/Z)n.

1.2.5 Open Submanifolds
We proceed with a sequence of lemmas.

Lemma 1.60. Suppose X is a Hausdorff topological space. If X ′ ⊆ X is a subspace, then X ′ is still
Hausdorff.

Proof. Fix distinct points p, q ∈ X ′. ThenX is Hausdorff, so there exist disjoint open neighborhoods U, V ⊆
X of p and q, respectively, soU ∩X ′ and V ∩X ′ are the needed disjoint open subsets ofX ′, respectively. ■

Lemma 1.61. Suppose that X is a second countable topological space. Then for any subset X ′ ⊆ X,
the topological (sub)space X ′ is still second countable.

Proof. Well, let B be a countable base for X, and we claim that the collection

B′ := {B ∩X ′ : B ∈ B}

makes a countable base forX ′. Note that B′ is certainly countable because there is a surjective map B → B′

by B 7→ (B ∩X ′), and B is countable. (This map is surjective by construction.)
So it remains to show that B′ is a base. Quickly, we claim that everyB′ ∈ B′ is open inX ′. Indeed, for any

B′ ∈ B′, we can find someB ∈ B such thatB′ = B∩X ′. Now, B is a base, soB ⊆ X is open, soB′ = B∩X ′

is open in the subspace topology of X ′.
To finish checking that we have a base, fix some x′ ∈ X ′ and open U ′ ⊆ X ′ containing x′. Then we need

some B′ ∈ B′ such that x′ ∈ B′ and B′ ⊆ U ′. Well, by the subspace topology, we can write U ′ = U ∩X ′ for
some open U ⊆ X, but then x′ ∈ U , so there is some B ∈ B′ such that x′ ∈ B and B ⊆ U . To finish, we set

B′ := B ∩X ′,

which is in B′ by construction, and we have x′ ∈ B ∩ X ′ = B′ and B′ = B ∩ X ′ ⊆ U ∩ X ′ = U ′, so B′ is
indeed the required basic open set. ■
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Lemma 1.62. Suppose that X is locally Euclidean of dimension n. Then for any open subset X ′ ⊆ X,
the topological (sub)space X ′ is locally Euclidean of dimension n.

Proof. For any x′ ∈ X ′, we must find open subsets U ′ ⊆ X ′ and Û ′ ⊆ Rn such that x′ ∈ U ′ and there is a
homeomorphism U ′ ∼= Û ′.

Well, x′ ∈ X, so there are open subsets U ⊆ X and Û ⊆ Rn such that x′ ∈ U and there is a homeomor-
phism φ : U ∼= Û . Now, set

U ′ := U ∩X ′.

Then φ is a homeomorphism, so φ′ := φ|U ′ continues to be a homeomorphism onto its image Û ′ := φ(U ′).
Indeed, the inverse of the bijection φ|U ′ : U ′ → Û ′ is φ′|Û ′ . Both of these maps are continuous by, so φ|U ′ is
in fact a homeomorphism.

Now, U ′ ⊆ U is open, so because φ is a homeomorphism, we see that φ(U ′) ⊆ Û is open: φ(U ′) is the
pre-image of the open subsetU ′ ⊆ U under the continuous map φ−1 : Û → U , so φ(U ′) being open follows.
Continuing, because Û ⊆ Rn is open, we conclude that Û ′ ⊆ Rn is open.1 So U ′ ⊆ X ′ is open (by the
subspace topology), contains x′, and it is homeomorphic to an open subset Û ′ of Rn. ■

Proposition 1.63. Fix a topological n-manifoldM . For any nonempty open subsetU ⊆M , we have that
U is a topological n-manifold.

Proof. Combine Lemmas 1.60 to 1.62. ■

1.2.6 Charts

The construction of our smooth structure will arise from more carefully understanding how a manifold is
locally Euclidean. This arises from charts.

Definition 1.64 (chart). Fix a topological n-manifold M . Then a coordinate chart or just chart is a pair
(U,φ) where U ⊆M is open and φ : U ∼= Û is a homeomorphism where Û ⊆ Rn is open.

Essentially, the content of M being locally Euclidean is that it has an open cover by open subsets belong-
ing to some chart. The reason we call it a chart is that we are (approximately speaking) providing “local
coordinates” to an open subset of M .

Definition 1.65 (coordinate function). Fix a chart (U,φ) if a topological n-manifold M . Then we may
write

φ(p) :=
(
x1(p), . . . , xn(p)

)
∈ Rn

for each p ∈M . We call these functions x• : U → R the coordinate functions.

Note that these coordinate functions are continuous because they are simply the continuous functionφ com-
posed with the projection Rn → R.

1 Namely, an open subset of an open subsetU is still an open subset. This sentence has some content because the larger open subset
uses the subspace topology; the proof simply notes that being open in U is equivalent to being the intersection of an open subset and
U , which is open because finite intersections of open subsets continues to be open.
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Example 1.66. Fix an open subset V ⊆ Rm, and let F : V → Rn be a continuous function. Then the
graph

Γ := {(x, F (x)) : x ∈ V } ⊆ Rm × Rn

is a topological n-manifold. Because we are already a subspace of Rm × Rn ∼= Rm+n, we see that Γ is
also Hausdorff and second countable. (Subspaces inherit being Hausdorff directly, and we inherit being
second countable by using the intersection of the given countable base.)

The main content comes from being locally Euclidean. Namely, there is a projection map π : Γ → V
by (x, y) 7→ xwhich in fact is a homeomorphism (it’s continuous inverse is (id× F ) : x 7→ (x, F (x))). So
we have the single chart (V, π), which establishes being a topological n-manifold.

1.3 January 23
The first homework is due on Thursday. Today we discuss smooth structures.

1.3.1 Examples of Topological Manifolds
Let’s provide a few more examples of topological manifolds.

Exercise 1.67 (sphere). We show that the n-sphere Sn ⊆ Rn+1 is a topological n-manifold.

Proof. Explicitly, for each i ∈ {1, . . . , n+ 1}, we define

U±
i := {(x1, . . . , xn+1) ∈ Sn : ±xi > 0},

which has a projection π±
i : U±

i → B(0, 1) (for B(0, 1) ⊆ Rn) given by erasing the xi coordinate. One can
show that the π±

i are all homeomorphisms—certainly, it is continuous, and the inverse map is given by

(x1, . . . , xn) :=

(
x1, . . . , xi−1,±

√
1− (x21 + · · ·+ x2n), xi, . . . , xn

)
,

which is also continuous. (We won’t bother checking that the maps are mutually inverse.) Lastly, we note
that the U±

i is an open cover of Sn because any point in Sn has some nonzero coordinate, and this nonzero
coordinate will have a sign. ■

Exercise 1.68 (projective space). Define the space RPn as “lines in Rn+1”: it consists of equivalence
classes of nonzero points in Rn+1 \ {0}, where x ∼ y if and only if there is some λ ∈ R× such that
x = λy. We show that RPn is a topological n-manifold.

Proof. For notation, we let [x0 : · · · : xn] denote the equivalence class of (x1, . . . , xn) in RPn. Note there is a
projection p :

(
Rn+1 \ {0}

)
→ RPn, and we give RPn the induced (quotient) topology from Rn+1 \ {0}.

By Lemma 1.22, to achieve second countable, it suffices to provide a finite open cover by open subsets
homeomorphic to open subsets of Rn; this will also achieve locally Euclidean. Well, define

Ui := {[x0 : · · · : xn] ∈ RPn : xi ̸= 0} .

Note that the pre-image in Rn+1 \ {0} consists of the (x0, . . . , xn) ∈ Rn+1 \ {0} with xi ̸= 0, so Ui ⊆ RPn is
open. Now, by scaling, we can write elements ofUi uniquely as [y0 : · · · : yn] with yi = 1, which provides the
required element in Rn. Explicitly, we define φi : Ui → Rn by

φi : [x0 : · · · : xn] 7→
(
x0
xi
, . . . ,

x̂i
xi
, . . . ,

xn
xi

)
.
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One sees that φi is continuous: by the quotient topology, we are trying to show that φi ◦ π : π−1Ui → Rn is
just (x0, . . . , xn) 7→ (x0/xi, . . . , x̂i/xi, . . . , xn/xi), which is continuous, so φi is continuous because RPn has
the quotient topology. Lastly, one notes that the inverse of φi is given by (x0, . . . , x̂i, . . . , xn) 7→ [x0 : . . . :
xi−1 : 1 : xi+1 : . . . : xn], which is continuous because it is the composite of the map Rn → Rn+1 given by
(x0, . . . , x̂i, . . . , xn) 7→ [x0 : . . . : xi−1 : 1 : xi+1 : . . . : xn] and the projection p :

(
Rn+1 \ {0}

)
→ RPn.

Lastly, we show that RPn is Hausdorff. Doing this in a slick way is surprisingly obnoxious. We claim that
there is a 2-to-1 covering space map

p : Sn → RPn.

To see why this implies that RPn is Hausdorff, fix two distinct points x, y ∈ RPn. Then there are lifts x1, x2 ∈
Sn of x and y1, y2 ∈ Sn. Because Sn is already Hausdorff (it’s a subspace of RPn), we can find disjoint open
subsets U1, U2, V1, V2 ⊆ Sn around x1, x2, y1, y2 ∈ Sn respectively, and we can make them all small enough
so that p is a local homeomorphism. Then p(U1) ∩ p(U2) and p(V1) ∩ p(V2) are the desired open subsets.

So we are left showing that we have a double cover p. The map is given by the composite

Sn ⊆
(
Rn+1 \ {0}

)
↠ RPn,

which we see is continuous automatically. To see that this is a 2-to-1 local homeomorphism, we note that
the pre-image of the standard open subset Ui ⊆ RPn is{

(x0, . . . , xn) ∈ Rn+1 : xi ̸= 0
}
,

whose pre-image inSn splits into the two open subsetsU±
i . So we have our continuous mapU+

i ⊔U−
i → Ui;

it remains to show thatU±
i → Ui is a homeomorphism. We may as well assume i = 0; then the inverse map

is given by sending [1 : x1 : · · · : xn] to the point on the hemisphere of Sn on this line, which is

± x

|x|
,

where the sign depends on U±
i . This is continuous, so we are done. ■

Remark 1.69. Note Sn is continuous, so the surjectivity of the covering space map Sn ↠ RPn implies
that RPn is compact.

1.3.2 Transition Functions
Defining smooth structures will come out of transition maps between coordinate charts.

Definition 1.70 (transition map). Fix charts (U,φ) and (V, ψ) on a topological n-manifold M . Then the
transition map is the map

ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ).

Here, we are abusing notation a little: in order to make sense of ψ ◦ φ−1, we really want to work with
the restrictions as ψ|U∩V ◦ (φ|U∩V )

−1.

Remark 1.71. Note φ(U ∩ V ), ψ(U ∩ V ) ⊆ Rn, so this is a homeomorphism from an open subset of
Rn to another open subset of Rn. Namely, φ|U∩V and ψ|U∩V are both homeomorphisms, so the above
composition is still a homeomorphism.
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Example 1.72 (polar coordinates). Consider the topological 2-manifold M := R2. There is the identity
chart idM : M → R2, and there is also “polar coordinates” on U := R2 \ (R≥0 × {0}) with chart φ : U →
R+ × (0, π) defined by

φ((x, y)) :=
(√

x2 + y2, arg(x, y)
)
,

where arg(x, y) is the angle of (x, y) with the positive x-axis. Note the inverse map of φ is given by
(r, θ) 7→ (r cos θ, r sin θ), so φ is in fact a homeomorphism.

Now, the transition map ψ ◦ φ−1 sends

(r, θ)
φ−1

7→ (r cos θ, r sin θ)
ψ7→ (r cos θ, r sin θ).

Example 1.73. Consider the topological 2-manifoldM := S2 from Exercise 1.67. We compute the tran-
sition maps between φ+

1 and φ+
3 , which overlap on the open set consisting of (x1, x2, x3) ∈ S2 such that

x1, x3 > 0. Well, we can directly compute that φ+
3 ◦

(
φ+
1

)−1 is given by

(x2, x3)
(φ+

1 )−1

→
(√

1− x22 − x23, x2, x3

)
φ+

3→
(√

1− x22 − x23, x2

)
.

In the above examples, we can note that the maps between the Euclidean smooths are smooth on their
domains. This becomes our notion of smoothness.

Definition 1.74 (smoothly compatible). Two charts (U,φ) and (V, ψ) of a topological manifold M are
smoothly compatible if and only if both transition maps ψ ◦ φ−1 and φ ◦ ψ−1 are smooth (i.e., infinitely
differentiable). Notably, this condition is vacuously satisfied if U ∩ V = ∅.

1.3.3 Smooth Structures
We would like to coverM with smoothly compatible charts, so it will be helpful to have a language for such
covers.

Definition 1.75 (atlas). Fix a topological manifold M . An atlas A is a collection of charts “covering M”
in the sense that

M =
⋃

(U,φ)

U.

An atlas is smooth if and only if its charts are pairwise smoothly compatible. A smooth atlas is maximal
if and only if it is maximal in the sense of inclusion by smooth atlases.

The point of using a maximal atlas is that we would like a way to say when two atlases provide the same
smooth structure for a topological manifold, but it will turn out to be easier to provide a “unique” atlas to
look at, which will be the maximal smooth atlas. Quickly, we note that maximal smooth atlases exist. One
could argue this by Zorn’s lemma, but we don’t have to.

Proposition 1.76. Fix a topologicaln-manifoldM . Any smooth atlasA is contained in a unique maximal
smooth atlas, denoted A.

Proof. We have to show existence and uniqueness. We will construct this directly: define A to be the col-
lection of charts (U,φ) which is smoothly compatible with each chart in A. We show that A is a maximal
smooth atlas.

• Atlas: certainly A ⊇ A, so A covers M , so A is an atlas.
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• Smooth: fix any charts (U1, φ1), (U2, φ2) ∈ A, and we would like to show that they are smoothly com-
patible. If U1 ∩ U2 = ∅, there is nothing to do, so we may assume that the intersection is nonempty.
By symmetry, it will be enough to show that φ2 ◦ φ−1

1 is smooth.
The point is that differentiability is a local notion: explicitly, fix some q ∈ φ1(U1 ∩ U2), and we want to
show thatφ2◦φ−1

1 is smooth at q. This can be checked on a small open neighborhood of q; in particular,
find the p ∈ U1 ∩U2 such that φ1(p) = q, and we can find some chart (V, ψ) ∈ A such that p ∈ V . Then
we note that

φ2|U1∩U2∩V ◦ (φ1|U1∩U2∩V )
−1 =

(
φ2|U1∩U2∩V ◦ (ψ|U1∩U2∩V )

−1
)
◦
(
ψ|U1∩U2∩V ◦ (φ1|U1∩U2∩V )

−1
)

is smooth onφ1(U1∩U2∩V ) as it is the composition of smooth maps. So our left-hand side is smooth
on U1 ∩ U2 ∩ V and in particular at q ∈ φ1(U1 ∩ U2 ∩ V ).

• Maximal: supposeA′ is a smooth atlas containingA. We must show thatA′ ⊆ A; by supposing further
that A′ contains A, we achieve the maximality of A. Well, for each (U,φ) ∈ A′, we see that (U,φ) is
smoothly compatible with each chart in A, so (U,φ) ∈ A. Thus, (U,φ) ∈ A, so A′ ⊆ A.

• Unique: suppose A′ is a maximal smooth atlas containing A. Then the previous point establishes that
A′ ⊆ A, but then we must have equality because A′ is a maximal smooth atlas. ■

So we may make the following definition.

Definition 1.77 (maximal smooth atlas). Fix a topological n-manifoldM . Given a smooth atlas A onM ,
we let A denote the unique maximal smooth atlas containing A, which we know exists and is unique by
Proposition 1.76.

Corollary 1.78. Fix a topological n-manifold M . Given smooth atlases A1 and A2 such that A1 ∪ A2 is
still a smooth atlas, then

A1 = A2.

Proof. Define A := A1 ∪A2. Then A is a maximal smooth atlas containing A and hence both A1 and A2, so
we see that A1 = A and A2 = A. Notably, we are using the uniqueness of Proposition 1.76. ■

At long last, here is our definition.

Definition 1.79 (smooth manifold). Fix a topological n-manifoldM . A smooth structure onM is a max-
imal smooth atlas on M . A smooth n-manifold is a pair (M,A), where A is a smooth structure on M .

Remark 1.80. Adjusting the “smoothness” on the manifold M produces different notions of manifold.
For example, we can have twice differentiable manifolds, real analytic manifolds, complex manifolds,
etc.

1.4 January 25
The first homework is due later today.

1.4.1 A Couple Lemmas on Atlases
Here are some basic properties of smooth manifolds which one can check.
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Lemma 1.81. Fix a smooth n-manifold (M,A). Given a chart (U,φ) ∈ A, then for any open subset
U ′ ⊆ U , we have (U ′, φ|U ′) ∈ A.

Proof. By maximality of A, it suffices to show that A ∪ {(U ′, φ|U ′)} is a smooth atlas. It contains A, so this
is at least an atlas of charts. For smooth compatibility, we pick up some (V, ψ) ∈ A, and we must show that
(U ′, φ|U ′) and (V, ψ) are smoothly compatible. (The charts in A are already smoothly compatible with each
other.) In other words, we must show that the transition functions are diffeomorphism: the transition maps
are

φ|U ′∩V ◦ ψ|−1
U ′∩V =

(
φ|U∩V ◦ ψ|−1

U∩V
)
|ψ(U ′∩V )

and
ψ|U ′∩V ◦ φ|−1

U ′∩V =
(
ψ|U∩V ◦ φ|−1

U∩V
)
|φ(U ′∩V ),

and these are both smooth as the restrictions of smooth maps. (Namely, we are using the fact that (U,φ)
and (V, ψ) are smoothly compatible already.) ■

Lemma 1.82. Fix a smoothn-manifold (M,A). Given a chart (U,φ) ∈ A and diffeomorphismχ : φ(U) →
V for some open subset V ⊆ Rn, we have (U, χ ◦ φ) ∈ A.

Proof. The argument is similar to that of the above lemma. By maximality of A, it suffices to show that
A ∪ {(U, χ ◦ φ)} is a smooth atlas. It contains A, so this is at least an atlas. For smooth compatibility, we
pick up some (V, ψ) ∈ A, and we must show that (V, ψ) and (U, χ ◦φ) are smoothly compatible. (Indeed, the
charts in A are already smoothly compatible with each other.) Well, the transition maps are

(χ ◦ φ)|U∩V ◦ ψ|−1
U∩V = χ|φ(U∩V ) ◦

(
φ|U∩V ◦ ψ|−1

U∩V
)

and
ψ|U∩V ◦ (χ ◦ φ)|−1

U∩V = ψ|U∩V ◦ φ|−1
U∩V ◦ χ|−1

φ(U∩V ),

which are smooth maps because (U,φ) and (V, ψ) are already smoothly compatible, and χ is a diffeomor-
phism. ■

Lemma 1.83. Fix a smoothn-manifold (M,A). Ifφ : U → Rn is an injective map withU ⊆M is such that
each p ∈ U has some open neighborhood Up ⊆ U such that (Up, φ|Up

) ∈ A, then actually (U,φ) ∈ A.

Proof. By the definition of being a maximal smooth atlas, it suffices to show that (U,φ) is smoothly com-
patible with all charts in A. Well, pick up some chart (V, ψ), and we would like to show that the transition
map

φ|U∩V ◦ ψ|−1
U∩V

is a diffeomorphism. Well, we can being a diffeomorphism locally by checking it at all pointψ(p) ∈ ψ(U ∩V )
where p ∈ U ∩V . But for some fixed p, we are promised some open subsetUp ⊆ U such that (Up, φ|Up

) ∈ A,
so the map

φ|Up∩V ◦ ψ|−1
Up∩V =

(
φ|U∩V ◦ ψ|−1

U∩V
)
|ψ(Up∩V )

is a diffeomorphism. So we produce smoothness at the images of p of the function and its inverse. ■
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1.4.2 Examples of Smooth Manifolds
We go through some examples of smooth manifolds.

Example 1.84. Recall from Lemma 1.21 thatRn is a topologicaln-manifold. Then id : Rn → Rn provides
an atlas on Rn consisting of a single chart, which is vacuously smooth; note Proposition 1.76 then gives
us a smooth structure.

More generally, we have the following.

Proposition 1.85. Fix a smooth n-manifold (M,A). For any nonempty open subset M ′ ⊆ M , we have
that M ′ is a topological n-manifold, and

A′ := {(U,φ) ∈ A : U ⊆M ′}

is a smooth structure on M .

Proof. By Proposition 1.63, we see that M ′ is a topological n-manifold. It remains to show that A′ is a
smooth structure. Here are our checks.

• Chart: for any x ∈ M ′, we know A is a chart on M , so there is a chart (U,φ) ∈ A with x ∈ U . Now,
U ⊆ M is open, so Lemma 1.81 tells us that (U ∩M ′, φ|U∩M ′) is a chart in A. But now U ∩M ′ ⊆ M ′,
so (U ∩M ′, φ|U∩M ′) ∈ A′ by construction, so we conclude because x ∈ U ∩M ′.

• Smooth: for any two charts (U,φ), (V, ψ) ∈ A′, we note that these charts belong to the smooth atlas
A already, so they are already smoothly compatible.

• Maximal: by definition of being a maximal smooth atlas, it suffices to show that if (U,φ) is a chart ofM ′

smoothly compatible with A′, then it must be in A′. Well, U ⊆ M ′ already, so it suffices to show that
(U,φ) ∈ A. Because A is already a maximal smooth atlas, it suffices to show that (U,φ) is compatible
with all the charts in A. Well, for any chart (V, ψ) ∈ A, we need the composite

φ|U∩V ◦ ψ|−1
U∩V

to be a diffeomorphism. But we simply note that (U ∩ V, ψ|U∩V ) ∈ A by Lemma 1.81 will live in A′,
so the above is a diffeomorphism because the hypothesis on (U,φ) implies that it would be smoothly
compatible with (U ∩ V, ψ|U∩V ) ∈ A′. ■

Example 1.86. Any nonempty open subset of Rn is a smooth n-manifold by combining Example 1.84
and Proposition 1.85. For example,

GLn(R) :=
{
M ∈ Rn×n : detM ̸= 0

}
is an open subset of Rn×n, so GLn(R) is a smooth manifold. (Notably, det : Rn×n → R is a polynomial
and hence continuous, so the pre-image of R \ {0} is open.)

Example 1.87. From Example 1.66, we know that the graph Γ of a smooth function f : V → Rn, where
V ⊆ Rm is open, is a topological n-manifold, where we have a chart given by the projection π : Γ → V .
Using this chart alone produces a smooth atlas and makes Γ into a smooth n-manifold as well.
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Example 1.88. We claim that the charts on Sn provided in Exercise 1.67 provide a smooth atlas on Sn
and hence a smooth structure by Proposition 1.76. Indeed, we must show that the transition maps

φ±
i |U±

i ∩U±
j
◦ φ±

j |
−1

U±
i ∩U±

j

(x1, . . . , xn) =

(
x1, . . . , x̂j , . . . , xi−1,±

√
1− (x21 + · · ·+ x2n), xi, . . . , xn

)
is a diffeomorphism (for any choice of signs). The above equation shows that our map is smooth for
i > j, and the computation for i < j simply switches the ith and jth coordinates. On the homework, we
will see how to use stereographic projection to provide a smooth structure (in fact, the same smooth
structure) on Sn.

Example 1.89. Fix an n-dimensional R-vector space V . Then we claim

A := {(V, φ) : φ is an isomorphism to Rn}

is a smooth atlas on V and hence provides a smooth structure. Indeed, certainly this is an atlas: there
is some isomorphism φ : V → Rn, and this chart will cover V . Further, these are smoothly compatible
because the transition map between the two arbitrary charts (V, φ) and (V, ψ) is the linear isomorphism(
φ ◦ ψ−1

)
: Rn → Rn, which is linear and hence smooth.

Example 1.90. Fix the topological 1-manifold R of Lemma 1.21. Example 1.84 tells us A := {(R, idR)}
provides a smooth atlas, and A′ := {(R, φ)} given by φ : x 7→ x3 is also a smooth atlas (again, smooth-
ness is vacuous). However, A and A′ provide smooth structures: otherwise, they would be contained
in the same maximal smooth atlas, so (R, idR) and (R, φ) would be smoothly compatible, but then the
composite

(
idR ◦ φ−1

)
: x 7→ 3

√
x is not a smooth function R → R.

Example 1.91. Recall that RPn is a topological n-manifold by Exercise 1.68. We claim that the charts
(Ui, φi) actually form a smooth atlas on RPn, thus making RPn into a smooth atlas. We already checked
that these charts cover RPn, and they are smoothly compatible because we can compute the transition
between (Ui, φi) and (Uj , φj) is

φi|Ui∩Uj ◦ φj |−1
Ui∩Uj

(x0, . . . , x̂j , . . . , xn) =

(
x0
xi
, . . . ,

xj−1

xi
,
1

xi
,
xj+1

xi
, . . . ,

xn
xi

)
,

which we can see is a rational and hence smooth function.

Example 1.92. Fix smooth manifolds (M1,A1), . . . , (Mk,Ak), where Mi is a smooth ni-manifold. The
product M :=M1 × · · · ×Mk is a smooth manifold by Proposition 1.56, and the proof implies that

A := {(U1 × · · · × Uk, φ1 × · · · × φk) : (Ui, φi) ∈ Ai for each i}

is an atlas on M . In fact, this is a smooth atlas, thus providing M with a smooth structure by Propo-
sition 1.76. Well, the transition map between the charts (U,φ) := (U1 × · · · × Uk, φ1 × · · · × φk) and
(V, ψ) := (V1 × · · · × Vk, ψ1 × · · · × ψk) is

φ|U∩V ◦ ψ|−1
U∩V =

(
φ1|U1∩V1 ◦ ψ1|−1

U1∩V1

)−1 × · · · ×
(
φk|Uk∩Vk

◦ ψk|−1
Uk∩Vk

)
,

which we can see is smooth as it is the product of smooth functions.
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Remark 1.93. In fact, if a topological n-manifold has some smooth structure, there are uncountably
many distinct smooth structures on M . On the other hand, for n-manifolds of small dimensions (e.g.,
n ≤ 3), it turns out that these are diffeomorphic.

Remark 1.94. However, there do exist topologicaln-manifolds with no smooth structure, in dimensions
n ≥ 4. Even worse, there are topological n-manifolds with distinct smooth structures up to diffeomor-
phism, again in dimensions n ≥ 4. Even for Sn, the story is complicated: there is only one smooth
structure for n ≤ 3, we don’t understand n = 4, and the story is complicated but somewhat understood
for n ≥ 5.

1.4.3 Grassmannians
The construction of smooth manifolds is rather long: we build a topological space, define some charts, and
then check that the charts are smoothly compatible. Here’s a lemma to do all of this at once.

Lemma 1.95. Fix a set M with a nonnegative integer n ≥ 0 and a collection of functions {(Uα, φα)}α∈κ
where Uα ⊆M and φα : Uα → Rn is open. Further, suppose the following.

(i) φα(Uα ∩ Uβ) ⊆ Rn is open for all α, β ∈ κ.

(ii) The composite φα|Uα∩Uβ
◦ φβ |−1

Uα∩Uβ
is smooth for all α, β ∈ κ.

(iii) M is covered by a countable subcollection of {Uα}α∈κ.

(iv) For distinct p, q ∈ M , either there is α ∈ κ such that p, q ∈ Uα, or there are disjoint Uα and Uβ
containing p and q, respectively.

Then M is a smooth n-manifold with smooth atlas given by {(Uα, φα)}α∈κ.

Proof. We sketch the steps.

1. We provide M with a topology. We would like for Well, we say that A ⊆ M is open if and only if
φα(A ∩ Uα) is open for all α ∈ κ.

2. Then condition (i) makes the φα into homeomorphisms onto their images. Thus, {(Uα, φα)}α∈κ is an
atlas.

3. Condition (ii) implies that {(Uα, φα)} is a smooth atlas.

4. Condition (iii) implies that M becomes second countable.

5. Lastly, condition (iv) implies that M is Hausdorff.

We leave the checks to the reader. ■

Let’s see an example of this.

Exercise 1.96. Fix nonnegative integers k ≤ n. Then letM := Grk (Rn) denote the set of k-dimensional
linear subspaces V of Rn. We show that M is a smooth k(n− k)-manifold.

Sketch. We use Lemma 1.95. For concreteness, let we choose our index set I to consist of pairs (P,Q) of
subspaces of Rn such that Rn = P ⊕Q and dimP = k and dimQ = n− k. The point is that we are choosing
a complement for our k-dimensional subspaces in order to help count them. In particular, we may define
the subset

Uα := {V ∈ Grk (Rn) : V ∩Q = {0}} .
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Notably, for any V ∈ Uα, there is a unique linear map MP,Q,V : P → Q such that

V = {x+MP,Q,V x ∈ P ⊕Q : x ∈ P} .

Approximately speaking, we are viewing V as a graph. Anyway, this construction provides a map φα : Uα →
HomR(P,Q) given by V 7→ MP,Q,V , where we identify HomR(P,Q) ∼= Rk(n−k). We now conclude by not-
ing that we can check the properties from Lemma 1.95. For example, to see that the transition maps are
smooth, suppose we have two pairs (P,Q), (P ′, Q′) ∈ I, and the vector space V decomposes into the
two separate ways, and these matrices have rational functions in their coordinates, so smoothness fol-
lows. As another example, one can actually cover M by finitely many charts, and the last check follows
because any k-dimensional subspaces V, V ′ ⊆ Rn has some (n − k)-dimensional subspace Q ⊆ Rn such
that V ∩Q = V ′ ∩Q = {0}. ■

1.4.4 Manifolds with Boundary
Before moving on from our discussion of a single manifold, we discuss manifolds with boundary.

Definition 1.97 (topological manifold with boundary). Fix a nonnegative integer n. A topological n-
manifold with boundary is a Hausdorff, second countable topological spaceM with the following vari-
ant of being locally Euclidean: for any p ∈M , there are open subsets U ⊆M and

Û ⊆ H := {(x1, . . . , xn) ∈ Rn : xn ≥ 0}

such that p ∈ U and U ∼= Û . We continue to call (U,φ) a chart.

Example 1.98. Any topological n-manifold is a topological n-manifold with boundary: one can simply
make the charts output to H◦.

Example 1.99. The space Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0} is a topological n-manifold with boundary.

The point is that we can pick up some “boundary” like the one in Hn = {(x1, . . . , xn) ∈ Rn : xn ≥ 0}.
Anyway, let’s discuss smoothness. This requires understanding smoothness on ∂Hn.

Definition 1.100. Fix a subset A ⊆ Rn. A function f : A → Rm is smooth if and only if there is an open
subset V ⊆ Rn containing A and a smooth extension f̃ : V → Rn of f .

Remark 1.101. It turns out that (by Seeley’s theorem) if V ⊆ Hn is open, it is enough to check that the
partial derivatives of some function f : V → Rm extend continuously to the boundary.

Definition 1.102 (smooth manifold with boundary). Fix a nonnegative integer n. A smooth n-manifold
with boundary is a pair (M,A) whereM is a topological n-manifold with boundary, and A is a maximal
smooth atlas, where we are taking atlas in the sense

We will not bother to redo the proof of Proposition 1.76 to explain that the notion of a maximal smooth atlas
makes sense with subsets of Hn in addition to subsets of Rn; all the proofs are the same.

Note that boundary is in fact an intrinsic notion.

Definition 1.103 (boundary, interior). Fix a smooth n-manifold with boundary M and a point p ∈M .

• Then p is a boundary point if and only if there is a smooth chart (U,φ) such that φ(p) ∈ ∂Hn.

• Then p is an interior point if and only if there is a smooth chart (U,φ) such thatφ(p) is in the interior
of Hn.
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We will show in Theorem 1.104 that any point in M is exactly one of a boundary point or an interior point.

1.5 January 30
Here we go.

1.5.1 Smooth Manifolds with Boundary
We would like for the boundary of a smooth manifold with boundary to make sense.

Theorem 1.104. Fix a smooth n-manifold with boundary M , and fix some p ∈ M . Given two charts
(U,φ) and (V, ψ) with p ∈ U ∩ V ), then φ(p) ∈ ∂Hn if and only if ψ(p) ∈ ∂Hn.

Proof. Suppose this is not the case. Then, up to rearranging, we get φ(p) ∈ (Hn)◦ and ψ(p) ∈ ∂Hn. Our
transition maps are smooth, so we have produced a diffeomorphism from the open subsets U ′ ⊆ Hn and
V ′ ⊆ Hn such that U ′ ∩ ∂Hn = ∅ but V ′ ∩ ∂Hn ̸= ∅. Now, for smoothness, the transition map τ : V ′ → U ′

must have an extension τ̃ : Ṽ ′ → Ũ ′. But then τ̃ is an invertible map, so the Inverse function theorem implies
that τ is locally invertible and in particular must be an open map. But V ′ goes toU ′, which is not open in Rn,
so we have our contradiction. ■

Remark 1.105. In fact,

ψ ◦ φ−1|∂Hn∩φ(U∩V ) : (∂Hn ∩ φ(U ∩ V )) → (∂Hn ∩ ψ(U ∩ V ))

is a smooth transition map, though we will not check this here.

Remark 1.106. People in the modern day might allow ∂M to be a manifold with boundary itself, which
is a “manifold with corners.”

Remark 1.107. One can remove the smoothness assumption here as well, but it will require some co-
homology or similar.

The boundary/interior for a smooth manifold may not actually be its boundary/interior when embedded into
a space.

Example 1.108. Consider M := {x ∈ Rn : xn > 0}. Then M is a smooth manifold with boundary, but
∂M = {x ∈ Rn : xn = 0} when viewed as a subset of Rn.

Example 1.109. Consider M = Sn ⊆ Rn+1. Then M is a smooth manifold (without boundary), but as a
subspace of Rn+1, we have ∂M =M .

Example 1.110. Consider M := Hn ∩ B(0, 1). Then M is a smooth manifold whose boundary (as a
manifold) is ∂Hn ∩B(0, 1), but the topological boundary is ∂Hn ∪ (∂B(0, 1) ∩Hn).
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THEME 2

MAPS BETWEEN MANIFOLDS

I can assure you, at any rate, that my intentions are honourable and my
results invariant, probably canonical, perhaps even functorial.

—Andre Weil, [Wei59]

2.1 January 30-map
We continue.

2.1.1 Smooth Maps to Rn

We will define smooth maps in steps. To begin, we say what it means to have a smooth map M → Rn.
Basically, we look locally at the points on our manifold and check smoothness on charts.

Definition 2.1 (smooth). Fix a smooth manifoldM , possibly with boundary. Then a function f : M → Rm
is smooth if and only if each p ∈M has some smooth chart (U,φ) with p ∈ U and

f |U ◦ φ|−1
U

is a smooth map φ(U) → Rm.

Example 2.2. Any smooth map f : U → Hm, where U ⊆ Hn is open, is smooth in the above sense.
Indeed, U as an n-manifold has a smooth atlas given by {(U, idU )}, and this witnesses the smoothness
of f for any p ∈ U .

Here is a quick sanity check: the charts don’t matter.

Lemma 2.3. Fix a smooth map f : M → Hm, where M is a smooth manifold, possibly with boundary.
For any smooth chart (V, ψ), the composition f |U ◦ φ|−1

U is smooth.

Proof. This is a matter of tracking through all the definitions. Fix some p ∈ V , and we would to test smooth-
ness around p. Well, p has some smooth chart (U,φ) such that p ∈ U and f |U ◦ φ|−1

U is smooth. But now we
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write
f |U∩V ◦ ψ|−1

U∩V =
(
f |U∩V ◦ φ|−1

U∩V
)
◦
(
φ|U∩V ◦ ψ|−1

U∩V
)
,

which is the composition of smooth maps: the left map is smooth by construction of (U,φ), and the right
map is smooth by compatibility of smooth charts. ■

We are now ready to define smooth maps between manifolds. Approximately speaking, we simply add in a
check locally on the target.

Definition 2.4 (smooth). Fix smooth manifoldsM andN , possibly with boundary. A map F : M → N is
smooth if and only if each p ∈ M has smooth charts (U,φ) and (V, ψ) such that p ∈ U and F (U) ⊆ V
and the composite

ψ ◦ F |U ◦ φ|−1
U

is a smooth map Hm → Hn. We may call the above composite a coordinate representation.

Example 2.5. Any smooth mapF : U → V , whereU ⊆ Rm and V ⊆ Rn are open, is smooth in the above
sense. Indeed,U and V have smooth atlases given by {(U, idU )} and {(V, idV )} (respectively), and these
charts witness that F is smooth at each p ∈ U because the composite

idV ◦ F ◦ idU−1 = F

is smooth by hypothesis.

Here’s the same sanity check: the charts don’t matter.

Lemma 2.6. Fix a smooth map F : M → N of manifolds, possibly with boundary. If (U,φ) and (V, ψ) are
smooth charts onM andN , respectively, and F (U) ⊆ V , then the composite ψ ◦ F |U ◦ φ|−1

U is smooth.

Proof. Again, we track through locally, tracking through all the definitions. To check that ψ ◦ F |U ◦ φ|−1
U is

smooth, it suffices to check it an open cover of φ(U). Pick φ(p) ∈ φ(U) where p ∈ U , and we know that we
have smooth charts (Up, φp) and (Vp, ψp) inM andN , respectively, such that F (Up) ⊆ Vp and the composite
ψp|F (Up) ◦ F |Up ◦ φp|−1

Up
is smooth. Then we see that

ψ ◦ F |U ◦ φ|−1
U =

(
ψ|V ∩Vp

◦ ψp|−1
V ∩Vp

)
◦
(
ψp ◦ F |U ◦ φp|−1

Up

)
|φp(U∩Up) ◦

(
φp|U∩Up

◦ φ|−1
U∩Up

)
is smooth, where the left and right maps are smooth by smooth compatibility, and the middle map is smooth
by construction. ■

Remark 2.7. One can write out the above proof diagrammatically by noting that having smooth charts
(U,φ) and (U ′, φ′) ofM and smooth charts (V, ψ) and (V ′, ψ′) ofN such that F (U) ⊆ V and F (U ′) ⊆ V ′

will have the following diagram.

φ(U) ψ(V )

φ′(U ′) ψ′(V ′)
ψ′◦F◦(φ′)−1

ψ◦F◦φ−1

Here, the vertical maps are only defined on the corresponding intersections, but it is smooth when
defined by the smooth compatibility.

Remark 2.8. Please read more of chapter 2 to get helpful properties of smooth maps.
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2.1.2 Partition of Unity
By way of motivation, suppose we have two smooth functions f, g : R → R, and we want to build a smooth
function h : R → R such that f |(−∞,−1) = h|(−∞,−1) and g|(1,∞) = h|(1,∞). One way to do this is to find
smooth functions φ,ψ : R → R such that {

φ|(−∞,−1) = 1,

φ|(1,∞) = 0.

Then h := φf + (1 − φ)g is smooth by construction, and it satisfies the restriction conditions also by con-
struction. This idea of “splitting up the 1 function” is known as partition of unity.

Definition 2.9 (partition of unity). Fix a topological space X, and let {Uα}α∈κ be an open cover on M .
Then a partition of unity subordinate to {Uα}α∈κ is a collection of continuous functions {φα}α∈κ on X
satisfying the following.

• imφα ⊆ [0, 1] always.

• suppφα ⊆ Uα for each α.

• The collection {suppφα}α∈κ is locally finite.

• For each x ∈ X, we have ∑
α∈κ

φα(x) = 1.

Of course, we must show that these exist.

2.2 February 1
The second homework is due later today. We began class by completing a proof, so I edited directly into
those notes.

2.2.1 Partition of Unity for Manifolds
We will show that partitions of unity exist for manifolds.

Theorem 2.10. Fix a smooth manifold M . For any open cover {Uα}α∈κ, there is a partition of unity
{φα}α∈κ (of smooth functions) subordinate to {Uα}α∈κ.

Proof. We begin by constructing smooth functions {φ̃}α∈κ satisfying the following constraints.

• im φ̃α ⊆ [0,∞).

• supp φ̃α ⊆ Uα.

• The collection {supp φ̃α}α∈κ is a locally finite open cover of M .

Dividing out by the summation of the φ̃•s completes the proof. Notably, for each x ∈M , the sum

φ̃(x) :=
∑
α∈κ

φ̃α(x)

is finite (x can only belong to finitely many of the supports); in fact, there is an open neighborhood U of x
such that U only intersects finitely many of the supports, so

φ̃|U =
∑
α∈κ

supp φ̃α∩U ̸=∅

φ̃α|U
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is just a finite sum of smooth functions, so φ̃ is smooth on U . Thus, by gluing, φ̃ is smooth on M , and we
note that it is nonzero because each x ∈ M is in some support, so we can define φα := φ̃α/φ to satisfy all
the needed conditions, most notable being that these functions are smooth, have support contained in Uα,
and

∑
α∈κ φα = 1.

It remains to construct the φ̃αs. We proceed in steps.

1. We construct a nice open cover. For each x ∈M , we can find some open neighborhoodU such that we
have a homeomorphismφ : U → B(φ(x), 2). Then

{
φ−1(B(φ(x), 1))

}
x∈M is an open cover ofM , so we

can refine this to a locally finite open cover U of precompact open sets. By looking down on compact,
we may as well assume that U is made of coordinate balls B(φ(x), r) contained in larger coordinate
balls B(φ(x), r′) for r′ > r.

2. Now, for each coordinate ball φ : U ∼= B(0, r) for U ∈ U extending to φ′ : U ′ ∼= B(0, r′). Then we
construct fU which is nonzero on B(0, r) but vanishes on B(0, r′).

Now, for each U ∈ U , select αU ∈ κ such that U ⊆ UαU
. From here, we may set

φ̃α :=
∑
αU=α

fU ,

which satisfies all the needed conditions. For example, one finds that the support of φ̃α is⋃
U⊆Uα

U ⊆
⋃

U⊆Uα

U ⊆ U.

One needs local finiteness in order to verify the first inclusion; the point is that one can reduce this
large union to a finite one around any given point, so the closures must agree. ■

Let’s give some applications.

Corollary 2.11. Fix a smooth manifold M . For any closed set A ⊆ M contained in an open set U ⊆ M ,
there exists a smooth function ψ : M → R such that ψ|A = 1 and ψ|M\U = 0.

Proof. Consider the open cover {U,M \A}; this is an open cover because U ∪ (M \A) =M is equivalent to
A ⊆ U . Then Theorem 2.10 produces two nonnegative smooth functions ψ0 and ψ1 such that suppψ0 ⊆ U
and suppψ1 ⊆M \A and ψ0 + ψ1 = 1 everywhere. But now ψ0 is the desired function: suppψ0 ⊆ U implies
ψ0|M\U , and ψ0|A + ψ1|A = 1, but ψ1|A = 0 because suppψ1 ⊆M \A. ■

Corollary 2.12 (Extension lemma). Fix a smooth manifold M . Further, fix a closed subset A ⊆ M
contained in an open set U ⊆ M . Given a smooth function f : A → Rk, there is a smooth function
f̃ : M → Rk extending f and with supp f̃ ⊆ U .

Proof. Omitted. ■

Corollary 2.13. Fix a smooth manifold M . There is a nonnegative function f : M → R such that all the
sets

f−1([0, c])

are compact for any c ≥ 0.
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Proof. Fix a countable cover {Un}n∈N of M by precompact open subsets, and let {ψn}n∈N be the corre-
sponding partition of unity. Then we set

f :=

∞∑
n=0

nψn.

Notably, for each c ∈ R, we see
f−1([0, c]) ⊆

⋃
n≤c

suppψn,

so f−1([0, c]) is a closed subset of a finite union of compact sets (which is compact), so we are done. ■

Corollary 2.14. Fix a closed subset K of a smooth manifold M . Then there is a nonnegative smooth
function f : M → R such that f−1({0}) = K.

Proof. One begins with M = Rn and then does the general case from there. ■

2.2.2 Diffeomorphisms
Here is our definition.

Definition 2.15 (diffeomorphism). Fix a map F : M → N of smooth manifolds, possibly with boundary.
Then F is a diffeomorphism if and only if F is bijective, smooth, and has smooth inverse.

Remark 2.16. Invariance of the boundary under smooth charts implies F must send boundary points to
boundary points.

Remark 2.17. IfF is a diffeomorphism, thendimM = dimN . Simply put, we can work locally on a chart,
and then we are providing a diffeomorphism Rm → Rn, but this can only happen when m = n. For
example, it means thatDF andDF−1 are invertible linear maps Rm → Rn and Rn → Rm, respectively,
which manifestly requires m = n.

Remark 2.18. It turns out that topological n-manifolds with a smooth structure admit a unique smooth
structure up to diffeomorphism, for n ≥ 3. For n ≥ 4, even R4 fails to have a unique smooth structure.

Remark 2.19. The collection Diff(M) of diffeomorphisms M → M is a group, and one can give it a
topology. For example, one can compute that Diff

(
S2
)

is homotopy equivalent toO(3), given approxi-
mately by rotations.

2.2.3 Tangent Spaces
Fix a smooth n-manifold M . One would like to provide each point p ∈ M with an n-dimensional tangent
vector space TpM . IfM is embedded into Euclidean space reasonably, we can imagine using the embedding
to realize the tangent space; for example, if M is a (smooth) curve in R2, we can imagine that the tangent
vectors tell us what direction we are moving in. We would also like to actually be able to compute these
things in charts.

Anyway, here is our definition of tangent vectors. This definition is a bit awkward to handle because we
want to be invariant.
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Definition 2.20 (tangent space). Fix a smooth n-manifoldM and some point p ∈M . A derivation at p is
an R-linear map v : C∞(M) → R satisfying the Leibniz rule

v(fg) = f(p)v(g) + g(p)v(f)

for any f, g ∈ C∞(M). Then the tangent space Tp(M) at p is the collection of derivations.

Remark 2.21. Note that Tp(M) is an R-subspace of the collection of linear maps C∞(M) → R.

Example 2.22. Fix M := Rn and some p ∈M . Then any v ∈ Rn has a “directional derivative” given by

f 7→
n∑
i=1

vi
∂f

∂xi

∣∣∣∣
p

.

This is simply by the product rule in multivariable calculus.

2.3 February 6
Today we continue talking about tangent vectors.

2.3.1 Derivations
Let’s provide some basic properties of derivations.

Lemma 2.23. Fix a smooth n-manifoldM and a derivation v : C∞(M) → R at a point p ∈M . If f : M →
R is constant, then v(p) = 0.

Proof. By scaling, it suffices to do the case where f ≡ 1. Then we see that f2 = f , so

v(f) = v
(
f2
)
= 2f(p)v(f) = 2v(f),

so v(f) = 1 is forced. ■

Lemma 2.24. Fix a smooth n-manifold M and a derivation v : C∞(M) → R at a point p ∈ M . Given
f, g ∈ C∞(M) such that f |U = g|U for some open U ⊆M containing p, we have v(f) = v(g).

Proof. Set h := f−g so that we want to show v(h) = 0 by linearity. The moral of the story is to extend being
zero onU to all ofM ; in other words, we will want some bump functions. BecauseM is locally Euclidean, we
can find a precompact open neighborhood V of p such that V ⊆ U . Thus, Corollary 2.11 provides a smooth
bump function ψ : M → R such that ψ|V ≡ 1, and suppψ ⊆ U . Notably, ψ · h has support contained in U ,
but h vanishes on U , so ψ · h = 0, so

0 = v(ψ · h) = ψ(p)v(h) + h(p)v(ψ) = v(h),

as desired. ■

Manifolds are understood by passing to local charts, and the above lemma somewhat allows us to do this.
As such, we are now motivated to understand local charts.
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Lemma 2.25. Fix a point (a1, . . . , an) ∈ Rn. For each v ∈ Rn, define Dv|a : C∞ (Rn) → R by

Dv|a(f) :=
n∑
i=1

vi
∂f

∂xi

∣∣∣∣
a

.

Then Dv|a is a derivation at a. In fact, the map D : Rn → TaRn given by v 7→ Dv|a is an isomorphism of
vector spaces.

Proof. To check that Dv|a is a derivation, one proceeds via the product rule in multivariable calculus. We
omit this check. It remains to check that we have an isomorphism.

• Linear: given c, d ∈ R and v, w ∈ Rn, we compute

Dcv+dw|af =

n∑
i=1

(cvi + dwi)
∂f

∂xi

∣∣∣∣
a

= c

n∑
i=1

vi
∂f

∂xi

∣∣∣∣
a

+ d

n∑
i=1

wi
∂f

∂xi

∣∣∣∣
a

= (cDv|a + dDv|a)f,

as desired.

• Injective: by linearity, it is enough to show that having Dv|a = 0 implies v = 0. Well, it is enough to
check that vj = 0 for each j. For this, we let pj : Rn → R denote the jth projection so that

∂pj
∂xi

=

{
1 if i = j,

0 else,

so we see that

Dv|a(pj) =
n∑
i=1

vi
∂pj
∂xi

∣∣∣∣
a

= vj

must vanish for each j, as desired.

• Surjective: this is the heart of the matter. Fix a derivation v ∈ TaRn. We need a candidate vector, so
we define ui := v(pi), where pi : Rn → R is the ith projection. We claim that

v =

n∑
i=1

ui
∂

∂xi

∣∣∣∣
a

,

which will complete the proof. This requires a quick digression into a Taylor expansion. Given a smooth
function f : M → R and points x, a ∈ Rn, we see

f(x) = f(a) +

∫ 1

0

d

dt
f(x+ t(x− a)) dt,

= f(a) +

n∑
i=1

(
(xi − ai)

∫ 1

0

∂f

∂xi
(a+ t(x− a)) dt︸ ︷︷ ︸
hi(x):=

)
,

where in the last equality we have used the multivariable chain rule. Applying the derivation, we see

v(f) = v(f(a))︸ ︷︷ ︸
0

+

n∑
i=1

v(xi − ai)hi(a) +

n∑
i=1

(ai − ai)︸ ︷︷ ︸
0

v(hi),

where v(f(a)) = 0 by Lemma 2.23. Additionally, v(xi − ai) = v(xi) = ui using Lemma 2.23 again.
Notably, hi(a) = ∂f

∂xi
|a, so

v(f) =

n∑
i=1

ui
∂f

∂xi

∣∣∣∣
a

,

as desired. ■
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2.3.2 Differentials of Smooth Maps

Derivations explain how to take derivatives of functions in M → R. We now upgrade to taking derivatives
of functions between manifolds.

Definition 2.26 (differential). Fix smooth manifolds M and N . Given a smooth map F : M → N , the
differential of F at p ∈M is the map dFp : TpM → TF (p)N defined by

dFp(v)(f) := v(f ◦ F )

for any f ∈ C∞(N).

Remark 2.27. The composition of smooth functions is smooth, so f ◦ F is smooth, so the definition
of dFp at least makes sense. Notably, f 7→ (f ◦ F ) is a map C∞(N) → C∞(M) of R-algebras, so
f 7→ v(f ◦F ) remains a derivation. Explicitly, it is surely R-linear (as the composition of R-linear maps),
and we satisfy the Leibniz rule because

dFpv(fg) = v((fg) ◦ F )
= v((f ◦ F )(g ◦ F ))
= (f ◦ F )(p)v(g ◦ F ) + (g ◦ F )(p)v(f ◦ F )
= f(F (p))dFpv(g) + g(F (p))dFpv(f).

Remark 2.28. The map dFp : TpM → TF (p)N is linear, essentially by definition. Namely, for a, b ∈ R and
v, w ∈ TpM and f ∈ C∞(N), we compute

dFp(av + bw)(f) = (av + bw)(f ◦ F ) = av(f ◦ F ) + bw(f ◦G) = (adFp(v) + bdFp(w))(f).

Example 2.29. Take M := Rm and N := Rn, and let F : M → N be a smooth map, which we may as
well write as F = (F1, . . . , Fn). Now, fix some p ∈ M , and identify Rm ∼= TpM and Rn ∼= TF (p)N as in
Lemma 2.25. Well, given some smooth f : N → R, we see

dFp

(
∂

∂xi

∣∣∣∣
p

)
(f) =

∂

∂xi
(f ◦ F ) ∗

=

n∑
j=1

∂f

∂yj

∣∣∣∣
F (p)

∂Fj
∂xi

∣∣∣∣
p

=

(
n∑
j=1

∂Fj
∂xi

∣∣∣∣
p

· ∂

∂yj

∣∣∣∣
F (p)

)
(f),

where the main point is the application of the Chain rule in ∗
=.

Remark 2.30. Differentials behave under composition. Explicitly, let F1 : M1 → M2 and F2 : M2 → M3

be smooth maps. Given p ∈M1, we claim that

d(F2 ◦ F1)p
?
= (dF2)F1(p) ◦ (dF1)p.

This can be checked directly.

Example 2.31. Fix a point p on a smooth n-manifold M . Then we claim d(idM )p = idTpM . Indeed, we
simply compute

d(idM )p(v)(f) = v(f ◦ idM ) = v(f).
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2.3.3 Back to Tangent Spaces
Now that we understand how to take differentials of maps, we may realize the remark that derivations ought
to be understood locally, as alluded to in Lemma 2.24.

Proposition 2.32. Fix a smooth n-manifold M . Given an open neighborhood U of a point p ∈ M , the
inclusion i : U ↪→M is smooth, and dip : TpU → TpM is an isomorphism of vector spaces.

Proof. Remark 2.28 tells us that this map is linear. It remains to check injectivity and surjectivity, which we
do by hand.

• Injective: if dip(v) = 0, then v(f ◦ i) = 0 for all f ∈ C∞(M), or equivalently, v(f |U ) = 0 for all
f ∈ C∞(M). We would now like to show that v is actually zero. Well, pick up some g ∈ C∞(U), and
we want to show that v(g) = 0.
Well, choose some open precompact open neighborhood B around p such that B ⊆ U . Then Corol-
lary 2.11 provides us with a smooth bump function ψ : M → R which is 1 on B and vanishes outside
U . Then gψ is actually smooth (it is smooth on U because g and ψ are both smooth there, and it is
smooth outside U because the function is zero there), so v(gψ|U ) = 0. But gψ and g agree on B, so
v(g) = v(gψ|U ) by Lemma 2.24, as needed.

• Surjective: fix some derivation ṽ ∈ TpM , and we want some v ∈ TpU such that ṽ(f) = v(f |U ) for all
f ∈ C∞(M). The main point is the construction of U .
Given a smooth function f ∈ C∞(U), we want to define ṽ(f). Well, as in the previous step, we may
define f̃ : M → R such that there is an open neighborhoodB ⊆ U of pwith f |B = f̃ |B . Then we define
v(f) := ṽ(f̃). Note that v(f̃) does not depend on the choice of f̃ and B: well, given another pair of f̃ ′

and B′, we see that f̃ |B∩B′ = f̃ |B∩B′ , so they have the same value of ṽ under Lemma 2.24.

Additionally, we note that v is in fact a derivation: given f, g ∈ C∞(U) and smooth extensions f̃ , g̃ ∈
C∞(M) agreeing on Bf , Bg ⊆M , respectively, we see

ṽ(f̃ g̃) = f̃(p)ṽ(g̃) + g̃(p)ṽ(f̃)

because ṽ is a derivation, but then this immediately produces v(fg) = f(p)v(g)+ g(p)v(f) by checking
the definitions. Similarly, we have

ṽ(af̃ + bg̃) = aṽ(g̃) + bṽ(g̃),

so v(af + bg) = av(f) + bv(g), so v is linear.
Lastly, we note that ṽ(f) = v(f |U ) for any f ∈ C∞(M) by construction. Namely, f is a perfectly fine
extension of f |U agreeing on some open neighborhood of p contained in U (for example, taking U to
be the needed open neighborhood itself will work), so we conclude. ■

Corollary 2.33. Fix a smooth n-manifold M . For any p ∈M , we have dimR TpM = n.

Proof. Fix a smooth chart (U,φ) around p ∈M . Then we have the sequence of isomorphisms

TpM ∼= TpU ∼= Tφ(p)φ(U) ∼= TpRn ∼= Rn.

The first and third isomorphisms are by Proposition 2.32. The second isomorphism is by functoriality of the
tangent space from Remark 2.30 and Example 2.31; namely, the differential of a diffeomorphism must be
an isomorphism by functoriality. And the last isomorphism is by Lemma 2.25. ■

While we’re here, we take a moment to understand how these derivations behave under coordinates.
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Remark 2.34. Please read about how to provide the differential of a smooth map on coordinates.

So here are some coordinate computations.

• Fix a smooth n-manifold M and a point p ∈ M . Given a smooth chart (U,φ) around p, we give φ its
coordinates φ := (x1, . . . , xn). For example, given f ∈ C∞(U), we are able to define

∂

∂xi

∣∣∣∣
p

f :=
∂f

∂x̃i

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
,

where (x̃1, . . . , x̃n) are the coordinates ofM . By tracking the isomorphisms of Corollary 2.33 through,
we can see that the above derivations form a basis for TpM . Indeed, it suffices to show that they are a
basis for the derivations on TpU , and by passing through φ, it is enough to see that ∂f/∂x̃i|φ(p) form
a basis of derivations on Tφ(p)U . But it’s now enough to see that we have a basis on TpRn, which is
simply Lemma 2.25.

• We examine change of coordinates. Fix a smooth n-manifold M and a point p ∈ M covered by the
charts (U,φ) and (V, ψ). As above, we give coordinates as φ := (x1, . . . , xn) and ψ := (y1, . . . , yn), and
we give the target spaces the coordinates (x̃1, . . . , x̃n) and (ỹ1, . . . , ỹn), respectively.

Well, on the restrictions, we will choose coordinate representations by

(ψ ◦ φ−1)(x̃) := (y1(x̃), . . . , yn(x̃)),

and we in particular see that

∂

∂yj

∣∣∣∣
p

yk =

((
dψ−1

)
ψ(p)

∂

∂ỹj

∣∣∣∣
ψ(p)

)
yk

=
∂

∂ỹj

∣∣∣∣
ψ(p)

(
yk ◦ ψ−1

)
=

∂

∂ỹj

∣∣∣∣
ψ(p)

ỹk

= 1j=k.

The moral of the story is that some v =
∑m
k=1 vk∂/∂yk|p will have

∂

∂xi

∣∣∣∣
p

=

n∑
k=1

∂yk
∂x̃i

∣∣∣∣
φ(p)

∂

∂yj

∣∣∣∣
p

.

2.4 February 8
Here we go.

2.4.1 Velocity Vectors
Let’s discuss a more geometric variant of tangent vectors.

Definition 2.35 (velocity vector). Fix a smooth n-manifoldM and a point p ∈M . Define the space JpM
to be the set of smooth curves γ : (−ε, ε) → M such that γ(0) = p (and ε > 0). We say that γ1, γ2 ∈ Jp
are equivalent, written γ1 ∼ γ2, if and only if (f ◦ γ1)′(0) = (f ◦ γ2)′(0) for any f ∈ C∞(M).
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Remark 2.36. We won’t bother checking that ∼ is an equivalence relation; it holds because we are ba-
sically checking equalities after passing to RC∞(M) by sending γ 7→ ((f ◦ γ)′(0))f .

And here is how this relates to tangent vectors.

Lemma 2.37. Fix a smooth n-manifold M and a point p ∈ M . Then TpM is in natural bijection with
JpM/∼.

Proof. In one direction, one can send some [γ] ∈ (JpM/∼) to the derivation v[γ] : f 7→ (f ◦ γ)′(0). Note that
this only depends on the class [γ] rather than the representative γ by definition of the equivalence relation∼.
This map is injective essentially by construction, and one can show by hand that it is surjective, for example
by working locally on charts and then using lines as the needed curve to realize a differential in TpM . ■

2.4.2 The Tangent Bundle
Let’s glue our tangent spaces together.

Remark 2.38. Given p, q ∈ Rn, there is a natural identification TpRn → TqRn. One can see this on
velocity vectors by moving the curves over by hand. Alternatively, let T : Rn → Rn be the translation
sendingT : p 7→ q, which is a diffeomorphism, and then we know we have an isomorphism dTp : TpRn →
TqRn. (Recall functoriality of Tp implies that diffeomorphisms produce isomorphisms.)

In general, it is somewhat difficult to identify these tangent spaces naturally.

Definition 2.39 (tangent bundle). Fix a smooth n-manifold M . Then tangent bundle TM is

TM :=
⊔
p∈M

TpM.

Morally, TM consists of all the tangent spaces glued together.

Proposition 2.40. Fix a smooth n-manifold M . Then TM is a smooth 2n-manifold.

Proof. We will use Lemma 1.95. Quickly, note that we have a projection π : TM →M given by π(p, v) := p.
Now, for each smooth chart (U,φ) on M , we define the chart

(
π−1U, φ̃

)
on TM , where φ̃ : π−1U →

(imφ)× Rn is defined by

φ̃ :

n∑
i=1

vi
∂

∂xi

∣∣∣∣
p

7→ (φ(p), (v1, . . . , vn)).

Recall (∂/∂xi)|p = dφ−1
φ(p)(∂/∂x̃i), where (x̃1, . . . , x̃n) are coordinates chosen on is We now have to check

our various conditions. For example, φ̃ is a bijection to an open subset of Rn × Rn = Rn+1 by construction.

(i) Given two (U,φ) and (V, ψ), we need φ̃
(
π−1U ∩ π−1V

)
to be open in R2n. But this is φ̃

(
π−1(U ∩ V )

)
,

which is an open subset of Rn × Rn because (U ∩ V, φ|U∩V ) is a smooth chart on M , so the argument
above applies.

(ii) Given two (U,φ) and (V, ψ), we need the composite φ̃ ◦ ψ̃−1 to be smooth, when suitably restricted.
Well, one simply commutes the change-of-coordinates for the part on the tangent spaces, and on
points, we simply use that φ ◦ ψ−1 is smooth already. Explicitly, one finds that this is

(x̃, v) 7→

((
φ ◦ ψ−1

)
(x̃),

n∑
i=1

vi
∂y•
∂x̃i

∂

∂ỹ•

)
.
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(iii) A countable cover ofM by charts produces a countable cover of TM by charts upon pulling back by π.

(iv) Fix distinct (p, v), (q, w) ∈ TM . If p ̸= q, then we can find disjoint smooth charts (U,φ) and (V, ψ) on
M , so

(
π−1U, φ̃

)
and

(
π−1V, ψ̃

)
provided the needed disjoint charts. Otherwise, p = q, and then p and

q are of course contained in the same chart (U,φ), so (p, v) and (q, w) are contained in the same chart(
π−1U, φ̃

)
. ■

Example 2.41. One has TRn = Rn × Rn.

Example 2.42. One has TS1 = S1 × R and TS3 = S3 × R3 and even TS7 = S7 × R7.

Example 2.43. For even n, one has TSn ̸= Sn×Rn, which is essentially a consequence of the Hairy ball
theorem: one would be able to produce n linearly independent elements of Sn×Rn and then pull them
back to n linearly independent vector fields TSn, which do not exist for even n. The same inequality
holds for odd n /∈ {1, 3, 7}.

2.4.3 Maps of Constant Rank
We are going to want some inverse function theorems. Here is the most basic case. Morally, the statement
is that invertible derivative should mean locally invertible.

Theorem 2.44 (Inverse function). Fix a smooth function f : Rn → Rn. Given x0 ∈ Rn, if the map
(Tf)x0

: Tx0
Rn → Tf(x0

Rn is invertible, then there is an open neighborhood U ⊆ Rn around x0 such
that f |U is a diffeomorphism.

By working on charts, the following result is basically immediate.

Theorem 2.45 (Inverse function). Fix a smooth function f : M → N of n-manifolds. Given x0 ∈ Rn, if
the map (Tf)x0

: Tx0
M → Tf(x0

N is invertible, then there is an open neighborhood U ⊆ M around x0
such that f |U is a diffeomorphism.

This condition is good enough to make into a definition.

Definition 2.46. Fix a smooth function F : M → N of n-manifolds. Then F is a local diffeomorphism at
p if and only if dFp is invertible. Equivalently, by Theorem 2.45, there is an open neighborhood U of p
such that F |U is a diffeomorphism onto its image.

Remark 2.47. Of course, the converse direction (local diffeomorphism implies invertible derivative) is
just by functoriality of the tangent space construction.

Remark 2.48. By gluing, if F has invertible derivative at all points, and F is a bijection, then one can see
that F−1 must be locally a diffeomorphism at all points, so in particular F−1 is smooth, so F is fully a
diffeomorphism.

Example 2.49. The map F : R → S1 given by x 7→ (cosx, sinx) is not injective, but it is a local diffeo-
morphism.

More generally, one could require something weaker than full invertibility.
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Definition 2.50 (immersion, submersion, full rank, constant rank). Fix a map F : M → N of smooth
manifolds, where m := dimM and n := dimN .

• F is an immersion if and only if dFp is injective for all p ∈M .

• F is a submersion if and only if dFp is surjective for all p ∈M .

• F has full rank if and only if rank dFp = min{m,n} for all p ∈ M (notably, this is as large as
possible).

• F has constant rank if and only if dFp has the same rank for all p ∈ M (notably, this is as large as
possible).

We now state the following theorem.

Theorem 2.51. Fix a map F : M → N of smooth manifolds. If dFp has full rank for some p ∈ M , then
there is an open neighborhood U of p such that F |U has full rank.

Proof. The condition that dFp having full rank is equivalent to the determinant of some largest submatrix
being nonzero. So one has a map M → RN for some large N taking p ∈ M to the list of determinants of
these submatrices of dFp, and this map is continuous, so the set of points not going to zero is open and
contains p. ■

Example 2.52. Fix two manifolds M and N , and fix some y0 ∈ N .

• The map x 7→ (x, y0) is an immersion.

• The projection map M ×N →M is a submersion.

Example 2.53. Fix a smooth curve γ : R → R2 with non-vanishing derivative everywhere. Then γ is an
immersion.

2.5 February 13
Here we go.

2.5.1 The Rank Theorem
It will turn out that maps of constant rank basically look like projections.

Example 2.54. The projection F : R2 → R given by F : (x, y) 7→ x is a submersion. Namely, dF = (1, 0)
for each p, so rank dFp = 1 for all p.

Our result will arise from some change of basis.

Proposition 2.55. Fix a linear map L : V → W of finite-dimensional R-vector spaces of rank r. Then
there is a basis of V and a basis of W such that L has matrix representation given by[

Ir 0
0 0

]
,

where I is an r × r identity matrix.
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Proof. Put any given matrix L in row-reduced Echelon form and then move the columns around as needed.
Row and column operations correspond to adjusting bases of V and W . ■

So here is our result.

Theorem 2.56 (Constant rank). Fix a smooth m-manifold M and a smooth n-manifold N , and fix a
smooth map F : M → N of constant rank r. For each p, there are smooth coordinate charts (U,φ)
on M and (V, ψ) such that p ∈ U , F (U) ⊆ V , and F has a coordinate representation given by

F (x1, . . . , xr, xr+1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

Proof. Smoothness allows us to choose some coordinate representation, so we may assume that M = Rm
and N = Rn. In our choice of coordinate representation, we may also assume that p = 0 ∈ Rm and F (p) =
0 ∈ Rn. We are basically trying to “straighten out” F around p.

The name of the game is to find a diffeomorphism φ on an open neighborhood U ⊆ Rm of 0 and a dif-
feomorphism ψ on an open neighborhood V ⊆ Rn of 0 such that

ψ ◦ F ◦ φ−1

is going to look as in the statement. We proceed in steps.

1. Using change-of-basis isomorphisms A : Rm → Rm and B : Rn → Rn so that d(B ◦ F ◦ A)0 = dB0 ◦
dF0 ◦ dF0 now looks like [

Ir 0
0 0

]
.

(We are using Proposition 2.55 to find A and B.) The point is that F looks how we want locally at 0.

2. We apply the Inverse function theorem to straighten out the first r coordinates. While we’re here, we
establish our coordinate as follows: given the domain of F the coordinates (x1, . . . , xr, y1, . . . , ym−r),
and give the codomain of F the coordinates (x′1, . . . , x

′
r, y

′
1, . . . , y

′
n−r). Under these coordinates, say F

is F (x, y) = (Q(x, y), R(x, y)).
To straighten out Q, we set φ(x, y) := (Q(x, y), y). We would like for φ to be a diffeomorphism local
at 0, which we can compute as idRm : on the first r coordinates, we areQ(x, y), which is Im locally, and
on the last n − r coordinates, we are y, which continues to be the identity. Thus, φ is in fact locally a
diffeomorphism on some open neighborhood U of 0. So we may compute(

F ◦ φ−1
)
(x, y) =

(
x, (R ◦ φ−1)(x, y)

)
.

3. We remove the dependence of F ◦ φ−1 on y. Computing our current differential, we get

d(F ◦ φ−1)(x,y) =

[
Ir 0

∂(R◦φ−1)
∂x

∂(R◦φ−1)
∂y

]
.

However, for F to have constant rank r, we see that we must have ∂(R◦φ−1)
∂y = 0; in other words,

this composite does not depend on y. (In other words, it is constant with respect to y.) So we set
S(x) := (R ◦ φ−1)(x, y). So we now have(

F ◦ φ−1
)
(x, y) = (x, S(x)).

4. We straighten out the remainingn−r coefficients using the Inverse function theorem. Namely, define
ψ : Rn → Rn by

ψ(x′, y′) := (x′, S(x′)− y′).

Computing the differential at 0 shows that ψ is locally a diffeomorphism, so we may use it as a chart.
We now conclude by computing

(
ψ ◦ F ◦ φ−1

)
(x, y) = (x, 0), as required. ■

Remark 2.57. Please read the Global rank theorem.
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2.5.2 Embeddings
Here is our definition.

Definition 2.58 (embedding). Fix smooth manifoldsM andN . A smooth map F : M → N is an embed-
ding if and only if F is an injective immersion and a homeomorphism onto its image.

Remark 2.59. The image of a smooth map does not necessarily make sense as a smooth manifold, which
is why we are only requiring a homeomorphism onto the image instead of a diffeomorphism onto its
image.

Here is how one might check this.

Lemma 2.60. Fix a smooth map F : M → N . Then F is an embedding if and only if F is an injective
immersion, and given any sequence {xn}n∈N ⊆M and x ∈M such that Fxn → Fx as n→ ∞, we have
xn → x as n→ ∞.

Proof. The forward direction is clear because the inverse homeomorphism must take convergent sequences
to convergent sequences. The reverse direction amounts to checking the continuity ofF−1, which is basically
what the condition says on sequences. ■

Example 2.61. Fix smooth manifolds M and N . For p ∈ N , the inclusion map M × {p} → M ×N is an
embedding.

Non-Example 2.62. Any curve γ : [0, 1] → Rn with self-intersection fails to be injective, so γ fails to be
an embedding.

Non-Example 2.63. Consider the map γ : [0, 2π) → R2 by γ(x) := (cosx, sinx). Then as x → 2π, we
have γ(x) → γ(0), which contradicts Lemma 2.60.

Non-Example 2.64. Consider the map F : R+ → R2 by F (t) := (t, sin 1/t). One can see that F is in fact
an embedding, but if we add in some (−1, 1) → R2 by s 7→ (0, s), then F : (R+ ⊔ (−1, 1)) → R2 is no
longer an embedding. The point is that there are points in imF converging to {0} × (−1, 1), but this is
bad news because points in R+ are not going to converge to (−1, 1).

Non-Example 2.65. Fix T 2 := S1 × S1, and realize S1 as R/Z. Then F : R → T 2 defined by t 7→ (αt, βt)
for α, β ∈ R× is never an embedding.

• If α/β ∈ Q, then one can see that F is periodic, so it fails to be injective. Namely, if β = (r/s)α,
then F (st).

• Whenα/β /∈ Q, some Diophantine approximation implies that imF is dense in T 2, so it cannot be
an embedding.

Non-Example 2.66. Consider F : R → R by F (t) := t3. Then F does not have constant rank, so F is not
an embedding.

Compactness makes many of these pathologies disappear.
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Proposition 2.67. Fix an injective immersionF : M → N of smooth manifolds. ThenF is an embedding.

Proof. We need to show that F is a homeomorphism onto its image. Because F is a continuous injection, it
suffices to show that the map F : M → imF is an open map, for which it suffices to show that it is actually
a closed map. Well, any closed subset V ⊆ M is compact because M is compact, so F (V ) is compact, so
F (V ) ⊆ imF is closed because imF ⊆ N is Hausdorff. ■

Similarly, looking locally makes many of these pathologies disappear.

Proposition 2.68. Fix an immersion F : M → N . Given p ∈ M , there is an open neighborhood U of p
such that F |U is an embedding.

Proof. This follows somewhat quickly from Theorem 2.56. ■

Remark 2.69. If dimM = dimN , then the above result follows rather quickly from the Inverse function
theorem.

Remark 2.70. Please read about submersions and smooth covering maps.

2.5.3 Submanifolds
Our näıve definition is simply that we are a subset with inherited smooth structure.

Definition 2.71 (embedded smooth submanifolds). Fix a smooth manifold M . Then a subspace S ⊆M
is an embedded smooth submanifold if and only if S is a manifold with smooth structure such that the
inclusionS ↪→M is a smooth embedding. In other words, we are asking thatS is the image of a smooth
embedding F : N →M .

Example 2.72. Fix an open subset S ⊆ M . Then the inclusion S ↪→ M is of course an embedding, so S
is a submanifold.

Example 2.73. Fix a countable discrete set of points S ⊆ M . Then the inclusion S ↪→ M is smooth of
rank 0.

2.6 February 15
The midterm is in two weeks.

2.6.1 Proper Embeddings
The following notion will be useful.

Definition 2.74. An embedded smooth submanifold S ⊆ M is properly embedded if and only if the
inclusion S ↪→M is proper; i.e., the inverse image of a compact subset of M is still compact in S.
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Non-Example 2.75. There is an embedding R2 → S2 by inverting the stereographic projection map(
S2 \ {(0, 0, 1)}

)
→ R2. However, this is not proper: all of S2 is compact, but its pre-image in R2 is all

of R2, which is not compact.

Here is a nice way to check properness.

Proposition 2.76. Fix an embedded smooth submanifold S ⊆ M . Then S is properly embedded if and
only if S ⊆M is closed.

Proof. We have two directions to show.

• Suppose S ⊆ M is closed. Well, for any compact subset K ⊆ M , we see that S ∩K is closed in M (it
is the intersection of two closed subsets of M ), so S ∩K is a closed subset of the compact set K, so
S ∩K continues to be compact.

• Suppose S ⊆ M is properly embedded. Then we want to show that S ⊆ M is closed. Well, it suffices
to check that S contains all of its limit points, so suppose that {xn}n∈N is a sequence of points in S
which converges to some point x ∈M ; then we want to show that x ∈ S.
Well, we note that the subset {xn : n ∈ N}∪{x} is compact (any open cover has an open neighborhood
of x, and this open neighborhood has all but finitely many of the xns), so ({xn : n ∈ N} ∪ {x}) ∩ S
continues to be compact by the proper embedding. But if x /∈ S, then {xn : n ∈ N} fails to be compact,
so instead we must have x ∈ S. ■

2.6.2 Slice Charts
Here is our definition.

Definition 2.77 (slice). Fix a smooth n-manifold and a smooth chart (U,φ), where we give φ the coordi-
nates φ = (φ1, . . . , φn). Then a k-slice of (U,φ) is the slice

S(ck+1, . . . , cn) := {p ∈ U : φℓ(p) = cℓ for ℓ > k}.

Conversely, a chart (U,φ) is a k-slice chart for a given subset S ⊆ U if and only if S = S(ck+1, . . . , cn)
for some real numbers (ck+1, . . . , cn). Then a subset S ⊆ M satisfies the local k-slice condition if and
only if any p ∈ S has a smooth chart (U,φ) around p such that (U,φ) is a k-slice chart for S ∩ U .

Example 2.78. Fix a smooth function f : Rm → Rn, and define the graph

Γ(f) :=
{
(x, f(x) ∈ Rm+n : x ∈ Rm

}
.

Then Γ(f) ⊆ Rm+n is a (global) m-slice chart for the chart (Rm+n, φ), where φ is the map φ(x, y) :=
(x, y−f(x)). (Note thatφ is of course smooth, and it has smooth inverse given by (x, y) 7→ (x, y+f(x)).)
Namely,

Γ(f) = {(x, y) ∈ Rm × Rn : φ(x, y) = (x, 0)} ,

so we are indeed a slice chart.

Here is our theorem. Approximately, we are saying embedded submanifolds locally look like slices.

Theorem 2.79 (Slice). Fix a smooth n-manifold M . A subset S ⊆ M is an embedded k-dimensional
submanifold if and only if S satisfies the local k-slice condition.

Proof. We have two implications to show, which we do separately.
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• Suppose that S is an embedded k-dimensional submanifold of M , and let F : S → M to be the em-
bedding. We need to show that S satisfies the local k-slice condition. Well, fix some p ∈ S, and we
need a k-slice chart (U,φ) around p ∈ U . For this, we use Theorem 2.56, which provides us with
smooth charts (U,φ) and (V, ψ) around p ∈ S and F (p) ∈ M , respectively, such F has a coordinate
representation given by

F̂ (x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0),

where F̂ := ψ ◦ F ◦ φ−1.
We are almost done, except for a technicality that V might contain other parts of S. For brevity, let
Û := φ(U) and V̂ := ψ(V ) to be subsets of Euclidean space; notably, F̂ (Û) = Û × {0}. To begin our
restriction, set V̂ ′ := V̂ ∩

(
Û × Rn−k

)
and V ′ := ψ−1(V̂ ′), so we are excluding points of S not in U

which are near p. To exclude points not near p, note we can write U = U ′ ∩ S where U ′ ⊆ M is open,
so we define

V ′′ := V ′ ∩ U ′.

We set ψ′′ := ψ|V ′′ .
We now claim that (V ′′, ψ′′) is the needed local k-slice chart of S around p. Indeed, we claim that

S ∩ V ′′ ?
= {q ∈ V ′′ : ψ′′

ℓ (q) = 0 for ℓ > k} .

In one direction, q ∈ V ′′ ∩ S implies q ∈ U by construction, but then ψ′′(q) = ψ(q) ∈ Rn−k × {0} by
definition of ψ. In the other direction, if q ∈ V ′′ has ψ′′

ℓ (q) = 0 for ℓ > k, then (for example) ψ(q) ∈
Û × Rn−k because that is where V ′ goes to, so actually ψ(p) ∈ Û × {0} = F̂ (Û), so p ∈ φ−1(Û) by
undoing F̂ , so p ∈ S by definition.

• Suppose that S satisfies the local k-slice condition. Then we want to give a smooth structure to S
so that the inclusion makes S into a smooth embedded submanifold. Well, give S ⊆ M the subspace
topology; then this makesS a homeomorphism onto its image automatically, so notablyS is Hausdorff
and second countable.
It remains to give S some smooth charts. Well, fix some p ∈ S, and satisfying the k-slice chart condi-
tion promises us a chart (U,φ) around p so that

S ∩ U = {q ∈ U : φℓ(p) = cℓ for ℓ > k}

for some given real numbers ck+1, . . . , cn. These last (n − k) coordinates shouldn’t matter, so we let
π : Rn → Rk denote the projection onto the first k coordinates. As such, we set V := U ∩ S and
V̂ := (π ◦ φ)(V ), which is an open subset of

φ(U) ∩ {x ∈ Rn : xℓ = cℓ for ℓ > k} .

The above is open in the subspace defined by the plane at the right, so it is open when projected down
to π, which can be checked because π is a quotient map.
So we will let (V, π ◦ φ) become the relevant chart. For example, we can check that π ◦ φ is a homeo-
morphism: indeed, its inverse map is given byφ−1 ◦j, where j(x1, . . . , xk) := (x1, . . . , xk, ck+1, . . . , cn),
and φ−1 and j are both smooth. This concludes the proof that S is a topological k-manifold.
We now check smooth compatibility of the given charts to show that we have actually givenS a smooth
structure. Well, choose two charts (V, ψ) and (V ′, ψ′) of S which are constructed as above from charts
(U,φ) and (U ′, φ′) of M . Well, the transition map ψ′ ◦ ψ−1 is given by

π′ ◦ φ′ ◦ φ−1 ◦ j,

where j and π and j′ and π′ are given as above. This transition map is smooth because it is the com-
position of smooth maps.
Lastly, we must check that the embedding S → M is smooth. Well, for any p ∈ S, choose a smooth
chart (V, ψ) arising from the smooth chart (U,φ) on M , as constructed above. Then the inclusion
F : S ⊆M sends V ⊆ U , and the composite φ ◦ F ◦ ψ−1 is just the identity, so it is smooth. ■
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Here is a consequence of the above proof.

Corollary 2.80. Fix a smooth n-manifoldM , and let S ⊆M be a smooth embedded submanifold. Then
for any k-slice chart (U,φ) of S, one finds that (U ∩ S, (φ1, . . . , φk)) where φ = (φ1, . . . , φn) is a coordi-
nate expansion.

Proof. The second part of the proof of Theorem 2.79 establishes this. ■

2.6.3 Level Sets
A common way to build embedded submanifolds is via level sets. Let’s begin with a couple examples.

Example 2.81. Consider the smooth function f : R2 → R given by f(x, y) := x2 + y2. For example,
f−1({1}) = S1 and f−1({0}) = {(0, 0)} and f−1({−1}) = ∅.

Example 2.82. Consider the smooth function f : R2 → R given by f(x, y) := x2 − y2. Then f−1({1}) is a
hyperbola with two connected components, but f−1({0}) looks like two crossing lines.

Remark 2.83. Given any closed setA ⊆M , we remarked earlier that there is a smooth function f : M →
R such that f({0}) = A. So it cannot be the case that level sets always give nice submanifolds.

We do expect that we should get a submanifold “generically.” Here is one instance of this.

Theorem 2.84. Fix a smooth map F : M → N of constant rank r between the m-manifold M and n-
manifold N . Then any q ∈ imF makes the level set F−1({q}) is a proper embedded submanifold of M
of dimension (m− r).

Morally, the dimensions of M must go somewhere, and there are r dimensions going out into N .

Example 2.85. Consider the smooth function f : R2 → R given by f(x, y) := x2 − y2. Then

df(x,y) =
[
2x −2y

]
,

so the function f |R2\(R×{0}∪{0}×R) is a smooth map of constant rank 1, so Theorem 2.84 tells us that all
of its fibers will be proper submanifolds of M of dimension 2− 1 = 1.

2.7 February 20
The fun never ends.

2.7.1 More on Level Sets
Last class we were stated the following result.

Theorem 2.84. Fix a smooth map F : M → N of constant rank r between the m-manifold M and n-
manifold N . Then any q ∈ imF makes the level set F−1({q}) is a proper embedded submanifold of M
of dimension (m− r).
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Proof. We apply Theorem 2.79 to S := F−1({q}), for which we will use Theorem 2.56. For each p0 ∈ S, we
receive smooth charts (U,φ) on M (around p0) and (V, ψ) on N (with F (U) ⊆ V ) such that(

ψ ◦ F ◦ φ−1
)
(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0).

In particular, write ψ(q) = (c1, . . . , cr, 0, . . . , 0), and we see that

S ∩ U = {p ∈ U : φℓ(p) = cℓ for ℓ ≤ r},

which is in fact an (m−r)-slice. Thus, Theorem 2.79 applies, and to finish up, we note thatS ⊆M is certainly
closed and hence proper by Proposition 2.76. ■

Example 2.86. If F : M → N is a submersion, then F−1({q}) is a proper embedded submanifold of
dimension (dimM)− (dimN) for any q ∈ N .

2.7.2 Regularity
We will want to understand the differential of a smooth map pointwise, for which we provide some lan-
guage.

Definition 2.87 (regular, critical). Fix a smooth map F : M → N .

• A point p ∈M is regular if and only if dFp is surjective; otherwise, p ∈M is critical.

• A value q ∈ N is regular if and only if all points inF−1({q}) are regular; otherwise, q ∈ N is critical.

Example 2.88. Given a function f : R → R, we see that the point x0 ∈ R is regular if and only if f ′(x0) =
0, based on some Jacobian computation reducing Tx0f to d

dxf
∣∣
x0

. Accordingly, the critical values are
exactly when some point in the fiber is critical.

Example 2.89. Continuing from Example 2.85, we see that the regular points of R2 are just R2 \ {0}, so
the collection of regular values is R \ {0}, which has pre-image R2 \ {(x, y) : xy = 0}.

It will turn out that the set of critical values will always be small (namely, measure zero).

Remark 2.90. Note that the set of regular pointsM ′ ofM is open: the map sending p ∈M to the ordered
list of determinants of the largest square minors of M is continuous by checking on charts (where this
function is a polynomial), and being regular means that we are interested in the pre-image where at
least one coordinate is nonzero. Thus, so F |M ′ : M ′ → N will be a submersion provided that there is
some regular input to F .

Anyway, we get the following result.

Proposition 2.91. Fix a smooth map F : M → N from the m-manifold M to the n-manifold N , and let
q ∈ N be a regular value. Then F−1({q}) is a proper embedded submanifold of dimension m− n.

Proof. Let U ⊆ M be the set of regular points in M , which is nonempty because N has a regular value; in
particular, F−1({q}) ⊆ U . Now, F |U : U → N is a submersion by the regularity of each p ∈ U , so Exam-
ple 2.86 tells us that F−1({q}) ⊆ M is an embedded submanifold of dimension m − n. Lastly, F−1({q}) is
still proper by Proposition 2.76 because it is closed. ■
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Example 2.92. Define F : Rn+1 → R by F (p) := |x|2. Then Sn = F−1({1}) will be a proper embedded
submanifold of dimension n by Proposition 2.91. Indeed, it is enough to check that 1 ∈ R is a regular
value of F . Well, for p = (x0, . . . , xn) ∈ F , we can compute dFp as the Jacobian matrix[

2x0 · · · 2xn
]
.

Notably, this has full rank 1 unless p = 0, and F−1({1}) ∩ {0} = ∅, so we are safe.

Example 2.93. Define F : R2 → R by F (x, y) :=
(
x2 + y2 − 1

)2. Then for p = (x0, y0), we can compute
dFp as the Jacobian matrix [

4x0
(
x20 + x21 − 1

)
4x0

(
x20 + x21 − 1

)]
,

so S1 ⊆ R2 now contains entirely critical points even though S1 = F−1({1}) is a perfectly fine smooth
embedded submanifold of dimension 1.

Example 2.94. Consider the torusT 2 := S1×S1, and defineF : T 2 → Rby some kind of height function,
achieved by embeddingT 2 ⊆ R3. Then the pre-image of the critical values of this height make figure-8s,
which are not smooth embedded submanifolds.

These regular values also allow us to sensibly discuss defining functions.

Definition 2.95 (defining function). Fix a smooth embedded submanifold S ⊆M , where k := dimS and
m := dimM . Then a smooth functionF : M → N is a defining function for S if and only if S = F−1({q})
for some regular value q ∈ N . Locally over some open subset U ⊆ M , we say that a smooth map
F : M → N is a local defining function for F at some p ∈ S if and only if S ∩ U = F−1({q}) for some
regular value q ∈ N .

The local notion is useful because it is universal.

Proposition 2.96. Fix a subset S of a smooth m-manifold M . Then S is a k-dimensional embedded
submanifold ofM if and only if any p ∈ S has some open neighborhood U ⊆M of p such that there is a
local defining function F : U → Rm−k for any p ∈ S.

Sketch. Use Theorem 2.79 to realize F as a projection onto the relevant coordinates. ■

2.7.3 Tangent Vectors
Embedded submanifolds will produce a natural embedding on tangent spaces, which we now use.

Definition 2.97 (tangent vector). Fix an embedded k-submanifold S of the smoothm-manifoldM . For
any p ∈ S, we define T extrinsic

p S := im dιp, where ι : S → M is the inclusion. Namely, we are viewing
TpS as a k-dimensional subspace of TpM .

Example 2.98. Let (U,φ) be a local k-slice chart for S so that

S ∩ U = {p ∈ U : φℓ(p) = cℓ for ℓ > k}.

Then we see T extrinsic
p is just the span of

{
∂
∂x1

∣∣
p
, . . . , ∂

∂xk

∣∣
p

}
.
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Example 2.99. Let F : U → N be a local defining function for S so that U ∩ S = F−1({q}) for some
regular value q ∈ N . Then T extrinsic

p S = ker dFp by tracking through what being a defining function
means.

Example 2.100. Consider the subset

O(n) :=
{
A ∈ Rn×n : A⊺A = Im

}
.

We have a natural defining map F : Rn×n → Sym(n) by A 7→ A⊺A, and F is certainly smooth because
it is a polynomial in the coordinates. We claim that Im ∈ Sym(n) is a regular value for F , which implies
O(n) ⊆ Rn×n is a smooth embedded submanifold of codimension 1 by Proposition 2.91.

Well, we compute dFA for A ∈ Rn×n via curves. A curve producing the differential B ∈ TARn×n is
simply given by t 7→ A+ tB, so

dFA(B) =
d

dt
F (A+ tB)

∣∣∣∣
t=0

=
d

dt
(A⊺ + tB⊺)(A+ tB)

∣∣∣∣
t=0

=
d

dt

(
A⊺A+ t(B⊺A+A⊺B) + t2B⊺B

) ∣∣∣∣
t=0

,

which is B⊺A + A⊺B. So we need the map B 7→ B⊺A + A⊺B to be surjective, so we will just check
that it has kernel of dimension n2 − 1

2n(n + 1) = 1
2n(n − 1). Well, B lives in the kernel if and only if

B⊺A = −A⊺B, or equivalently A⊺B is alternating. Taking A to be invertible, we are looking at A times
the space of alternating matrices, which is in fact of dimension 1

2n(n− 1).

Remark 2.101. While we’re here, we note that we have already computed TIm O(n) extrinsically as

ker dFA =
{
B ∈ Rn×n : B⊺ +B = 0

}
,

which we will later understand as the Lie alegbra.

2.8 February 22

The midterm is next week. It will be about four questions. More information will be sent out soon.

2.8.1 Null Sets
Sard’s theorem will tell us that most values are regular values. In particular, we will show that critical values
have measure zero. The notion of measure zero will be glued together from charts.

Definition 2.102 (null set). A subsetA ⊆ Rn has measure zero or is a null set if and only if any ε > 0 has
some countable list of balls {B(xi, ri)}i≥1 such that

A ⊆
⋃
i≥1

B(xi, ri) and
∞∑
i=1

rni < ε.

Example 2.103. According to the above definition, any countable subset is a null set, even if we are in
R0.

The point of the rni is that it is the volume ofB(xi, ri), up to a constant only depending on the dimension, so
we are saying that A can be covered by sets of arbitrarily small measure.
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Remark 2.104. We can replace the balls in this definition with cubes.

Here are some quick checks.

Lemma 2.105. Fix a positive integer n.

(a) If A ⊆ Rn is a null set and B ⊆ A, then B is a null set.

(b) If {Aj}j≥1 is a countable collection of null sets, then
⋃∞
i=1Ai is a null set.

(c) IfA ⊆ Rn makesA∩
(
{c} × Rn−1

)
⊆ {c}×Rn−1 into a null set for each c ∈ R, thenA is a null set.

(d) If f : U → R is a continuous function with U ⊆ Rn−1 measurable, then the graph

Γ(f) := {(x, f(x)) : x ∈ U}

is a null set.

(e) Every nontrivial affine subspace of Rn (not equal to Rn) is a null set.

(f) If A ⊆ Rn is a null set, then Rn \A is dense.

(g) A subsetA ⊆ Rn is a null set if and only if each p ∈ A has some open neighborhood Up ⊆ Rn such
that A ∩ Up is a null set.

(h) If a subset A ⊆ Rn is a null set, and a function F : A→ Rn is Lipschitz, then F (A) is a null set.

(i) Let S ⊆ Rn be a submanifold of positive codimension. Then S has measure zero.

Proof. Here we go.

(a) For any ε > 0, we get a countable list {B(xi, ri)}i≥1 such that

A ⊆
⋃
i≥1

B(xi, ri) and
∞∑
i=1

rni < ε.

Thus, we see that B ⊆ A ⊆
⋃
i≥1B(xI , ri) too, so we are done.

(b) Fix ε > 0. For each j, build a countable list {B(xij , rij)}i≥1 such that

Aj ⊆
⋃
i≥1

B(xij , rij) and
∞∑
i=1

rnij <
ε

2j
.

Now, set B := {B(xij , rij)}i,j≥1 to be a countable union of balls, and we see that
⋃
j≥1Aj is contained

in
⋃
j≥1

⋃
i≥1B(xij , rij), and ∑

j≥1

∑
i≥1

rnij <
∑
j≥1

ε

2j
= ε,

as required.

(c) Use Fubini’s theorem, integrating over c ∈ R. Explicitly, now using some heavier measure theory,

µ(A) =

∫
Rn

1A(x) dx =

∫
R

∫
Rn−1

1A(c, x) dx dc =

∫
R
0 dc = 0.

(d) We induct on n. If n = 1, there is nothing to do because Γ(f) is a single point. For the induction, we
use the previous part: it is enough to check that Γ(f) ∩

(
{c} × Rn−1

)
⊆ {c} ×Rn−1 has measure zero.

But this amounts to restricting f to {c} × Rn−1, so this intersection is now the graph of a continuous
function in n−2 variables whose graph lives in Rn−1. So our dimension is one smaller, so we complete
the induction.
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(e) Apply the previous part because an affine subspace is the image of a linear map composed with a
translation.

(f) If Rn \A fails to be dense, then there is an open subset in the complement of Rn \A, soA contains an
open ball, so A cannot be a null set.

(g) The forward direction is immediate by taking subsets. In the reverse direction, we loop over all p ∈ Rn
produces an open {Up}p∈Rn cover of Rn. However, Rn is countably compact, so we can refine this to
a countable cover {Up}p∈S of Rn, where S ⊆ Rn is some finite subset. Thus, A is the union of the
countably many null sets {Up ∩A}p∈S , so we are done by a previous part.

(h) For ε > 0, cover A with open balls of measure smaller than ε; by shrinking the balls if necessary, we
may assume that F has a smooth extension to the (compact!) closure of each ball. Thus, F becomes
Lipschitz on each ball with a Lipschitz constant of (say) K,1 so passing the open balls through F will
have image contained in an open ball with K times the radius. So we have bounded the measure of A
by Knε, up to some constants, which vanishes as ε→ 0+.

(i) Use k-slice charts to realize Sk locally as a slice chart, which have measure zero. Notably, ifA ⊆ U is a
null set where U ⊆ Rn is open, and φ : U → Û is a diffeomorphism to some other Û ⊆ Rn, then φ(A)
continues to be a null set by using (g) to allow us to check locally and then note that diffeomorphisms
are locally Lipschitz by taking the Lipschitz constant to be the norm of the Jacobian matrix. ■

And now let’s glue.

Definition 2.106 (null set). LetM be a smooth n-manifold. Then a subsetA ⊆M is a null set if and only
if any smooth chart (U,φ) of M makes φ(A ∩ U) ⊆ Rn into a null set.

Remark 2.107. We remark that one can check thatA is a null set on a particular choice of smooth charts:
suppose that {(Uα, φα)}α∈κ is a collection of smooth charts coveringA for whichφα(A∩Uα) is a null set.
Then we must check that A is a null set. Well, pick up any new chart (U,φ), and we want to check that
φ(U ∩A) is a null set. Any open cover ofA can be refined with a countable subcover, so we may replace
our cover with a countable one {(Ui, φi)}i≥1. Thenφ(U ∩A) is the countable union of theφ(U ∩Ui∩A)s,
so it is enough to check that these are null sets. But then

φ(U ∩ Ui ∩A) =
(
φ ◦ φ−1

i

)−1
(φi(U ∩ Ui ∩A))

is the image of a null set along a smooth map (of Euclidean spaces), which is a null set by Lemma 2.105.

Remark 2.108. If A ⊆ Rn is a null set, then actually A has measure zero where we view Rn as an n-
manifold. The backward direction is clear because (Rn, idRn) is a smooth chart; the forward direction
follows because having measure zero is a diffeomorphism invariant as argued in Lemma 2.105.

Remark 2.109. The image of a null set A ⊆ M along a smooth map F : M → N continues to be a null
set. Indeed, for each p ∈ M , choose charts (U,φ) of p and (V, ψ) of F (p) so that F (U) ⊆ V . Then we
want to check that ψ(F (A) ∩ V ) is a null set, where we know that φ(A ∩ U) is a null set. Well,

ψ(F (A) ∩ V ) = ψ(F (A ∩ U)) =
(
ψ ◦ F ◦ φ−1

)
(φ(A ∩ U))

is the image of a null set along a smooth map (of Euclidean spaces) and hence a null set by Lemma 2.105.

1 For example, one can use some sort of multivariable mean value theorem on passing through a norm.
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Remark 2.110. We still want to know that any null setA ⊆M is small. Concretely, we check thatM \A
is dense in M . Well, choose any open subset U ⊆ M , and we want to show that U \ A has a point. By
shrinking U if necessary, we may suppose that (U,φ) is a smooth chart, so we are told that φ(U ∩A) is
a null set of φ(U) ⊆ Rn. Thus, φ(U \A) ⊆ φ(U) has some point by Lemma 2.105, so we are done.

2.8.2 Sard’s Theorem
Recall from our examples that there simply were not many critical values; for example, see Examples 2.85
and 2.92. This is in general true.

Theorem 2.111 (Sard). Fix a smooth map F : M → N . Then the set of critical values of F has measure
zero.

Remark 2.112. Here’s a heuristic argument when dimM = dimN . Let C ⊆ M consist of the critical
points. Then one has

µ(F (c)) =

∫
F (c)

1 dy ≤
∫
C

|det dFp(x)| dx = 0,

where the content is in justifying the inequality above via some change-of-variables argument.

Anyway, let’s start the proof.

Proof of Theorem 2.111. LetD ⊆ N be the set of critical points. By Lemma 2.105, we know that it suffices
to show that each q ∈ N has some open neighborhood Uq such that D ∩ Uq is a null set. As such, it suffices
to replaceN with Rn (using diffeomorphism invariance of null sets) where n := dimN , and then restrictions
of F by pullback mean that we may as well replaceM also with an open subsetU ⊆ Rm wherem := dimM .

We are going to induct on m. Starting with m = 0, it means that M is a 0-manifold, so M is countable,
so F (M) is countable, so its image has measure zero. We also note that if n = 0, then the image is always
countable and hence a null set. So we are left with the case m,n ≥ 1.

To set up, let C ⊆ U denote the critical points of F , and we set

Ck :=

{
p ∈ U :

∂F•

∂xi1 · · · ∂xiℓ

∣∣∣∣
p

= 0 for all ℓ ≤ k and i1, . . . , iℓ ∈ {1, . . . ,m}

}
.

Notably, we have a chainC ⊇ C1 ⊇ C2 ⊇ · · · ; note all these sets are closed because taking these derivatives
is continuous. The game for the proof is to show that the differences are small, and that these sets are small
for large k. Explicitly, we find

F (C) =
(
F (C \ C1)

)
∪

k⋃
i=2

(
F (Ci \ Ci+1)

)
∪ F (Ck+1)

where k is some large integer to be determined later. So we see that our sets divide up into three classes (as
above), and we will show that each class is a null set.

1. We show that F (C \ C1) is a null set. Well, choose some p ∈ C \ C1; we would like an open subset
Up ⊆ U such that F (C ∩ Up) is a null set, which will complete the argument by looping over all p and
then reducing to a countable cover of C. Because C1 is closed, we may as well replace U by U \ C1,
meaning that some partial derivative of F fails to vanish at each point in U . We can cover U by the
open subsets where each partial derivative fails to vanish, of which there are finitely many, so we may
as well assume that there’s a fixed partial derivative that fails to vanish by passing to this open set. By
rearranging, we may then assume that ∂F1

∂x1
̸= 0, and by scaling, we’ll just go ahead and take ∂F1

∂x1
= 1.

Set y1 := F1 and yi := xi for each 2 ≤ i ≤ m so that the matrix of partial derivatives
[
∂yj
∂xi

]
1≤i,j≤m

is invertible at p. In particular, Φ := (y1, . . . , ym) is a local diffeomorphism around p, so passing to an
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open neighborhood of p ∈ U allows us to make Φ into a genuine diffeomorphism Φ: U → U ′. Because
Φ is a diffeomorphism, we see that showing the critical values of F is a null set is then equivalent to
show that the critical values of F̃ := F ◦ Φ−1 is a null set, so we will focus on F̃ .
Now, the point of passing to F̃ is that

(F1(x1, . . . , xm), . . .) = F (x1, . . . , xm) =
(
F̃ ◦ Φ

)
(x1, . . . , xm) = (y1(x1, . . . , xm), . . .),

so the moral of the story is that
F̃ (x1, . . . , xm) = (x1, . . .),

where the “. . .” simply means that we have some other functions that we haven’t bothered to write
out. The point is that we can compute the Jacobian of F̃ as a block matrix

1 0 · · · 0

∗ ∂F̃2/∂x2 · · · ∂F̃2/∂xm
...

...
. . .

...

∗ ∂F̃n/∂x2 · · · ∂F̃n/∂xm

 .

The moral of the story is that surjectivity of F is equivalent to surjectivity of F̃ . Now set

C̃s := C ∩
(
{s} × Rn−1

)
to be the critical points of F whose first coordinate is s. So we can integrate over s to get the desired
null sets, using the inductive hypothesis because we moved down in coordinates.

2. We show that F (Ck \ Ck+1) is a null set. Note that p ∈ Ck \ Ck+1 must have some (k + 1)-derivative
which is nonzero, say

∂k+1F j

∂xi1 · · · ∂xik+1

∣∣∣∣
p

̸= 0,

so we set h := ∂kFj/ (∂xi1 · · · ∂xik) to be a function M → R. Then h(p) = 0 but ∂
∂xk+1

h
∣∣
p
̸= 0. Thus, p

is a regular point (having nonzero derivative is enough for a map to R), so we may as well takeUp ⊆M
to be the regular locus of h.
In particular, we see that h−1({0}) ∩ Up is a lower-dimensional embedded submanifold S ⊆ M , and
Ck∩Up ⊆ h−1({0})∩Up, soF (Ck∩Up) is contained in the critical values ofF |S : S → N , which we see
has measure zero by the induction. Looping over all p ∈M (and then reducing {Up}p∈M to a countable
subcover), we conclude.

3. We show that F (Ck) is a null set for k > m
n − 1. This is rather technical. Recall we realized M as an

open subset U ⊆ Rm, so we may as well show that each p ∈ M is contained in some cube Q ⊆ Rm
such that F (Ck ∩Q) is a null set. By shifting and scaling, we may as well assume that Q = [0, 1]m.
Take some largeN to be determined later. The point is thatF has very slow polynomial growth on the
scale of 1/N when living in Ck, made rigorous by Taylor’s theorem, so we are able to bound the size
of the image of F . Indeed, we go ahead and subdivide the cubeQ into theNm cubes {Qv}v∈(Z∩[0,N))m

given by

Qv =

m∏
i=1

[
vi
N
,
vi + 1

N

]
.

Now, for each v ∈ (Z ∩ [0, N))m, we bound the size of F (Qv) under the assumption that Ck ∩ Qv is
nonempty. Say a ∈ Ck ∩Qv.
So we claim that

|F (x)− F (a)|
?
≤ C |x− a|k+1

55



2.9. FEBRUARY 27 214: DIFF. TOPOLOGY

for some constantC > 0 depending only on F . Let’s quickly see why this is enough. Indeed, it follows
that the value ofF onQv is contained in a cube of radiusC(1/N)k+1. But there are onlyNm total cubes,
so the volume of our images is bounded above by

Nm(1/N)n(k+1),

up to some unnamed constant depending only onF . Becausek > m
n −1, sendingN → ∞will complete

our bound.
It remains to show the bound of the previous paragraph. This follows from an analogue of Taylor’s
theorem. It suffices to get this bound when F is valued in R by working on each coordinate function
f := Fℓ and then summing the bounds for each coordinate. (Note now that the derivatives for f all
vanish to the order k.) So now we claim more generally that

f(x)
?
= f(a) +

k∑
i=1

1

i!

∑
I⊆{1,...,m}

#I=i

∂If(a)(x− a)I +Rk(x), (2.1)

where our remainder is

Rk(x) :=
1

k!

∑
I⊆{1,...,m}
#I=k+1

(x− a)I
∫ 1

0

(1− t)k∂If(a+ (t− a)x) dt.

This is enough for our inequality because all the terms vanish except for f(a) + Rk(x), and we can
upper-bound our remainder by hand because these derivatives are taking place over the compact set
Q, the integral can be bounded. One now shows (2.1) by an induction on k: if k = 0, there is nothing to
say (this is just the Fundamental theorem of calculus), and for the induction, one uses integration by
parts to expand out ∂If again. ■

2.9 February 27
Today we completed the proof of Sard’s theorem. I have edited there for completeness.

2.9.1 Applications of Sard’s Theorem
Here are some applications.

Corollary 2.113. Fix a smooth map F : M → N where dimM < dimN . Then F (M) has measure zero.

Proof. Because dimM < dimN , it is required that every value of F is critical: dFp : TpM → TF (p)N can
never be surjective! So we conclude by Theorem 2.111. ■

For the next application, we need the following notion.

Definition 2.114 (regular domain). A regular domainD of a smooth manifoldM is a properly embedded
codimension-0 smooth submanifold (possibly with boundary).

Corollary 2.115. Fix a closed subset K of a smooth manifold M . Then there are descending regular
domains {Qi}i∈N such that

M ⊇ Q0 ⊇ Q1 ⊇ · · ·

and K =
⋂
i∈NQi.
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Proof. To begin, we recall that we can find a nonnegative smooth function f ∈ C∞(M) such that f−1({0}) =
K. Now, Theorem 2.111 allows us to find a regular sequence of values {si}i∈N such that si → 0+ mono-
tonically. Then Qi := f−1([0, si]) will work. (We will not show that f−1([0, si]) is a regular domain; this is
essentially on the homework.) ■

2.9.2 The Whitney Embedding Theorem
As another application, we will show that any smooth manifold can be embedded into some Euclidean space.
To begin, we discuss how to decrease the dimensionality of the target space.

Lemma 2.116. Fix a smooth m-manifold M embedded in some RN . For each v ∈ RN \ RN−1, let
πv : RN → RN−1 denote the projection map with kernel Rv. If N > 2m + 1, then there exists some
v for which πv|M is an injective immersion M → RN−1.

Proof. Injectivity of πv|M is equivalent to asking for p − q to never be parallel to v for p, q ∈ M . Being a
smooth immersion is equivalent to asking for TpM ∩ ker d(πv)p = 0; note (πv)p = πv up to the identification
TpRN = RN , so we are asking for TpM to not have any nonzero vectors parallel to v.

We now build a smooth map to check these two facts. Set ∆M ⊆ M × M to be the diagonal subset
{(p, p) : p ∈ M}; this allows us to define κ : (M ×M) \ ∆M → RPN−1 by κ(x, y) := [x − y]. Analogously,
we define M0 := {(p, 0) ∈ TM : p ∈ M} by τ : TM \M0 → RPN−1 by τ(p, w) := [w]. We are now choosing
v ∈ RPN−1 to avoid the images of κ and τ , which are both null sets by Corollary 2.113, so we conclude. ■

Next up, we show that we can embed compact manifolds.

Lemma 2.117. Fix a smooth compactm-manifoldM . ThenM can be embedded in RN for someN > 0.

Proof. Choose a finite smooth atlas {(Ui, φi)}di=1. By adding in some more charts (and then using compact-
ness to reduce), we may assume that imφi = B(0, 1) ⊆ Rm by some shifting and that the open subsets
φ−1
i (B(0, 1/2)) actually fully cover M . By smoothly extending, we are able to find some η : B(0, 1) → [0, 1]

which is 0 on ∂B(0, 1) but 1 on B(0, 1/2). We now define

F := ((η ◦ φ1)φ1, . . . , (η ◦ φm)φm).

A quick counting argument tells us that the target is Rm(n+1). Now one checks that F is injective and an
immersion and hence a smooth embedding (by compactness of M ). ■

Remark 2.118. Please read the rest of the proof of the Whitney embedding theorem, which extends the
above result to the general case.

Here is the total result, whose proof we will not complete.

Theorem 2.119 (Whitney embedding). Fix a smooth n-manifold M . Then there is an embedding M →
R2n+1.

2.10 March 5

The midterms will be graded by next week.
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2.10.1 The Whitney Approximation Theorem
Let’s give another application of Theorem 2.111.

Proposition 2.120 (Whitney approximation). Fix a continuous mapF : M → Rk such thatF |A is smooth
on a closed subset A ⊆ M . Given a positive continuous “error” function δ : M → R>0, there exists a
smooth function F̃ : M → Rk such that F̃ |A = F |A and∣∣∣F̃ (x)− F (x)

∣∣∣ < δ(x)

for all x ∈M .

Remark 2.121. Do note that we may takeA = ∅, which tells us that arbitrary continuous functions can
be approximated by smooth ones.

Proof. By Corollary 2.12, we certainly get some smooth function F0 : M → Rk such that F0|A = F |A. It
remains to adjust F0 to be close to F . Well, define

U0 := {x ∈M : |F0(x)− F (x)| < δ(x)} .

Intuitively, U0 is the set of points where F0 is already close to F ; for example,A ⊆ U0. Additionally, for each
x /∈ A, we choose an open neighborhood Ux ⊆M \A of x such that

|F (x)− F (y)| < δ(y)

for all y ∈ Ux; continuity of F and δ means that Ux is actually open. Intuitively, Ux asserts that F does not
move much around x.

The point is that M is covered by the open collection {U0} ∪ {Ux}x∈M\A, so we get a partition of unity
subordinate to this open cover, which we denote {ψ0} ∪ {ψx}x∈M\A. As such, we set

F̃ (y) := ψ0(y)F0(y) +
∑

x∈M\A

ψx(y)F (x).

Note F̃ in any neighborhood of some y ∈ M is a finite sum of smooth functions and hence smooth, so F̃ is
itself smooth. Now, for our bounding, we see that

F (y) = ψ0(y)F (y) +
∑

x∈M\A

ψx(y)F (y)

by the partition of unity, so the difference is bounded as∣∣∣F̃ (y)− F (y)
∣∣∣ ≤ ψ0(y) |F (y)− F0(y)|+

∑
x∈M\A

ψx(y) |F (y)− F (x)| .

Each difference on the right-hand side is at most δ(y) by construction, so the entire sum continues to be at
most δ(y). ■

Example 2.122. Fix a smooth manifoldM and a continuous function δ : M → R>0. Then there is smooth
δ̃ : M → R>0 such that 0 < δ̃ < δ pointwise. Indeed, use Proposition 2.120 to approximate δ/2 with
error given by δ/2.

We haven’t used Theorem 2.111 yet, but we will do so soon, in the guise of Theorem 2.119. In particular, we
would like to upgrade Proposition 2.120 to smoothly approximate arbitrary continuous functions F : N →
M (for suitable definition of approximation). The obstruction is that we took linear combinations in the proof
of Proposition 2.120, which is not possible in general. To fix this, we fix an embedding M ⊆ RN , and we
know that we can approximate in RN , but we now need a way to retract the target to stay inside M .
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2.10.2 Tubular Neighborhoods

Our current goal will be to understand retractions to embedded submanifolds M ⊆ Rk. This requires a
notion of being perpendicular to M (so that we can retract to M ).

Definition 2.123 (normal bundle). Fix an embedded submanifold M ⊆ Rk. Then the normal space at
x ∈M is

NxM := {v ∈ Rn : v ⊥ TxM} ,

where TxM is identified with its image in TxRk ∼= Rk. Then the normal bundle is defined as

NM :=
⊔
x∈M

NxM.

Remark 2.124. It turns out that NM is a smooth manifold of dimension dimM + (k − dimM) = k.
In fact, NM is an embedded submanifold of TRk ∼= R2k, which is checked on slice charts. Roughly
speaking, one may assume that M itself is a slice chart by checking locally, and the normal bundle of a
hyperplane (given by a slice chart) is essentially another hyperplane.

Remark 2.125. Note that there is a subset M0 ⊆ NM given by pairs of the form (x, 0) ∈ NM . Then
M0 ⊆ NM is also an embedded submanifold.

Remark 2.126. One can check that the mapE : NM → Rk given by (x, v) 7→ (x+ v) is smooth. Indeed,
it is the restriction of a smooth map on TRk ∼= Rk × Rk. We remark that E(M0) =M .

This definition allows us the notion of a tubular neighborhood.

Definition 2.127 (tubular neighborhood). Fix an embedded submanifoldM ⊆ Rk, and let U be an open
neighborhood of M . Then U is a tubular neighborhood if and only if there is an open neighborhood
V ⊆ NM of M0 such that E|V : V → U is a diffeomorphism.

Morally, E as addition with a normal tangent vector means that E(V ) should be thought of as a small tube
sitting around M .

Remark 2.128. Let U be a tubular neighborhood of M . Then the projection E(x, v) 7→ x will provide a
smooth submersion and a retraction to M . Note r is smooth by construction, and the composite

M ⊆ U
r→M

is the identity by construction, which implies that r is a submersion by examining tangent spaces.

Anyway, we should probably show that tubular neighborhoods exist.

Proposition 2.129. Every embedded submanifold M ⊆ Rk has a tubular neighborhood.

Proof. We proceed in steps.

1. We claim that the map E : NM → Rk is a local diffeomorphism at any x ∈ M0. It suffices to check
that d(x,0)E is an isomorphism for each (x, 0) ∈M0, which is done by showing that its image contains
TxM +NxM = TxRk.
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2. Now, each x ∈ M has some Vx ⊆ NM such that E|Vx is a local diffeomorphism. Then one can shrink
the Vx so that E is injective on V :=

⋃
x∈M Vx, which makes E a diffeomorphism. (Namely, as soon as

E is injective, it becomes a diffeomorphism onto its image: the inverse map exists by injectivity and is
smooth by checking locally.) ■

2.10.3 Back to Whitney Approximation
Now here is our upgraded result.

Theorem 2.130 (Whitney approximation). LetM be a smooth manifold without boundary. Fix a contin-
uous map F : N → M of smooth manifolds such that F |A is smooth for some closed subset A ⊆ N .
Then F is homotopic (relative to A) to a smooth map F̃ : N →M .

Here, being homotopic relative to A means that one has a continuous homotopy H• : N × [0, 1] → M such
that H0 = F and H1 = F̃ and H•|A = F .

Proof. By Theorem 2.119, we may fix a smooth embeddingM ⊆ Rk. Additionally, Proposition 2.129 grants
us a tubular neighborhoodU ⊆ Rk ofM , and we note Remark 2.128 provides a smooth retraction r : U →M .

We now use Proposition 2.120 to perturb F : N → Rk inside U . For our error, define

δ(x) := sup{ε ≤ 1 : Bε(x) ⊆ U}.

One can see that δ(x) > 0 for each x ∈ M because M ⊆ U and U is open. Further, we note that δ is
continuous: by chaining balls together, we see

δ(x′) ≥ δ(x)− |x− x′|

for any x, x′ ∈ M , so δ is in fact Lipschitz continuous by some rearranging. So Proposition 2.120 grants us
F̃ : N → Rk such that F̃ and F do not differ by any more than δ everywhere, so we see that F̃ outputs to U
by construction.

The smooth composite r ◦ F̃ will be the desired smooth approximation. Morally, because U is locally
convex, we can build a homotopy between F and F̃ directly, and then composition with r completes the
construction. Explicitly, we define

Ht(p) := r
(
(1− t)F (p) + tF̃ (p)

)
.

Note (1 − t)F (p) + tF̃ (p) will live inside B(F (p), δ(F (p))) ⊆ U always, so we are in fact allowed to input
that point into r. Now,H is continuous as the composite of continuous functions, and it satisfies the needed
restriction properties by construction. ■

2.10.4 Transverse Intersections
Here is our definition.

Definition 2.131 (transverse). Fix a smooth map F : N → M of smooth manifolds. Then F intersects
transversally with an embedded submanifold S ⊆M if and only if

im dFx + TF (x)S = TF (x)M

whenever F (x) ∈ S. In particular, taking F to be an embedding, we say two embedded submanifolds
S1, S2 ⊆M intersect transversally if and only if TpS1 + TpS2 = TpM for all p ∈ S1 ∩ S2.

Transverse intersections should provide smooth intersections. For a counterexample without transverse
intersections, one can view level sets as intersections of a hyperplane with a graph and then take any example
where a level set fails to be a submanifold. Anyway, here is our result.
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Theorem 2.132. Fix embedded submanifolds S1, S2 ⊆ M . If S1 and S2 intersect transversally (with
nonempty intersection), then S1 ∩ S2 is an embedded submanifold with codimension codimM S1 +
codomM S2.

We can restate this in terms of the more general notion of transverse intersection.

Theorem 2.133. Fix a smooth map F : N →M of smooth manifolds. If F is transverse to an embedded
submanifold S ⊆M , then F−1(S) ⊆ N is an embedded submanifold of codimension codimM S.

Example 2.134. Suppose p ∈ M is a regular value of M . Then we know the level set F−1({p}) (if
nonempty) is an embedded submanifold of codimension dimM by Proposition 2.91.

Notably, Theorem 2.132 follows from Theorem 2.133 by letting F be an embedding. So it remains to prove
Theorem 2.133.

Proof of Theorem 2.133. Setn := dimN andm := dimM . One can check the result locally onM , so we may
use k-slice charts in order to assume thatM ⊆ Rm is open, and S ⊆M is a hyperplane inM of codimension
k. Then letφ : S → Rk be a local defining function forS by taking an orthogonal projection to the hyperplane
S, and we check that φ ◦ F continues to have 0 ∈ Rk as a regular value, which completes by appealing to
Proposition 2.91.

Let’s discuss the check that φ ◦ F has 0 ∈ Rk as a regular value. Note that dF• : M → Rm−k will be
surjective by the transverse intersection, so adding in parts from T•S (which are granted by examining what
φ does to the differential) completes the check. ■

2.11 March 7
The homework has been pushed back.

Remark 2.135. Note that continuity is a requirement for smooth approximation via Theorem 2.130.
For example, a surjection S2 → S1 has no continuous approximation, so of course it has no smooth
approximation.

2.11.1 More on Transverse Intersections
It should generically be true that submanifolds intersect transversally. However, we need a way to discuss
what “generically” means in this context. This is the content of our next result.

Definition 2.136 (smooth family). Fix smooth manifolds S,N , andM . Then a smooth family of maps is
a smooth map F• : N × S →M . Here, S is viewed as a parameter so that Fs : N →M is a smooth map
for each s ∈ S, and somehow the map Fs itself varies smoothly in s.

Proposition 2.137 (Parametric transversality). Fix a smooth family of maps F• : N × S → M . Fix a
smooth submanifold X ⊆ M . If the family F is transverse to X, then Fs is transverse to X for almost
all every s ∈ S. (Namely, the conclusion holds outside a null set.)

The use of a null set tells us that we are going to use Theorem 2.111. Morally, the intuition is that we should
expect two generic manifolds to intersect transversally. For example, one can fix a hypersurface X ⊆ M
and then use N × SS so that F• parameterizes hyperplanes on M , and we are being told that almost all
hyperplanes intersect X transversally.
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Proof of Proposition 2.137. Set W := F−1(X) ⊆ (N × S), which is an embedded submanifold of N × S by
Theorem 2.133. We want a result for almost every s ∈ S, so we will need to consider regular values of some
function outputting to S. As such, we will look at the restriction of the projection π : (N × S) → S to W .2

So by Theorem 2.111, it remains to show that s0 ∈ S is a regular value for π|W implies thatFs0 intersects
transversally to X. Well, choose p ∈ F−1

s0 (X) so that (p, s0) ∈ S. Set q := Fs0(p). By the regularity of s0, we
know (p, s0) is regular for π|W , so

dπ(p,s0)(T(p,s0)W ) = Ts0S.

As such, up to some identifications, we may write

T(p,s)(N × S) = TpN ⊕ Ts0S = TpN ⊕ im dπ(p,s0),

which we now carry over to M as

(dFs0)p(TpN)+TqX = (dF )(p,s0)(T(p,s0)(N×{s0}))+TqX
∗
= (dF )(p,s0)(T(p,s0)(N×{s0})+T(p,s0)W )+TqX,

where ∗
= holds because dF maps TW to TX already, so we haven’t gained anything. But now this is TqM

because F itself is transverse to X. ■

As an application, we show that any embedding can be perturbed to smooth transverse one.

Proposition 2.138 (Transversality homotopy). Fix a smooth map f : N →M and an embedded subman-
ifold X ⊆ M . Then there is a smooth embedding g : N → M which is transverse to X and homotopic
to f .

Proof. The idea is that we should be able to work in a tubular neighborhood to perturb f a small amount to
achieve the transverse intersection. To discuss tubular neighborhoods, we go ahead and use Theorem 2.119
to place M inside some Rk, from which we are able to extract a tubular neighborhood U ⊆ Rk of M ; let
r : U →M be the corresponding smooth retraction. In order to make sure we only ever make small pertur-
bations, define δ0 : M → R>0 by

δ0(x) := max{r ≥ 1 : B(x, r) ⊆ U},

and use Example 2.122 to get some smooth δ : M → R>0 with δ < δ0.
We now build our family to make perturbations. Set S := B(0, 1) ⊆ Rk and F : N × S →M by

Fs(p) := r(f(p) + δ(f(p))s).

Note F is smooth as some smooth composite, and F is actually a submersion: r is a submersion, so it is
enough to check that (p, s) 7→ (f(p)+ δ(f(p))s) is a submersion, but actually s 7→ (f(p)+ δ(f(p))s) is already
a smooth submersion. So Proposition 2.137 grants s0 such that Fs0 is transverse to X, so a smooth map
connecting s and s0 provides a homotopy from F0 = f to the transverse embedding Fs0 . ■

2.11.2 Remarks on Cohomology
We conclude with some remarks about using transversal intersections for (co)homology.

Remark 2.139. Fix a smooth compact n-manifold M without boundary, and let S ⊆ M be a closed
submanifold of codimension 1. We claim that the existence of a smooth retraction r : M → S implies
thatM \S is connected. Note r being a smooth retraction makes it a smooth submersion, so r−1({s}) is
a closed 1-dimensional submanifold such that r−1({s}) \ S. This is compact and connected, so one can
see that r−1({s}) is a disjoint union of circles. Even after subtracting out S then, this set will continue
to be path-connected.

2 Notably, even though π itself is a submersion, meaning all values are regular, the map π|W might get some critical values. For
example, one can restrict the projection π : R2 → R given by π(x, y) := y to the parabola

{
(x, y) : y = x2

}
, which now has 0 as a

critical value.
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Remark 2.140. Fix a compact oriented n-manifold M . Then one can use Sard’s theorem to show that
each α ∈ Hn−1(M,Z) comes from a bona fide embedded submanifold! The idea is to write

Hn−1(M ;Z) ∼= H1(M ;Z)

by Poincaré duality, andH1(M ;Z) is basically homotopy classes of mapsM → S1 by a discussion of the
fundamental group. So one finds a map f : M → S1 representing α and brings it back to a submanifold,
where the point is that we are allowed to adjust f by a homotopy, allowing us to assume that we actually
have an embedded submanifold.

Remark 2.141. In general, an embedded k-submanifold S ⊆ M of the smooth n-manifold M provides
a class [S] ∈ Hk(M ;Z). Given two such embedded submanifolds S1 and S2 of dimensions k1 and k2,
respectively, one can perturb them to intersect transversally into [S1 ∩ S2] ∈ Hk1+k2−n(M ;Z). As such,
we have defined a “cap product”

∩ : Hk1(M ;Z)⊗Z Hk2(M ;Z) → Hk1+k2−n(M ;Z).

By Poincaré duality, one produces a cup product on cohomology.

Example 2.142. Consider M := T 2 = S1 × S1, and let S1 and S2 be the embedded circles in M . One
sees that S1 ∩ S2 has a single point of intersection, so [S1] ∩ [S2] is the generator of H0(M ;Z). On the
other hand, [S1] ∩ [S1] = 0 because S1 can be perturbed a little to not intersect with itself at all.

2.11.3 Lie Groups
We now change our topic of discussion to Lie groups.

Definition 2.143 (Lie group). A Lie group is a smooth manifoldG equipped with a smooth multiplication
map m : G×G→ G and smooth inversion map i : G→ G making G into a group.

Here are many examples.

Example 2.144. The manifolds Rn and Cn equipped with addition are Lie groups. Indeed, addition and
inversion are both polynomial maps, which are smooth.

Example 2.145. The manifolds R× and C× are Lie groups equipped with multiplication. Multiplication
is polynomial, and inversion is rational, both of which are smooth.

Example 2.146. The manifoldsGLn(R) andGLn(C) are Lie groups, where the group operation is matrix
multiplication. Indeed, matrix multiplication is a polynomial, and inversion is a rational function, both
of which are smooth (where defined).

Example 2.147. There are more matrix groupsO(n),SO(n),SLn(R),SU(n), and so on. The main content
is that they are cut out by polynomial equations, so they are all embedded submanifolds of some general
linear group, where the multiplication and inversion maps are known to be smooth.

It will be helpful to have some notation.
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Definition 2.148. Given g ∈ G, we define the left translation Lg : G→ G and right translationRg : G→
G by Lg(h) := gh and Rg(h) := hg.

Remark 2.149. The translations are smooth. For example, the left translation is the smooth composite

M
(g,id)→ M ×M

m→M.

Remark 2.150. Let g1, g2 ∈M be elements, and let e ∈M be the identity. Here are some basic identities,
checked by just plugging in a test element x ∈M and evaluating.

• Lg1 ◦Rg2 = Rg2 ◦ Lg1 .

• Lg1 ◦ Lg2 = Lg1g2 .

• Rg1 ◦Rg2 = Rg2g1 . (Note the reversal!)

• Re = Le = idM .

The last three points show that Rg and Lg are diffeomorphisms with inverses given by Rg−1 and Lg−1 ,
respectively.

We want to upgrade our notion of morphism.

Definition 2.151 (homomorphism). A smooth map f : G → H of Lie groups is a Lie group homomor-
phism if and only if it is also a group homomorphism.

Example 2.152. The exponential map exp: C → C× is a Lie group homomorphism. Notably, exp is
smooth!

Example 2.153. The determinant mapdet : GLn(R) → R× is smooth (it’s the restriction of a polynomial
map Rn×n → R) and a homomorphism.

“Homogeneity” of groups mean that morphisms must look the same everywhere.

Proposition 2.154. Fix a homomorphism F : G→ H of Lie groups. Then F has constant rank.

Proof. To see the aforementioned homogeneity, we compute

(F ◦ Lg)(x) = F (gx) = F (g)F (x) = LF (g)F (x) =
(
LF (g) ◦ F

)
(x).

So F ◦ Lg = LF (g) ◦ F . To see our constant rank, we compute the differential. For g ∈ G, we see

dFg ◦ (dLg)e = d(F ◦ Lg)e = (dLF (g))F (e) ◦ dFe.

But L• is always a diffeomorphism by Remark 2.150, so we conclude that rank dFg = rank dFe is forced.
Thus, the rank is in fact constant. ■

Corollary 2.155. Fix a homomorphism F : G→ H of Lie groups. Then kerF ⊆ G is a closed embedded
submanifold.

Proof. The map F is constant rank by Proposition 2.154 above, so kerF = F−1({eG}) is an embedded
submanifold by Theorem 2.84. It is closed by continuity. ■
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Example 2.156. Let’s actually check that SLn(R) ⊆ GLn(R) is an embedded submanifold. Well, SLn(R)
is the kernel (i.e., pre-image of the identity) of the map det : GLn(R) → R×, so we are done! One can
similarly check that On(R) and Sp2n(R) and SOn(R) are all embedded submanifolds.

Remark 2.157. By the “global” rank theorem, we see that a homomorphism of Lie groups is an immer-
sion if and only if injective, a submersion if and only if surjective, and bijective if and only if a diffeomor-
phism.

2.12 March 12

We continue discussing Lie groups. Today will be a little light on proofs.

2.12.1 Lie Subgroups
Here is our definition.

Definition 2.158 (Lie subgroup). Fix a Lie group G. Then a Lie subgroup is a subset H ⊆ G which is the
image of the injective Lie group homomorphism.

Example 2.159. IfH ⊆ G is an embedded submanifold and a subgroup ofG, then the embeddingH ⊆ G
provides the injective Lie group homomorphism making H a Lie subgroup. For example, all the matrix
groups in Example 2.156 are Lie subgroups of GL (of suitable dimension).

Remark 2.160. An injective Lie group homomorphism is an immersion by Remark 2.157, so H is an
immersed submanifold.

Example 2.161. Consider the Lie group T := S1×S1. Then forα ∈ R, there is a smooth mapFα : R → T
given by

Fα(t) :=
(
e2πit, e2πiαt

)
.

There are two cases.

• If α ∈ Q, then F fails to be injective; one can precisely compute the period k as being the least
positive integer so that e2πik = e2πiαk = 1, which we can see is the denominator of α. So one can
define F̃α by restricting to S1 as

F̃α(t) :=
(
(e2πikt, e2πiαkt

)
,

and now we see that imFα = im F̃α is a Lie subgroup.

• If α /∈ Q, thenF is injective, so imF is a Lie subgroup. Notably, it is dense in T , though we will not
show it.

Here’s a quick check.

Lemma 2.162. SupposeH is an open Lie subgroup ofG. ThenH is the union of connected components
of G.
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Proof. Note that H ⊆ G is a subgroup (it is the image of a group under a homomorphism), so we may
partition

G =
⊔
g∈G

gH

into cosets. Each gH is open becauseLg is a homeomorphism by Remark 2.150, so the complement ofH is
the union of open subsets of G, so H is also closed. So H is open and closed, and the result follows. ■

Proposition 2.163. Fix a connected Lie group G. Given an open neighborhood U ⊆ G of e, the group G
is generated by U .

Proof. LetH be the subgroup generated byU . For example,U ⊆ H. Now, for any g ∈ H, we see thatLg(U)
is open by Remark 2.150 and lives insideH, soH is open. Thus, Lemma 2.162 tells us thatH is the union of
connected components of G, so H = G follows because G is connected. ■

This motivates us to work with the identity component of e for disconnected groups.

Definition 2.164 (identity component). Fix a Lie group G. Then the identity component G◦ is the con-
nected component of G containing e ∈ G.

Proposition 2.165. Fix a Lie group G. Then G◦ is a properly embedded Lie subgroup.

Proof. In fact, we claim that the open submanifold G◦ ⊆ G is itself a Lie group under the restricted multi-
plication and inversion. Namely, we must show that m(G0 × G0) ⊆ G0 and i(G0) ⊆ G0. Well, m and i are
continuous maps, so becauseG0 ×G0 andG0 are connected, their images are still connected. To finish, we
note that e = m(e, e) and e = i(e) tells us that their images must land in the connected component of e, so
m(G0 ×G0) ⊆ G0 and i(G0) ⊆ G0. ■

Example 2.166. Note thatdet : GLn(R) → R× is surjective, but the targetR× is disconnected (it’sR>0⊔
R<0), so GLn(R) must fail to be connected. But the pre-image of R>0 is GL+

n (R), consisting of the
invertible matrices with positive determinant, and GL+

n (R) turns out to be connected, so GL+
n (R). We

will not show that it is connected here.

Example 2.167. Similarly, one can check that SOn(R) is the connected component of the identity in
On(R).

We close with the following result.

Proposition 2.168. Fix a Lie subgroupH ⊆ Gwhich is actually an embedded submanifold. ThenH ⊆ G
is closed.

Sketch. As a sketch, one takes a sequence {hi}i∈Z+ in H approaching g ∈ G, and we need to check that
g ∈ H. One works in a slice chart of g to conclude. ■

Remark 2.169. It turns out that if H ⊆ G is a closed subgroup, then it turns out that H is an embedded
Lie subgroup, but we will not show this here.
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2.12.2 Group Actions
Groups will be known by their actions. Lie group actions should account for manifold structure, as the fol-
lowing definition establishes.

Definition 2.170 (smooth action). Fix a Lie group G and a manifold M . Then a smooth left action G on
M is a smooth map · : G×M →M satisfying the following.

• Associativity: (g1g2) · p = g1 · (g2 · p).

• Identity: e · p = p.

A right Lie group action is defined analogously on the right via · : M ×G→M .

Example 2.171. If M is a countable set, then we recover usual group actions of G on sets.

Example 2.172. Suppose G and H are Lie groups, and H as a right action on G. Then we get a right
action of G on H via

p · g := g−1 · p.

(The right-hand side is the right action of p on g−1.)

Example 2.173. Here are some actions of GLn(R) on Rn.

• Note GLn(R) has a smooth left action on Rn by matrix-vector multiplication.

• Alternatively, one could define A · v :=
(
A−1

)⊺
v to be a right action.

• There is also a smooth right action by v ·A := A⊺v; notably, (AB)⊺ = B⊺A⊺.

Example 2.174. Fix a Lie group G. Then here are some ways that the group G could act on itself; they
are all composites of multiplication and inversion, so they are smooth.

• G has a smooth right and left action on G by translation.

• G has a smooth left action on G by g · h := hg−1.

• G has a smooth left action on G by g · h := ghg−1.

Example 2.175. Fix a smooth manifoldM . Then π1(M) has a smooth action on the universal cover M̃ of
M by deck transformations. (Note π1(M) is a countable set, which we give the discrete topology, and
it becomes a smooth 0-manifold.)

Group actions take on the usual definitions.

Definition 2.176 (orbit, isotropy). Fix a Lie group G with smooth action on the smooth manifold M .

• The orbit of p ∈M is the set G · p := {gp : g ∈ G}. We let G\M denote the set of orbits.

• The isotropy subgroup of p ∈M is the subgroup

Gp := {g ∈ G : gp = p}.
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Remark 2.177. The orbits G\M of M partition M , by the usual abstract algebra argument.

Definition 2.178 (transitive, free). Fix a Lie groupGwith smooth action on the smooth manifoldM . The
action is transitive if and only ifG · p =M for any p ∈M . The action is free if and only ifGp = {e} for all
p ∈M .

Example 2.179. Consider the action of SO2(R) on R2 by matrix-vector multiplication. Here, SO2(R) is
the set of rotations of R2. Thus, this action is not transitive (a point in R2 only gets slid along a circle)
and is not free (the isotropy subgroup of 0 is all SO2(R)).

Example 2.180. Consider the action of GLn(R) on Rn by matrix-vector multiplication. There are two
orbits, given by {0} and Rn \ {0}, so the action again is neither free nor transitive.

Example 2.181. Let a Lie subgroupH ofG act on the Lie groupG by left multiplication. Then the orbits
are the right cosets {Hg : g ∈ G}.

Example 2.182. Consider the action of the group GLn(C) on itself by conjugation. Then the orbits are
classified by Jordan normal forms by some linear algebra over algebraically closed fields.

Example 2.183. Consider the action of SOn(R) on GLn(R) by left multiplication. Then the orbits are
given by the cosets, which one can show are in bijection with the group of upper triangular matrices
Un(R) ⊆ GLn(R). Indeed, for A ∈ GLn(R), one has a unique QR decomposition

A = QR

where Q ∈ SOn(R) and R ∈ Un(R).

Example 2.184. Algebraic topology informs us that the orbits of the action of π1(M) on the universal
cover M̃ (by deck transformations) are given by points in M .

With group actions on a particular set, we want to understand maps between them.

Definition 2.185 (equivariant). Fix a Lie group G with smooth action on the smooth manifolds M and
N . Then a smooth map F : M → N is G-equivariant if and only if

F (g ·m) = g · F (m)

for any g ∈ G and m ∈M .

Example 2.186. Let V be a vector space. Then the Lie group GL(V ) acts on V by multiplication. One
can define an action of GL(V ) on V ⊗ V by g · (v1 ⊗ v2) := (gv1 ⊗ gv2). Then the diagonal embedding
F : V → V ⊗ V given by v 7→ v ⊗ v is G-equivariant by construction.

Remark 2.187. Please read some additional properties of equivariant maps.

Studying Lie groups gets interesting when one studies their representations, which are a special kind of
group action. We won’t say much here, but we can define them.
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Definition 2.188. Fix a Lie group G. Then a representation of G is a Lie group homomorphism ρ : G →
GL(V ) for some finite-dimensional vector space V (over R or C).

Remark 2.189. One can expand out what it means to be a Lie group homomorphism so that a repre-
sentation simply means that G has a smooth action on V where each g acts by a linear transformation
on V .

Example 2.190. The identity map GLn(R) → GLn(R) is a representation, corresponding to matrix-
vector multiplication.

Example 2.191. The map GLn(R) → GLn(R) by A 7→
(
A−1

)⊺ is a representation.

Example 2.192. Matrix multiplication defines a smooth linear action of GLn(R) on Rn×n, so we get a
representation GLn(R) → GL(Rn×n).

Remark 2.193. It turns out that any compact Lie groupGhas a faithful (i.e., injective) representation into
a finite-dimensional vector space. Roughly speaking, one has G act on C∞(G) by (g · f)(x) := f(x · g)
and then finds a way to reduce the dimension.

2.12.3 The Groups SO3 and SU(2)

We spend some time showing how SO3(R) and SU2 relate. Here, SU2 consists of the 2×2matrices such that
A†A = 12 and detA = 1; as such, one can realize SU2 as a real compact manifold of dimension 3. This group
has an action on the space V of Hermitian matricesH ∈ C2×2 (namely, satisfyingH† = H) with trH = 0 by

U ·H := UHU†.

Namely, one can check that UHU† remains Hermitian and trace 0 (for example, trUHU† = trHU†U =
trH). Now, one can compute that V has R-basis given by

σ1 :=

[
0 1
1 0

]
, σ2 :=

[
0 −i
i 0

]
and σ3 :=

[
1 0
0 −1

]
.

The point is that SU2 now gets a map ρ to GL3(R) because dimV = 3.

Remark 2.194. It turns out that V ∼= Te SU2, but we will not show this here.

It will turn out that im ρ ⊆ SO3(R), which perhaps can be shown by hand, and ker ρ = {±12}. Now, ρ
is a homomorphism and hence of constant rank, and the kernel computation tells us that ρ must now be
an immersion, and dimension considerations tell us that ρ must in fact be a local diffeomorphism. This
upgrades to a smooth double-covering because it is a smooth local diffeomorphism between manifolds of
the same dimension.

Remark 2.195. One can write down any A ∈ SU2 as A = [ z11 z12z21 z22 ]. The properties of SU2 imply that it is
determined by z11, z12 ∈ C which must satisfy |z11|2+ |z12|2 = 1. So one finds that SU2 is diffeomorphic
to S3 by this projection, and SO3 is diffeomorphic to RP3 by taking the quotient by Z/2Z.
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Remark 2.196. Let’s discuss some other complex (irreducible) representations of SU2.

• There is the trivial representation on {0}.

• There is the standard matrix-vector multiplication on C2.

• TakingV as above, we seeSU2 acts onV ⊗C, which can be realized asSym2(C2) in some functorial
way.

• It turns out that the remaining irreducible representations are all the form Sym2k(C2).

As an aside, we note that these can go down to representations on SO3.
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THEME 3

VECTOR BUNDLES

3.1 March 14

Midterm scores have been released. I did okay.

3.1.1 Vector Fields
We would like to attach a vector field of directions to a manifold M . Intuitively, this is smoothly attaching a
vector to each point in M . Here is our definition.

Definition 3.1 (vector field). Fix a smooth manifoldM , and let π : TM →M be the canonical projection.
Then a vector field is a smooth section X : M → TM of π. In particular, X is smooth, and π(X(p)) = p
for each p ∈M ; i.e.,X(p) ∈ TpM for each p ∈M . A local vector field is a vector field on an open subset
U ⊆M . We let X(M) denote the set of smooth vector fields on M .

Example 3.2. The map X : M → TM given by X(p) := (p, 0) is a vector field.

Example 3.3. Fix some index i. Given a smooth chart (U,φ) on M where φ : U → Rm, we note that
Xi : U → TU defined by

Xi(p) :=
∂

∂xi

∣∣∣∣
p

is a local vector field. Recall ∂
∂xi

∣∣
p

denotes dφ−1
p

(
∂
∂xi

∣∣
φ(p)

)
.

Remark 3.4. The set X(M) is in fact a vector space, where we define a1X1 + a2X2 by

(a1X1 + a2X2)(p) := a1X1(p) + a2X2(p).

Here, the linear combination is legal because it takes place in TpM . More generally, given a smooth
function f : M → R, we see that fX : M → TM defined by (fX)(p) := f(p)X(p) is a smooth section of
the projection TM →M and hence a vector field; one can check smoothness on a smooth chart. Thus,
X(M) is a C∞(M)-module.
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Remark 3.5. Suppose X is a local vector field on the smooth chart (U,φ) of M . Because any TpU has
basis given by the ∂

∂xi

∣∣
p

, so we can write

X(p) =

n∑
i=1

fi(p)
∂

∂xi

∣∣∣∣
p

.

Because projecting onto coordinate is smooth, we see that the fi are smooth if X is. Conversely, if
the fi are all smooth, then their linear combination toX continues to be smooth. Because a function is
smooth if and only if it is smooth on a cover of smooth charts, we see that we can check the smoothness
of the vector field X on a cover of smooth charts.

3.1.2 Frames
It will be useful to have a notion of “basis” for X(M).

Definition 3.6 (frame). Fix an open subset U of a smooth manifold M .

• Local vector fields X1, . . . , Xk on U are linearly independent if and only if {X1(p), . . . , Xk(p)} is
linearly independent for all p ∈ U .

• Local vector fields X1, . . . , Xk on U form a local frame if and only if {X1(p), . . . , Xk(p)} is a basis
of TpM for all p ∈ U .

• A local frame is a global frame if all the local vector fields are actually global vector fields.

The point is that a frame is locally a basis (of sorts) for X(U), though one cannot in general expect there to be
a global frame at all. (Granted, one cannot in general expect there to be a global vector field at all.)

Example 3.7. Let (U,φ) be a smooth chart on the smooth m-manifold M . Then define the local vector
field Xi on U by Xi(p) :=

∂
∂xi

∣∣
p

. Then {X1, . . . , Xm} is a local frame on U .

Remark 3.8. Fix an open subset U on the smooth m-manifold M . Given two local frames {Xi}mi=1 and
{Yi}mi=1 on U , we note that having a basis means that there are smooth functions aij such that

Yj(p) =

n∑
i=1

aij(p)Xi(p)

for all p ∈ U .

Here is a quick result on extending frames.

Proposition 3.9. Fix an open subsetU on the smoothm-manifoldM . Given p ∈ U and linearly indepen-
dent local vector fields {X1, . . . , Xk} ⊆ X (U) such that {X1(p), . . . , Xk(p), vk+1, . . . , vm} is a full basis
of TpM , one can find an open neighborhood V ⊆ U of p and local vector fields Xk+1, . . . , Xm of V such
that

{X1, . . . , Xm}

is a local frame over V and Xi(p) = vi for i > k.

Proof. Using coordinates and adjusting φ suitably, we may assume that Xi(p) = ∂
∂xi

∣∣
p

for i ≤ k. Then
define Xi(q) := ∂

∂xi

∣∣
p

for i > k. Now, a set of frames being linearly independent is an open condition (we
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are asking for some determinant to fail to vanish), so there is an open neighborhood V of U in which the set
{X1, . . . , Xm} is linearly independent and hence a local frame. ■

The existence of frames is nice enough for us to provide an adjective.

Definition 3.10. A smooth manifold M is parallelizable if and only if M has a global frame.

Remark 3.11. Fix a Lie group G. Then G is parallelizable. Indeed, fix a basis {v1, . . . , vm} of TeG, and
then we can define

Xi(g) := (dLg)e(vi).

One can check that Xi is in fact smooth because the Lg are diffeomorphisms.

Example 3.12. The manifolds Rn, S1,
(
S1
)n, and S3 ∼= SU2 are all

3.1.3 Pushforward and Pullback
There is some danger in pushforward because a smooth mapF : M → N may fail to be injective, so we might
be asking for the vector fieldF∗X to take multiple directions inN . The correct definition is as follows.

Definition 3.13. Fix a smooth map F : M → N of smooth manifolds. Then two vector fieldsX ∈ X(M)
and Y ∈ Y(N) are F -related if and only if dFp(X(p)) = Y (p) for all p ∈M .

Here is our result for existence.

Proposition 3.14. Fix a diffeomorphism F : M → N of smooth manifolds.

(a) For any X ∈ X(M), there is a unique F -related vector field F∗X ∈ X(N) such that

(F∗X)(q) := dFF−1qX(F−1(q)).

(b) For any Y ∈ X(N), there is a unique F -related vector field F ∗X ∈ X(M) such that

(F ∗X)(p) := (dFp)
−1Y (F (p)).

Proof. We have defined each of the vector fields on points, and one can see these definitions make them
uniquely defined. It remains to show smoothness, which we omit. ■

More generally, a smooth map permits us to understand vector fields between manifolds.

Definition 3.15 (vector field). Fix a smooth mapF : M → N of smooth manifolds, and let πN : TN → N
be the projection. Then a vector field of N along F is a map X : M → TN such that πN ◦ X = F ; i.e.,
X(p) ∈ TF (p)N for each p ∈ N . We let XF (N) denote this set of vector fields.

For example, a vector field of R2 along a curve γ : R → R2 is some smooth ways to place vectors along the
curve γ.

Remark 3.16. Please read about vector fields and smooth submanifolds.
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3.1.4 Lie Bracket
Given a vector field X ∈ X(M) and v ∈ TpM , we would like to compute a directional derivative ∂vX. For
example, we might hope to take ∂vX to be (dX)p(v), but this lives in TX(p)(TM) becauseX mapsM → TM .
Perhaps we want to project this down along π : TM →M , but the composite π ◦X = idM , so we would just
get v ∈ TpM back again.

Let’s see an example to make explicit what’s going on.

Example 3.17. TakeM = R2. Then we have global frames
{

∂
∂x1

, ∂
∂x2

}
and

{
∂
∂r ,

∂
∂θ

}
. One should expect

that ∂∂/∂x1

∂
∂x2

= 0 because these are independent, but perhaps ∂∂/∂r ∂∂x ̸= 0 because these are not so
orthogonal.

The point is that we really want to take

Definition 3.18 (Lie bracket). Fix vector fieldsX and Y on a smooth manifoldM . Then there is a unique
vector field Z such that

Zf = X(Y f)− Y (Xf) = Zf

for any f ∈ C∞(M). We write [X,Y ] for Z and name it the Lie bracket.

The following lemma explains that Z exists.

Lemma 3.19. Fix vector fields X and Y on a smooth manifold M . Then there is a unique vector field Z
such that

Zf = X(Y f)− Y (Xf) = Zf.

Proof. Well, for each p ∈M , we are asking for Dp : C
∞(M) → R defined by

Dp(f) := (X(Y f)− Y (Xf))(p)

to be a derivation and that sending p 7→ Dp is a smooth section of TM → M . (This also explains that Z is
unique provided that it exists.) Linearity ofDp, and checking the Leibniz rule is a matter of writing everything
out: note

XY (f1f2) = X(f1 · Y (f2) + f2 · Y (f1)) = X(f1) · Y (f2) + f1 ·XY (f2) +X(f2) · Y (f1) + f2 ·XY (f1).

Writing this out for Y X and then subtracting produces the needed cancellation of the terms X(f1) · Y (f2)
and X(f2) · Y (f1).

It remains to check that p 7→ Dp is smooth. Well, we work locally on a smooth chart (U,φ) of M . Write
φ := (x1, . . . , xm). Then Remark 3.5 assures us that we get smooth functions f1, . . . , fm and g1, . . . , gm such
that

X =

m∑
i=1

fi
∂

∂xi
and Y =

m∑
i=1

gi
∂

∂xi
.

We now carry out the computation at some smooth function f ∈ C∞(M). For example,

X(Y (f)) = X

 m∑
j=1

gj
∂f

∂xj
f


=

m∑
i=1

fi
∂

∂xi

 m∑
j=1

gj
∂f

∂xj


=

m∑
i,j=1

fi
∂gj
∂xi

∂f

∂xj
+

m∑
i,j=1

figj
∂f

∂xi∂xj
.
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A similar computation gives Y (X(f)), and then we can compute

X(Y (f))− Y (X(f)) =

m∑
i,j=1

fi
∂gj
∂xi

∂f

∂xj
−

m∑
i,j=1

gj
∂fi
∂xj

∂f

∂xi

=

m∑
j=1

(
m∑
i=1

fi
∂gj
∂xi

− gi
∂fi
∂xi

)
∂f

∂xj
.

Thus, noting that partial derivatives commute in Euclidean space

XY − Y X =

m∑
j=1

(
m∑
i=1

fi
∂gj
∂xi

− gi
∂fi
∂xi

)
∂

∂xj
. (3.1)

We now see that this smoothly varies as p varies because all the internal functions are smooth, so we are
done. ■

3.2 March 19
We continue.

3.2.1 More on the Lie Bracket
Let’s compute the Lie bracket in some examples.

Remark 3.20. Intuitively, the Lie bracket amounts to taking the derivative of one vector field with respect
to another vector field.

Example 3.21. In Rm, one has
[
∂
∂xi

, ∂
∂xj

]
= 0 whenever i and j are distinct indices. One sees this be-

cause partial derivatives commute in Euclidean space or more explicitly from (3.1). As another example
computation, we see[

∂

∂x1
,
∂

∂x2
+ f1

∂

∂x1

]
=

∂

∂x1

(
∂

∂x2
+ f1

∂

∂x1

)
−
(

∂

∂x2
+ f1

∂

∂x1

)
∂

∂x1

collapses down to ∂f1/∂x1 after the dust settles. This makes sense intuitively because we are taking
the derivative ∂

∂x2
+ f1

∂
∂x1

with respect to x1.

We are essentially computing a commutator via the Lie bracket, so we have the following definition.

Definition 3.22 (commute). Fix an m-manifold M . A set S ⊆ X(M) of global vector fields commutes if
and only if [X,X ′] = 0 for any X,X ′ ∈ S.

Remark 3.23. Essentially by construction, we see that the Lie bracket is R-linear in both coordinates.

Remark 3.24. Note [X,Y ] = −[Y,X] by definition. In particular, [X,X] = 0, so any vector field com-
mutes with itself.

Remark 3.25. For f ∈ C∞(M), we see that [X, fY ] = f [X,Y ] + (Xf)Y , essentially by the product rule.
Explicitly, we find

[X, fY ] = X(fY )− fY X = (Xf)Y + fXY − fY X = f [X,Y ] + (Xf)Y.

75



3.2. MARCH 19 214: DIFF. TOPOLOGY

Remark 3.26. Another rather explicit computation shows

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

For example, one sees that [X, [Y,Z]]f = X[Y, Z]f − [Y, Z]Xf = X(Y Zf − ZY f)− (Y Z − ZY )Xf =
(XY Z −XZY − Y ZX − ZY X)f and then sums cyclically to make the total vanish.

Remark 3.27. We note that the Lie bracket does not depend on diffeomorphism class. Namely, ifF : M →
N is a diffeomorphism, andX1 andX2 is related toY1 andY2, then we find that [X1, X2] and [Y1, Y2] con-
tinue to be F -related. For example, one can show that

F∗[X1, X2] = [F∗X1, F∗X2],

though we will not write this out. This is a matter of working sufficiently locally everywhere and check-
ing.

Let’s do a quick computation, for fun. Suppose we have two coordinate charts (x1, . . . , xm) and (y1, . . . , ym)
on some open chart U of a manifold. Let’s compute the Lie brackets of A,B ∈ X(M) via both coordinate
charts. Well, we will write

A :=

m∑
i=1

ai
∂

∂xi
and B :=

m∑
i=1

bi
∂

∂xi
.

Using change of coordinates, we may write

A =

m∑
i=1

ai

m∑
j=1

∂yj
∂xi

∂

∂yj
=

m∑
i=1

ãj
∂

∂yj

where ãj collects terms as is necessary. We similarly write b̃j so that B =
∑
j b̃j

∂
∂yj

, and then we find that

[A,B] =

m∑
k=1

(
m∑
i=1

ai
∂bk
∂xi

− bi
∂ak
∂xi

)
∂

∂xk
=

m∑
ℓ=1

 m∑
j=1

ãj
∂b̃k
∂yj

− b̃j
∂ãk
∂yj

 ∂

∂yℓ
.

We know that these must be the same vector field, so taking the ∂/∂yℓ coordinate reveals
m∑
j=1

ãj
∂b̃k
∂yj

− b̃j
∂ãk
∂yj

=

m∑
k=1

(
m∑
i=1

ai
∂bk
∂xi

− bi
∂ak
∂xi

)
∂

yℓ
∂xk.

3.2.2 Lie Algebras on Lie Groups
On Euclidean space, we have a good notion of how to translate vectors around, which is able to produce lots
of nice global vector fields like ∂/∂x•. What is good about Euclidean space is that we have access to a group
structure to translate vectors around, so a similar story will work on other Lie groups. To make sense of this,
we have the following definition.

Definition 3.28 (invariant). Fix a Lie groupG. Then a vector field Y ∈ X(G) is left-invariant if and only if
(Lg)∗X = X for all g ∈M . In other words, for any g′ ∈ G, we are asking for

(dLg)g′X(g′) = X(gg′).

We let LieG denote the vector space of left-invariant vector fields.

For example, we are asking for X(g) = (dLg)eX(e), so X will be completely determined by X(e). This is
codified in the following lemma.
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Lemma 3.29. Fix a Lie group G. Then LieG ∼= TeG, where the isomorphism sends X to X(e).

Proof. This map is certainly linear. To see that it is injective, suppose X(e) = 0, and we want to show that
X itself vanishes. Well, for any g ∈ G, we see

X(g) = (dLg)eX(e) = 0,

so X = 0. Lastly, we want to check that the map is surjective. Well, for v ∈ TeG, define X : G→ TG by

X(g) := (dLg)eX(e).

A direct computation shows that this definition is left-invariant, so it really just remains to show that X is
smooth, which is a check that we will omit. The main point is that Xf is smooth for any smooth function f
by writing out everything explicitly, which is enough upon trying enough test functions f on X. ■

Remark 3.30. The above lemma verifies that every Lie group has a global frame: let v1, . . . , vn be a basis
of TeG, and then Lemma 3.29 provides vector fields X1, . . . , Xn such that Xi(e) := vi for each i. Then
we see that {X1, . . . , Xn} is global frame because translating by Lg for any g preserves being a basis
from e to g.

We now note that our Lie group structure descends.

Lemma 3.31. Fix vector fields X,Y ∈ LieG where G is a Lie group. Then [X,Y ] ∈ LieG.

Proof. We are tasked with showing that [X,Y ] is left-invariant. Well, Lg is a diffeomorphism, so

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ],

so we are done. ■

This information is now packaged into a Lie algebra.

Definition 3.32 (Lie algebra). A Lie algebra is a vector space V equipped with a Lie bracket [·, ·] which is
bilinear, antisymmetric, and satisfying the Jacobi identity.

Example 3.33. Given a Lie group G, we have shown above that LieG becomes a Lie algebra.

Example 3.34. Take the Lie group G := Rn. Then LieG ∼= T0Rn ∼= Rn. Notably, TeG has basis given by
∂/∂xi, all of which commute with each other, so the Lie bracket vanishes on LieG.

Exercise 3.35. Take the Lie group G := GLn(R). We compute the Lie bracket.

Proof. We take coordinates given by ∂/∂xij , and we will go ahead and compute our left-invariant vector
fields. Notably, our left action is given by LXY = XY where X,Y ∈ GLn(R), which is linear in Y . Now,
suppose A :=

∑
i,j Aij

∂
∂xij

is left-invariant. Then for X ∈ G we have

A(X) = (dLX)e(A(e))
∗
= XA(e) =

n∑
i,k=0

XijAjk(e)
∂

∂xik

∣∣∣∣
X

,
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where ∗
= is just because LX is the linear map given by multiplication by X, which goes down to the tangent

space. The moral of the story is that any A(e) ∈ Mn(R) produces the left-invariant vector field A(X) :=
XA(e).

This allows us to compute the Lie bracket: fix A,B ∈ LieG. Then, at some X ∈ GLn(R), using coordi-
nates as before, we see

[A,B](X) =

n∑
r,s=0

 n∑
i,j=0

Aij(X)
∂Brs
∂xij

(X)−Bij(X)
∂Ars(X)

∂xij

 ∂

∂xrs

=

(
XkiAij(e)

∂XtrBrs(e)

∂xij
−XkiBij(e)

∂XtrArs(e)

∂xij

)
∂

∂xrs

=

(
XkiAij(e)Brs(e)

∂Xtr

∂xij
−XkiBij(e)Ars(e)

∂Xtr

∂xij

)
∂

∂xrs
.

In total, after computing these derivatives, one sees that [A,B] = AB −BA. ■

3.3 March 21
Today we begin studying integration along curves.

3.3.1 Trajectories
We are going to want to understand trajectories.

Definition 3.36 (trajectory). Fix a vector field V ∈ X(M). A smooth curve γ : (a, b) → M is a trajectory
or integral curve of V if and only if

γ′ = V ◦ γ.

Namely, the tangent vector along γ(t) is the same as the one given by V (γ(t)).

Remark 3.37. Suppose we are in a local chart (U,φ)whereφ = (x1, . . . , xn). On one hand, we may write

V =

n∑
i=1

Vi
∂

∂xi

for smooth functions V1, . . . , Vn. On the other hand, a curve γ with γ(t) ∈ U will have

γ′(t) =

n∑
i=1

γ′i(t)
∂

∂xi

∣∣∣∣
γ(t)

,

so having a trajectory amounts to solving the system

γ′i(t) = Vi(t) for i ∈ {1, . . . , n}.

Example 3.38. TakeM := R2 so that we may identify TM ∼= R2×R2. Then V (x) := (x, x) can be solved
directly for trajectories γ. Namely, we are asking for γ′(t) = γ(t), so our curve must look like γ(t) = vet

where v ∈ R2 is some vector.

Example 3.39. If we replace M := R2 with M := B(0, 1), then the same vector field V (x) := (x, x) will
have basically the same trajectories, just perhaps limited in time.

78



3.3. MARCH 21 214: DIFF. TOPOLOGY

Example 3.40. Identify M := C with R2, and consider the vector field V (x) := (x, ix). Then our trajec-
tories look like γ(t) = veit by solving the system in the usual way.

Remark 3.41. Here is a quick aside: ifγ is a trajectory ofV , and t0 ∈ R, then the functionγt0(t) := γ(t+t0)
is also a trajectory of V . This is simply because γ′t0(t) = γ′(t+ t0).

We would like for trajectories to exist and be unique. This is basically checked locally on charts, and then we
will be able to glue along charts by some uniqueness.

The following lemma is proven by working on charts.

Lemma 3.42. Fix a smooth manifold M , a vector field V ∈ X(M), and some p ∈M .

(a) Existence: we are granted open neighborhoods U0 ⊆ M and U ⊆ M for which there is ε > 0 and
a smooth map θ : (−ε, ε)× U0 → U such that any q ∈ U0 makes

γq(t) := θ(t, q)

a trajectory of V with γq(0) = q.

(b) Uniqueness: for any other trajectory γ̃ : (a, b) → U of V with γ̃(0) = q, we have γ̃ = γq on (−ε, ε)∩
(a, b).

Proof. This simply holds by passing to the chartU0, where existence and uniqueness for systems of ordinary
differential equations holds by general theory. ■

We now glue together uniqueness.

Lemma 3.43. Fix a smooth manifoldM , and suppose that we have two trajectories γ1 : (a1, b1) →M and
γ2 : (a2, b2) →M of the same vector field V . If γ1(t) = γ2(t) for any t, then γ1 = γ2 on (a1, b1) ∩ (a2, b2).

Proof. Let I be the set of t ∈ (a1, b1) ∩ (a2, b2) where γ1(t) = γ2(t). By definition, we see that I is a closed
subset of this interval, but by working in charts, we see that any point in I has an open neighborhood in I (by
Lemma 3.42), so I is also closed in the interval. Lastly, I is nonempty by hypothesis, so connectivity forces
I to be the full interval. ■

As such, we can glue together trajectories.

Corollary 3.44. Fix a smooth manifold M , and suppose that we have two trajectories γ1 : (a1, b1) → M
and γ2 : (a2, b2) →M of the same vector field V . If γ1(t0) = γ2(t0) for any t, then

γ̃(t) :=

{
γ1(t) if t ∈ (a1, b1),

γ2(t) if t ∈ (a2, b2),

is also a trajectory of V .

Proof. The function γ̃ is well-defined by Lemma 3.43, and it is a smooth trajectory because its restrictions
to (a1, b1) and (a2, b2) is ■

To be more precise about our gluing, we will require a maximality notion.
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Definition 3.45 (maximal trajectory). Fix a vector fieldV on a smooth manifoldM . Given p ∈M , there is
a maximal trajectory γ : (a, b) → M of V such that γ(0) = p in the following sense: any other trajectory
γ̃ : (ã, b̃) →M of V satisfying γ̃(0) = p has (ã, b̃) ⊆ (a, b).

Remark 3.46. Let’s show that these maximal trajectories exist. Indeed, consider the collection Γp of all
trajectories γ : Uγ → M of V such γ(0) = p. Then let U be the union of all the Uγ , and the uniqueness
result of Lemma 3.43 allows us to define a trajectory γ̃ : U →M by saying γ̃(q) = γ(q)whenever q ∈ Uγ .
(Namely, the lemma shows that this γ̃ is well-defined in that it does not depend on the choice of γ used
to set γ(q). That γ is a smooth trajectory can be done because γ̃|Uγ

= γ for each γ.) This γ̃ is maximal
by construction: U contains Uγ for each γ!

We would like for our maximal trajectories to always be defined over R, but the following example shows
that this is not always the case.

Example 3.47. Take M := R, and let V be the vector field V (x0) := x20
∂
∂x

∣∣
x0

. As such, we are trying
to solve the ordinary differential equation γ′ = γ2, and we will also enforce γ(0) = 1. Then solving
produces γ(t) = 1/(1 − t), so we see that the maximal trajectory must be (−∞, 1). Namely, any other
trajectory γ0 : (a, b) → R must agree with γ on (a, b) ∩ (−∞, 1), but if b > 1, then we note γ0(1) must be
the limit of γ(t) as t→ 1− by continuity, which does not exist.

This is somehow a problem of the vector field, so we will produce a definition to fix it.

Definition 3.48 (complete). A vector fieldV on a smooth manifoldM is complete if and only if any p ∈M
has a trajectory γp : R →M of V such that γp(0) = p. Note that γp is then the maximal trajectory of p.

The following lemma explains how a vector field might fail to be complete.

Lemma 3.49 (Escape). Fix a vector field V on a smooth manifold M . Suppose that γ : (a, b) → M is a
maximal trajectory of V for some point p ∈ M . If b < ∞, then any compact K ⊆ M and t0 ∈ (a, b) will
have γ([t0, b)) ̸⊆ K.

Sketch. Suppose for the sake of contradiction that γ([t0, b)) lands fully inside K. Then the point is that we
should be able to extend the trajectory to (an open neighborhood of) γ(b), violating the maximality of γ. ■

Corollary 3.50. Fix a vector field V on a smooth manifold M . If the support of V is compact, then V is
complete.

Proof. We proceed by contraposition, whereupon we get the result from Lemma 3.49. Indeed, the maximal
trajectory of some p ∈M must always stay inside the support of V , which is compact by hypothesis. ■

3.3.2 Flows
We now glue together our maximal trajectories to see how vector fields flow.

Definition 3.51 (flow). Fix a complete vector fieldV on a smooth manifoldM . For each p, let γp : R →M
be the maximal trajectory so that θp(0) = p. Then the flow ofV is the corresponding function θ : R×M →
M given by θ(t, p) := γp(t).
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Remark 3.52. By construction, we see θ0 = idM for each p.

Remark 3.53. One can check that θt1 ◦ θt2 = θt1+t2 . This is simply how maximal trajectories work: by
the uniqueness of trajectories forces

γp(t1 + t2) = γγp(t2)(t1)

because both sides define a trajectory of V giving the same point at t1 = 0. As such, we see that R has
been given an action on M ; for example, it follows that θt : M → M is a diffeomorphism with inverse
given by θ−t.

Remark 3.54. The previous remark establishes that θ is fully smooth. Indeed, by smooth variation of
solutions, one sees that θ is smooth in some open neighborhood of (0, p) for any p ∈ M , and then we
get smoothness in general because

θt = θt/N ◦ · · · θt/N︸ ︷︷ ︸
N

for any N > 0, so sending N large is able to take the smoothness local at (0, p) to smoothness every-
where.

Here’s an application, for fun.

Proposition 3.55. Fix a connected smooth manifold M and points p, q ∈ M . Then there is a compact
subsetK containing p and q and a diffeomorphism f : M →M such that f(p) = q and f |M\K = idM\K .

Proof. Let G be the group of diffeomorphisms M → M which fix some the complement of some compact
subset K; note that G is indeed a group. (The interesting check is closure under composition, where the
point is that the union of the two compact subsets whose complements are fixed will work.) We will show
that the action ofG onM is transitive; becauseM is connected, it is enough to show that the orbits ofG are
open (because the orbits partition M ).

In other words, for any p ∈ M , it suffices to show that there is an open neighborhood U of p contained
in the orbit. We may assume that U is a regular coordinate ball B(0, 1/2) ⊆ B(0, 1) where (U,φ) is a chart
where φ(p) = 0. Then we will show that any q ∈ φ−1(B(0, 1/2)) has a diffeomorphism f sending p to q but
fixing M \ φ−1(B(0, 3/4)).

Well, choose a vector field V to be supported on φ−1(B(0, 3/4)) (which is complete by Corollary 3.50)
but onB(0, 1/2) is just given by having all tangent vectors point with unit length from p to q. Then a maximal
trajectory for V will be able to have γ(p) = q, so using the flow of V as in Remark 3.53 will complete the
proof. ■

3.4 April 2

Welcome back from spring break.

3.4.1 The Flowout Theorem

We begin with a remark.
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Remark 3.56. Fix a vector field V onM . When V fails to be complete, there is not much we can say. We
do know that each p ∈M has some maximal open neighborhoodDp ⊆ R such that we have a trajectory
θt(p) defined on Dp, so we can glue these together into

DV :=
⋃
p∈M

Dp × {p}

as a subset of R×M . The point is that we can glue these together into a big flow-like trajectory.

Flowouts essentially allow us to work in a small neighborhood of a submanifold. Here is our result.

Theorem 3.57 (Flowout). Let S be a smooth k-submanifold of the smooth n-manifold M , and let V ∈
X(M) be a vector field such that Vp /∈ TpS for all p ∈ S. Set Γ := (R × S) ∩ DV , and define Φ := θ|Ω to
be a flow of V .

(a) Φ is an immersion.

(b) Φ relates ∂
/∂t and V .

(c) For some smooth δ : S → R>0, set

Ωδ := {(t, p) ∈ Ω : |t| < δ(p)}.

Then Φ|Ωδ
is injective.

(d) In the context of (c), further suppose that k = n− 1. Then Φ|Ωδ
is a diffeomorphism onto an open

submanifold of M .

Sketch. Note (b) is basically by the definition of being a trajectory. For (a), we note that it follows for points
p ∈ S because Vp /∈ TpS by hypothesis and then use the R-action from the flow to extend the immersive
property to other points. For (c), one can use k-slice charts to check it on locally; a clever argument with
partition of unity makes the injectivity global. Lastly, (d) follows from (a) and (c) because we have established
that we have an injective local diffeomorphism on Ωδ. ■

Computations with vector fields are aided by the following nice form.

Lemma 3.58. Fix a vector field V on the smooth n-manifold M . Then each p ∈M with Vp
ne0 has a smooth chart (U, (x1, . . . , xn)) such that

V |U =
∂

∂x1
.

In fact, given an (n− 1)-submanifold S ⊆M and p ∈ S with Vp /∈ TpS, we may assume that the smooth
chart is a local slice chart for S cut out by x1 = 0.

Proof. The first claim follows from the second claim by just taking any chart (U, (x1, . . . , xn)) and defining
the needed S by x1 = 0. For the second claim, use Theorem 3.57. ■

3.4.2 The Lie Derivative
Given two vector fields V andW , we would like to compute something like ∂VW . It is not so obvious, how-
ever, how to interpret these derivatives when not working in Euclidean space where we have an obvious
identification between points and differentials.

Flows will allow us to take derivatives by moving points (and thus their tangent spaces) around.
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Definition 3.59 (Lie derivative). Fix vector fields V and W of a smooth manifold M . Given p ∈ M , we
define the Lie derivative of W with respect to V at p as

(LVW )p :=
d

dt
(dθt)

−1
p (Wθt(p))

∣∣∣∣
t=0

∈ TpM,

where θ : D →M is the flow of V .

The point of this definition is that we should want to take the derivative with respect to the “direction” of
V just by looking at how W changes along the flow θ of V . This is essentially what the definition above is
doing; note that the limit in the derivative makes sense because we only ever have vectors in TpM .

Remark 3.60. On smooth functions f ∈ C∞(M), the analogous computation is

(LV f)p =
d

dt
(dθt)

−1
p =

d

dt
(dθt)

−1
p f

∣∣∣∣
t=0

=
d

dt
f(θt(p))

∣∣∣∣
t=0

= dfp(Vp) = Vp(f).

So our notion of derivative makes some sense.

Remark 3.61. One can see that LVW assembles into a vector field on X. This amounts to checking that
everything is sufficiently smooth on charts, which can be done by writing everything out. For example,
one can use Lemma 3.58 to make V particularly nice, allowing for easy computation of the flow, where-
upon we see that we are basically differentiatingW along a direction in Euclidean space, which is legal
because V and W started out as smooth anyway.

In fact, the Lie derivative agrees with our bracket!

Proposition 3.62. Fix vector fields V and W of a smooth manifold M . Then LVW = [V,W ].

Proof. We check this at individual points p ∈M . Note that the question is local, so we will repeatedly shrink
M without much comment. The hardest case is when Vp ̸= 0. In this case, we use Lemma 3.58 in order to
replace M with Rn so that V = ∂

/∂x1. Then the flow θt(x) is just

θt(x) := (t+ x1, x2, . . . , xn).

In this case, we expand out our Lie derivative to find

(LVW )p =
∑
j

∂Wj

∂x1

∂

∂x1
,

and a direct computation shows

[V,W ] =
∑
i,j

(
Vi
∂Wj

∂xi
−Wi

∂Vj
xi

)
∂

∂xj
,

which indeed agree because Vi = 1i=0.
We now handle the other cases. If V vanishes in a neighborhood of p, then everything in sight vanishes

(namely, the flow is constant), so there is nothing to do; the previous two cases are dense in M , so we are
done. ■
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Example 3.63. Consider the vector fieldV = r∂r on Euclidean spaceR2, where we definedV using polar
coordinates (r, α). Then this vector field is complete with flow given by θt(p) := etp. With W := ∂/∂α,
we expect to have LVW because the two vector fields are essentially perpendicular, and indeed we can
compute

[V,W ] = [r∂r, ∂α] = r[∂r, ∂α]− ∂α(r)∂r,

which vanishes.

Remark 3.64. Here are a few more properties of the Lie derivative.

• By the antisymmetry of the Lie bracket, we see LVW = −LWV .

• The Jacobi identity grants the “product rule”

LV [W,X] = [LVW,X] + [W,LVX].

Alternatively, one can write L[V,W ]X = LV LWX − LWLVX.

3.4.3 Commuting Vector Fields
We are now able to provide a better understanding of commuting vector fields.

Proposition 3.65. Fix vector fieldsV andW on a smooth manifoldM . Then the following are equivalent.

(a) V and W commute: [V,W ] = 0.

(b) W is invariant under the flow of V : (θVs )∗W =W for all s, where θVs is the flow of V .

(c) V is invariant under the flow of W : (θWt )∗V = V for all t, where θWt is the flow of W .

(d) The flows of V and W commute: one has θVs ◦ θWt = θWt ◦ θVs .

Proof. Note (b) implies that LVW = 0 because it tells us that (dθs)−1
p (Wθs(p)) is constant in s by the invari-

ance. So (b) implies (a); an analogous argument shows (c) implies (a).
Next up, to use (d), we see that

d

dt
(θVs ◦ θWt )(p)

∣∣∣∣
t=0

= (dθVs )p(Wp)

by definition of the flow θWt , and
d

dt
(θWt ◦ θVs )(p)

∣∣∣∣
t=0

=W (θVs (p))

again by using the definition of the flow θWt . Comparing our two equalities, we see that we have achieved
(b); a symmetric argument is able to show that (d) implies (c).

Lastly, we have to show (a) implies (b)–(d); we focus on (b) and (d) and get (c) by symmetry. Fix a smooth
chart (U, (x1, . . . , xn)) of M . Assuming Vp ̸= 0 for now, we may assume that V |U = ∂/∂x1. Now writing
W =

∑
jWj

∂
∂xj

, we note that commuting [V,W ] = 0 implies LVW = 0, which by a direct computation
expanding the Lie derivative forces ∑

j

∂

∂x1
Wj = 0.

This implies (b) and (d) locally at p. We should also consider the case where p is outside the support of V ,
but then everything in sight vanishes; a continuity argument now achieves the result for all p ∈M . ■

We can now expand to many commuting vector fields.
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Theorem 3.66. Fix an open submanifoldW ⊆M , and let V1, . . . , Vk be linearly independent commuting
vector fields of W . Then any p ∈W has a smooth chart (U, (x1, . . . , xn)) with Vi = ∂/∂xi for each i.

Sketch. Everything is local, so we may replace M with W . By shrinking M to a regular coordinate ball, we
may assume that theV•s are complete. (Namely, being local means that we can replace them with compactly
supported counterparts which agree in an open neighborhood p, but then we can shrink M to this open
neighborhood.) For simplicity, we will take k = n, but it has no impact on the actual logic of the argument.

Now, the point is that we should be able to read off the needed coordinate functions x• by following the
flows of V . Indeed, one just checks that the map

(t1, . . . , tn) 7→
(
θV1
s1 ◦ · · · ◦ θVn

sn

)
is a local diffeomorphism, which is enough for our purposes. ■

Remark 3.67. If k = n, then we are noting that commuting local frames are actually local coordinate
frames on (perhaps) a smaller open neighborhood.

3.5 April 4
Today we talk about vector bundles.

3.5.1 Vector Bundles
A vector bundle attaches a vector space to each point on our manifold in a way that is “locally” the trivial way
to put a vector space (namely, the same vector space everywhere). Here is our definition.

Definition 3.68 (vector bundle). Fix a smooth n-manifold M , possibly with boundary. A real smooth
vector bundle of rank k is a smooth surjective map π : E → M of smooth manifolds, where dimE =
n + k, satisfying the following: each p ∈ M has an open neighborhood U ⊆ M and a diffeomorphism
φ : π−1U → U ×Rk where φ|π−1({q}) : π

−1({q}) → {q}×Rk is an isomorphism of vector spaces and the
following diagram commute.

U × Rk π−1U E

U U M

⊆

⊆

ππpr1

φ−1

Here, E is the total space. For q ∈M , we set Eq := π−1({q}).

The point is that φ is supposed to be a local trivialization of E.

Example 3.69. The projectionπ : TM →M is a vector bundle of rankn = dimM . Indeed, for any p ∈M ,
choose a smooth chart (U, (x1, . . . , xn)) of p, and then we know there exists a local frame V1, . . . , Vn ∈
X(U) where Vi := ∂/∂xi. Then we have a trivialization Φ on U given by

Φ:

n∑
i=1

viVi 7→
n∑
i=1

viei.

Example 3.70. There is a projection map π : M × Rk → M , which gives a vector bundle of rank k. In
particular, π is globally trivialized by the identity map M × Rk →M × Rk.
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Example 3.71 (Möbius strip). Define E to be the quotient of R2 by the equivalence relation ∼ where
(x, y) ∼ (x′, y′) if and only if there is an integer n with (x′, y′) = (x+ n, (−1)ny). Then there is a projec-
tion E → R/Z given by projection onto the first coordinate.

As with any kind of projection, we have a notion of section.

Definition 3.72 (section). Let π : E →M be a smooth vector bundle over the smooth manifoldM . Then
a local section defined on some open subsetU ⊆M is a map σ : U → E such that π ◦ σ = idU . The map
σ is a global section if U =M . We let Γ(E) denote the space of smooth global sections M → E.

Example 3.73. Let π : E → M be the trivial vector bundle E := M × Rk. Then any smooth map
f : M → Rk defines a global section σ : M → E given by σ(p) := (p, f(p)). In fact, it is not hard to
see that this defines all global sections because any global section σ : M → E must take the form
σ(p) = (p,pr2 σ(p)), so we may just take f := pr2 ◦ σ. For example, C∞(M) is in natural bijection
with Γ(M × R).

Our notion of frame now generalizes.

Definition 3.74 (frame). Fix a vector bundle π : E → M of rank k on the smooth manifold M . Then a
smooth local frame of π on the open subset U ⊆ M is a collection of local sections {σ1, . . . , σk} on U
such that {σ1(p), . . . , σk(p)} is a basis for Ep for all p ∈ U .

It is notable that frames relate to trivializations.

Remark 3.75. Using the trivialization of the vector bundle, we see that any vector bundle π : E → M
has a smooth local frame around any p ∈M . In fact, all local frames arise this way.

• Explicitly, we take a local trivialization Φ: π−1(U) → U × Rk produces the smooth local frame
{σ1, . . . , σk} given by σi(p) := Φ−1(p, ei), which is a basis at each point because {e1, . . . , ek} is a
basis of Rk, and Φ is providing a vector space isomorphism at the fiber.

• Conversely, one takes a local frame {σ1, . . . , σk} on U and defines Φ: π−1(U) → U × Rk by

Φ

(
k∑
i=1

vi(p)σi(p)

)
:= (p, v1(p), . . . , vi(p)) .

This map is smooth basically by the smoothness of the σ•s, and it is providing a vector space
isomorphism at the fibers because the σ•(p) are supposed to form a basis.

We are now prepared to make the following definition.

Definition 3.76 (trivial). A vector bundle π : E →M is trivial if and only if there is a smooth global trivi-
alization.

In light of the previous remark, being trivial is equivalent to having a smooth global frame.

Remark 3.77. As we saw with vector fields, one has difficulty defining directional derivatives or Lie
derivatives or Lie brackets directly on global sections σ ∈ Γ(E). One needs to make some extra choice
about where to go along a given direction.
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3.5.2 Constructing Vector Bundles

We quickly make a remark on computations. It may often be the case that we have two different smooth
local frames that we want to compare. Explicitly, let π : E → M be our vector bundle of rank k, and let
{σ1, . . . , σk} and {σ′

1, . . . , σ
′
k} be smooth local frames on the open subset U ⊆M . It will be helpful to have a

change of basis matrix at each point p ∈ U between our two bases {σ1(p), . . . , σk(p)} and {σ′
1(p), . . . , σ

′
k(p)}

of the fiber Ep. Namely, one has

σ′
j(p) =

k∑
i=1

aji(p)σi(p).

By taking projections suitably, we see that the functions aji(p) are all smooth functions in p. Explicitly, one
can see this because these local frames give rise to local trivializations, and the coefficients of this matrix
are essentially projections of the composite of the trivializations, which must be smooth.

Example 3.78. Consider the tangent bundleπ : TR2 → R2, and note that we have two local frames given
by {∂/∂x, ∂/∂y} and {∂/∂r, ∂/∂θ}. One can compute explicitly that

∂

∂r
=

x√
x2 + y2

∂

∂x
+

y√
x2 + y2

∂

∂y
and ∂

∂θ
= −y ∂

∂x
+ x

∂

∂y
,

allowing us to write down a change-of-basis matrix.

Being able to change bases provides us with the following idea to construct a vector bundle: just specify a
trivializing open cover, explain how to transition between two trivializations on overlaps, and then this will
give a vector bundle.

Lemma 3.79. Fix a smooth manifoldM , possibly with boundary, and let k be a nonnegative integer. Fix
the following data.

(i) We have k-dimensional vector spaces {Ep}p∈M , define E :=
⊔
p∈M Ep, equipped with the stan-

dard projection π : E →M .

(ii) We have an open cover {Uα}α∈κ onM and local “frames” {σα1, . . . , σαk} for each α ∈ κ providing
a basis for Ep at each p ∈ Uα.

(iii) For any α, β ∈ κ, our change-of-basis equations

σβj =

k∑
i=1

aβα,jiσαi

makes the functions aβα,ji into smooth functions.

Then there is a unique smooth manifold structure on E such that π : E →M becomes a vector bundle,
and the {σα1, . . . , σαk} become actual local frames.

Proof. We omit the proof but make one or two comments gesturing in the direction of a proof. One can use
the analogous result for smooth manifolds to at least provide a smooth structure forE. Then one finds that
the functionsσαi are all smooth, so these bases will produce local trivializations forE, makingE into a vector
bundle. Lastly, the previous sentence doubles as a check that {σα1, . . . , σαk} is in fact a local frame. ■

Let’s use this result to construct some vector bundles.
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Example 3.80 (Whitney sum). Fix two vector bundles π : E → M and π′ : E′ → M of ranks k and k′,
respectively. Then one can define the Whitney sum Ẽ of E and E′ with fibers given by

Ẽp := Ep ⊕ E′
p,

which of course provides a projection π̃ : Ẽ → M . Let’s explain how to do this via Lemma 3.79. By
shrinking open neighborhoods as necessary, any point p ∈ M has an open neighborhood Up ⊆ M
where E and E′ have local frames given by {σp1, . . . , σpk} and {σ′

p1, . . . , σ
′
pk′}, respectively. Then we

will want {σp1, . . . , σpk, σ′
p1, . . . , σ

′
pk′} to provide the local frames on Up of Ẽ.

So we need to examine our change-of-basis matrices between the frames on Up and Uq. Now, the
fact that E and E′ are already vector bundles provides us with smooth coefficient functions ap,ji and
a′p,ji such that

σqj =

k∑
i=1

ap,jiσpi and σ′
qj =

k′∑
i=1

a′p,jiσ
′
pi,

Concatenating these two change-of-basis matrices, we provide a change-of-basis matrix from the local
frame on Up to the local frame on Uq, and the coefficients are now smooth by construction.

Example 3.81. In basically the same way, one can define a tensor product Ẽ of vector bundlesπ : E →M
andπ′ : E′ →M of ranks k and k′, respectively. In short, we take Ẽp := Ep⊗E′

p, and for our local frames,
over a trivializing open subset U ⊆M , we can take local frames {σ1, . . . , σk} ofE and {σ′

1, . . . , σ
′
k′} and

turn them into a local frame
{σi ⊗ σ′

j}1≤i≤k,1≤j≤k′ .

Again, the fact that E and E′ are vector bundles to see that change-of-basis maps between the σs and
the σ′s are smooth, so some algebra shows the same is true of the above proposed local frames.

Example 3.82. One can also take duals. Let π : E → M be a vector bundle. Then we define the dual
bundleE∗ byE∗

p := E∗
p , and we propose local frames to be {σ∗

1 , . . . , σ
∗
k} whenever {σ1, . . . , σk} is a local

frame on some trivializing open subset U ⊆ M . The change-of-basis matrix for these dual bases will
end up being the inverse transpose of the change-of-basis matrix for any original basis, so the change-
of-basis matrix will succeed in having smooth coordinates, as needed.

3.6 April 9

The sub is back. Today we continue discussing vector bundles.

3.6.1 Bundle Homomorphisms

Any reasonable object has a notion of morphisms between them. Here are the morphisms of vector bun-
dles.
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Definition 3.83 (bundle homomorphism). Fix two smooth vector bundles π : E →M and π′ : E′ →M ′.
Then a bundle homomorphism (F, f) : π → π′ is the data of a smooth map f : M → M ′ and smooth
map F : E → E′ such that

E E′

M M ′f

F

π π′

commutes, and the restricted maps F : Ep → E′
f(p) are linear. If f = idM , we say that F is a bun-

dle homomorphism over M ; we denote the set of all bundle homomorphisms E → E′ over M as
HomM (E,E′).

Remark 3.84. Note the commutativity of the diagram implies that F does in fact mapEp = π−1({p}) to
E′
f(p) = (π′)−1({f(p)}).

Remark 3.85. We note that the function f is uniquely determined by F . Indeed, suppose we have two
functions f1 and f2 such that π′ ◦ F = fi ◦ π for each i. Well, π is surjective, so f1 ◦ π = f2 ◦ π implies
that f1 = f2.

Remark 3.86. Suppose that we are given some smoothF for which some function f exists with π′ ◦F =
f ◦ π. Then note that π is a smooth surjective submersions, so to check that f0 is smooth, it is enough
to check that f ◦ π is smooth. But this is π′ ◦ F , so we get our smoothness from the smoothness of F .

The point is that the bundle homomorphism is uniquely given by the data of F .

Remark 3.87. The set HomM (E,E′) is in bijection with global sections Γ(E∗ ⊗ E′). The main point is
that, on fibers, we see

(E∗ ⊗ E′)p = E∗
p ⊗ E′

p = Hom(Ep, E
′
p),

where the last map is by φ⊗ v′ 7→ (v 7→ φ(v)v′), which is checked to be an isomorphism by hand. Thus,
a global section M → E∗ ⊗ E′ provides a family of linear maps Ep → E′

p, which can be checked to be
smooth. Conversely, a bundle homomorphismF : E → E′ provides mapsFp : Ep → E′

p on fibers, which
then provides an element of (E∗ ⊗E′)p as above, which will in total assemble into a smooth section by
some examination on charts (where the question is about trivial vector bundles on Euclidean spaces).

Here is a cute application.

Lemma 3.88. Fix a smooth manifold M . Then the following are equivalent.

(a) M is parallelizable.

(b) M has a global frame for TM .

(c) The vector bundle TM is trivial.

(d) There is a bundle isomorphism TM →M × Rk.

Proof. We already know that (a) and (b) are equivalent. Further, (c) and (d) are equivalent by definition of
“trivial.” Lastly, (b) and (c) are equivalent because the global frame provides equivalent data to the isomor-
phism in (d). ■
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Notation 3.89. Given a bundle homomorphism F : E → E′ of vector bundles overM , we induce a map
Γ(F ) : Γ(E) → Γ(E′) by sending a global section σ : M → E to the global section (F ◦ σ) : M → E′.

Remark 3.90. The fact that F ◦ σ is actually a vector bundle follows because F is a homomorphism of
vector bundles over M . Anyway, the above notation turns global sections Γ into a functor, which we
won’t bother to check. For example, we note that Γ(F ) is a C∞(M)-linear map, essentially because
composition is linear.

The point of introducing Γ(F ) is that we are able to detect bundle homomorphisms purely on the level of
our functions.

Lemma 3.91. Fix smooth vector bundles π : E →M and π′ : E′ →M on the smooth manifoldM . Then
Γ provides a bijection between HomM (E,E′) and HomC∞(M)(Γ(E),Γ(E′)).

Sketch. We begin with the injectivity check. Suppose F1, F2 ∈ HomM (E,E′) satisfy Γ(F1) = Γ(F2). Then
we want to check thatF1(v) = F2(v) for any v ∈ E. Say p := π(v), and we at least know thatF1(v), F2(v) ∈ E′

p

because our homomorphisms are overM . Now, choose some section σ : M → E such that σ(p) = v, which
exists by some sort of partition of unity argument. Then F1 ◦ σ = F2 ◦ σ implies F1(v) = F2(v).

We now turn to the surjectivity check. Suppose we are given some F : Γ(E) → Γ(E′) which is C∞(M)-
linear. For any v ∈ E, set p := π(v), and we can find some smooth section σ : M → E such that σ(p) = v.
Then F(σ)(p) ∈ E′, and we can check using the linearity that we must have F(σ)(p) ∈ E′

p. So we define
F (v) := F(σ)(p). It then remains to check that F does not depend on the choice of σ (this is true essentially
by the C∞(M)-linearity requiring that the output of F cannot really adjust too much) and that F is smooth
(which can be checked locally, where the discussion becomes explicit as trivial bundles on Euclidean spaces,
so by providing local frames to everything, F basically becomes a matrix whose coefficients are smooth
functions by hypothesis on F !). ■

Example 3.92. There is a canonical isomorphism E → E∗∗. Well, on fibers, there is a natural isomor-
phismEp → E∗∗

p given by v 7→ (φ 7→ φ(v)). Checking on charts (where the discussion becomes checking
some linear map of trivial vector bundles on Euclidean spaces), we see that we are basically sending a
global frame to its double dual global frame identically, which is certainly smooth.

3.6.2 Subbundles
A special kind of bundle homomorphism is given by a subbundle. Here is our definition.

Definition 3.93 (subbundle). Fix a smooth vector bundle π : E → M on a smooth manifold M . Then a
submanifold D ⊆ E is a subbundle if and only if Dp = Ep ◦ D is a linear subspace for all p ∈ M , and
π|D : D →M is a vector bundle with these vector subspaces.

The main point is that we have some injection D → E of vector bundles.

Example 3.94. Given some linearly independent global sections σ1, . . . , σr ∈ Γ(E) for a vector bundle
π : E →M , we see that

D :=
⋃
p∈M

span{σ1(p), . . . , σr(p)}

is a vector subbundle ofE of rank r. Indeed, by construction, all fibers have the correct dimension, and
by working locally on charts, we can extend our linearly independent sections to a local frame, where-
upon we can build a defining function by asking for the newly added local sections to vanish.
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Example 3.95. Fix a bundle homomorphism F : E → E′ over M . Assume that F has constant rank.
Then

kerF :=
⋃
p∈M

kerF |Ep
and imF :=

⋃
p∈M

imF |Ep

are subbundles. For example, kerF is a submanifold because it is the pre-image of F of the image of
the zero global section M ⊆ E. For the image, one fixes a local frame and then uses continuity of F to
show that this local frame will preserve its rank in a neighborhood, from which we are able to use the
previous example.

Example 3.96. The natural trace homomorphism tr : V ⊗ V ∗ → R for an R-vector space V (given by
choosing a basis, identifying V ⊗ V ∗ ∼= HomR(V, V ), and then computing the trace in the usual matrix
way) extends to a natural bundle homomorphism

tr : E ⊗ E∗ → (R×M)

for any vector bundle π : E →M . One can show that E ⊗ E∗ now decomposes into ker tr and the span
of the global section associated to idE ∈ HomM (E,E).

3.6.3 The Cotangent Bundle
We begin with a general discussion of R-vector spaces V . A basis {e1, . . . , en} of V gives rise to a dual basis
{e∗1, . . . , e∗n} of V ∗, where e∗i (ej) := 1i=j by definition. Notably, if we expand v ∈ V and w∗ ∈ V ∗ in our basis
as v =

∑n
i=1 viei and w∗ =

∑n
i=1 wie

∗
i , and we find that

w∗(v) =

n∑
i=1

wivi

by definition of e∗i and linearity.

Remark 3.97. The vector e∗1 is not determined by e1 alone, as can be seen from its construction. Instead,
the full dual basis of V ∗ is determined by the full basis of V .

Anyway, here is our definition.

Definition 3.98 (cotangent bundle). Fix a smooth manifold M . The cotangent bundle T ∗M is the dual
of the tangent bundle TM .

Remark 3.99. Given σ ∈ Γ(TM) and τ∗ ∈ Γ(T ∗M), then we produce a smooth function τ∗(σ) ∈
C∞(M). Explicitly, one has

τ∗(σ)(p) := τ∗p (σp),

which can be checked to be smooth locally on charts in the usual way.

Definition 3.100 (covector field). Fix a smooth manifoldM . A smooth covector field is a smooth section
of the canonical projection T ∗M →M . We let X∗(M) denote the collection of covector fields.

As usual, one can check smoothness of such a section locally on charts.

3.7 April 11
Today we continue talking about the cotangent bundle.
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3.7.1 Differentials of a Function
By way of motivation, recall that there is a notion of the gradient ∇f of a smooth function f : Rn → R. As
we currently understand it, this is a special case of the total derivative df , which we can express as

df =

n∑
i=1

∂fi
∂xi

∂

∂xi
.

However, note that if we change coordinates to y•, then we get
n∑
i=1

∂f

∂xi

∂

∂xi
=
∑
i,j

∂f

∂xi

∂yj
∂xi

∂

∂yj
.

The problem is that this does not look like ∂f/∂yj anywhere.
As such, the correct thing to do is to think of the gradient not as a column vector in TRn but as a row

covector in T ∗Rn. Namely, we would like to define our gradient as
n∑
i=1

∂f

∂xi
dxi,

where “dx•” is the dual basis for ∂/∂xi.

Remark 3.101. Here is another piece of motivation: we might want to imagine a chain rule

d

dt
f(γ(t)) = df(γ′(t)),

but then df is acting as a map sending column vectors to scalars, so it should really be a row vector in
the dual space.

Anyway, here is our definition.

Definition 3.102. Fix a smooth manifold M without boundary. For an open subset U ⊆ M and f ∈
C∞(M), define the covector dfp ∈ T ∗

pM by

dfp(v) := v(f)

for all v ∈ TpM .

Remark 3.103. Note that the data of df assembles to a “covector field.”

Example 3.104. Let’s see how this works on local coordinates (x1, . . . , xn) of some open subsetU ⊆M .
Set v :=

∑
i vi∂/∂xi to be some vector field. Then

df(v) = v(f) =
∑
i

vi
∂f

∂xi
.

On the other hand, we could compute(∑
j

∂

f
∂xjdxj

)(∑
i

Vi
∂

∂xi

)

gives the same answer by direct expansion.
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Example 3.105. One sees that dx1, . . . , dxn is a local frame for the vector bundleT ∗M on the chart (U,φ)
where φ = (x1, . . . , xn).

We pick up the following computational lemmas.

Lemma 3.106. Fix an open subset U of a smooth manifoldM . Then let σ ∈ X(U) be a local vector field,
and let ω ∈ X∗(U) be a local covector field, and let (x1, . . . , xn) be a chart on U . Then

σ =
∑
i

dxi(σ)
∂

∂xi
and ω =

∑
j

ω

(
∂

∂xj

)
dxj .

Proof. Simply plug in the basis everywhere. For example, σ(dxi) on both sides reveals what the coordi-
nate of σ should be at the basis vector ∂/∂xi, which produces the left equality. The right equality is proven
similarly. ■

Lemma 3.107. If (x1, . . . , xn) and (y1, . . . , yn) are smooth charts on an open subsetU of a smooth man-
ifold M , then

∂

∂yj
=
∂xi
∂yj

∂

∂xi
and dyj =

∂yj
∂xi

dxi.

Proof. The left equality is already known as our chain rule. The right equality holds by using the previous
lemma and noting that

dyj

(
∂

∂xi

)
=
∂yj
∂xi

by definition of dyj . ■

Remark 3.108. If γ : (a, b) →M is a smooth curve, then we see

d

dt
f(γ′(t)) = γ′(t)(f) = df

(
dγ

dt

)
.

We then expect that

f(γ(b))− f(γ(a)) =

∫ b

a

df

(
dγ

dt

)
dt

as suggested by the notation. We will be able to make more sense of this later.

3.7.2 Pullback
As with differentials, we want to be able to pull back differentials.

Definition 3.109 (pullback). Fix smooth manifolds N and M and a smooth map F : N → M . Given
p ∈ N and ω ∈ T ∗

pM and a smooth map F : N →M , we define the pullback by

(F ∗ω)p(v) := ωF (p)(dFp(v)).

This is in fact a linear functional on TpN and hence provides an element F ∗ω ∈ T ∗
pN .
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Remark 3.110. One can check thatω ∈ X∗(M)gets pulled back smoothly toF ∗ω ∈ X∗(N). The smooth-
ness check can be done on charts, as usual.

Remark 3.111. If f ∈ C∞(M), then F ∗(df) = d(f ◦ F ). This can be checked directly: for p ∈ N and
v ∈ TpN , we compute

F ∗(df)p(v) = dfF (p)(dFp(v)) = d(f ◦ F )p(v),

as desired.

Remark 3.112. Let’s explain a computation. Suppose M has a smooth chart (U,φ) with coordinates
φ = (x1, . . . , xm). Given a smooth map F : N →M as above and ω :=

∑
i ωidxi where ωi ∈ C∞(M), we

compute

F ∗ω = F ∗

(∑
i

ωidxi

)
=
∑
i

(ωi ◦ F )F ∗dxi =
∑
i

(ωi ◦ F )d(xi ◦ F ),

and here (xi ◦F ) is the ith component Fi := xi ◦F of F . We can then give local coordinates (y1, . . . , yn)
of N and find that

F ∗ω =
∑
i,j

(ωi ◦ F )
∂Fi
∂yj

dyj .

Remark 3.113. Given an embedding i : S → M of smooth manifolds, then for ω ∈ X∗(M), we have
i∗ω ̸= ω|S . Indeed, ω|S is defined for all v ∈ TpM for p ∈ S, but i∗ω is only defined for v ∈ TpS for p ∈ S.

3.7.3 Line Integrals
We are finally able to integrate. Viewing [a, b] as a 1-manifold with boundary, we let t := id[a,b] be a coordi-
nate function, and then we get the covector dt ∈ X∗([a, b]). Then for any ω ∈ X∗([a, b]) the fact that dt is a
global frame (all on its own), we are able to write

ω = g dt.

We are now able to provide the following definition.

Definition 3.114. Fix a closed interval [a, b] ⊆ R and somew ∈ X∗([a, b]). Choosing t := id[a,b], we define∫
[a,b]

ω :=

∫ b

a

g(t) dt,

where ω = g(t) dt.

As the notation suggests, we would like for our definition to be independent of t.

Proposition 3.115. Fix an increasing diffeomorphism φ : [c, d] → [a, b]. For ω ∈ X∗([a, b]), we have∫
[a,b]

ω =

∫
[c,d]

φ∗ω.

Proof. We only sketch the proof. The point is that one can write out φ∗ω and then use a u-substitution. ■

We now move on to integrating on manifolds.
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Definition 3.116. Fix a smooth manifold M . Choose a path γ : [a, b] → M and covector ω ∈ X∗(M).
Then we define ∫

γ

ω :=

∫ b

a

ωγ(t)(γ
′(t)) dt.

Remark 3.117. Note that ∫ b

a

ωγ(t)(γ
′(t)) dt =

∫ b

a

(γ∗ω)

(
∂

∂
t

)
dt =

∫
[a,b]

γ∗ω,

so this definition is independent of the choice of t. Explicitly, replacing γ with γ ◦ φ for some increasing
diffeomorphism φ : [c, d] → [a, b] implies that∫

[c,d]

(γ ◦ φ)∗ω =

∫
[c,d]

φ∗(γ∗ω) =

∫
[a,b]

γ∗ω,

where the last equality is by Proposition 3.115.

Here is our main theorem.

Theorem 3.118 (Fundamental theorem of line integrals). Fix a smooth manifold M . Given f ∈ C∞(M)
and a smooth path γ : [a, b] →M , we have∫

γ

df = f(γ(b))− f(γ(a)).

Proof. Unwinding definitions, we find∫
γ

df =

∫
[a,b]

γ∗ df =

∫
[a,b]

d(f ◦ γ) =
∫ b

a

∂(f ◦ γ)
∂t

dt.

Then the fundamental theorem of calculus tells us that this is f(γ(b))− f(γ(a)). ■

Remark 3.119. This result even holds if γ is only piecewise smooth, as can be seen by breaking up γ into
its smooth pieces and summing.

3.7.4 Conservative Vector Fields
As with multivariable calculus, we will want to give some adjectives to covector fields.

Definition 3.120 (exact, conservative). Fix a smooth manifold M .

• We say ω ∈ T ∗M is exact if and only if there exists f ∈ C∞(M) such that ω = df .

• We say ω ∈ T ∗M is conservative if and only if∫
γ

ω = 0

for any piecewise smooth closed curve γ : [a, b] →M .
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Example 3.121. If ω is exact, then Theorem 3.118 tells us that ω is conservative.

In fact, this example has a converse.

Proposition 3.122. Fix a smooth manifold M . Then ω ∈ T ∗M is conservative if and only if it is exact.

Proof. We know that exact implies conservative by Theorem 3.118. In the other direction, suppose ω is
conservative, and we must construct f ∈ C∞(M) with ω = df . We will do this by integrating.

Let {Mi} denote the set of connected components of M , and select some pi ∈ Mi. We begin by setting
f(pi) := 0, and then for any q ∈ Mi, we may choose some smooth path γ : [a, b] → M such that γ(a) = pi
and γ(b) = q, and then we set

f(q) :=

∫
γ

ω.

Because ω is conservative, we can concatenate paths to see that f is well-defined. Smoothness can be
checked on charts, and then again on coordinates we can check that ω = df . We omit the details of these
checks. ■

Example 3.123. Take ω := x dx+ y dy on R2. Then one can check that ω is conservative by hand. On the
other hand, we can see that ω = df where f(x, y) = 1

2

(
x2 + y2

)
.

Example 3.124. Take ω := x dy − y dx on R2. This is not conservative.

• For example, parameterize the unit circle counter-clockwise by γ : R → R2 by γ(t) := (cos t, sin t).
Then one can compute

∫
γ
ω = 2π by some explicit integration.

• Alternatively, we can check that ω fails to be exact. Suppose ω = df . Then f needs to satisfy
∂f/∂x = −y and ∂f/∂y = x, but then

∂2f

∂x∂y
= −1 ̸= 1 =

∂2f

∂y∂x
.

3.8 April 16

Today we discuss tensor products.

3.8.1 Closed Covector Fields
Here is our definition.

Definition 3.125 (closed). Fix a covector field ω on a smooth manifoldM . Then ω is closed if and only if
any smooth chart (U,φ) where φ = (x1, . . . , xn), our expansion ω =

∑
i ωi dxi has

∂ωj
∂xi

=
∂ωi
xj

for any i and j.
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Example 3.126. Exact forms are closed. Indeed, say ω = df where f ∈ C∞(M). Then for any smooth
chart (U,φ) where φ = (x1, . . . , xn) makes

ω = df =

n∑
i=1

∂f

∂xi
dxi,

so we compute
∂ωj
∂xi

=
∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
=
∂ωi
∂xj

.

Remark 3.127. There are closed forms which fail to be exact. For example, set ω := x dy − y dx on R2,
and pull it back to i∗ω where i : S1 → R2 is the inclusion. Because this is a 1-manifold, this is vacuously
closed by the definition. However, ∫

γ

i∗ω = 2π

for a path γ : [0, 1] → S1 going around S1 by a direct computation (see Example 3.124), so i∗ω fails to
be conservative and hence fails to be exact.

We quickly remove the “any smooth chart” part of the definition.

Lemma 3.128. Fix a covector field ω on a smooth manifold M . Then the following are equivalent.

(i) ω is closed.

(ii) Each p ∈M has some smooth chart (U,φ) such that φ = (x1, . . . , xn) provides coordinates where
ω =

∑
i ωi dxi and

∂ωj
∂xi

=
∂ωi
xj

for any i and j.

(iii) For any local vector fields X,Y ∈ X(U) on an open subset U , we have

X(ω(Y ))− Y (ω(X)) = ω([X,Y ]).

Proof. Note (i) implies (ii) with no content. To see (iii) implies (i), we work locally on charts. Choose a smooth
chart (U,φ) where φ = (x1, . . . , xn). Then for distinct indices i and j, we take X := ∂/∂xi and Y := ∂/∂xj
and compute

X(ω(Y ))− Y (ω(X)) =
∂

∂xi
ω

(
∂

∂xj

)
− ∂

∂xj
ω

(
∂

∂xi

)
= ω

([
∂

∂xi
,
∂

∂xj

])
= ω(0) = 0.

Now, writing ω =
∑
i ωi dxi, we see that the left-hand side now reads

∂

∂xi
ωj −

∂

∂xj
ωi = 0,

as needed.
It remains to show that (ii) implies (iii). Well, we can verify the last equality at points, so choose local

vector fields X,Y ∈ X(U) and some point p ∈ U to verify the equality around, and then we shrink U around
p so that we have a smooth chart (U,φ) where φ = (x1, . . . , xn). Then we can expand X =

∑
iXi

∂
∂xi

and
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Y =
∑
j Yj

∂
∂xj

and ω =
∑
i ωi dxi, so we are now able to compute

X(ω(Y )) =
∑
i,j

Xi
∂

∂xi
(ωjYj)

=
∑
i,j

XiYj
∂ωj
∂xi

+Xiωj
∂Yj
∂xi

Y (ω(X)) =
∑
i,j

Yi
∂

∂xi
(ωjXj)

=
∑
i,j

YiXj
∂ωj
∂xi

+ Yiωj
∂Xj

∂xi
.

We now see that subtracting makes the left terms of the sum cancel, so we are left with ω([X,Y ]), as re-
quired. ■

To close up our discussion of closed covector fields, we do note that simple spaces will be able to show that
closed implies exact.

Proposition 3.129. Fix an open star-like open subset U ⊆ Rn. Then any closed local covector field
ω ∈ X∗(U) is exact.

Here, “star-like” means that there is a point p ∈ U such that the line segment connecting p to any other
p′ ∈ U is contained in U .

Proof. By translating, we may as well assume that U is star-like with the “center point” just the origin 0 ∈
Rn. Now, one has a global frame ω =

∑
i ωi dxi. Imitating the proof of Proposition 3.122, we define our

function f : U → R by
f(x) :=

∫
γx

ω

where γx is the straight-line line segment γx(t) := tx from 0 to x. As such, we see that

f(x) =

n∑
i=1

∫ 1

0

ωi(tx)xi dt

We omit the check that f is smooth, which can be seen basically because each ωi is smooth, and integration
preserves smoothness (because one can integrate under the integral sign). We would like to check that
ω = df , so for any xj , we compute

∂f

∂xj
(x) =

∫ 1

0

n∑
i=1

∂ωi
∂xj

(tx) · txi + ωj(tx) dt

=

∫ 1

0

n∑
i=1

∂ωj
∂xi

(tx) · txi + ωj(tx) dt

=

∫ 1

0

∂ωj
∂t

(tx) · t+ ωj(tx) dt

=

∫ 1

0

∂

∂t
(tωj(tx)) dt

= tωj(tx)

∣∣∣∣t=1

t=0

= ωj(x),

as required. ■
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Remark 3.130. A more direct modification of the proof of Proposition 3.122 shows that any closed cov-
ector field on a simply connected manifold is exact. We won’t bother to write this out; the main point
is to check that the definition is well-defined up to the choice of path from a given basepoint to a given
point in the (simply connected!) manifold.

3.8.2 Tensors
We begin by discussing tensor products on vector spaces, which we will upgrade to vector bundles.

Definition 3.131 (tensor). Fix a finite-dimensional R-vector space V and nonnegative integers k and ℓ.
Then we define the space of tensors as

T (k,ℓ)V := V ⊗k ⊗ (V ∗)⊗ℓ.

By way of convention, a covariant tensor is an element of T (0,ℓ)V for some ℓ, and a contravariant tensor
is an element of T (k,0)V for some k.

By the universal property of the tensor product (and the identification V ≃ V ∗∗), we can think about an
element of T (k,ℓ) as a multilinear map (V ∗)k × V ℓ → R.

Example 3.132. Here are some special cases.

• By convention, T (0,0)V = R.

• T (1,0)V = V .

• T (0,1)V = V ∗.

• T (1,1)V = EndV . One simply sends v ⊗ v∗ to the linear map V → V given by w 7→ v∗(w)v.
Certainly this map is linear, and one can show that it is an isomorphism by working on a basis.

Remark 3.133. A basis {e1, . . . , en} of V produces a dual basis {ε1, . . . , εn} of V ∗. This produces a basis
of T (k,ℓ) of tensors of the form

ei1 ⊗ · · · ⊗ eik ⊗ εj1 ⊗ · · · ⊗ εjℓ .

Remark 3.134. As usual, there are permutation morphisms T (k,ℓ)V → T (k,ℓ)V given by permuting the
factors in V ⊗ · · · ⊗ V or in V ∗ ⊗ · · · ⊗ V ∗.

Remark 3.135. There is a canonical isomorphismT (k,ℓ)V ⊗T (k′,ℓ′)V → T (k+k′,ℓ+ℓ′)V , which then comes
from a bilinear map

T (k,ℓ)V × T (k′,ℓ′)V → T (k+k′,ℓ+ℓ′)V

given by “attaching” tensors.

Remark 3.136. There is a trace map tr : T (1,1)V → R; for example, on the basis {e1, . . . , en} of V , this is
given by

n∑
i,j=1

tijei ⊗ εj 7→
n∑
i=1

tii.

This is basis-free, which can be checked directly or seen because trace is the map v ⊗ v∗ 7→ v∗(v) on
pure tensors of V ⊗ V ∗.
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Remark 3.137. More generally, there is a “contraction” map Cij : T (k,ℓ)V where i ∈ {1, . . . , k} and j ∈
{1, . . . , ℓ} given by

(v1 ⊗ · · · ⊗ vk)⊗ (v∗1 ⊗ · · · ⊗ v∗ℓ ) 7→ v∗j (vi)(v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vk)⊗ (v∗1 ⊗ · · · ⊗ v̂j ⊗ · · · ⊗ v∗ℓ )

on pure tensors. One can expand this out on a basis as before, in particular finding that there is a “di-
agonal sum” hiding.

Example 3.138. Given A ∈ T (0,k)V , we can produce the multilinear map V k → R as the repeated con-
traction

(v1, . . . , vk) 7→ C11 · · ·Ckk(v1 · · · vkA).

By expanding everything out on the basis, this is the usual identification of A with a multilinear map
V k → R.

We now upgrade to tensor products for vector bundles.

Definition 3.139 (tensor bundle). Fix a smooth manifold M and nonnegative integers k and ℓ. Then
given a vector bundle V on M , we define the tensor bundle as

T (k,ℓ)V := V ⊗k ⊗ (V ∗)⊗ℓ.

A global section of T (k,ℓ)TM is called a tensor field; a global section of T (0,ℓ)TM is called a covariant
tensor field.

Example 3.140. As before, we find that T (0,0)V =M × R and T (1,0)V = V and T (0,1)V = V ∗.

Remark 3.141. Given a smooth chart (U,φ) with φ = (x1, . . . , xn), one can provide a local frame for
TM and T ∗M as {∂/∂x1, . . . , ∂/∂xn} and {dx1, . . . , dxn}, respectively. Thus, we get a local frame of
T (k,ℓ)TM by

∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
⊗ dxj1 ⊗ · · · ⊗ dxjℓ .

Something similar works using trivializing open subsets of a more general vector bundle.

Remark 3.142. A covariant tensor fieldA ∈ Γ
(
T (0,ℓ)TM

)
can be viewed as a multilinear form X(M)ℓ →

C∞(M) given by
(X1, . . . , Xℓ) 7→ C11 · · ·Ckk(X1 · · ·XℓA).

One can expand this out on coordinates in the typical way.

3.9 April 18
Today we discuss Riemannian metrics.

3.9.1 More on Tensors
Let’s discuss covariant tensor fields more explicitly. Quickly, we note that tensors have some notion of
C∞(M)-multilinearity. Explicitly, a smooth covariant tensor field A ∈ Γ

(
T (0,ℓ)TM

)
amounts to C∞(M)-

multilinear map
X(M)× · · · × X(M) → C∞(M)
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by sending (X1, . . . , Xℓ) 7→ A(X1, . . . , Xℓ) via the usual identification (V ⊗ · · · ⊗ V )∗ = V ∗ ⊗ · · · ⊗ V ∗. This
turns out to characterize our tensors.

Proposition 3.143. Fix a smooth manifold M . Given a C∞(M)-multilinear map A : X(M)ℓ → C∞(M),
then there is a unique covariant tensor field A ∈ Γ

(
T (0,ℓ)TM

)
such that A comes from A.

Sketch. Let’s be brief.

1. We begin by using the C∞(M)-multilinearity to show that A is “local.” Explicitly, if (X1, . . . , Xℓ) and
(X ′

1, . . . , X
′
ℓ) agree locally in a neighborhood of some point p ∈ U , then

A(X1, . . . , Xℓ) = A(X ′
1, . . . , X

′
ℓ).

The point is to use smooth cutoff functions to compare these two values.

2. Next up, we can show that A(X1, . . . , Xℓ) only depends on the data of (X1(p), . . . , Xℓ(p)) by expand-
ing out locally; here, one uses the C∞(M)-multilinearity more crucially to compare X• and X ′

•. This
constructs the (rough) section A : M → T (0,ℓ)TM .

3. Then one shows that A is in fact smooth by working in local coordinates. ■

Next up, we discuss how change of coordinates happens to a tensor field A ∈ Γ
(
T (k,ℓ)TM

)
. Well, suppose

we have some point p contained in the two smooth charts (U,φ) and (V, ψ) with φ = (x1, . . . , xn) and ψ =
(y1, . . . , yn). In these local coordinates, one can write

A =
∑

Ai1,...,ikj1,...,jℓ

∂

∂xi1
⊗ · · · ⊗ dxjℓ ,

and then the change of coordinates formulae for the individual differentials and covectors extends via the
tensor product. Explicitly,

As another remark, we discuss pullbacks of covariant tensor fields.

Definition 3.144 (pullback). Fix a smooth manifold M and a covariant tensor field A ∈ Γ
(
T (0,ℓ)TM

)
.

For a smooth map F : N →M , we define the pullback covariant tensor field F ∗A by

(F ∗A)(v1, . . . , vℓ) := AF (p)(dFp(v1), . . . , dFp(vℓ)).

We won’t bother to check that this map is smooth, but it is; roughly speaking, we are taking the com-
posite of the smooth functions A and dF .

One can also take Lie derivatives.

Definition 3.145 (Lie derivative). Fix a smooth manifold M and a smooth covariant tensor field A ∈
Γ
(
T (0,ℓ)TM

)
. For a vector field V ∈ X(M), let θ• be the flow of V , and we define the Lie derivative

LvA :=
d

dt
θ∗tA

∣∣∣∣
t=0

.

Explicitly, we see

(LVA)p(v1, . . . , vℓ) =
d

dt
Aθt(p)((dθt)p(v1), . . . , (dθt)p(vℓ))

∣∣∣∣
t=0

.

The intuition here is exactly the same as what was done for just covector fields.
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Remark 3.146. Suppose that we have managed to get V = ∂/∂x1 locally (which is always doable),
where A =

∑
Ai1,...,iℓ dxi1 ⊗ · · · ⊗ dxiℓ . Then the flow is constantly moving in the x1 direction, so

we see that
LVA =

∑ Ai1,...,iℓ
∂x1

dxi1 ⊗ · · · ⊗ dxiℓ .

Note LVA ∈ Γ
(
T (0,ℓ)TM

)
by some C∞(M)-multilinearity check.

Remark 3.147. Viewing f ∈ C∞(M) as a covariant tensor field in Γ
(
T (0,0)TM

)
, we see that (LV f)p =

Vp(f). For example, one can track through the previous remark to see this.

Remark 3.148. One has a “Leibniz rule”: for X1, . . . , Xℓ ∈ X(M), we have

LV (A(X1, . . . , Xℓ)) = LVA(X1, . . . , Xℓ) +A(LVX1, X2, . . . , Xℓ) + · · ·+A(X1, . . . ,LVXℓ).

3.9.2 Riemannian Metrics
As motivation, we note that the length of a curve γ : [a, b] → Rn is computed as

ℓ(γ) =

∫ b

a

|γ′(t)|2 dt.

Here, |γ′(t)|2 is a norm of the derivative, so if we want to generalize this notion to a manifold, we need a
notion of a norm on our tangent spaces. It turns out that norms (with enough structure, namely a parallel-
ogram law) must come from bilinear forms, so we may as well ask for our tangent spaces to have a bilinear
form. In Euclidean space, this is easy because TRn has a global frame, so we may just identify all TpRns with
Rn and then use the standard inner product on Rn, but in general it may not be so easy to produce a good
inner product everywhere.

A good choice of inner product everywhere is essentially the data of a Riemannian metric.

Definition 3.149 (Riemannian metric). Fix a smooth manifoldM . A Riemannian metric onM is a smooth
covariant tensor field g ∈ Γ

(
T (0,2)TM

)
such that each p ∈ M makes gp : TpM × TpM → R induce a

symmetric positive-definite inner product on TpM . We will write ⟨·, ·⟩g := g(·, ·) and |·|g :=
√

⟨·, ·⟩. (We
will suppress the g from our notation as much as possible.) A Riemannian manifold is a pair (M, g) of a
smooth manifold M equipped with a Riemannian metric g.

Remark 3.150. Let’s explain how this looks on a smooth chart (U,φ) where φ = (x1, . . . , xn). Then g
can be expanded out as on coordinates as

g =
∑
i,j

gij dxi ⊗ dxj ,

so being symmetric and positive-definite corresponds to the same adjectives on the matrix G := {gij}.
Now, if we have some differentials u =

∑
i ui

∂
∂xi

∣∣
p

and v =
∑
j vj

∂
∂xj

∣∣
p

, we see

gp(u, v) =
∑
i,j

uivjgij(p).
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Example 3.151. On Rn, our standard Riemannian metric is given by

n∑
i=1

dxi ⊗ dxi.

We would like to show that Riemannian metrics exist in general. It will be helpful to have a little freedom in
our construction, as follows.

Lemma 3.152. Fix an immersion F : N → M of smooth manifolds. If g is a Riemannian metric on M ,
then F ∗g is a Riemannian metric on N .

Proof. Certainly F ∗g is smooth because it is the pullback of something smooth, so we only need to do the
other checks. At each p ∈ N , we compute

(F ∗g)p(u, v) = gF (p)(dFp(u), dFp(v))

for any u, v ∈ TpM . This is certainly symmetric and bilinear because gF (p) is. Additionally, this is certainly
nonnegative because gF (p), and it is positive-definite because (F ∗g)p(u, v) implies dFp(u) = dFp(v) = 0
(because g is positive-definite), which implies u = v = 0 because F is an immersion! ■

Example 3.153. For any embedded submanifold S ⊆ M , let i : S → M be the embedding. Then if g
is a Riemannian metric on M , we see that i∗g is a Riemannian metric on S. For example, any smooth
manifold can be embedded into Euclidean space by the Whitney embedding theorem 2.119, so any
smooth manifold

Remark 3.154. One can avoid using Theorem 2.119 to show that Riemannian metrics exist. Indeed,
one can more directly note that any smooth chart produces a “local” Riemannian metric, which extends
a smooth covariant tensor field which is symmetric and bilinear but perhaps only positive-definite in
a neighborhood. Then one can glue these local almost Riemannian metrics together via partition of
unity. The main check here is that we can take convex linear combinations of positive-definite forms to
get another positive-definite form, which can be checked directly (and indeed, is just linear algebra on
the tangent spaces).

Remark 3.155. We have in fact produced some new structure: it is possible to prove two Riemannian
metrics g1 and g2 on a smooth manifold M which are distinct, and worse, it is possible for there to be
no diffeomorphism F : M →M such that g1 = F ∗g2!

3.9.3 Metrics from Riemannian Metrics
We now provide a notion of distance for our manifolds.

Definition 3.156 (length). Fix a Riemannian manifold (M, g). Given a (piecewise)C1 curve γ : [a, b] →M ,
we define the length of γ to be

ℓg(γ) :=

∫ b

a

|γ′(t)|2g dt.

We will suppress the g from our notation as much as possible.
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Remark 3.157. One can check that ℓg(γ) is independent of reparameterization by the usual arguments.
Namely, ifφ : [c, d] → [a, b] is an increasing piecewiseC1 path, then one can show that ℓg(γ) = ℓg(γ ◦φ).
Indeed, by breaking up into intervals, it suffices to handle the smooth case, and then an argument with
some u-substitution grants the equality.

Definition 3.158. Fix a Riemannian manifold (M, g). Then we define

dg(p, q) := inf
{
ℓg(γ) : γ is a piecewise C1 path [a, b] →M,γ(a) = p, γ(b) = q

}
.

Remark 3.159. The infimum in this definition need not be achieved. For example, inM := R2 \ {(0, 0)},
there is no path achieving the smallest possible distance between (−1, 0) and (1, 0). It turns out that this
minimum is in fact always achieved as long as M is complete as a metric space; these minimal curves
are called “geodesics.”

And here are our checks.

Theorem 3.160. Fix a Riemannian manifold (M, g). Then dg is a metric onM , and it induces the topology
on M .

Proof. Let’s quickly discuss some of these checks.

• dg(x, x) = 0 holds by using the constant path.

• dg(x, y) > 0 for x ̸= y holds because x ̸= y requires any piecewiseC1 path γ : [a, b] →M with γ(a) = p

and γ(b) = q to have |γ′(t)|2 positive on a set of positive measure.

• Symmetry holds by taking any path in one direction and reversing it to get a path in the opposite di-
rection.

• The triangle inequality d(x, y) + d(y, z) ≥ d(x, z) is achieved by taking any path from x to y and path
from y to z and attaching them (piecewise!) to produce a path from x to z.

So we have a metric. It remains to show that dg induces the topology on M . This is a local question on M ,
so it suffices to work locally in a chart, meaning that we may assume thatM = Rn. But now it turns out that
any two Riemannian metrics on Rn induces the same topology by some bounding argument, so we are done
because the standard Riemannian metric on Rn does induce the correct topology. ■

Remark 3.161. One can “recover” the Riemannian metric from the length of curves. Morally, one can
take the derivative of length in a direction at a point p ∈ M to recover the norm on TpM induced by g,
which recovers the inner product on TpM .

3.9.4 More on Riemannian Metrics
Quickly, recall that a choice of inner product ⟨·, ·⟩ on a finite-dimensional vector space V defines an isomor-
phism (·)♭ : V → V ∗ via v 7→ ⟨v, ·⟩; we let the inverse isomorphism be (·)♯. This extends smoothly to provide
a C∞(M)-linear isomorphism between X(M) → X∗(M) for any smooth manifold M , which is basically the
following result.

Proposition 3.162. Fix a Riemannian manifold (M, g). There is a vector bundle isomorphism TM and
T ∗M .
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Proof. We define our vector bundle isomorphism (·)♭ : TM → T ∗M by

v♭(w) := gp(v, w)

for any p ∈ M and v, w ∈ TpM . One can check that this is smooth by expanding out everything in terms
of coordinates. Further, one can directly check that we have defined a homomorphism of vector bundles,
so it remains to check that we have a diffeomorphism, which again can be checked locally on coordinates
(because we are just doing some linear maps everywhere). ■

As an aside, we note that it is not always possible to choose coordinates on a Riemannian manifold (M, g)
so that g is locally

∑
i dxi ⊗ dxi. I didn’t really follow the discussion on curvature in class.

3.10 April 23
We begin class continuing our discussion of Riemannian manifolds.

3.10.1 Curvature and Connections

Warning 3.163. The following content is unlikely to be on the exam.

Fix a Riemannian manifold (M, g). While we’re here, we note that there is a notion of curvature for manifolds,
which is basically a tensor Rmg ∈ T (0,4)TM , which on vectors of the form (v, w, v, w) in some TpM outputs
the curvature of the manifold with respect to the plane spanned by v and w.

Remark 3.164. Suppose (M, g) is a compact Riemannian manifold. Suppose that Rmg(v, w, v, w) is a
constant K when v and w are orthonormal.

• If K = 0, then M is a torus Rn/Γ.

• If K > 0, then M is a quotient of the n-sphere Sn.

• If K < 0, then M is a quotient of hyperbolic space Hn.

We now quickly discuss connections. Fix some W ∈ X(M) and v ∈ TpM . We would like a notion of Lie
derivative (DvW )p ∈ TpM .

Remark 3.165. One attempt at this was to take the Lie derivative with respect to some V ∈ X(M),
where V extends v. However, LVW = [V,W ] will depend on the choice of extension V of v! The point
is that V determines a flow, and we are really taking a derivative via this flow.

However, now that we have a Riemannian metric, we will be able to define (DvW )p in a way that does not
depend on the extension.

As usual, one can choose a curve γ : (−ε, ε) → M with γ(0) = p and γ′(0) = v. The central problem
is to compare γ′(0) = TpM with γ′(t) ∈ Tγ(t)M for some small t. For this, one wants to define a “parallel
transport” to move around tangent spaces which preserves the inner product (i.e., preserves lengths and
angles) and is “torsion-free” in the sense that it does not move around local frames. Letting P denote this
parallel transport, we could then define our directional derivative as

∇VW := lim
t→0

P−1
γ(t)(Wγ(t))−Wp

t
.

Instead, we will codify what our directional derivative is, and this turns out to provide our parallel trans-
port.
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Definition 3.166 (Levi–Civita connection). Fix a Riemannian manifold (M, g). Then the Levi–Civita con-
nection is the unique map

∇ : Γ(TM) → Γ(T ∗M ⊗ TM)

satisfying the following.

• Linearity and Leibniz rule:

∇V (f1W1 +W2) = f1∇VW1 + V (f1)W +∇VW2.

• Preserves the inner product g:

V (g(X,Y )) = g(∇VX,Y ) + g(X,∇V Y ).

• Torsion-free:
∇XY −∇Y = [X,Y ].

Remark 3.167. One can use the Levi–Civita connection ∇ in order to define curvature. Professor Chen
wrote out the formula, but I didn’t really follow its construction.

Remark 3.168. Doing parallel transport around a loop has no need to be the identity (e.g., imagine going
around a loop of the sphere, but any reasonable way to parallel transport will have a problem at some
poles). So parallel transport can send closed loops γ : [a, b] → M with p := γ(a) = γ(b) will induce a
map TpM → TpM ; in fact, the action must preserve the inner product. The point is that we see that
smooth loops give an orthogonal group action on O(TpM). Curvature, roughly speaking, is the failure
of small loops to fix these tangent spaces.

3.10.2 Alternating Forms
We now shift gears and start discussing differential forms.

Definition 3.169 (alternating). Fix a finite-dimensional (real) vector space V . An alternating k-form is a
functional α ∈ (V ∗)⊗k ∼=

(
V ⊗k)∗ such that

α(vσ1, . . . , vσk) = sgn(σ)α(v1, . . . , vk)

for any v1, . . . , vk ∈ V and σ ∈ Sk.

Remark 3.170. This definition does not immediately imply that everything should vanish because the
map sgn: Sk → {±1} is a homomorphism. Namely, permuting by σ and then permuting by τ will have
the same effect on the sign as permuting by τσ. We let∧k(V ∗) denote the space of alternating k-forms.

Lemma 3.171. Fix a finite-dimensional (real) vector spaceV and some functionalα ∈ (V ∗)⊗k ∼=
(
V ⊗k)∗.

Then the following are equivalent.

(i) α ∈ ∧k(V ∗).

(ii) α(v1, . . . , vk) = 0 if {v1, . . . , vk} is linearly dependent.

(iii) α(v1, . . . , vk) = 0 if vi = vj for any distinct i and j.
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Proof. Certainly (a) implies (c) by using the transposition σ swapping i and j, and then (c) implies (a) by
building up arbitrary permutations from transpositions. Then (c) implies (b) by using linearity to reduce to
the equality case, and (b) implies (c) because having equal vectors requires linear dependence. ■

Remark 3.172. There is a projection operator Alt : (V ∗)⊗k → ∧k(V ∗) given by

(Altα)(v1, . . . , vk) :=
1

k!

∑
σ∈

One can show that Alt does actually output to ∧k(V ∗) by using our group action, so Altα = α implies
α ∈ ∧k(V ∗). Conversely, one can check that α ∈ ∧k(V ∗) implies Altα = α again by a computation with
the group action.

Example 3.173. Here are some small computations. Given V the basis {e1, . . . , en} so that V ∗ has dual
basis {ε1, . . . , εn}.

• We have ∧0(V ∗) = R because all constants are alternating.

• We have ∧1(V ∗) = V ∗ because all functionals are alternating. (Namely, for these two computa-
tions, there is nothing to check.)

• One can check that α :=
∑
i,j aij(εi ⊗ εj) ∈ ∧2(V ∗) if and only if α(ei, ej) = −α(ej , ei) for all i and

j (by extending this identity linearly to all V ), which is equivalent to aij = −aji for all i and j.

Example 3.174. There is an element det ∈ ∧n(Rn) given by

det(v1, . . . , vn) := det

 | |
v1 · · · vn
| |

 .
To provide a simple basis for ∧k(V ∗), we would some basic elements in there.

Definition 3.175 (elementary alternating tensor). Fix a real vector spaceV with basis {e1, . . . , en} so that
we have a dual basis {ε1, . . . , εn} on V ∗. Given a sequence I = {i1, . . . , ik} of k elements in {1, . . . , n},
we define εI : V k → R by

εI(v1, . . . , vk) := det

ε
i1(v1) · · · εi1(vk)
...

. . .
...

εik(v1) · · · εik(vk)

 .
One can check that εI is multilinear (because det is multilinear), and in fact εI is alternating (again, be-
cause det is alternating).

Example 3.176. On Rn, we have εI = det when I = {1, . . . , n}.

Many of our elementary alternating tensors are the same as each other, so we want a way to declare them
the same.
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Notation 3.177. Given two sequences I = {i1, . . . , ik} and J = {j1, . . . , jk}, we define

δI,J := det

1i1=j1 · · · 1i1=jk
...

. . .
...

1ik=j1 · · · 1ik=jk

 .

Remark 3.178. One sees that δI,J ̸= 0 if and only if I nor J have any repeated indices (for then we would
see two of the same row or column) and each element of I lies in J , meaning that I is a permutation of
J .

And here is our proposition.

Proposition 3.179. Fix an n-dimensional real vector space V with basis {e1, . . . , en} so that V ∗ has
dual basis {ε1, . . . , εn}. Then ∧k(V ∗) has basis given by εI where I is a strictly increasing sequence
in {1, . . . , n}.

Proof. This is some long computation in linear algebra, so we omit the proof. Essentially, we want to show
that α ∈ ∧k(V ∗) is uniquely a sum of the given εI . Well, by being multilinear, α is uniquely determined
by its values α(ei1 , . . . , eik) where {i1, . . . , ik} is some sequence in {1, . . . , n}. By being alternating, we may
assume that these indices are strictly increasing, but we are now free to set the values α(ei1 , . . . , eik). ■

Remark 3.180. Computing the size of our basis, we see that

dim∧k(V ∗) =

{(
n
k

)
if k ≤ n,

0 if k > n.

Example 3.181. Note dim∧n(V ∗) =
(
n
n

)
= 1 when dimV = n, so ∧n(V ∗) is spanned by the single

“signed volume form” det.

Remark 3.182. For ω ∈ ∧n(V ∗) and T : V → V , one can show that

ω(Tv1, . . . , T vn)
?
= (detT )ω(v1, . . . , vn).

Because dim∧n(V ∗) = 1, we may write ω as cdet for some c ∈ R. After removing this c, we are trying
to show

det

 | |
Tv1 · · · Tvn
| |

 = (detT )

 | |
v1 · · · vn
| |

 .
This is exactly the content of det(AB) = (detA)(detB) for matrices A and B.

3.10.3 Some Products
Here is our definition.
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Definition 3.183 (wedge product). Fix a finite-dimensional (real) vector space V . For nonnegative inte-
gers k and ℓ, we define ∧ : ∧k (V ∗)× ∧k(V ∗) → ∧k+ℓ(V ∗) by

ω ∧ η :=
(k + ℓ)!

k!ℓ!
Alt(ω ⊗ η).

Example 3.184. For ω, η ∈ ∧1(V ∗), we can compute

ω ∧ η = (ω ⊗ η − η ⊗ ω).

Remark 3.185. By expanding out the Alt, one finds that

(ω ∧ η)(v1, . . . , vk+ℓ) =
1

k!ℓ!

∑
σ∈Sk+ℓ

ω(vσ1, . . . , vσk)η(vσ(k+1), . . . , vσ(k+ℓ)).

Lemma 3.186. Fix a basis {e1, . . . , en} of a vector space V so that there is a dual basis {ε1, . . . , εn} of V ∗.
Then for sequences of indices I = {i1, . . . , ik} and J = {j1, . . . , jℓ}, we have

εI ∧ εJ = εI⊔J .

Proof. Direct computation with the definitions. For example, one can use Remark 3.185 to compute the
value of (εI ∧ εJ) (ei1 , . . . , eik+ℓ

) on strictly increasing sequences {i1, . . . , ik+ℓ} to verify the equality. ■

Remark 3.187. One can show that ∧ distributes over addition and is associative. It is anti-commutative
in the sense that

ω ∧ η = (−1)kℓ(η ∧ ω)

where ω ∈ ∧k(V ∗) and η ∈ ∧k(V ∗).

Having a product structure now provides a ring.

Definition 3.188 (exterior algebra). Fix a finite-dimensional vector space V . Then we define

∧∗(V ∗) :=

n⊕
k=0

∧k(V ∗)

to be an anti-commutative graded R-algebra when equipped with the wedge product.

Remark 3.189. One can compute that

dim∧∗(V ∗) =

n∑
k=0

dim∧k(V ∗) =

n∑
k=0

(
n

k

)
= 2n.

While we’re here, we note that there is a notion of “interior” multiplication.

Definition 3.190. Fix a vector space V . Given v ∈ V , there is a map ιv : ∧k (V ∗) → ∧k−1(V ∗) given by

ιv(w)(v2, . . . , vk) := w(v, v2, . . . , vk).

We may write ιv(w) as v⌟w.
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Remark 3.191. One can show that ιv ◦ ιv = 0 and ιv(ω ∧ η) = ιv(ω) ∧ η + (−1)kω ∧ ιv(η).

3.11 April 25

Today we talk about differential forms.

Remark 3.192. The final exam will cover chapters 1 through 16, though there will be basically nothing
on chapter 15 other than the statement that some manifolds have orientations.

Here is basically everything we will need to know about orientations.

Definition 3.193. Fix a smooth manifoldM . An orientation onM is a minimal smooth atlas A such that
the determinants of the transition maps are positive.

It turns out that a smooth manifold has an orientation if and only if it has a nowhere-vanishing volume form.

3.11.1 Differential Forms

Here is our definition.

Definition 3.194 (differential form). Fix a smooth manifold M , possibly with boundary. Then a differ-
ential form ω is a global section of the vector bundle Ωk(M) := ∧kT ∗M .

Remark 3.195. Here, ∧kE for a vector bundle E on M is defined using the usual construction. For ex-
ample, we can construct it as an “alternating” subbundle of E⊗k cut out by the requirements of being
alternating. Notably, a smooth chart (U,φ) withφ = (x1, . . . , xn) gives rise to a local frame given by the
sections of the form

dxI := dxi1 ∧ · · · ∧ dxik
where I = {i1, . . . , ik} is an increasing sequence, so ∧kE will have rank

(
n
k

)
where n = rankE. This

allows us to write any ω ∈ Ωk(M) as
ω =

∑
I

ωIdxI ,

where the sum varies over increasing sequences I ⊆ {1, . . . , n}.

Example 3.196. Note Ω0(M) = C∞(M) because we are asking for global sections of the trivial line
bundle M × R.

Example 3.197. Note Ω1(M) = Γ(T ∗M) = X∗(M).
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Example 3.198. As usual, let’s do the usual computation on change of coordinates. Let (x1, . . . , xn) and
(y1, . . . , yn) be two systems of coordinates about some p ∈M . Then we can compute

dy1 ∧ · · · ∧ dyn =

(∑
i1

∂y1
∂xi1

dxi1

)
∧ · · · ∧

(∑
in

∂yn
∂xin

dxin

)
=

∑
i1,...,in

∂y1
∂xi1

· · · ∂yn
∂xin

dxi1 ∧ · · · ∧ dxin .

Notably, after rearranging the coordinates to get back to dx1 ∧ · · · ∧ dxn, we get

det

[
∂yj
∂xi

]
i,j

dx1 ∧ · · · ∧ dxn

by recalling the definition of det as some large sum over signed permutations.

Remark 3.199. There is also a notion of pullback: given a smooth mapF : M → N and someω ∈ Ωk(N),
we can define F ∗ω as a covariant k-tensor field at least by

(F ∗ω)p(v1, . . . , vk) := ωF (p)(dFp(v1), . . . , dFp(vk))

for p ∈ M and v1, . . . , vk ∈ TpM . (This is the usual pullback for covariant k-tensor fields.) But we now
see from this definition that F ∗ω is alternating, so we get to define our pullback as going to Ωk(M).

Remark 3.200. There are some basic properties of the pullback that one should read about. For exam-
ple, one can show by hand that F ∗(ω ∧ η) = F ∗ω ∧ F ∗η.

3.11.2 The Exterior Derivative
We like exact covectors, but exactness is not a local property: only being closed is exact. So perhaps we
would like to understand obstructions to exactness.

Namely, for some ω ∈ X∗(M), we write ω =
∑
i ωidxi where (x1, . . . , xn) are some local coordinates.

Then we can define

dω :=
∑
i<j

(
∂ωj
∂xi

− ∂ωi
∂xj

)
dxi ∧ dxj .

It is not totally clear that this is independent of the choice of coordinates, but one can in fact check this by
hand, and then we see dω actually glues together into a smooth covariant 2-tensor field, and we can see by
the above construction that dω ∈ Ω2(M). The point is that ω is closed if and only if dω = 0; for example, for
f ∈ Ω0(M), we have d(df) = 0.

Next, we would like to define a similar map d : Ω2(M) → Ω3(M) and maybe even d : Ωk(M) → Ωk+1(M)
in general.

Definition 3.201 (exterior derivative). Fix an open subset of Euclidean space U ⊆ Rn. Given ω ∈ Ωk(U),
we write ω =

∑
I ωIdxI , and we define the exterior derivative dω ∈ Ωk+1(U) by

dω :=
∑

j1<···<jk

n∑
i=1

∂ωj1···jk
∂xi

dxi ∧ dxj1 ∧ · · · ∧ dxjk .

One can check that this definition glues to a map d : Ωk(M) → Ωk+1(M) for an arbitrary smooth mani-
fold M , possibly with boundary.
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Example 3.202. For ω ∈ Ω1(M) given by ω =
∑
i ωi dxi locally, we can compute

dω =
∑
i,j

∂ωj
∂xi

dxi ∧ dxj ,

which agrees with our earlier definition.

Remark 3.203. As a multilinear map, we can compute that

dω(X1, . . . , Xk+1) =

k+1∑
i=1

(−1)i+1Xi(ω(X1, . . . , X̂i, . . . , Xk+1))

+
∑
i<j

(−1)i+jω([Xi, Xj ], Xi, . . . , X̂i, . . . , X̂j , . . . , Xk+1).

Remark 3.204 (Cartan’s magic formula). One can compute that LV ω = V ⌟dω + d(V ⌟ω).

Remark 3.205. One can check that d is R-linear by hand, and we can see d ◦ d = 0 by a length compu-
tation. Another by-hand computation shows that

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

Everything is natural, so we also get F ∗(dω) = d(F ∗ω).

Example 3.206. Work in R3, and let’s compute d(u dx1 ∧ dx3) where u is some smooth function. Then

d(u dx1 ∧ dx3) = du ∧ (dx1 ∧ dx3) + (−1)0u d(dx1 ∧ dx3)
= du ∧ dx1 ∧ dx3 + u(d(dx1) ∧ dx3 − dx1 ∧ (d(dx3)))

= du ∧ dx1 ∧ dx3.

Writing du =
∑
i
dui

dxi
dxi, we then see that only the i = 2 term may contribute, so we are left with

−∂u2

∂x2
dx1 ∧ dx2 ∧ dx3.

One may be interested in a more coordinate-free definition of the exterior derivative. At the very least, we
will be able to note that it is unique from some of our listed properties.

Theorem 3.207. Fix a smooth manifold M , possibly with boundary. Then there is a unique family of
maps d : Ω•(M) → Ω•+1(M) satisfying the following conditions.

(i) Linear: d is R-linear.

(ii) Product rule: for ω ∈ Ωk(M) and η ∈ Ωℓ(M), we have

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

(iii) Complex: d ◦ d = 0.

(iv) Degree 0: for f ∈ C∞(M), the 1-form df ∈ Ω1(M) is the usual differential of a function.

Proof. We already know existence. We won’t show uniqueness. ■
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Let’s do some more examples. We work with R3.

• We know Ω0
(
R3
)
= C∞ (R3

)
.

• We may identify Ω1
(
R3
)
= X∗ (R3

)
with X

(
R3
)

by using the standard Riemannian metric (explicitly,
we send dxi ∈ X∗ (R3

)
to ∂

∂xi
∈ X

(
R3
)

).

• Continuing, we may identify Ω2
(
R3
)

with X
(
R3
)

again by using the global frame of ∧2T ∗R3: we send
dxi ∧ dxi+1 with ∂

∂xi+2
, where indices are taken (mod 3). More canonically, we can takeX ∈ X

(
R3
)

to
ιX(dx1 ∧ dx2 ∧ dx3) ∈ Ω2

(
R3
)

.

• Lastly, Ω3
(
R3
)

has global frame given by dx1 ∧ dx2 ∧ dx3, so this space is isomorphic to C∞ (R3
)

by
sending a smooth function u to u dx1 ∧ dx2 ∧ dx3.

The point of doing all this is that it turns out that the following diagram commutes.

C∞(M) X
(
R3
)

X
(
R3
)

C∞(M)

Ω0
(
R3
)

Ω1
(
R3
)

Ω2
(
R3
)

Ω3
(
R3
)

grad curl div

d d d

Here, the vertical maps are the identifications we just described. For example, we discover that curl◦grad = 0
and div ◦ curl = 0.

We also note that we can see some pairing: given a Riemannian manifold (M, g), one has a global “vol-
ume” form given by

dVg :=
√
deg(gij)dx1 ∧ · · · ∧ dxn

for any local choice of coordinates (x1, . . . , xn). Then there is a unique map ∗ : Ωk(M) → Ωn−k(M) such that

ω ∧ ∗η = ⟨ω, η⟩gdV − g

In particular, we are seeing that ∨ somehow produces a perfect pairing.

Remark 3.208. It turns out that our Laplacian operator ∆f for f ∈ C∞ (R3
)

given by ∗d ∗ df . One can
compute this operator as div◦grad where the content becomes that our ∗ operator also commutes with
the vertical isomorphisms.

Remark 3.209. Our discussion of the exterior derivative also has applications for R4: an element of
Ω2
(
R4
)

can be viewed as a smooth map from R4 to the space of antisymmetric 4 × 4 matrices (by us-
ing the standard global frame, as usual). Professor Chen gave some discussion of Maxwell’s equations;
basically, it turns out that one can compress everything into two short equations on a single element
ω ∈ Ω2

(
R4
)

.

3.12 April 30

Today we discuss Stokes’s theorem. Here are some notes about the final. There will be more information
about the final later today; the format will be similar to the midterm, though not as long as two midterms.
Stokes’s theorem will be used on at least one problem on the final.
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3.12.1 Integration
We begin by discussing integration on Rn. Given a smooth function f : Rn → R, we would like to integrate
f on Rn by summing up the value of f on very small boxes. Imagining these small boxes in one coordinate
at a time, this amounts to some kind of iterated integration. The direction here should be signed, so we are
essentially integrating against the n-form dx1 ∧ · · · ∧ dxn ∈ Ωn (Rn). This definition then generalizes for
arbitrary ω ∈ Ωn (Rn).

Definition 3.210. Fix a compactly supported n-form ω ∈ Ωn (Rn). Because Ωn (Rn) is a line bundle with
global frame given by dx1 ∧ · · · ∧ dxn, we may write ω := f dx1 ∧ · · · ∧ dxn for some smooth f : Rn → R,
and then we define ∫

Rn

ω :=

∫
R
· · ·
∫
R
f dx1 · · · dxn.

We would like to show that this definition does not depend on our choice of diffeomorphism.

Proposition 3.211. Fix a diffeomorphism G : U → V of connected open subsets of Rn. Given a com-
pactly supported n-form ω ∈ Ωn(V ), we have∫

U

G∗ω = ±
∫
V

ω,

where we take the + sign if G preserves orientation, and we take the − sign if G reverses orientation.

Proof. This amounts to change of variables for our iterated integrals. Write ω = f dx1 ∧ · · · ∧ dxn. Because
pullback commutes with the exterior derivative, we see that

G∗ω = (f ◦G)(G∗dx1) ∧ · · · ∧ (G∗dxn).

Now, by a direct expansion of G on coordinates as we did in Example 3.198, we see that this is

G∗ω = (f ◦G)(det dG) dx1 ∧ · · · ∧ dxn,

so ∫
U

G∗ω =

∫
U

(f ◦G)(det dG) (dx1 ∧ · · · ∧ dxn).

Adjusting our coordinates, we note that our Jacobian is |det dG|, so we are done upon noting that “preserving
orientation” just means that det dG is positive. ■

We are now ready to integrate on (oriented) manifolds.

Definition 3.212. Fix a smooth manifold M , possibly with boundary, and fix a compactly supported n-
form ω ∈ Ωn(M). Choose a collection of positively oriented charts {(Ui, φi)}Ni=1 covering the support
of ω, and let {ψi}Ni=1 be a smooth partition of unity subordinate to {Ui}Ni=1. Then we define∫

M

ω :=

N∑
i=1

∫
φi(Ui)

(
φ−1
i

)∗
(ψiω)

The point is that ω =
∑N
i=1 ψiω, so we are summing up our integral in the various pieces.

One can check that this does not depend on the choice of charts covering suppω; this basically follows
straight from the proposition.
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3.12.2 Stokes’s Theorem
We are now ready to state Stokes’s theorem.

Theorem 3.213 (Stokes). Fix some compactly supported (n−1)-formω on a smoothn-manifoldM with
boundary ∂M . Then ∫

M

dω =

∫
∂M

ω.

For this to make sense, we need to orient ∂M , presumably in a way that agrees with the orientation on M .
Essentially, an orientation can be thought of as a non-vanishing choice of n-form ω ∈ Ωn(M). Then we take
an outward-pointing tangent vector v on M at any boundary point, and we define our orientation as v⌟ω.
Anyway, here are some applications.

Example 3.214. Take M = [a, b] and ω = f(x) for some smooth f . Then Theorem 3.213 tells us∫
[a,b]

f ′(x) dx = f(b)− f(a),

where we get the right-hand side by keeping track of the orientation on ∂M = {a, b}.

Example 3.215. Choose some compact oriented domain M ⊆ R3. Given a vector field X = X1
∂
∂x1

+

X2
∂
∂x2

+X3
∂
∂x3

on R3, we may want to compute the flux through M . Then we define

ω := X1 dx2 ∧ dx3 −X2 dx1 ∧ dx3 +X3 dx1 ∧ dx2.

(This is simplyX⌟(dx1 ∧ dx2 ∧ dx3).) One can compute that dω =
(
∂X1

∂x1
+ ∂X2

∂x2
+ ∂X3

∂x3

)
dx1 ∧ dx2 ∧ dx3,

which is precisely divX. Now, Theorem 3.213 tells us∫
M

(divX) =

∫
M

dω =

∫
∂M

ω =

∫
∂M

(X⌟(dx1 ∧ dx2 ∧ dx3)).

Now, we decomposeX intoX∥+X⊥, whereX∥ is tangent to the boundary, andX⊥ is perpendicular to
the boundary. The tangent part vanishes in the interior product because we will get linearly dependent
differential forms in our exterior product, so we are allowed to replace X with X⊥. But now X⊥ has
length X · v where v is some unit normal vector, so we get to∫

M

(divX) =

∫
∂M

(X · v) dA,

where dA is the surface area measure.

Example 3.216. If M has no boundary, then we are just saying that
∫
M
dω = 0.

Example 3.217. If ω is a closed form, then dω vanishes, so we are just saying that
∫
∂M

ω = 0.

Example 3.218. Given an oriented Riemannian manifold (M, g), we can define the Laplacian as ∆f :=
div grad f . Then Theorem 3.213 grants

∫
M

∆f = 0 of M is a smooth manifold without boundary be-
cause the divergence can be realized as an exterior derivative.

Let’s see another application.
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Theorem 3.219 (Green). Fix a compact domain D ⊆ R2, and let P,Q ∈ C∞(D) be smooth functions.
Then ∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂D

P dx+Qdy.

Proof. Apply Theorem 3.213 to ω := P dx +Qdy as a smooth 1-form on ∂D, and we can compute that dω
is as required. ■

Anyway, let’s go ahead and prove Theorem 3.213.

Proof of Theorem 3.213. We only know how to integrate via partition of unity, so we have to fix some parti-
tion of unity. Choose positively oriented charts {(Ui, φi)}Ni=1 covering suppω, and choose a smooth partition
of unity {ψi}Ni=1 subordinate to {Ui}Ni=1 so that

ω =

N∑
i=1

ψiω.

Now, by linearity of the conclusion Theorem 3.213, it suffices to show the statement for ψiω for each i.
By possibly shrinking the U•s, we may assume that φi sends each Ui to either Rn or Hn. Thus, it suffices

to prove Theorem 3.213 in the two cases M = Rn and M = Hn.

• Take M = Hn. This will basically be a direct computation. We write

ω =

n∑
i=1

ωi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

for smooth functions ω1, . . . , ωn : Hn → R. In this case, we find that

dω =

(
n∑
i=1

(−1)i−1 ∂ωi
∂xi

)
dx1 ∧ · · · ∧ dxn,

so ∫
Hn

dω =

n−1∑
i=1

∫ R

0

∫ R

−R
· · ·
∫ R

−R

∂ωi
∂xi

dx1 · · · dxn−1 dxn,

where we take R large enough so that suppω is contained in (−R,R)n × [0, R). Now, for each i ̸= n,
we note that the corresponding integral contains the integral∫ R

−R

∂ωi
∂xi

dxi = ωi

∣∣∣∣R
−R

= 0,

which vanishes by considerations of suppω. So we only have to care about the i = n term, leaving us
with ∫

Hn

dω = (−1)n
∫ R

−R
· · ·
∫ R

−R
ωn(x1, . . . , xn−1, 0) dx1 · · · dxn−1.

It remains to compute
∫
∂Hn ω. Well,Hn has an outward pointing tangent vector given by−en uniformly,

so the coordinates (x1, . . . , xn−1) will be positively oriented for n even and negatively oriented for n
odd, so a computation shows∫

∂Hn

ω =

∫ R

−R
· · ·
∫ R

−R
ωn(x1, . . . , xn−1, 0) dx1 . . . dxn−1

to be equal to the above integral by a consideration of the orientation.

• In the case whereM = Rn, the same computation for
∫
Rn dω shows that it vanishes because this time

even the i = n term will vanish. And of course ∂M is empty, so
∫
∂M

ω = 0 as well. ■
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3.13 May 2
Today we talk a little about de Rham cohomology.

3.13.1 De Rham Cohomology
We begin by setting some notation. Let M be a smooth manifold with boundary. Then we recall that we
have built a chain

0 → Ω0(M)
d→ Ω1(M)

d→ Ω2(M)
d→ · · · ,

where d denotes the exterior derivative. Notably, d2 = 0, so we have a cochain complex (Ω•(M), d).

Definition 3.220 (de Rham cohomology). Fix a smooth manifold M . Then we define the de Rham co-
homology of M as the cohomology of the cochain complex (Ω•(M), d). More explicitly, we define the
closed p-forms as

Zp(M) := ker
(
d : Ωp(M) → Ωp+1(M)

)
,

and
Bp(M) := im

(
d : Ωp−1(M) → Ωp(M)

)
,

so our de Rham cohomology isH•
dR(M) := Zp(M)/Bp(M). We will suppress the dR from our notation

as much as possible.

Example 3.221. We have thatH0(M) consists of functions f ∈ Ω0(M) = C∞(M) that vanish under the
derivative. Thus, H0(M) consists of the locally constant functions on M , which we see is Rπ0(M).

Remark 3.222. Directly from the definitions, we see that our cohomology are R-vector spaces.

Because our cochain complex has some notion of functoriality, our cohomology does as well. More precisely,
let F : M → N be a smooth map. Then pullback makes the diagram

0 Ω0(N) Ω1(N) Ω2(N) · · ·

0 Ω0(M) Ω1(M) Ω2(M) · · ·

dN

F∗

dN

F∗

dN

F∗

dM dM dM

commute, which one can check (via some diagram-chasing) then produces a map H•
dR(F ) : H

•
dR(N) →

H•
dR(M). Explicitly, we take a class [ω] ∈ Hp(N) represented by ω ∈ Zp(N) to the class [F ∗ω] ∈ Hp(M).

Let’s go ahead and check that this is well-defined. To begin, we note that ω being closed implies dω = 0,
so F ∗(dω) = d(F ∗ω) = 0, so F ∗ω ∈ Zp(M). Then we want to check that [ω] = [ω′] implies [F ∗ω] = [F ∗ω′].
Well, write ω = ω′ + dη where η ∈ Ωp−1(N); then

F ∗ω = F ∗ω′ + F ∗dη = F ∗ω + dF ∗η,

so [F ∗ω] = [F ∗ω′] follows.

Remark 3.223. Functoriality of the pullback assures us that H•
dR is a functor. For example, one sees

H•(idM ) = idH•(M).

3.13.2 Topology of Manifolds
We expect de Rham cohomology to produce a reasonable cohomology theory, so it should be topological in
nature. Let’s see some of this topological invariance.
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Proposition 3.224. Suppose F,G : M → N are smooth maps of smooth manifolds which are homo-
topic. Then H•

dR(F ) = H•
dR(G).

Proof. LetH• : F ≃ Gwitness the homotopy withH0 = F andH1 = G, which we may assume is smooth by
an argument with Whitney approximation. To see this homotopy, define it : M →M×[0, 1] by it(p) := (p, t);
in particular, H ◦ i0 = F and H ◦ i1 = G.

Now, given ω ∈ Ωp(N), we would like to show that [F∗ω] = [G∗ω] when ω ∈ Zp(N). In other words, we
want to show that

G∗ω − F∗ω = i∗1H
∗ω − i∗0H

∗ω

is in the image of d : Ωp−1(M) → Ωp(M). Set η := H∗ω to be an element of Ωp(M × [0, 1]). Thus, we want to
compute

i∗1η − i∗2η =

∫ 1

0

(
d

dt
i∗tω

)
dt,

where the derivative and integration is happening on the level of coordinates. (Namely, we should note that
everything can be computed locally and glued together later, so fix some p ∈ M , place it in a chart, and
expand everything out on coordinates.) We now use Cartan’s magic formula to compute

d

dt
i∗t η = i∗t

(
L∂/∂tη

)
= i∗t

(
∂

∂t
⌟dη + d

(
∂

∂t
⌟η

))
= i∗t

(
∂

∂s
⌟dη

)
+ di∗t

(
∂

∂s
⌟η

)
.

We are now ready to define our chain homotopy h : Ωp(N) → Ωp−1(M) as

h(ω) :=

∫ 1

0

i∗t

(
∂

∂s
⌟H∗ω

)
dt.

Thus, we see that G∗ω − F ∗ω = h(dω) + dh(ω) for any ω. Having a chain homotopy means that H•(F ) =
H•(G). Let’s see this more explicitly: given [ω] ∈ Hp(N) where ω ∈ Zp(N), we see that

G∗ω − F ∗ω = h( dω︸︷︷︸
0

) + dh(ω) ∈ Bp(M),

as required. ■

Example 3.225. If two smooth manifolds are homotopy equivalent (for example, if they are homeomor-
phic), then they have isomorphic cohomology groups. Namely, let F : M → N andG : N →M witness
the homotopy equivalence, and then the above proposition implies thatH•

dR(F ) andH•
dR(G) are inverse

maps on our cohomology.

Example 3.226. If M is a contractible manifold, then it is homotopic to a point, so H•(M) = H•({∗})
which vanishes in positive degree. For example, if U ⊆ Rn is star-shaped, then

Hp(U) =

{
R if p = 0,

0 if p > 0.

Here is another application.

Proposition 3.227. Fix a smooth connected manifold M , and fix a basepoint q ∈ M . Then the map
Φ: H1(M) → Hom(π1(M, q),R) defined by

Φ([ω])([γ]) :=

∫
γ

ω.

118



3.13. MAY 2 214: DIFF. TOPOLOGY

Proof. To begin, we check that the map is well-defined.

• We note that any [γ] ∈ π1(M, q) is homotopic to a piecewise smooth map with the same basepoint, so
we can find a piecewise smooth representative to integrate over, so the integral at least makes sense.

• If [ω] = [ω′], then write ω − ω′ = df for some f ∈ C∞(M), and then we see that∫
γ

ω −
∫
γ

ω′ =

∫
γ

(ω − ω′) =

∫
γ

df = f(q)− f(q) = 0

by Theorem 3.118.

• If [γ] = [γ′], then let H• : γ ≃ γ′ witness the homotopy, where H0 = γ and H1 = γ′. We may assume
that everything in sight is smooth by the usual Whitney approximation arguments, so we may integrate∫

I×I
d(H∗ω) =

∫
I×I

H∗dω = 0

because dω = 0. On the other hand, Theorem 3.213 tells us that this integral is
∫
γ
ω −

∫
γ′ ω, so we

finish.

• The map [γ] 7→
∫
γ
ω is a homomorphism because concatenating paths will add the integrals together,

by the definition of our integral.

• The map Φ itself is R-linear because integration is R-linear on the differential form.

Lastly, we should check that Φ is injective. Well, if
∫
γ
ω = 0 for all γ based at q, then we know ω is conserva-

tive (we can get rid of the basepoint by just drawing some smooth map connecting p to q), so ω is exact by
Proposition 3.122, so [ω] = 0. ■

Example 3.228. Fix a smooth connected manifoldM . If π1(M) is torsion, then we see thatH1(M) = 0.

Remark 3.229. It turns out that this map is an isomorphism, but it requires some more work to see.

No discussion relating de Rham cohomology to topology would be complete without at least stating the de
Rham theorem.

Theorem 3.230 (de Rham). Fix a smooth manifold M . There is a natural isomorphism θ : Hp
dR(M) →

Hp
sing(M ;R) given by

θ[ω](σ) :=

∫
∆p

σ∗ω,

where ω : ∆p →M is a smooth embedding from the p-simplex to M .

Here, H•
sing refers to singular cohomology, which we will not define. As such, we will of course not attempt

a proof.

3.13.3 The Mayer–Vietoris Sequence
We would like to compute cohomology in some cases, but so far we only know how to compute cohomology
of small neighborhoods. Fitting everything we’ve done so far in this course, one way to imagine doing this
is to break up a manifold into charts and then attempt to glue them back together. This will be attempted
inductively, so we will work with covers of just two open subsets.
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Theorem 3.231 (Mayer–Vietoris). Fix open subsets U, V ⊆M which cover a smooth manifoldM . Then
there is a long exact sequence as follows.

0 H0(M) H0(U)⊕H0(V ) H0(U ∩ V )

H1(M) H1(U)⊕H1(V ) H1(U ∩ V ) · · ·
δ0

Here, the horizontal maps are induced by the inclusions U ∩ V ⊆ U, V ⊆ M , and the diagonal map is
the boundary map, and it is harder to define.

Let’s see an example computation.

Example 3.232. We claim Hp(Sn) = R1p∈{0,n} for n ≥ 0. We proceed by induction. For n = 0, there
is nothing is to do. For n > 0, we begin by noting that H0(Sn) = R because there is still only one
component. For p = 1, we use Proposition 3.227: if n ≥ 2, then we trivialize immediately, and if n = 1,
then our dimension becomes bounded below by 1, and being oriented shows that the group is nontrivial.
So we may focus on p ≥ 2. Now, let U be an open collar neighborhood of the top hemisphere, and let
V be an open collar neighborhood of the bottom hemisphere. Then U and V are each contractible, so
they have vanishing cohomology in higher degrees. We now note that any p ≥ 2 has the exact sequence

Hp(U)⊕Hp(V ) → Hp(U ∩ V ) → Hp+1(Sn) → Hp+1(U)⊕Hp+1(V ).

The two ends trivialize, and U ∩ V is homotopic to Sn−1, so we finish by induction.
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LIST OF DEFINITIONS

alternating, 106
atlas, 22

base, 6
boundary point, 28
bundle homomorphism, 89

chart, 19
closed, 6, 96
commute, 75
compact, 7
complete, 80
connected, 12
conservative, 95
constant rank, 42
continuous, 6
coordinate function, 19
cotangent bundle, 91
covector field, 91
cover, 15
critical, 49

de Rham cohomology, 117
defining function, 50
diffeomorphism, 34
differential, 37
differential form, 110

elementary alternating tensor, 107
embedded smooth submanifolds, 45
embedding, 44
equivariant, 68
exact, 95
exhaustion, 15
exterior algebra, 109
exterior derivative, 111

flow, 80

frame, 72, 86
free, 68
full rank, 42

Hausdorff, 8
homeomorphism, 6
homomorphism, 64

identity component, 66
immersion, 42
interior point, 28
invariant, 76
isotropy, 67

length, 103
Levi–Civita connection, 106
Lie algebra, 77
Lie bracket, 74
Lie derivative, 83, 101
Lie group, 63
Lie subgroup, 65
local compactness, 14
locally Euclidean, 8
locally finite, 16

maximal smooth atlas, 23
maximal trajectory, 80

neighborhood, 6
normal bundle, 59
null set, 51, 53

open, 6
orbit, 67

paracompact, 16
partition of unity, 32
path-connected, 12
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precompact, 14
pullback, 93, 101

refinement, 16
regular, 49
regular domain, 56
Riemannian metric, 102

section, 86
slice, 46
smooth, 30, 31
smooth action, 67
smooth family, 61
smooth manifold, 23
smooth manifold with boundary, 28
smoothly compatible, 22
subbundle, 90
submersion, 42
subspace, 7

tangent bundle, 40
tangent space, 35
tangent vector, 50
tensor, 99
tensor bundle, 100
topological manifold, 9
topological manifold with boundary, 28
topological space, 6
trajectory, 78
transition map, 21
transitive, 68
transverse, 60
trivial, 86
tubular neighborhood, 59

vector bundle, 85
vector field, 71, 73
velocity vector, 39

wedge product, 109
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