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THEME 1

INTRODUCTION

I have dedicated far too many algorithms and computational resources
toward finding an answer to this unknowable thing.

—Neal Shusterman, [Shu18]

1.1 August 24
It begins.

1.1.1 Logistics
Here are the logistical notes.

• The professor is Ian Agol, whose office is Evans 921. Office hours are Tuesdays after class, Monday at
3PM, Wednesday at 9AM, or by appointment.

• There is a bCourses.

• Homework will be weekly, and it will make up the entire grade.

• The prerequisites are Math 113 and 202A or equivalent. From point-set topology in particular we will
want notions of compactness, connectedness, metric spaces, and a few topologies like the identifica-
tion topology with respect to a continuous map.

1.1.2 Overview
We will cover chapters 0–3 of [Hat01].

• Chapter 0 consists of “geometric notions.” Particularly important are the notion of homotopy and CW
complexes.

• Chapter 1 is on fundamental groups.

• Chapter 2 is on homology. This is an abelian extension of fundamental groups.

• Chapter 3 is on cohomology. Poincaré duality relates cohomology with homology.
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1.1. AUGUST 24 215A: ALGEBRAIC TOPOLOGY

Chapter 4 is typically covered in Math 215B, on homotopy theory.
Let’s talk a bit about the interests of the course. Topology as a whole is interested in “spaces up to defor-

mation.” In this class, deformation will mean homotopy mostly, but there are finer notions of interest like
homeomorphism. As for the spaces, we will focus on spaces which are locally homogeneous in some sense,
like manifolds (which are locally homeomorphic to Rn). These notions come up naturally throughout math-
ematics; for example, integrals of holomorphic functions are roughly independent of path chosen. Poincaré
himself was interested in differential equations, whose configuration spaces could be manifolds.

In this class, we will attach invariants to our topological spaces to be able to understand how to differ-
entiate between our spaces (up to deformation). We focus on the following invariants.

• Fundamental groups and covering spaces. This has a close tie to Galois theory, an analogy made pro-
cess by the étale fundamental group in algebraic geometry.

• Cohomology. The origins are from complex analysis and Stokes’s theorem, but cohomology itself has
vast generalizations and manifestations throughout mathematics, leading to the field of homological
algebra. However, there are applications to algebraic geometry, number theory, and so on. The most
notable application here is the proof of the Weil conjectures.

• Higher homotopy groups. Our approach will not begin with this viewpoint, but it is possible.

1.1.3 Homotopy and Homotopy Type
Let’s jump in chapter 0.

Notation 1.1. We set I :“ r0, 1s for convenience.

Definition 1.2 (deformation retract). Fix a subspace A of a topological space X. Then a deformation
retract is a family of functions f‚ : X ˆ I Ñ X where f0 “ idX and im f1 “ A and ft|A “ idA for all t P I.

Example 1.3 (mapping cylinder). Fix a continuous function f : X Ñ Y . Then the mapping cylinder Mf

is the space pX ˆ Iq \ Y quotiented by px, 1q „ fpxq. Then Mf has a deformation retraction to Y by
ftpxq :“ px, tq. Visually, we have attached Y to a thickening of X.

Example 1.4. Define f : S1 Ñ S1 by fpzq :“ z2. Then Mf has S1 on one domain side and S1 covered
twice on the target side. With a little deformation, this is a Möbius strip. Approximately speaking,
one should cut the cylinder in half and then rearrange. One can see that the Möbius strip deformation
retracts to S1 by squishing the width of the cylinder to the central line.

A deformation retract is a special case of a homotopy. Here is the definition of a homotopy.

Definition 1.5 (homotopy). Two continuous maps f0, f1 : X Ñ Y are homotopic if and only if there is a
continuous function F‚ : X ˆ I Ñ Y such that F0 “ f0 and F1 “ f1. Here, F is called a homotopy, and
we write f0 „ f1.

Example 1.6. A subspace A Ď X has a deformation retract if and only if idX is homotopic to some
r : X Ñ X with im r “ A and r|A “ idA. Indeed, the deformation retract is exactly the needed homo-
topy.

Example 1.7. Suppose f, g : X Ñ Y are equal maps. Then define h : X ˆ I Ñ Y by ht “ f “ g for all
t. We see that h is continuous (h´1pV q “ f´1pUq ˆ I for any open V Ď Y ), so it provides a homotopy
from f and g.
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1.1. AUGUST 24 215A: ALGEBRAIC TOPOLOGY

It should not be surprising that homotopy is an equivalence relation.

Lemma 1.8. Fix topological spacesX and Y . Then „ is an equivalence relation on continuous functions
X Ñ Y .

Proof. We have the following checks.

• Reflexive: this is direct from Example 1.7.

• Symmetric: if f „ g, then we haveF‚ : XˆI Ñ Y withF0 “ f andF1 “ g. We now defineG‚ : XˆI Ñ

Y byGt :“ F1´t. ThenG is continuous by the continuity of t ÞÑ 1´ t and F , andG0 “ g andG1 “ f , so
G witnesses g „ f .

• Transitive: if f „ g and g „ h, find F‚ : X ˆ I Ñ Y and G‚ : X ˆ I Ñ Y with F0 “ f and F1 “ g and
G0 “ g and G1 “ h. Then we define H‚ : X ˆ I Ñ Y by

Ht :“

#

F2t if 0 ď t ď 1{2,

G2t´1 if 1{2 ď t ď 1.

Note that this is well-defined at t “ 1{2 because F1 “ g “ G0. Note H will witness f „ h once we
show that it is continuous, which is what we do now.
By looking locally at F orG, we see thatH is continuous at any point not of the form px, 1{2q. Then for
any point of the form px, 1{2q and open subset V Ď Y containingH1{2pxq, continuity ofF gives an open
subset UF ˆ p1{2 ´ ε, 1{2s mapping to V , and continuity ofG gives an open subset UG ˆ r1{2, 1{2 ` εq
mapping to V , so pUF X UGq ˆ p1{2 ´ ε, 1{2 ` εq will suffice. ■

Homotopy also behaves well with composition.

Lemma 1.9. Fix topological spaces X,Y, Z, and let f0, f1 : X Ñ Y and g0, g1 : Y Ñ Z be homotopic
maps. Then pg0 ˝ f0q „ pg1 ˝ f1q.

Proof. Fix a homotopy F‚ : X ˆ I Ñ Y with F0 “ f0 and F1 “ f1 and a homotopy G‚ : Y ˆ I Ñ Z with
G0 “ g0 and G1 “ g1. Then we define H‚ : X ˆ I Ñ Z by

Htpxq :“ GtpFtpxqq.

Then H0 “ g0 ˝ f0 and H1 “ g1 ˝ f1, so we will be done if we can show H is continuous. Well, H‚ is the
composite map

X ˆ I
pF,idIq

Ñ Y ˆ I
G
Ñ Z,

which we can see is the composite of continuous maps. ■

Homotopy allows us to define homotopy equivalence.

Definition 1.10 (homotopy equivalence). A continuous map f : X Ñ Y is a homotopy equivalence if and
only if there is a continuous map g : Y Ñ X such that pg ˝ fq „ idX and pf ˝ gq „ idY . We then say that
X and Y have the same homotopy type and write X » Y .

Remark 1.11. It is not enough to merely require pg ˝ fq „ idX . For example, let X :“ txu be a point.
Then any map f : txu Ñ Y can use the unique map g : Y Ñ txu so that pg ˝ fq “ idX .

Here is a quick sanity check.

7



1.1. AUGUST 24 215A: ALGEBRAIC TOPOLOGY

Lemma 1.12. Ignoring size issues, homotopy equivalence provides an equivalence relation on topolog-
ical spaces.

Proof. We have the following checks. Fix topological spaces X,Y, Z.

• Reflexive: we show X » X. Indeed, use the maps idX , idX : X Ñ X so that idX ˝ idX “ idX is
homotopic to idX by Example 1.7.

• Symmetric: we show X » Y implies Y » X. Indeed, let f : X Ñ Y and g : Y Ñ X be the promised
maps so that pf ˝ gq „ idY and pg ˝ fq „ idX . Reading these data in reverse tell us that Y » X.

• Transitive: suppose X » Y and Y » Z, and we show X » Z. Thus, we have maps f : X Ñ Y and
g : Y Ñ X and f 1 : Y Ñ Z and g1 : Z Ñ Y such that pf ˝ gq „ idY and pg ˝ fq „ idX and pf 1 ˝ g1q „ idZ
and pg1 ˝ f 1q „ idY . We now claim that pf 1 ˝ fq : X Ñ Z and pg ˝ g1q : Z Ñ X are the desired maps to
witness X » Z. Well, using Lemma 1.9, we compute

pf 1 ˝ fq ˝ pg ˝ g1q “ f 1 ˝ pf ˝ gq ˝ g1 „ f 1 ˝ idY ˝ g1 “ f 1 ˝ g1 „ idZ ,

and similar for the other direction. ■

Remark 1.13. One can check directly that „ is an equivalence relation on spaces. The main check here
is that one can compose homotopies.

We will often find that our algebraic invariants are only able to detect homotopy equivalence, which is why
homotopy equivalence will be so important to us.

Example 1.14. Example 1.4 shows that the Möbius strip is homotopic to S1.

More generally, one can show that a deformation retract is a homotopy equivalence.

Lemma 1.15. Fix a subspaceA of a topological spaceX. Then a deformation retract witnesses a homo-
topy between the inclusion i : A ãÑ X and the identity idX : X Ñ X. In particular, it follows that i is a
homotopy equivalence.

Proof. This is a matter of unraveling the definitions. Fix a deformation retract f‚ : XˆI Ñ X, and let r :“ f1
so that im r “ A. We now claim that i and r are inverse homotopy equivalences.

• We show that pr ˝ iq „ idA. Indeed, rpipaqq “ a for any a P A by hypothesis on r, so in fact r ˝ i “ idA.

• We show that pi ˝ rq „ idX . The relevant homotopy is just f‚: we have f0 “ idX and f1 “ pi ˝ rq, so
idX „ pi ˝ rq by Lemma 1.8. ■

Example 1.16 (dunce cap). Take the disc D2 and glue the edges together as follows: mark three points
A, B, and C, and glue AB to AC to CB (in those orientations). Then the resulting space is homotopic
to a point.

We have a special name for being homotopic to a point.

Definition 1.17 (contractible). A topological space X is contractible if and only if it is homotopic to a
point.
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1.1. AUGUST 24 215A: ALGEBRAIC TOPOLOGY

These notions allow us to define a homotopy category, whose objects are homotopy classes of topological
spaces and morphisms are continuous maps. In some sense, our algebraic invariants are trying to distinguish
between objects in this category. It turns out that this category is not concrete, meaning that there is no way
to realize its objects as sets reasonably. Approximately speaking, this means that there can be no canonical
representing topological space for each homotopy class, but topologists try anyway.

Remark 1.18. There are a number of results called “topological rigidity” theorems which give homeo-
morphism X – Y given merely X » Y and some extra hypotheses. For example, this holds for closed
surfaces by a classification result.

Example 1.19. Attach two S1s by a line to make a space X, and attach them along an edge to make a
space Y . These spaces are homotopic, but they are not homeomorphic (removing a point from X may
disconnect it, but this is not the case for Y ).

1.1.4 CW Complexes

Here is our definition.

Definition 1.20 (CW complex). LetX0 be a discrete set of points, and defineXn inductively byXn`1 :“
XnYten`1

α u, whereφα : Ben`1
α Ñ Xn is a homeomorphism telling us how to union. Here, en`1

α is a copy
of the n-ball Bn, so the φα are explaining how to identify the edges.

Example 1.21. Here is a CW complex.

x0 x1

Namely, X0 “ tx0, x1u, and X1 is the edges.

Example 1.22. Take a point t˚u forX0, and define φn to be some loop based on t˚u. Then the resulting
space is some infinite union of circles intersecting at t˚u. Notably, this space is not compact and in
fact should not even be embedded into the plane or R3 because such an embedding is unlikely to be a
homeomorphism.

Example 1.23. The sphere Sn :“ Dn{BDn is a CW structure with only two cells: it is e0 Y en. Notably,
the CW structure here has X0 “ X1 “ ¨ ¨ ¨ “ Xn´1.

Example 1.24. Alternatively, one can define Sn inductively as follows: take S0 to be two points, and
define Sn`1 to be Sn as an equator unioned with two pn` 1q-cells making hemispheres attached to the
equator. One can then define S8 to be the union of all the S‚ where we identify Sn ãÑ Sn`1 via the
equator. This is a CW complex of infinite dimension. It turns out that S8 is contractible, though Sn is
not for any finite n.

9
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Example 1.25. Define real projective space RPn as the set of vectors x P Rn`1zt0u where we identify x
with λx for any λ P Rˆ. Notably, by setting the last coordinate equal to 0, we expect to get RPn´1. But
if the last coordinate is equal to zero, we can scale it uniquely to 1, and then the remaining coordinates
may vary arbitrarily. In total, we find

RPn “ RPn´1
\ Rn´1.

Thus, we get the cell structure RPn “ e0 Y e1 Y ¨ ¨ ¨ Y en.

Remark 1.26. The CW structure is not unique. For example, one can separate out edges by putting a
point in the middle of them.

One can show that the CW complex is compact if and only if it has finitely many cells.

1.2 August 29
Last time we discussed homotopies, homotopy equivalence, and CW complexes. To review, the goal of
algebraic topology is to define (algebraic) invariants of topological spaces and then perhaps figure out when
two spaces are equivalent (for suitable definition of equivalent). In theory, our invariants would be able to
entirely classify some subset of spaces we are looking at, but it is rather rare. To execute this plan, we need
a source of spaces (mostly CW complexes and ways to combine them) and then methods to tell if spaces are
equivalent.

1.2.1 Operations on Spaces
Let’s discuss how to make new spaces from old ones. Thankfully, our operations will send CW complexes
to CW complexes, though there is something to check.

Definition 1.27 (product). Fix CW complexes X and Y . Then we form the product X ˆ Y (at the level
of CW complexes) using as pn ` mq-cells emα ˆ fnβ where emα is an m-cell of X and fmβ is an n-cell of Y .
Notably, the n-skeleton is

pX ˆ Y qn “
ď

k`ℓ“n

Xk ˆ Y ℓ,

and one can attach in the obvious way. This produces a CW structure.

Remark 1.28. It is possible thatXˆY with its CW structure need not be the same as the product topol-
ogy. There is an example in the appendix of [Hat01], but we won’t care so much for this course.

Definition 1.29 (subcomplex). Fix a CW complex X. Then a subcomplex is a closed subspace A Ď X
which is a union of cells of X and also a CW complex.

Definition 1.30 (quotient). Fix a subcomplex A of a CW complex X. Then X{A is also a CW complex.
Here, the definition of X{A is somewhat technical: its cells are the cells of XzA and then a 1-cell from
A, and one attaches in the obvious way (inductively) via the quotient map Xn´1 Ñ Xn´1{An´1.

Definition 1.31 (suspension). Fix a CW complex X. Then the suspension is the quotient

SX :“
X ˆ I

tp0, xq „ p0, x1q and p1, xq „ p1, x1qu
.

10
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Example 1.32. Take X “ S0, which is two points. Then X ˆ I is two lines, and we then identify the
endpoints of the two lines accordingly to produce a circle S1. More generally, SSn “ Sn`1 essentially
by just gluing two Sns onto the equator of Sn`1.

Definition 1.33 (join). Fix CW complexes X and Y . Then the join X ˚ Y is the product X ˆ Y ˆ I (as
CW complexes) modded out by the equivalence relation identifying px, y, 0q „ px, y1, 0q and px, y, 1q „

px1, y, 1q.

Example 1.34 (simplex). Consider X “ Y “ I “ ∆1. Then X ˚ Y is the cube modded out by crushing
Y on one end and crushing X on the other end, forming a tetrahedron, which is ∆3. More generally,
∆n ˚ ∆m “ ∆n`m`1.

Example 1.35. One has S0 ˚ S0 “ S1, and more generally Sn ˚X “ SX. Essentially, we are gluing two
copies of X onto an equator, which is the suspension.

Definition 1.36 (wedge product). Fix CW complexesX and Y and points x0 P X0 and y0 P Y 0. Then we
form the wedge product X _ Y as X \ Y identifying x0 „ y0.

Definition 1.37 (smash product). Fix CW complexesX and Y and points x0 P X0 and y0 P Y 0. Then the
smash product is pXˆY q{pX_Y q, whereX_Y is embedded intoXˆY as x ÞÑ px, y0q and y ÞÑ py, x0q.

Example 1.38. One can check that S1 ˆ S1 is a torus. To form the smash product, we are crushing the
boundary of the square as follows.

More generally, Sm ^ Sn “ Sm`n.

Definition 1.39 (attach). Fix a subcomplexA of a CW complexX1 and a map f : A Ñ X0 to another CW
complexX0. ThenX0 \f X1 is the spaceX0 \X1 modded out by the equivalence relation a „ fpaq for
all a P A.

Example 1.40. An attaching map φα : BDn Ñ Xn´1 of a CW complex are attachmentsXn´1 \φα
Dn in

the above sense.

1.2.2 Homotopy Extension
We are going to, over time, prove the following results. To begin, quotients preserve homotopy type.

Proposition 1.41. Fix a subcomplex A of a CW complex X. If A is contractible, then the quotient map
X Ñ X{A is a homotopy equivalence.

11



1.2. AUGUST 29 215A: ALGEBRAIC TOPOLOGY

Example 1.42. Fix a connected graph X, which is a one-dimensional CW complex. Fix a spanning tree
T Ď X, which is contractible (any tree can be contracted one edge at a time), so X Ñ X{T is a ho-
motopy equivalence. Then X{T becomes a wedge of loops corresponding (roughly) to the number of
“independent” cycles. Notably, this collapsing is far from canonical, essentially unique up to choosing
the spanning tree and then an order of edges. In some sense, because the homotopy group of a wedge
of loops is a free group, we are able to study automorphisms of the free group in this way.

Proposition 1.43. Fix a subcomplexA of a CW complexX1. Given homotopic maps f, g : A Ñ X0, then
X0 \f X1 “ X0 \g X1.

The idea of the above result is that if we can move the attaching maps f and g around, we should not really
be adjusting the homotopy type.

To prove these results, we want access to the homotopy extension property.

Definition 1.44 (homotopy extension property). Fix a subspace A of a topological space X. Then the
pair pX,Aq has the homotopy extension property if and only if all F0 : X Ñ Y and small homotopy
f‚ : A ˆ I Ñ Y with F0|A “ f0, then there is an extended homotopy F‚ : X ˆ I Ñ Y where Ft|A “ ft
for all t P I.

It will turn out that a subcomplexAof a CW complexAmakes pX,Aq have the homotopy extension property,
but this will take some work to prove.

By way of example, make Y the following “theta graph,” and the left edge is X, and A is the middle
interval.

X A

Here,A Ď X is going to have the homotopy extension property. For example, one can contractA to a point
and imagine dragging neighborhoods of AXX in X (and in fact all of Y ) along for the ride.

One way to think about the homotopy extension property is that we have a map X Y pA ˆ Iq Ñ Y (by
taking the union F0 and f‚), and we and to extend it to a full map X ˆ I Ñ Y . With this in mind, we would
thus like to have to retract r : pX ˆ Iq Ñ pX Y pAˆ Iqq and then composing. By taking Y “ X ˆ I, one sees
that having such a retraction r is in fact equivalent to the homotopy extension property.

So we want to find the retraction r : pX ˆ Iq Ñ pX Y pAˆ Iqq.

Lemma 1.45. Fix a subspaceA of a topological spaceX. Then pX,Aq has the homotopy extension prop-
erty if and only ifA has a “mapping cylinder neighborhood.” In other words, there is a spaceB and map
f : B Ñ A such that Mf is homeomorphic to a neighborhood of A.

Approximately speaking, what’s going on here is that the mapping cylinder allows us some squishing region
through which to extend homotopies. Then the above criteria can be checked for CW pairs pX,Aq by track-
ing through attachments. Namely, a reparameterization of the attaching map has mapping cylinder which
has the property needed above.Read

Hatcher
Rigorously, one inducts on the n-skeleton of a CW complex X, using the

homotopy extension property for cells of X not in A (and not caring about cells already in A).

12



THEME 2

THE FUNDAMENTAL GROUP

2.1 August 31

We now shift gears and talk about our first algebraic invariant: the fundamental group.

2.1.1 The Fundamental Group

Let’s start with an example.

Example 2.1. Fix a loop γ : S1 Ñ pCzt0uq which is continuously differentiable. Then complex analysis
tells us that

1

2πi

ż

γ

1

z
dz

counts the number of times that γ “winds” around the integer. We might call this the “linking number”
of γ. Notably, one can check that continuously varying γ does not adjust the linking number, so this
linking number is homotopy invariant.

The fundamental group is a generalization of this notion.

Definition 2.2 (fundamental group). Let X be a topological space, and fix a basepoint x0 P X. Then the
fundamental group π1pX,x0q is the set of homotopy equivalence classes

π1pX,x0q :“ trf s such that f : I Ñ X has fp0q “ fp1q “ x0u.

We will give π1pX,x0q a group structure below.

Remark 2.3. There is also a π0pXq, which consists of homotopy classes of points rxs for x P X, where
rxs denotes the path-connected component of X. If we let ΩpX,x0q denote the topological space of
loops f : I Ñ X such that fp0q “ fp1q “ x0, then we find π1pX,x0q “ π0pΩpX,x0qq.

13
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Remark 2.4. If we don’t want to care about basepoints, one can look at C
`

S1, X
˘

, which is the set of
maps S1 Ñ X. This can be given a topology via the compact-open topology. Approximately speak-
ing, these will correspond to conjugacy classes in π1pX,x0q provided that X is path-connected. For
example, the homotopy class of a constant loop S1 Ñ X consists of the contractible loops in X; note
there is something to check here in that one wants to know that a contractible loop (not relative to the
basepoints) is in fact contractible relative to the basepoint.

Example 2.5. Let X “ tx0u be a point. Then π1pX,x0q “ 1 because there is only path I Ñ X.

Example 2.6. Let X be a convex subset of Rn for some n ą 0. Then for any x0 P X has π1pX,x0q “ 1.
Indeed, use the convex hypothesis to shrink any path down to the constant path.

We can give π1pX,x0q a product via composition.

Definition 2.7 (composition). Let X be a topological space, and fix a basepoint x0 P X. Given paths
f, g : I Ñ X such that fp1q “ gp0q, we define the path pf ¨ gq : I Ñ X via

pf ¨ gqptq :“

#

fp2tq if 0 ď t ď 1{2,

gp2t´ 1q if 1{2 ď t ď 1.

Note that f ¨ g is well-defined at t “ 1{2 because fp1q “ gp0q.

The point of the above definition is to “squish” a path to do both f and g in the interval I, but at twice the
speed. One has the following checks.

• The class rf ¨ gs does not depend on the choice of representatives f and g. Essentially, if f1 „ f2 and
g1 „ g2, then one can use these two homotopies to glue together to make a new homotopy pf1 ¨ g1q „

pf2 „ g2q.

• We have rpf ¨ gq ¨ hs “ rf ¨ pg ¨ hqs, so composition associates. The point is that these are basically
reparameterizations of each other.

• There is an identity path given by ex0
ptq :“ x0. The identity check is done again by some idea of repa-

rameterization.

• For a given path f : I Ñ X, we can define f : I Ñ X by fptq :“ fp1 ´ tq and then check that

f ¨ f „ efp0q,

so
“

f
‰

provides the inverse path for rf s in π1pX,x0q. The point is that f ¨ f is

`

f ¨ f
˘

ptq “

#

fp2tq if 0 ď t ď 1{2,

fp2 ´ 2tq if 0 ď t ď 1{2.

One can then provide a homotopy by

hsptq :“

$

’

&

’

%

fp2tq if 0 ď t ď s{2,

fpsq if s{2 ď t ď 1 ´ s{2,

fp2 ´ 2tq if 1 ´ s{2 ď t ď 1,

so h0 “ efp0q and h1 “ f ¨ f .

For these checks, it is helpful to have lemmas establishing continuity of piecewise functions and establishing
that reparameterization does not affect homotopy class.

14
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Remark 2.8. Staring hard at our definition of composition, one sees that our reparameterization busi-
ness is really just choosing various piecewise affine maps I Ñ I with slopes in 2Z and breaks at the
dyadic rationals 2ZZ Ď Q. These maps form a group called the Thompson group.

Remark 2.9 (fundamental groupoid). Fix a topological spaceX, and define a category where the objects
are points x P X, and the morphisms x Ñ y are paths (up to homotopy fixing endpoints). The above
checks now show that this is in fact a category, where each morphism has an inverse. This category is
called the fundamental groupoid. Modding out by isomorphism, our objects are now path components
in X, and choosing a particular component produces the fundamental group in its endomorphisms.

Remark 2.10. Verifying that π1pX,x0q only required reparameterization. So as in Remark 2.9, we could
also look at the category where paths are only considered up to reparameterization, and the above
checks still go through. This is related to the notion of “thin homotopy.”

Lemma 2.11. Fix a topological space X. Further, fix a path p : I Ñ X. Then f ÞÑ pp ¨ f ¨ pq provides an
isomorphism π1pX, pp1qq Ñ π1pX, pp0qq.

Proof. This is well-defined because f1 „ f2 implies p ¨ f1 „ p ¨ f2 implies p ¨ f1 ¨ p „ p ¨ f2 ¨ p. This is a group
homomorphism because

p ¨ f ¨ g ¨ p „ p ¨ f ¨ p ¨ p ¨ g ¨ p.

Lastly, this is an isomorphism because p provides the inverse map. ■

Remark 2.12. The above result roughly says that we can indeed look at the fundamental groupoid only
in terms of the path-connected components.

Thus, we see that π1pX,x0q is well-defined up to base-point provided that X is path-connected. However,
the isomorphism between base-points is only defined up to path between those basepoints! Roughly speak-
ing, the problem is that elements of π1pX,x0q should really only be thought of up to inner automorphism
because we can pre- and post-compose by some loop at x0.

Lemma 2.13. If X is homeomorphic to Y by φ : X Ñ Y , then π1pX,x0q – π1pY, fpx0qq for any x0 P X.

Proof. Use φ. ■

2.1.2 The Fundamental Group of S1

Here is our result.

Theorem 2.14. Fix any x P S1. Then π1
`

S1, x
˘

– Z. In fact, there is an isomorphism Φ: Z Ñ π1
`

S1, x
˘

given by
n ÞÑ rt ÞÑ pcos 2πnt, sin 2πntqs .

Sketch without covering spaces. We show injectivity and surjectivity independently.

• Think ofS1 as embedded inCas tz : |z| “ 1u and take a smooth path f : I Ñ S1, lift it to a map rf : I Ñ R
via

rfptq :“

ż t

0

dθ,

15
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where dθ is some differential form S1 (say, x dy´ y dx). Then rfp1q is intuitively contained in 2πZ and is
homotopy invariant. Now, f is not smooth, then we can use some small homotopy to make f smooth
and then use the above argument. This provides an inverse map toΦ and thus shows thatΦ is injective.

• For surjectivity, one can use uniform continuity of any path f : I Ñ S1 and the compactness of S1 in
order to divide up I into intervals on which f can be written as a composition of well-behaved paths,
which eventually allows us to force f to make piecewise linear. Once f is piecewise linear, we go
interval-by-interval and fix f to be constant speed. Eventually f becomes one of the Φpnq for some
n. ■

For the covering space approach, the point is that we understand the fundamental group of R well, and we
have a fairly well-behaved “covering map” p : R Ñ S1 given by ppθq :“ pcos 2πθ, sin 2πθq. The main claim,
then, is that any path ω : I Ñ S1 has a unique lift rω : I Ñ R such that rωp0q “ ωp0q and p ˝ rω “ ω. The point is
that once we lift, we can use a homotopy up in R (fixing the endpoints of rω), which will then go back down
to a homotopy on S1 if we are careful. Anyway, this lifting process can essentially be done as described in
the surjectivity check above.

2.2 September 5

Today we actually prove πp

1S
1q – Z.

2.2.1 Eckmann–Hilton Argument
Because it is fun, we begin with some nonsense.

Proposition 2.15 (Eckmann–Hilton). Let X be a set equipped with the binary operations ˝ and ˚ such
that the following hold.

(a) Identity: there are elements 1˝, 1˚ P X such that 1˝ ˝ a “ a ˝ 1˝ “ a and 1˚ ˚ a “ a ˚ 1˚ “ a for all
a P X.

(b) Distribution: we have pa ˝ bq ˚ pc ˝ dq “ pa ˚ cq ˝ pb ˚ dq for all a, b, c, d P X.

Then ˝ and ˚ are the same operation and in fact are both commutative and associative.

Proof. This is purely formal. We proceed in steps.
1. We show that 1˝ “ 1˚. Indeed, note

1˚ “ 1˚ ˚ 1˚ “ p1˚ ˝ 1˝q ˚ p1˝ ˝ 1˚q “ p1˚ ˚ 1˝q ˝ p1˝ ˚ 1˚q “ 1˝ ˝ 1˝ “ 1˝.

From now on, we use the symbol 1 to denote our identity 1˝ “ 1˚.

2. We show that a ˚ b “ a ˝ b. Indeed, note

a ˚ b “ pa ˝ 1q ˚ p1 ˝ bq “ pa ˚ 1q ˝ p1 ˚ bq “ a ˝ b.

Thus, our operations are the same, and we will use the symbol ˚ to denote both of them now. Notably,
our distribution law is pa ˚ bq ˚ pc ˚ dq “ pa ˚ cq ˚ pb ˚ dq.

3. We show that ˚ is commutative. Indeed, for any a, b P X, we see

a ˚ b “ p1 ˚ aq ˚ pb ˚ 1q “ p1 ˚ bq ˚ pa ˚ 1q “ b ˚ a.

4. We show that ˚ is associative. Indeed,

pa ˚ bq ˚ c “ pa ˚ bq ˚ p1 ˚ cq “ pa ˚ 1q ˚ pb ˚ cq “ a ˚ pb ˚ cq,

for any a, b, c P X. ■

As an application, we have the following result.
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Corollary 2.16. Let G be a topological group with identity e P G. Then π1pG, eq is abelian.

Proof. Let ¨ denote the usual concatenation operation on π1pG, eq. The point is to give another binary oper-
ation to π1pG, eq and then apply Proposition 2.15.

Well, let ˚ denote the group operation on G, and for paths f, g : I Ñ G based at e, we define the path
pf ˚ gq : I Ñ G by pf ˚ gqptq :“ fptq ˚ gptq. Here are the necessary checks for our purposes.

• Note f ˚ g is a continuous map because it is the composite of the continuous maps

I
pidI ,idIq

Ñ I ˆ I
pf,gq
Ñ GˆG

˚
Ñ G.

• We show rf ˚ gs does not depend on the choice of homotopy classes rf s and rgs, so we may view ˚ as
a binary operation on π1pG, eq. Suppose f „ f 1 and g „ g1 by the homotopies F‚ and G‚, respectively.
We want to show that f ˚ g „ f 1 ˚ g1. Well, defineH‚ : Gˆ I Ñ G byHtpxq :“ Ftpxq ˚Gtpxq for all t P I
and x P G. Then we see that H0 “ F0 ˚ G0 “ f ˚ g and H1 “ F1 ˚ G1 “ f 1 ˚ g1, and H‚ is continuous
because it is the composite

Gˆ I
pF‚,G‚q

Ñ GˆG
˚

Ñ G.

• Note that ˚ has an identity element given by the constant path cptq :“ e for all t P I. Indeed, for any
rf s P π1pG, eq, we see that pf ˚ cqptq “ fptq ˚ cptq “ fptq for all t P I, so rf s ˚ rcs “ rf ˚ cs “ rf s.

• Fix ras, rbs, rcs, rds P π1pG, eq. We claim that

pras ¨ rbsq ˚ prcs ¨ rdsq
?
“ pras ˚ rcsq ¨ prbs ˚ rdsq.

Removing all the homotopy classes, it is enough to show that pa ¨ bq ˚ pc ¨ dq “ pa ˚ cq ¨ pb ˚ dq. Well, for
any t P I, we compute

ppa ¨ bq ˚ pc ¨ dqqptq “ pa ¨ bqptq ˚ pc ¨ dqptq “

#

aptq ˚ cptq if t ď 1{2,

bptq ˚ dptq if t ě 1{2,

and

ppa ˚ cq ¨ pb ˚ dqqptq “

#

pa ˚ cqptq if t ď 1{2,

pb ˚ dqptq if t ě 1{2,

which is the same path.

Now, Proposition 2.15 shows that ˚ and ¨ must be the same operation on π1pG, eq and that ¨ is commutative,
which is what we wanted. ■

2.2.2 Covering Spaces
Our computation is going to use the notion of a covering space.

Definition 2.17 (covering space). Fix a topological spaceX. Then a covering space is a topological space
rX together with a projection map p : rX Ñ X such that each x P X has an open neighborhood U Ď X

containing x such that p´1pUq “
Ů

αPλ Uα where Uα is open and p : Uα Ñ U is a homeomorphism. In
this set up, the open set U Ď X is said to be evenly covered.

The fact we will require about covering spaces is the following “fibration property.”
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Proposition 2.18. Fix a topological space X and covering space p : rX Ñ X. Further, suppose we have
maps F : Y ˆ I Ñ X and rF : Y ˆ t0u Ñ rX such that p ˝ rF |Yˆt0u “ F |Yˆt0u. Then there is a unique
extension rF : Y ˆ I Ñ rX such that p ˝ rF “ F .

Proof. We proceed in steps. Say that a subset U Ď X is “evenly covered” if and only if p´1pUq “
Ů

αPλ Uα
and p : Uα Ñ U is a homeomorphism. Note that making an evenly covered open subset smaller will retain it
being evenly covered using the fact that the maps p : Uα Ñ U is a homeomorphism.

1. To set us up, given y P Y , we claim that there we can find an open neighborhood V of y and a finite
open cover U of I such that F pV ˆUq is contained in an evenly covered subset ofX for anyU P U . The
point is to use compactness to shrink an evenly covered subset containing F pV ˆ Iq sufficiently. Well,
for each t P I, we may find and evenly covered subset Ut Ď X containing F py, tq and then find εt ą 0
and an open neighborhood Vt of y such that Vt ˆ pt´ εt, t` εtq Ď F´1pUtiq.
Now, by compactness, we may choose finitely many t labeled tt1, . . . , tnu and set εi :“ εti and Vi :“ Vti
and Ui :“ Uti such that the intervals pti ´ εi, ti ` εiq covers I and F pVi ˆ pti ´ εi, ti ` εiqq Ď F´1pUiq.
Now, set

V :“
n
č

i“1

Vi

so any t P I lives in some pti ´ εi, ti ` εiq has F pV ˆ pti ´ εi, ti ` εiqq Ď Ui.

2. We prove uniqueness. It is enough to show this in the case where Y is a point. Namely, fix suppose we
have two lifts rF1 and rF2 ofF which agree with rF . Then, fixing some y P Y , we see that rF1pyq and rF2pyq

are maps I Ñ rX lifting F pyq : I Ñ X which equal rF py, 0q at 0. In this setting, we want to show that
rF1py, tq “ rF2py, tq for all t P I. As such, we suppress the point y P Y in the argument which follows.
The previous step promises us a finite open cover U of I such that F pUq is contained in an evenly
covered open subset of X for each U P U . Ordering the endpoints of U , we produce a partition 0 “

t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 of r0, 1s such that F prti, ti`1sq is covered in an evenly covered subset of Ui for
each i.
We are now ready to show our uniqueness. We show that rF1ptq “ rF2ptq for each t P r0, tis by induction
on i. At i “ 0, there is nothing to say because rF1p0q “ rF p0q “ rF2p0q. Now, for the induction, we
are given that rF1ptiq “ rF2ptiq. The point is that F prti, ti`1sq is contained in an evenly covered subset
Ui Ď X, so rF1prti, ti`1sq lands in one of the disjoint copies of Ui of p´1pUiq, and it lands in exactly one
because rti, ti`1s is connected; let rUi be the corresponding disjoint copy. The same statement holds for
rF2, and in fact rF2prti, ti`1sq Ď rUi because rF2prti, ti`1sq needs to land in the same copy of Ui containing
rF1ptiq “ rF2ptiq.

We are now done. Note p : rUi Ñ Ui is injective, so

p ˝ rF1 “ p ˝ rF2

for t P rti, ti`1s forces equality after removing t.

3. Fix some y P Y . We will extend locally: we construct some open neighborhood V of y and a lift rF : V ˆ

I Ñ rX of F |VˆI . The point is to “spread out” from tyu ˆ I using the previous step.
As before, the first step promises us an open neighborhood V of y and a finite open cover U of I such
that F pV ˆUq is contained in an evenly covered subset for eachU P U . Arranging the endpoints of the
open sets inU , we may say that we have a partition 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn “ 1 such thatF pV ˆrti, ti`1sq

is contained in an evenly covered open subset Ui Ď X for each i.
We now extendF to rF on r0, tis inductively. For i “ 0, there is nothing to do because rF |Yˆt0u is already
fixed. Now, suppose we have a definition of rF on V ˆ r0, tis. Say F pV ˆ rti, ti`1sq Ď Ui, and select the
copy of Ui named rUi Ď p´1pUiq by requiring it to contain rF py, tiq. Now, shrink V so that V ˆ ttiu
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contains y still but now is contained in rUi. Now, define rF on V ˆ rti, ti`1s by pre-composing with the
homeomorphism

p´1 : Ui Ñ rUi,

and we produce a continuous map because we have agreed on the seam at V ˆ ttiu.1 This completes
the lifting to a neighborhood V of y.

4. We can now glue the lifts rF constructed in the previous step, and the gluing is well-defined because
they must agree on intersections by the uniqueness of the second step. This completes the proof. ■

And now here is our result.

Theorem 2.19. For any x P S1, we have π1
`

S1, x
˘

– Z.

Proof. For brevity, embed S1 into C as S1 “ R{Z, and let our basepoint be 0 P S1. We now abbreviate our
fundamental group to π1

`

S1
˘

.
Now, we note that we have the continuous (in fact, holomorphic) path ωn : r0, 1s Ñ S1 given by t ÞÑ nt.

A reparameterization argument can show that rωns ¨ rωms “ rωm`ns for any m,n P Z, so we have defined
a homomorphism φ : Z Ñ π1pS1q. We would like to show that this map is an isomorphism. We will use
Proposition 2.18, for which we note that p : R Ñ S1 given by pptq :“ t is a covering space map. Indeed, for
each t P S1, choose the neighborhood pt´ 0.1, t` 0.1q so that

p´1ppt´ 0.1, t` 0.1qq “ pt´ 0.1, t` 0.1q ` Z “
ğ

nPZ
pt` n´ 0.1, t` n` 0.1q.

We now show that φ is an isomorphism.

• Surjective: let f : I Ñ S1 be a loop, and we want to show that f „ ωn for some n P Z. By Proposi-
tion 2.18 applied with Y being a point, we get a path rf : I Ñ R such that f “ p ˝ rf . Now, set n :“ rfp1q,
which is indeed an integer, and we claim rf „ rωn, where rωnptq :“ nt; this will finish after composing
with the projection p as it shows that f „ ωn by Lemma 1.9.

To see this, we define the map h : I ˆ I Ñ R by

htpsq :“ p1 ´ tq rfpsq ` trωnpsq.

Then h is continuous because it is the composite

I
pid,1´id, rf,ωnq

Ñ I ˆ I ˆ R ˆ R Ñ R,

where the last map is taking a linear combination. Now, h0 “ rf and h1 “ rωn, so rf „ rωn follows.

• Injective: supposeωn „ ω0, and we want to show that n “ 0. Then we have a homotopy h‚ : IˆI Ñ X

such that h0 “ ωn and h1 “ ω0. Then Proposition 2.18 produces a unique lift rh‚ : I ˆ I Ñ rX of h such
that rhtp0q “ 0 for each t P I. Now, the map t ÞÑ rhtp1q is continuous, and htp1q “ 0 for each t P I, so the
map t ÞÑ rhtp1q maps to the discrete space Z. It follows that rh0p1q “ rh1p1q, so 0 “ n because of how ω0

and ωn lift to R. ■

2.2.3 The Fundamental Group Functor
Let’s do some nonsense checks, for fun.

1 To avoid this annoyance at the seam, one can allow the partition to overlap a bit so that we only ever glue continuous maps along
open sets, which is legal. I won’t write this out.
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Definition 2.20 (based topological space). A based topological space pX,x0q is a topological spaceX to-
gether with a basepoint x0 P X. A map of based topological spacesφ : pX,x0q Ñ pY, y0q is a continuous
map φ : X Ñ Y such that φpx0q “ y0. The category with these objects and morphisms is Top˚.

We won’t bother to check that Top˚ is a category. Here is the main point of this subsection.

Proposition 2.21. We have a functor π1 : Top˚ Ñ Grp.

Proof. We already know that π1pX,x0q is a group for each based topological space pX,x0q, so we really only
have to check the functoriality properties.

Fix a map φ : pX,x0q Ñ pY, y0q of based topological spaces. We need to define a group homomorphism
π1pφq : π1pX,x0q Ñ π1pY, y0q. Well, given a loop f : I Ñ X based at x0, we note that pφ˝fq : I Ñ Y is a loop
based at y0 “ φpx0q, so we hope that our desired map is pφ ˝ ´q. Here are our checks.

• Well-defined: if f „ f 1, we need to show that φ ˝ f „ φ ˝ f 1. This is simply Lemma 1.9.

• Group homomorphism: we need to show that pφ ˝ fq ¨ pφ ˝ gq „ φ ˝ pf ¨ gq for loops f, g : I Ñ X based
at x0. In fact, these paths are equal: for t P I, we compute

ppφ ˝ fq ¨ pφ ˝ gqqptq “

#

φpfp2tqq if t ď 1{2,

φpgp2t´ 1qq if t ě 1{2,
“ pφ ˝ pf 9gqqptq.

We now prove functoriality of π1.

• Identity: note that idX : pX,x0q Ñ pX,x0q has idX ˝f “ f for any path f : I Ñ X, so π1pidXqprf sq “ rf s

for any rf s P π1pX,x0q.

• Composition: given maps φ : pX,x0q Ñ pY, y0q and ψ : pY, y0q Ñ pZ, z0q and a loop f : I Ñ X based at
x0, we see that

π1pψ ˝ φqprf sq “ rψ ˝ φ ˝ f s “ π1pψqprφ ˝ f sq “ pπ1pψq ˝ π1pφqqprf sq,

which finishes. ■

Of course, just being a functor is not terribly interesting. Here is a nice property.

Proposition 2.22. Fix based topological spaces pX,x0q and pY, y0q. Then

π1pX ˆ Y, px0, y0qq – π1pX,x0q ˆ π1pY, y0q.

Proof. Let pX : pX ˆY, px0, y0qq Ñ pX,x0q and pY : pX ˆY, px0, y0qq Ñ pY, y0q denote the projections. Now,
note that we have a map

pπ1ppXq, π2ppY qq : π1pX ˆ Y, px0, y0qq Ñ π1pX,x0q ˆ π1pY, y0q

which we claim is an isomorphism. For brevity, let this morphism be φ. Of course, φ is a homomorphism
because π1 is a functor (see Proposition 2.21).

• Surjective: fix loops fX : I Ñ X and fY : I Ñ Y based at x0 and y0 respectively. Then the map fptq :“
pfXptq, fY ptqq defines a loop I Ñ X ˆ Y based at px0, y0q, and by construction fX “ pX ˝ f and
fY “ pY ˝ f , so

φpfq “ prpX ˝ f s, rpY ˝ f sq “ prfX s, rfY sq.
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• Injective: suppose φprf sq “ φprgsq, and we want to show that rf s “ rgs. Well, we have homotopies
hX‚ : I ˆ I Ñ X and hY ‚ : I ˆ I Ñ Y such that hX0 “ pX ˝ f and hX1 “ pX ˝ g and hY 0 “ pY ˝ f and
hY 1 “ pY ˝ g. Then we define h‚ : I ˆ I Ñ X ˆ Y by

htpsq :“ phXtpsq, hY tpsqq.

Note ht is continuous because it is continuous in each coordinate. To finish, we see h0 “ f and h1 “ g
by checking after applying the projections pX and pY , so f „ g follows. ■

Remark 2.23. More precisely, the above proof has shown that π1 preserves products.

Example 2.24. We have π1
`

S1 ˆ S1
˘

– Z2 by Proposition 2.22 and Theorem 2.19.

Example 2.25. We show that there is no retraction r : D2 Ñ S1. Let i : S1 Ñ D2 be the inclusion. If
there is a retraction r, then we see that r ˝ i “ idS1 , so functoriality of π1 means that the composite

π1
`

S1
˘ i

Ñ π1
`

D2
˘ r

Ñ π1
`

S1
˘

is an isomorphism. In particular, i is injective. However, π1
`

S1
˘

– Z by Theorem 2.19, and π1
`

D2
˘

“ 0
because D2 is convex and hence contractible.

Remark 2.26. One can use Example 2.25 to show Brouwer’s fixed point theorem: we show that any
continuous map h : D2 Ñ D2 has a fixed point. Well, suppose h has no fixed point. Then there is a
continuous map sending x P D2 to the point on S1 which intersects with the raw starting at hpxq and
then going through x. Then h : D2 Ñ S1 defines a retraction, contradicting Example 2.25.

2.3 September 7
Today we prove the van Kampen theorem.

2.3.1 Free Products of Groups
We will be somewhat brief on this because this is not an algebra class.

Definition 2.27 (free product). Let tGαuαPλ be a collection of groups. Then we form the free product
˚αPλGα as having underlying set given by strings of words whose letters are in theGα, modded out by
the relations gα ¨ hα “ gαhα whenever gα, hα P Gα for some α P λ.

Perhaps one should check that this forms a group, so we will sketch what one should do.

1. Let W be the set of finite strings (i.e., words) whose letters are g or g´1 where g P Gα for some α P λ.
Then we build W by allowing combining gα ¨ hα into a single character gαhα provided that gα and hα
belong to the same group Gα. We will realize our desired group as a subgroup of AutpW q.

2. For each g P W , define the function Lg : W Ñ W by left concatenation. One should show that Lg is
in fact a well-defined function, which depends on the equivalence relation defining W , but in short,
one can show that having two words w and w1 with w „ w1 enforces g ¨ w „ g ¨ w1 by using the same
concatenation rules on both sides. A rigorous argument would need to use an induction, which we
won’t bother to write out.
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3. Note that Le (where e denotes the empty string) is the identity on W , and Lg´1 is the inverse of Lg.
Thus, the image of L‚ in W is a subgroup of AutpW q, and we call this subgroup ˚αPλGα. One realizes
this group as the free product described above by identifying Lg with Lgpeq. The point of introducing
L‚ at all is to make the various group law checks easier.

One has the following universal property, which we will not prove, again because this is not an algebra
class.

Proposition 2.28. Let tGαuαPλ be a collection of groups. Given homomorphisms φα : Gα Ñ H to a
target group H, there is a unique homomorphism φ : ˚αPλ Gα Ñ H such that the following diagram
commutes.

Gα

˚αPλGα Hφ

ια
φα

Here, ια : Gα Ñ ˚αPλGα is the inclusion.

Proof. Let’s sketch the proof. We begin by showing uniqueness of φ. Given a word gα1 ¨ ¨ ¨ gαn in ˚αPλ, we
see that the commutativity of the diagram enforces

φ pgα1 ¨ ¨ ¨ gαn
q “ φpgα1q ¨ ¨ ¨φpgαnq

“ φpια1pgα1qq ¨ ¨ ¨φpιαnpgαnqq

“ φα1pgα1q ¨ ¨ ¨φαnpgαnq.

Thus, φ is uniquely determined by the φα. It remains to show that the above formula in fact defines a group
homomorphism, which follows roughly speaking by the minimal construction of ˚αPλ. Namely, we have
thus far defined a function φ : W Ñ H where W is the set of all words, so one needs to check that we are
still safe after modding out by the requisite equivalence relation onW . We will not do this, but in short, one
can use induction on the various generators of the group presentation of ˚αPλGα. ■

In the discussion that follows, we will frequently use group presentations, which is an expression of the form

xa1, a2, . . . , : w1, w2, . . .y ,

where the a‚ are generators for words giving the group and w‚ are words intended to produce relations for
the group, by default of the form w‚ “ 1.

Example 2.29. The group xay gives Z. Namely, the group consists of the elements
␣

. . . , a´3, a´2, a´1, a0, a1, a2, a3, . . .
(

.

Example 2.30. The group xa : a2y gives Z{2Z. Namely, our isomorphism is by sending k P Z{2Z to ak.
This is well-defined because 2 ÞÑ a2, and a2 is the identity of the group.

2.3.2 van Kampen’s Theorem
In this subsection, we state and prove the van Kampen theorem. Let’s explain the idea. Suppose we can
decompose X into path-connected open subsets tAαuαPλ. Then the inclusions iα : Aα ãÑ X induce maps
π1pAαq Ñ π1pXq, which by the nature of the free product induces a map

˚αPλπ1pAαq Ñ π1pXq.

It is not too hard to see that this map is surjective.
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Lemma 2.31. Fix a topological space X which is the union of path-connected open subsets tAαuαPλ

each containing a basepoint x0 P X. For any loop γ : I Ñ X based at x0, there are loops γα1
, . . . , γαn

based at x0 such that
γ „ γα1 ¨ . . . ¨ γαn

and γαn is a path connected in Aαn for each αn.

Proof. For each α P λ, decompose γ´1pAαq Ď I into a collection of intervals Iα. Then

I “ γ´1pXq “
ď

αPλ

γ´1pAαq “
ď

αPλ

ď

I1PIα

I 1.

Now, I is compact, so this open cover can be turned into a finite subcover tpak, bkqunk“1 where γppak, bkqq Ď

Aαk
for some αk P λ. Ordering the pak, bkq, we produce a partition 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tn´1 ă tn “ 1 such

that γprtk, tk`1sq Ď Aαk
for some perhaps different n and αk P λ.

We are now ready to finish. For each 1 ď k ď n´ 1, we recall thatAαk
is path-connected, so we can find

a path ηk from γptkq to x0. Then we see that

γ „ γ|rt0,t1s ¨ γ|rt1,t2s ¨ . . . ¨ γ|rtn´2,tn´1s ¨ γ|rtn´1,tns

„ γ|rt0,t1s ¨ η1
looooomooooon

γ0:“

¨ η1 ¨ γ|rt1,t2s ¨ η2
loooooooomoooooooon

γ1:“

¨η2 ¨ . . . ¨ ηn´2 ¨ ηn´2 ¨ γ|rtn´2,tn´1s ¨ ηn´1
looooooooooooooomooooooooooooooon

γn´2:“

¨ ηn´1 ¨ γ|rtn´1,tns
looooooooomooooooooon

γn´1:“

.

The above expression provides the desired factorization. ■

Corollary 2.32. Fix a topological space X which is the union of path-connected open subsets tAαuαPλ

each containing a basepoint x0 P X. Then the map induced map

˚αPλπ1pAα, x0q Ñ π1pX,x0q

is surjective.

Proof. This is direct from Lemma 2.31. ■

We would now like to compute its kernel of our induced map. Well, if Aα X Aβ is path-connected, then we
let iαβ : Aα XAβ Ñ Aα denote the inclusion, and we note that

Aα XAβ Aα

Aβ X

iαβ

iβα iα

iβ

commutes, so

π1pAα XAβq π1pAαq

π1pAβq π1pXq

π1piαβq

π1piβαq π1piαq

π1piβq

also commutes. Thus, for any γ P π1pAα X Aβq, we see that π1piαqpπ1piαβqprγsqq “ π1piβqpπ1piβαqprγsqq,
which produces a relation belonging to the kernel of our surjection ˚αPλπ1pAαq Ñ π1pXq. Under favorable
circumstances, van Kampen’s theorem tells us that this is the entire kernel.
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2.4 September 12
Let’s wrap up some loose ends. People are doing pretty well on the homeworks, but please cite theorems
and so on to be rigorous.

2.4.1 The Fundamental Group of a Torus Knot
Let’s give a few applications of van Kampen’s theorem.

Example 2.33. LetK Ď Rn be a compact subset forn ě 3. EmbedRn Ď Sn by stereographic projection,
and van Kampen shows that

π1 pRnzKq – π1 pSnzKq .

More precisely, we have Sn sitting inside Sn´1 ˆR (placeK inside a large ball, and we can continuously
deform any loop in RnzK into this large ball), and the π1 arising from this R cannot help you.

Example 2.34 (torus knots). Fix positive integers m,n P Z bigger than 1 with gcdpm,nq “ 1. Define the
torus knotKm,n Ď T 2 (where T 2 “ S1 ˆ S1 “ R2{Z2) as the image of the linemy “ nx; alternatively, it
is the image of the map t ÞÑ pmt, ntq. For example, here is K3,2 sitting inside the square R2{Z2.

We compute π1
`

R3zKm,n

˘

.

Proof. Professor Agol seems to prefer the “Clifford torus” thought of as

T 2 “

!

pz1, z2q : |z1| “ |z2| “ 1{
?
2
)

.

This sits inside S3 “

!

pz1, z2q : |z1|
2

` |z2|
2

“ 1
)

. Anyway, we begin by giving us some breathing room.
Define the “thickening” of K as

A :“

"

pz1, z2q : |z1| ă
1

?
2

` ε

*

z

"

´

rzm,
a

1 ´ r2zn
¯

: z P S1,
1

?
2

ď r ď
1

?
2

` ε

*

(namely, A is the torus thickened in such a way that it carries the subtraction of Km,n) and in the other way
as

B :“

"

pz1, z2q : |z2| ă
1

?
2

`
ε

*

z

"

p
a

1 ´ r2zm, rznq :
1

?
2

ď r ď
1

?
2

` ε

*

.

Intersecting, we see that A X B is pS1 ˆ S1qzKm,n thickened by p´ε, εq, which we note can be deformed to
pS1 ˆ Rq ˆ p´ε, εq, which has fundamental group Z. Notably, π1pAq – Z and π1pBq – Z by deforming them
carefully to the circle S1, so our fundamental group is going to be pZ ˚ Zq{Z by van Kampen.

However, we need to compute the image of π1pAXBq in π1pAq ˚ π1pBq. In the retraction ofA down to a
circle says that the image in π1pAq is by multiplication by n, and similarly going to B is multiplication by m.
We conclude that our fundamental group is

xa, b : an “ bmy .

As an aside, we note that S3zKm,n will have a deformation retract back to Km,n shifted upwards by some
amount (for example, see the diagram and imagine a copy ofKm,n shifted up by some small ε ą 0). Anyway,
for m,n ą 1 we can see that the center of the above group is xany, so modding out by the center yields
Z{mZ ˚ Z{nZ. In total, we are able to distinguish the torus knots S3zKm,n from each other.2 To deal with
the signs of m and n, we need a notion of isotopy to distinguish a knot from its “mirror image.” ■

2 Alternatively, the abelianizationπ1pS3zKm,nq is the free group with pm´1qpn´1q generators, and the abelianization of pZ{mZq˚

pZ{nZq is mn, from which we can read off m and n.
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2.4.2 The Fundamental Group of a CW Complex
Let’s move on from knots and compute the fundamental group of some cell complexes.

Example 2.35. LetX be a connected graph (i.e., a 1-dimensional CW complex), then π1pXq is homotopy
equivalent to a wedge of circles, which has fundamental group Z˚r for some r, which is the free group
on r letters.

Now, if Y is a connected CW complex, then π1pY 1q is a free group. Then π1pY 2q might be complicated,
but let’s imagine computing π1pY 3q. The point is that we take some ball e3α – D2 and attach it via some
φα : BD3 Ñ Y 2.

To compute the fundamental group of this, we cover Y 2 \φα e3α by A :“ Y 2 Yφα pe3αztxuq and B “

peα3 q˝ (Here, x is some point in the interior.) Notably, the intersection is simply S2 ˆ R, which is trivial, so
we conclude that the attachment e3α did nothing to our fundamental group by van Kampen. Applying this
argument inductively (perhaps transfinitely), we see that π1pY 3q “ π1pY 2q. One can continue upwards to
conclude that π1pY q “ π1pY 2q.3

Now, let’s say that we actually want to compute π1pY 2q. To do so, we note that we have a surjection
π1pY 1q Ñ π1pY 2q given by the inclusion (any loop can be deformed off the 2-skeleton to the 1-skeleton).
Now, for each 2-cell e2α attached via φα : Be2α Ñ Y 1, we choose a path γα : I Ñ Y 1 so that γαp0q “ y and
γαp1q “ φαp0q and then find that

γα ¨ φα ¨ γα

ought to be in the kernel of our projection. An argument shows that these elements will generate the needed
kernel. One can show this by an analogous argument to the above: the point is that the attachment of
e2α kills basically exactly the loop given above and nothing else, so we can use an inductive argument to
conclude.

Remark 2.36. One can use this result to show that any groupG arises as the fundamental group of a CW
complex of dimension 2. Roughly speaking, the point is that any group is the quotient of a free group,
and the above argument allows us to dictate relations, provided that we are sufficiently careful.

Example 2.37. Fix a positive integer g. Define Sg by starting with a 4g-gon and attaching the edges.
Namely, for n ă 3, an n pmod 4q edge is identified with the next over n ` 2 pmod 4q edge in the oppo-
site direction. Roughly speaking, after some manipulation, one finds that Sg ought to be a g-hole torus.
Using the above argument, one finds that π1pSgq is generated by 2g generators a1, . . . , ag, b1, . . . , bg
modded out by the relations aibia´1

i b´1
i for each i. In particular, the abelianization of π1pSgq has all

the commutators, so we get Z2g. Thus, π1 distinguishes our surfaces.

Example 2.38 (projective space). We note π1pRP8
q – π1pRP2

q because the higher cells cannot help you
in the fundamental group. Further, we see π1pRP2

q is a disk with semicircles identified in the opposite
direction, which we can see from the above argument is simply Z{2Z.

Example 2.39 (lens space). Fix positive integers p and q with gcdpp, qq “ 1. Take S2 and divide the equa-
tor into p circles, and we glue the top hemisphere to the bottom hemisphere by gluing after a 2πp{q
rotation. The space has fundamental group Z{pZ. Indeed, our 1-skeleton is the equator, and the ap
comes from how we attached our disks together.

Next time we will talk about covering spaces.

3 One can do this without transfinite induction by working with a single loop and arguing about homotopy equivalence. The point is
that a single loop (and in fact a single homotopy) can is compact and therefore only cares about finitely many cells.
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2.5 September 14

We’re talking about covering spaces today.

2.5.1 Examples of Covering Spaces

Our goal is to generalize the method we used to compute π1
`

S1
˘

. Let’s recall our definition.

Definition 2.17 (covering space). Fix a topological spaceX. Then a covering space is a topological space
rX together with a projection map p : rX Ñ X such that each x P X has an open neighborhood U Ď X

containing x such that p´1pUq “
Ů

αPλ Uα where Uα is open and p : Uα Ñ U is a homeomorphism. In
this set up, the open set U Ď X is said to be evenly covered.

Example 2.40. The map p : R Ñ S1 given by t ÞÑ e2πit is a covering space map. Here, we are viewing S1

as tz P C : |z| “ 1u. The point is that, for any e2πiθ P S1, we have

p´1
`

S1z
␣

e2πiθ
(˘

“
ğ

nPZ
pθ, θ ` 2πq.

Non-Example 2.41. The map p : p0, 2q Ñ S1 given by t ÞÑ e2πit is not a covering space map. For example,
any open intervalU around 1 P S1 will have pre-image by p looking like p0, εq \ p1´ ε, 1` εq \ p2´ ε, 2q,
and p0, εq is not mapped homeomorphically to our U Ď S1.

Example 2.42. The map f : Cˆ Ñ Cˆ given by f : z ÞÑ zn for a positive integern is a covering space map.
Roughly speaking, for any ray ℓ through the origin in C, one can define log : pCzℓq Ñ C, which allows us
to define an nth root n

?
w :“ exp

`

1
n logw

˘

on Czℓ; this makes Czℓ into an evenly covered subset, so we
are a covering space upon letting ℓ vary.

Example 2.43. Fix a topological spaceX and a discrete setE. Then of course p : XˆE Ñ X is a covering
space: indeed, X is an evenly covered subset. In fact, if p : rX Ñ X is a covering space map where X is
evenly covered, then the definition of p requires rX –

Ů

αPλXα

Example 2.44. Map p : S8 Ñ RP8 by sending x P S8 to the corresponding line in RP8. More precisely,
embed some Sn Ď S8 into Rn`1 and then take lines down to RPn. Notably, ppxq “ pp´xq for each x
(and conversely ppxq “ ppyq if and only if Rx “ Ry if and only if x “ ˘y), so p is 2-to-1. One can check
that p is a covering space map by looking on the level of cell complexes: the pre-image of the interior
of the unique n-cell penq

˝
Ď RP8 is the disjoint union of the interior of the two n-cells of S8. More

precisely, the n-cell eni inside RPn given by

trx0 : ¨ ¨ ¨ : xi´1 : 1 : xi`1 : ¨ ¨ ¨ : xns : x0, . . . , xi´1, xi`1, . . . , xn P Ru

is evenly covered in the map Sn Ñ RPn. One can extend this idea up to RP8 to conclude: let ei be the
above subset except we do not terminate at xn, and then ei is covered by the open subsets ei,˘ Ď S8

defined as
ei,˘ “ tpx0, x1, . . .q P S8 : xi has sign ˘u .

Let’s do a few examples on S1 _ S1.
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Example 2.45. We examine 2-fold (i.e., 2-to-1) covers ofS1_S1. There is the trivial one with two copies
of S1 _ S1. As another example, note that S1 _ S1 _ S1 loop around S1 _ S1 twice: the first S1 goes
around the firstS1, then half of the secondS1 goes around the secondS1, then the thirdS1 goes around
the first S1 around. Here is an image.

It turns out that, with one more, these are all the 2-to-1 covering maps, which can be seen by finding
index-2 subgroups of π1

`

S1 _ S1
˘

“ Z ˚ Z, as we will soon see.

Example 2.46. Consider the grid ZˆRYRˆZ. This is then a covering space of S1 _S1 by sending the
Z ˆ R to traverse one of the circles S1 and the R ˆ Z to traverse the other circle of S1. More generally,
it turns out that covering spaces are exactly graphs where every vertex has degree 4, which we can see
by coloring the edges red and blue so that each vertex has exactly two red edges and two blue edges;
then choosing an Euler cycle provides the needed covering space. The previous example is one way to
do this. Here is another example of such a graph, with marked Euler cycle.

‚

‚ ‚

‚ ‚ ‚ ‚

‚

5

6

10

11 14

13

3

2

1216

9

8

15

4

7
1

Example 2.47. We can take a subgroup of Z ˚Z to produce a covering space of S1 _S1. As an example,
take the subgroup generated byab and b´1ab. Reading off these generators produces a graph as follows.

‚ ‚

‚ ‚

In general, we basically fold edges together to make relations. For example, the multiple outgoing blue
edges should be folded together.

Example 2.48. There is an infinite tree where each vertex has degree 4. A coloring of the edges produces
a “Cayley graph”C2, which will turn out to be the universal covering space once we define such a notion.
It turns out to be maximal in the sense that it covers any path-connected cover of S1 _ S1.

2.5.2 Lifting with Covering Spaces
We will want the following result.
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Proposition 2.49. Covering spaces have the homotopy lifting property. In other words, given a covering
space p : rX Ñ X, a “homotopy” f‚ : Y ˆ I Ñ X with a given lift rf0 : Y Ñ rX will lift uniquely to
rf‚ : Y ˆ I Ñ rX agreeing with X.

Proof. This is direct from Proposition 2.18. ■

Corollary 2.50. Fix a covering space p : p rX, rx0q Ñ pX,x0q. Thenπ1ppq : π1p rX, rx0q Ñ π1pX,xq is injective.

Proof. Fix some loop rf0 : I Ñ rX in the kernel of π1ppq. Then there is a homotopy f‚ : I ˆ I Ñ X from rf0
to the constant path, which by Proposition 2.49 will lift uniquely to a homotopy rf‚ : I ˆ I Ñ rX agreeing on
rf0. Now p ˝ rf1 is constant, so looking locally at rx0, we conclude that rf1 is constant, so rf0 is homotopic to the
constant map and hence vanishes in π1p rX, rx0q. ■

2.6 September 19
Today we continue discussing covering spaces.

2.6.1 Using Path-Lifting

Last time we showed that covering space maps p rX, rx0q Ñ pX,x0q induce subgroups π1pX,x0q Ñ π1pX,x0q.
Note this subgroup can then communicate information about the covering space.

Proposition 2.51. Fix a covering space p : p rX, rx0q Ñ pX,x0q of path-connected spaces. Then the num-
ber of sheets covering an evenly covered neighborhood of x0 is the index

”

π1pX,x0q : π1p rX, rx0q

ı

,

where we have implicitly embedded π1p rX, rx0q ãÑ π1pX,x0q.

Remark 2.52. BecauseX is connected, the number of sheets of the covering space map is well-defined.
Indeed, for any positive integer n, the set of x P X such that there is an n-sheeted evenly covered open
neighborhood Ux Ď X is open. So we produce a continuous map X Ñ N sending x to the number of
sheets, so connectedness of X forces the number of sheets to be constant.

Proof. We roughly describe the idea. Let ΩpY, y1, y2q denote the set of homotopy classes of paths from y1
to y2. The point is that ΩpX,x0, x0q is in bijection with

ğ

rxPp´1ptx0uq

Ωp rX, rx0, rxq

by lifting paths. Now, π1p rX, rx0q acts on Ωp rX, rx0, rxq for each rx, and each orbit will correspond to a coset of
our quotient. ■

Remark 2.53. Proposition 2.51 can help us check that the covers of Example 2.45 are 2-to-1. For ex-
ample, the subgroup corresponding to the shown covering space is

@

a, b2, bab
D

. Note that we have pro-
duced the free group with free generators as a subgroup of the free group with two generators.
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We would like to go in the other direction, from subgroups back to covering space maps. This requires some
technical hypotheses.

Definition 2.54 (locally path-connected). A topological space X is locally path-connected if and only if
each open neighborhoodU Ď X of a point x P X has some perhaps smaller open neighborhoodU 1 Ď U
of x P X which is path-connected.

Example 2.55. CW complexes are locally path-connected.

Non-Example 2.56. The topologist’s sin curve is not locally path-connected at the origin p0, 0q.

Being locally path-connected allows us to lift covering spaces.

Proposition 2.57. Fix a path-connected, locally path-connected topological space Y with basepoint
y0 P Y . For a covering space p : p rX, rx0q Ñ pX,x0q and continuous map f : pY, y0q Ñ pX,x0q, there
is a lift rf : pY, y0q Ñ p rX, rx0q making the following diagram commute if and only if π1pfqpπ1pY, y0qq Ď

π1ppqpπ1p rX, rx0qq.

pY, y0q p rX, rx0q

pX,x0q

f
p

rf

Proof. The backwards direction follows from functoriality of π1 because we are asking for π1pfq “ π1ppq ˝

π1p rfq. For any y P Y , composition with f defines a composite
ğ

yPY

ΩpY, y0, yq Ñ
ğ

xPX

ΩpX,x0, xq Ñ
ğ

rxPĂX

Ωp rX, rx0, rxq

where the last map is by path-lifting r̈. Then for any path γ P ΩpY, y0, yq, we simply define rfpyq :“ Ćf ˝ γp1q.
To see that this is well-defined, the point is that choosing a different path γ1 P ΩpY, y0, yq produces is able
to lift to basically a loop upstairs in rX, so the value of rfpyq does not move.

For continuity, we will need to use that Y is locally path-connected. Fix y P Y , and we will show that rf
is continuous at y. Set x :“ fpyq, and let U be an evenly covered neighborhood of x, and lift it to rU Ď rX

where p : rU Ñ U is a homeomorphism, and rfpyq P rU . We now may choose a path-connected open subset
V Ď f´1pUq containing y and check continuity using rU , where rfpy1q for any y1 P V can be somewhat easily
defined because V is path-connected. ■

In fact, we have uniqueness of this lifting.
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Proposition 2.58. Fix a connected topological space Y , and fix a covering space map p : rX Ñ X and a
map f : Y Ñ X. Given lifts rf1, rf2 : Y Ñ rX such that p ˝ rf1 “ f “ ˝ rf2 and rf1 and rf2 agree at a single
point, we have rf1 “ rf2.

Proof. Define the subsets

E :“
!

y P Y : rf1pyq “ rf2pyq

)

and N :“
!

y P Y : rf1pyq ‰ rf2pyq

)

.

One can use the covering space decomposition (by looking locally at fpyq for some y P Y ) to show that both
E and N are open, but they are disjoint with E nonempty, so connectedness of Y forces Y “ E. ■

2.6.2 Classifying Covering Spaces
Our goal, roughly speaking, is to construct universal covers.

Definition 2.59 (univesal cover). A covering space map p rX, rx0q Ñ pX,x0q is a universal cover if and only
if rX is simply-connected (i.e., path-connected and π1p rX, rx0q “ 1).

Remark 2.60. Proposition 2.57 tells us that a universal cover rX will cover any covering space of X.

We will want yet another definition.

Definition 2.61 (semilocally simply-connected). A space X is semilocally simply-connected if and only
if each x P X has an open neighborhood U of x such that the induced inclusion π1pU, xq Ñ π1pX,xq is
the trivial map.

Remark 2.62. Let’s explain this condition. Suppose p rX, rx0q Ñ pX,xq is a simply connected and path-
connected covering space. Then any evenly covered subset U Ď X with lift rU , then the inclusion
π1pUq Ñ π1pXq decomposes as

π1pUq Ñ π1prUq Ñ π1p rXq Ñ π1pXq,

which must be the trivial map becauseπ1p rXq “ 1. In other words, we have checked thatX is semilocally
simply-connected.

Example 2.63. The earring space is not semilocally simply-connected at the origin because any neigh-
borhood at the origin will have circles inside.

Being semilocally simply-connected is basically, then, the right hypothesis to have a universal cover.

Theorem 2.64. LetX be a topological space which is path-connected, locally path-connected, and semi-
locally simply-connected. Then X has a simply-connected covering space rX Ñ X which is unique up
to isomorphism of pointed topological spaces over X.

30



2.7. SEPTEMBER 21 215A: ALGEBRAIC TOPOLOGY

Proof. Uniqueness follows from Proposition 2.57 because the corresponding lifts we write down must be
local homeomorphisms.

It remains to show existence. Fix a basepoint x0 P X. We simply define

rX :“ trγs : γ is a path I Ñ X with γp0q “ x0u.

The point is that paths should lift uniquely up to rX already, so we might as well define rX in this way. We
may define the function p : rX Ñ X by sending rγs ÞÑ γp1q. It remains to show that rX is a simply-connected
topological space and that p is a covering space map.

Let’s produce a topology on rX. Using our hypotheses on X, each x P X has a path-connected open
neighborhood V Ď X such that π1pV q Ñ π1pXq is trivial. We then use V to define a subset around rγs with
γp0q “ x0 and γp1q “ x by

rV :“ trγ ¨ γ1s : γ1 is a path I Ñ V such that γ1p0q “ x0 and γ1p1q “ yu.

Now, rV is in bijection with V by p, so we make the restricted map p : rV Ñ V a homeomorphism. One can
check that the topology is well-defined and that p becomes a covering space map from this. ■

One can now use the universal cover to produce any covering space.

Theorem 2.65. Let X be a pointed topological space which is path-connected, locally path-connected,
and semilocally simply-connected, and let x0 P X be a basepoint. Then there is a bijection between
pointed path-connected covering spaces pY, y0q Ñ pX,x0q and subgroups of π1pX,x0q. Unpointed cov-
ering space maps correspond to conjugacy classes of subgroups.

To produce the desired covering space given a subgroup, one repeats the proof of Theorem 2.64 by taking
a quotient of the produced rX. Then one shows that this is a bijection with some work.

Remark 2.66. One can also use permutations of the pre-image of a basepoint in order to describe our
covering spaces. Namely, if p : p rX, rx0q Ñ pX,x0q is a covering space, then any loop rαs P π1pX,x0q will
lift to a permutation of p´1ptx0uq. Conversely, such automorphisms are able to produce an automor-
phism of the universal covering space rX Ñ rX. (On the level of paths, we send rγs P rX to rγ ¨ αs. One
can check that this is continuous with continuous inverse and thus a homeomorphism.)

2.7 September 21
We continue to cover spaces.

2.7.1 Deck Transformations
LetX be a path-connected, locally path-connected, and semilocally simply-connected space with universal
cover rX Ñ X. We would like to use the universal cover to produce intermediate covering maps.

Definition 2.67 (deck transformation). Let X be a path-connected, locally path-connected, and semi-
locally simply-connected space with cover p : rX Ñ X. A homeomorphism f : rX Ñ rX such that p “ p˝f
is called a deck transformation.

In our set-up, let G be the group of deck transformations of the universal cover rX Ñ X. Then G – π1pXq.
Let’s explain why. Fix a basepoint rx0 P rX lying over x0 P X0. The point is that a deck transformation is
uniquely determined by where it sends rx0 by how path-lifting works. So a deck transformation f : rX Ñ rX

produces a path from rx0 to fprx0q (which is unique up to homotopy class because rX is simply-connected),
and then mapping this down to p produces an element of π1pG, x0q. And conversely a loop in π1pX,x0q lifts
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to a path up in rX Ñ rX sending rx0 ÞÑ fprx0q, and there is a unique automorphism f : rX Ñ rX sending rx0 to
the right place.4

Remark 2.68. More generally, if pY, y0q Ñ pX,x0q is any covering space, one has a bijection between
π1pX,x0q{π1pY, y0q and points in the fiber of x0.

Extending the above discussion, we have the following result.

Theorem 2.69. Fix a path-connected covering space p : pY, yx0q Ñ pX,x0q, and let G be the group of
deck transformations. Then X is homeomorphic to Y {G in the natural way if and only if π1pY, y0q is a
normal subgroup of π1pX,x0q. In this case, G – π1pXq{π1pY q.

Proof. Let p rX, rx0q Ñ pX,x0q be the universal cover. Then the universal property allows us to factor as
follows.

p rX, rx0q pY, y0q

pX,x0q

p

r

q

Now, for all y P p´1ptx0uq, we see that r´1ptyuq will correspond to a coset of π1p rXq in π1pXq via the discus-
sion with the universal cover; looping over y, we produce a bijection with points in the fiber of q´1ptx0uq.
Normality of the subgroup then follows because the action of G here is trying to act on cosets.What? ■

A less careful version of this discussion lets us work with more general subgroups.

Proposition 2.70. LetX be a path-connected, locally path-connected, and semilocally simply connected
space with universal cover p : rX Ñ X. For any subgroup H Ď π1pX,x0q, the quotient space rX{H is a
covering space of X and has fundamental group H.

Proof. Track through the above discussion without focusing on the group being normal. ■

2.7.2 Attempts for Universal Covers
We are interested in the universal covering space construction having the lifting property. For our purposes,
we will assume that our topological space pX,x0q which is locally path-connected, and we can still just try
to define rX as the set of homotopy classes of paths starting at x0. Then the topology is defined by building
a sub-base as follows: for open path-connected subsets V Ď X, one defines an open set around rγs with
γp0q “ x0 and γp1q “ x by

rV :“ trγ ¨ γ1s : γ1 is a path I Ñ V such that γ1p0q “ x0 and γ1p1q “ yu.

Let’s see some examples.

Example 2.71. Let’s apply this to the earringE. One can show that this construction produces an open
mapp : rE Ñ E, but it is not a covering space. Nonetheless, rE is path-connected, locally path-connected,
and simply-connected, and it has the unique path-lifting property. Indeed, for any locally path-connected
map f : Y Ñ E where f˚π1pY q Ď π1pXq is trivial, the map f factors through p uniquely.

One might want to try to draw rE, but this is hard: for example, with e P E the vertex of the earring,
one has p´1pteuq uncountable, andE is anR-tree, meaning any two points has a unique path connecting
them.

4 At this point, it is perhaps clearer to use the direct construction of rX as homotopy classes of paths starting at x0.
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Example 2.72. LetX :“
ś

iPN S
1. By how the product topology works, this remains path-connected (as

the product of path-connected spaces) but is not semilocally simply-connected because any open set
contains at least one S1, which fails to be simply-connected. Nonetheless, the map R Ñ S1 remains
continuous, so there is a map

ź

iPN
R Ñ

ź

iPN
S1

which behaves like a covering space.

Example 2.73. CW-complexes X are locally contractible and hence locally path-connected and locally
simply-connected. Thus, our construction provides a universal covers for connected CW complexes.
For simplicity, we work with the 2-skeleton Xp2q, which encodes all π1-information anyway, and we
will focus on constructing rX. One can show that the covering space of a CW-complex remains a CW-
complex because one can lift sufficiently small evenly covered cells to produce a CW-structure on the
covering space. Looking at howXp2q is constructed by adding 2-cells to produce quotients, we see that
rXp1q corresponds to the kernel of π1pXp1qq Ñ π1pXq, which by van Kampen is the normal subgroup

generated by 2-cells as π1pBe2‚q for the various e2‚.

Example 2.74. Fix coprime positive integers p and q, and construct the lens space Lpp, qq by taking the
quotient of D3 by dividing an equator S1 into q pieces and then gluing the top and bottom hemisphere
after rotating by 2πq{p. Equivalently, one can view this as S3{pZ{pZq, where the action is given by k ¨

pz1, z2q :“
`

ζkp z1, ζqkz2
˘

. One sees that Lpp, qq is a CW-complex with 1-skeleton given by S1 and two-
skeleton by attaching D2 and identifying z with ζqz for each z.

• ČLpp, qq
p1q

is S1 again, but it is viewed as the p-fold cover of S1.

• ČLpp, qq
p2q

is p disks glued at their boundaries.

• ČLpp, qq fills in these disks with 3-balls.

Example 2.75. Suppose Xp1q “
Ž

S S
1, then π1

`

Xp1q
˘

is the free group on S as letters. Each attached

2-cell toXp1q gives a relation forG :“ π1
`

Xp2q
˘

. Now, ĆXp2q
p1q

turns out to be Cayley graph ofG, and its
0-skeleton is in bijection with G, where edges are given by group elements in the natural way.

Let’s be more explicit: for any generating set S Ď G, letN be the kernel of the surjection F pSq ↠ G,
and then we can view our Cayley graph via some covering space quotient.

For the next few examples, we have the following definition.

Definition 2.76. We say that a CW-complex X is KpG, 1q if and only if it has fundamental group G and
has contractible rX.

It turns out thatKpG, 1q is unique up to homotopy equivalence, so it allows us to talk more canonically about
the group G via topology. Here are some examples.

Example 2.77. Note KpZ, 1q “ S1 because ĂS1 “ R is contractible.

Example 2.78. Note KpZ{2Z, 1q “ RP8 because S8 “ ĆRP8 is contractible.
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Example 2.79. We see S1 ˆ S1 “ KpZ2, 1q because the universal cover of S1 ˆ S1 is the contractible
space R2. Of course, we can take arbitrary powers and products like this.

2.8 September 26
Today we discuss free groups and graphs.

2.8.1 Spanning Tree
For technical reasons, it will be helpful to rigorize give graphs a CW topology.

Definition 2.80 (graph). A graph is a 1-dimensional CW complex X built as follows: the vertices are
X0, and the edges are built by taking two vertices v1, v2 P X0 and connecting them by an edge eα with
Beα “ tv1, v2u.

Remark 2.81. A graph X with a vertex v P X of infinite degree fails to be locally compact. Indeed, any
open neighborhood of v will intersect infinitely many edges, which is not contained in any compact set
because one can build an open cover with an open set from each of the individual edges, from which no
finite subcover is possible to construct.

Definition 2.82 (subgraph). A subgraph is a closed CW subcomplex of a graph.

Trees are the simplest graphs.

Definition 2.83 (tree). A tree is a contractible graph. A subtree T of a graphX is maximal or spanning if
and only if T 0 “ X0.

Example 2.84. The highlighted edges make a maximal subtree of the following graph.

¨ ¨ ¨ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

¨ ¨ ¨ ‚ ‚ ‚ ‚ ‚ ¨ ¨ ¨

We have the following result on trees.

Proposition 2.85. Any connected graphX contains a maximal tree. In fact, any subtree can be extended
to a maximal tree.

Proof. We begin by fixing some subtree X0 Ď X. Then to construct Xn`1 from Xn, we look at the set of
vertices adjacent to a vertex in Xn, and we add exactly one edge to Xn`1 to add in all these vertices. Each
added edge maintains being contractible, and adding them all in at once will continue to be contractible;
explicitly, Xn`1 has a deformation retract back to Xn and will therefore be contractible by induction.

Eventually the unionT ofX0 Ď X1 Ď X2 Ď ¨ ¨ ¨ will hit every vertex: noteX is connected and locally path-
connected hence path-connected, so it follows that any two vertices can be connected by a path, which may
only hit finitely many vertices and edges along its path by compactness of the interval.5 Thus,T is the desired
subtree. ■

5 Hitting infinitely many vertices or edges implies that the image of r0, 1s has an infinite discrete closed subset (choose a single point
from each vertex and from each hit edge), violating compactness.
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Remark 2.86. One needs some form of the axiom of choice to achieve the above result because we may
be making infinitely many choices in the construction of Xn`1 from Xn.

2.8.2 Fundamental Groups of Graphs
Having spanning trees allows us to compute fundamental groups. Fix a spanning treeT Ď X. Fix a basepoint
x0 P T . Then each edge eα ofXzT produces a loop based at x0: if eα connects v1 and v2, then we have a loop
going from x0 to v1 (through T ) to v2 (through eα) and back to x0 (through T again). These loops generate
the fundamental group.

Proposition 2.87. Fix a connected graphX with spanning tree T . Then π1pXq is a free group with basis
reαs where eα is an edge of XzT .

Proof. The quotient mapX ↠ X{T is a homotopy equivalence because T is contractible (it’s a tree). How-
ever, X{T now only has a single vertex x0, and we see that each edge eα of XzT then goes down to a loop
at x0. Thus, X{T is S1 wedged with itself once for each edge in XzT , so the result follows. ■

Our work allows us the following application.

Lemma 2.88. Every covering space of a graph X is itself a graph whose vertices and edges as pre-
images.

Proof. Let p : rX Ñ X be a covering space. Set vertices of rX to be p´1
`

X0
˘

, and our edges are similarly
given by pre-images because p is locally a homeomorphism, we see that rX has the desired topology. ■

Theorem 2.89. Any subgroup of a free group is free.

Proof. A free group F generated by κ generators is the fundamental group of the graph X :“
`

S1
˘κ. Then

any subgroup F 1 Ď F arises from the fundamental group of the covering space p : rX Ñ X, and the lemma
tells us that rX is a graph, so its fundamental group is in fact also free by Proposition 2.87. ■

The above result is quite nice: it is quite non-obvious that this result should be true purely from the algebra,
but the topology makes it easier to attack.

Remark 2.90. There is an algorithm (due to Reidemeister–Schreier) to find a generating set for finite-
index subgroups of a free group.

2.8.3 KpG, 1qs
We have the following definition.

Definition 2.91 (KpG, 1q). Fix a groupG. A path-connected topological spaceX is aKpG, 1q if and only
if π1pXq – G, and X has a contractible universal cover.

It turns out that KpG, 1q is unique up to homotopy equivalence. Here are some examples.
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Example 2.92. The space RP8 is aKpZ{2Z, 1q. The fundamental group can be computed by seeing that
the universal cover is S8 ↠ RP8. Let’s see that S8 is in fact contractible: the map px1, x2, x3, . . .q ÞÑ

p0, x1, x2, . . .q defines an embedding i : S8 Ñ S8. However, i has a linear homotopy to id given by

ftpx1, x2, . . .q :“
p1 ´ tqpx1, x2, . . .q ` tp0, x1, . . .q

∥p1 ´ tqpx1, x2, . . .q ` tp0, x1, . . .q∥
,

and then i has a linear homotopy to a constant map by

gtpx1, x2, . . .q :“
p1 ´ tqp1, 0, . . .q ` tp0, x1, . . .q

∥p1 ´ tqp1, 0, . . .q ` tp0, x1, . . .q∥
.

(Note we needed the inclusion i because the linear combination p1 ´ tqp1, 0, . . .q ` tpx1, x2, . . .q goes
through the origin if we use the point px1, x2, . . .q “ p´1, 0, . . .q.)

Example 2.93. The space S8{pZ{mZq is a KpZ{mZ, 1q. Here, Z{mZ acts on S8 by having 1 P Z{mZ be
pointwise multiplication by e2πi{m. The covering space is still S8, which is contractible by the previous
example.

Example 2.94. Fix a closed, connected subspaceK Ď S3 (thought of as a knot). IfG :“ π1
`

S3zK
˘

, then
S3zK is aKpG, 1q; this is a result to Papakyriakopoulos (yes, this name is hard to spell). Note that having
S3 is important; otherwise, if K is bounded, we could just place a large box around K Ď R3, and it is
not possible to contract this box in R3zK. Instead, we want to contract it in S3 by passing to the point
at infinity.

Example 2.95. Let XG be a KpG, 1q, and let XH be a KpH, 1q, and we assume that both are CW com-
plexes. Then XG ˆ XH (given the product topology!) becomes a KpG ˆ H, 1q because the universal
cover of XG ˆXH is the product of the universal covers, which will then remain contractible.

Taking a product of KpZ{mZ, 1qs, we see that there is a KpG, 1q for a finitely generated abelian group G.
One can in fact give aKpG, 1q for any groupG, though this trickier. Let’s see this. The following notions will
be helpful.

Definition 2.96 (simplex). An n-simplex is constructed by taking affinely linearly independent vectors
v0, . . . , vn P Rm (i.e., the set tv1 ´ v0, . . . , vn ´ v0u is linearly independent—note that this condition is
independent of rearranging the v‚) and setting

rv0, v1, . . . , vns :“

#

n
ÿ

i“0

tivi : 0 ď ti for each i and
n
ÿ

i“1

ti “ 1

+

.

Namely, rv0, v1, . . . , vns is the convex hull of the v‚; a face of this n-simplex is an pn´ 1q-simplex of the
form rv0, . . . , pvi, . . . , vns attained by deleting one of the vertices vi. Then the boundary of the n-simplex
is

Brv0, . . . , vns :“
n
ğ

i“1

rv0, . . . pvi, . . . , vns,

and the interior is defined in the obvious way.

Definition 2.97 (∆-complex). A∆-complex is a CW complexX such that the cells enα are homeomorphic
to p∆nq˝, where we require that the attaching mapsφα : B∆n Ñ Xn´1 restricts to a faceφα|rv0,...,pvi,...,vns

is an attaching map φβ : ∆n´1 Ñ Xn´1 for some β.
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Example 2.98 (dunce cap). Glue the following 2-simplex to a 1-simplex following the arrows.

This is weird, but we allow it.

We now describe KpG, 1q for a general group G. We begin by constructing the universal cover EG, which
will be a ∆-complex. The vertices of EG are elements of G. Then the n-simplices of EG (for n ě 1) are
simply rg0, . . . , gns attached to the pn´ 1q-simplices rg0, . . . , pgi, . . . , gns in the obvious way.

Example 2.99. TakeG to be the trivial group. Then we have a single n-simplex re, . . . , es for each n. For
example, the two-simplex re, es is attaching at its ends to a single vertex. Then the re, e, es is attaching
its edges to the loops as in Example 2.98.

Example 2.100. Take G to be Z{2Z “ t0, 1u. Then we have 2n`1 total n-simplices.

Note that G acts freely on EG by multiplication of the vertices, so we produce a covering space EG Ñ BG,
where BG :“ EG{G. We claim that EG is contractible, which will complete our construction with BG as
ourKpG, 1q. Indeed, inside anyn-simplex rg0, . . . , gns, we embed it into re, g0, . . . , gns and then use the linear
homotopy to the identity e. This will be well-defined with respect to our gluing, so we have indeed produced
contraction.

2.9 September 28
Today we talk about graphs of groups.

Remark 2.101. Problem 1.B.9 on the homework needs to assume that the edge maps are injective.

2.9.1 Using Classifying Spaces
Given a group G, last time we constructed a contractible ∆-complex EG, and from there we built BG :“
EG{G, and we argued that BG is a KpG, 1q because the action of G on EG was free, making π1pBGq “

π1pEG{Gq “ G. Though huge, the EG and BG construction are nice because they are functorial: a homo-
morphism φ : G Ñ H of groups produces a continuous map Eφ : EG Ñ EH by moving the vertices (which
continuously will send simplices to simplices), and this commutes with the group actions on both spaces, so
we produce a map BG : BG Ñ BH. Explicitly, Bφprgsq “ rφpgqs, so

Bφprg1, . . . , gnsq “ rφpg1q, . . . , φpgnqs,

and this map is preserved by the group actions because

Bφpg ¨ rg1sq “ Bφprgg1sq “ rφpgg1qs “ φpgq ¨ rφpg1qs “ φpgq ¨Bφprg1sq,

so there is a quotient down to a map Eφ : EG Ñ EH.
One might now hope that we can produce a mapKpφ, 1q : KpG, 1q Ñ KpH, 1q, but for this to make sense,

we need to know that KpG, 1q is well-defined in some sense.

Theorem 2.102. The homotopy type of a CW-complex KpG, 1q is uniquely determined by G.

The main input to the theorem is the following functoriality result.
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Proposition 2.103. Fix a connected CW-complex X, and let Y be a KpG, 1q. Then any homomorphism
φ : π1pX,x0q Ñ π1pY, y0q is induced by a map Φ: pX,x0q Ñ pY, y0q which is unique up to homotopy
(relative to basepoints).

Proof. We construct X Ñ Y inductively. Map X0 to y0. As in our discussion of graphs, choose a spanning
tree T ofX1, and we see that each edge e ofX1zT determines a generator res of π1pX1q, and we map these
down to the corresponding generator in π1pY, y0q as required by φ.

By way of example, we can takeX “ S1 ˆS1 to be the torus, mapping the two generators of π1 to 1 P Z.
Then may extend Φ on the vertices toX2 linearly via this triangulation (check up in the covering space to be
told how to do this), viewing things as simplices. One can then keep going up to higherXn by continuing to
go linearly, noting that the effect on the fundamental group is now not doing anything.

For the uniqueness, suppose we have two maps Φ,Ψ: pX,x0q Ñ pY, y0q. This will essentially follow
from the homotopy extension property. If they induce the same map π1pΦq “ π1pΨq, then we move them up
to the universal cover, and the convex combinations as described in the previous paragraph are forced and
homotopic (linearly), where we are essentially using contractability of our universal cover. One needs to do
this by induction on the skeletons: there is a homotopy on the 0-skeleton by moving, there is a homotopy on
the 1-skeleton because they have the same π1, there is a homotopy on the 2-skeleton because the relations
are the same, and from here one inducts upwards. ■

We can now prove Theorem 2.102.

Proof of Theorem 2.102. One has identities relating fundamental groups on twoKpG, 1qs, so one produces
maps in both directions by the proposition, and then the composition of these maps (in both directions) are
homotopy equivalent to identity maps by uniqueness of these maps up to homotopy. ■

Classifying spaces allow one to classify principal bundles with fiber given by a particular group. For ex-
ample, the annulusAprovides a double-cover of the Möbius stripM , so we see that this double-cover corre-
sponds to 2Z Ď Z. (Note the Möbius strip has a deformation retraction toS1, so the fundamental groups are
the same.) Now, each fiber has a pZ{2Zq-action, and mappingM Ñ RP8 (given by the surjection Z ↠ Z{2Z
and using the KpZ{2Z, 1q universal property), we see that the composite A Ñ M Ñ RP8 is now trivial on
π1, so we induce a map making the following diagram commute.

A S8

M RP8

Namely, this map is given by tracking fibers through on the map M Ñ RP8.
More generally, if we have a covering space rX Ñ X, where G acts freely and transitively (as deck trans-

formations), then G “ π1pXq{ imπ1ppq, so maps π1pXq ↠ G will be given by maps X Ñ KpG, 1q via the
above construction. So KpG, 1q in some sense allows us to classify these covering spaces rX Ñ X, which is
of interest. Indeed, one can go the other direction: given a map φ : X Ñ KpG, 1q, we pull back the bundle
p : EG Ñ KpG, 1q to X to produce the necessary covering space. Namely, set

rX :“ tpx, yq P X ˆ EG : φpxq “ ppyqu Ď X ˆ EG,

and one can check that the induced map rX Ñ EG is continuous, and the map rX Ñ X is a covering space
map where G is acting on the fibers via EG.

2.9.2 Graphs of Groups
Fix a connected directed graph Γ, and for each vertex v P Γ0, we place a group Gv, and for each edge e P Γ1

connecting v to w, we place a homomorphism φe : Gv Ñ Gw. This will be our set-up for this subsection.

38



2.9. SEPTEMBER 28 215A: ALGEBRAIC TOPOLOGY

We are going to build a classifying spaceBΓ for this graph by putting a classifying spaceBGv (which is a
CW-complex) at each vertex and attaching these along vertices with the mapping cylindersMBφe for each
Bφe : BGv Ñ BGw. Notably,Bφe can always be constructed by Proposition 2.103. We will be interested in
π1pBΓq. Note that π1pBΓq does not depend on the choices of BG ´ v and Bφe because these things are all
well-defined up to homotopy.

Example 2.104. Consider the following graph.

Gv1 Gv2

e

Gv3

Now, Kpe, 1q is just a point, so the corresponding BΓ is just a wedge product, so van Kampen tells us
that this is Gv1 ˚Gv2 ˚Gv3 .

Example 2.105. Consider the following graph.

Z Z Zpq

Applying van Kampen to the resulting BΓ, we get a group presentation of xa, b : ap “ bqy. If p “ q “ 2,
one can squint very hard and see a Klein bottle as we are in some sense attaching two Möbius strips.

Example 2.106. Consider the following graph.

C A

φ1

φ2

This looks like π1pBΓq “
@

A, t : tφ2pcqt´1 “ φ1pcq for c P C
D

, again by some van Kampen argument.

Anyway, here is our main theorem.

Theorem 2.107. Fix everything as above, and further assume that the φe maps are injective. Then BΓ
is a KpG, 1q where G :“ π1pBΓq, and the maps π1pBGvq Ñ π1pBΓq are injective.

Proof. Start with a specific edgeBφe : BGv Ñ BGw. Then theMBφe connecting the two will lift to connect
EGv and EGw by checking each “end” of this cylinder. We now build upwards via a tree to slowly encom-
pass the entire graph. Being path-connected implies that this inductive process will union out to give us a
legitimate “tree of spaces” connecting all the groups. Now, each vertex group Gv successfully acts on EGv
and then goes on to act on the mapping cylinders adjacent, so we have the right fundamental group. And
we can see by reversing the inductive constructive process that we can deformation retract our mapping
cylinders away to show that our covering space is contractible. ■
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THEME 3

HOMOLOGY

I can assure you, at any rate, that my intentions are honourable and my
results invariant, probably canonical, perhaps even functorial.

—Andre Weil, [Wei59]

3.1 October 3
The homeworks will now get a little longer.

3.1.1 Homology for ∆-Complexes
Let’s recall our construction of ∆-complexes.

Definition 3.1 (simplex). We define the n-simplex

∆n :“

#

pt0, t1, . . . , tnq P r0, 1sn`1 :
n
ÿ

k“0

tk “ 1

+

.

The ith face ∆n´1
i Ď ∆n consists of the points with ti “ 0. An orientation of the simplex consists of an

ordering of the vertices modulo the action of An`1 on the vertices t0, 1, . . . , nu.

The orientation basically indicates which vertices are “small” and which are “large.”

Definition 3.2 (∆-complex). A ∆-complex is a CW-complex X with maps σα : ∆n Ñ X satisfying the
following properties.

• Interiors: the map σα is injective on the interior of ∆n.

• Faces: the map σα restricted to the face ∆n´1
i is simply another map σβ : ∆n´1 Ñ X.

• Continuity: if A Ď X is open, then σ´1
α pAq is open in ∆n for each σα.

Given a ∆-complex X, orientations will tend to extend uniquely to X.
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Example 3.3. We provide an orientation on the torus T 2.

Note that the diagonal arrow cannot go the other way to have an orientation because this would create a
loop!

Example 3.4. We provide an orientation on the projective plane P2.

We would like to define homology. For this, we have a notion of a chain.

Definition 3.5 (chain). Fix a ∆-complexX with maps σα : ∆n Ñ X. Then we define chains ∆npXq to be
the formal sums

∆npXq :“

#

ÿ

α

nασα : nα P Z

+

,

and then we define the chain map Bn : ∆npXq Ñ ∆n´1pXq given by

Bnpσαq :“
n
ÿ

i“0

p´1qiσα|∆n´1
i

.

The point of the signs in the definition of Bn is to have the correct orientation. For example, suppose we
want to go “around” ∆2 as in this diagram.

∆1
0

∆1
2

∆1
1

One now has the following check.

Proposition 3.6. Fix a ∆-complex X. For any positive integer n, we have Bn´1 ˝ Bn “ 0.

Proof. Direct computation. It suffices to show this for ∆n because ∆npXq is freely generated by images of
this ∆n. And for ∆n, the point is that our signs are going to cancel:

pBn´1 ˝ Bnq p∆nq “ Bn´1

˜

n
ÿ

i“0

p´1qi∆n´1
i

¸

“

n
ÿ

i“0

p´1qiBn´1

`

∆n´1
i

˘

.
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Now, for some notation, writing out the vertices ∆n as t0, 1, . . . , nu, we write ∆n “ r0, 1, . . . , ns so that
∆n´1
i “ r0, . . . ,pi, . . . , ns, so w are looking at

pBn´1 ˝ Bnq p∆nq “

n
ÿ

i“0

p´1qiBn´1pr0, . . . ,pi, . . . , nsq

“

n
ÿ

i“0

˜

i´1
ÿ

j“0

p´1qip´1qjr0, . . . ,pj, . . . ,pi, . . . , ns `

n
ÿ

j“i`1

p´1qip´1qj`1r0, . . . ,pi, . . . ,pj, . . . , ns

¸

“
ÿ

jăi

p´1qi`jr0, . . . ,pj, . . . ,pi, . . . , ns ´
ÿ

iăj

p´1qi`jr0, . . . ,pi, . . . ,pj, . . . , ns

“ 0,

as desired. ■

We are now ready to define homology.

Definition 3.7 (simplicial homology). Fix a∆-complexX. Then we define∆pXq to be the graded module
À8

n“0 ∆npXq, and we define the nth homology group as

H∆
n pXq “ Hnp∆pXqq :“

ker Bn

im Bn`1
.

For notation, we set ZnpXq :“ ker Bn to be n-cycles and BnpXq :“ im Bn` 1 to be n-boundaries. Then
Hnp∆pXqq “ ZnpXq{BnpXq, so we are measuring cycles which are not boundaries, which approxi-
mately is finding holes.

Note that we have not shown that H‚ does not depend on the choice of ∆-structure, which is why we are
marking our H∆

n by ∆, but we will do this in due time.

Example 3.8. GiveS1 a∆-complex structure by attaching both endpoints of∆1 together at some vertex
v as an edge e.

• We see H∆
0

`

S1
˘

is ker B0{ im B1, but im B1 “ 0 because we are looking at B1peq “ v ´ v “ 0.
However, ker B0 is simply all Zv, so we have Z.

• We see H∆
1

`

S1
˘

is ker B1{ im B2, and then B1 “ Ze as shown in the previous point, but im B2 “ 0
because there is nothing to map, so we have Z.

We note that all the higher homology groups vanish because there is nothing to compute.

Example 3.9. Give T 2 the ∆-complex as described earlier. We expect to have a two-dimensional hole
and two one-dimensional holes. We compute some homology.

Proof. a

b
c

U

L
v

Now, B2pUq “ b ´ c ` a and B2pLq “ a ´ c ` b, which is the same, so ker B2 is generated by U ´ L. Now,
im B3 “ 0 (there is nothing to compute), so H∆

2

`

T 2
˘

– Z. As for H∆
1 , we note that B1 is identically zero

because there is only a single vertex, so ker B1 “ Za` Zb` Zc, so H∆
1

`

T 2
˘

“ ker B1{ im B2 – Za‘ Zb. ■
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Example 3.10. Give P2 the ∆-complex as described earlier. We compute some homology.

Proof. Here is our structure.

a

b
c

U

L
v w

Here are our computations.

• We see H∆
0

`

P2
˘

“ Zv ‘ Zw{pZpv ´ wqq – Z, where the point is that B1pcq “ 0 and B1paq “ w ´ v and
B1pbq “ v ´ w.

• Next up, we compute B2pUq “ b´a`c and B2pLq “ a´b`c, so B2 is injective, soH∆
2

`

P2
˘

“ 0. Further,
we note ker B1 “ Zc‘ Zpa´ bq, and we have B2pU ` Lq “ 2c and B2pU ´ Lq “ 2a´ 2b, so we have

H∆
1

`

P2
˘

“
Zc‘ Zpa´ bq

Zp2cq ‘ Zp2a´ 2bq ‘ Zpa´ b` cq
–

Z
2Z
,

finishing. ■

Example 3.11. We note that B∆n`1 – Sn “ ∆n, so we can giveSn a natural∆-complex structure. Then
we can compute that H∆

n

`

B∆n`1
˘

– Z, where the point is that Bn`1

`

∆n`1
˘

does provide a cycle, and
all cycles are generated in this way.

3.1.2 Singular Homology
Let’s define singular homology now.

Definition 3.12 (singular simplex). Fix a topological space X. A singular n-simplex is simply a map
σ : ∆n Ñ X to a topological space, with no other requirements. We define our n-chains CnpXq to
be the Z-linear formal sums of such σs, and we define our chain maps Bn : CnpXq Ñ Cn´1pXq given in
the usual way by

Bnpσq :“
n
ÿ

i“0

p´1qiσ|∆n´1
i

.

As before, one can do the exact same proof to show that Bn ˝ Bn`1 “ 0, and so we may define homol-
ogy.

Definition 3.13 (singular homology). Fix a topological space X. Then we define SpXq to be the ∆-
complex with exactly one nsimplex ∆n

σ for each singular n-simplex σ : ∆n Ñ X, attached via faces.
Then we define HnpXq to be the nth homology on SpXq of the chain

¨ ¨ ¨ Ñ Cn`1pXq Ñ CnpXq Ñ Cn´1pXq Ñ ¨ ¨ ¨ .

Dealing withSpXq is a little annoying. By allowing for repetitions, we may assume that all ourZ-coefficients
are actually 1. For n “ 1, one can realize these as oriented loops, and for n “ 2, we can think of these as
maps of oriented surfaces.
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3.2 October 5
We continue our discussion of homology.

3.2.1 Basic Homology Facts
Let’s continue working with our singular homology because it is a little more canonical. To begin, it suffices
to look at path-connected spaces.

Proposition 3.14. Fix a topological space X with path-connected components Xα for α P π0pXq. Then

HnpXq –
à

αPπ0pXq

HnpXαq

Proof. Note that
C‚pXq –

à

αPπ0pXq

C‚pXαq

because any map ∆n Ñ X must land in a single path-connected component. We can see that this provides
an isomorphism of chain complexes, so the isomorphism in homology follows. ■

Proposition 3.15. Fix a nonempty path-connected topological space X. Then H0pXq – Z.

Proof. Let ε : C0pXq Ñ Z be the map given by sending
ÿ

σ

ασσ ÞÑ
ÿ

σ

ασ.

Intuitively, some σ : ∆0 Ñ X is just marking a point of X. Now, when X is path-connected, we see that
im B1 “ ker ε. Note that ker ε is generated by differences p´q for points p, q P X. So to get these differences,
note that for any two points p, q P X, we have a path f : ∆1 Ñ X with fp0q “ q and fp1q “ p, so B1pfq “ p´q,
as needed. So we see that

H0pXq –
C0pXq

im B1
“
C0pXq

ker ε
– Z,

as needed. ■

Remark 3.16. The above points we are checking go under the “Eilenberg–Steenrod axioms.”

Proposition 3.17. If X is a point, then HnpXq “ 0 for n ą 0.

Proof. We do this computation by hand. Notably, for each n, there is a unique n-simplex σn : ∆n Ñ X
sending everyone to the point. Then we note

Bσn “

n
ÿ

i“0

p´1qiσn´1 “

#

0 if nis odd,
σn´1 if n is even.

Thus, our chain complex looks like

¨ ¨ ¨ – C3pXq
loomoon

Zσ3

0
Ñ C2pXq

loomoon

σ2

– C1pXq
loomoon

Zσ1

0
Ñ C0pXq

loomoon

Zσ0

Ñ 0.

At odd degrees 2n ` 1, we have ker B2n`1 “ C2n`1pXq “ im B2n`2, so homology vanishes; at even degrees
ker B2n “ 0 “ im B2n`1, so homology still vanishes. ■
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The following technical definition will be helpful, mostly for functoriality reasons.

Definition 3.18 (reduced homology). Fix a topological space X, and let ε : C0pXq Ñ Z be the augmen-
tation map. Then we define

rH0pXq “
ker ε

im B1
,

and rHnpXq “ HnpXq for n ą 0. In particular, rH0ptpuq “ 0.

3.2.2 Functoriality of Homology
Note that Hn is in fact a functor.

Proposition 3.19. Fix a continuous map f : X Ñ Y . Then there is an induced map H‚pfq : H‚pXq Ñ

H‚pY q.

Proof. Post-composition will send some σ : ∆n Ñ X to some pf ˝ σq : ∆n Ñ Y . This extends to a map of
chain complexes

C‚pfq : C‚pXq Ñ C‚pY q,

so we induce a map on homology. Rigorously, one notes that pf ˝ ´q commutes with B: one checks that

CnpXq Cn´1pXq σ
n
ÿ

i“0

σ|∆i
n´1

CnpY q Cn´1pY q pf ˝ σq

n
ÿ

i“0

pf ˝ σq|∆i
n´1

B
X
n

B
Y
n

pf˝´q pf˝´q

commutes, and this is enough to induce a map on the homology upon checking what lives in what kernels
and images. Let’s explain this: to begin, we note thatCnpfq maps ker BXn Ñ ker BYn because BYn pCnpfqpαqq “

CnpfqpBXn pαqq “ 0. Similarly, we note that Cnpfq maps im BXn`1 Ñ im BYn`1 because CnpfqpBXn`1pαqq “

BYn`1pCnpfqpαqq. Thus, we get to produce a map

Hnpfq :
ker BXn

im BYn`1
looomooon

HnpXq

Ñ
ker BYn

im BYn`1
looomooon

HnpY q

,

as needed. ■

Remark 3.20. As usual, one can check the usual functoriality checks such as that H‚pf ˝ gq “ H‚pfq ˝

H‚pgq and H‚pidXq “ idH‚pXq. These facts follow directly from the definition of H‚.

More generally, the above proof establishes the following result.

Proposition 3.21. Fix a homomorphism f :
`

C, BC
˘

Ñ
`

D, BD
˘

of chain complexes such that BC ˝ f “

f ˝ BD. Then f induces a natural map on homology.

Proof. This is the last half of the proof of the above proposition. ■

We are now ready to show homotopy invariance. This will follow from the following result.
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Theorem 3.22. Fix homotopic maps f, g : X Ñ Y of topological spaces. Then Hnpfq “ Hnpgq.

Proof. The point is to construct a “chain homotopy” between the mapsHnpfq andHnpgq. LetF‚ : XˆI Ñ Y
be the needed homotopy from f to g with F0 “ f and F1 “ g. Then any singular simplex σ : ∆n Ñ X will
induce a map pF‚ ˝ σq : ∆n ˆ I Ñ Y with pF0 ˝ σq “ pf ˝ σq and pF1 ˝ σq “ pg ˝ σq. Technically, F ˝ σ is not a
singular chain, but it is somewhat close.

The goal is as follows: for any chain rcs P CnpXq, we would like to produce a chain rds P Cn`1pXq such
that rBds “ rfpcqs ´ rgpcqs, and this will show that Hnpfq “ Hnpgq. For this, we would like to make ∆n ˆ I
more like a simplex, so we triangulate it in a way which will be compatible with restricting to faces (and
hence compatible with B).

As a warm-up, let’s explain how to triangulate In`1 “ r0, 1sn`1. This is a cube with vertices of the form
px0, . . . , xnq where x‚t0, 1u for each x‚. Now, for each σ P Sn`1, we choose the pn` 1q-simplex given by

∆σ :“ tpx0, . . . , xnq : xσp0q ď xσp1q ď ¨ ¨ ¨ ď xσpnqu.

Notably, every face will be homeomorphic to In, and we roughly respect rearranging the coordinates (it
just moves simplices around), though reflections will reverse the orientation of the simplex; also, there are
pn` 1q! total simplices. Summing, we see that In is triangulated as

ÿ

σPSn`1

p´1qsgnσ∆σ.

Now, each simplex contains p0, . . . , 0q to p1, . . . , 1q, and one can read off σ by noting the simplex has a unique
monotonic path along the vertices of the cube from p0, . . . , 0q to p1, . . . , 1q.

We now return to note that ∆nˆ I “ ∆nˆ∆1 embeds into p∆1qn “ In, so we may triangulate ∆nˆ I as
a ∆-subcomplex. Explicitly, we see that we are essentially choosing our monotonic path as having its first
i ` 1 vertices in ∆n ˆ t0u and its last n ´ i ` 1 vertices in ∆n ˆ t1u. Anyway, for this chosen ∆-complex
structure on ∆n ˆ I, there is a “prism operator,” we get something

ρn :“
ÿ

i

p´1qirv0, . . . , vi, wi, . . . , wns,

where the vertices of ∆n ˆ t0u are given by v0, . . . , vn, and the vertices of ∆n ˆ t1u are given by w0, . . . , wn.
Taking faces, we see that

Bρn “ rv0, . . . , vns ´ rw0, . . . , wns `
ÿ

i

p´1qiFi ˝ ρn´1,

where Fi corresponds to the ith face. But by construction of ρ‚ and our ∆-complex structure, it follows that
this summation is merely ρn´1 ˝ B, so we get the inductive equation

Bρn “ rv0, . . . , vns ´ rw0, . . . , wns ` ρn´1B.

Applying F , we get the needed chain homotopy: given a singular simplex σ : ∆n Ñ X, we define

P pσq :“ pF ˝ σqpρnq,

which is a map P : CnpXq Ñ Cn`1pY q, and the relation tells us that

B ˝ P “ C‚pgq ´ C‚pfq ´ P ˝ B,

so upon going down to homology, we are done. ■
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Remark 3.23. Here is an intuitive argument, using the notation of the first paragraph of the above proof.
As a reduction step, we let i0 : X Ñ X ˆ I and i1 : X Ñ X ˆ I be the embeddings so that itpaq :“ pa, tq.
Now, f “ F ˝ i0 and g “ F ˝ i1, so by functoriality, it is enough to check that Hnpi0q “ Hnpi1q. Thus,
we may as well assume that Y is X ˆ I and that f and g are i0 and i1 respectively. At this point, the
result is somewhat intuitive because one should be able to continuously deform i0 ˝ σ to i1 ˝ σ for any
σ : ∆n Ñ X. However, it is mildly difficult to make this argument precise.

Corollary 3.24. Fix a homotopy equivalence f : X Ñ Y . Then Hnpfq : HnpXq Ñ HnpY q is an isomor-
phism.

Proof. This follows from functoriality. Let g : Y Ñ X be the inverse homotopy equivalence for f . Then

Hnpfq ˝Hnpgq “ Hnpf ˝ gq
˚
“ HnpidY q “ idHnpY q,

where ˚
“ follows from Theorem 3.22. A symmetric argument shows thatHnpgq˝Hnpfq “ idHnpXq, soHnpfq

is an isomorphism with inverse given by Hnpgq. ■

3.3 October 10
We would like to compute homology groups. The main tool for π1 was van Kampen’s theorem, which es-
sentially allowed us to compute π1pAYBq from π1pAq and π1pBq. Our goal is to build a similar computation
for homology. To do this, we will require a little more homological algebra.

3.3.1 The Mayer–Vietoris Sequence
Let’s discuss chain complexes on their own terms.

Definition 3.25 (chain complex). Fix a ring R, and fix a sequence of maps of R-modules

¨ ¨ ¨ Ñ An`1
αn`1

ÝÝÝÑ An
αn

ÝÝÑ An1
Ñ ¨ ¨ ¨ .

This is a chain complex if and only if imαn`1 Ď kerαn for each n; it is exact or acyclic if equality holds.
We may write this chain complex as pA‚, α‚q. A morphism of chain complexes pφ‚q : pA‚, α‚q Ñ pB‚, β‚q

is a sequence of maps φ‚ : A‚ Ñ B‚ commuting with the boundaries.

Definition 3.26 (homology group). Given a chain complex pA‚, α‚q of R-modules, we define the nth
homology group to be

HnpA‚q :“
kerαn
imαn`1

.

Example 3.27. Given a topological space X, we have shown that

¨ ¨ ¨ Ñ Cn`1pXq Ñ CnpXq Ñ Cn´1pXq Ñ ¨ ¨ ¨ Ñ C1pXq Ñ C0pXq Ñ 0

is a chain complex.

Example 3.28. The sequence 0 Ñ A Ñ B is exact if and only if A Ñ B is injective.
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Example 3.29. The sequence A Ñ B Ñ 0 is exact if and only if A Ñ B is surjective.

Example 3.30. The sequence 0 Ñ A Ñ B Ñ 0 if and only if A Ñ B is an isomorphism.

Example 3.31. The sequence
0 Ñ Z n

Ñ Z Ñ Z{nZ Ñ 0

is a short exact sequence.

To compute our homology groups, it will help to have the following terminology.

Definition 3.32. A good pair of spaces pX,Aq is a topological space X along with a closed subspace
A Ď X such that A is a deformation retract of some open subset U Ď X containing A.

Example 3.33. IfA is a CW-subcomplex of a CW-complexX, then pX,Aq is a good pair by very slightly
expanding the CW cells around A Ď X.

And now here is our result.

Theorem 3.34 (Mayer–Vietoris). Fix a good pair pX,Aq. Then there is a long exact sequence as follows.

¨ ¨ ¨ rHnpAq rHnpXq rHnpX{Aq

rHn´1pAq rHn´1pXq rHn´1pX{Aq ¨ ¨ ¨

B

Here, the maps rHnpAq Ñ rHnpXq are given by inclusion A Ď X, and the maps rHnpXq Ñ rHnpX{Aq are
given by the quotient map X ↠ X{A. Note that we have not currently defined the boundary map B.

It will take us a while to prove Theorem 3.34. Here is an application.

Example 3.35. We show that

rHi pSnq –

#

Z if i “ n,

0 if i ‰ n.

Proof. Note that Sn´1 Ď Dn makes a good pair, and Dn is contractible, so rH‚ pDnq “ 0 always. Thus, for
each i, we find

rHi pDnq
looomooon

0

Ñ rHi pSnq Ñ rHi´1

`

Sn´1
˘

Ñ rHi pDnq
looomooon

0

,

so the result follows by induction, where the base case is given by rH0

`

S0
˘

– Z and rHi

`

S0
˘

– 0 for i ą 0,
which can be checked directly because S0 is just two points. ■

3.3.2 Building Long Exact Sequences
The proof of Theorem 3.34 will make use of “relative homology groups.”
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Definition 3.36 (relative homology). Fix a subspaceA Ď X. We define the relative chains byC‚pX,Aq :“
C‚pXq{C‚pAq. Then the boundary maps BX : C‚pXq Ñ C‚pXq and BA : C‚pAq Ñ C‚pAq induce a bound-
ary map B : C‚pX,Aq Ñ C‚pX,Aq, granting us a chain complex

¨ ¨ ¨ Ñ Cn`1pX,Aq Ñ CnpX,Aq Ñ Cn´1pX,Aq Ñ ¨ ¨ ¨ .

From here, the relative homology groups are the homology groups of the above chain complex.

In particular, we see that some rαs P HnpX,Aq has α P CnpXq, where rαs will vanish only when α “ Bβ ` γ
where β P Cn`1pXq and γ P CnpAq. Namely, HnpX,Aq is Ď BXn Ď CnpXq upon taking a quotient by im BXn`1

and by CnpAq.
We are now equipped to show a long exact sequence close to Theorem 3.34.

Proposition 3.37. Fix a subspace A Ď X. Then there is a long exact sequence as follows.

¨ ¨ ¨ rHnpAq rHnpXq rHnpX{Aq

rHn´1pAq rHn´1pXq rHn´1pX{Aq ¨ ¨ ¨

B

Proof. By construction, we have a short exact sequence of chain complexes

0 Ñ C‚pAq Ñ C‚pXq Ñ C‚pX,Aq Ñ 0.

Explicitly, for each n ě 1, the following diagram commutes.

0 CnpAq CnpXq CnpX,Aq 0

0 Cn´1pAq Cn´1pXq Cn´1pX,Aq 0

B B B

As such, the result follows directly from the following proposition. ■

Proposition 3.38. Fix a short exact sequence

0 Ñ pA‚, α‚q
φ‚

ÝÑ pB‚, β‚q
ψ‚

ÝÝÑ pC‚, γ‚q Ñ 0

of chain complexes of R-modules; i.e., this is a short exact sequence at each fixed index. Then there is
a long exact sequence in homology as follows.

¨ ¨ ¨ HnpAq HnpBq HnpCq

Hn´1pAq Hn´1pBq Hn´1pCq ¨ ¨ ¨

B

Proof. Let’s describe the boundary map B : HnpCq Ñ Hn´1pAq, which is really the only interesting thing.
Well, given rzs P HnpCq with z P ker γn, we can lift it up to some y P Bn such that φnpyq “ z. Then take
βnpyq, which we see lives in the kernel of φn, so exactness finds some x P An´1 such that ψn´1pxq “ βnpyq.
We can check thatαn´1pxq “ 0 by construction, so it follows that x represents some class inHn´1pAq, which
is the desired class.
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For completeness, we describe why this is well-defined. The content is in explaining why the choice of
lift y does not affect our element in Hn´1pAq. Well, choosing a separate element y1 in Bn will have y ´ y1 in
the image of An by exactness, say equal to αnpx0q. Then choosing x, x1 P An´1 such that φn´1pxq “ βnpyq

and φn´1px1q “ βnpy1q, we claim that x ´ x1 “ αnpx0q. For this, it is enough to check after applying the
injective map φn´1, which is true by construction of x0.

Let’s quickly sketch some exactness arguments.

• Exact atHnpAq: on one hand, we note that any rzs P Hn`1pCq will have φnpBprzsqq “ 0 by construction
of the boundary map. Explicitly,φnpBpzqq (suitably defined) will live in the image of βn`1, which is what
vanishing means.

On the other hand, given rxs P HnpAq which vanishes under φn, meaning that φnpxq “ βn`1py1q for
some y1, allowing us to set z1 :“ ψn`1py1q. The construction of the boundary maps shows Bprz1sq “ rxs,
as needed.

• Exact at HnpBq: on one hand, we note that any rxs P HnpAq has ψnpφnprxsqq “ 0 because ψn ˝ φn “ 0.

On the other hand, given rys P HnpAq which vanishes under ψn, we see that ψnpyq must be in im γn`1,
so write ψnpyq “ γn`1pz1q, but then ψn`1 is surjective, so ψnpyq “ γn`1pψn`1py1qq “ ψnpβn`1py1qq, so
replacing y with y ´ βn`1py1q (which is in the same class) provides ψnpyq “ 0. Thus, exactness grants
y P imφn, as needed.

• Exact at HnpCq: on one hand, we note that any rys P HnpBq has Bpψnprysqq “ 0 by construction of the
boundary map: ψnprysq has a lift in Bn given by y itself, which by definition of HnpBq will vanish upon
applying βn.

On the other hand, given rzs P HnpCq, going down to 0 in Hn´1pAq implies that means that there is a
lift y P CnpBq of z such that βnpyq “ 0. But then rys is a class in HnpBq mapping to rzs, exhibiting our
exactness.

That’s enough for me. ■

Remark 3.39. One can define the boundary map HnpX,Aq Ñ Hn´1pAq more explicitly by taking some
class rzs P HnpX,Aq and then viewing z as a class of objects inCnpXq, we can literally take its boundary
as a chain in X and note that Bz must then vanish in Cn´1pXq{Cn´1pAq by construction of the reduced
homology, so we produce a chain inCn´1pAq. This is essentially the above construction where we have
described our objects topologically.

More generally, the above arguments are able to prove the following result.
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Lemma 3.40 (Snake). Fix a “snake” (commutative) diagram as follows.

A B C 0

0 A1 B1 C 1

g

f 1 g1

f

a b c

The following are true.

(a) There is an exact sequence

ker a
f

Ñ ker b
g

Ñ ker c
δ

Ñ coker a
f 1

Ñ coker b
g1

Ñ coker c,

where kerx
h

Ñ ker y is restriction, δ is the connecting morphism, and cokerx
h1

Ñ coker y is induced
by h1 by modding out.

(b) If f is injective, then ker a
f

Ñ ker b is injective.

(c) If g1 is surjective, then coker b
g1

Ñ coker c is surjective.

Proof. Analogous to the last half of the proof of Proposition 3.38. Namely, the construction of the boundary
map δ is exactly what we constructed: pull back along g, push through b, and then pull back along f 1. ■

Anyway, let’s see an example.

Example 3.41. Analogous to Example 3.35, we see that Proposition 3.37 produces in the long exact
sequence the exact sequence

rHi pDnq
looomooon

0

Ñ rHi

`

Dn, Sn´1
˘

Ñ rHi´1

`

Sn´1
˘

Ñ rHi´1 pDnq
looooomooooon

0

.

Thus, the middle map is an isomorphism.

3.4 October 17
I am stressed. We’re talking about excision today.

3.4.1 Excision
We close class by stating excision, which is a primary tool to compute homology groups.

Theorem 3.42 (excision). Fix subspaces Z Ď A Ď X such that Z Ď A. Then the inclusion pXzZ,AzZq Ď

pX,Aq induces isomorphisms HnpXzZ,AzZq Ñ HnpX,Aq.

Of course, we see that there is a mapCnpXzZ,AzZq Ñ CnpX,Aq given by the inclusionsCnpXzZq Ď CnpXq

and CnpAzZq Ď CnpAq. The main content, then, is in going the other way. Approximately speaking, the
idea is to take some α P CnpX,Aq and then attempt to throw out the parts of α that live in Z. But for this to
make sense, we must subdivideXzZ in order to make sure that we are going to get a chain at the end of this
process.

Let’s restate this result into something without differences.
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Theorem 3.43 (excision). Fix a topological space X “ A Y B where A,B Ď X are open. Then the
map of open pairs pB,A X Bq Ñ pX,Aq induces a family of isomorphisms on relative cohomology
HnpB,AXBq Ñ HnpX,Aq.

The following tool will be useful.

Definition 3.44. Fix a topological spaceX, and let U be an open cover ofX. We then letCU
n pXq denote

the subgroup of CnpXq consisting of chains which output to some open set in U . Notably, B : CpXq Ñ

CpXq restricts to B : CU pXq Ñ CU pXq.

The main technical result is the following.

Proposition 3.45. Fix a topological space X with open cover U . Then the inclusion of chain complex
CU pXq Ñ CpXq is an isomorphism on homology.

Remark 3.46. It turns out that there is an inverse map so that composites are chain homotopic to iden-
tities, but we will not show this.

Let’s see how Theorem 3.43 follows from Proposition 3.45.

Proof of Theorem 3.43. Let U be the open cover tA,Bu. Then Proposition 3.45 grants ρ : CU pXq Ñ CpXq

which is a section of the inclusion i and a chain homotopyD : CnpXq Ñ Cn`1pXq so that BD`DB “ id´ iρ.
It will be a property of the construction that ρ sendsCnpAq Ñ CnpAq andD sendsCnpAq toCn`1pAq, so the
quotient maps

CU
n pXq

CnpAq
Ñ

CnpXq

CnpAq

is an isomorphism on homology. Continuing, we note that

CnpBq

CnpAXBq
Ñ

CU
n pXq

CnpAq

is an isomorphism because these are both free groups whose generators are given by chains landing in B
but not in A. So we have a composite map

CnpBq

CnpAXBq
Ñ

CnpXq

CnpAq
,

which is an isomorphism on homology, so we are done. ■

So we now turn to the proof of Proposition 3.45. The main point is to use barycentric subdivision to
replace a chain with smaller chains which will hopefully land in U . We proceed in stages.

1. For a simplex rv0, . . . , vns, the barycenter is the average of all the coordinates; we denote this point by
{rv0, . . . , vns.

Now, for ∆n “ rv0, . . . , vns, we mark all the barycenters of all the various simplices arising as sub-
strings. Now, given a permutation τ of t0, . . . , nu, we have the simplex

∆pτq :“
”

vτp0q,
{rvτp0q, vσp1qs, . . . , {rvτp0q, . . . , vτpnqs

ı

One can see that these turn ∆n into a ∆-complex, and we are able to define

S p∆nq “
ÿ

τPSympt0,...,nuq

p´1qsgn τ∆pτq,
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This can then be extended to chains: we send a chain σ : ∆n Ñ X to the chain given by passing the
terms of Sp∆nq through σ.

As an aside, note that each ∆pσq has the diameter go down by a factor of n
n`1 by the nature of how

we chose our simplices, so this subdivision will exponentially decrease our diameters. As such, for
any chain σ : ∆n Ñ X, we can find i such that Siσ P CU

n pXq. The point is that we can pull back the
open cover U to ∆n, reduce to a finite subcover, and then we note that any point in ∆n has an open
neighborhood fully contained in one of the U , so we can merely keep shrinking our diameters via S
until we full live in U .

2. Next up, we remark that S : CnpXq Ñ CnpXq is chain homotopic to the identity, and the chain homo-
topy restricts to a map CU

n pXq Ñ CU
n pXq. The idea is to work with ∆n ˆ I imagining ∆n on one end

and Sp∆nq on the other end. In particular, choose an increasing subsequence i0 ă i1 ă ¨ ¨ ¨ ă in of
vertices of ∆n, and we can produce an pn` 1q-simplex

”

vi0 , . . . , vik ,
{rvi0 , . . . , vik s, . . . , {rvi0 , . . . , vik s

ı

.

This will subdivide ∆n ˆ I, and we can sum over all these simplices to produce the desired element of
Cn`1p∆nq, and then this becomes a map on CnpXq by the usual pushing around. Then one can check
that BD `DB “ S ´ id be a direct computation.

We now argue that we have an isomorphism on homology even though we needed a little stronger for
our proof of Theorem 3.43. The point is that we can take any chain α P CnpXq such that Bα P Cn´1pUq

and find j so that Sjα P CU
n pXq. Because S is chain homotopic to the identity, so Sj , so

“

Sjα
‰

“ rαs in
HnpX,Uq. Then one needs to argue that this is a bijection.

3.4.2 Fixing Relative Homology
We have the following coherence check.

Proposition 3.47. Fix a good pair pX,Aq. Then the quotient map q : pX,Aq Ñ pX{A,A{Aq induces an
isomorphism on homology HnpX,Aq Ñ rHnpX{A,A{Aq.

Proof. Being a good pair promises us some open neighborhood V of A with a deformation retract to A.
Now, pA, V q and pV,Xq are also good pairs, so the usual argument is able to produce a long exact sequence

HnpV,Aq Ñ HnpX,Aq Ñ HnpX,V q Ñ Hn´1pV,Aq,

but the end terms vanish, so we seeHnpX,Aq “ HnpX,V q. Similarly, we get isomorphismsHnpX{A,A{Aq –

HnpX{A, V {Aq, so we put everything together into the following picture.

HnpX,Aq HnpX,V q HnpXzA, V zAq

HnpX{A,A{Aq HnpX{A, V {Aq HnppX{AqzpA{Aq, V {AzpA{Aqq

„

„

„

„

q q

We have argued that the horizontal arrows are isomorphisms, and we note that pXzA, V zAq is homeomor-
phic to ppX{AqzpA{Aq, pV {AqzpA{Aqq, so the right arrow is an isomorphism, so we conclude that the left
arrow is also an isomorphism. ■
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Remark 3.48. Fix an arbitrary pair pX,Aq. Then we claim that HnpX,Aq – rHnpX YA CAq, where CA is
a cone over A (effectively contracting it to a point). Because CA is contractible, we note that the long
exact sequence of the pair pX YA CA,CAq produces isomorphisms

rHnpX YA CAq – HnpX YA CA,CAq.

Now, we apply excision, puncturing CA at the point of the cone, and then CAzt0u has a deformation
retract to A, so we get an isomorphism

HnpX YA CA,CAq – HnpX,Aq.

This sort of remark turns into an “exact sequence of spaces” where the point is that the composite
A ãÑ X ãÑ X YA CA trivializes A, and A is somehow exactly what gets trivialized.

3.5 October 19
Here we go.

3.5.1 Excision for Fun and Profit
Let’s use excision to compute homology of some spaces.

Proposition 3.49. Fix pointed topological spaces pXα, xαq for α P λ, and let X denote the wedge sum
of these spaces. Then the induced map

à

αPλ

rHnpXαq Ñ rHnpXq

is an isomorphism.

Proof. Apply Proposition 3.47 to the good pair given by the disjoint union of theXαs and the disjoint union
of the xαs. ■

Proposition 3.50. Fix nonempty open subsets U Ď Rm and V Ď Rn which are homeomorphic. Then
m “ n.

Proof. Fix some x P U . Then find an open ball Bpx, rq Ď U , so excision tells us that

rH‚pU,Uztxuq “ rH‚pBpx, rq, Bpx, rqztxuq.

This is then isomorphic to rH‚pRm,Rmzt0uq by using an isomorphism Bpx, rq – Rm.
Now, we claim that rH‚pRm,Rmzt0uq isZ if k “ m and 0otherwise, which will complete the proof because

it allows us to read off m from U . This follows from the long exact sequence

rHkpRmq
looomooon

0

Ñ rHkpRm,Rmzt0uq Ñ rHk´1pRmzt0uq Ñ rHk´1pRnq
loooomoooon

0

.

Now, rHk´1pRmzt0uq was computed in Example 3.35, so the result follows. ■

54



3.5. OCTOBER 19 215A: ALGEBRAIC TOPOLOGY

3.5.2 Functoriality of Long Exact Sequences
Let’s prove a few things.

Proposition 3.51. Fix a map of pairs f : pX,Aq Ñ pY,Bq. Then this induces a morphism of long exact
sequences as follows.

¨ ¨ ¨ HnpAq HnpXq HnpX,Aq Hn´1pAq ¨ ¨ ¨

¨ ¨ ¨ HnpBq HnpY q HnpY,Bq Hn´1pBq ¨ ¨ ¨

Proof. Commutativity of all squares not involving the boundary map is automatic because Hn is a functor.
Anyway, the point is that we actually have a homomorphism of short exact sequences of chain complexes
as follows.

0 C‚pAq C‚pXq C‚pXq{C‚pAq 0

0 C‚pBq C‚pY q C‚pY q{C‚pBq 0

One sees that this diagram commutes for any given n because the left square commutes by functoriality of
C‚, and the right morphism is simply taking the cokernel. So the result will now follow from the following
piece of homological algebra. ■

Proposition 3.52. Fix a morphism of short exact sequences of chain complexes

0 A1
‚ A‚ A2

‚ 0

0 B1
‚ B‚ B2

‚ 0

Then there is a morphism of induced long exact sequences as follows.

¨ ¨ ¨ HnpA1
‚q HnpA‚q HnpA2

‚q Hn´1pA1
‚q ¨ ¨ ¨

¨ ¨ ¨ HnpB1
‚q HnpB‚q HnpB2

‚q Hn´1pB1
‚q ¨ ¨ ¨

Proof. Again, the commutativity of any square not involving the boundary is automatic. So it remains to
check commutativity of the boundary square

HnpA2
‚q Hn´1pA1

‚q

HnpB2
‚q Hn´1pB1

‚q

which can be done directly. Well, choose rα2s P HnpA2
‚q where α P A2

n, and we track it through the diagram.

• Along the top, we pull α2 back to some α P An, take boundary down to Bα P An´1, and then we find
α1 P A1

n´1 such that α1 ÞÑ Bα. This is then passed through the map A1
n´1 Ñ B1

n´1.
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• Along the bottom, we push α2 to some β2 P B2
n. Now we compute the boundary. We need to pull β2

back to some β P Bn, but we might as well use the image of α P An. Then we take boundary down to
Bβ, which we might as well take as the image of Bα. Then we find β1 P A1

n´1 such that β1 ÞÑ Bβ, but
again, we may as well take the image of α1.

The above computation completes the proof. ■

This sort of naturality allows us to derive an equivalence between simplicial and singular homology; as a
corollary, this will imply that the simplicial homology is invariant under the chosen ∆-complex structure.
We will purely formally use the axioms we have built.

Proposition 3.53. Fix a ∆-complex X a subcomplex A Ď X. Then pX,Aq is a good pair, and there is an
isomorphism

H∆
n pX,Aq Ñ HnpX,Aq.

Proof. Checking that pX,Aq is a good pair follows from the case of a CW-complex, which can be checked
by manually finding the needed open neighborhood of all the cells. We now proceed in many steps.

1. To begin, note that there is at least an embedding C∆
‚ pX,Aq Ñ C‚pX,Aq always. Our goal is to show

that the induced map on homology is an isomorphism.

2. Take A “ ∅ and X is a point. Then we manually computed both sides are isomorphic to Z at degree 0
and no nonzero higher homology.

3. Take A “ ∅ and X is some set of points. Then we take disjoint unions (which cohere for both of our
homology theories) to conclude.

4. Take A “ ∅ and X a finite-dimensional ∆-complex. Let’s say X is k-dimensional so that X “ Xpkq.
Then we use the previous piece of homological algebra to produce a morphism of long exact sequences
as follows.

¨ ¨ ¨ H∆
n

`

Xpk´1q
˘

H∆
n

`

Xpkq
˘

H∆
n

`

Xpkq, Xpk´1q
˘

H∆
n´1

`

Xpk´1q
˘

¨ ¨ ¨

¨ ¨ ¨ Hn

`

Xpkq, Xpk´1q
˘

Hn

`

Xpkq
˘

Hn

`

Xpkq, Xpk´1q
˘

Hn´1

`

Xpk´1q
˘

¨ ¨ ¨

By induction, the leftmost and rightmost arrows are isomorphisms. Now, we show that the right mid-
dle morphism is an isomorphism by hand, which forces the remaining map to be an isomorphism by
the Five lemma (see Proposition 3.54 below). Well, note that ∆npXpkq, Xpk´1qq is zero for n ‰ k and
free abelian group with basis given by thek-simplices fork “ n. (Forn ă k, everything is inXpk´1q, and
for n ą k, there is nothing there to begin with.) As such, the same will be true for H∆

n pXpkq, Xpk´1qq.
On the other hand, consider the maps

Ů

α∆
k
α

Ů

α B∆k
α

Ñ
Xpkq

Xpk´1q

which is a homeomorphism and thus an isomorphism on singular homology. So our singular homology
is again we are again zero for n ‰ k and when n “ k we have the same presentation as before via a
computation of Hnp∆k, B∆kq done in Example 3.41.

5. Let A be empty and X be an infinite-dimensional complex. Then we note H∆
n pXpn`1qq “ H∆

n pXq

because all the relevant ∆-complexes forH∆
n pXq will come fromXpn`1q. So by the previous step, this

is HnpXpn`1qq. For the other side,
lim
ÝÑ

HnpXpkqq “ HnpXq

because the computation ofHnpXq can only ever use finitely many simplices fromXk. (The map is also
injective because anything rαs P HnpXpkqq landing in the trivial class of HnpXq will be the boundary
of some chain, but then this chain can be witnesses again by some Xpℓq for perhaps different but still
finite ℓ.) This colimit completes our argument becauseHnpXpkqq has been dealt with in the finite case.
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6. For A nonempty, we simply use the induced morphism of long exact sequences given as follows.

¨ ¨ ¨ H∆
n pAq H∆

n pXq H∆
n pX,Aq H∆

n´1pAq H∆
n´1pXq ¨ ¨ ¨

¨ ¨ ¨ HnpAq HnpXq HnpX,Aq Hn´1pAq Hn´1pXq ¨ ¨ ¨

Everything but the middle morphism is an isomorphism by the previous steps, so we complete by the
Five lemma again (see Proposition 3.54).

■

Professor Agol then proceeded to prove the five lemma. I have copy-pasted a proof using the Snake lemma
from a previous homework below.

Proposition 3.54. Consider a commutative diagram ofR-modules and homomorphisms such that each
row is exact.

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

f1 f2 f3 f4 f5

(a) If f1 is surjective and f2, f4 are monomorphisms, then f3 is a monomorphism.

(b) If f5 is a monomorphism and f2, f4 are surjective, then f3 is surjective.

Proof. Label the diagram as follows.

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

a1 a2 a3 a4

b1 b2 b3 b4

f1 f2 f3 f4 f5

Very quickly, we claim that we can induce the following diagram with exact rows.

M2 M3 a3M3 0

0 N2{b1N1 N3 N4

a2 a3

b2 b3

f2 f3 f4

Here, f2 is induced as the composite of M2
f2
Ñ N2 ↠ N2{b1N1; and f2 is induced as the restriction of M4

f4
Ñ

N4 to a3M3. We also note that a3 : M3 Ñ a3M3 is well-defined because a3 outputs into its image; b2 :
N2{b1N1 Ñ N3 is well-defined because b1N1 “ im b1 Ď ker b2 by the exactness of the original diagram.

We now check the exactness of the rows.

• Exact at M3: we still have im a2 “ ker a3 by exactness of the original diagram.

• Exact at a3M3: we note that a3 :M3 Ñ a3M3 is surjective by definition of a3M3.

• Exact atN2{b1N1: we note that ker b2 “ im b1 by exactness of the original diagram, so b2 : N2{ im b1 Ñ

N3 has trivial kernel.

• Exact at N3: we still have im b2 “ ker b3 by exactness of the original diagram.

We now attack the parts of the problem individually.

57



3.5. OCTOBER 19 215A: ALGEBRAIC TOPOLOGY

(a) The trick is to claim that we have the following commutative diagram with exact rows, where rf2 and
f4 are monic.

M2{a1M1 M3 a3M3 0

0 N2{b1N1 N3 N4

a2 a3

b2 b3

Ăf2 f3 f4

We start by showing that the map rf2 :M2{a1M1 Ñ N2{b1N1 is actually well-defined with trivial kernel.
It suffices to show that the composite M2

f2
Ñ N2 ↠ N2{b1N1 has kernel a1M1.

Well, α lives in the kernel of the composite if and only if f2α P b1N1 if and only if f2α P b1pf1M1q

(because f1 is surjective) if and only if f2α P impb1˝f1q if and only if f2α P impf2˝a1q (by commutativity)
if and only if f2α P f2pim a1q if and only ifα P im a1 (because f2 is monic and hence injective). So indeed,

kerpM2 Ñ N2 ↠ N2{b1N1q “ impM1 Ñ M2q,

which is what we needed to show that M2{a1M1 ãÑ N2{b1N1 is well-defined and monic.
We now note that the rows of the diagram are exact. The only modified point here is exactness atM3,
which now must accommodate for M2{a1M1 Ñ M3. This map is well-defined because im a1 Ď ker a2
by exactness of the original diagram, and we are exact at M3 because

kerpM3 Ñ a3M3q “ impM2 Ñ M3q “ impM2{a1M1 Ñ M3q

because modding in the domain does not alter the image.

To finish, we note that rf2 and f4 being monic imply that f3 is monic by Lang III.14 part (a).

(b) Similarly, the trick is to claim that we have the following commutative diagram with exact rows, where
f2 and rf4 are surjective.

M2 M3 a3M3 0

0 N2{b1N1 N3 b3N3

a2 a3

b2 b3

f2 f3 Ăf4

We quickly note that the mapN3 Ñ b3N3 is well-defined because b3 always outputs to b3N3 by defini-
tion. We also note that the top row is exact as checked earlier, and the only perturbation to the bottom
row is exactness at N3, which holds because the kernel of b3 has not changed and will still be im b2.

Next we show that rf4 is well-defined. For this, we need to show that the image of f4 :M4 Ñ N4 under
the restriction to a3M3 Ñ N4 will always output to N4. Well, we see

f4pim a3q “ impf4 ˝ a3q “ impb3 ˝ f3q Ď im b3,

so we are indeed safe.
We now note that f2 : M2 Ñ N2{b1N1 is surjective because it is the composite of the surjective maps
f2 : M2 Ñ N2 and N2 ↠ N2{b1N1. (Any element of N2{b1N1 can be pulled back to a representative in
N2, which can then be pulled back along f2 to a representative in M2.)

Further, we claim that rf4 is surjective. Well, find any β P im b3 that we want to hit. Because f4 is
surjective, there exists α P M4 such that f4α “ β, and we will show that α P a3M3, which will be
enough.
Indeed, f4α P im b3 if and only if f4α P ker b4 (by exactness) if and only if α P kerpb4 ˝ f4q if and only if
α P kerpf5 ˝ a4q (by commutativity) if and only if a4α P ker f5 if and only if a4α “ 0 (f5 is monic) if and
only if α P ker a4 if and only if α P im a3 (by exactness).
In total, the fact that f2 and rf4 are surjective implies that f3 is surjective by Lang III.14 part (b). ■
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3.5.3 Degrees
As an application, let’s talk a bit about degrees. For example, any map f : Sn Ñ Sn induces a map on
homology HnpSnq Ñ HnpSnq. This is a map Z Ñ Z, so it will have to be multiplication by some integer d
(independent of the choice of isomorphism HnpSnq – Z), which is called the degree of f .

Example 3.55. The degree of idSn is 1.

Example 3.56. Suppose f is not surjective. Then deg f “ 0. The point is that f lands inSn minus a point,
which contracts to a point, so the image of f factors through HnpSnzt˚uq “ 0.

Remark 3.57. Fix f, g : Sn Ñ Sn. If f „ g, then deg f “ deg g because homotopic maps produce the
same map on homology.

Remark 3.58. Fix f, g : Sn Ñ Sn. We have degpf ˝gq “ pdeg fqpdeg gq by tracking through the composite
maps as Z Ñ Z Ñ Z.

Example 3.59. If f : Sn Ñ Sn is a continuous bijection, then it is a homeomorphism and so has an
inverse map, so deg f must be a unit in Z, so deg f P t˘1u.

Example 3.60. The degree of a reflection f : Sn Ñ Sn is ´1. Namely, let ∆n
1 denote the top hemisphere

and ∆n
2 denote the bottom hemisphere, and we see that f flips ∆n

1 and ∆n
2 . Noting that HnpSnq is

generated by ∆n
1 ´ ∆n

2 (one can track through the boundary maps to show this or see it directly on
simplicial homology), the fact that deg f “ ´1 follows.

Example 3.61. The degree of the antipodal map x ÞÑ ´x is p´1qn`1 because it is a composite of pn` 1q

reflections.

Example 3.62. Suppose f : Sn Ñ Sn has no fixed points. Then one can find a homotopy from f to
the antipodal map because the “straight-line” path from fpxq to ´x fails to go through the origin. So
deg f “ p´1qn`1.

3.6 October 24
We continue with some applications of homology.

3.6.1 Applications of Degree
Let’s give a few fun applications of the degree.

Proposition 3.63. Fix an integer n. Then Sn has a continuous vector field nonzero everywhere if and
only if n is odd.

Proof. Quickly, recall that a vector field is a function assigning a tangent vector to each point. Namely, for
each x P Sn, there is a tangent plane TxSn Ď Rn`1 consisting of the vectors y P Rn`1 such that py ´ xq ¨ x “
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0. Shifting down by x, we may as well as say that TxSn intersects the origin, and so we are asking for a
continuous map f : Sn Ñ Rn`1 such that fpxq ¨ x “ 0 for each x P Sn.

For example, there is a continuous vector field nonzero everywhere onS1 given by px, yq ÞÑ py,´xq. More
generally, if n is odd, then Sn Ď Rn`1 can have its coordinates enumerated by px1, y1, . . . , xn, ynq, and we
have a continuous vector field given by

px1, y1, . . . , xn, ynq ÞÑ p´y1, x1, . . . ,´yn, xnq.

Thus, if n is odd, we have a nonzero continuous vector field.
For the other direction, suppose we have a nonzero continuous vector field f : Sn Ñ Rn`1. Applying

a deformation retraction, we may assume that f actually maps Sn Ñ Sn. But then f maps a vector to a
perpendicular vector, so it has no fixed points, so we have a homotopy to the antipodal map, so deg f “

p´1qn`1. On the other hand, f is homotopic to the identity by simply following the vector field backwards
to the original point. So deg f “ 1 also, so n must be odd. ■

Remark 3.64. Colloquially, this is the hairy ball theorem: there is no way to comb the hair of a ball S2 Ď

R3.

Remark 3.65. A more interesting question one can ask is for which n do there exist n pointwise orthog-
onal vector fields which vanish nowhere. This is equivalent to saying that the tangent bundle TSn is
trivializable. We discussed how to do this for S1, and there is a similar process for S3 (viewing R4 as the
underlying vector space for a quaternion algebra) as well as S7 (using the octonions). It turns out that
these are the only such n.

Proposition 3.66. Let n be an even integer. Then Z{2Z is the only group which can act freely on Sn.

Proof. SupposeG is a group acting freely on Sn. Then we show thatG has an injection into Z{2Z. Note that
each g P Gmust act by a homeomorphism on Sn because it has inverse given by g´1, so the action of g must
be surjective, so we see that deg g P t˘1u. Because deg is multiplicative, this is actually a homomorphism
deg : G Ñ t˘1u. We argue that this map is injective, which will complete the proof.

Well, suppose g ‰ e for some g P G, and we show that deg g “ ´1. To see this, note that having a
free action implies that g has no fixed points, so as usual g is homotopic to the antipodal map, so deg g “

p´1qn`1 “ ´1. ■

Remark 3.67. Of course Z{2Z acts on any Sn because the antipodal map x ÞÑ ´x has order 2.

Remark 3.68. For odd spheres, the story is more complicated. We have classified all the groups which
act linearly on spheres, but we don’t know all the actions explicitly.

3.6.2 Local Degree
Take n ą 0. Let’s discuss a way to compute degree via a “signed point count.” Given a map f : Sn Ñ Sn, we
can try to look locally at some point y P im f and attempt to count the number of points in the pre-image of
f . Signed appropriately, this will turn into the degree. For example, if we are looking at (say) differentiable
maps f : S1 Ñ S1, counting signed by direction turns into the winding number.

Explicitly, fix y P im f such that the fiber f´1ptyuq is finite, whose points we number off as tx1, . . . , xnu.
By choosing a radius less than half of the smallest distance between any two x‚s, we may fix disjoint open
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neighborhoods Ui around each xi. We now draw the following rather large diagram.

Hn pSn, Snztxuq Hn pUi, Uiztxuq HnpSn, Snztyuq

Z Hn pSnq Hn

`

Sn, Snzf´1ptyuq
˘

Hn pSnq Z

1

2

f

2f f

To begin, we note excision by SnzUi implies that the 1 arrow is an isomorphism. Because Snzt˚u is con-
tractible for any point ˚, we see that the 2 arrows are isomorphisms. We are now equipped to make the
following definition.

Definition 3.69 (local degree). Fix everything as above. Then the local degree deg f |xi is the degree of
the induced map HnpSnq Ñ HnpSnq as above.

Proposition 3.70. Fix everything as above. Then

deg f “

n
ÿ

i“1

deg f |xi
.

Proof. We basically take direct sums of our large diagram, as follows.

Hn
`

Sn, Snzf´1ptyuq
˘

n
à

i“1

HnpUi, Uiztxiuq Hn pSn, Snztyuq

n
à

i“1

HnpSn, Snztxiuq

HnpSnq HnpSnq
f

À

fi

By excision to delete everything outside theU‚s, we see that the top-left arrow is an isomorphism. Then the
vertical rectangle commutes by tracking through how HnpSnq – Z goes around (this is really the diagram
we drew above the definition), so we are done because the vertical maps are all isomorphisms. ■

Remark 3.71. Any map is homotopic to a map with finite fibers somewhere, so this local degree check
can usually be carried through. Explicitly, cover Sn by convex balls, such as the hemispheres

H˘
i :“ tpx0, . . . , xnq : ˘xi ą 0u.

Now, for f : Sn Ñ Sn, do a barycentric subdivision repeatedly until the diameter is smaller than the
Lebesgue number of the cover f´1pH˘

i q: i.e., we want a cover of Sn such that each point in one of the
covering sets lands inside some hemisphere. Then we can “straighten” the map f inside one of the
convex hemispheres to make the map f piecewise affine. So the size of our fibers is bounded by the
number of simplices of f .

Remark 3.72. In fact, one can show that two maps f, g : Sn Ñ Sn are homotopic if and only if deg f “

deg g, which allows us to strengthen the above result.

Let’s use this to show that any degree is achievable.
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Example 3.73. For n “ 1, the map S1 Ñ S1 given by z ÞÑ zk has degree k.

We now go up from n “ 1.

Proposition 3.74. Fix a map f : Sn Ñ Sn. Then the suspension map Sf : Sn`1 Ñ Sn`1 has degSf “

deg f .

Proof. The main concern is that we must go up in the dimension of our homology groups, for which we
want to use the long exact sequence. Note that we have a map Cf : pCSn, Sn ˆ t0uq Ñ pCSn, Sn ˆ t0uq, so
the quotient space is Sn. Naturality of our long exact sequences now produces the following commutative
diagram.

Hn`1pCSnq Hn`1pCSn, Snq Hn`1pSn`1q HnpSnq HnpCSnq

Hn`1pCSnq Hn`1pCSn, Snq Hn`1pSn`1q HnpSnq HnpCSnq

B

B

Cf Cf Sf Cff

Here, Sn has been embedded into CSn via the copy in the code, and the point is that the quotient CSn{Sn

is simply SSn “ Sn`1. All terms on the ends vanish becauseCSn is contractible, so B is an isomorphism, so
the proof is complete. ■

Remark 3.75. If a map f : Sn Ñ Sn is differentiable at a point x, then an exercise we did on the home-
work allows us to compute deg f |x as detDfx. Indeed, f is locally linear at x, so we choose the cor-
responding neighborhood where f is homotopic to a linear map, and the degree of linear maps was
computed on the homework.

3.7 October 26
Today we discuss cellular homology.

3.7.1 Cellular Homology
Let’s attempt to compute the homology of a CW-complex.

Lemma 3.76. Fix a CW-complex X and indices k and n.

(a) rHk

`

Xn{Xn´1
˘

“ 0 if k ‰ n.

(b) Hn

`

Xn{Xn´1
˘

is free abelian if k “ n, with a basis given by the n-cells.

(c) Hk pXnq “ 0 if k ą n.

(d) The inclusion i : Xn Ñ X induces an isomorphism Hnpiq : Hk pXnq Ñ HkpXq if k ă n and is a
surjection if k “ n.

Proof. This is similar to what we saw with ∆-complexes.

(a) We see
Hk

`

Xn, Xn´1
˘

– rHk

`

Xn{Xn´1
˘

“ rHk

´

ł

Sn
¯

,

and we know the homology of Sn already.
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(b) This follows by induction on n and using (a). The base case is that Hk

`

X0
˘

“ 0 for k ą 0. The long
exact sequence provides

Hk

`

Xn´1
˘

Ñ Hk pXnq Ñ Hk´1

`

Xn, Xn´1
˘

.

The left term vanishes by the inductive hypothesis, and the right term vanishes by (a), so the middle
term will also vanish.

(c) A similar exact sequence as in (b) shows that HkpXnq Ñ Hk

`

Xn`1
˘

is an isomorphism if k ă n and
surjective when k “ n. Indeed, we simply write down

Hk`1

`

Xn`1, Xn
˘

Ñ HkpXnq Ñ Hk

`

Xn`1
˘

Ñ Hk

`

Xn`1, Xn
˘

to achieve the result. IfX is finite-dimensional, we are done becauseX “ Xn for somen large enough.
In the infinite-dimensional case, we use the fact that

HkpXq “ lim
ÝÑ

HkpXnq

because any cycle or boundary lives in some fixed chain. So we get this result purely algebraically. ■

We now build a complex from X using its skeletons. For each n, we acknowledge that we have maps
Hn`1

`

Xn`1, Xn
˘

Ñ HnpXnq and HnpXnq Ñ Hn

`

Xn, Xn´1
˘

induced by some long exact sequences, so
we get a map Hn`1

`

Xn`1, Xn
˘

Ñ Hn

`

Xn, Xn´1
˘

via composition. So we have a sequence

¨ ¨ ¨ Ñ Hn`1

`

Xn`1, Xn
˘

Ñ Hn

`

Xn, Xn´1
˘

Ñ Hn´1

`

Xn´1, Xn´2
˘

Ñ ¨ ¨ ¨ .

Quickly, we claim that this is a chain complex. Indeed, the main point is that the composition of two con-
secutive maps amounts to a long composition

Hn`1

`

Xn`1, Xn
˘

Ñ HnpXnq Ñ Hn

`

Xn, Xn´1
˘

Ñ Hn´1

`

Xn´1
˘

Ñ Hn´1

`

Xn´1, Xn´2
˘

.

However, the composite of the middle three maps must vanish by the relevant long exact sequence. So we
are allowed to make the following definition.

Definition 3.77 (cellular homology). Fix a CW-complexX. Then the cellular homology groupsHCW
n pXq

is the homology of the chain complex

¨ ¨ ¨ Ñ Hn`1

`

Xn`1, Xn
˘

Ñ Hn

`

Xn, Xn´1
˘

Ñ Hn´1

`

Xn´1, Xn´2
˘

Ñ ¨ ¨ ¨ .

Of course, we would like to see that this is independent of the chosen CW-structure. In fact, we have the
following result.

Proposition 3.78. Fix a CW-complex X. For all n, we have HCW
n pXq “ HnpXq.

Proof. Draw the following very large diagram.

Hn

`

Xn´1
˘

Hn

`

Xn`1, Xn
˘

Hn pXnq

Hn`1

`

Xn`1, Xn
˘

Hn

`

Xn, Xn´1
˘

Hn´1

`

Xn´1, Xn´2
˘

Hn´1

`

Xn´1
˘

Bn`1

dn`1

jn

Bn jn´1

dn
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Now, by the lemma, we see thatHn

`

Xn`1
˘

“ HnpXq, and we know this is isomorphic toHn pXnq { im Bn`1.
The diagram above has HnpXn´1q “ 0, so jn is injective, and similarly, jn´1 is injective. As such, we see
Hn pXnq { im Bn`1 is isomorphic to

im jn
impjn ˝ Bn`1q

.

Again, because jn´1 is injective, it follows that ker dn “ ker Bn, which we know by the long exact sequence is
the image of jn, so the numerator is ker dn. Similarly, we know that the denominator is im dn`1 by definition,
so we are done. ■

Example 3.79. If X has some r number of n-cells, then HnpXq is a subgroup of the free abelian group
HnpXn, Xn´1q on r generators, so ker dn is a free abelian group of at most r generators, so the quotient
HCW
n pXq is an abelian group on at most r generators as well.

Example 3.80. Take X “ CPn. This has exactly one cell in each even dimension. So Lemma 3.76 tells
us that the cellular homology sequence has every other term equal to Z up to 2n, so

Hi pCPnq “

#

Z if i P t0, 2, . . . , 2nu,

0 else.

We would like to use HCW
‚ to actually compute some homology groups, but for this we need to be able to

compute the boundary maps d‚.

Proposition 3.81. Fix a CW-complexX. The boundary map dn : Hn

`

Xn, Xn´1
˘

Ñ Hn´1

`

Xn´1, Xn´2
˘

sends some n-cell eαn representing a class in Hn

`

Xn, Xn´1
˘

to
ÿ

β

dαβe
n´1
β ,

where dαβ is the degree of the composite ∆αβ

Sn´1
α

loomoon

Benα

Ñ Xn´1{Xn´2 Ñ Sn´1
β

loomoon

en´1
β

.

Here, the second map is induced via the retraction qβ of Xn´1{Xn´2 onto Sn´1
β , squishing Xn´1zen´1

β

to a point.

Proof. Let Φα : Dn
α Ñ Xn denote the embedding of this n-cell, and φα : BDn

α Ñ Xn´1 denote the attaching
map. We now draw the following very large diagram.

HnpDn
α, BD

n
αq Hn´1pBDn

αq Hn´1

´

en´1
β {Ben´1

β , ˚
¯

Hn

`

Xn, Xn´1
˘

Hn´1

`

Xn´1, Xn´2
˘

Hn´1pXn´1{Xn´2, ˚q

Φα φα

B

dn

∆αβ

q

qβ

Here, q and qβ are the relevant quotient maps. Then one tracks around the relevant diagram and sums over
all β to achieve the result. In particular, qβ detects the coordinate of en´1

β in dnpeαnq, and eαn is the image of a
generator ofHnpDn

α, BD
n
αq passed through Φα. So the top composite tells us what the coordinate of en´1

β in
dnpenαq should look like, which we see is the degree of ∆αβ , as needed. (Note that B above is an isomorphism
because the relevant long exact sequence has the terms before and after the homology of a disk, which
vanishes because disks are contractible.) ■
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Example 3.82. Consider the surface Σ2 produced by identifying opposite ends of an octagon. This has
one vertex, four edges, and one face, so our cellular homology chain complex is

0 Ñ Z Ñ Z4 Ñ Z Ñ 0.

Using the above formula, we see that each edge in Z4 goes to 0 (the main point is that we are taking the
edge and doing a signed sum of its boundary, but the boundary points have been identified), so we verify
that H0pΣ2q “ Z. Next, for the face e2 generating the left Z, one checks that the identified edges are in
such a way that the differential again vanishes, so H1pΣ2q “ Z4 and H2pΣ2q “ Z. All higher homology
vanishes.

Example 3.83. Consider the surface X produced by identifying adjacent edges of an octagon. There is
still one vertex, four edges, and one face, so our cellular homology chain complex is

0 Ñ Z Ñ Z4 Ñ Z Ñ 0.

For the same reason as in the previous example, one sees that Z4 Ñ Z is the zero map, verifying
H0pΣ2q “ Z. Computing using the boundary formula, we see that d2 : Z Ñ Z4 is the diagonal map
multiplied by 2. So H2pΣ2q “ 0 because d2 is injective, and H1pΣ2q “ Z4{p2, 2, 2, 2qZ. One can see
this group is Z3 ‘ pZ{2Zq, where the point is that we have given Z4 a new basis given by p1, 0, 0, 0q and
p0, 1, 0, 0q and p0, 0, 1, 0q and p1, 1, 1, 1q.

3.7.2 Euler Characteristic
Fix a finite CW-complex X.

Definition 3.84 (Euler characteristic). Fix a finite CW-complex X. Then the Euler characteristic χpXq is
the alternating sum

ÿ

ně0

p´1qncn,

where cn is the number of n-cells of X.

A priori, χpXq depends on the CW-structure of X, but we can remove this dependency.

Proposition 3.85. Fix a finite CW-complex X. Then

χpXq “
ÿ

ně0

p´1qn rankHnpXq.

Here, rankHnpXq is the number of Z-summands in the finitely generated abelian group HnpXq

Alternatively, the rank is dimQpHnpXq bZ Qq, where the point is that tensoring by Q deletes the torsion. We
will want the following result.

Lemma 3.86. Fix a short exact sequence

0 Ñ A Ñ B Ñ C Ñ 0

of finitely generated abelian groups. Then rankB “ rankA` rankC.

Proof. Tensor with Q and then use the corresponding fact for dimensions of Q-vector spaces, which is
proven directly by counting bases. ■
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We are now ready to prove Proposition 3.85.

Proof of Proposition 3.85. More generally, suppose we have a finite chain complex

0 Ñ Ck Ñ Ck´1 Ñ ¨ ¨ ¨ Ñ C1 Ñ C0 Ñ 0

with boundary maps dn : Cn Ñ Cn´1, and we let χpC‚q denote the sum

χpC‚q :“
ÿ

ně0

rankHnpC‚q.

Note that we have the short exact sequence

0 Ñ ker dk Ñ Ck Ñ im dk Ñ 0,

so we find that rankCk “ rank ker dk ` rank im dk “ rankHkpC‚q ` rank im dk. In particular, we find that,
trying to reduce ourselves down to

0 Ñ
Ck´1

im dk
Ñ Ck´2 Ñ ¨ ¨ ¨ Ñ C1 Ñ C0 Ñ 0,

we have
ÿ

ně0

p´1qn rankCn “
ÿ

ně0

p´1qn rankHnpC‚q.

Anyway, for our application, we take Ck “ Hk

`

Xk, Xk´1
˘

to be our cellular homology chain complex, so it
follows HnpC‚q “ HnpXq and rankCn is the number of n-cells. This completes the proof. ■

Remark 3.87. As a nice corollary, we see that χpXq is homotopy invariant, which is not so obvious. No-
tably, this allows us to define χpXq whenever X is homotopy equivalent to a CW-complex.

3.7.3 Homology with Coefficients
IfA is any abelian group, we can define simplicial homology with coefficients inA simply using by replacing
simplicial chains CnpXq with CnpX;Aq :“ CnpXq bZ A, which can be intuitively thought of as the free A-
module with basis given by singular complexes σ‚ : ∆

n Ñ X. Notably, if A is in fact a ring, then these are
R-modules, so if A is a field, these are F -vector spaces!

Example 3.88. LetR be a ring, and consider the surface Σ2 from earlier. Then the same computation as
in Example 3.82 reveals

HipΣ2;Rq “

$

’

&

’

%

R if i P t0, 2u,

R4 if i “ 1,

0 else.

Example 3.89. Consider the spaceX constructed in Example 3.83 and work with coefficients inF2. Then
the same computation as in the example tells us that the relevant cellular homology sequence

0 Ñ F2 Ñ F4
2 Ñ F2 Ñ 0

has differentials equal to 0! So the homology changes.

3.8 October 31
Here we go. Today we’ll do more examples with CW-complexes.
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3.8.1 Cellular Homology Examples

Here are some examples.

Example 3.90. Let X be a dodecahedron where opposite sides have been identified via a 180˝ rotation.
We compute the homology of X.

Proof. There is some very large diagram which I cannot be bothered to draw. There are thirty edges on
the dodecahedron, and each are identified with three edges total, so X has ten 1-cells. Continuing, there
are twenty vertices on the dodecahedron, and each is identified with four edges total, so X has five 0-cells.
There are twelve faces to start, so X has six 2-cells. Lastly, X has one 3-cell. In total, our chain complex is

0 Ñ Z Ñ Z6 Ñ Z10 Ñ Z5 Ñ 0.

One can draw everything out and note that any pair of vertices has exactly one edge connecting them, so
X1 is the complete graph of 5 vertices. From here, one can compute d1 : Z10 Ñ Z5 as mapping to ei ´ ej
for distinct i, j P t1, 2, 3, 4, 5u. One can also see that the map d3 : Z Ñ Z6 is the zero map because each face
has one copy plus another copy with a reflection afterwards, which sums to zero. It remains to compute
d2 : Z6 Ñ Z10. One can track the cellular boundary formula to see that we are outputting any path of length
3.

This then allows us to see that all homology vanishes except H3pXq “ Z. The main point is that X has
the same homology as S3 but is not homeomorphic to it; for example, one can compute that π1pXq is a
pZ{2Zq-extension of A5. ■

Example 3.91 (Moore spaces). Fix an abelian group G and index n ě 1. Then there is a space X “

MpG,nq with HnpXq “ G while rHipXq “ 0 for i ‰ n. We write down some X.

Proof. If G is Z{mZ for m ě 1, we can take X to be Sn with a single en`1 attached of degree m. Then the
cellular boundary formula is able to compute the needed homology. From here, wedges are able to take
products of these groups to achieve any finitely generated abelian group. (Note the single point can do
G “ Z.)

The general case requires some thinking. Find a free abelian group F surjecting onto G via π : F ↠ G;
say F “

À

αPκ Z. Then begin with the space X1 “
Ž

αPκ S
1. Now, kerφ is a free subgroup of F , so write

kerφ “
À

βPλ Zyβ where yβ P F . For each β, let fβ : S1 Ñ X1 be the corresponding attaching map with
fβp1q “ yβ , so we attach a two-cell to fill in this boundary as fβ . From here, one finds that our cellular
homology chain complex is just going to exactly be

0 Ñ
à

βPλ

Zyβ Ñ
à

αPκ

Z Ñ 0

whose quotient is precisely the needed G. This achieves the correct H1; from here, one can use suspension
n times to get general MpG,nq, which works by Example 3.97 (as we will see later from Mayer–Vietoris).
Alternatively, we can achieve the same by simply replacing S1 in the construction above with Sn and directly
using the cellular boundary formula in the same way. ■

3.8.2 Group Homology

Let’s talk about lens spaces as a way into group homology.
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Example 3.92 (lens space). Recall that the lens spaceLmpℓ1, . . . , ℓnq is defined by taking Sn´1 Ď Cn and
modding out by a Z{mZ-action given by

ρpz1, . . . , zmq “
`

ζℓ1mz1, . . . , ζ
ℓn
m zn

˘

,

where ρ is a generator of Z{mZ. Here, the integers ℓ1, . . . , ℓn are all coprime to n, so the action of Z{mZ
is free. We compute the homology of these spaces.

Proof. The main point is to figure out how to put a reasonable CW-structure on the lens space. View S2n´1

as n-iterate of the join S1 ˚ ¨ ¨ ¨ ˚S1: send some pt1z1, . . . , tnznq where
řn
i“1 tn “ 0 and x1, . . . , xn P S1 to the

point p
?
t1z1, . . . ,

?
tnznq P S2n´1.

We will produce a CW-structure with one cell in each dimension; by induction, we may assume that this
exists for Lm´1pℓ1, . . . , ℓn´1q. Now, the action on the last coordinate S1 has fundamental domain given by
the arc

Im :“
!

e2πit{m : 0 ď t ď 1
)

Ď S1.

Now, Im ˚ S2n´1 attaches to S2n´3 as a covering map, and our map is degree m. What happens is that we
produce two new 2-cells given by 1 ˚ S2n´3 “ CS2n´3 – B2n´2 and Im ˚ S2m´3 – B2n´1. The boundary of
Im ˚S2n´3 then attaches with degree 0. Totaling everything, we produce a cellular homology chain complex

¨ ¨ ¨
m
Ñ Z 0

Ñ Z m
Ñ Z Ñ 0,

so our homology is Z in degrees 0 and 2n ´ 1, it’s Z{mZ if k is odd and between 0 and 2n ´ 1, and it’s zero
everywhere else. Notably, looking at our homology, we have produced an essentially minimal cell structure:
we have a nontrivial torsion group in every other position, so the cell complex structure must have at least
one cell in each entry to produce this kind of behavior. ■

Remark 3.93. It is known that Lqp1, pq – Lq1 p1, p1q if and only if q “ q1 and p ” ˘p˘1 pmod qq. This
is rather hard to show. Notably, some of these spaces are not even homotopic (e.g., L5p1, 1q is not
homotopic to L5p1, 2q) or can be homotopic but not homeomorphic (e.g., L7p1, 1q and L7p1, 2q).

Remark 3.94. Even though we have RPn for every n, we can only have these lens spaces in the odd
dimensions 2n´ 1. The reason is that the only group acting on spheres S2n of even dimension is Z{2Z.

Remark 3.95. One can write down the cohomology groups H‚pG;Aq as H‚pKpG, 1q;Aq, but in practice
these KpG, 1qs might be hard to write down. One can use the “infinite lens space” S8{pZ{mZq as a
KpZ{mZ, 1q, but this is hard to work with in practice. As another difficult example, we note that any
finite-dimensional CW-complex X which is a KpG, 1q must have π1pXq torsion-free. Indeed, suppose
a P π1pXq has order m ą 1. Now, use the subgroup xay Ď π1pXq to produce a covering space p : X 1 Ñ

X, meaning thatX 1 is homotopy equivalent toKpZ{mZ, 1q, which is not possible by cellular homology
arguments becauseKpZ{mZ, 1q has homology in arbitrarily large coefficients! (NoteX 1 must also be a
finite CW-complex because it is a finite cover of a finite complex.)

3.8.3 Mayer–Vietoris
Let’s discuss a more convenient version of excision.

Theorem 3.96 (Mayer–Vietoris). LetX be a topological space which is the union of the interiors of two
subspaces A,B Ď X. Then we have a long exact sequence of homology groups

¨ ¨ ¨ Ñ HnpAXBq Ñ HnpAq ‘HnpBq Ñ HnpXq Ñ Hn´1pAXBq Ñ ¨ ¨ ¨ .
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The point here is that CnpAq ` CnpBq Ď CnpXq, and we can then write down the following diagram which
turns out to be a chain homotopy.

CnpAq ` CnpBq CnpXq

Cn´1pAq ` Cn´1pBq Cn´1pXq

BB

One can then try to take this into the needed long exact sequence. Somehow the main point is to try to use
barycentric subdivision to view CnpAXBq as the kernel of the map CnpAq ‘ CnpBq Ñ CnpXq.

3.9 November 2
Today let’s discuss the axioms for homology.

3.9.1 More on Mayer–Vietoris
We continue our discussion of Mayer–Vietoris.

Theorem 3.96 (Mayer–Vietoris). LetX be a topological space which is the union of the interiors of two
subspaces A,B Ď X. Then we have a long exact sequence of homology groups

¨ ¨ ¨ Ñ HnpAXBq Ñ HnpAq ‘HnpBq Ñ HnpXq Ñ Hn´1pAXBq Ñ ¨ ¨ ¨ .

Proof. Note that we have the short exact sequence of simplices

0 Ñ C‚pAXBq Ñ C‚pAq ‘ CnpBq Ñ C‚pAq ` C‚pBq Ñ 0,

where the left map is x ÞÑ px,´xq and the right map is px, yq ÞÑ x ` y. Notably, this is exact because the
kernel of the map CnpAq ‘ CnpBq Ñ CnpAq ` CnpBq is simply CnpAq X CnpBq, but the only way to have an
n-chain land in both A and in B is for it to land in A X B, so CnpA X Bq “ CnpAq X CnpBq follows. Further,
the inclusion CnpAq ` CnpBq Ď CnpXq is a chain homotopy equivalence by Proposition 3.45 because X is
covered by tA,Bu. So we have a long exact sequence in homology, which is the desired one upon noting
that

HnpC‚pAq ‘ C‚pBqq “ HnpAq ‘HnpBq and HnpC‚pAq ` C‚pBqq “ HnpC‚pXqq “ HnpXq,

where the left equality is becauseHn is additive, and the right equality is by the chain homotopy equivalence
as just discussed. ■

Example 3.97. We compute the homology of the suspension SX “ CX YX CX. Well, let A be some
open neighborhood around the left CX, and let B be some open neighborhood around the left CX.
Rigorously, if SX isX ˆ r´1, 1s where we collapseX ˆ t´1u andX ˆ t1u, thenA :“ X ˆ r´1, 0.1q and
B :“ X ˆ p´0.1, 1s will do. ThenAXB is homotopic toX, butA andB are both contractible toCX and
thus to a point, so Theorem 3.96 tells us that

0 Ñ HnpSXq Ñ rHn´1pAXBq
looooooomooooooon

HnpXq

Ñ 0

is exact, so HnpSXq “ Hn´1pXq follows. Approximately speaking, the geometric content here is that
we can turn an pn ´ 1q-cycle (made out of some simplices) and bring it up to an n-cycle by taking its
cone.
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Example 3.98. Consider the torus knot Kn,m of Example 2.34, and set X :“ S3zKn,m. Now one can
choose A to be the space outside the torus and B to be the space inside the torus so that X is covered
by A X B, and both A and B include the boundary. However, A and B can both be contracted to S1, as
can their intersection, so

rHnpAq “ rHnpBq “ rHnpAXBq “

#

Z if n “ 1,

0 if n ‰ 1.

However,H1pCq Ñ H1pAq is multiplication by p by becauseC winds around p times around the torus in
one direction that way by construction, and similarly H1pCq Ñ H1pBq is multiplication by q. The point
is that Theorem 3.96 yields

rHnpCq Ñ rHnpAq ‘ rHnpBq Ñ rHnpXq Ñ 0,

so (for example) rH1pXq “ Z{pqZ, and the other homology will vanish.

Example 3.99. SupposeX “ AYB whereX is a finite CW-complex, andA andB andAXB are homo-
topic to finite CW-complexes. Then we claim χpXq “ χpAq ` χpBq ´ χpAXBq. Indeed, Theorem 3.96
tells us that we have an exact sequence

¨ ¨ ¨ Ñ HnpAXBq Ñ HnpAq ‘HnpBq Ñ HnpXq Ñ Hn´1pAXBq Ñ ¨ ¨ ¨ .

Taking alternating sum of ranks, the total sum must vanish, so we conclude that

8
ÿ

n“0

p´1qn rankZHnpXq`

8
ÿ

n“0

p´1qn rankZHnpAXBq “

8
ÿ

n“0

p´1qn rankZHnpAq`

8
ÿ

n“0

p´1qn rankZHnpBq,

which is what we wanted.

3.9.2 More on Homology with Coefficients
As usual,G is an abelian group, andX is a space, and we recallC‚pX;Gq :“ C‚pXq bZ ZrGs. The arguments
we made for G “ Z generalize immediately; for example, if X is a point,

HnpX,Gq “

#

G if n “ 0,

0 if n ą 0.

We are able to define simplicial, singular, and cellular homology theories all in the same way, but we now
allow coefficients in ZrGs instead of merely Z. One complication is in computing the boundary map for the
cellular chain complex, for which we need to understand how to compute the degree of a map. So we have
the following result.

Lemma 3.100. If f : Sn Ñ Sn is a map of degree m, then the map Hnpfq : HnpSn;Gq Ñ HnpSn;Gq is
multiplication by m.

We will prove this as a result of naturality in G.

Remark 3.101. Notably, we are allowing for multiplication by m to be zero here!

Anyway, here is our notion of naturality.
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Lemma 3.102. Fix a pair pX,Aq. A homomorphism of groups φ : G Ñ H induces a homomorphism of
chain complexes

Cnpφq : CnpX,A;Gq Ñ CnpX,A;Hq

which is functorial.

Proof. The map is simply given by passing the coefficients in CnpX,A;Gq through φ. It will commute with
the boundary morphism of CnpX,A;Gq and of CnpX,A;Gq by a direct check. ■

Having a map of chain complexes will thus induce a map on homology, allowing us to prove Lemma 3.100.

Proof of Lemma 3.100. Fix any g P G representing a class in Hn pSn;Gq. Then consider the map φ : Z Ñ G
sending φp1q :“ g, and the above naturality tells us that the following diagram commutes.

HnpSn;Zq HnpSn;Zq 1 m

HnpSn;Gq HnpSn;Gq g mg

Hnpfq

φ φ

Hnpfq

This is exactly what we wanted to prove. ■

So we can compute our cellular chain complex boundary maps in the usual way.

Example 3.103. Fix a field F , and we will compute the homology on RPn. Our discussion with lens
spaces in Example 3.92 produces a chain complex

0 Ñ F Ñ F Ñ F Ñ ¨ ¨ ¨ Ñ F Ñ F Ñ 0

where the maps alternate being doubling or zero. So if charF “ 2, then all these maps are the zero
map, so we get HkpRPnF ;F q – F for 0 ď k ď n. And if charF ‰ 2, then multiplication by 2 is an
isomorphism, so we getHkpRPn;F q “ F at only k P t0, nu where n is odd. One can check that the Euler
characteristic is zero in odd dimensions and one in even dimensions. Of course, a similar computation
will work for more arbitrary lens spaces Lmpℓ1, . . . , ℓnq, where the point is that multiplication bym as a
map F Ñ F is zero if charF | m and is an isomorphism otherwise.

3.9.3 Axioms for Homology
To give some perspective, let’s provide a version of the Eilenberg–Steenrod axioms for reduced homology
theories for CW-complexes. Namely, for each integer n P Z, we want a functor rhn from the category of
CW-complexes to AbGrp. We now add in the following extra conditions.

1. If f is homotopic to g, then rh‚pfq “ rg‚pgq.

2. For each CW-pair pX,Aq, we have a long exact sequence

¨ ¨ ¨ Ñ rhnpAq Ñ rhnpXq Ñ rhnpX{Aq Ñ rhn´1pAq Ñ ¨ ¨ ¨ .

This long exact sequence is functorial in the pair pX,Aq.

3. If X “
Ź

αXα with inclusions iα : Xα Ñ X, then the induced map on homology
à

α

rhnpXαq Ñ rhnpXq

is an isomorphism.
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4. Take X to be a point. Then we have rhnpXq “ 0 for any integer n.

One can show that the above axioms are sufficient to fully pin down homology as singular homology. How-
ever, a relaxation of the dimension axiom is able to produce more exotic homology theories.

Example 3.104. For example, there is some homology arising from cobordism of manifolds: consider
maps of manifolds to our space X modulo cobordism, where two maps f1 : M1 Ñ X and f2 : M2 Ñ X
are equivalent modulo cobordism if and only if there is some F : N Ñ X such that BN “ M1 \M2 and
F |Mi

“ fi for each i.

Remark 3.105. Generally speaking, homology theories provide functors from the homotopy category
of topological spaces to the category of graded abelian groups. Isomorphisms between homology the-
ories (perhaps on a subcategory of the homotopy category) amount to natural isomorphisms between
these functors. Namely, in all the situations above, we were able to produce isomorphisms between
our homology theories essentially on the level of chain complexes, which promises that the induced
isomorphisms on the level of homology would be natural. We also remark that changing coefficients is
natural.

3.10 November 7
We’re falling behind, but everything will be okay.

3.10.1 Homology and the Fundamental Group
Throughout, X is path-connected.

Proposition 3.106 (Hurewicz). Let X be a path-connected space with basepoint x0 P X. Then there is
a natural map h : π1pX,x0q Ñ H1pXq.

Proof. Consider the path α : S1 Ñ X. This will induce a map

H1pαq : H1

`

S1
˘

Ñ H1pXq,

but H1

`

S1
˘

is isomorphic to Z generated by the counterclockwise loop. So we define hpαq as going to
H1pαqp1q. Homotopic maps define the same map on homology so h is defined up to homotopy class in
π1pX,x0q.

Remark 3.107. An alternate way to think about this map is by viewing S1 as ∆1 with endpoints identi-
fied, soα produces a singular chain ∆1 Ñ X, and with the endpoints identified this is actually a singular
cycle, so rαs is a genuine class in H1pXq. Note that this agrees with the above definition by tracking
through what the mapH1

`

S1
˘

Ñ H1pXq actually is: we send the generating singular cycle ∆1 Ñ S1 to
the map ∆1 Ñ S1 α

Ñ X.

Lastly, we should probably check that our map is a homomorphism. Fix α, β : S1 Ñ X. Note that the com-
posite α ¨ β can simply be thought of as a map S1 _ S1 Ñ X. But now this looks like the composite

S1 Ñ S1 _ S1 Ñ X,

which on homology is the map H1

`

S1
˘

Ñ H1

`

S1
˘

‘ H1

`

S1
˘

Ñ H1pXq, which goes 1 ÞÑ p1, 1q ÞÑ hpαq `

hpβq. ■
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Theorem 3.108. Let X be a path-connected space with basepoint x0 P X. Then h descends to an iso-
morphism

π1pX,x0qab Ñ H1pXq.

Proof. Note kerh contains the commutator of π1pX,x0q because the image is an abelian group, so h does
descend to some morphism π1pX,x0qab Ñ H1pXq. Next, we check that h is surjective: it suffices to show
that any cycle lives in the image of h, so consider some cycle z “

ř

i niσi. We may assume that ni P t˘1u

for each i, and because Bz must vanish, if any σi is not immediately a loop, we may find some σj which
connects to σi to cancel out the endpoints; this then allows us to replace σi with σi ¨ σj upon removing σj .
Continuing this process finitely, we may assume that our cycle is a sum of loops. But now each of these loops
is in the image of h by translating them to have basepoint at x0, where the translation is legal because this
corresponds to adding a loop which goes directly forwards and backwards (which is of course homologically
trivial).

It remains to check injectivity. The point is that two-dimensional homology classes are represented by
surfaces. Namely, a 1-cycle is trivial if and only if it is represented by loops which are the boundaries of ∆2,
making a similar argument to the one we gave above. However, such a boundary is a product of commutators
because of how these oriented surfaces behave. Essentially, one glues together these 2-cycles to build a
surface that embeds intoX with boundary equal to the loop, and then one can apply a homotopy of the loop
through this surface to trivialize it. ■

3.10.2 Applications of Homology
Here is a nice result which we will use for some applications.

Proposition 3.109. We have the following.

(a) Upon embedding Dk Ď Sn, we have rHi

`

SnzDk
˘

“ 0 for all i.

(b) If S is a subspace of Sn homeomorphic to Sk for 0 ď k ď n, we have

rHi pSnzSq –

#

Z if i “ n´ k ´ 1,

0 else.

Here are some nice applications.

Corollary 3.110 (Jordan curve). Any embedding f : S1 Ñ S2 separates S2 into two path-connected
components.

Proof. Namely, rH0

`

S2zS1
˘

– Z, so S2zS1 must have two connected components. ■

Example 3.111. One has

rHi

`

S3zS1
˘

–

#

Z if i “ 1,

0 else.

We verified this by hand on the homework by providing π1
`

S3zS1
˘

with a presentation, from which the
computation forH1 follows by Theorem 3.108. Note that this is potentially surprising because there are
some pretty horrible embeddings h : S1 Ñ S3; for example, π1

`

S3zh
`

S1
˘˘

need not be well-behaved.

Anyway, let’s show Proposition 3.109.

Proof of Proposition 3.109. We show our parts separately.
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(a) We induct on k. Identify Dk with its image in Sn, for convenience. If k “ 0, then we are looking at Sn
minus a point, which is homeomorphic to Rn, which is contractible and hence has trivial homology.
We now apply the induction. Let h : Ik Ñ Dk be a homeomorphism, for convenience. We would like
to use Mayer–Vietoris, so we define

A :“ Snzh
`

Ik´1 ˆ r0{1, 2s
˘

and B :“ Snzh
`

Ik´1 ˆ r1{2, 1s
˘

.

ThenAXB “ SnzDk is the desired space, andAYB “ Snzh
`

Ik´1 ˆ t1{2u
˘

is of lower dimension and
so has vanishing homology by the induction. We now may apply Theorem 3.96, which tells us that

rHi

`

SnzDk
˘

– rHipAq ‘ rHipBq.

Now, any nontrivial cycle in rHi

`

SnzDk
˘

would imply require nontrivial cycle in rHi pAq or rHi pBq. But
now A and B are just some version of SnzDk again, so we may continue this subdivision process, and
having a nontrivial cycle requires a nontrivial cycle in rHi

`

Snzh
`

Ik´1 ˆ J
˘˘

for smaller and smaller
intervals J , which will eventually converge to a unique point x in all of these intervals J .
We now complete by a compactness argument. Namely, α viewed as a cycle of Snztxu must be triv-
ial, so we can write α “ Bβ for some pi ` 1q-cycle β, and because β is the union of compact sets,
it will live in some Snzh

`

Ik´1 ˆ J
˘

for one of these vary small intervals J (because the union of the
Snzh

`

Ik´1 ˆ J
˘

s is Snztxu), so the equationα “ Bβ must actually hold in one of the homology groups
rHi

`

Snzh
`

Ik´1 ˆ J
˘˘

s, which is a contradiction.

(b) This is also an induction on k. For k “ 0, we note that SnzS0 is Rn minus a point, which is Sn´1 ˆ R,
which has exactly the correct homology by contracting away the R. To complete the proof, one does
some Mayer–Vietoris argument. Namely, write Sn as the hemispheres Dk

1 and Dk
2 , which union to S

and have intersection some space S1 homeomorphic to Sk´1, from which Theorem 3.96 produces

rHi`1

`

SnzDk
1

˘

‘ rHi`1

`

SnzDk
2

˘

Ñ rHi`1

`

SnzS1
˘

Ñ rHi pSnzSq Ñ rHi

`

SnzDk
1

˘

‘ rHi

`

SnzDk
2

˘

.

The left and right terms vanish by (a), so we get an isomorphism of our homology groups, from which
the result follows by induction. ■

Here is a surprising application to algebra.

Theorem 3.112. The rings R and C are the only finite-dimensional commutative division R-algebras.

Proof. Suppose Rn has been given a commutative division ring structure. There is a map f : Sn´1 Ñ Sn´1

by sending x ÞÑ x2{
ˇ

ˇx2
ˇ

ˇ, where x2 refers to the multiplication structure; namely, x2 ‰ 0 when x ‰ 0 because
Rn is a division ring. Further, the product is multilinear and hence extends linearly from a basis, so it is
essentially a linear map RnˆRn Ñ Rn and hence is continuous, so f is a continuous map. We also note that
fp´xq “ fpxq, so we in fact achieve a map

f : RPn´1
Ñ Sn´1.

We also note that f is injective becauseRn is commutative: havingx2 “ pαyq2 implies that px´αyqpx`αyq “

0 by commutativity, so x “ ˘αy, so x and y are the same point in RPn´1.
Now, one can show that an injective continuous map from a compact manifold to a connected manifold

(both of the same dimension) must be surjective and hence a homeomorphism. So f is a homeomorphism
when n ě 2, but RPn´1 and Sn´1 fails to be a homeomorphism for n ą 2 because (say) they have different
fundamental groups.

So we are left with the cases n “ 1 and n “ 2. When n “ 1, there is nothing to say because it is an
R-algebra already and hence must be R. Lastly, one must show that a 2-dimensional commutative division
R-algebra must be C, which is just algebra and hence omitted. ■

Here is a more topological application.
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Corollary 3.113 (Borsuk–Ulam). Each map g : Sn Ñ Rn must have a point x P Sn such that gpxq “

gp´xq.

In the case of n “ 1, this is some kind of intermediate value theorem. We will prove this in the general case
via cohomology later.
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THEME 4

COHOMOLOGY

4.1 November 9
Today we will start talking about cohomology.

Remark 4.1. Let’s begin with some motivational remarks.

• Historically, de Rham cohomology came first, arising from the generalized Stokes’ theorem.

• Cohomology has a ring structure called the cup product, which will also prove to be a useful in-
variant for us.

• Cohomology is required to discuss Poincaré duality.

• Elements of the cohomology groups H2pG,Aq “ H2pKpG, 1q, Aq represent group extensions of
G by A.

4.1.1 Cochains and Cohomology
We go ahead and define cohomology now.

Definition 4.2 (cochain complex). A cochain complex pC‚, B‚q is a sequence of maps

¨ ¨ ¨
B
n´1

Ñ Cn´1 B
n

Ñ Cn
B
n`1

Ñ Cn`1 B
n`2

Ñ ¨ ¨ ¨ ,

where we require B2 “ 0. The cohomology groups are

HipC‚q :“
ker Bi`1

im Bi
.

Definition 4.3 (dual chain complex). Fix a chain complex pC, Bq of free abelian groups. Then given an
abelian group A, there is a dual cochain complex pC˚, B˚q

¨ ¨ ¨ Ñ HomZpCn´1, Gq Ñ HomZpCn, Gq Ñ HomZpCn`1, Gq Ñ ¨ ¨ ¨ .

Here, the boundary mapHomZpCn, Gq Ñ HomZpCn`1, Gq is defined by f ÞÑ pf˝Bq. By abuse of notation,
we let HnpC‚;Gq denote the cohomology groups of this dual cochain complex.
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It turns out that one can recover cohomology from homology, which is what we will focus on today.

Example 4.4. Using Z as our dualizing object, the chain complex 0 Ñ Z Ñ 0 dualizes to 0 Ð Z Ð 0.

Example 4.5. Use Z as our dualizing object again, and consider the chain complex 0 Ñ Z m
Ñ Z Ñ 0,

where m ‰ 0. Then the dual cochain complex is simply 0 Ð Z m
Ð Z Ð 0, which we find by identifying

HomZpZ,Zq with Z via f ÞÑ fp1q and then tracking through what the coboundary map is.

Remark 4.6. One can show that a finite chain complex of finitely generated free abelian abelian groups
will break into a direct sum of chain complexes of the form 0 Ñ Z Ñ 0 and 0 Ñ Z m

Ñ Z Ñ 0 where m is
a nonzero integer. This is an exercise in Hatcher.

4.1.2 Primer on the Universal Coefficients Theorem

We now investigate how cohomology and homology interact.

Proposition 4.7. Fix a chain complex pC‚, B‚q. Then there is a natural map

HnpC‚;Gq Ñ HomZpHnpC‚q, Gq.

In fact, this map is surjective if the C‚ are free abelian groups.

Proof. For brevity, define Zn :“ ker Bn to be our cycles for any n, and letBn “ im Bn`1 to be our boundaries
for any n. Now, a class rφs P HnpC‚;Gq is represented by a φ : Cn Ñ G such that φ ˝ B “ B˚pφq “ 0, which
equivalently means that φ vanishes on restriction to Bn. Anyway, the point is that we can take z P Zn and
simply output φpznq, and we see that this is well-defined up to zn because φ vanishes onBn. Further, this is
well-defined up to φ because the image of B˚ in HomZpCn, Gq will vanish on zn because all such morphisms
take the form ψ ˝ B, and ψpBznq “ 0 (because zn is a cycle).

It remains to show that our map is surjective provided the C‚ are free abelian groups. The point is that
we have the short exact sequence

0 Ñ Zn Ñ Cn Ñ Bn´1 Ñ 0

by definition of these objects, and because Bn´1 Ď Cn´1 is free, this will actually split, so Cn – Zn ‘ Bn´1

(albeit non-canonically). Thus, given some map HnpGq Ñ G, we see that this lifts to a map φ : Zn Ñ G,
which can then be extended via the splitting to a full map rφ : Cn Ñ G vanishing on the image ofBn. Namely,
rφ has B˚pφq “ φ ˝ B “ 0, so rφ represents some class in HnpC‚;Gq. By construction, rφ will restrict to φ on
Zn, so we are in fact hitting the correct map φ : HnpGq Ñ G. ■

Remark 4.8. Given a homomorphism ψ : π1pXq Ñ Z, we can descend to a map ψ : H1pXq Ñ Z. In light
of this, we can view some rφs P H1pX,Zq producing an “integration map” taking such loops ψ.

Remark 4.9. The end of the proof constructs a splitting φ ÞÑ rφ of HnpC‚;Gq Ñ HomZpHnpC‚q, Gq.
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It remains to compute the kernel of the map in Proposition 4.7. This needs some work; continue in the
context of the proof. We begin by drawing the following short exact sequence of complexes.

...
...

...

0 Zn`1 Cn`1 Bn 0

0 Zn Cn Bn´1 0

...
...

...

B

B

0 B 0

These exact sequences areZ-split currently, so dualizing keeps themZ-split, so we end up with the following
short exact sequence of dual cochain complexes.

...
...

...

0 Z˚
n`1 C˚

n`1 B˚
n 0

0 Z˚
n C˚

n B˚
n´1 0

...
...

...

B
˚

B
˚

0 B
˚ 0

Here, the asterisk denotes dualizing. This produces a long exact sequence in cohomology

¨ ¨ ¨ Ð B˚
n Ð Z˚

n Ð HnpC‚;Gq Ð B˚
n´1 Ð Z˚

n´1 Ð ¨ ¨ ¨ .

Now, let in : Bn Ñ Zn denote the inclusion, and we see that we get

0 Ð ker i˚n Ð HnpC‚;Gq Ð coker i˚n´1 Ð 0.

The short exact sequence
0 Ñ Bn Ñ Zn Ñ HnpC‚q Ñ 0

dualizes to tell us that ker i˚n “ HomZpHnpC‚;Gq, Gq, so it remains to compute whatever coker i˚n´1 is. Well,
as with ker i˚n, we see that

0 Ñ Bn´1 Ñ Zn´1 Ñ Hn´1pC‚q Ñ 0

dualizes to
0 Ñ HomZpHn´1pC‚q, Gq Ñ Z˚

n´1 Ñ B˚
n´1. (4.1)

This can be extended to a full free abelian resolution using some homological algebra nonsense, and then
the quotient coker i˚n´1 is simply an Ext-group.

Remark 4.10. Professor Agol tried to provide a full construction of Ext in like ten minutes. I have not
recorded his attempt.

4.2 November 14
Today we continue with our proof of the Universal Coefficients Theorem.

78



4.2. NOVEMBER 14 215A: ALGEBRAIC TOPOLOGY

4.2.1 Homological Algebra taken from Math 250B
Last class we discussed the following notions, which I am taking from my notes from Math 250B.

Definition 4.11 (resolution). Given anR-moduleM a resolution ofM is a chain complex pP, Bq such that

Pi “ 0 for i ă 0.

Additionally, we require an augmentation map ε : P0 ↠M so that

¨ ¨ ¨
B3
Ñ P2

B2
Ñ P1

B1
Ñ P0

ε
Ñ M Ñ 0

is an exact sequence. We call the above complex the augmented resolution, and we notate it byP Ñ M .

Definition 4.12 (projective resolutions). Fix an R-module M with a resolution pP, Bq.

• The resolution is projective if and only if Pi is projective for i ě 0.

• The resolution is free if any only if Pi is free over i ě 0.

Note that we have the following coherence check.

Lemma 4.13. Every R-module M has a free resolution and therefore a projective resolution.

Proof. We build the augmented resolution P Ñ M , which we callously call P (so that P´1 “ M ). We
produce our injective resolution inductively. To start our resolution pP, Bq, we start as required with

Pi “

#

M i “ ´1,

0 i ă ´1,

and Bi “ 0 for i ď ´1. We now claim that, for any n P N, we can construct projective modules tPiu
n
i“0 with

maps Bi : Pi Ñ Pi´1 such that

Pn
Bn
Ñ Pn´1

Bn´1
Ñ ¨ ¨ ¨

B2
Ñ P1

B1
Ñ P0

B0
Ñ M Ñ 0

is an exact sequence. This induction will finish the proof.1

For n “ 0, we can find a free module P0 which surjects onto M as B0 : P0 ↠ M , for example by taking
P0 :“

À

mPM R. Thus,
P0

B0
Ñ M Ñ 0

is exact at M because the kernel of 0 :M Ñ 0 is all of M , which is precisely the image of B0 : P0 ↠M .
For the inductive step, we begin with our exact sequence

Pn
Bn
Ñ Pn´1

Bn´1
Ñ ¨ ¨ ¨

B2
Ñ P1

B1
Ñ P0

B0
Ñ M Ñ 0

and extend it by Pn`1. Indeed, as before, we can find a free module Pn`1 with a surjection Bn`1 : Pn`1 ↠
ker Bn. Tacking this on the front, we have the sequence

Pn`1
Bn`1
Ñ Pn

Bn
Ñ Pn´1

Bn´1
Ñ ¨ ¨ ¨

B2
Ñ P1

B1
Ñ P0

B0
Ñ M Ñ 0.

It remains to show that this sequence is exact. Well, by the inductive hypothesis, we already have exactness
at everyone in tPn´1, Pn´2, . . . , P1, P0,Mu. It remains to show exactness at Pn. Well, by construction of
Bn`1, we see that

im Bn`1 “ ker Bn,

which is exactly the exactness condition at Pn. ■

1 Technically, one might want to use something like Zorn’s lemma to actually go get the projective resolution with infinitely many
terms, but we won’t do this here.
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We would now like to discuss uniqueness of these resolutions. To begin, we note that we can extend mor-
phisms of objects to morphisms of the resolutions.

Lemma 4.14. Suppose thatP :“ P Ñ M andQ :“ Q Ñ N are projective resolutions for theR-modules
M and N , respectively. Then an R-module homomorphism φ : M Ñ N can be extended to a chain
morphism φ : P Ñ Q.

Proof. The point is to use the fact our modules are projective to extend the morphism φ´1 : P´1 Ñ Q´1

backwards. In particular, for i ă ´1, we set φi “ 0 so that the following diagram commutes for any i ď ´1.

Pi Pi´1

Qi Qi´1

φi φi´1

B
P
i

B
Q
i

Namely, the top and bottom arrows are both 0s, so the diagram commutes for free.
Because we have φi for i ď ´1, it suffices exhibit the φi for i ě 0 inductively, assuming that we have

φi´1; this will finish by muttering something about Zorn’s lemma. Namely, we need to induce φi to make
the following diagram commute.

Pi Pi´1 Pi´2

Qi Qi´1 Qi´2

φi φi´1

B
P
i

B
Q
i

φi´2

B
P
i´1

B
Q
i´1

We would like the fact that Pi is projective in order to induce this arrow, but B
Q
i is not a surjection. However,

B
Q
i does surject onto im B

Q
i “ ker B

Q
i´1 (by exactness), so we would like φi´1 ˝ BPi to map into this kernel.

Well, we can use the commutativity of the right square to write

B
Q
i´1 ˝ φi´1 ˝ BPi “ φi´2 ˝ BPi´1 ˝ BPi “ φi´2 ˝ 0 “ 0,

so impφi´1 ˝ BPi q Ď ker B
Q
i´1 “ im B

Q
i . Thus, the following diagram is well-defined.

Pi

Qi im B
Q
i

φi

B
Q
i

φi´1˝B
P
i

So, becausePi is projective, we are promised an induced morphismφi : Pi Ñ Qi such that B
Q
i ˝φi “ φi´1˝BPi ,

which is what we wanted. ■

Then we get uniqueness of these morphisms up to chain homotopy.

Lemma 4.15. Suppose that P :“ P Ñ M and Q :“ Q Ñ N are augmented projective resolutions
for the R-modules M and N , respectively. Further, fix two chain morphisms α, β : P Ñ Q such that
α´1 “ β´1; i.e., the restrictions of α and β to M Ñ N are equal. Then α and β are homotopic.

Proof. It suffices to show thatα´β „ 0, so setφ :“ α´β. In particular, we know thatφ´1 “ α´1 ´β´1 “ 0,
and we would like to extend this to φ „ 0.
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Unsurprisingly, we construct our chain homotopy h to witness φ „ 0 inductively; i.e., we want φi “

hi´1BPi ` B
Q
i`1hi for each i. To start off, we set hi “ 0 for i ď ´1 because this is a morphism hi : Pi Ñ Qi`1,

which must be the zero morphism anyways. Observe that i ď ´1 will then have

φi “ 0 “ hi´1BPi ` B
Q
i`1hi

because everything involved is 0. For the inductive step, we have i ě 0 and are trying to induce the arrow hi
in the following diagram which does not commute.

Pi Pi´1

Qi`1 Qi

hi

hi´1

B
P
i

φi

B
Q
i`1

As usual, we would like to induce hi using the fact that Pi is projective. The main point is to show that
φi ´ hi´1BPi maps into im B

Q
i`1 “ ker B

Q
i . Well, because φi´1 “ hi´2BPi´1 ` B

Q
i hi´1 already, we compute

B
Q
i

`

φi ´ hi´1BPi

˘

“ B
Q
i φi ´ B

Q
i hi´1BPi

“ B
Q
i φi ´

`

φi´1 ´ hi´2BPi´1

˘

BPi

“

´

B
Q
i φi ´ φi´1BPi

¯

` hi´2BPi´1BPi .

The left term here is zero because φ is a chain morphism; the right term is zero by exactness of P . Thus,
im

`

φi ´ hi´1BPi

˘

Ď ker B
Q
i “ im B

Q
i`1, so the following diagram makes sense.

Pi

Qi`1 im B
Q
i`1

hi

B
Q
i`1

φi´hi´1B
P
i

In particular, the fact that Pi is projective grants us a morphism hi such that

B
Q
i`1hi “ φi ´ hi´1BPi ,

which is what we wanted. ■

This then gives the uniqueness of the resolutions, in the following sense.

Lemma 4.16. Suppose that P :“ P Ñ M and Q :“ Q Ñ M are augmented projective resolutions for
an R-module M . Then there are chain morphisms α : P Ñ Q and β : Q Ñ B such that αβ „ idQ and
βα „ idP .

Proof. To start, we use Lemma 4.14 to construct chain morphisms α : P Ñ Q and β : Q Ñ P such that
α´1 “ β´1 “ idM .

By symmetry, it suffices to show that αβ „ idQ. Well, αβ : Q Ñ Q is a chain morphism such that

pαβq´1 “ α´1β´1 “ idM idM “ idM ,

and idQ : Q Ñ Q is also a chain morphism such that pidQq´1 “ idM . This finishes by Lemma 4.15. ■
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Corollary 4.17. Suppose that P :“ P Ñ M and Q :“ Q Ñ M are augmented projective resolutions for
an R-module M . Then HnpP ;Gq “ HnpQ;Gq for any abelian group G, where this cohomology refers
to the cohomology on the complex given by dualizing via G.

Proof. The above results produce maps α : P Ñ Q and β : Q Ñ P extending idM : M Ñ M , and we know
that αβ and βα are both homotopic to the identity. This will remain true upon dualizing (by functoriality of
dualizing), meaning that the corresponding maps Hnpα;Gq and Hnpβ;Gq are inverse morphisms because
homotopic maps induce the same map on homology, completing the argument. ■

This gives the following definition.

Definition 4.18 (Ext). We define the group ExtipH,Gq asHipP ;Gq where P is a projective resolution of
H.

4.2.2 Back to Universal Coefficients
We are now ready to provide the following theorem.

Theorem 4.19 (Universal coefficients). Fix a chain complex pC, Bq of free abelian groups, and letG be an
abelian group. Then there is a (split) short exact sequence

0 Ñ Ext1pHn´1pCq, Gq Ñ HnpC;Gq Ñ HomZpHnpCq, Gq Ñ 0.

Proof. Surjectivity on the right is Proposition 4.7. The computation of the kernel we saw came from wanting
the cokernel from the right of (4.1), which is exactly the needed Ext-group upon noting that (4.1) is in fact
what we get upon dualizing the free resolution Bn´1 Ñ Zn´1 Ñ Hn´1pC‚q Ñ 0. ■

In light of Theorem 4.19, it will be beneficial for us to be able to compute the Ext-groups.

Lemma 4.20. We have the following.

(a) ExtipH ‘H 1, Gq – ExtipH,Gq ‘ ExtipH 1, Gq.

(b) If H is projective, then ExtipH,Gq “ 0 for all i ą 0.

(c) We have Ext1pZ{nZ, Gq “ G{nG and 0 for higher indices.

(d) If H is finitely generated, then Ext1pH,Zq “ Htor is the torsion subgroup of H.

Proof. Here we go.

(a) Taking a projective resolution for H, and a projective resolution for H 1, their direct sum produces a
projective resolution for H ‘H 1, so dualizing preserves the direct sum, and taking homology will still
preserve this direct sum.

(b) Note that H has a projective resolution 0 Ñ H Ñ H Ñ 0, which we can then dualize and compute
that all the images of the boundary morphisms are zero, so the cohomology is zero.

(c) Take the free resolution
0 Ñ Z n

Ñ Z Ñ Z{nZ Ñ 0,

which dualizes to
0 Ñ HompZ{nZ, Gq Ñ G

n
Ñ G,

so Ext1pZ{nZ, Gq “ G{nG. At higher indices, the resolution is simply zero everywhere, so our coho-
mology vanishes.
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(d) This follows from combining the previous parts plus the fact that any finitely generated abelian group
H is the direct sum of Zs and Z{nZs. ■

Corollary 4.21. Suppose pC, Bq is a chain complex of free abelian groups. If HnpCq and Hn´1pCq are
finitely generated, then

HnpC;Zq – HnpCq{HnpCqtor ‘Hn´1pCqtor.

Proof. Apply Theorem 4.19, nothing that the sequence splits and that Ext1pHn´1pCq,Zq is Hn´1pCqtor by
Lemma 4.20, and HnpCq{HnpCqtor “ HomZpHnpCq, Gq. ■

We close our discussion by noting that Theorem 4.19 is natural.

Proposition 4.22. Fix a morphism α : pC, Bq Ñ pC 1, B1q of chain complexes of free abelian groups, and
let G be an abelian group. Then there is a morphism of short exact sequences as follows.

0 Ext1pHn´1pCq, Gq HnpC,Gq HomZpHnpCq, Gq 0

0 Ext1pHn´1pC 1q, Gq HnpC 1, Gq HomZpHnpC 1q, Gq 0

α α α

Proof. Everything in sight is functorial, so all the maps are at least well-defined. The main point is that the
right square commutes by tracking through the construction of the horizontal maps: indeed, the map simply
sends a class in HnpC,Gq to its evaluation on a cycle. This then induces a map on the kernels, which is the
left-hand map above. ■

4.2.3 Cohomology of Spaces
We now apply the abstract machinery we built to topological spaces X. In particular, we now build sin-
gular cohomology. Let pCnpXq, Bq denote the singular chain complex, which then dualizes to a complex
pCnpXq, δq, whereCnpX,Gq :“ HomZpCnpXq, Gq, and the boundary δ sendsφ ÞÑ pφ˝ Bq. It is worth our time
to describe this a little more explicitly. Given a singular simplex σ : ∆n`1 Ñ X and some φ P CnpX,Gq, we
can compute that

pδφqpσq “ φpBσq “

n`1
ÿ

i“0

p´1qiφprv0, . . . , pvi, . . . , vn`1sq,

where we are notating ∆n`1 “ rv0, . . . , vn`1s.
We now list some properties of our cohomology groups.

• Negating indices as desired, one sees that short exact sequences of cochain complexes induce long
exact sequences of cohomology; the main point is that a cochain complex is essentially a chain complex
where one negates the indices, so the arguments of Proposition 3.38 apply.

• Relative cohomology: given a pair pX,Aq, one has the short exact sequence of chain complexes

0 Ñ C‚pAq Ñ C‚pXq Ñ C‚pX,Aq Ñ 0,

and because these are chains of free abelian groups, this produces a short exact sequence of cochain
complexes

0 Ñ C‚pX,A;Gq Ñ C‚pX;Gq Ñ C‚pA;Gq Ñ 0,
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and the cohomology ofC‚pX,A;Gq will be denotedHnpX,A;Gq; one can see that the map of Proposi-
tion 4.7 will haveHnpX,A;Gq output toHnpX,Aq. Anyway, this thus fits into the long exact sequence

¨ ¨ ¨ HnpX,A;Gq HnpX;Gq HnpA;Gq

Hn`1pX,A;Gq Hn`1pX;Gq HnpX;Gq ¨ ¨ ¨

as before.

• The boundary maps of our long exact sequences commute. Namely, the morphisms of Proposition 4.7
fit into the following commuting square.

HnpA;Gq Hn`1pX,A;Gq

HomZpHnpAq, Gq HomZpHn`1pX,Aq, Gq

To prove this, one should track through all the boundary morphisms, which I cannot be bothered to
do.

• Functoriality: as usual, we see that a continuous map f : X Ñ Y induces a map Cnpfq : CnpXq Ñ

CnpY q, which then induces a map Cnpfq : CnpY ;Gq Ñ CnpX;Gq, which then will induce a morphism
on homology Hnpfq : HnpY ;Gq Ñ HnpX;Gq. This is essentially the composite of many functorial
constructions, so the total thing is functorial.

• Homotopy invariance: exactly as in the proof of homology, homotopic maps f, g : pX,Aq Ñ pY,Bq

induce isomorphisms HnpY,B;Gq Ñ HnpX,A;Gq. The proof is entirely dual, the main point being
that one can take the chain homotopy produced in that proof and then take its dual to produce the
needed chain homotopy here.

• Excision: there is an excision statement using relative cohomology exactly given as one would expect.
Its proof is dual to the case of homology.

• Axioms: one can axiomatize cohomology theories as one would expect. Here are some axioms for
CW-complexes. These are functors rhn satisfying the following properties.

– Homotopic maps produce the same map on cohomology.

– Excision: there is a long exact sequence for CW-pairs pX,Aq given by

¨ ¨ ¨ Ñ rhnpX{Aq Ñ rhnpXq Ñ rhnpAq Ñ rhnpX{Aq Ñ ¨ ¨ ¨ .

– Wedge sums: given X “
Ž

αXα with embeddings iα : Xα Ñ X, the induced map

rhnpXq

ś

α
rhnpiαq

ÝÝÝÝÝÝÝÑ
ź

α

rhnpXαq

is an isomorphism.

• Simplicial cohomology: ∆-complexes have Hn
∆pX,A;Gq defined as the cohomology given by dualiz-

ing the chain complex C∆
n pX,Aq. One can show, as in the homology situation, that Hn

∆pX,A;Gq –

HnpX,A;Gq.
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• Cellular cohomology: as in the situation with homology, one has the following complex from a CW-
complex X, where the diagonal maps are produced by repeatedly applying excision.

Hk
`

Xk;G
˘

Hk
`

Xk, Xk`1;G
˘

Hk`1
`

Xk`1, Xk;G
˘

Hk`1
`

Xk`1, Xk;G
˘

Hk`1
`

Xk
˘

B
k

B
k`1

Then the cohomology of this cochain complex is called cellular cohomology and agrees with the usual
cohomology. Alternating, one can just appeal to the case with homology: note that Theorem 4.19 tells
us that

H‚
`

Xn, Xn´1;G
˘

– HomZ
`

H‚

`

Xn, Xn´1
˘

, G
˘

because Hk

`

Xn, Xn´1
˘

is always Z-free and thus has vanishing Ext. So the cellular homology com-
plex simply dualizes.

4.3 November 16
Today we will discuss the cup product.

4.3.1 The Cup Product
In the discussion that follows, we choose coefficients in a ringR, which we will assume is commutative and
has unity and so on.

Definition 4.23. Fix a topological space X and a ring R. Given φ P CkpX;Rq and ψ P CℓpX;Rq, we
define the cup product as the cochain pφY ψq P Ck`ℓpX;Rq

pφY ψqpσq “ φpσ|rv0,...,vksqψpσ|rvk,...,vnsq,

where σ : rv0, . . . , vns Ñ X (with n “ k ` ℓ) is a singular simplex.

Extending linearly, we see that this defines a map

CkpX;Rq bR C
ℓpX;Rq Ñ Ck`ℓpXq.

For example, we would like this to agree with the boundary map.

Lemma 4.24. Fix a topological space X and a ring R. Given φ P CkpX;Rq and ψ P CℓpX;Rq, we have

BpφY ψq “ BφY ψ ` p´1qkφY Bψ,

where B is the boundary map.

Proof. We check on a single singular simplex σ : rv0, . . . , vns Ñ X, where n “ k ` ℓ. Indeed, we directly
compute

pBφY ψqpσq “ Bφpσ|rv0,...,vk`1sqψpσ|rvk`1,...,vn`1
q

“

k`1
ÿ

i“0

p´1qiφpσ|rv0,...,pvi,...,vk`1sqψpσ|rvk`1,...,vn`1
q,
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and

p´1qkpφY Bψqpσq “ p´1qkφpσ|rv0,...,vksqBψpσ|rvk,...,vn`1sq

“

n`1
ÿ

i“k

p´1qiφpσ|rv0,...,vksqψpσ|rvk,...,pvi,...,vn`1sq,

and

BpφY ψqpσq “

n`1
ÿ

i“0

p´1qipφY ψqpσ|rv0,...,pvi,...,vn`1sq

“

k
ÿ

i“0

p´1qiφpσ|rv0,...,pvi,...,vk`1sqψpσ|rvk`1,...,vn`1sq

`

n`1
ÿ

i“k`1

p´1qiφpσ|rv0,...,vksqψpσ|rvk`1,...,pvi,...,vn`1sq.

Collecting the terms completes the proof; notably, the last term of the pBφ Y ψq sum cancels with the first
term of the p´1qkpφY Bψq sum, making the total number of terms agree. ■

Corollary 4.25. Fix a topological space X and a ring R. Given φ P CkpX;Rq and ψ P CℓpX;Rq, if φ and
ψ are cocycles, then so is φY ψ.

Proof. Note that Bφ “ 0 and Bψ “ 0, so the result follows from Lemma 4.24. ■

Corollary 4.26. Fix a topological space X and a ring R. Given φ P CkpX;Rq and ψ P CℓpX;Rq, if φ or ψ
is a coboundary and the other is a cocycle, then so is φY ψ.

Proof. For example, if φ is a coboundary and ψ is a cocycle, then write φ “ Bφ0, so

φY B “ Bφ0 Y ψ “ Bpφ0 Y ψq ´ p´1qkφ0 Y Bψ
loomoon

0

“ Bpφ0 Y ψq.

The other argument is similar. ■

The point now is that we have induced a multiplication structure

Y : HkpX;Rq bR H
ℓpX;Rq Ñ Hk`ℓpX;Rq

because we send cocycles to cocycles and coboundaries to coboundaries; a direct computation shows that Y

is associative and distributes over addition, so we are in fact getting a graded ring structure, perhaps without
unity and perhaps not commutative. Let’s see some examples.

Example 4.27. Consider the genus-2 surfaceM , which can be visualized as an octagon with every other
edge identified in the opposite orientation. Now, there is a map H1pMq ˆ H1pMq Ñ H2pMq. Re-
call that we computed HipMq is always free abelian, with ranks 1, 4, and 1 in degrees 0, 1, and 2. Then
Theorem 4.19 tells us that we may identifyHipMq withHomZpHipMq,Zq; for example, distinguish gen-
erators a1, a2, b1, and b2 for H1pMq, and then we let the corresponding indicators (i.e., the dual basis)
be α1, α2, β1, and β2. This produces a cocycle “for free” by Theorem 4.19, but one can also just check
it directly. For example, up to labeling the edges appropriately, rα1s Y rβ1s will be nonzero on a single
2-simplex by a direct computation; a dual computation (with opposing signs) explains that rβ1s Y rα1s

is exactly the negative of this.

Cup products also come with a naturality.
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Proposition 4.28. Fix a continuous map f : X Ñ Y . Then the maps H‚pfq induce a homomorphism of
graded rings

H‚pfq : H‚pY ;Rq Ñ H‚pX;Rq.

Proof. This is a direct computation. Of course H‚pfq is already additive, so it only remains to show that it
is multiplicative. As usual, we fix some φ P CkpX;Rq and ψ P CℓpY ;Rq along with some singular simplex
σ : ∆n Ñ X where n :“ k ` ℓ. Then

HnpfqpφY ψqpσq “ pφY ψqpf ˝ σq

“ φpf ˝ σ|rv0,...,vksqψpf ˝ σ|rvk,...,vnsq

“ Hnpfqpφqpσ|rv0,...,vksqHnpfqpψ|rvk,...,vnsq

“ Hnpfqpφq YHnpfqpψq,

as desired. ■

Remark 4.29. Let’s take a moment to provide a geometric interpretation of the cup product if two 1-
cocycles α, β P H1pX;Zq. By Theorem 4.19, we are computing the product of two elements of

H1pX;Zq “ HomZpH1pXq,Zq “ Hompπ1pXq,Zq,

where in the last equality we have used the fact thatπ1pXqab “ H1pXq. So we may choose maps a : X Ñ

S1 and b : X Ñ S1 such that the induced maps π1pXq Ñ π1pZq and π1pXq Ñ π1pZq are simply α and β.
Now, taking the product of a ˆ b produces a map X Ñ S1 ˆ S1 for which π1pa ˆ bq projects down to α
and β. From here, an explicit computation (using the above result) can show α Y β is simply given by
π1paˆ bqpxYyq where x, y P H2

`

S1 ˆ S1
˘

are the generators by the edges of the corresponding square
diagram.

Remark 4.30. We take a moment to note that there are relative cup products

HkpX,A;Rq ˆHℓpX,B;Rq Ñ Hk`ℓpX,AYB;Rq.

The point is that φ vanishing on A and ψ vanishing on B will have φ Y ψ vanishing on their union by
Lemma 4.24. From here, we note that we then get another graded ring structure on H‚pX,A;Rq.

Example 4.31. We can compute thatH‚ pRPn,F2q is isomorphic to F2rxs{
`

xn`1
˘

where x has degree 1.
Similarly, we can compute that H‚ pRP8,F2q is isomorphic to F2rxs where x has degree 1.

Proof. We will work on RPn only. The point is that RPn can be given a triangulation by viewing it as Sn{„

where „ is the antipodal equivalence relation. Now, taking joins via ˚, we note that Sn “ S0 ˚ ¨ ¨ ¨ ˚Sn, which
provides Sn with a simplicial structure. Explicitly, realizing S0 on an axis of Rn`1, we see that we can view
Sn as sitting inside Rn`1 as connecting the dots of the form p0, . . . ,˘1, . . . , 0q; then modding out by „, we
receive a simplicial structure on RPn with n` 1 vertices.

We now acknowledge that Theorem 4.19 tells us thatHkpRPn,F2q “ F2 for 0 ď k ď n, so we are at least
correct on the level of abelian groups. It remains to compute the cup product, where we must show that a
generator of HkpRPn,F2q cupped with a generator of HℓpRPn,F2q produces a generator of Hk`ℓpRPn,F2q.
One must make some choice of generator, so we choose a generator ofH1pRPn,F2q by being 1 on each edge
meeting the plane x0 ` ¨ ¨ ¨ ` xn “ 0 and 0 elsewhere. Then we compute the cup product with itself a few
times to conclude. ■

87



4.4. NOVEMBER 28 215A: ALGEBRAIC TOPOLOGY

Remark 4.32. One can similarly compute for CPn and CP8; the cohomology turns out to be the same
“ring” but with the generator x in degree 2 so that the ring is in fact commutative.

4.4 November 28
Today we will continue talking about the cup product. Homework has been posted.

4.4.1 More on Projective Space
Let’s make a few remarks on projective space. Last time we computed the cohomology ring ofH‚ pRPn,F2q

fairly explicitly as F2rαs{
`

αn`1
˘

, and by taking the direct limit with n Ñ 8, we get H‚ pRP8,F2q – F2rαs.
We note that we can recover H‚ pRP8,Zq in the following way. The map Z Ñ F2 induces a map on cellular
cohomology chain complexes as follows.

¨ ¨ ¨ Z Z Z Z 0

¨ ¨ ¨ F2 F2 F2 F2 0

0202

0000

By computing the cohomology, we see that the ring map H‚ pRP8,Zq Ñ H‚ pRP8,F2q is an isomorphism
in positive degree, from which we can pull back to get

H‚ pRP8,Zq –
Zrαs

p2αq

where α has degree 2. There is a similar computation for CP8.

4.4.2 More on Cup Products
Let’s go ahead and prove that the cup product is graded commutative.

Proposition 4.33. Fix pairs pX,Aq and pX,Bq with classes α P HkpX,A;Rq and β P HℓpX,A;Rq. Then

α Y β “ p´1qkℓpβ Y αq.

Remark 4.34. Roughly speaking, one expects this anticommutativity from differential geometry and in
particular the anticommutativity of the wedge product for differential forms.

Proof. We takeA “ B “ ∅; the general case can be derived from this. The main point is that trying to com-
pute βYαwants us to reverse rv0, . . . , vns to rvn, . . . , v0s. Thus, given a singular n-simplex σ : rv0, . . . , vns Ñ

X, we will define σ : rv0, . . . , vns Ñ X by extending σpviq :“ vn´i linearly. One can then extend σ ÞÑ σ lin-
early to all n-cycles. However, we kind of are introducing a sign here because pv0, . . . , vnq ÞÑ pvn, . . . , v0q is a
permutation of sign εn :“ p´1qnpn`1q{2 by explicitly computing the number of needed transpositions, so we
will actually define ρ : C‚pXq Ñ C‚pXq by extending

ρpσq :“ εnσ

linearly to all n-cycles. By a short computation with boundaries, we see that ρ is actually a chain map, and
we note that ρ squares to the identity. In fact, one can write down an explicit chain homotopy from ρ to
the identity; alternatively, one can use the Eilenberg–Steenrod axioms in order to show that “switching the
vertices” of all our n-simplices is producing a naturally isomorphic cohomology theory.
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From here, we can now compute

pρ˚φY ρ˚ψqpσq “ φpεkσ|rvk,...,v0sqψpεℓσ|rvn,...,vksq

ρ˚pφY ψqpσq “ εk`ℓψpσ|rvn,...,vksqφpσ|rvk,...,v0sq,

where n “ k ` ℓ. Passing to cohomology will make ρ˚ be the identity as discussed above, so the above
equalities imply εkrφs Y εℓrψs “ εk`ℓprψs Y rφsq, which is the result upon counting our signs. ■

Remark 4.35. For a surface Σ, we note that the cup product induces an antisymmetric form

H1pΣ;Qq bQ H
1pΣ;Qq Ñ H2pΣ;Qq – Q,

which shows up in differential geometry.

4.4.3 The Künneth Formula
Given two graded rings R and S, we can form a graded ring R b S in the usual way. However, due to our
graded anticommutativity, we will require that our multiplication introduce the sign

pr b sqpr1 b s1q “ p´1qpdeg sqpdeg r1
qprr1 b ss1q

to account for switching s and r1.

Example 4.36. Take the graded polynomial ring ΛRrα1, . . . , αns where the αi have degree 2i ` 1. Note
that α2

i “ 0 for each αi. One sees that

H‚ pSn;Zq – ΛZrαns

by an explicit computation.

With this in mind, we define the cross product.

Definition 4.37 (cross product). Fix spaces X and Y . Then we define the cross product ˆ : H‚pX;Rq b

H‚pY ;Rq Ñ H‚pX ˆ Y ;Rq by extending

pα ˆ βq :“ pXpαq b pY pβq

R-linearly to the entire tensor product.

Remark 4.38. One can recover the cup product from the cross product by using the diagonal embedding
∆: X Ñ X ˆX. Then the composite

H‚pX;Rq bH‚pX;Rq
ˆ
Ñ H‚pX ˆX;Rq

ˆ

∆Ñ H‚pX;Rq

is equal to the cup product. Indeed, the main point is that ∆ composed with either projection is simply
the identity.

Remark 4.39. In fact one can directly define a cross product by defining a chain map

C‚pXq b C‚pY q Ñ C‚pX ˆ Y q

by taking two singular simplices σX : ∆k Ñ X and σY : ∆ℓ Ñ Y by producing a map ∆k ˆ∆ℓ Ñ X ˆY ,
essentially by viewing everything as a cube.
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The construction of the graded anticommutativity above assures that ˆ is in fact a ring homomorphism.
Indeed, we compute

pα ˆ βq Y pα1 Y β1q “ pXpαq Y pY pβq Y pXpα1q Y pY pβ1q

“ p´1qpdegα1
qpdeg βqpXpαq Y pXpα1q Y pY pβq Y pY pβ1q

“ p´1qpdegα1
qpdeg βqpXpα Y α1q Y pY pβ Y β1q

“ p´1qpdegα1
qpdeg βqpα Y α1q ˆ pβ Y β1q.

In simple cases, the cross product map defines an isomorphism.

Theorem 4.40. Fix CW-complexes X and Y . If HℓpY ;Rq is a finitely generated free R-module for all ℓ,
then

ˆ : H‚pX;Rq bH‚pY ;Rq Ñ H‚pX ˆ Y ;Rq

is an isomorphism.

Proof. We use the Eilenberg–Steenrod axioms. Define the cohomology theories

hnpX,Aq :“
à

i`j“n

HipX,A;Rq bR H
jpY ;Rq

knpX,Aq :“ HnpX ˆ Y,Aˆ Y ;Rq.

Note that there is a natural transformation µ : hn Ñ kn given by the cross product. Now, one can check
that hn and kn are both cohomology theories, and µn is an isomorphism on the point, so one can see purely
formally that µn will be an isomorphism on all CW pairs pX,Aq.

Let’s give a few of the details here.

• We note that µ is natural in the topological spaces automatically, and it is also natural in the excision
long exact sequence by an explicit computation of the boundary maps.

• Being an isomorphism on the point extends to all CW complexes approximately as follows: one gets
contractible spaces immediately, and then the wedge sum axiom allows us to get the skeleton to any
finite-dimensional CW-complex. Then cellular homology allows us to get an isomorphism for any
finite-dimensional CW-complex. One then gets the general case by taking some kind of limit.

• The axioms for h‚ and k‚ are checked rather immediately from the axioms for H‚. ■

Let’s give a quick application to division rings.

Proposition 4.41. If D is a finite-dimensional division R-algebra, then dimRK is a power of 2.

Proof. SayD “ Rn, and we want to show that n is a power of 2; take n ě 2. Now, define g : Sn´1 ˆ Sn´1 Ñ

Sn´1 by
gpx, yq :“

x ¨ y

|x ¨ y|
,

where the point is that x ¨ y is always nonzero when x and y are nonzero because D is a division algebra.
Now, having p´xqy “ ´pxyq “ xp´yq implies that gp´x, yq “ ´gpx, yq “ gpx,´yq, so we descend to a map

g : RPn´1
ˆ RPn´1

Ñ RPn´1.

This then produces a ring homomorphism

H‚
`

RPn´1,F2

˘

Ñ H‚
`

RPn´1,F2

˘

bH‚
`

RPn´1,F2

˘

.

Let the generators (in degree 1) of the above three rings be γ, α, and β, respectively. A topological computa-
tion reveals that γ goes to α`β, but then having γn “ 0 will force pα`βqn to vanish, upon which expanding
by the binomial theorem will enforce n to be a power of 2. ■
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4.5 November 30
Today we’re going to discuss orientations.

4.5.1 Primer on Poincaré Duality
Poincaré duality is a relationship between the homology and cohomology of a manifold. Historically, what
happened is that we realized that Betti numbers were symmetric, which were then realized via homology ad
cohomology, from which duality was seen. For example, one expects to have HnpM ;F q – HnpM ;F q – F
for any field F (where M is a closed orientable n-manifold). From here, one also expects to have a perfect
pairing

HipM ;F q ˆHn´ipM ;F q Ñ HnpM ;F q – F,

which is a nice statement of Poincaré duality. This is in some sense our end goal.
Instead of showing this directly, we will produce a non-degenerate map

HipX;Rq Ñ HomRpHipXq, Rq,

which we will call the “cap product.” In some sense, we are trying to take an i-cocycle and a j-cycle to
produce an pi´ jq-cocycle.

4.5.2 Manifolds
Before we begin any rigorous discussion of Poincaré duality, we must define manifolds and provide some
discussion of their homology.

Definition 4.42 (manifold). Fix a nonnegative integer n. Then an n-manifold is a second-countable
Hausdorff topological space which is locally homeomorphic to Rn. (Here, locally homeomorphic to Rn
means that any point has an open neighborhood isomorphic to Rn.)

Let’s put the local homeomorphic to good use.

Notation 4.43. Fix an n-manifold M . For a subset A Ď M , we define HipM |Aq to mean HIipM,MzAq.

Lemma 4.44. Fix an n-manifold M . For any x P M , we have

HipM |x;Rq –

#

R if i “ n,

0 else.

Proof. Find an open neighborhood U Ď M around x homeomorphic to Rn. Then excision followed by the
long exact sequence in homology assures us that

HipM |x;Rq – HipU |x;Rq – rHi´1pRnzt0u;Rq – rHipSn´1 ˆ R;Rq – rHi
`

Sn´1;R
˘

,

from which the result follows. ■

Remark 4.45. The same argument will show that HipM |Aq is the same for any open ball A Ď M iso-
morphic to an open ball in a neighborhood of M isomorphic to Rn.

We would now like to add in compactness.

Definition 4.46 (closed). An n-manifold M is closed if and only if it is compact.

Note that we are not talking about manifolds with boundary anywhere in our discussion.
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4.5.3 Orientations of Manifolds

With Lemma 4.44 in mind, we take the following definition.

Definition 4.47 (orientation). Fix an n-manifoldM . A local orientation at x P M is a choice of generator
µx P HnpM |xq. To make these orientations cohere with each other, we define an orientation of M to
be a choice of local orientations x ÞÑ µx for each x P X which is locally constant in the following sense:
any point in M has an open neighborhood U Ď M homeomorphic to Rn and open neighborhood ball
B Ď U homeomorphic to a ball of finite radius with a choice of µB P HnpM |Bq such that µy is the image
of µB in HnpM |yq for each y P B.

Lastly, M is called orientable if and only if an orientation on M exists.

We will write ĂM for the collection of local orientations µx as x P M varies. Note that we have a 2-to-1 map
ĂM Ñ M because every x P M has two choices for generator µx P HnpM |xq. We can also give ĂM a topology
to make this map into a covering space: on any U Ď M isomorphic to M , there are exactly two ways to
choose orientations on U , so the pre-image up in ĂM may as well be two disjoint copies of U . Asserting
that we have defined a local homeomorphism on these basic open subsets provides us with a topology on
ĂM .

Remark 4.48. From here, one can see that a connected n-manifold M is orientable if and only if ĂM has
two connected components. If we did have an orientation, then ĂM separates into the two choices of
orientations; conversely, if ĂM separates into two components, then each component yields an orienta-
tion.

Remark 4.49. There is a generalization of ĂM up to MR by choosing generators of µx P HnpM |x;Rq for
each x P M , and we can again produce a covering space MR Ñ M via the projection µx ÞÑ x.

Example 4.50. The Möbius strip fails to be orientable: if we did have orientation, then we could go
“around” the strip (keeping the same generator locally) to flip the given orientation, which is a con-
tradiction.

Example 4.51. One can show that RPn is orientable only in odd dimensions. For example, RP1 is basi-
cally a circle, which is orientable.

We have been taking Z coefficients everywhere in the previous discussion, but we might as well take R
coefficients instead.

Definition 4.52 (R-orientation). Fix an n-manifold M . Then an R-orientation on M is a choice of gen-
erators µx P HnpM |x;Rq for each x P M such that the map x ÞÑ µx is locally constant.

Remark 4.53. One can check that every manifold is F2-orientable. This essentially follows from the
above discussion and a careful tracking through of the definitions.

Here is the main result on R-orientability.
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Theorem 4.54. Fix a closed connected n-manifold.

(a) If M is R-orientable, then the map HnpM ;Rq Ñ HnpM |x;Rq is an isomorphism for all x P M .

(b) If M fails to be R-orientable, then the map HnpM ;Rq Ñ HnpM |x;Rq is injective with image ex-
actly tr P R : 2r “ 0u. In particular, we recall that HnpM |x;Rq – R here.

(c) We have HipM ;Rq “ 0 for i ą n (even if M is not closed).

Remark 4.55. It is true thatM has a CW-structure with cells of dimension at mostn, which would prove
(c) easily. However, showing this is somewhat difficult; for example, one must get around the fact that
not every manifold has a simplicial structure.

Remark 4.56. Parts (a) and (b) show that one can detect if M is orientable via HnpM ;Zq. However,
HnpM ;F2q “ F2 always.

To prove Theorem 4.54, we will instead prove the following more technical lemma, from which the theorem
will follow quickly. Approximately, speaking, the lemma is a version of the statement where we allow non-
compact manifolds.

Lemma 4.57. Fix an n-manifold M , and let A Ď M be a compact subspace.

(a) Given a locally constant section x ÞÑ αx of the projection MR Ñ M , there exists a unique class
αR P HnpM |A;Rq whose image in MnpM |x;Rq is simply αx.

(b) HipM |A;Rq “ 0 for i ą n.

Proof. We proceed in steps. For brevity, we abbreviate the ring R everywhere.

1. We remark that an induction via Mayer–Vietoris implies that if the statement is true for A and B and
AXB, then we also get the statement forAYB. For example, this allows us to divide up the compact
set A into pieces contained in open balls locally homeomorphic to Rn, so we may assume that A is
contained in such an open ball.

2. We show the result for Rn and A “ B where B is a compact ball. Here, we know that Hn pRn|Bq Ñ

HnpRn|xq is always an isomorphism for any x P B, which produces uniqueness of the needed class in
(a). For existence, at any point y P B, choose some generator, but then there is an open neighborhood
U of y so that we can lift µy to some µU P HnpM |Uq via excision. Then for any two points x, y P M , a
path connecting them will enforce that the orientations cohere into a single class up in HnpM |Bq.

3. We show the result for Rn and A a general compact set. To show that the class exists, just use a very
large simplex containing A and then reduce to the previous case. For uniqueness, take a difference
and apply excision and the Mayer–Vietoris reduction cleverly in order to produce the result. ■

And now here is the proof of the theorem from the lemma.

Proof of Theorem 4.54. Take A “ M ; part (c) is immediate. Note that the set of sections MR Ñ M is an
R-module; call thisR-module ΓRpMq. Then there is a homomorphismHnpM ;Rq Ñ ΓRpMq sending a class
α to the corresponding section x ÞÑ αx; part (a) of the lemma tells us that this map is an isomorphism, from
which parts (a) and (b) of the theorem follow quickly from an understanding of the covering map MR Ñ

M . ■

4.6 December 7
Today we will discuss Poincaré duality.
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4.6.1 Statement of Poincaré Duality
Theorem 4.54 allows us to make the following definition.

Definition 4.58 (fundamental class). Fix a closed R-orientable n-manifold. Then there is a class rM s P

HnpM ;Rq, called the fundamental R-class, such that the image of rM s under the maps HnpM ;Rq Ñ

HnpM |x;Rq goes to a generator.

Remark 4.59. If the manifold M is a ∆-complex, then rM s can simply be defined as the sum of the n-
simplices: each point x P M will live in (roughly speaking) one of these n-simplices, so the image of
rM s will indeed go to a generator because the only n-simplex in rM s which fails to vanish is the one
containing x.

Remark 4.60. Further, suppose thatM has a triangulation, making it piecewise linear. Then one can give
M a dual cell structure, from which Poincaré duality can be seen. Namely, an i-cycle essentially assigns
a number to each cell, but then this will simply define an pn´ iq-cocycle via the dual cell structure.

The above remark can be seen as a concrete construction of the “cap product.”

Definition 4.61 (cap product). Fix a topological space X. We define the cap product X : CkpX;Rq ˆ

CℓpX;Rq Ñ Ck´ℓpX;Rq for k ě ℓ by extending the relation

pσ X φqpσq :“ φpσ|rv0,...,vℓsqσ|rvℓ,...,vks

bilinearly.

One can check that Bpσ X φq “ p´1qℓpBσ X φ ´ σ X Bφq by an explicit computation, so the cap product of a
cycle and a cocycle will be a cycle. The main point is that X descends to

HkpX;Rq ˆHℓpX;Rq Ñ Hk´ℓpX;Rq.

A direct computation shows that the following diagram commutes for any continuous map f : X Ñ Y .

HkpX;Rq HℓpX;Rq Hk´ℓpX;Rq

HkpY ;Rq HℓpY ;Rq Hk´ℓpY ;Rq

ˆ

ˆ

Hkpfq Hℓ
pfq Hk´ℓpfq

X

X

So our cap product is natural. We are now able to state Poincaré duality.

Theorem 4.62 (Poincaré duality). Fix a closed R-orientable n-manifold with fundamental class rM s P

HnpM ;Rq. Then there is an isomorphism D : HkpM ;Rq Ñ Hn´kpM ;Rq given by rM s X ´.

Remark 4.63. If R is a field, then we see that HnpM ;Rq “ H0pM ;Rq – R when M is connected. As
such, roughly speaking, Poincaré duality says that we have a non-degenerate pairing

HkpM ;Rq ˆHn´kpM ;Rq Ñ HnpM ;Rq – R.

Theorem 4.62 is proven by going up to a stronger statement for non-compact manifolds; this will allow us
to prove the statement by induction. This will require a new cohomology theory.
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4.6.2 Cohomology with Supports
Here is our new cohomology theory.

Definition 4.64. Fix a topological spaceX. Then we define CicpX;Gq to be the subgroup of CipX;Gq of
cochains φ : CipXq Ñ G such that there is a compact K with φ|CipXzKq “ 0. In other words,

CicpX;Gq “ lim
ÝÑ
KĎX

CipX,XzK;Gq.

Now, given an R-oriented n-manifold M , we note that we have a unique rMKs P HnpM |K;Rq for each
compact K, and so we can let φ P Ckc pM ;Rq be a cochain vanishing on CkpMzK;Rq. Then we see that
rMKs X φ and thus gives a homomorphism

DM : Hk
c pM ;Rq Ñ Hn´kpM ;Rq

by taking the colimit of the maps HkpM |K;Rq Ñ Hn´kpM |K;Rq over compacts K. (One has to check that
the cup product coheres with this restriction of compacts defining the direct limit, but this is no issue.) This
setting now generalizes our earlier Theorem 4.62 into the following theorem.

Theorem 4.65. Fix an R-orientable n-manifold M , the map

DM : Hk
c pM ;Rq Ñ Hn´kpM ;Rq

given as above is an isomorphism.

We prove the above theorem by induction; note that it generalizes Theorem 4.62 by takingM to be compact,
where the point is that M being compact forces cohomology with compact support to simply agree with
regular cohomology.

Remark 4.66. There are various inductive approaches which “almost” work provided we had some ex-
tra structure. For example, if M is homeomorphic to a ∆-complex, then one can build the preceding
theorem by gluing together a discussion in the compact case, proving the needed isomorphism. For
example, this approach will work for M “ Rn as well as any surface.

We now sketch Theorem 4.65. We will use the following technical result.

Lemma 4.67. Suppose that an orientablen-manifoldM is the union of two open orientablen-manifolds
U and V . Then the following diagram (with rows given by Mayer–Vietoris) commutes.

Hk
c pU X V q Hk

c pUq ‘Hk
c pV q Hk

c pMq Hk`1
c pU X V q

Hn´kpU X V q Hn´kpUq ‘Hn´kpV q Hn´kpMq Hn´k´1pU X V q

DUXV DU‘´DV DM DUXV

One can take coefficients in any ring.

Proof. One does a long and tedious computation. I cannot be bothered to write out the details today. Es-
sentially, one checks the result by replacingHc with an explicit compactK Ď U and L Ď V and then pass to
the colimit to produce the result. ■

From here, one proves Theorem 4.65 by induction: withM “ U X V , induction will allow us to assume that
DU ,DV , andDUXV are all isomorphisms, from which it follows thatDM is an isomorphism. It is not totally
clear what we induct on or what our base case is, which is the remaining content of the proof.
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local degree, 61
locally path-connected, 29

manifold, 91

orientation, 92

product, 10
projective resolutions, 79

quotient, 10

R-orientable, 92
reduced homology, 45
relative homology, 49
resolution, 79
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simplex, 36, 40
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