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THEME 1
INTRODUCTION

I have dedicated far too many algorithms and computational resources
toward finding an answer to this unknowable thing.

—Neal Shusterman, [Shul8]

1.1 August24

It begins.

1.1.1 Logistics

Here are the logistical notes.

» The professoris lan Agol, whose office is Evans 921. Office hours are Tuesdays after class, Monday at
3PM, Wednesday at 9AM, or by appointment.

» ThereisabCourses.
« Homework will be weekly, and it will make up the entire grade.

» The prerequisites are Math 113 and 202A or equivalent. From point-set topology in particular we will
want notions of compactness, connectedness, metric spaces, and a few topologies like the identifica-
tion topology with respect to a continuous map.

1.1.2 Overview
We will cover chapters 0-3 of [Hat01].

» Chapter 0 consists of “geometric notions.” Particularly important are the notion of homotopy and CW
complexes.

+ Chapter 1 is on fundamental groups.
« Chapter 2 is on homology. This is an abelian extension of fundamental groups.

» Chapter 3 is on cohomology. Poincaré duality relates cohomology with homology.
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Chapter 4 is typically covered in Math 215B, on homotopy theory.

Let's talk a bit about the interests of the course. Topology as a whole is interested in “spaces up to defor-
mation.” In this class, deformation will mean homotopy mostly, but there are finer notions of interest like
homeomorphism. As for the spaces, we will focus on spaces which are locally homogeneous in some sense,
like manifolds (which are locally homeomorphic to R™). These notions come up naturally throughout math-
ematics; for example, integrals of holomorphic functions are roughly independent of path chosen. Poincaré
himself was interested in differential equations, whose configuration spaces could be manifolds.

In this class, we will attach invariants to our topological spaces to be able to understand how to differ-
entiate between our spaces (up to deformation). We focus on the following invariants.

« Fundamental groups and covering spaces. This has a close tie to Galois theory, an analogy made pro-
cess by the étale fundamental group in algebraic geometry.

« Cohomology. The origins are from complex analysis and Stokes's theorem, but cohomology itself has
vast generalizations and manifestations throughout mathematics, leading to the field of homological
algebra. However, there are applications to algebraic geometry, number theory, and so on. The most
notable application here is the proof of the Weil conjectures.

« Higher homotopy groups. Our approach will not begin with this viewpoint, but it is possible.

1.1.3 Homotopy and Homotopy Type

Let's jump in chapter O.

Notation 1.1. We set I := [0, 1] for convenience.

Definition 1.2 (deformation retract). Fix a subspace A of a topological space X. Then a deformation
retractis a family of functions f.: X x I — X where fy = idx andim f; = Aand f;|4 = id4 forallt e I.

Example 1.3 (mapping cylinder). Fix a continuous function f: X — Y. Then the mapping cylinder M;
is the space (X x I) u'Y quotiented by (x,1) ~ f(z). Then M/ has a deformation retraction to Y by
fi(x) == (z,t). Visually, we have attached Y to a thickening of X.

Example 1.4. Define f: S' — S! by f(z) := 2. Then M; has S! on one domain side and S' covered
twice on the target side. With a little deformation, this is a Mdbius strip. Approximately speaking,
one should cut the cylinder in half and then rearrange. One can see that the Md&bius strip deformation
retracts to S* by squishing the width of the cylinder to the central line.

A deformation retract is a special case of a homotopy. Here is the definition of a homotopy.

Definition 1.5 (homotopy). Two continuous maps fo, f1: X — Y are homotopic if and only if there is a
continuous function F,: X x I — Y such that Fy = fyand F} = f;. Here, F'is called a homotopy, and
we write fo ~ f1.

Example 1.6. A subspace A < X has a deformation retract if and only if idx is homotopic to some
r: X > X withimr = Aand r|4 = id4. Indeed, the deformation retract is exactly the needed homo-

topy.

Example 1.7. Suppose f,g: X — Y are equal maps. Then defineh: X x I — Y byh; = f = gforall
t. We see that h is continuous (h=1(V) = f~1(U) x I forany open V < Y), so it provides a homotopy
from fand g.
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It should not be surprising that homotopy is an equivalence relation.

Lemma 1.8. Fix topological spaces X and Y. Then ~ is an equivalence relation on continuous functions
X Y.

Proof. We have the following checks.
« Reflexive: this is direct from Example 1.7.

o Symmetric: if f ~ g, thenwehave F,: X xI — Y with Fy = fand F; = g. WenowdefineGy: X xI —
Y by G; :== Fy_;. Then G is continuous by the continuity of t — 1 —tand F,and Gy = gand G; = f, so
G witnesses g ~ f.

o Transitive: if f ~gandg ~ h,findFy: X x I > YandG,: X x I —» Y with F; = fand F} = g and
Go = gand G1 = h. Then we define H,: X x I — Y by

b [P fos<t<1)2,
YT Gy fl2<t <1

Note that this is well-defined at ¢ = 1/2 because F} = g = G. Note H will witness f ~ h once we
show that it is continuous, which is what we do now.

By looking locally at F or G, we see that H is continuous at any point not of the form (z, 1/2). Then for
any point of the form (x, 1/2) and open subset V < Y containing H /»(z), continuity of I gives an open
subset Ur x (1/2 —&,1/2] mapping to V, and continuity of G gives an open subset Ug x [1/2,1/2 + €)
mapping to V, so (Ur nUg) x (1/2 — ¢,1/2 + €) will suffice. [ ]

Homotopy also behaves well with composition.

Lemma 1.9. Fix topological spaces X,Y, Z, and let fo, f1: X — Y and go,91: Y — Z be homotopic
maps. Then (go © fo) ~ (g1 0 f1).

Proof. Fix a homotopy F,: X x I — Y with Fy = fyand F} = f; and a homotopy G.: Y x I — Z with
Go = goand G1 = g1. Then we define H,: X x I — Z by

Ht(df) = Gt(Ft(z))

Then Hy = gg o fo and H; = g; o f1, so we will be done if we can show H is continuous. Well, H, is the
composite map
xx1" Wy 18 7

which we can see is the composite of continuous maps. |

Homotopy allows us to define homotopy equivalence.

Definition 1.10 (homotopy equivalence). A continuous map f: X — Y isa homotopy equivalenceif and
only if there is a continuous map g: Y — X such that (go f) ~idx and (f o g) ~ idy. We then say that
X and Y have the same homotopy type and write X ~ Y.

Remark 1.11. It is not enough to merely require (g o f) ~ idx. For example, let X := {z} be a point.
Thenany map f: {x} — Y can use the unique map g: Y — {z} sothat (go f) = idx.

Here is a quick sanity check.
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Lemma 1.12. Ignoring size issues, homotopy equivalence provides an equivalence relation on topolog-
ical spaces.

Proof. We have the following checks. Fix topological spaces X,Y, Z.

+ Reflexive: we show X ~ X. Indeed, use the maps idy,idx: X — X sothatidy oidx = idx is
homotopic to idx by Example 1.7.

« Symmetric: we show X ~ Y impliesY ~ X. Indeed, let f: X — Y andg: Y — X be the promised
maps so that (f o g) ~ idy and (g o f) ~ idx. Reading these data in reverse tellus that Y ~ X.

» Transitive: suppose X ~ Y andY ~ Z, and we show X ~ Z. Thus, we have maps f: X — Y and
g:Y > Xand f:Y > Zandg': Z — Y suchthat (fog) ~idy and (go f) ~idx and (f o g’) ~idz
and (¢’ o f') ~ idy. We now claimthat (f' o f): X - Zand (gog¢’): Z — X are the desired maps to
witness X ~ Z. Well, using Lemma 1.9, we compute

(ffof)o(gog)=fo(fog)og ~ foidyog = fog ~idg,

and similar for the other direction. [ |

Remark 1.13. One can check directly that ~ is an equivalence relation on spaces. The main check here
is that one can compose homotopies.

We will often find that our algebraic invariants are only able to detect homotopy equivalence, which is why
homotopy equivalence will be so important to us.

Example 1.14. Example 1.4 shows that the Mdbius strip is homotopic to S*.
More generally, one can show that a deformation retract is a homotopy equivalence.
Lemma 1.15. Fix a subspace A of a topological space X. Then a deformation retract witnesses a homo-

topy between the inclusion i: A — X and the identity idx : X — X. In particular, it follows that i is a
homotopy equivalence.

Proof. Thisisa matter of unraveling the definitions. Fix a deformation retract f,: X xI — X, and letr := f;
so thatimr = A. We now claim that i and r are inverse homotopy equivalences.

» We show that (r 0 i) ~ id4. Indeed, r(i(a)) = aforany a € A by hypothesisonr, soinfactr oi =id4.

+ We show that (i o ) ~ idx. The relevant homotopy is just f.: we have fy = idx and f; = (i o r), so
idx ~ (ior)byLemma1.8. [ ]

Example 1.16 (dunce cap). Take the disc D? and glue the edges together as follows: mark three points
A, B, and C, and glue AB to AC to CB (in those orientations). Then the resulting space is homotopic
to a point.

We have a special name for being homotopic to a point.

Definition 1.17 (contractible). A topological space X is contractible if and only if it is homotopic to a
point.
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These notions allow us to define a homotopy category, whose objects are homotopy classes of topological
spaces and morphisms are continuous maps. In some sense, our algebraicinvariants are trying to distinguish
between objects in this category. It turns out that this category is not concrete, meaning that there is no way
to realize its objects as sets reasonably. Approximately speaking, this means that there can be no canonical
representing topological space for each homotopy class, but topologists try anyway.

Remark 1.18. There are a number of results called “topological rigidity” theorems which give homeo-
morphism X =~ Y given merely X ~ Y and some extra hypotheses. For example, this holds for closed
surfaces by a classification result.

Example 1.19. Attach two S's by a line to make a space X, and attach them along an edge to make a
space Y. These spaces are homotopic, but they are not homeomorphic (removing a point from X may
disconnect it, but this is not the case for Y).

1.1.4 CW Complexes

Here is our definition.

Definition 1.20 (CW complex). Let X be a discrete set of points, and define X™ inductively by X"*+1 :=
X"y {entl}, where g, : den ™t — X™isahomeomorphism telling us how to union. Here, e is a copy

of the n-ball B", so the ¢, are explaining how to identify the edges.

Example 1.21. Here is a CW complex.

Namely, X% = {zg, 21}, and X! is the edges.

Example 1.22. Take a point {+} for X°, and define ¢,, to be some loop based on {x}. Then the resulting
space is some infinite union of circles intersecting at {x}. Notably, this space is not compact and in
fact should not even be embedded into the plane or R? because such an embedding is unlikely to be a
homeomorphism.

Example 1.23. The sphere S := D"/0D" is a CW structure with only two cells: it is ¢® U e™. Notably,
the CW structure here has X% = X! = ... = X"~ 1,

Example 1.24. Alternatively, one can define S™ inductively as follows: take S° to be two points, and
define S™*! to be S™ as an equator unioned with two (n + 1)-cells making hemispheres attached to the
equator. One can then define S* to be the union of all the S* where we identify S™ — S™*! via the
equator. This is a CW complex of infinite dimension. It turns out that S® is contractible, though S is
not for any finite n.
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Example 1.25. Define real projective space RP" as the set of vectors z € R"*1\{0} where we identify x
with Az for any A € R*. Notably, by setting the last coordinate equal to 0, we expect to get RP"~*. But
if the last coordinate is equal to zero, we can scale it uniquely to 1, and then the remaining coordinates
may vary arbitrarily. In total, we find

RP"” = RP* ! R L

0 1 n

Thus, we get the cell structure RP" = e’ uelt U -+ U e™

Remark 1.26. The CW structure is not unique. For example, one can separate out edges by putting a
point in the middle of them.

One can show that the CW complex is compact if and only if it has finitely many cells.

1.2 August29

Last time we discussed homotopies, homotopy equivalence, and CW complexes. To review, the goal of
algebraic topology is to define (algebraic) invariants of topological spaces and then perhaps figure out when
two spaces are equivalent (for suitable definition of equivalent). In theory, our invariants would be able to
entirely classify some subset of spaces we are looking at, but it is rather rare. To execute this plan, we need
a source of spaces (mostly CW complexes and ways to combine them) and then methods to tell if spaces are
equivalent.

1.2.1 Operations on Spaces

Let's discuss how to make new spaces from old ones. Thankfully, our operations will send CW complexes
to CW complexes, though there is something to check.

Definition 1.27 (product). Fix CW complexes X and Y. Then we form the product X x Y (at the level
of CW complexes) using as (n + m)-cells ey} x f5 where ep! is an m-cell of X and fZ* is an n-cell of Y.
Notably, the n-skeleton is
X xY) = | X*xY¥,
k+Ll=n

and one can attach in the obvious way. This produces a CW structure.

Remark 1.28. It is possible that X x Y with its CW structure need not be the same as the product topol-
ogy. There is an example in the appendix of [Hat01], but we won't care so much for this course.

Definition 1.29 (subcomplex). Fix a CW complex X. Then a subcomplex is a closed subspace A € X
which is a union of cells of X and also a CW complex.

Definition 1.30 (quotient). Fix a subcomplex A of a CW complex X. Then X /A is also a CW complex.
Here, the definition of X /A is somewhat technical: its cells are the cells of X\ A and then a 1-cell from
A, and one attaches in the obvious way (inductively) via the quotient map X"~ ! — X"~1/4n~1,

Definition 1.31 (suspension). Fixa CW complex X. Then the suspension is the quotient

X x1I

SX = 0 ~ 0.a)and (L2) ~ L)}

10
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Example 1.32. Take X = S, which is two points. Then X x I is two lines, and we then identify the
endpoints of the two lines accordingly to produce a circle S*. More generally, SS™ = S"*! essentially
by just gluing two S™s onto the equator of S +1.

Definition 1.33 (join). Fix CW complexes X and Y. Then the join X * Y is the product X x Y x I (as
CW complexes) modded out by the equivalence relation identifying (z,v,0) ~ (z,y’,0) and (z,y,1) ~

(«',y,1).

Example 1.34 (simplex). Consider X = Y = I = Al. Then X % Y is the cube modded out by crushing
Y on one end and crushing X on the other end, forming a tetrahedron, which is A3. More generally,
A" x A™ = AntmEL

Example 1.35. One has S° « S° = S!, and more generally S * X = SX. Essentially, we are gluing two
copies of X onto an equator, which is the suspension.

Definition 1.36 (wedge product). Fix CW complexes X and Y and points zp € X? and yo € Y. Then we
form the wedge product X v Y as X 1 Y identifying g ~ yo.

Definition 1.37 (smash product). Fix CW complexes X and Y and points 2o € X?and y € Y°. Then the
smash productis (X xY)/(X vY),where X vY isembeddedinto X xY asz — (z,y0) and y — (y, zo).

Example 1.38. One can check that S* x S! is a torus. To form the smash product, we are crushing the
boundary of the square as follows.

y

y

More generally, S™ A S = §™+n,

Definition 1.39 (attach). Fix a subcomplex A of a CW complex X; andamap f: A — X, to another CW
complex Xy. Then X, Ly X; is the space Xy 1 X; modded out by the equivalence relation a ~ f(a) for
alla € A.

Example 1.40. An attaching map ¢, : D™ — X"~! of a CW complex are attachments X"~ L, D™ in
the above sense.

1.2.2 Homotopy Extension

We are going to, over time, prove the following results. To begin, quotients preserve homotopy type.

Proposition 1.41. Fix a subcomplex A of a CW complex X. If A is contractible, then the quotient map
X — X /Ais a homotopy equivalence.

11
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Example 1.42. Fix a connected graph X, which is a one-dimensional CW complex. Fix a spanning tree
T < X, which is contractible (any tree can be contracted one edge at a time), so X — X/T is a ho-
motopy equivalence. Then X /T becomes a wedge of loops corresponding (roughly) to the number of
“independent” cycles. Notably, this collapsing is far from canonical, essentially unique up to choosing
the spanning tree and then an order of edges. In some sense, because the homotopy group of a wedge
of loops is a free group, we are able to study automorphisms of the free group in this way.

Proposition 1.43. Fix a subcomplex A of a CW complex X;. Given homotopic maps f,g: A — Xg, then
XO (. X1 = XO Lg Xl.

The idea of the above result is that if we can move the attaching maps f and g around, we should not really
be adjusting the homotopy type.
To prove these results, we want access to the homotopy extension property.

Definition 1.44 (homotopy extension property). Fix a subspace A of a topological space X. Then the
pair (X, A) has the homotopy extension property if and only if all Fp: X — Y and small homotopy
fo: Ax I — Y with Fy|4 = fo, then there is an extended homotopy F,: X x I — Y where Fi|4 = f;
forallteI.

It will turn out that a subcomplex A of a CW complex A makes (X, A) have the homotopy extension property,
but this will take some work to prove.

By way of example, make Y the following “theta graph,” and the left edge is X, and A is the middle
interval.

Here, A € X is going to have the homotopy extension property. For example, one can contract A to a point
and imagine dragging neighborhoods of A » X in X (and in fact all of Y') along for the ride.

One way to think about the homotopy extension property is that we haveamap X u (A x I) —» Y (by
taking the union F, and f,), and we and to extend it to a full map X x I — Y. With this in mind, we would
thus like to have to retract r: (X x I) — (X u (A x I)) and then composing. By takingY = X x I, one sees
that having such a retraction r is in fact equivalent to the homotopy extension property.

So we want to find the retractionr: (X x I) — (X u (A x I)).

Lemma 1.45. Fix a subspace A of a topological space X. Then (X, A) has the homotopy extension prop-
erty if and only if A has a “mapping cylinder neighborhood.” In other words, there is a space B and map
f: B — Asuchthat M is homeomorphic to a neighborhood of A.

Approximately speaking, what's going on here is that the mapping cylinder allows us some squishing region
through which to extend homotopies. Then the above criteria can be checked for CW pairs (X, A) by track-
ing through attachments. Namely, a reparameterization of the attaching map has mapping cylinder which
has the property needed above. Rigorously, one inducts on the n-skeleton of a CW complex X, using the
homotopy extension property for cells of X not in A (and not caring about cells already in A).

12



THEME 2

THE FUNDAMENTAL GROUP

2.1 August3l

We now shift gears and talk about our first algebraic invariant: the fundamental group.

2.1.1 The Fundamental Group

Let's start with an example.

Example 2.1. Fix a loop v: S — (C\{0}) which is continuously differentiable. Then complex analysis

tells us that

1 1
— | =-dz
211 )2

counts the number of times that v “winds"” around the integer. We might call this the “linking number”

of v. Notably, one can check that continuously varying v does not adjust the linking number, so this
linking number is homotopy invariant.

The fundamental group is a generalization of this notion.
Definition 2.2 (fundamental group). Let X be a topological space, and fix a basepoint xg € X. Then the
fundamental group 7 (X, x¢) is the set of homotopy equivalence classes

m1 (X, x0) == {[f] suchthat f: I — X has f(0) = f(1) = zo}.

We will give 71 (X, zg) a group structure below.

Remark 2.3. There is also a 7o (X ), which consists of homotopy classes of points [z] for z € X, where
[z] denotes the path-connected component of X. If we let Q(X, z() denote the topological space of
loops f: I — X suchthat f(0) = f(1) = zo, then we find 71 (X, 29) = mo(Q(X, x0)).

13
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Remark 2.4. If we don’t want to care about basepoints, one can look at C (Sl, X), which is the set of
maps S' — X. This can be given a topology via the compact-open topology. Approximately speak-
ing, these will correspond to conjugacy classes in (X, zo) provided that X is path-connected. For
example, the homotopy class of a constant loop S' — X consists of the contractible loops in X; note
there is something to check here in that one wants to know that a contractible loop (not relative to the
basepoints) is in fact contractible relative to the basepoint.

Example 2.5. Let X = {xz(} be a point. Then 71 (X, z¢) = 1 because there is only path I — X.

Example 2.6. Let X be a convex subset of R” for some n > 0. Then for any 2y € X has 71 (X, z¢) = 1.
Indeed, use the convex hypothesis to shrink any path down to the constant path.

We can give 71 (X, o) a product via composition.

Definition 2.7 (composition). Let X be a topological space, and fix a basepoint zy € X. Given paths
f,9: I —» X suchthat f(1) = ¢g(0), we define the path (f - g): I — X via

(f-9)(t) = {f@t) if0 <

t<1/2,
g(2t—1) ifl/2<t

<L

Note that f - g is well-defined at ¢ = 1/2 because f(1) = ¢(0).

The point of the above definition is to “squish” a path to do both f and g in the interval I, but at twice the
speed. One has the following checks.

» Theclass [f - g] does not depend on the choice of representatives f and g. Essentially, if fi ~ f2 and
g1 ~ g2, then one can use these two homotopies to glue together to make a new homotopy (f1 - g1) ~

(f2 ~ 92)-

» Wehave [(f-g)-h] = [f - (¢g-h)], socomposition associates. The point is that these are basically
reparameterizations of each other.

» There is an identity path given by e, (¢) :== x¢. The identity check is done again by some idea of repa-
rameterization.

« Foragiven path f: I — X, we candefine f: I — X by f(t) := f(1 —t) and then check that
f ? ~ €r(0)»
so [ f] provides the inverse path for [f] in 71 (X, zg). The point is that f - f is

- F(2t) if0<t<1/2
. t) =
snO- {1,
One can then provide a homotopy by
f(2¢) if0<t<s/2,
hs(t) == < f(s) ifs/2<t<1—3/2,
f2=2t) ifl—s/2<t<l,

sohg =epqgyandhy = f- f.

Forthese checks, itis helpful to have lemmas establishing continuity of piecewise functions and establishing
that reparameterization does not affect homotopy class.

14
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Remark 2.8. Staring hard at our definition of composition, one sees that our reparameterization busi-
ness is really just choosing various piecewise affine maps I — I with slopes in 2% and breaks at the
dyadic rationals 22Z < Q. These maps form a group called the Thompson group.

Remark 2.9 (fundamental groupoid). Fix a topological space X, and define a category where the objects
are points x € X, and the morphisms = — y are paths (up to homotopy fixing endpoints). The above
checks now show that this is in fact a category, where each morphism has an inverse. This category is
called the fundamental groupoid. Modding out by isomorphism, our objects are now path components
in X, and choosing a particular component produces the fundamental group in its endomorphisms.

Remark 2.10. Verifying that 1 (X, z) only required reparameterization. So as in Remark 2.9, we could
also look at the category where paths are only considered up to reparameterization, and the above
checks still go through. This is related to the notion of “thin homotopy.”

Lemma 2.11. Fix a topological space X. Further, fixa pathp: I — X. Then f — (p- f - p) provides an
isomorphism 71 (X, p(1)) — 71 (X, p(0)).

Proof. Thisis well-defined because f; ~ foimpliesp- fi ~D- foimpliesp- f1 -p ~D- f2 - p. Thisis a group
homomorphism because
p-f-gp~p-f-p-D-9g-p

Lastly, this is an isomorphism because p provides the inverse map. |

Remark 2.12. The above result roughly says that we can indeed look at the fundamental groupoid only
in terms of the path-connected components.

Thus, we see that 71 (X, x) is well-defined up to base-point provided that X is path-connected. However,
the isomorphism between base-pointsis only defined up to path between those basepoints! Roughly speak-
ing, the problem is that elements of 7 (X, 29) should really only be thought of up to inner automorphism
because we can pre- and post-compose by some loop at .

Lemma 2.13. If X is homeomorphicto Y by ¢: X — Y, then 71 (X, z¢) = m1 (Y, f(zo)) forany zp € X.

Proof. Use ¢. |

2.1.2 The Fundamental Group of S*
Here is our result.
Theorem 2.14. Fixany z € S*. Then m; (S',z) = Z. In fact, there is an isomorphism ®: Z — 7 (S*, z)

given by
n — [t — (cos2mnt, sin 27nt)] .

Sketch without covering spaces. We show injectivity and surjectivity independently.

« Thinkof $' asembeddedinCas{z : |z| = 1} andtakeasmooth path f: I — S!, liftittoamap f: I — R
via

Ft) = J 0,

0

15
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where df is some differential form S* (say, x dy — y dz). Then f(l) is intuitively contained in 27Z and is
homotopy invariant. Now, f is not smooth, then we can use some small homotopy to make f smooth
and then use the above argument. This provides an inverse map to ® and thus shows that @ is injective.

« For surjectivity, one can use uniform continuity of any path f: I — S' and the compactness of S in
order to divide up I into intervals on which f can be written as a composition of well-behaved paths,
which eventually allows us to force f to make piecewise linear. Once f is piecewise linear, we go
interval-by-interval and fix f to be constant speed. Eventually f becomes one of the ®(n) for some
n. |

For the covering space approach, the point is that we understand the fundamental group of R well, and we
have a fairly well-behaved “covering map” p: R — S given by p(#) := (cos 270, sin 276). The main claim,
then, is that any pathw: I — S has aunique lift &: I — R such that &(0) = w(0) and po & = w. The point is
that once we lift, we can use a homotopy up in R (fixing the endpoints of &), which will then go back down
to a homotopy on S* if we are careful. Anyway, this lifting process can essentially be done as described in
the surjectivity check above.

2.2 September5

Today we actually prove 7'('551) ~ 7.

2.2.1 Eckmann-Hilton Argument

Because it is fun, we begin with some nonsense.

Proposition 2.15 (Eckmann—Hilton). Let X be a set equipped with the binary operations o and * such
that the following hold.

(a) Identity: there are elements 1,,1, € X suchthatl,oca=aol, =aand 1, *a =a =1, = aforall
a€c X.

(b) Distribution: we have (a0b) * (cod) = (a*c)o (b=d)foralla,b,c,de X.

Then o and = are the same operation and in fact are both commutative and associative.

Proof. This is purely formal. We proceed in steps.
1. We show that 1, = 1. Indeed, note
Iy =Ly ly = (Iy0ly) % (looly) = (Iy # 1) o (1o # 14) = 1o o 1o = 1.
From now on, we use the symbol 1 to denote our identity 1, = 1,.
2. We show thata = b = a o b. Indeed, note
axb=(aol)x(lob)=(ax1)o(1xb) =aob.

Thus, our operations are the same, and we will use the symbol * to denote both of them now. Notably,
our distribution law is (a # b) * (c * d) = (a = ¢) = (b= d).

3. We show that * is commutative. Indeed, forany a,b € X, we see
axb=(lxa)x(bx1)=(1xb)*(ax1) =0bx*a.
4, We show that = is associative. Indeed,
(axb)xc=(axb)x(lxc)=(ax1)x(bxc)=ax*(bxc),
foranya,b,ce X. [ ]

As an application, we have the following result.

16
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Corollary 2.16. Let G be a topological group with identity e € G. Then 71 (G, e) is abelian.

Proof. Let - denote the usual concatenation operation on 71 (G, e). The point is to give another binary oper-
ation to 71 (G, e) and then apply Proposition 2.15.

Well, let = denote the group operation on G, and for paths f,g: I — G based at ¢, we define the path
(fxg): I > Gby(f=g)(t) = f(t) = g(t). Here are the necessary checks for our purposes.

» Note f x g is a continuous map because it is the composite of the continuous maps

(ldI ld[)

I Ixi1Yaxasa

» We show [f * g] does not depend on the choice of homotopy classes [f] and [¢], so we may view = as
a binary operation on 7 (G, ¢). Suppose f ~ f"and g ~ ¢’ by the homotopies F, and G,, respectively.
We want toshow that f g ~ f'+g’. Well, define H,: G x I — G by Hy(x) := Fy(z) «Gy(z) forallt e I
andz € G. Thenwe seethat Hy = Fy * Gy = f*gand H; = [} = G; = [’ = ¢’, and H, is continuous
because it is the composite

G><I G><G G.

« Note that = has an identity element given by the constant path ¢(¢) := e forall¢ € I. Indeed, for any
[f] € m1(G,e), we see that (f = ¢)(t) = f(t) = c(t) = f(t)forallt € I,so [f] * [¢] = [f =] = [f]-
« Fix [a], [b],[c], [d] € m1 (G, e). We claim that

?

(la] - [b]) * ([e] - [d]) = ([a] * [c]) - ([6] = [d])-

Removing all the homotopy classes, it is enough to show that (a - b) * (¢- d) = (a = c¢) - (b= d). Well, for
anyt e I, we compute

— . * (¢ - — a’(t) * C(t) Ift S 1/27
((a-b) = (c-d))(t) = (a-b)(t) * (c- d)(t) = {b(t) sd(t) ift>1/2,
and
(axc)(t) ift<1/2

which is the same path.
Now, Proposition 2.15 shows that x and - must be the same operation on 71 (G, e) and that - is commutative,

which is what we wanted. [ |

2.2.2 Covering Spaces

Our computation is going to use the notion of a covering space.

Definition 2.17 (covering space). Fixa topologlcalspace X. Thena covering spaceis a topological space
X together with a projection map p: X — X such that each z € X has an open neighborhood U = X
containing z such that p=!(U) = ||, Ua Where U, is open and p: U, — U is a homeomorphism. In
this set up, the open set U < X is said to be evenly covered.

The fact we will require about covering spaces is the following “fibration property.”

17
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Proposition 2.18. Fix a topological space X and covering space p: X — X. Further, suppose we have
maps I: Y x I — X and F: Y x {0} — X suchthatpo Fly,qy = Flyxo. Then there is a unique
extension F: Y x I — X suchthatpo F' = F.

Proof. We proceed in steps. Say that a subset U = X is “evenly covered” if and only if p=2(U) = | |, U.

aeN T
andp: U, — U isahomeomorphism. Note that making an evenly covered open subset smaller will retain it

being evenly covered using the fact that the maps p: U, — U is a homeomorphism.

1. Toset us up, given y € Y, we claim that there we can find an open neighborhood V' of y and a finite
open cover U of I such that F/(V x U) is contained in an evenly covered subset of X forany U € Y. The
point is to use compactness to shrink an evenly covered subset containing F(V x I) sufficiently. Well,
for each t € I, we may find and evenly covered subset U; < X containing F(y,t) and then finde; > 0
and an open neighborhood V; of y such that V; x (t — &4,t + &) € F~Y(Uy,).

Now, by compactness, we may choose finitely many ¢ labeled {¢1, ... ,t,} and sete; := &, and V; := V,
and U; := Uy, such that the intervals (t; — ¢;,t; + €;) covers [ and F(V; x (t; —e;,t; +&;)) € F~1(U;).

Now, set
V=V
i=1

soanyt € I livesinsome (t; — &;,t; + ;) has F(V x (t; —e;,t; + &;)) € Us.

2. We prove uniqueness. It is enough to show this in the case where Y is a point. Namely, fix suppose we

have two lifts F; and F} of F which agree with F. Then, fixing some y € Y, we see that Fy (y) and F(y)
are maps I — X lifting F(y): I — X which equal F(y,0) at 0. In this setting, we want to show that
Fi(y,t) = Fy(y,t) forallt € I. As such, we suppress the point y € Y in the argument which follows.
The previous step promises us a finite open cover U of I such that F(U) is contained in an evenly
covered open subset of X for each U € U. Ordering the endpoints of I/, we produce a partition 0 =
to <t1 < -+ <t, =10f[0,1] such that F([t;,t;+1]) is covered in an evenly covered subset of U; for
each i.
We are now ready to show our uniqueness. We show that F} (t) = Fy(t) for each ¢ € [0, #;] by induction
oni. Ati = 0, there is nothing to say because F;(0) = F(0) = F5(0). Now, for the induction, we
are given that Fy (t;) = Fy(t;). The point is that F([t;, t;41]) is contained in an evenly covered subset
U; < X, so ﬁl([ti, ti+1]) lands in one of the disjoint copies of U; of p~1(U;), and it lands in exactly one
because [t;,t;+1] is connected; let U, be the corresponding disjoint copy. The same statement holds for
]7“2, and in fact E([ti, tit1]) S INIZ- because ﬁg([ti, t;+1]) needs to land in the same copy of U; containing
Fi(t;) = Fy(t;).

We are now done. Note p: ﬁi — U, is injective, so
poFi =poF
fort e [t;,t;41] forces equality after removing ¢.

3. Fixsomey € Y. We will extend locally: we construct some open neighborhood V of y and a lift F': V x
I — X of F|y«;. The point is to “spread out” from {y} x I using the previous step.
As before, the first step promises us an open neighborhood V' of y and a finite open cover i/ of I such
that F/(V x U) is contained in an evenly covered subset for each U € Y. Arranging the endpoints of the
open setsinl{, we may say that we have a partition0 =ty < t; < --- < t, = 1suchthat F(V x[t;,t;11])
is contained in an evenly covered open subset U; < X for each i.
We now extend F'to F on [0,¢;] inductively. Fori = 0, thereis nothing to do because P~’|yX {0y is already
fixed. Now, suppose we have a definition of ' on V x [0,t;]. Say F(V x [t:,t;+1]) < U;, and select the
copy of U; named U; <= p~!(U;) by requiring it to contain F(y,t;). Now, shrink V so that V' x {t;}

18
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contains y still but now is contained in U;. Now, define F on V x [ti, ti+1] by pre-composing with the
homeomorphism

p U - U,
and we produce a continuous map because we have agreed on the seam at V x {t;}.* This completes
the lifting to a neighborhood V of y.

4. We can now glue the lifts F' constructed in the previous step, and the gluing is well-defined because
they must agree on intersections by the uniqueness of the second step. This completes the proof. W

And now here is our result.

Theorem 2.19. Forany z € S*, we have m; (5!, 2) =~ Z.

Proof. For brevity, embed S! into C as S! = R/Z, and let our basepoint be 0 € S'. We now abbreviate our
fundamental group to m; (S?).

Now, we note that we have the continuous (in fact, holomorphic) path w,,: [0,1] — S! given by t ~— nt.
A reparameterization argument can show that [w,] - [wm] = [wm+n] forany m,n € Z, so we have defined
a homomorphism ¢: Z — 71(S'). We would like to show that this map is an isomorphism. We will use
Proposition 2.18, for which we note that p: R — S* given by p(t) := t is a covering space map. Indeed, for
eacht e S!, choose the neighborhood (¢t — 0.1,¢ + 0.1) so that

P ((E=0.1,t401) = (t=01,t+01)+Z=| |(t+n—01t+n+0.1).

nez
We now show that ¢ is an isomorphism.

« Surjective: let f: I — S! be a loop, and we want to show that f ~ w,, for some n € Z. By Proposi-
tion 2.18 applied with Y being a point, we get a path f: I — Rsuchthat f = po f Now, setn := f(l),
which is indeed an integer, and we claim f ~ &,, where Wy (t) == nt; this will finish after composing
with the projection p as it shows that f ~ w,, by Lemma 1.9.

To see this, we definethe map h: I x I — R by

~

hi(s) = (1 =) f(s) + t&n(s).
Then h is continuous because it is the composite

[ 0TS en) PO T X R X R - R,

where the last map is taking a linear combination. Now, hy = fand hi = @y,, so f ~ w,, follows.

« Injective: suppose w,, ~ wy, and we want to show thatn = 0. Then we haveahomotopy he: I xI — X
such that by = w,, and h; = wy. Then Proposition 2.18 produces a unique lift h,: I x I — X of h such
that h;(0) = 0 foreacht € I. Now, the map ¢t — k(1) is continuous, and h;(1) = Oforeach t € I, so the

map t — hy(1) maps to the discrete space Z. It follows that ho(1) = h1 (1), s0 0 = n because of how wy
and w, liftto R. [ ]

2.2.3 The Fundamental Group Functor

Let’'s do some nonsense checks, for fun.
1

1 To avoid this annoyance at the seam, one can allow the partition to overlap a bit so that we only ever glue continuous maps along
open sets, which is legal. | won't write this out.
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Definition 2.20 (based topological space). A based topological space (X, ) is a topological space X to-
gether with a basepoint zy € X. A map of based topological spaces ¢: (X, zg) — (Y, o) is a continuous
map ¢: X — Y such that ¢(x¢) = yo. The category with these objects and morphisms is Top,.

We won't bother to check that Top,, is a category. Here is the main point of this subsection.

Proposition 2.21. We have a functor 7; : Top,, — Grp.

Proof. We already know that 71 (X, x¢) is a group for each based topological space (X, ), so we really only
have to check the functoriality properties.

Fixamap ¢: (X, z9) — (Y, yo) of based topological spaces. We need to define a group homomorphism
m1(p): (X, z9) — m1 (Y, y0). Well, givenaloop f: I — X based at zp, we note that (po f): I — Y isa loop
based at yg = ¢(x0), so we hope that our desired map is (¢ o —). Here are our checks.

+ Well-defined: if f ~ f’, we need to show that oo f ~ p o f’. Thisis simply Lemma 1.9.

» Group homomorphism: we need to show that (po f) - (pog) ~ po(f-g)forloops f,g: I — X based
at xp. In fact, these paths are equal: for ¢ € I, we compute

p(f(2t)) if

((po ) (pog)t) = {@(9(%_ i

We now prove functoriality of 7.

« Identity: note thatidx: (X, x0) — (X, z9) hasidxof = fforanypath f: I — X, som (idx)([f]) = [f]
forany [f] € m (X, zo).

« Composition: given maps ¢: (X, z9) — (Y,y0) and ¢: (Y, yo) — (Z,29) and a loop f: I — X based at
T, We see that

(P op)([f]) = [ oo fl=m@)([po f]) = (m(¥) o m(e)([f]),
which finishes. [ |

Of course, just being a functor is not terribly interesting. Here is a nice property.

Proposition 2.22. Fix based topological spaces (X, zy) and (Y, yo). Then

T (X x Y, (x0,10)) = m1 (X, z0) x w1 (Y, o).

Proof. Letpx: (X xY,(zg,90)) — (X,z0) and py : (X xY, (zo,70)) — (Y, yo) denote the projections. Now,
note that we have a map

(m1(px), m2(py)): M (X x Y, (20,%0)) — 71(X,20) x m1(Y, 90)

which we claim is an isomorphism. For brevity, let this morphism be . Of course, ¢ is a homomorphism
because 7 is a functor (see Proposition 2.21).

» Surjective: fix loops fx: I — X and fy: I — Y based at 2y and y, respectively. Then the map f(t) :=
(fx(t), fy(t)) defines a loop I — X x Y based at (x0,y0), and by construction fx = px o f and
Jy =pvof, so

o(f) = (Ipx o fl,[py o f1) = ([fx]. [fv])-
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« Injective: suppose ¢([f]) = ¢([g]), and we want to show that [f] = [g]. Well, we have homotopies
hx.: I x I—>Xandhy.: I % I—>Ysuchthathxo = Ppx ofandth =pXogandhy0 =pyofand
hy1 = py og. Thenwe defineh,: I x I - X x Y by

hi(s) = (hxt(s), hy(s)).
Note h; is continuous because it is continuous in each coordinate. To finish, we see hg = fand h; = g

by checking after applying the projections px and py, so f ~ g follows. |

Remark 2.23. More precisely, the above proof has shown that 7; preserves products.
Example 2.24. We have m; (S* x S') = Z? by Proposition 2.22 and Theorem 2.19.

Example 2.25. We show that there is no retraction r: D? — S'. Leti: S' — D? be the inclusion. If
there is a retraction r, then we see that r o i = idg1, so functoriality of 7; means that the composite

71 (81) S m (D) o ()

is an isomorphism. In particular, i is injective. However, 7; (S') = Z by Theorem 2.19, and 7, (D?) = 0
because D? is convex and hence contractible.

Remark 2.26. One can use Example 2.25 to show Brouwer's fixed point theorem: we show that any
continuous map h: D? — D? has a fixed point. Well, suppose h has no fixed point. Then there is a
continuous map sending x € D? to the point on S* which intersects with the raw starting at h(x) and
then going through 2. Then h: D? — S! defines a retraction, contradicting Example 2.25.

2.3 September?7

Today we prove the van Kampen theorem.

2.3.1 Free Products of Groups

We will be somewhat brief on this because this is not an algebra class.

Definition 2.27 (free product). Let {G,}.cx be a collection of groups. Then we form the free product
*qerGo as having underlying set given by strings of words whose letters are in the G, modded out by
the relations g, - hq = gaha Whenever g, hy € G, for some a € .

Perhaps one should check that this forms a group, so we will sketch what one should do.

1. Let W be the set of finite strings (i.e., words) whose letters are g or g~! where g € G, for some o € \.
Then we build W by allowing combining g, - h,, into a single character g,k provided that g, and A,
belong to the same group G,. We will realize our desired group as a subgroup of Aut(W).

2. For each g € W, define the function L,: W — W by left concatenation. One should show that L, is
in fact a well-defined function, which depends on the equivalence relation defining W, but in short,
one can show that having two words w and w’ with w ~ w’ enforces g - w ~ ¢ - w’ by using the same
concatenation rules on both sides. A rigorous argument would need to use an induction, which we
won't bother to write out.
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3. Note that L. (where e denotes the empty string) is the identity on W, and L,-: is the inverse of L,.
Thus, the image of L, in W is a subgroup of Aut(W), and we call this subgroup *,c)Go. One realizes
this group as the free product described above by identifying L, with L,(e). The point of introducing
L, at allis to make the various group law checks easier.

One has the following universal property, which we will not prove, again because this is not an algebra
class.

Proposition 2.28. Let {G,}ac) be a collection of groups. Given homomorphisms ¢,: G, — H to a
target group H, there is a unique homomorphism ¢: sk,ex Go — H such that the following diagram
commutes.

*ae/\Ga T> H

Here, 1o : Go — *aerGa is the inclusion.

Proof. Let's sketch the proof. We begin by showing uniqueness of . Given a word gq, * - - ga,, IN *acn, We
see that the commutativity of the diagram enforces

¢ (Jos ** Go) = #(gar) -+ (9o
= ¢(tar (gar)) -+ Plta, (9o, )
= ¥a1(9ar) *** Pa, (Yo )-
Thus, ¢ is uniquely determined by the ¢, . It remains to show that the above formula in fact defines a group
homomorphism, which follows roughly speaking by the minimal construction of :k,cx. Namely, we have
thus far defined a function p: W — H where W is the set of all words, so one needs to check that we are

still safe after modding out by the requisite equivalence relation on W. We will not do this, but in short, one
can use induction on the various generators of the group presentation of s ,e)\Ga.- ]

In the discussion that follows, we will frequently use group presentations, which is an expression of the form
<a11a27"'7:w17w27"‘>7

where the a, are generators for words giving the group and w, are words intended to produce relations for

the group, by default of the form w, = 1.

Example 2.29. The group {(a) gives Z. Namely, the group consists of the elements

-3 -2 -1 0 1 2 3
{...,a ,a “a ,a,a,a,a,...}.

Example 2.30. The group {a : a?) gives Z/2Z. Namely, our isomorphism is by sending k € Z/2Z to a*.
This is well-defined because 2 — a?, and a? is the identity of the group.

2.3.2 vanKampen’s Theorem

In this subsection, we state and prove the van Kampen theorem. Let's explain the idea. Suppose we can
decompose X into path-connected open subsets {A,}aecx. Then the inclusions i, : A, — X induce maps
m1(Aq) — m1(X), which by the nature of the free product induces a map

KaerT1 (Aoc) — 71 (X)

It is not too hard to see that this map is surjective.
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Lemma 2.31. Fix a topological space X which is the union of path-connected open subsets {A4,}aex
each containing a basepoint g € X. For any loop v: I — X based at zg, there are loops V4, - -, Va,,
based at zg such that

’wayal '~-~"Yan

and v, is a path connected in A, for each a,.

Proof. Foreach a € \, decompose v~ !(4,) < I into a collection of intervals Z,. Then

T - Ut - U T

QEA a€eX I'eZ,,

Now, I is compact, so this open cover can be turned into a finite subcover {(a, bx)}7_, where y((ax, b)) <
A,, for some aj, € A. Ordering the (ay, bi,), we produce a partition0 = tg < t; < -+ < tp_1 < ¢, = lsuch
that y([tk, tk+1]) S A, for some perhaps different nand ay, € A.

We are now ready to finish. Foreach 1 < k < n—1, we recall that A,, is path-connected, so we can find
a path ng from v(tx) to xo. Then we see that

8 ’Y|[to,t1] "Y|[t1,t2] T ”Y|[t“,2,tn,1] "Y|[t“,1,tn]
~ ’Y|[t0,t1] ST "Y|[t1,t2] N2 Myt =2 Tp_o ’Y|[tn—2;tnfl] “Mn—1Tp-1 .’Y|[tn717tn] .
Yo:= Y1 = 77L:¢= Tn—1'=
The above expression provides the desired factorization. |

Corollary 2.32. Fix a topological space X which is the union of path-connected open subsets {4, }aex
each containing a basepoint xg € X. Then the map induced map

KaerT1 (Aou 330) — m (X7 1‘0)

is surjective.

Proof. This is direct from Lemma 2.31. [ |

We would now like to compute its kernel of our induced map. Well, if A, n Ag is path-connected, then we
letiag: Ay N Ag — A, denote the inclusion, and we note that

a8

Aun Ay —25 A

iﬁ()tj/ J/ia
X

Ay —2

commutes, so

T (Aa A Ag) ™88 14,

T (iﬂu)l lﬂl(ia)

m(4g) s m(X)
also commutes. Thus, for any v € m(As N Ag), we see that 71 (ia) (11 (ia)([7]) = 7m1(ig)(71(iga)([V])),

which produces a relation belonging to the kernel of our surjection sk e 71 (An) — 71 (X). Under favorable
circumstances, van Kampen's theorem tells us that this is the entire kernel.
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2.4 September12

Let's wrap up some loose ends. People are doing pretty well on the homeworks, but please cite theorems
and so on to be rigorous.

2.4.1 The Fundamental Group of a Torus Knot

Let’s give a few applications of van Kampen's theorem.

Example 2.33. Let K < R" be a compact subset forn > 3. Embed R™ < S™ by stereographic projection,
and van Kampen shows that
m (R™MK) = m (SM\K).

More precisely, we have S™ sitting inside S"~! x R (place K inside a large ball, and we can continuously
deform any loop in R™\ K into this large ball), and the 7; arising from this R cannot help you.

Example 2.34 (torus knots). Fix positive integers m, n € Z bigger than 1 with ged(m, n) = 1. Define the
torus knot K, ,, € T2 (where T? = S* x S = R?/Z?) as the image of the line my = n; alternatively, it
is the image of the map ¢t — (mt, nt). For example, here is K3 5 sitting inside the square R?/Z2.

We compute m (R¥\ K, ).

Proof. Professor Agol seems to prefer the “Clifford torus” thought of as
2 = {(21,22) : || = |22] = 1/V2}

This sits inside S° = {(2’1,22) : \zl|2 + |22|2 = 1}. Anyway, we begin by giving us some breathing room.
Define the “thickening” of K as

1 1 1
A= {(21722) Hml < ﬂ—s—s}\{(mm,\/l—ﬂz”) :zeSl7\—@ <r< \/§+E}

(namely, A is the torus thickened in such a way that it carries the subtraction of K, ,,) and in the other way

N B = {(21,22) 2| < iﬁe}\{(mzm,rz") : % <r< % +5}.

Intersecting, we see that A n Bis (S* x S')\K,, ,, thickened by (—¢, ), which we note can be deformed to
(S! x R) x (—¢,¢), which has fundamental group Z. Notably, 71 (A4) =~ Z and 71 (B) = Z by deforming them
carefully to the circle S*, so our fundamental group is going to be (Z * Z)/Z by van Kampen.

However, we need to compute the image of 71 (A n B) in w1 (A) # w1 (B). In the retraction of A downtoa
circle says that the image in 71 (A4) is by multiplication by n, and similarly going to B is multiplication by m.
We conclude that our fundamental group is

{la,b:a™ =0b").

As an aside, we note that S3\K,, ,, will have a deformation retract back to K, ,, shifted upwards by some
amount (for example, see the diagram and imagine a copy of K, ,, shifted up by some smalle > 0). Anyway,
for m,n > 1 we can see that the center of the above group is {a™), so modding out by the center yields
Z/mZ « Z/nZ. In total, we are able to distinguish the torus knots S\ K, ,, from each other.? To deal with
the signs of m and n, we need a notion of isotopy to distinguish a knot from its “mirror image.” |

2 Alternatively, the abelianization 71 (S3\ K, » ) is the free group with (m —1)(n — 1) generators, and the abelianization of (Z/mZ) =
(Z/nZ) is mn, from which we can read off m and n.
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2.4.2 The Fundamental Group of a CW Complex

Let’'s move on from knots and compute the fundamental group of some cell complexes.

Example 2.35. Let X be a connected graph (i.e., a 1-dimensional CW complex), then 71 (X)) is homotopy
equivalent to a wedge of circles, which has fundamental group Z*" for some r, which is the free group
onr letters.

Now, if Y is a connected CW complex, then 71 (Y'!) is a free group. Then 71 (Y2) might be complicated,
but let's imagine computing 7 (Y3). The point is that we take some ball €3 ~ D? and attach it via some
Yo: 0D3 - Y2,

To compute the fundamental group of this, we cover Y? L, €2 by A :== Y? U, (e3\{z}) and B =
(€$)° (Here, z is some point in the interior.) Notably, the intersection is simply S? x R, which is trivial, so
we conclude that the attachment ¢? did nothing to our fundamental group by van Kampen. Applying this
argument inductively (perhaps transfinitely), we see that 71 (Y3) = 71 (Y?). One can continue upwards to
conclude that (V) = m;(Y?).2

Now, let's say that we actually want to compute 7;(Y?). To do so, we note that we have a surjection
7 (Y1) — w1 (Y?) given by the inclusion (any loop can be deformed off the 2-skeleton to the 1-skeleton).
Now, for each 2-cell €2 attached via ¢, : de2 — Y, we choose a path v,: I — Y so that v,(0) = y and
vYa(1) = ¢4 (0) and then find that

Ya * Pa - Va

ought to beinthe kernel of our projection. An argument shows that these elements will generate the needed
kernel. One can show this by an analogous argument to the above: the point is that the attachment of
e2 kills basically exactly the loop given above and nothing else, so we can use an inductive argument to
conclude.

Remark 2.36. One can use this result to show that any group G arises as the fundamental group of a CW
complex of dimension 2. Roughly speaking, the point is that any group is the quotient of a free group,
and the above argument allows us to dictate relations, provided that we are sufficiently careful.

Example 2.37. Fix a positive integer g. Define S, by starting with a 4g-gon and attaching the edges.
Namely, forn < 3,ann (mod 4) edge is identified with the next over n + 2 (mod 4) edge in the oppo-
site direction. Roughly speaking, after some manipulation, one finds that S, ought to be a g-hole torus.
Using the above argument, one finds that m;(S,) is generated by 2g generators ai,...,a4,b1,...,b,
modded out by the relations aibiajlbjl for each i. In particular, the abelianization of 7;(S,) has all
the commutators, so we get Z29. Thus, m; distinguishes our surfaces.

Example 2.38 (projective space). We note 7 (RP*) =~ m; (RP?) because the higher cells cannot help you
in the fundamental group. Further, we see 71 (RP?) is a disk with semicircles identified in the opposite
direction, which we can see from the above argument is simply Z/2Z.

Example 2.39 (lens space). Fix positive integers p and ¢ with gcd(p, ¢) = 1. Take S? and divide the equa-
tor into p circles, and we glue the top hemisphere to the bottom hemisphere by gluing after a 27p/q
rotation. The space has fundamental group Z/pZ. Indeed, our 1-skeleton is the equator, and the a?
comes from how we attached our disks together.

Next time we will talk about covering spaces.

3 One can do this without transfinite induction by working with a single loop and arguing about homotopy equivalence. The point is
that a single loop (and in fact a single homotopy) can is compact and therefore only cares about finitely many cells.
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2.5 September14

We're talking about covering spaces today.

2.5.1 Examples of Covering Spaces

Our goal is to generalize the method we used to compute 7 (S*). Let’s recall our definition.

Definition 2.17 (covering space). Fixa topologlcalspace X.Thena covering spaceis a topological space
X together with a projection map p: X — X such that each z € X has an open neighborhood U = X
containing z such that p='(U) = | |,., Ua Where U, is open and p: U, — U is a homeomorphism. In
this set up, the open set U < X is said to be evenly covered.

Example 2.40. The map p: R — S* given by ¢t — ¢2™ is a covering space map. Here, we are viewing S!
as{z e C:|z| = 1}. The point is that, for any 27 € S!, we have

“H(s{e* ) = | ] (6,0 + 2m).

neZ

Non-Example2.41. Themapp: (0,2) — S! givenbyt — €2 isnota covering space map. Forexample,
any open interval U around 1 € S* will have pre-image by p looking like (0,¢) L (1 —¢,1+¢) L (2 —¢,2),
and (0, €) is not mapped homeomorphically to our U = S*.

Example2.42. Themap f: C* — C* givenby f: z — 2" fora positive integern is a covering space map.
Roughly speaking, for any ray £ through the origin in C, one can define log: (C\¢) — C, which allows us
to define an nth root {/w := exp (+ logw) on C\¢; this makes C\¢ into an evenly covered subset, so we
are a covering space upon letting £ vary.

Example 2.43. Fixa topological space X and adiscrete set E. Then of coursep: X x E — X isa covering
space: indeed, X is an evenly covered subset. In fact, if p: X — X is a covering space map where X is

evenly covered, then the definition of p requires X = Llen X

Example 2.44. Map p: S* — RP® by sending z € S® to the corresponding line in RP*. More precisely,
embed some S™ = S* into R"*! and then take lines down to RP". Notably, p(z) = p(—x) for each =
(and conversely p(x) = p(y) if and only if Rz = Ry if and only if = +y), so pis 2-to-1. One can check
that p is a covering space map by looking on the level of cell complexes: the pre-image of the interior
of the unique n-cell (e”)° < RP® is the disjoint union of the interior of the two n-cells of S*. More
precisely, the n-cell e} inside RP" given by

{l[eo: - @iy L i @iqpr - @] i Ty e oy Tim1, Tig1y- - Ty € R}

is evenly covered in the map S™ — RP". One can extend this idea up to RP* to conclude: let e; be the
above subset except we do not terminate at z,,, and then e¢; is covered by the open subsets ¢; 1 < S%
defined as

ei+ = {(xo,1,...) € S* : x; has sign +}.

Let's do a few examples on S* v S*.

26



2.5. SEPTEMBER 14

Example 2.45. We examine 2-fold (i.e., 2-to-1) covers of S' v S1. There is the trivial one with two copies
of St v S'. As another example, note that S* v S v S* loop around S* v S! twice: the first S* goes
around the first S!, then half of the second S! goes around the second S*, then the third S* goes around
the first S* around. Here is an image.

It turns out that, with one more, these are all the 2-to-1 covering maps, which can be seen by finding
index-2 subgroups of m (S* v S') = Z * Z, as we will soon see.

Example 2.46. Consider the grid Z x R U R x Z. This is then a covering space of S! v S! by sending the
7 x R to traverse one of the circles S* and the R x Z to traverse the other circle of S*. More generally,
it turns out that covering spaces are exactly graphs where every vertex has degree 4, which we can see
by coloring the edges red and blue so that each vertex has exactly two red edges and two blue edges;
then choosing an Euler cycle provides the needed covering space. The previous example is one way to
do this. Here is another example of such a graph, with marked Euler cycle.

1~ S [
e —(C— @ 8
S \\\
3 5 10 9
/ [ [ AN
o — 41— o —11— e —14— @
\ A\ | e

Example 2.47. We can take a subgroup of Z = Z to produce a covering space of S* v S1. As an example,
take the subgroup generated by aband b~ 'ab. Reading off these generators produces a graph as follows.

In general, we basically fold edges together to make relations. For example, the multiple outgoing blue
edges should be folded together.

Example 2.48. Thereis aninfinite tree where each vertex has degree 4. A coloring of the edges produces
a "Cayley graph” Cs, which will turn out to be the universal covering space once we define such a notion.
It turns out to be maximal in the sense that it covers any path-connected cover of S v S1.

215A: ALGEBRAIC TOPOLOGY

2.5.2 Lifting with Covering Spaces

We will want the following result.
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Proposition 2.49. Covering spaces have the homotopy lifting property. In other words, given a covering
space p: X — X, a"homotopy” f.: Y x I — X with a given lift f;: ¥ — X will lift uniquely to
fo: Y x I — X agreeing with X.

Proof. This is direct from Proposition 2.18. |

Corollary 2.50. Fixa covering spacep: (X, %) — (X, z0). Thenm(p): 71 (X, %) — m (X, z)isinjective.

Proof. Fix some loop fo: I — X in the kernel of m1(p). Then thereis a homotopy fo: I x I — X from fo
to the constant path, which by Proposition 2.49 will lift uniquely to a homotopy foIxI—X agreeing on
fo Now po f1 is constant, so looking locally at 7y, we conclude that f1 is constant, so fo is homotopic to the
constant map and hence vanishes in m; (X, Zo). |

2.6 September19

Today we continue discussing covering spaces.

2.6.1 Using Path-Lifting

Last time we showed that covering space maps (X, Zy) — (X, z) induce subgroups m (X, Zo) — 1 (X, 20).
Note this subgroup can then communicate information about the covering space.

Proposition 2.51. Fix a covering space p: (X, %) — (X, ) of path-connected spaces. Then the num-
ber of sheets covering an evenly covered neighborhood of zg is the index

(71X, 20) s 1 (X, 30)]
where we have implicitly embedded 7 (X, %) — w1 (X, o).
Remark 2.52. Because X is connected, the number of sheets of the covering space map is well-defined.
Indeed, for any positive integer n, the set of z € X such that there is an n-sheeted evenly covered open

neighborhood U, < X is open. So we produce a continuous map X — N sending z to the number of
sheets, so connectedness of X forces the number of sheets to be constant.

Proof. We roughly describe the idea. Let (Y, y1,y2) denote the set of homotopy classes of paths from y;
to y2. The point is that Q(X, zg, z¢) is in bijection with

] X, %,
zep~* ({zo})
by lifting paths. Now, 71 (X, %) acts on Q(X, Zo, ¥) for each &, and each orbit will correspond to a coset of

our quotient. |

Remark 2.53. Proposition 2.51 can help us check that the covers of Example 2.45 are 2-to-1. For ex-
ample, the subgroup corresponding to the shown covering space is {a, b?, bab). Note that we have pro-
duced the free group with free generators as a subgroup of the free group with two generators.
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We would like to go in the other direction, from subgroups back to covering space maps. This requires some
technical hypotheses.

Definition 2.54 (locally path-connected). A topological space X is locally path-connected if and only if
each open neighborhood U < X of a pointz € X has some perhaps smaller open neighborhood U’ € U
of x € X which is path-connected.

Example 2.55. CW complexes are locally path-connected.

Non-Example 2.56. The topologist’s sin curve is not locally path-connected at the origin (0, 0).

Being locally path-connected allows us to lift covering spaces.

Proposition 2.57. Fix a path-connected, locally path-connected topological space Y with basepoint
yo € Y. For a covering space p: (X,%,) — (X,z0) and continuous map f: (Y,yo) — (X, o), there
is a lift f: (Y,y0) — (X, &) making the following diagram commute if and only if 7 (f) (71 (Y, %)) S
1 (p)(m1(X, %o))-

~

(Yv yO) # (Xv 1.0)

o b

(X7 IO)

Proof. The backwards direction follows from functoriality of ; because we are asking for w1 (f) = m1(p) o
m1(f). Forany y € Y, composition with f defines a composite

| | 2(Y,p0,9) — | | X, 20,2) — | | X, 7,7)

yey zeX FeX

where the last map is by path-lifting~. Then for any path v € Q(Y, yo,y), we simply define f(y) = m(l).
To see that this is well-defined, the point is that choosing a different path v' € Q(Y, yo,y) produces is able
to lift to basically a loop upstairs in X, so the value of f(y) does not move.

For continuity, we will need to use that Y is locally path-connected. Fix y € Y, and we will show thatf
is continuous at y. Set z := f(y), and let U be an evenly covered neighborhood ofx and liftittoU < X

where p: U — U is a homeomorphism, and f( S U. We now may choose a path-connected open subset
V < f~YU) containing y and check continuity using U, where f( ") for any ¢y’ € V can be somewhat easily
defined because V is path-connected. |

In fact, we have uniqueness of this lifting.
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Proposition 2.58. Fix a connected topologlcal space Y, and fix a covering space map p: X - Xanda
map f: Y — X. Given lifts fi, fo: Y — X suchthatpo f; = f = of; and f; and f, agree at a single
point, we have f1 f2

Proof. Define the subsets
E={yeY i) =k} and N={yeV:i)# LW}

One can use the covering space decomposition (by looking locally at f(y) for some y € Y)) to show that both
E and N are open, but they are disjoint with £ nonempty, so connectedness of Y forcesY = E. |

2.6.2 Classifying Covering Spaces

Our goal, roughly speaking, is to construct universal covers.
Definition 2.59 (univesal cover). A covering space map (X, %)) — (X xo) is a universal coverif and only
if X is simply-connected (i.e., path-connected and m (X, Zy) =

Remark 2.60. Proposition 2.57 tells us that a universal cover X will cover any covering space of X.
We will want yet another definition.

Definition 2.61 (semilocally simply-connected). A space X is semilocally simply-connected if and only
if each x € X has an open neighborhood U of z such that the induced inclusion 71 (U, ) — 71 (X, z) is
the trivial map.

Remark 2.62. Let's explain this condition. Suppose (X', Zy) — (X, z) is a simply connected and path-
connected covering space. Then any evenly covered subset U < X with lift U, then the inclusion
7m1(U) — m(X) decomposes as

~

m(U) - m(T) - m(X) —» m(X),
which must be the trivial map because 7, ()N() = 1. In other words, we have checked that X is semilocally

simply-connected.

Example 2.63. The earring space is not semilocally simply-connected at the origin because any neigh-
borhood at the origin will have circles inside.

Being semilocally simply-connected is basically, then, the right hypothesis to have a universal cover.

Theorem 2.64. Let X be atopological space whichis path-connected, locally path-connected, and semi-
locally simply-connected. Then X has a simply-connected covering space X — X which is unique up
to isomorphism of pointed topological spaces over X.
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Proof. Uniqueness follows from Proposition 2.57 because the corresponding lifts we write down must be
local homeomorphisms.
It remains to show existence. Fix a basepoint 2o € X. We simply define

X = {[y] : yisapath I — X withv(0) = zo}.

The point is that paths should Lift uniquely up to X already, so we might as well define X in this way. We
may define the function p: X — X by sending [7v] — ~(1). It remains to show that X is a simply-connected
topological space and that p is a covering space map.

Let's produce a topology on X. Using our hypotheses on X, each z € X has a path-connected open
neighborhood V' < X such that 71 (V) — 71 (X) is trivial. We then use V to define a subset around [y] with
7(0) = o and (1) = = by

V= {[y-v]:+"isapath I — V suchthat+'(0) = zg and 7/(1) = y}.

Now, V is in bijection with V by p, so we make the restricted map p: V — V a homeomorphism. One can
check that the topology is well-defined and that p becomes a covering space map from this. |

One can now use the universal cover to produce any covering space.

Theorem 2.65. Let X be a pointed topological space which is path-connected, locally path-connected,
and semilocally simply-connected, and let zy € X be a basepoint. Then there is a bijection between
pointed path-connected covering spaces (Y, yo) — (X, 2o) and subgroups of 71 (X, ). Unpointed cov-
ering space maps correspond to conjugacy classes of subgroups.

To produce the desired covering space given a subgroup, one repeats the proof of Theorem 2.64 by taking
a quotient of the produced X. Then one shows that this is a bijection with some work.

Remark 2.66. One can also use permutations of the pre-image of a basepoint in order to describe our
covering spaces. Namely, if p: (X, %) — (X, o) is a covering space, then any loop [a] € m1 (X, z) will
lift to a permutation of p=1({zo}). Conversely, such automorphisms are able to produce an automor-
phism of the universal covering space X — X. (On the level of paths, we send [7] € X to [y - a]. One
can check that this is continuous with continuous inverse and thus a homeomorphism.)

2.7 September21

We continue to cover spaces.

2.7.1 Deck Transformations

Let X be a path-connected, locally path-connected, and semilocally simply-connected space with universal
cover X — X. We would like to use the universal cover to produce intermediate covering maps.

Definition 2.67 (deck transformation). Let X be a path-connected, locally path-connected, and semi-
locally simply-connected space with coverp: X — X. Ahomeomorphlsm f: X — X such thatp po f
is called a deck transformation.

In our set-up, let G be the group of deck transformations of the universal cover X — X. Then G =~ m;(X).
Let's explain why. Fix a basepoint ¥, € X lying over zy € X. The point is that a deck transformation is
uniquely determined by where it sends ¥, by how path-lifting works. So a deck transformation f: X — X
produces a path from %, to f(Z,) (which is unique up to homotopy class because X is simply-connected),
and then mapping this down to p produces an element of 1 (G, o). And conversely a loop in m (X, zo) lifts
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to a path up in X — X sending %y — f(Zp), and there is a unique automorphism f: X — X sending & to
the right place.”

Remark 2.68. More generally, if (Y,y9) — (X, o) is any covering space, one has a bijection between
1 (X, z0)/m1 (Y, yo) and points in the fiber of .

Extending the above discussion, we have the following result.
Theorem 2.69. Fix a path-connected covering space p: (Y,yxzo9) — (X, o), and let G be the group of

deck transformations. Then X is homeomorphic to Y /G in the natural way if and only if 71 (Y, yo) is a
normal subgroup of 71 (X, zg). In this case, G = m;(X)/m(Y).

Proof. Let (X,%) — (X,x0) be the universal cover. Then the universal property allows us to factor as
follows.

~

(X, (Y, y0)

\ lr

(X, 20)

Now, forally € p~*({zo}), we see that r—1({y}) will correspond to a coset of 7 (X) in 71 (X) via the discus-
sion with the universal cover; looping over y, we produce a bijection with points in the fiber of ¢! ({z0}).
Normality of the subgroup then follows because the action of G here is trying to act on cosets.

A less careful version of this discussion lets us work with more general subgroups.

Proposition 2.70. Let X be a path-connected, locally path-connected, and semilocally simply connected
space with universal cover p: X — X. For any subgroup H < 71(X, xg), the quotient space X/H is a
covering space of X and has fundamental group H.

Proof. Track through the above discussion without focusing on the group being normal. |

2.7.2 Attempts for Universal Covers

We are interested in the universal covering space construction having the lifting property. For our purposes,
we will assume that our topological space (X, xg) which is locally path-connected, and we can still just try
to define X as the set of homotopy classes of paths starting at 2. Then the topology is defined by building
a sub-base as follows: for open path-connected subsets V' = X, one defines an open set around [v] with
7(0) = z¢ and ¥(1) = z by

V={[y-4]:+ isapath I — V suchthat~'(0) = 2o and 7/(1) = y}.

Let's see some examples.

Example 2.71. Let’s apply this to the earring E. One can show that this construction produces an open
mapp: E — E, butitis nota covering space. Nonetheless, E is path-connected, locally path-connected,
and simply-connected, and it has the unique path-lifting property. Indeed, for any locally path-connected
map f: Y — Ewhere f,m (Y) € m(X) is trivial, the map f factors through p uniquely.

One might want to try to draw E, but this is hard: for example, with e € E the vertex of the earring,
one hasp~!({e}) uncountable, and E is an R-tree, meaning any two points has a unique path connecting
them.

4 At this point, it is perhaps clearer to use the direct construction of X as homotopy classes of paths starting at .
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Example 2.72. Let X := [ [,y S*. By how the product topology works, this remains path-connected (as
the product of path-connected spaces) but is not semilocally simply-connected because any open set
contains at least one S!, which fails to be simply-connected. Nonetheless, the map R — S! remains

continuous, so there is a map
HR — HSl

ieN €N

which behaves like a covering space.

Example 2.73. CW-complexes X are locally contractible and hence locally path-connected and locally
simply-connected. Thus, our construction provides a universal covers for connected CW complexes.
For simplicity, we work with the 2-skeleton X @), which encodes all 7, -information anyway, and we
will focus on constructing X. One can show that the covering space of a CW-complex remains a CW-
complex because one can lift sufficiently small evenly covered cells to produce a CW-structure on the
covering space. Looking at how X () is constructed by adding 2-cells to produce quotients, we see that

~

X @) corresponds to the kernel of 71 (X)) — 7;(X), which by van Kampen is the normal subgroup

generated by 2-cells as 7 (de?) for the various €2.

Example 2.74. Fix coprime positive integers p and ¢, and construct the lens space L(p, ¢) by taking the
quotient of D? by dividing an equator S* into ¢ pieces and then gluing the top and bottom hemisphere
after rotating by 2wq/p. Equivalently, one can view this as S3/(Z/pZ), where the action is given by k -
(21,22) == ((Fz1,(qrz2). One sees that L(p, q) is a CW-complex with 1-skeleton given by S* and two-
skeleton by attaching D? and identifying z with ¢,z for each z.

— (1)

« L(p,q) is S'again, but it is viewed as the p-fold cover of S*.

— (2)

« L(p,q) " ispdisks glued at their boundaries.

. m) fills in these disks with 3-balls.

Example 2.75. Suppose X1 = \/4 51, then m; (X (V) is the free group on S as letters. Each attached

2-cellto X gives a relation for G := m; (X(?)). Now, X(Q)(l) turns out to be Cayley graph of G, and its
0-skeleton is in bijection with G, where edges are given by group elements in the natural way.

Let's be more explicit: for any generating set S < G, let N be the kernel of the surjection F(S) - G,
and then we can view our Cayley graph via some covering space quotient.

For the next few examples, we have the following definition.

Definition 2.76. We say that a CW-complex X is K(G, 1) if and only if it has fundamental group G and
has contractible X.

It turns out that K (G, 1) is unique up to homotopy equivalence, so it allows us to talk more canonically about
the group G via topology. Here are some examples.

Example 2.77. Note K (Z, 1) = S* because ST = Ris contractible.

Example 2.78. Note K (Z/2Z,1) = RP* because S* = RP” is contractible.
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Example 2.79. We see S x S = K(Z? 1) because the universal cover of S! x S! is the contractible
space R?. Of course, we can take arbitrary powers and products like this.

2.8 September 26

Today we discuss free groups and graphs.

2.8.1 Spanning Tree

For technical reasons, it will be helpful to rigorize give graphs a CW topology.

Definition 2.80 (graph). A graph is a 1-dimensional CW complex X built as follows: the vertices are

XY, and the edges are built by taking two vertices vy, v, € X° and connecting them by an edge e, with
Oeq = {v1,02}.

Remark 2.81. A graph X with a vertex v € X of infinite degree fails to be locally compact. Indeed, any
open neighborhood of v will intersect infinitely many edges, which is not contained in any compact set
because one can build an open cover with an open set from each of the individual edges, from which no
finite subcover is possible to construct.

Definition 2.82 (subgraph). A subgraph is a closed CW subcomplex of a graph.
Trees are the simplest graphs.

Definition 2.83 (tree). A tree is a contractible graph. A subtree T of a graph X is maximal or spanning if
andonly if 70 = X©,

Example 2.84. The highlighted edges make a maximal subtree of the following graph.

We have the following result on trees.

Proposition 2.85. Any connected graph X contains a maximaltree. In fact, any subtree can be extended
to a maximal tree.

Proof. We begin by fixing some subtree Xq = X. Then to construct X,,,; from X,,, we look at the set of
vertices adjacent to a vertex in X,,, and we add exactly one edge to X, 1 to add in all these vertices. Each
added edge maintains being contractible, and adding them all in at once will continue to be contractible;
explicitly, X,,+1 has a deformation retract back to X,, and will therefore be contractible by induction.
Eventually the union T of Xy € X; € X5 < - - - willhit every vertex: note X is connected and locally path-
connected hence path-connected, so it follows that any two vertices can be connected by a path, which may
only hit finitely many vertices and edges along its path by compactness of the interval.”> Thus, T'is the desired
subtree. [ |

5 Hitting infinitely many vertices or edges implies that the image of [0, 1] has an infinite discrete closed subset (choose a single point
from each vertex and from each hit edge), violating compactness.
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Remark 2.86. One needs some form of the axiom of choice to achieve the above result because we may
be making infinitely many choices in the construction of X, 1 from X,.

2.8.2 Fundamental Groups of Graphs

Having spanning trees allows us to compute fundamental groups. Fixa spanningtree T < X. Fixabasepoint
xo € T. Then each edge e,, of X\T produces a loop based at x¢: if e, connects v; and vy, then we have a loop
going from xg to vy (through T') to vy (through e, ) and back to z( (through T again). These loops generate
the fundamental group.

Proposition 2.87. Fix a connected graph X with spanning tree T'. Then 71 (X) is a free group with basis
[ea] Where e, is an edge of X\T.

Proof. The quotient map X — X /T is a homotopy equivalence because T is contractible (it's a tree). How-
ever, X/T now only has a single vertex z(, and we see that each edge e,, of X\T then goes down to a loop
at xo. Thus, X /T is S' wedged with itself once for each edge in X\T, so the result follows. |

Our work allows us the following application.

Lemma 2.88. Every covering space of a graph X is itself a graph whose vertices and edges as pre-
images.

Proof. Let p: X — X be a covering space. Set vertices of X to be p~! (X°), and our edges are similarly
given by pre-images because p is locally a homeomorphism, we see that X has the desired topology. |

Theorem 2.89. Any subgroup of a free group is free.

Proof. A free group F generated by « generators is the fundamental group of the graph X := (Sl)ﬁ. Then
any subgroup F’ < F arises from the fundamental group of the covering space p: X — X, and the lemma
tells us that X is a graph, so its fundamental group is in fact also free by Proposition 2.87. |

The above result is quite nice: it is quite non-obvious that this result should be true purely from the algebra,
but the topology makes it easier to attack.

Remark 2.90. There is an algorithm (due to Reidemeister—Schreier) to find a generating set for finite-
index subgroups of a free group.

2.83 K(G,1)s

We have the following definition.

Definition 2.91 (K (G, 1)). Fix a group G. A path-connected topological space X isa K (G, 1) if and only
if 11 (X) = G, and X has a contractible universal cover.

It turns out that K (G, 1) is unique up to homotopy equivalence. Here are some examples.
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Example 2.92. The space RP* isa K (Z/2Z,1). The fundamental group can be computed by seeing that
the universal cover is S® — RP®. Let's see that S® is in fact contractible: the map (21, 2, z3,...) —
(0,1, xa, .. .) defines an embedding i: S® — S*. However, i has a linear homotopy to id given by

(1 = t)($1,5€2, oo ) + t(O,ml, o e )
(1 —t)(z1,22,...) +t(0,21,...)]|

ft(xl,.%g, oo ) =

and then i has a linear homotopy to a constant map by

(e = (1—1)(1,0,...) + £(0,21,...)
ge(r1,x2,...): ”(1—t)(1,07...)+t(0,z1"”)”.

(Note we needed the inclusion i because the linear combination (1 — ¢)(1,0,...) + t(x1, 2, ...) goes
through the origin if we use the point (z1, z2,...) = (—1,0,...).)

Example 2.93. The space S*/(Z/mZ) is a K(Z/mZ,1). Here, Z/mZ acts on S® by having 1 € Z/mZ be
pointwise multiplication by e27%/™. The covering space is still S, which is contractible by the previous
example.

Example 2.94. Fix a closed, connected subspace K < S? (thought of as a knot). If G := 7 (53\K), then
S3\K isa K (G, 1); thisis aresult to Papakyriakopoulos (yes, this name is hard to spell). Note that having
S3 is important; otherwise, if K is bounded, we could just place a large box around K < R3, and it is
not possible to contract this box in R*\ K. Instead, we want to contract it in S by passing to the point
at infinity.

Example 2.95. Let X be a K(G, 1), and let Xy be a K(H,1), and we assume that both are CW com-
plexes. Then X x X (given the product topology!) becomes a K(G x H, 1) because the universal
cover of X x X is the product of the universal covers, which will then remain contractible.

Taking a product of K(Z/mZ, 1)s, we see that there is a K (G, 1) for a finitely generated abelian group G.
One canin fact give a K(G, 1) for any group G, though this trickier. Let's see this. The following notions will
be helpful.

Definition 2.96 (simplex). An n-simplex is constructed by taking affinely linearly independent vectors
Vo, - .., U € R™ (i.e., the set {v; — vy, ..., v, — vo} is linearly independent—note that this condition is
independent of rearranging the v,) and setting

n n
[V0, V1, ..., Un] = {Ztivi : 0 < t; foreachiand Zti = 1}.
i=0

=1

Namely, [vg,v1, ..., v,] is the convex hull of the v,; a face of this n-simplexis an (n — 1)-simplex of the
form [vo,...,0;,...,v,] attained by deleting one of the vertices v;. Then the boundary of the n-simplex
is

n
vo, - -y v,] = U[vo,...ﬁi,...,vn],

i=1

and the interior is defined in the obvious way.

Definition 2.97 (A-complex). A A-complexisa CW complex X such that the cells e are homeomorphic
to (A™)°, where we require that the attaching maps ¢, : 0A™ — X" restricts to aface ¢, | 00 ]
is an attaching map ¢5: A"~! — X"~ for some f.
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Example 2.98 (dunce cap). Glue the following 2-simplex to a 1-simplex following the arrows.

This is weird, but we allow it.

We now describe K (G, 1) for a general group G. We begin by constructing the universal cover EG, which
will be a A-complex. The vertices of EG are elements of G. Then the n-simplices of EG (forn > 1) are
simply [go, - . -, gn] attached to the (n — 1)-simplices [go, - .., i, - - - , gn] in the obvious way.

Example 2.99. Take G to be the trivial group. Then we have a single n-simplex [e, . . ., e] for each n. For

example, the two-simplex [e, ] is attaching at its ends to a single vertex. Then the [e, e, e] is attaching
its edges to the loops as in Example 2.98.

Example 2.100. Take G to be Z/27Z = {0, 1}. Then we have 2"*! total n-simplices.

Note that G acts freely on EG by multiplication of the vertices, so we produce a covering space EG — BG,
where BG := EG/G. We claim that EG is contractible, which will complete our construction with BG as
our K (G, 1). Indeed, inside any n-simplex [go, - - -, gn], we embed itinto [e, go, . . . , g»] and then use the linear
homotopy to the identity e. This will be well-defined with respect to our gluing, so we have indeed produced
contraction.

2.9 September28

Today we talk about graphs of groups.

Remark 2.101. Problem 1.B.9 on the homework needs to assume that the edge maps are injective.

2.9.1 Using Classifying Spaces

Given a group G, last time we constructed a contractible A-complex EG, and from there we built BG =
EG/G, and we argued that BG is a K(G, 1) because the action of G on EG was free, making w1 (BG) =
m1(EG/G) = G. Though huge, the EG and BG construction are nice because they are functorial: a homo-
morphism ¢: G — H of groups produces a continuous map Ey: EG — EH by moving the vertices (which
continuously will send simplices to simplices), and this commutes with the group actions on both spaces, so
we produce a map BG: BG — BH. Explicitly, Bo([g]) = [¢(g)], so

Be([g1s---59n]) = [¢(91), - - -5 p(gn)];

and this map is preserved by the group actions because

Be(g-[9']) = Belgg']) = [e(gg")] = ¢(9) - [e(g)] = ¢(9) - Be(lg'D
so there is a quotient downtoamap Ep: EG — EH.
One might now hope that we can produceamap K(p,1): K(G,1) — K(H, 1), but for this to make sense,
we need to know that K (G, 1) is well-defined in some sense.

Theorem 2.102. The homotopy type of a CW-complex K (G, 1) is uniquely determined by G.

The main input to the theorem is the following functoriality result.
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Proposition 2.103. Fix a connected CW-complex X, and let Y be a K (G, 1). Then any homomorphism
p: m (X, z9) — 7 (Y,yo) is induced by a map &: (X,z¢0) — (Y,yo) which is unique up to homotopy
(relative to basepoints).

Proof. We construct X — Y inductively. Map X° to yo. As in our discussion of graphs, choose a spanning
tree T of X!, and we see that each edge e of X'\T determines a generator [e] of 71 (X 1), and we map these
down to the corresponding generator in 71 (Y, yo) as required by .

By way of example, we can take X = S x S! to be the torus, mapping the two generators of 7; to 1 € Z.
Then may extend ® on the vertices to X? linearly via this triangulation (check up in the covering space to be
told how to do this), viewing things as simplices. One can then keep going up to higher X™ by continuing to
go linearly, noting that the effect on the fundamental group is now not doing anything.

For the uniqueness, suppose we have two maps ®,¥: (X, z0) — (Y,y0). This will essentially follow
from the homotopy extension property. If they induce the same map 71 (®) = 71 (¥), then we move them up
to the universal cover, and the convex combinations as described in the previous paragraph are forced and
homotopic (linearly), where we are essentially using contractability of our universal cover. One needs to do
this by induction on the skeletons: there is a homotopy on the 0-skeleton by moving, there is a homotopy on
the 1-skeleton because they have the same 71, there is a homotopy on the 2-skeleton because the relations
are the same, and from here one inducts upwards. |

We can now prove Theorem 2.102.

Proof of Theorem 2.102. One has identities relating fundamental groups on two K (G, 1)s, so one produces
maps in both directions by the proposition, and then the composition of these maps (in both directions) are
homotopy equivalent to identity maps by uniqueness of these maps up to homotopy. |

Classifying spaces allow one to classify principal bundles with fiber given by a particular group. For ex-
ample, the annulus A provides a double-cover of the Mobius strip M, so we see that this double-cover corre-
sponds to 2Z < Z. (Note the Mdbius strip has a deformation retraction to S*, so the fundamental groups are
the same.) Now, each fiber has a (Z/2Z)-action, and mapping M — RP® (given by the surjection Z — Z /27
and using the K(Z/2Z, 1) universal property), we see that the composite A — M — RP” is now trivial on
71, SO we induce a map making the following diagram commute.

A ----- y S%
M —— RP*

Namely, this map is given by tracking fibers through on the map M — RP%.

More generally, if we have a covering space X — X, where G acts freely and transitively (as deck trans-
formations), then G = 71 (X)/im 71 (p), so maps m1(X) — G will be given by maps X — K(G, 1) via the
above construction. So K (@G, 1) in some sense allows us to classify these covering spaces X — X, which is
of interest. Indeed, one can go the other direction: given a map p: X — K(G, 1), we pull back the bundle
p: EG — K(G,1) to X to produce the necessary covering space. Namely, set

X = {(z,y) € X x EG : p(z) = p(y)} = X x EG,

and one can check that the induced map X — EG is continuous, and the map X — X is a covering space
map where G is acting on the fibers via EG.

2.9.2 Graphs of Groups

Fix a connected directed graph T, and for each vertex v € I'?, we place a group G, and for each edge e € T'!
connecting v to w, we place a homomorphism ¢.: G,, > G,,. This will be our set-up for this subsection.
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We are going to build a classifying space BT for this graph by putting a classifying space BG, (whichis a
CW-complex) at each vertex and attaching these along vertices with the mapping cylinders M By, for each
By.: BG, — BG,,. Notably, By, can always be constructed by Proposition 2.103. We will be interested in
71(BT). Note that 7, (BT") does not depend on the choices of BG — v and By, because these things are all
well-defined up to homotopy.

Example 2.104. Consider the following graph.

Gy, Gy,

Now, K (e, 1) is just a point, so the corresponding BT is just a wedge product, so van Kampen tells us
that thisis G,, * Gy, * G,,.
Example 2.105. Consider the following graph.
z+1-7- 17
Applying van Kampen to the resulting BT, we get a group presentation of (a,b: a? = b%). If p = ¢ = 2,

one can squint very hard and see a Klein bottle as we are in some sense attaching two Mobius strips.

Example 2.106. Consider the following graph.

This looks like 71 (BT) = (A, : tpa(c)t™! = ¢1(c) for c € C'), again by some van Kampen argument.
Anyway, here is our main theorem.

Theorem 2.107. Fix everything as above, and further assume that the ¢, maps are injective. Then BT’
isa K(G, 1) where G := 71 (BT"), and the maps 71 (BG,) — 71 (BT) are injective.

Proof. Startwith a specificedge By.: BG, — BG,,. Thenthe M By, connecting the two will lift to connect
EG, and EG,, by checking each “"end” of this cylinder. We now build upwards via a tree to slowly encom-
pass the entire graph. Being path-connected implies that this inductive process will union out to give us a
legitimate “tree of spaces” connecting all the groups. Now, each vertex group G, successfully acts on EG,
and then goes on to act on the mapping cylinders adjacent, so we have the right fundamental group. And
we can see by reversing the inductive constructive process that we can deformation retract our mapping
cylinders away to show that our covering space is contractible. |
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THEME 3

HOMOLOGY

| can assure you, at any rate, that my intentions are honourable and my
results invariant, probably canonical, perhaps even functorial.

—Andre Weil, [Wei59]

3.1 October3

The homeworks will now get a little longer.

3.1.1 Homology for A-Complexes

Let's recall our construction of A-complexes.

Definition 3.1 (simplex). We define the n-simplex

A" = {(to,tl,..., O 1n+1 Z }

The ith face A7~ < A" consists of the points with t; = 0. An orientation of the simplex consists of an
ordering of the vertices modulo the action of A, on the vertices {0, 1,...,n}.

The orientation basically indicates which vertices are “small” and which are “large.”

Definition 3.2 (A-complex). A A-complex is a CW-complex X with maps o, : A" — X satisfying the
following properties.
« Interiors: the map o, is injective on the interior of A™.

« Faces: the map o, restricted to the face A? ! is simply another map o5: A"~! — X.

« Continuity: if A < X is open, then o1 (A) is open in A" for each o,,.

Given a A-complex X, orientations will tend to extend uniquely to X.
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Example 3.3. We provide an orientation on the torus 7°2.

»
L

»
|

Note that the diagonal arrow cannot go the other way to have an orientation because this would create a
loop!

Example 3.4. We provide an orientation on the projective plane P2.

-
-

»
L

We would like to define homology. For this, we have a notion of a chain.
Definition 3.5 (chain). Fixa A-complex X with maps o, : A™ — X. Then we define chains A,,(X) to be

the formal sums
Ap(X) = {Znaaa iMy € Z},

and then we define the chain map d,,: A, (X) — A,_1(X) given by

On(0a) = Z(*l)iUOAA?—l.

i=0

The point of the signs in the definition of ¢, is to have the correct orientation. For example, suppose we
want to go “around” A? as in this diagram.

One now has the following check.

Proposition 3.6. Fix a A-complex X. For any positive integer n, we have d,,_1 0 d,, = 0.

Proof. Direct computation. It suffices to show this for A™ because A, (X) is freely generated by images of
this A™. And for A", the point is that our signs are going to cancel:

(010 0) (A") = Oy ( 2(1)%2‘_1>

=0

= Z(—l)ian_l (Aarhy.
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Now, for some notation, writing out the vertices A™ as {0,1,...,n}, we write A™ = [0,1,...,n] so that
A"t =10,...,4,...,n], sow are looking at
(671—1 © an) (An) = Z(_l)ian—l([oa 7/1\7 7n])
i=0

I

-
Il
o

<2(-1>i(_1)j[o,...,3,...,2,...,n] + ), (—1)1'(_1)1“[0,...,?,...,3,...,n]>

I
—
\
—_
~

.
+
<.
—
=
<
:N
S
—
\
—
\
—_
~—
.
+
<.
—
=
-
<
S
—

A
N
~.
A
<

I
o .

as desired. [ ]

We are now ready to define homology.

Definition 3.7 (simplicialhomology). Fixa A-complex X . Then we define A(X) to be the graded module
D, An(X), and we define the nth homology group as

ker 0,,

H2(X) = Hy(A(X)) == I

For notation, we set Z,,(X) = ker 0, to be n-cycles and B, (X) := im dn + 1 to be n-boundaries. Then

H,(A(X)) = Z,(X)/B,(X), so we are measuring cycles which are not boundaries, which approxi-
mately is finding holes.

Note that we have not shown that H, does not depend on the choice of A-structure, which is why we are
marking our H2 by A, but we will do this in due time.

Example 3.8. Give S' a A-complex structure by attaching both endpoints of A! together at some vertex
v asan edgee.

« We see H§* (S) is ker §p/im 0y, but imd; = 0 because we are looking at di(e) = v — v = 0.
However, ker 0y is simply all Zv, so we have Z.

« We see H{* (S') is ker 0;/im 02, and then d; = Ze as shown in the previous point, but imd, = 0
because there is nothing to map, so we have Z.

We note that all the higher homology groups vanish because there is nothing to compute.

Example 3.9. Give T? the A-complex as described earlier. We expect to have a two-dimensional hole
and two one-dimensional holes. We compute some homology.

A

b € Y

Proof. v a

Now, 02(U) = b — ¢+ aand d2(L) = a — ¢ + b, which is the same, so ker 0, is generated by U — L. Now,
imd; = 0 (there is nothing to compute), so H (T?) =~ Z. As for H{*, we note that ¢; is identically zero
because there is only a single vertex, so ker &, = Za + Zb + Zc, so H{* (T?) = ker 0,/im 0y = Za®Zb. M
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Example 3.10. Give P? the A-complex as described earlier. We compute some homology.

Proof. Here is our structure.

A

b

Here are our computations.

« Wesee H (P?) = Zv ® Zw/(Z(v — w)) = Z, where the point is that ¢, (c) = 0 and ¢ (a) = w — v and
01(b) = v —w.

« Next up, we compute 05(U) = b—a+cand dx(L) = a—b+c, so d» is injective, so HS (P?) = 0. Further,
we note ker 0; = Zc ® Z(a — b), and we have d5(U + L) = 2cand 02 (U — L) = 2a — 2b, so we have

Zc®Z(a—b) . Z
Z(2¢) @ Z(2a — 2b) @ Z(a — b +¢) — 27’

() -

finishing. |

Example 3.11. We note that 0A™*! =~ §" = A", sowe can give S™ a natural A-complex structure. Then
we can compute that HS (0A™!) =~ Z, where the point is that 0,41 (A"*!) does provide a cycle, and
all cycles are generated in this way.

3.1.2 Singular Homology

Let's define singular homology now.

Definition 3.12 (singular simplex). Fix a topological space X. A singular n-simplex is simply a map
o: A" — X to a topological space, with no other requirements. We define our n-chains C,,(X) to
be the Z-linear formal sums of such os, and we define our chain maps 0,,: C,,(X) — C,,_1(X) givenin
the usual way by

On(0) = Z (—l)ia|A?71.
i=0

As before, one can do the exact same proof to show that ¢, o 0,1 = 0, and so we may define homol-
ogy.

Definition 3.13 (singular homology). Fix a topological space X. Then we define S(X) to be the A-
complex with exactly one nsimplex A? for each singular n-simplex o: A™ — X, attached via faces.
Then we define H,,(X) to be the nth homology on S(X) of the chain

e n+1(X) - Cn(X) - Cn—l(X) —
Dealing with S(X) is a little annoying. By allowing for repetitions, we may assume that all our Z-coefficients
are actually 1. Forn = 1, one can realize these as oriented loops, and for n = 2, we can think of these as

maps of oriented surfaces.
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3.2 October5

We continue our discussion of homology.

3.2.1 Basic Homology Facts

Let’s continue working with our singular homology because it is a little more canonical. To begin, it suffices
to look at path-connected spaces.

Proposition 3.14. Fix a topological space X with path-connected components X, for a € my(X). Then

H,(X)= &P Hn(Xa)
aem(X)

Proof. Note that
CoX)= @ Cu(Xa)
aemo(X)
because any map A™ — X must land in a single path-connected component. We can see that this provides
an isomorphism of chain complexes, so the isomorphism in homology follows. |

Proposition 3.15. Fix a nonempty path-connected topological space X. Then Hy(X) = Z.

Proof. Lete: Cy(X) — Z be the map given by sending
Zaga — Zag.

Intuitively, some o: A° — X is just marking a point of X. Now, when X is path-connected, we see that
im ¢ = kere. Note that ker € is generated by differences p — g for points p, ¢ € X. So to get these differences,
note that for any two points p, ¢ € X, we have a path f: Al — X with f(0) = gand f(1) = p,s0 01 (f) = p—q,

as needed. So we see that
HO(X) ~ CO(X) — CO(X)

Y/
im 01 kere

lle

)

as needed. [ ]

Remark 3.16. The above points we are checking go under the “Eilenberg—Steenrod axioms."

Proposition 3.17. If X is a point, then H,,(X) = 0 forn > 0.

Proof. We do this computation by hand. Notably, for each n, there is a unique n-simplex ¢,,: A™ — X
sending everyone to the point. Then we note

= , 0 if nis odd
0 n = —1) n—1 = . . ’
7 Z;)( Vo1 {Un_l if nis even.
Thus, our chain complex looks like
cx O5(X) D Co(X) = C1(X) D Co(X) > 0.
—— —— — ——
ZLos g2 Zo1 Zog

At odd degrees 2n + 1, we have ker 03,41 = Ca,11(X) = im 0a,,42, S0 homology vanishes; at even degrees
ker 02, = 0 = im 02,1, SO homology still vanishes. [ ]
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The following technical definition will be helpful, mostly for functoriality reasons.

Definition 3.18 (reduced homology). Fix a topological space X, and let e: Cy(X) — Z be the augmen-
tation map. Then we define

and H,,(X) = H,(X) forn > 0. In particular, Hy({p}) =

3.2.2 Functoriality of Homology

Note that H,, is in fact a functor.

Proposition 3.19. Fix a continuous map f: X — Y. Then there is an induced map H.(f): H.(X) —
H.(Y).

Proof. Post-composition will send some o: A" — X to some (f oo): A™ — Y. This extends to a map of
chain complexes
Co(f): Cu(X) = Cu(Y),

so we induce a map on homology. Rigorously, one notes that (f o —) commutes with 0: one checks that

X n

Co(X) — € (X) o > 0lai_,
i=0
(fo—)‘ ‘(fo—) I
CulY) 2 Oy (V) (Foa) — R0l

commutes, and this is enough to induce a map on the homology upon checking what lives in what kernels
and images. Let's explain this: to begin, we note that C,,(f) maps ker 6 — ker 0} because 0} (C,,(f)(a)) =
Cr(f)(0:X () = 0. Similarly, we note that C,,(f) maps imd;\,; — imdY , because C,,(f)(0i,,(a)) =
oY 1 (Cn(f)(«)). Thus, we get to produce a map

ker 0% ker 0)
Hn(f) . aY — Y )
M Op 4 q MOy 41
~—— ~—
Hp(X) Hp(Y)
as needed. [ ]

Remark 3.20. As usual, one can check the usual functoriality checks such as that H,(f o g) = H.(f) o
H,(g)and H,(idx) = idg, (x)- These facts follow directly from the definition of H,.

More generally, the above proof establishes the following result.

Proposition 3.21. Fix a homomorphism f: (C,0%) — (D, ") of chain complexes such that 0% o f =
fo0P. Then f induces a natural map on homology.

Proof. This is the last half of the proof of the above proposition. |

We are now ready to show homotopy invariance. This will follow from the following result.
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Theorem 3.22. Fix homotopic maps f,¢g: X — Y of topological spaces. Then H,(f) = H,(g)-

Proof. The pointisto constructa “chain homotopy” between the maps H,,(f) and H,,(g9). Let F\y: X xI - Y
be the needed homotopy from f to g with Fy = f and F; = g. Then any singular simplex o: A™ — X will
induceamap (Feoo): A" x I > Y with (Fyoo) = (foo)and (Fyoo) = (goo). Technically, Fooisnota
singular chain, but it is somewhat close.

The goal is as follows: for any chain [¢] € C,,(X), we would like to produce a chain [d] € C},11(X) such
that [0d] = [f(¢)] — [9(c)], and this will show that H,,(f) = H,(g). For this, we would like to make A™ x I
more like a simplex, so we triangulate it in a way which will be compatible with restricting to faces (and
hence compatible with 7).

As a warm-up, let's explain how to triangulate 1" ! = [0,1]"*!. This is a cube with vertices of the form
(o, ..., xn) where z,{0, 1} for each x,. Now, for each o € S,,+1, we choose the (n + 1)-simplex given by

Ay = {(5507 s 751771,) FTo0) S To(1) S0 S xo—(n)}'
Notably, every face will be homeomorphic to I, and we roughly respect rearranging the coordinates (it

just moves simplices around), though reflections will reverse the orientation of the simplex; also, there are
(n + 1)! total simplices. Summing, we see that I" is triangulated as

D1 (=1EA,.

O’ES,H,l
Now, each simplex contains (0,...,0)to (1,...,1),and one can read off o by noting the simplex has a unique
monotonic path along the vertices of the cube from (0,...,0) to (1,...,1).

We now return to note that A x I = A" x Al embedsinto (A)" = I", so we may triangulate A" x I as
a A-subcomplex. Explicitly, we see that we are essentially choosing our monotonic path as having its first
© + 1 vertices in A™ x {0} and its last n — ¢ + 1 vertices in A™ x {1}. Anyway, for this chosen A-complex
structure on A™ x I, there is a "prism operator,” we get something

Pn = 2(—1)i[’00, ey Uiy Why e -;wn];

%

where the vertices of A™ x {0} are given by v, ..., v,, and the vertices of A™ x {1} are given by wy, ..., wy,.
Taking faces, we see that

Opn = [vo, ..., 0n] — [wo, ..., wy] + Z(—l)in' O Pr1,

where F; corresponds to the ith face. But by construction of p, and our A-complex structure, it follows that
this summation is merely p,_1 o ¢, so we get the inductive equation

Opn, = [v0, ..., Un] — [Wo, ..., Wn] + pPp_10.
Applying F, we get the needed chain homotopy: given a singular simplex o: A™ — X, we define
P(o) = (Fo0)(pu),
whichisamap P: C,,(X) — Cp11(Y), and the relation tells us that
0oP =C.(9) —Cu(f)—Poo,

so upon going down to homology, we are done. |

46



3.3. OCTOBER 10 215A: ALGEBRAIC TOPOLOGY

Remark 3.23. Here is an intuitive argument, using the notation of the first paragraph of the above proof.
As areduction step, we letig: X — X x Iandi;: X — X x I be the embeddings so that i;(a) := (a,t).
Now, f = F oipand g = F o iy, so by functoriality, it is enough to check that H,,(iy) = H,(i1). Thus,
we may as well assume that Y is X x I and that f and g are iy and i; respectively. At this point, the
result is somewhat intuitive because one should be able to continuously deform ¢y o o to i1 o o for any
o: A™ — X. However, it is mildly difficult to make this argument precise.

Corollary 3.24. Fix a homotopy equivalence f: X — Y. Then H,(f): H,(X) — H,(Y) is an isomor-
phism.

Proof. This follows from functoriality. Let g: Y — X be the inverse homotopy equivalence for f. Then
Hn(f) o Hn(.g) = Hn(f og) z Hn(idY) = idHn(Y)v

where £ follows from Theorem 3.22. A symmetric argument shows that H,,(g) o H,,(f) = idg, (x), 50 Hu(f)
is an isomorphism with inverse given by H,,(g).

3.3 October10

We would like to compute homology groups. The main tool for m; was van Kampen's theorem, which es-
sentially allowed us to compute w1 (A U B) from 71 (A) and 71 (B). Our goalis to build a similar computation
for homology. To do this, we will require a little more homological algebra.

3.3.1 The Mayer-Vietoris Sequence

Let’s discuss chain complexes on their own terms.

Definition 3.25 (chain complex). Fix a ring R, and fix a sequence of maps of R-modules

Qn41 «
oo Ap 2L A, S AL

This is a chain complex if and only if im cv, 11 € ker «v,, for each n; it is exact or acyclic if equality holds.
We may write this chain complex as (4., a. ). A morphism of chain complexes (. ): (As, @) — (B, fs)
is a sequence of maps p,: A, — B, commuting with the boundaries.

Definition 3.26 (homology group). Given a chain complex (A., «,) of R-modules, we define the nth

homology group to be

Ho(AL) e S0

im Apt1 '

Example 3.27. Given a topological space X, we have shown that
-+ = Cny1(X) = Cn(X) = Cpa(X) = -+ = C1(X) = Co(X) — 0

is a chain complex.

Example 3.28. The sequence 0 — A — B is exact if and only if A — B is injective.
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Example 3.29. The sequence A — B — O is exact if and only if A — B is surjective.
Example 3.30. The sequence 0 - A — B — O if and only if A — B is an isomorphism.

Example 3.31. The sequence
0>Z>Z—Z/nZ—0

is a short exact sequence.

To compute our homology groups, it will help to have the following terminology.

Definition 3.32. A good pair of spaces (X, A) is a topological space X along with a closed subspace
A € X such that A is a deformation retract of some open subset U € X containing A.

Example 3.33. If Aisa CW-subcomplex of a CW-complex X, then (X, A) is a good pair by very slightly
expanding the CW cells around A € X.
And now here is our result.

Theorem 3.34 (Mayer—Vietoris). Fix a good pair (X, A). Then there is a long exact sequence as follows.

~ ~

D —— H,(A) —— H,(X) —— H,(X/A)

Hn—l(A) E— Hn_l(X) — ﬁn—l(X/A) —— coo

Here, the maps H,,(A) — H, (X) are given by inclusion A = X, and the maps H,,(X) — H,(X/A) are
given by the quotient map X — X/A. Note that we have not currently defined the boundary map ¢.

It will take us a while to prove Theorem 3.34. Here is an application.

Example 3.35. We show that
Z ifi=n,

(57) {O if i # n.

Proof. Note that S"~! = D™ makes a good pair, and D" is contractible, so H* (D™) = 0 always. Thus, for
each 7, we find

H; (D") — H; (S™) — H;_y (S"~') — H; (D"),
0 0

so the result follows by induction, where the base case is given by Hj (8°) =~ Z and H, (58°) = 0fori > 0,
which can be checked directly because S° is just two points. |

3.3.2 Building Long Exact Sequences

The proof of Theorem 3.34 will make use of “relative homology groups.”
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Definition 3.36 (relative homology). Fixa subspace A € X. We define the relative chainsby C, (X, A) =
C.(X)/C4(A). Then the boundary maps 0¥ : Co(X) — Co(X)and 04: C,(A) — C.(A) induce a bound-
arymap d: Co(X, A) — C.(X, A), granting us a chain complex

o O (X A) - Cr(X,A) > Cr g (X A) — -

From here, the relative homology groups are the homology groups of the above chain complex.

In particular, we see that some [a] € H,(X, A) has « € C,,(X), where [a] will vanish only when « = 08 + v
where 8 € C,,1(X) and vy € C,,(A). Namely, H, (X, A) is < X < C,,(X) upon taking a quotient by im 025, ;
and by C,,(A).

We are now equipped to show a long exact sequence close to Theorem 3.34.

Proposition 3.37. Fix a subspace A < X. Then there is a long exact sequence as follows.

~ ~

e H(A) ——— Ho(X) ——— Ho(X/A)

/
—

Hy, 1(A) — H,_1(X) — Hp,_1(X/A) — ---

Proof. By construction, we have a short exact sequence of chain complexes
00— Co(A) > Co(X) > Co(X,A) — 0.
Explicitly, for each n > 1, the following diagram commutes.

0 —— Ch(4d) —— Cp(X) —— Cr(X,A) —— 0

Pl |

0 — Ch1(4) — Cph1(X) — Cr1(X,A) —— 0

As such, the result follows directly from the following proposition.

Proposition 3.38. Fix a short exact sequence
0 — (Au, @) £ (B.,8.) L5 (Cuye) = 0

of chain complexes of R-modules; i.e., this is a short exact sequence at each fixed index. Then there is
a long exact sequence in homology as follows.

- — H,(A) —— H,(B) —— H,(C)

/a

Hoor(4) T Hoy(B) —— Ho_y(C) — -

Proof. Let's describe the boundary map ¢: H,(C) — H,_1(A), which is really the only interesting thing.
Well, given [z] € H,(C) with z € ker+,, we can lift it up to some y € B,, such that ¢, (y) = z. Then take
Br(y), which we see lives in the kernel of ¢,,, so exactness finds some x € A,,_; such that ¢,,_1(x) = 5, (y).
We can check that «,,_1 (x) = 0 by construction, so it follows that x represents some classin H,,_1(A4), which

is the desired class.
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For completeness, we describe why this is well-defined. The content is in explaining why the choice of
lift y does not affect our element in H,,_1(A). Well, choosing a separate element ¢ in B,, willhave y — ¢/ in
the image of A,, by exactness, say equal to a,,(x¢). Then choosing z,z’ € A, _; such that p,,_1(z) = 8.(y)
and ¢, _1(2') = B.(y'), we claim that x — 2’ = «a,,(z¢). For this, it is enough to check after applying the
injective map ¢,,_1, which is true by construction of z.

Let's quickly sketch some exactness arguments.

Exact at H,,(A): on one hand, we note that any [z] € H,+1(C) will have ¢,,(é([z])) = 0 by construction
of the boundary map. Explicitly, ¢, (0(2)) (suitably defined) will live in the image of 3,,..1, which is what
vanishing means.

On the other hand, given [z] € H,,(A) which vanishes under ¢,,, meaning that ¢, (z) = B,4+1(y’) for
some ¢/, allowing us to set 2z’ := 1,1 (y'). The construction of the boundary maps shows d([2]) = [«],
as needed.

Exact at H,,(B): on one hand, we note that any [z] € H,,(A) has ¥, (¢n([z])) = 0 because ¥, o ¢, = 0.

On the other hand, given [y] € H,,(A) which vanishes under 1,,, we see that ¢,,(y) must be in im ~,,+1,

so write ¢n(y) = 'VnJrl(Z/)r but then Unt1 is SurjeCtiver SO ¢n(y) = 'Vn+1(¢n+1(y/)) = "/}n(ﬂnJrl(y/))' SO
replacing y with y — 8,11 (y’) (which is in the same class) provides v, (y) = 0. Thus, exactness grants
y € im ¢, as needed.

Exact at H,,(C): on one hand, we note that any [y] € H,,(B) has d(¢,,([y])) = 0 by construction of the
boundary map: ¢, ([y]) has a liftin B,, given by y itself, which by definition of H,,(B) will vanish upon

applying 3,,.

On the other hand, given [z] € H,,(C), going down to 0 in H,_1(A) implies that means that there is a
lift y € C\,(B) of z such that §,,(y) = 0. But then [y] is a class in H,,(B) mapping to [z], exhibiting our
exactness.

That's enough for me. [ ]

Remark 3.39. One can define the boundary map H,,(X, A) — H,_1(A) more explicitly by taking some

class [z] € H,(X, A) and then viewing z as a class of objects in C}, (X)), we can literally take its boundary
as a chain in X and note that 0z must then vanish in C,,_;(X)/C,_1(A) by construction of the reduced
homology, so we produce a chainin C;,_1(A). This is essentially the above construction where we have
described our objects topologically.

More generally, the above arguments are able to prove the following result.
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Lemma 3.40 (Snake). Fix a “snake” (commutative) diagram as follows.

AL .B_9.,¢ 0
boob L
0 A B L ¢

The following are true.

(@) Thereis an exact sequence
f g s f! g
ker a = ker b = ker ¢ — coker a -~ coker b = coker c,

where ker z 2 ker y is restriction, § is the connecting morphism, and coker g coker y is induced
by k' by modding out.

(b) If £ is injective, then kera > ker b is injective.

(c) If ¢ is surjective, then coker b & coker ¢ is surjective.

Proof. Analogous to the last half of the proof of Proposition 3.38. Namely, the construction of the boundary
map J is exactly what we constructed: pull back along g, push through b, and then pull back along /. |

Anyway, let's see an example.

Example 3.41. Analogous to Example 3.35, we see that Proposition 3.37 produces in the long exact
sequence the exact sequence

ﬁi (Dn) - ﬁz (Dn, Sn_l) - ITL;,1 (Sn_l) g ﬁifl (Dn) .
0 0

Thus, the middle map is an isomorphism.

3.4 October17

| am stressed. We're talking about excision today.

3.4.1 Excision

We close class by stating excision, which is a primary tool to compute homology groups.

Theorem 3.42 (excision). Fix subspaces Z € A < X such that Z = A. Then the inclusion (X\Z, A\Z) <
(X, A) induces isomorphisms H,,(X\Z, A\Z) — H,(X, A).

Of course, we see that thereisamap C,,(X\Z, A\Z) — C,,(X, A) given by the inclusions C,,(X\Z) < C,(X)
and C,(A\Z) < C,(A). The main content, then, is in going the other way. Approximately speaking, the
idea is to take some a € (), (X, A) and then attempt to throw out the parts of a that live in Z. But for this to
make sense, we must subdivide X\ Z in order to make sure that we are going to get a chain at the end of this
process.

Let's restate this result into something without differences.
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Theorem 3.43 (excision). Fix a topological space X = A U B where A, B < X are open. Then the
map of open pairs (B, A n B) — (X, A) induces a family of isomorphisms on relative cohomology
H,(B,An B) > H,(X,A).

The following tool will be useful.

Definition 3.44. Fix a topological space X, and let i/ be an open cover of X. We then let C¥%(X) denote
the subgroup of C,,(X) consisting of chains which output to some open set in Z/. Notably, 0: C(X) —
C(X) restrictsto d: CY(X) — CY(X).

The main technical result is the following.

Proposition 3.45. Fix a topological space X with open cover Y. Then the inclusion of chain complex
CY(X) — C(X) is an isomorphism on homology.

Remark 3.46. It turns out that there is an inverse map so that composites are chain homotopic to iden-
tities, but we will not show this.

Let's see how Theorem 3.43 follows from Proposition 3.45.

Proof of Theorem 3.43. Let U be the open cover {4, B}. Then Proposition 3.45 grants p: C¥(X) — C(X)
which is a section of the inclusion 7 and a chain homotopy D: C,,(X) — Cp4+1(X) sothat 0D + D0 = id — ip.
It will be a property of the construction that p sends C,,(A) — C,,(A) and D sends C,,(A) to C,,1(A), so the
quotient maps

CH(X)  Cu(X)

Culd)  CulA)

is an isomorphism on homology. Continuing, we note that

Cu(B)  CH(X)

Co(AnB)  Cu(4)

is an isomorphism because these are both free groups whose generators are given by chains landing in B
but notin A. So we have a composite map

C(B) Ch(X)
Co(AnB)  Cp(A)’

which is an isomorphism on homology, so we are done. [ |

So we now turn to the proof of Proposition 3.45. The main point is to use barycentric subdivision to
replace a chain with smaller chains which will hopefully land in Z{. We proceed in stages.

1. Forasimplex [vo,...,v,], the barycenter is the average of all the coordinates; we denote this point by
[UOa s 7vn]'
Now, for A™ = [vg,...,v,], we mark all the barycenters of all the various simplices arising as sub-
strings. Now, given a permutation 7 of {0, ..., n}, we have the simplex

A(T) = I:UT(O)? [1}7(0)3 vo(l)]a SERE) [UT(O)7 cee 7”7‘(71)]]

One can see that these turn A™ into a A-complex, and we are able to define

S(A") = > (FUETA,

7eSym({0,...,n})
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This can then be extended to chains: we send a chain o: A™ — X to the chain given by passing the
terms of S(A™) through o.

As an aside, note that each A(o) has the diameter go down by a factor of _Z by the nature of how
we chose our simplices, so this subdivision will exponentially decrease our diameters. As such, for
any chain o: A® — X, we can find i such that S’c € C%(X). The point is that we can pull back the
open cover U to A™, reduce to a finite subcover, and then we note that any point in A™ has an open
neighborhood fully contained in one of the &, so we can merely keep shrinking our diameters via S

until we full live in U4.

2. Nextup, we remark that S: C,,(X) — C,(X) is chain homotopic to the identity, and the chain homo-
topy restricts to a map CY(X) — CY(X). The idea is to work with A™ x I imagining A™ on one end
and S(A™) on the other end. In particular, choose an increasing subsequence ip < 43 < -+ < i, of
vertices of A”, and we can produce an (n + 1)-simplex

e ]

[vio,...,vik,[vio,...,vik],...,[vio,...,vik] .

This will subdivide A™ x I, and we can sum over all these simplices to produce the desired element of
Cr+1(A™), and then this becomes a map on C,,(X) by the usual pushing around. Then one can check
that 0D + D0 = S — id be a direct computation.

We now argue that we have an isomorphism on homology even though we needed a little stronger for
our proof of Theorem 3.43. The point is that we can take any chain « € C,,(X) such that da € C,,_1(U)
and find j so that S7a € C¥(X). Because S is chain homotopic to the identity, so S7, so [S7a| = [a] in
H,(X,U). Then one needs to argue that this is a bijection.

3.4.2 Fixing Relative Homology

We have the following coherence check.

Proposition 3.47. Fix a good pair (X, A). Then the quotient map ¢: (X, A) — (X/A, A/A) induces an
isomorphism on homology H,, (X, A) — H,(X/A, A/A).

Proof. Being a good pair promises us some open neighborhood V' of A with a deformation retract to A.
Now, (A4, V) and (V, X) are also good pairs, so the usual argument is able to produce a long exact sequence

H,(V,A) > H,(X,A) - H,(X,V) > H,_1(V, A),

butthe end termsvanish, sowesee H, (X, A) = H,(X, V). Similarly, we getisomorphisms H,, (X /A, A/A) =~
H,(X/A,V/A), so we put everything together into the following picture.

Ho(X,A) — Hy(X,V) > H,(X\A,V\A)

| l |

Hy(X/A, AJA) —— Hn(X/A,V/A) «—— Hn((X/A)\(A/A),V/A\(A/A))

We have argued that the horizontal arrows are isomorphisms, and we note that (X\ A4, V\A) is homeomor-
phic to ((X/A)\(A/A), (V/A)\(A/A)), so the right arrow is an isomorphism, so we conclude that the left
arrow is also an isomorphism. |
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Remark 3.48. Fix an arbitrary pair (X, A). Then we claim that H,, (X, A) ~ H,(X u, CA), where CAis
a cone over A (effectively contracting it to a point). Because C'A is contractible, we note that the long
exact sequence of the pair (X us4 C A, CA) produces isomorphisms

~

Hoy(X ua CA) = H,(X us CA,CA).

Now, we apply excision, puncturing C'A at the point of the cone, and then C A\{0} has a deformation
retract to A, so we get an isomorphism

Hp(X us CA,CA) = H,(X, A).

This sort of remark turns into an “exact sequence of spaces” where the point is that the composite
A — X — X uy CAtrivializes A, and A is somehow exactly what gets trivialized.

3.5 October19

Here we go.

3.5.1 Excision for Fun and Profit

Let's use excision to compute homology of some spaces.

Proposition 3.49. Fix pointed topological spaces (X,,z,) for « € A, and let X denote the wedge sum
of these spaces. Then the induced map

@ H,(X.) — Ha(X)

QEA

is an isomorphism.

Proof. Apply Proposition 3.47 to the good pair given by the disjoint union of the X, s and the disjoint union
of the z,s. [ |

Proposition 3.50. Fix nonempty open subsets U € R™ and V' < R" which are homeomorphic. Then
m =n.

Proof. Fixsome z € U. Then find an open ball B(xz,r) € U, so excision tells us that
H.(U,U\{z}) = H.(B(x,7), B(z,7)\{z}).

This is then isomorphic to H, (R™, R™\{0}) by using an isomorphism B(z,r) =~ R™.
Now, we claim that H, (R™, R™\{0}) is Zif k = m and 0 otherwise, which will complete the proof because
it allows us to read off m from U. This follows from the long exact sequence

Hy(R™) — Hy(R™,R™\{0}) — Hj,—1 (R™\{0}) — H)—1(R").
0 0

Now, Hj_; (R™\{0}) was computed in Example 3.35, so the result follows. [ |
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3.5.2 Functoriality of Long Exact Sequences

Let’s prove a few things.

Proposition 3.51. Fix a map of pairs f: (X, A) — (Y, B). Then this induces a morphism of long exact
sequences as follows.

- —— Hy(A) —— Hp(X) —— Hp(X,A) —— H, 1 (A) —— -+

| | | |

- —— H,(B) — H,(Y) —— H,(Y,B) —— H,_1(B) —— ---

Proof. Commutativity of all squares not involving the boundary map is automatic because H, is a functor.
Anyway, the point is that we actually have a homomorphism of short exact sequences of chain complexes
as follows.

0 —— Co(A) —— Co(X) —— Co(X)/Ce(A) —— 0

| | |

0 —— Co(B) —— Cuo(Y) —— C(Y)/Co(B) —— 0

One sees that this diagram commutes for any given n because the left square commutes by functoriality of
C., and the right morphism is simply taking the cokernel. So the result will now follow from the following
piece of homological algebra. |

Proposition 3.52. Fix a morphism of short exact sequences of chain complexes

0 Al A, A, 0
[ |
0 B, B. B! 0

Then there is a morphism of induced long exact sequences as follows.

| | |
(B

C—— Hy(B,) —— Hy(B)) —— H,(BY) —— Hy1(B,) —— -

Proof. Again, the commutativity of any square not involving the boundary is automatic. So it remains to
check commutativity of the boundary square

| |

Hn(B/o/) e Hn—l(B/-)

which can be done directly. Well, choose [o”] € H,,(A”) where a € A”, and we track it through the diagram.

+ Along the top, we pull ” back to some « € A,,, take boundary down to da € A,,_1, and then we find
o' € A, such that o/ — 0da. This is then passed through the map A, _; — B,,_;.
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+ Along the bottom, we push o” to some 8” € B. Now we compute the boundary. We need to pull 5"
back to some § € B,,, but we might as well use the image of « € A,,. Then we take boundary down to
0B, which we might as well take as the image of da. Then we find 8’ € A/, _; such that 8’ — 93, but
again, we may as well take the image of .

The above computation completes the proof. |

This sort of naturality allows us to derive an equivalence between simplicial and singular homology; as a
corollary, this will imply that the simplicial homology is invariant under the chosen A-complex structure.
We will purely formally use the axioms we have built.

Proposition 3.53. Fix a A-complex X a subcomplex A € X. Then (X, A) is a good pair, and there is an
isomorphism
H2(X,A) - H,(X,A).

Proof. Checking that (X, A) is a good pair follows from the case of a CW-complex, which can be checked
by manually finding the needed open neighborhood of all the cells. We now proceed in many steps.

1. To begin, note that there is at least an embedding C2 (X, A) — C,(X, A) always. Our goal is to show
that the induced map on homology is an isomorphism.

2. Take A = @ and X is a point. Then we manually computed both sides are isomorphic to Z at degree 0
and no nonzero higher homology.

3. Take A = @ and X is some set of points. Then we take disjoint unions (which cohere for both of our
homology theories) to conclude.

4. Take A = @ and X a finite-dimensional A-complex. Let’s say X is k-dimensional so that X = X(¥),
Then we use the previous piece of homological algebrato produce a morphism of long exact sequences
as follows.

— HY (X)) ——— A (XW) —— HA (X XE-D) —— A

n—1

| l ! l

(X))

. — H, (X(k)’X(kfl)) — > H, (X(k‘)) — > H, (X(k)’X(kfl)) — % H,, (X(kfl)) .

By induction, the leftmost and rightmost arrows are isomorphisms. Now, we show that the right mid-
dle morphism is an isomorphism by hand, which forces the remaining map to be an isomorphism by
the Five lemma (see Proposition 3.54 below). Well, note that A, (X®), X (=1 is zero for n # k and
free abelian group with basis given by the k-simplices for k = n. (Forn < k, everythingisin X (=1 and
for n > k, there is nothing there to begin with.) As such, the same will be true for A2 (X ®*) X (+=1)),
On the other hand, consider the maps

L, A X
[, 2AE ~ XD
whichisahomeomorphism and thus anisomorphism on singular homology. So our singular homology

is again we are again zero for n # k and when n = k we have the same presentation as before via a
computation of H,,(AF, 0A¥) done in Example 3.41.

5. Let A be empty and X be an infinite-dimensional complex. Then we note H2(X (1)) = H2(X)
because all the relevant A-complexes for H2(X) will come from X (*+1)_ So by the previous step, this
is H,, (X(+1), For the other side,

lim H, (X™) = H,(X)

because the computation of H,,(X) can only ever use finitely many simplices from X*. (The map is also
injective because anything [a] € H,,(X®)) landing in the trivial class of H,,(X) will be the boundary
of some chain, but then this chain can be witnesses again by some X for perhaps different but still
finite £.) This colimit completes our argument because H,, (X (*)) has been dealt with in the finite case.

56



3.5. OCTOBER 19 215A: ALGEBRAIC TOPOLOGY

6. For A nonempty, we simply use the induced morphism of long exact sequences given as follows.

C—— HR(A) — HR(X) —— H}X,A) —— Hp ((A) —— Hp (X)) —— -

| | | ! !

-—— H,(A) —— H,(X) —— H,(X,A) —— H, 1(A) —— H, 1(X) —— ---

Everything but the middle morphism is an isomorphism by the previous steps, so we complete by the
Five lemma again (see Proposition 3.54).

Professor Agol then proceeded to prove the five lemma. | have copy-pasted a proof using the Snake lemma
from a previous homework below.

Proposition 3.54. Consider a commutative diagram of R-modules and homomorphisms such that each
row is exact.

M Mo M3 My M;
flJ/ f2l f:al f4l f5l
Ny Ny N3 Ny N5

(@) If f1is surjective and f5, f4, are monomorphisms, then f3 is a monomorphism.

(b) If f5isa monomorphism and fs, f4 are surjective, then f3 is surjective.

Proof. Label the diagram as follows.

ay az as aq

M, M, M3 My M;
fll f2l fSl f4l f5l
Ny No N3 Ny Ns

by bo bs by

Very quickly, we claim that we can induce the following diagram with exact rows.

az as

M2 M3 a3]\/[3 0

7| ) 7|

0 —— Ng/blNl N3 N4

ba b3

Here, f5 is induced as the composite of M, EE] Ny — No/by Ny; and f; is induced as the restriction of My ELY
N, to azMsz. We also note that as : M3 — a3Ms is well-defined because a3z outputs into its image; by :
N3 /by Ny — Nj is well-defined because b; N1 = im b; < ker by by the exactness of the original diagram.

We now check the exactness of the rows.

« Exact at M3: we still have im as = ker ag by exactness of the original diagram.
» Exact at a3 M3: we note that as : M3 — a3Ms; is surjective by definition of a3 Ms3.

» Exactat N;/by Ni: we note that ker b, = im by by exactness of the original diagram, so by : No/imb; —
N3 has trivial kernel.

« Exact at N3: we still have im by = ker b3 by exactness of the original diagram.

We now attack the parts of the problem individually.
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(a) The trick is to claim that we have the following commutative diagram with exact rows, where fg and

f4 are monic.

Mg/alMl L} M3 i) a3M3 — 0

% f{ ﬂj

0 —— Ng/blNl N3 N4

ba bs

We start by showing that the map fg : My/ay My — Ny /by Ny is actually well-defined with trivial kernel.

It suffices to show that the composite M, f3 Ny — Ny /by Ny has kernel a; M.

Well, « lives in the kernel of the composite if and only if foa € by Ny if and only if foa € by(f1 M)
(because f; is surjective) if and only if focr € im(by o f1) ifand only if foar € im(f20a1) (by commutativity)
ifand onlyif foa € fo(imay) ifand only if « € im aq (because f; is monicand hence injective). So indeed,

ker(M2 i N2 - Ng/blNl) = 1m(M1 i Mg),

which is what we needed to show that Ms/a; My < N /by Ny is well-defined and monic.

We now note that the rows of the diagram are exact. The only modified point here is exactness at M3,
which now must accommodate for My/a; My, — Mjs. This map is well-defined because ima; < ker as
by exactness of the original diagram, and we are exact at M3 because

kel”(Mg — a3M3) = 1m(M2 — MS) = im(Mg/alMl — Md)
because modding in the domain does not alter the image.
To finish, we note that f5 and f; being monic imply that f3 is monic by Lang 111.14 part (a).

Similarly, the trick is to claim that we have the following commutative diagram with exact rows, where

f2 and f4 are surjective.

as

Mo M3 asMz —— 0

EJ{ fSJ/ fa

0—— Ng/blNl N3 ngg

bo b3

We quickly note that the map N3 — b3 N3 is well-defined because b3 always outputs to b3 N3 by defini-
tion. We also note that the top row is exact as checked earlier, and the only perturbation to the bottom
row is exactness at N3, which holds because the kernel of b3 has not changed and will still be im b,.

Next we show that f4 is well-defined. For this, we need to show that the image of f; : My — N, under
the restriction to az M3 — Ny will always output to N,. Well, we see

fa(imaz) = im(fy 0 az) = im(bz o f3) S im b3,

so we are indeed safe.

We now note that f, : My — No/b; N is surjective because it is the composite of the surjective maps
f2 : Ma — Ny and N — Ny /by Ny. (Any element of N5 /b; N7 can be pulled back to a representative in
N5, which can then be pulled back along f> to a representative in M5.)

Further, we claim that f; is surjective. Well, find any 3 € imbs that we want to hit. Because f; is
surjective, there exists a € My such that f4a = 3, and we will show that o € a3Ms, which will be
enough.

Indeed, fyo € im bs if and only if f,« € ker by (by exactness) if and only if a € ker(by o f4) if and only if
a € ker(f5 o aq) (by commutativity) if and only if as« € ker f5 if and only if aya = 0 (f5 is monic) if and
only if « € ker a4 if and only if « € im a3 (by exactness).

In total, the fact that f> and f, are surjective implies that f is surjective by Lang I11.14 part (b). |
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3.5.3 Degrees

As an application, let’s talk a bit about degrees. For example, any map f: S™ — 5™ induces a map on
homology H,,(S™) — H,(S™). Thisisamap Z — Z, so it will have to be multiplication by some integer d
(independent of the choice of isomorphism H,,(S™) =~ Z), which is called the degree of f.

Example 3.55. The degree of idg= is 1.

Example 3.56. Suppose f is not surjective. Then deg f = 0. The pointis that f lands in S™ minus a point,
which contracts to a point, so the image of f factors through H,, (S™\{x}) = 0.

Remark 3.57. Fix f,g: S™ — S™. If f ~ g, then deg f = deg g because homotopic maps produce the
same map on homology.

Remark 3.58. Fix f, g: S™ — S™. Wehavedeg(fog) = (deg f)(deg g) by tracking through the composite
mapsasZ — 7 — 7.

Example 3.59. If f: S — S™ is a continuous bijection, then it is a homeomorphism and so has an
inverse map, so deg f must be aunitinZ, so deg f € {+1}.

Example 3.60. The degree of a reflection f: S™ — S™is —1. Namely, let AT denote the top hemisphere
and A7} denote the bottom hemisphere, and we see that f flips AT and A%. Noting that H,(S™) is
generated by AT — A% (one can track through the boundary maps to show this or see it directly on
simplicial homology), the fact that deg f = —1 follows.

Example 3.61. The degree of the antipodal map z +— —zis (—1)"*! because it is a composite of (n + 1)
reflections.

Example 3.62. Suppose f: S™ — S™ has no fixed points. Then one can find a homotopy from f to
the antipodal map because the “straight-line” path from f(z) to —z fails to go through the origin. So
deg f = (—-1)"*".

3.6 October24

We continue with some applications of homology.

3.6.1 Applications of Degree

Let's give a few fun applications of the degree.

Proposition 3.63. Fix an integer n. Then S™ has a continuous vector field nonzero everywhere if and
only if n is odd.

Proof. Quickly, recall that a vector field is a function assigning a tangent vector to each point. Namely, for
each z € S", there is a tangent plane 7,,5™ < R™*! consisting of the vectors y € R**! such that (y — z) -z =
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0. Shifting down by x, we may as well as say that 7,S™ intersects the origin, and so we are asking for a
continuous map f: S” — R"*! such that f(z) - = = 0 for each z € S™.

For example, there is a continuous vector field nonzero everywhere on S* given by (z,y) — (y, —x). More
generally, if n is odd, then S™ < R"*! can have its coordinates enumerated by (21, y1, ..., Zn, ¥n), and we
have a continuous vector field given by

(Ilaylv cee 7Inayn) = (7.1/17'517 ceey *ynazn)

Thus, if n is odd, we have a nonzero continuous vector field.

For the other direction, suppose we have a nonzero continuous vector field f: S* — R"*!. Applying
a deformation retraction, we may assume that f actually maps S™ — S™. But then f maps a vector to a
perpendicular vector, so it has no fixed points, so we have a homotopy to the antipodal map, so deg f =
(—1)"*1. On the other hand, f is homotopic to the identity by simply following the vector field backwards
to the original point. So deg f = 1 also, so n must be odd. |

Remark 3.64. Colloquially, this is the hairy ball theorem: there is no way to comb the hair of a ball S <
R3.

Remark 3.65. A more interesting question one can ask is for which n do there exist n pointwise orthog-
onal vector fields which vanish nowhere. This is equivalent to saying that the tangent bundle T'S™ is
trivializable. We discussed how to do this for S!, and there is a similar process for S? (viewing R* as the
underlying vector space for a quaternion algebra) as well as S” (using the octonions). It turns out that
these are the only such n.

Proposition 3.66. Let n be an even integer. Then Z/2Z is the only group which can act freely on S™.

Proof. Suppose G is a group acting freely on S™. Then we show that G has an injection into Z/2Z. Note that
each g € G must act by a homeomorphism on S™ because it has inverse given by g1, so the action of g must
be surjective, so we see that degg € {£1}. Because deg is multiplicative, this is actually a homomorphism
deg: G — {£1}. We argue that this map is injective, which will complete the proof.

Well, suppose g # e for some g € G, and we show that degg = —1. To see this, note that having a
free action implies that g has no fixed points, so as usual g is homotopic to the antipodal map, so degg =
(-1t = —1. [ |

Remark 3.67. Of course Z/27Z acts on any S™ because the antipodal map « — —z has order 2.

Remark 3.68. For odd spheres, the story is more complicated. We have classified all the groups which
act linearly on spheres, but we don't know all the actions explicitly.

3.6.2 Local Degree

Taken > 0. Let's discuss a way to compute degree via a “signed point count.” Givena map f: S™ — S", we
can try to look locally at some point y € im f and attempt to count the number of points in the pre-image of
f. Signed appropriately, this will turn into the degree. For example, if we are looking at (say) differentiable
maps f: S — S, counting signed by direction turns into the winding number.

Explicitly, fix y € im f such that the fiber f=*({y}) is finite, whose points we number off as {z1, ..., z,}.
By choosing a radius less than half of the smallest distance between any two z,s, we may fix disjoint open
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neighborhoods U; around each z;. We now draw the following rather large diagram.

f

2J{ f\ l /f 2J{
7 === Hn (") ——— Hn (5",S"\f'({y})) H, (5") =——= 12

To begin, we note excision by S™\U; implies that the 1 arrow is an isomorphism. Because S™\{x} is con-
tractible for any point #, we see that the 2 arrows are isomorphisms. We are now equipped to make the

following definition.

Definition 3.69 (local degree). Fix everything as above. Then the local degree deg f|., is the degree of
the induced map H,,(S™) — H,(S™) as above.

Proposition 3.70. Fix everything as above. Then

deg f = ) deg flz,.

=1

Proof. We basically take direct sums of our large diagram, as follows.

H™ (87, 8™\ [ ({y)) == @ Ho(Us, Up\{z:}) —225 H, (87, 8™\ {y})

T

Hy (5™, 5"\ {xi})

T /

H*(S") ——L 5 Hn(5)

@-

i=1

By excision to delete everything outside the U,s, we see that the top-left arrow is an isomorphism. Then the
vertical rectangle commutes by tracking through how H,,(S™) =~ Z goes around (this is really the diagram
we drew above the definition), so we are done because the vertical maps are all isomorphisms. |

Remark 3.71. Any map is homotopic to a map with finite fibers somewhere, so this local degree check
can usually be carried through. Explicitly, cover S™ by convex balls, such as the hemispheres

HE = {(zo,...,2,) : £z; > 0}.

3

Now, for f: S™ — S™, do a barycentric subdivision repeatedly until the diameter is smaller than the
Lebesgue number of the cover f~!(H:"): i.e., we want a cover of S™ such that each point in one of the
covering sets lands inside some hemisphere. Then we can “straighten” the map f inside one of the
convex hemispheres to make the map f piecewise affine. So the size of our fibers is bounded by the

number of simplices of f.

Remark 3.72. In fact, one can show that two maps f, g: S™ — S™ are homotopic if and only if deg f =
deg g, which allows us to strengthen the above result.

Let's use this to show that any degree is achievable.
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Example 3.73. For n = 1, the map S* — S given by z +— z* has degree k.

We now go up fromn = 1.

Proposition 3.74. Fix a map f: 8™ — S™. Then the suspension map Sf: S"*! — S"*! hasdeg Sf =
deg f.

Proof. The main concern is that we must go up in the dimension of our homology groups, for which we
want to use the long exact sequence. Note that we haveamap Cf: (CS™, 5™ x {0}) — (CS™,S™ x {0}), so
the quotient space is S™. Naturality of our long exact sequences now produces the following commutative
diagram.

Hpi1(CS™) —— H,1(CS™, S™) Hypir (S™1) —2 H,(S") —— H,(CS™)

le le ls f lf le

Hyi1(CS™) —— Hpp1(CS™,S™) Hpi1 (8™ —2 H,(S") —— H,(CS™)

Here, S™ has been embedded into C'S™ via the copy in the code, and the point is that the quotient C'S™/S™
is simply SS™ = S+, All terms on the ends vanish because C'S™ is contractible, so ¢ is an isomorphism, so
the proof is complete. |

Remark 3.75. If amap f: S™ — S™ is differentiable at a point z, then an exercise we did on the home-
work allows us to compute deg f|, as det D f,. Indeed, f is locally linear at z, so we choose the cor-
responding neighborhood where f is homotopic to a linear map, and the degree of linear maps was
computed on the homework.

3.7 October 26

Today we discuss cellular homology.

3.7.1 Cellular Homology

Let's attempt to compute the homology of a CW-complex.

Lemma 3.76. Fix a CW-complex X and indices k and n.
(@) Hy (X™/X™ 1) = 0ifk # n.
(b) H, (X™/X""')is free abelian if k = n, with a basis given by the n-cells.
() H (X™) =0ifk > n.

(d) The inclusion i: X™ — X induces an isomorphism H,,(i): Hy (X") — Hp(X)ifk < nandisa
surjection if & = n.

Proof. This is similar to what we saw with A-complexes.

(a) We see
Hy (X7, XY = Hy (XX =y (\/ 57)),

and we know the homology of S™ already.
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(b) This follows by induction on n and using (a). The base case is that Hj, (XO) = 0for k > 0. The long
exact sequence provides

Hy (X" - Hy (X™) > Hy—q (X7, X7

The left term vanishes by the inductive hypothesis, and the right term vanishes by (a), so the middle
term will also vanish.

(c) A similar exact sequence as in (b) shows that Hj,(X™) — Hj, (X™*') is an isomorphism if k& < n and
surjective when k = n. Indeed, we simply write down

Hk+1 (XnJrl’Xn) N Hk(Xn) N Hk (Xn+1) N Hk (Xn+17Xn)

toachieve theresult. If X is finite-dimensional, we are done because X = X" for some n large enough.
In the infinite-dimensional case, we use the fact that

H,(X) = lim H,(X")
because any cycle or boundary lives in some fixed chain. So we get this result purely algebraically. H

We now build a complex from X using its skeletons. For each n, we acknowledge that we have maps
Hppq (X" X™) — H,(X™) and H,(X™) — H, (X", X"!) induced by some long exact sequences, so
we getamap Hy, 41 (X", X™) — H,, (X", X""') via composition. So we have a sequence

oo Hyyy (XML X™) > Hyy (X7, XY = Hy g (XL X772)

Quickly, we claim that this is a chain complex. Indeed, the main point is that the composition of two con-
secutive maps amounts to a long composition

Hn+1 (Xn+17Xn) s Hn(Xn) s Hn (Xn,X"_l) N Hn—l (Xn—l) N Hn—l (Xn_l,Xn_Q) )

However, the composite of the middle three maps must vanish by the relevant long exact sequence. So we
are allowed to make the following definition.

Definition 3.77 (cellular homology). Fixa CW-complex X. Then the cellular homology groups HSW (X)
is the homology of the chain complex

o> Hpiq (XnJrl’Xn) . Hn (Xn,anl) — H, 4 (anl’Xn72) I

Of course, we would like to see that this is independent of the chosen CW-structure. In fact, we have the
following result.

Proposition 3.78. Fixa CW-complex X. For alln, we have HSW (X)) = H,(X).

Proof. Draw the following very large diagram.

Hn (Xn71> Hn (Xn+1,X")
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Now, by the lemma, we see that H,, (X"') = H,(X), and we know this is isomorphicto H,, (X") /im d;,+1.
The diagram above has H, (X"~ 1) = 0, so j, is injective, and similarly, j,_1 is injective. As such, we see
H, (X™)/im é,41 is isomorphic to
im j,,
lm(]n o an-}—l) .
Again, because j,,_1 isinjective, it follows that ker d,, = ker ¢,,, which we know by the long exact sequence is
theimage of j,,, so the numerator is ker d,,. Similarly, we know that the denominatorisim d,, 1 by definition,
so we are done. [ ]

Example 3.79. If X has some r number of n-cells, then H,,(X) is a subgroup of the free abelian group
H, (X", X"~1)onrgenerators, so ker d, is a free abelian group of at most r generators, so the quotient
HEW(X) is an abelian group on at most r generators as well.

Example 3.80. Take X = CP". This has exactly one cell in each even dimension. So Lemma 3.76 tells
us that the cellular homology sequence has every other term equal to Z up to 2n, so

Z ifie{0,2,...,2n},
0 else.

H; (CP") = {

We would like to use HEW to actually compute some homology groups, but for this we need to be able to
compute the boundary maps d,.

Proposition 3.81. Fixa CW-complex X. The boundary map d,,: H,, (X", X" ') — H,_q (X", X""?%)
sends some n-cell e representing a class in H,, (X", X"~!) to

2 dasel ™,
B

where d, 3 is the degree of the composite A,z

SZ—l N Xn—l/Xn—2 N Sg—l .
~—— ——

den n—1
s

Here, the second map is induced via the retraction gz of X"~1/X"~2 onto Sg_l, squishing X"*1\62§_1

to a point.

Proof. Let ®,: D" — X™ denote the embedding of this n-cell, and ¢, : dD? — X"~ denote the attaching
map. We now draw the following very large diagram.

Ba
H,(D",oD") —2— H,_,(oD") ——2 H,_, (egfl/aegfl’*)

- | q

Hn ()(n7 Xn—l) dn Hn—l (Xn—l, Xn—2) 4q Hn_l(X"_l/X"_Q, *)

Here, g and ¢z are the relevant quotient maps. Then one tracks around the relevant diagram and sums over
all 5 to achieve the result. In particular, ¢g detects the coordinate of eg_l ind,(e%), and e is the image of a
generator of H,, (D, 0D?) passed through ®,,. So the top composite tells us what the coordinate of eg*I in
dy,,(e) should look like, which we see is the degree of A3, as needed. (Note that d above is an isomorphism
because the relevant long exact sequence has the terms before and after the homology of a disk, which
vanishes because disks are contractible.) [ |
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Example 3.82. Consider the surface X5 produced by identifying opposite ends of an octagon. This has
one vertex, four edges, and one face, so our cellular homology chain complex is

0>7Z—>7*—>7—0.

Using the above formula, we see that each edge in Z* goes to 0 (the main point is that we are taking the
edge and doing a signed sum of its boundary, but the boundary points have been identified), so we verify
that Hy(33) = Z. Next, for the face e? generating the left Z, one checks that the identified edges are in
such a way that the differential again vanishes, so H;(X3) = Z* and Hy(X3) = Z. All higher homology
vanishes.

Example 3.83. Consider the surface X produced by identifying adjacent edges of an octagon. There is
still one vertex, four edges, and one face, so our cellular homology chain complex is

0572 —>7*—>7—0.

For the same reason as in the previous example, one sees that Z* — Z is the zero map, verifying
Hy(¥3) = Z. Computing using the boundary formula, we see that dy: Z — Z* is the diagonal map
multiplied by 2. So H,(X2) = 0 because d, is injective, and H;(32) = Z*/(2,2,2,2)Z. One can see
this group is Z3 @ (Z/2Z), where the point is that we have given Z* a new basis given by (1,0, 0, 0) and
(0,1,0,0) and (0,0,1,0) and (1,1, 1,1).

3.7.2 Euler Characteristic
Fix a finite CW-complex X.

Definition 3.84 (Euler characteristic). Fix a finite CW-complex X. Then the Euler characteristic x(X) is
the alternating sum
2, (=1)%en,

n=0

where ¢, is the number of n-cells of X.

A priori, x(X) depends on the CW-structure of X, but we can remove this dependency.
Proposition 3.85. Fix a finite CW-complex X. Then

X(X) = ). (~1)" rank H, (X).

n=0

Here, rank H, (X) is the number of Z-summands in the finitely generated abelian group H,,(X)

Alternatively, the rank is dimg (H,, (X) ®z Q), where the point is that tensoring by Q deletes the torsion. We
will want the following result.

Lemma 3.86. Fix a short exact sequence
0>A—->B—->C—0

of finitely generated abelian groups. Then rank B = rank A + rank C.

Proof. Tensor with @ and then use the corresponding fact for dimensions of Q-vector spaces, which is
proven directly by counting bases. |
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We are now ready to prove Proposition 3.85.
Proof of Proposition 3.85. More generally, suppose we have a finite chain complex
O—>C’k.—>Ck_1—>~-—>01—>C’0—>O

with boundary maps d,,: C,, — C,,_1, and we let x(C,) denote the sum

x(C,) = Z rank H,(Cl,).

n=0
Note that we have the short exact sequence
0— kerdk — Ck — imdk — 0,

so we find that rank C, = rankker dy, + rankimdy = rank Hy(C,) + rankimdy. In particular, we find that,
trying to reduce ourselves down to

Chr_
O—>,k 1
im dy,

- Cpg — -+ > C1 — Cy — 0,

we have
Z (=1)"rank C,, = Z (—1)" rank H,(C,).

n=0 n=0

Anyway, for our application, we take C, = Hy, (X", X*~!) to be our cellular homology chain complex, so it
follows H,,(C,) = H,(X) and rank C,, is the number of n-cells. This completes the proof. |

Remark 3.87. As a nice corollary, we see that x(X) is homotopy invariant, which is not so obvious. No-
tably, this allows us to define x(X) whenever X is homotopy equivalent to a CW-complex.

3.7.3 Homology with Coefficients

If Aisany abelian group, we can define simplicial homology with coefficients in A simply using by replacing
simplicial chains C,,(X) with C,,(X; A) := C,,(X) ®z A, which can be intuitively thought of as the free A-
module with basis given by singular complexes o,: A™ — X. Notably, if A is in fact a ring, then these are
R-modules, soif A is a field, these are F-vector spaces!

Example 3.88. Let R be aring, and consider the surface 35 from earlier. Then the same computation as
in Example 3.82 reveals

R ifie{0,2},
HI(ZQ,R) = R4 ifi = 1,
0 else.

Example 3.89. Consider the space X constructed in Example 3.83 and work with coefficientsin F5. Then
the same computation as in the example tells us that the relevant cellular homology sequence

0—>Fy >F; >Fy -0

has differentials equal to 0! So the homology changes.

3.8 October31

Here we go. Today we'll do more examples with CW-complexes.

66



3.8. OCTOBER 31 215A: ALGEBRAIC TOPOLOGY

3.8.1 Cellular Homology Examples

Here are some examples.

Example 3.90. Let X be a dodecahedron where opposite sides have been identified via a 180° rotation.
We compute the homology of X.

Proof. There is some very large diagram which | cannot be bothered to draw. There are thirty edges on
the dodecahedron, and each are identified with three edges total, so X has ten 1-cells. Continuing, there
are twenty vertices on the dodecahedron, and each is identified with four edges total, so X has five 0-cells.
There are twelve faces to start, so X has six 2-cells. Lastly, X has one 3-cell. In total, our chain complex is

0727 >7° 5 7° 0.

One can draw everything out and note that any pair of vertices has exactly one edge connecting them, so
X1 is the complete graph of 5 vertices. From here, one can compute d; : Z'° — Z5 as mapping to e; — ¢;
for distinct 4, j € {1,2,3,4,5}. One can also see that the map d3: Z — Z is the zero map because each face
has one copy plus another copy with a reflection afterwards, which sums to zero. It remains to compute
dy: 75 — 719, One can track the cellular boundary formula to see that we are outputting any path of length
3.

This then allows us to see that all homology vanishes except H3(X) = Z. The main point is that X has
the same homology as S? but is not homeomorphic to it; for example, one can compute that 7;(X) is a
(Z/2Z)-extension of As. |

Example 3.91 (Moore spaces). Fix an abelian group G and index n > 1. Then there is a space X =
M(G,n)with H,(X) = G while H;(X) = 0 fori # n. We write down some X.

Proof. If G is Z/mZ for m > 1, we can take X to be S™ with a single ¢"*! attached of degree m. Then the
cellular boundary formula is able to compute the needed homology. From here, wedges are able to take
products of these groups to achieve any finitely generated abelian group. (Note the single point can do
G=12.)

The general case requires some thinking. Find a free abelian group F surjecting onto Gvian: F' — G;
say F' = @, Z. Then begin with the space X! = \/_, S'. Now, ker ¢ is a free subgroup of F, so write
ker p = @5&\ Zys where yz € F. For each 3, let f3: S* — X! be the corresponding attaching map with
fs(1) = ygs, so we attach a two-cell to fill in this boundary as f3. From here, one finds that our cellular
homology chain complex is just going to exactly be

OHG—)Z@JQHG—)ZHO

BeEX QER
whose quotient is precisely the needed G. This achieves the correct Hy; from here, one can use suspension
n times to get general M (G, n), which works by Example 3.97 (as we will see later from Mayer-Vietoris).

Alternatively, we can achieve the same by simply replacing S* in the construction above with S™ and directly
using the cellular boundary formula in the same way. |

3.8.2 Group Homology

Let's talk about lens spaces as a way into group homology.
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Example 3.92 (lens space). Recall that the lens space L,,, (¢1, . .., /) is defined by taking S”~! < C™ and
modding out by a Z/mZ-action given by

o(z1, -, 2m) = (Cfﬁzl, . .,(fryzn) ,

where pis a generator of Z/mZ. Here, the integers ¢4, ..., £, are all coprime to n, so the action of Z/mZ
is free. We compute the homology of these spaces.

Proof. The main point is to figure out how to put a reasonable CW-structure on the lens space. View §2"~!
as n-iterate of the join S « - - x S': send some (t121,...,t,2,) where > | t, = 0and zy,...,z, € S* to the
point (v/t121, .. ,/tnzn) € S?L
We will produce a CW-structure with one cell in each dimension; by induction, we may assume that this
exists for L,,,_1(f1,...,¢,_1). Now, the action on the last coordinate S* has fundamental domain given by
the arc
I, = {e2”“/m 0<t < 1} c St

Now, I,,, * S?"~! attaches to S?"~3 as a covering map, and our map is degree m. What happens is that we
produce two new 2-cells given by 1 * §27=2 = C§?"3 ~ B?"~2 and [,,, * §*™~3 =~ B?"~!, The boundary of
I, * S?"~3 then attaches with degree 0. Totaling everything, we produce a cellular homology chain complex

.7 %7m7 o,

so our homology is Z in degrees 0 and 2n — 1, it's Z/mZ if k is odd and between 0 and 2n — 1, and it's zero
everywhere else. Notably, looking at our homology, we have produced an essentially minimal cell structure:
we have a nontrivial torsion group in every other position, so the cell complex structure must have at least
one cell in each entry to produce this kind of behavior. |

Remark 3.93. It is known that L,(1,p) = L,(1,p’) ifand onlyif ¢ = ¢’ and p = £p*! (mod ¢). This
is rather hard to show. Notably, some of these spaces are not even homotopic (e.g., Ls(1, 1) is not
homotopic to L5(1, 2)) or can be homotopic but not homeomorphic (e.g., L7(1,1) and L7(1, 2)).

Remark 3.94. Even though we have RP" for every n, we can only have these lens spaces in the odd
dimensions 2n — 1. The reason is that the only group acting on spheres S?" of even dimension is Z/27.

Remark 3.95. One can write down the cohomology groups H,.(G; A) as H.(K (G, 1); A), but in practice
these K (G, 1)s might be hard to write down. One can use the “infinite lens space” S*/(Z/mZ) as a
K(Z/mZ,1), but this is hard to work with in practice. As another difficult example, we note that any
finite-dimensional CW-complex X which is a K (G, 1) must have 71 (X) torsion-free. Indeed, suppose
a € 71(X) has order m > 1. Now, use the subgroup (a) < 7 (X) to produce a covering space p: X' —
X, meaning that X’ is homotopy equivalent to K(Z/mZ, 1), which is not possible by cellular homology
arguments because K(Z/mZ,1) has homology in arbitrarily large coefficients! (Note X’ must also be a
finite CW-complex because it is a finite cover of a finite complex.)

3.8.3 Mayer-Vietoris

Let’s discuss a more convenient version of excision.

Theorem 3.96 (Mayer—Vietoris). Let X be a topological space which is the union of the interiors of two
subspaces A, B < X. Then we have a long exact sequence of homology groups

-+—>H,(AnB)—> H,(A)®H,(B) > H,(X) > H,-1(AnB) > - .
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The point here is that C,,(A) + C,,(B) < C,(X), and we can then write down the following diagram which
turns out to be a chain homotopy.

s s

Cnfl(A) + Cnfl(B) E—— Cnfl(X)

One can then try to take this into the needed long exact sequence. Somehow the main point is to try to use
barycentric subdivision to view C,,(A n B) as the kernel of the map C,,(4A) ® C,,(B) — C,(X).

3.9 November?2

Today let's discuss the axioms for homology.

3.9.1 More on Mayer-Vietoris

We continue our discussion of Mayer—Vietoris.

Theorem 3.96 (Mayer—Vietoris). Let X be a topological space which is the union of the interiors of two
subspaces A, B < X. Then we have a long exact sequence of homology groups

> H,(AnB)—> H,(A)®H,(B) > H,(X) > H,1(AnB) > ---.

Proof. Note that we have the short exact sequence of simplices
0> Co(AnB)—> C,(A)@®Cpr(B) — Co(A) + Co(B) — 0,

where the left map is © — (z, —z) and the right map is (z,y) — x + y. Notably, this is exact because the
kernel of the map C,,(4) ® C,,(B) — Cn(A) + Cp(B) is simply C,,(A) n C,(B), but the only way to have an
n-chain land in both Aand in Bis foritto landin A n B, so C,(A n B) = C,(A) n C,(B) follows. Further,
the inclusion C,,(A) + C,,(B) < C,,(X) is a chain homotopy equivalence by Proposition 3.45 because X is
covered by {4, B}. So we have a long exact sequence in homology, which is the desired one upon noting
that

Ho(Co(A) @ Cu(B)) = Hy(A) @ Ho(B)  and  Hy(Cul(A) + Co(B)) = Hp(Co(X)) = Hp(X),

where the left equality is because H,, is additive, and the right equality is by the chain homotopy equivalence
as just discussed. |

Example 3.97. We compute the homology of the suspension SX = CX ux CX. Well, let A be some
open neighborhood around the left CX, and let B be some open neighborhood around the left CX.
Rigorously, if SX is X x [—1,1] where we collapse X x {—1} and X x {1}, then A := X x [-1,0.1) and
B := X x (—0.1,1] willdo. Then A n B is homotopic to X, but A and B are both contractible to CX and
thus to a point, so Theorem 3.96 tells us that

0— H,(SX) > Hy_1(An B) -0
| —
H, (X)

is exact, so H,(SX) = H,_1(X) follows. Approximately speaking, the geometric content here is that
we can turn an (n — 1)-cycle (made out of some simplices) and bring it up to an n-cycle by taking its
cone.

69



3.9. NOVEMBER 2 215A: ALGEBRAIC TOPOLOGY

Example 3.98. Consider the torus knot K, ,,, of Example 2.34, and set X = S*\K,, ,,,. Now one can
choose A to be the space outside the torus and B to be the space inside the torus so that X is covered
by A n B, and both A and B include the boundary. However, A and B can both be contracted to S*, as
can their intersection, so

Z ifn=1,

However, H,(C) — H;(A) is multiplication by p by because C winds around p times around the torus in
one direction that way by construction, and similarly H,(C) — H;(B) is multiplication by ¢. The point
is that Theorem 3.96 yields

~

H,(C) — H,(A) @& H,(B) — H,(X) — 0,

so (for example) Hy (X) = Z/pqZ, and the other homology will vanish.

Example 3.99. Suppose X = Au B where X is afinite CW-complex, and Aand B and An B are homo-
topic to finite CW-complexes. Then we claim x(X) = x(4) + x(B) — x(A n B). Indeed, Theorem 3.96
tells us that we have an exact sequence

-+—>H,(AnB)—> H,(A)®H,(B) > H,(X) > H, 1(AnB)—> ---.

Taking alternating sum of ranks, the total sum must vanish, so we conclude that

0 [0¢] 0 [e¢]
(1) rankg H,(X)+ Y (—1)"rankg Ho(AnB) = Y. (=1)" rankz Hy,(A)+ Y (—1)" rankg Hn(B),
n=0 n=0 n=0 n=0

which is what we wanted.

3.9.2 More on Homology with Coefficients

Asusual, G is an abelian group, and X is a space, and we recall C. (X; G) := C'o(X) ®z Z[G]. The arguments
we made for G = Z generalize immediately; for example, if X is a point,

G ifn=0,

H,(X,G) = !
( ) {0 if n > 0.

We are able to define simplicial, singular, and cellular homology theories all in the same way, but we now
allow coefficients in Z[G] instead of merely Z. One complication is in computing the boundary map for the
cellular chain complex, for which we need to understand how to compute the degree of a map. So we have
the following result.

Lemma 3.100. If f: S™ — S™ is a map of degree m, then the map H,,(f): H,(S";G) — H,(S™;G) is
multiplication by m.

We will prove this as a result of naturality in G.

Remark 3.101. Notably, we are allowing for multiplication by m to be zero here!

Anyway, here is our notion of naturality.
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Lemma 3.102. Fix a pair (X, A). A homomorphism of groups ¢: G — H induces a homomorphism of

chain complexes
Cn(p): Cn(X, A;G) — Cn(X, A; H)

which is functorial.
Proof. The map is simply given by passing the coefficients in C,, (X, A; G) through ¢. It will commute with
the boundary morphism of C,, (X, 4; G) and of C,,(X, A; G) by a direct check. [ |
Having a map of chain complexes will thus induce a map on homology, allowing us to prove Lemma 3.100.

Proof of Lemma 3.100. Fix any g € G representing a class in H, (S™;G). Then considerthe map ¢: Z > G
sending (1) := g, and the above naturality tells us that the following diagram commutes.

]

— mg

Hy(s7z) Y g, (57 z)

‘| |s j

Hy(sm6) Y g smq)

—

This is exactly what we wanted to prove. |

So we can compute our cellular chain complex boundary maps in the usual way.

Example 3.103. Fix a field F', and we will compute the homology on RP"™. Our discussion with lens
spaces in Example 3.92 produces a chain complex

0O F—>F—>F—>.---—>F->F-—>0

where the maps alternate being doubling or zero. So if char F = 2, then all these maps are the zero
map, so we get Hy(RP"F; F) ~ Ffor0 < k < n. And if char F' # 2, then multiplication by 2 is an
isomorphism, so we get H,(RP"; F) = F'atonly k € {0,n} where n is odd. One can check that the Euler
characteristic is zero in odd dimensions and one in even dimensions. Of course, a similar computation
will work for more arbitrary lens spaces L, (¢1,. .., ¥¢,), where the point is that multiplication by m as a
map F — F'is zero if char F' | m and is an isomorphism otherwise.

3.9.3 Axioms for Homology

To give some perspective, let's provide a version of the Eilenberg—Steenrod axioms for reduced homology
theories for CW-complexes. Namely, for each integer n € Z, we want a functor h,, from the category of
CW-complexes to AbGrp. We now add in the following extra conditions.

1. If f is homotopic to g, then fNL.(f) = Gu(9)-

2. For each CW-pair (X, A), we have a long exact sequence
o B (A) = hp(X) = B (X JA) = Ry i (A) — -

This long exact sequence is functorial in the pair (X, A).

3. If X = A\, Xa withinclusions i, : X, — X, then the induced map on homology
is an isomorphism.
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4. Take X to be a point. Then we have ﬁn(X) = 0 for any integer n.

One can show that the above axioms are sufficient to fully pin down homology as singular homology. How-
ever, a relaxation of the dimension axiom is able to produce more exotic homology theories.

Example 3.104. For example, there is some homology arising from cobordism of manifolds: consider
maps of manifolds to our space X modulo cobordism, where two maps f1: M; — X and fo: My — X
are equivalent modulo cobordism if and only if there is some F': N — X such that oN = M; u M, and
F|y, = f; foreachi.

Remark 3.105. Generally speaking, homology theories provide functors from the homotopy category
of topological spaces to the category of graded abelian groups. Isomorphisms between homology the-
ories (perhaps on a subcategory of the homotopy category) amount to natural isomorphisms between
these functors. Namely, in all the situations above, we were able to produce isomorphisms between
our homology theories essentially on the level of chain complexes, which promises that the induced
isomorphisms on the level of homology would be natural. We also remark that changing coefficients is
natural.

3.10 November?7

We're falling behind, but everything will be okay.

3.10.1 Homology and the Fundamental Group

Throughout, X is path-connected.

Proposition 3.106 (Hurewicz). Let X be a path-connected space with basepoint o € X. Then there is
anatural map h: m (X, z¢) - H;(X).

Proof. Consider the path a: S' — X. This will induce a map
Hi(a): Hy (%) — Hi(X),

but H; (S') is isomorphic to Z generated by the counterclockwise loop. So we define h(a) as going to
H;(a)(1). Homotopic maps define the same map on homology so & is defined up to homotopy class in
1 (X, 130).

Remark 3.107. An alternate way to think about this map is by viewing S* as A! with endpoints identi-
fied, so a produces a singular chain A! — X, and with the endpoints identified this is actually a singular
cycle, so [«] is a genuine class in H1(X). Note that this agrees with the above definition by tracking
through what the map H; (S*) — H;(X) actually is: we send the generating singular cycle A — S to

themap A —» ST 5 X,

Lastly, we should probably check that our map is a homomorphism. Fix o, 3: S! — X. Note that the com-
posite a - 3 can simply be thought of as a map S! v S — X. But now this looks like the composite

St sty st X,
which on homology is the map H; (S') — Hy (S*) @ Hy (S') — H1(X), which goes 1 — (1,1) — h(a) +
h(B). u
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Theorem 3.108. Let X be a path-connected space with basepoint 2o € X. Then h descends to an iso-
morphism
’/T1(X7£L'0)ab —> Hl(X)

Proof. Note ker h contains the commutator of 71 (X, 2g) because the image is an abelian group, so h does
descend to some morphism 7 (X, z0)®® — H;(X). Next, we check that h is surjective: it suffices to show
that any cycle lives in the image of h, so consider some cycle z = }’. n,0;. We may assume that n; € {+1}
for each ¢, and because 0z must vanish, if any o; is not immediately a loop, we may find some ¢; which
connects to o; to cancel out the endpoints; this then allows us to replace o; with ; - o; upon removing o;.
Continuing this process finitely, we may assume that our cycle is a sum of loops. But now each of these loops
is in the image of h by translating them to have basepoint at z, where the translation is legal because this
corresponds to adding a loop which goes directly forwards and backwards (which is of course homologically
trivial).

It remains to check injectivity. The point is that two-dimensional homology classes are represented by
surfaces. Namely, a 1-cycle is trivial if and only if it is represented by loops which are the boundaries of AZ,
making a similar argument to the one we gave above. However, such aboundary is a product of commutators
because of how these oriented surfaces behave. Essentially, one glues together these 2-cycles to build a
surface that embeds into X with boundary equal to the loop, and then one can apply a homotopy of the loop
through this surface to trivialize it. |

3.10.2 Applications of Homology

Here is a nice result which we will use for some applications.
Proposition 3.109. We have the following.
(a) Upon embedding D* < S, we have H,; (S™\D*) = 0 foralli.
(b) If S'is a subspace of S™ homeomorphic to S* for 0 < k < n, we have

~ Z ifi=n—k-1,
H (Sn\S);{O else

Here are some nice applications.

Corollary 3.110 (Jordan curve). Any embedding f: S! — S? separates S? into two path-connected
components.

Proof. Namely, H, (S%\S') = Z, so S*\S* must have two connected components. [ |

Example 3.111. One has
~ 7 ifi=1
Hy (SP\ST )= ’
(S\7) {O else.
We verified this by hand on the homework by providing 7; ($%\S*) with a presentation, from which the
computation for H; follows by Theorem 3.108. Note that this is potentially surprising because there are
some pretty horrible embeddings h: ST — 53; for example, 71 (S®\h (5')) need not be well-behaved.

Anyway, let's show Proposition 3.109.

Proof of Proposition 3.109. We show our parts separately.
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(a) We induct on k. Identify D with its image in S™, for convenience. If k = 0, then we are looking at S
minus a point, which is homeomorphic to R™, which is contractible and hence has trivial homology.
We now apply the induction. Let h: I* — D* be a homeomorphism, for convenience. We would like
to use Mayer—Vietoris, so we define

A= S"\h(I*' x [0/1,2]) and  B:=S"™\h(I" ' x[1/2,1]).

Then An B = $™\D" is the desired space,and AU B = S™\h (I*~* x {1/2}) is of lower dimension and
so has vanishing homology by the induction. We now may apply Theorem 3.96, which tells us that

H; (S™\D*) =~ H,(A)® H,(B).

Now, any nontrivial cycle in H; (S™\D*) would imply require nontrivial cycle in H; (A) or H, (B). But
now A and B are just some version of $™\ D* again, so we may continue this subdivision process, and
having a nontrivial cycle requires a nontrivial cycle in H; (S™\h (I*~! x .J)) for smaller and smaller
intervals J, which will eventually converge to a unique point z in all of these intervals J.

We now complete by a compactness argument. Namely, « viewed as a cycle of S™\{x} must be triv-
ial, so we can write a = 08 for some (i + 1)-cycle 8, and because 3 is the union of compact sets,
it will live in some S™\h (I*~! x J) for one of these vary small intervals J (because the union of the
S™\h (I*=1 x J)sis S™\{z}), so the equation oo = 03 must actually hold in one of the homology groups

H; (S™\h (I*=1 x J))s, which is a contradiction.

(b) This is also an induction on k. For k = 0, we note that $™\S° is R minus a point, which is S"~! x R,
which has exactly the correct homology by contracting away the R. To complete the proof, one does
some Mayer-Vietoris argument. Namely, write S™ as the hemispheres D¥ and D%, which union to S
and have intersection some space S” homeomorphic to $*~!, from which Theorem 3.96 produces

The left and right terms vanish by (a), so we get an isomorphism of our homology groups, from which
the result follows by induction. |

Here is a surprising application to algebra.

Theorem 3.112. The rings R and C are the only finite-dimensional commutative division R-algebras.

Proof. Suppose R™ has been given a commutative division ring structure. There isa map f: S"~t — gn—1
by sending x +— x?/|z?|, where 2 refers to the multiplication structure; namely, 2? # 0 when z # 0 because
R™ is a division ring. Further, the product is multilinear and hence extends linearly from a basis, so it is
essentially a linear map R™ x R” — R™ and hence is continuous, so f is a continuous map. We also note that
f(=z) = f(x), sowe in fact achieve a map

f:RP"H - g

We also note that f is injective because R™ is commutative: having 22 = (ay)? implies that (z—ay)(z+ay) =
0 by commutativity, so z = +ay, so z and y are the same point in RP" !,

Now, one can show that an injective continuous map from a compact manifold to a connected manifold
(both of the same dimension) must be surjective and hence a homeomorphism. So f is a homeomorphism
whenn > 2, but RP"~* and S~ fails to be a homeomorphism for n. > 2 because (say) they have different
fundamental groups.

So we are left with the cases n = 1 and n = 2. When n = 1, there is nothing to say because it is an
R-algebra already and hence must be R. Lastly, one must show that a 2-dimensional commutative division
R-algebra must be C, which is just algebra and hence omitted. |

Here is a more topological application.
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Corollary 3.113 (Borsuk—Ulam). Each map g: S™ — R™ must have a point € S™ such that g(z) =
g(—z).

In the case of n = 1, this is some kind of intermediate value theorem. We will prove this in the general case
via cohomology later.
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THEME 4

COHOMOLOGY

4.1 November9

Today we will start talking about cohomology.

Remark 4.1. Let’'s begin with some motivational remarks.
« Historically, de Rham cohomology came first, arising from the generalized Stokes’ theorem.

» Cohomology has a ring structure called the cup product, which will also prove to be a useful in-
variant for us.

« Cohomology is required to discuss Poincaré duality.

« Elements of the cohomology groups H?(G, A) = H?(K(G,1), A) represent group extensions of
G by A.

4.1.1 Cochains and Cohomology

We go ahead and define cohomology now.

Definition 4.2 (cochain complex). A cochain complex (C*, 0°*) is a sequence of maps

(7"71

n An+1 n+2
RGN Cm—l 9_) Cm 0_) Cm+1 (7_) .

where we require 92 = 0. The cohomology groups are

_ i+1
Hi(C) = ker 0

imot
Definition 4.3 (dual chain complex). Fix a chain complex (C, 9) of free abelian groups. Then given an
abelian group A, there is a dual cochain complex (C*, 0*)

-+ —> Homy(Cp—1,G) — Homy(C),, G) —» Homyz(Cpy1,G) — -+ - .

Here, the boundary map Homy(C,,, G) — Homgz(C 41, G) isdefined by f — (fod). By abuse of notation,
we let H"(C,; G) denote the cohomology groups of this dual cochain complex.
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It turns out that one can recover cohomology from homology, which is what we will focus on today.

Example 4.4. Using Z as our dualizing object, the chain complex 0 — Z — 0 dualizesto 0 — Z < 0.

Example 4.5. Use Z as our dualizing object again, and consider the chain complex0 — Z 5 Z — 0,
m

where m # 0. Then the dual cochain complex is simply 0 « Z < Z « 0, which we find by identifying
Homy,(Z, Z) with Z via f — f(1) and then tracking through what the coboundary map is.

Remark 4.6. One can show that a finite chain complex of finitely generated free abelian abelian groups
will break into a direct sum of chain complexes of the form0 — Z — 0and 0 — Z 5 Z — 0 where m is
a nonzero integer. This is an exercise in Hatcher.

4.1.2 Primeronthe Universal Coefficients Theorem

We now investigate how cohomology and homology interact.

Proposition 4.7. Fix a chain complex (C,, d,). Then there is a natural map
H"(C,.; G) > Homy(H,(C,), G).

In fact, this map is surjective if the C, are free abelian groups.

Proof. For brevity, define Z,, := ker 0, to be our cycles for any n, and let B,, = im d,,; 1 to be our boundaries
for any n. Now, a class [¢] € H"(C,; G) is represented by a ¢: C,, — G such that ¢ 0 0 = 0*(p) = 0, which
equivalently means that o vanishes on restriction to B,,. Anyway, the point is that we can take z € Z,, and
simply output ¢(z,,), and we see that this is well-defined up to z, because ¢ vanishes on B,,. Further, this is
well-defined up to ¢ because the image of ¢* in Homy(C),, G) will vanish on z,, because all such morphisms
take the form ¢ o 0, and ¥(0z,,) = 0 (because z, is a cycle).

It remains to show that our map is surjective provided the C, are free abelian groups. The point is that
we have the short exact sequence

0—-2,—-C,—>B,_1—0

by definition of these objects, and because B,,_; < C,,_1 is free, this will actually split, so C,, =~ Z,, ® B,,_1
(albeit non-canonically). Thus, given some map H,,(G) — G, we see that this lifts to a map ¢: Z,, — G,
which can then be extended via the splitting to a full map ¢: C,, — G vanishing on the image of B,,. Namely,
@ has d*(p) = pod =0, so @ represents some class in H*(C,; G). By construction, ¢ will restrict to ¢ on
Z,, so we are in fact hitting the correct map ¢: H,(G) — G. |

Remark 4.8. Given a homomorphism ¢: 71 (X) — Z, we can descend to a map ¢: H;(X) — Z. In light
of this, we can view some [p] € H'(X,Z) producing an "integration map” taking such loops .

Remark 4.9. The end of the proof constructs a splitting ¢ — @ of H"(C.; G) — Homgz(H,(C,), G).
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It remains to compute the kernel of the map in Proposition 4.7. This needs some work; continue in the
context of the proof. We begin by drawing the following short exact sequence of complexes.

Lo

0
0 — Zpy1 — Chya B

| |

3
o

D
(=)

D

N o

3

C By_1 0

! l

3

—

These exact sequences are Z-split currently, so dualizing keeps them Z-split, so we end up with the following
short exact sequence of dual cochain complexes.

17 L]

* * 0 *
0 Z71,+1 C(71,+1 B 0

n

O

0 Z: cx 2 pr

n n—1

I I I

Here, the asterisk denotes dualizing. This produces a long exact sequence in cohomology
e Bl e HNCuG) e By Zhy
Now, let i, : B, — Z, denote the inclusion, and we see that we get
0 «— keri} « H"(Co; G) « cokeriy_; « 0.
The short exact sequence
0— B, — Z, — H,(Ca) = 0

dualizes to tell us that ker i} = Homy(H,(C.; G), G), so it remains to compute whatever cokeri¥*_, is. Well,
as with ker ¥, we see that
0—By_1—Zy_1— Hn—l(co) —0
dualizes to
— B¥*

n—1-

0 — Homg(H,_1(C\.),G) — Z*

n—1

(4.1)

This can be extended to a full free abelian resolution using some homological algebra nonsense, and then
the quotient cokeri?_; is simply an Ext-group.

Remark 4.10. Professor Agol tried to provide a full construction of Ext in like ten minutes. | have not
recorded his attempt.

4.2 November 14

Today we continue with our proof of the Universal Coefficients Theorem.
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4.2.1 Homological Algebra taken from Math 250B

Last class we discussed the following notions, which | am taking from my notes from Math 250B.
Definition 4.11 (resolution). Given an R-module M a resolution of M is a chain complex (P, 0) such that
P=0 for: < 0.

Additionally, we require an augmentation map ¢ : Py — M so that
B P3P B PSM-0

isan exact sequence. We call the above complex the augmented resolution, and we notate itby P — M.

Definition 4.12 (projective resolutions). Fix an R-module M with a resolution (P, 0).
» The resolution is projective if and only if P; is projective for: = 0.
» The resolution is free if any only if P; is free overi = 0.

Note that we have the following coherence check.

Lemma 4.13. Every R-module M has a free resolution and therefore a projective resolution.

Proof. We build the augmented resolution P — M, which we callously call P (so that Py = M). We
produce our injective resolution inductively. To start our resolution (P, d), we start as required with

P - M i=-1,
0 1<-1,

and ¢; = 0fori < —1. We now claim that, for any n € N, we can construct projective modules { P;}_, with
maps 0; : P; — P;_1 such that
0 On— Z %
P, 3P 5t B p A p B

is an exact sequence. This induction will finish the proof.!
Forn = 0, we can find a free module P, which surjects onto M as ¢y : Py — M, for example by taking
Py = @,,cps R- Thus,
PS8 M0
is exact at M because the kernelof 0 : M — 0is all of M, which is precisely the image of dy : Py — M.
For the inductive step, we begin with our exact sequence

Pn%Pn—l Oi_’l 22’Plé’F)O(io’]\44’O
and extend it by P, 1. Indeed, as before, we can find a free module P, ; with a surjection 0,,41 : P41 —
ker d,,. Tacking this on the front, we have the sequence

On . O
Pn+1 (j’l Pn(l’Pn—l 4’1 22’13121>P()ﬁ)>]\/[—>0
It remains to show that this sequence is exact. Well, by the inductive hypothesis, we already have exactness
at everyone in {P,_1, P,_a,..., P, Py, M}. It remains to show exactness at P,,. Well, by construction of
Ont1, We see that
im0p11 = ker 0,

which is exactly the exactness condition at P,. [ |

1 Technically, one might want to use something like Zorn’s lemma to actually go get the projective resolution with infinitely many
terms, but we won't do this here.
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We would now like to discuss uniqueness of these resolutions. To begin, we note that we can extend mor-
phisms of objects to morphisms of the resolutions.

Lemma4.14. Supposethat P := P — M and Q := Q — N are projective resolutions for the R-modules
M and N, respectively. Then an R-module homomorphism ¢ : M — N can be extended to a chain
morphism ¢ : P — Q.

Proof. The point is to use the fact our modules are projective to extend the morphismy¢_; : P.y — Q_1
backwards. In particular, fori < —1, we set ¢; = 0 so that the following diagram commutes for any i < —1.

o7
P —— P,

o =

Qi ? Qi1

Namely, the top and bottom arrows are both 0s, so the diagram commutes for free.

Because we have ¢; for i < —1, it suffices exhibit the ¢; for ¢ = 0 inductively, assuming that we have
;—1; this will finish by muttering something about Zorn's lemma. Namely, we need to induce ¢; to make
the following diagram commute.

oF 553—1
P —— Py —— P

|
©i | J/‘Pi—l J/Wi—2
+

Qi > Qi—1 e Qi—2

i i—1

We would like the fact that P; is projective in order to induce this arrow, but (?,LQ is not a surjection. However,
09 does surject onto im 8% = ker 02, (by exactness), so we would like ¢;_; o 37 to map into this kernel.
Well, we can use the commutativity of the right square to write

531 O Wi-1 O@P = %—20551 Oﬁf =@;_200=0,

soim(p;_1 0 0F) C ker 631 = im é’iQ. Thus, the following diagram is well-defined.

So, because P; is projective, we are promised aninduced morphism ¢; : P; — @Q; such that 8290% = p;_100F,
which is what we wanted. [ ]

Then we get uniqueness of these morphisms up to chain homotopy.

Lemma 4.15. Suppose that P := P — M and Q := Q — N are augmented projective resolutions
for the R-modules M and N, respectively. Further, fix two chain morphisms o, 8 : P — Q such that
a_1 = f_q;i.e., the restrictions of « and 5 to M — N are equal. Then e and 3 are homotopic.

Proof. It sufficestoshowthata— 3 ~ 0, soset ¢ := a— . In particular, we know that p_; = a_; —5_1 =0,
and we would like to extend this to ¢ ~ 0.
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Unsurprisingly, we construct our chain homotopy h to witness ¢ ~ 0 inductively; i.e., we want ¢; =
hi_yoF + 62-Q+1hi for each i. To start off, we set h; = 0 fori < —1 because thisisa morphism h; : P; — Q;.1,
which must be the zero morphism anyways. Observe that i < —1 will then have

p;=0= hi_lail) + éfilhi

because everything involved is 0. For the inductive step, we have i > 0 and are trying to induce the arrow h;
in the following diagram which does not commute.

or
P, —— Py
hi .77 1

7 Pi
K’ + hi—1

Qit1 ? Qi
i+1

As usual, we would like to induce h; using the fact that P; is projective. The main point is to show that
©; — hi—10F mapsintoim 831 — ker 9. Well, because ;1 = hi_20F | + d%h;_, already, we compute

o2 (@i — hi—10]) = 0%0; — 0%h;_y0F
= aiQSOi - (Sﬁz‘—l - hifzai{l) of

= (&Q% - %‘—1553) +hi—20{,0] .

The left term here is zero because ¢ is a chain morphism; the right term is zero by exactness of P. Thus,

im (¢p; — hi—10]) < ker 09 = im 81%1, so the following diagram makes sense.

P
hi .-~
P
7 pi—hi—10;
.

. i A9
Qit1 o o m e
i+1

In particular, the fact that P, is projective grants us a morphism h; such that

aQ

i+1hi = @i — hi—16f7

which is what we wanted. ]

This then gives the uniqueness of the resolutions, in the following sense.

Lemma 4.16. Suppose that P := P — M and ) := Q — M are augmented projective resolutions for
an R-module M. Then there are chain morphismsa : P — @ and 5 : Q — B such that a8 ~ idg and
ﬁoz R idp.

Proof. To start, we use Lemma 4.14 to construct chain morphisms « : P — @ and 8 : Q — P such that
a1 =g =idy.
By symmetry, it suffices to show that a8 ~ idg. Well, a8 : Q@ — @ is a chain morphism such that

(af)—1 = a_1f_1 = idaridps = idpy,

andidg : Q — Q is also a chain morphism such that (idg)_1 = idas. This finishes by Lemma 4.15. [ ]
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Corollary 4.17. Suppose that P := P — M and Q = @ — M are augmented projective resolutions for
an R-module M. Then H"(P;G) = H™(Q;G) for any abelian group G, where this cohomology refers
to the cohomology on the complex given by dualizing via G.

Proof. The above results produce maps a: P — @ and 8: @ — P extendingidy;: M — M, and we know
that a3 and S« are both homotopic to the identity. This will remain true upon dualizing (by functoriality of
dualizing), meaning that the corresponding maps H"(«; G) and H™(8; G) are inverse morphisms because
homotopic maps induce the same map on homology, completing the argument. |

This gives the following definition.

Definition 4.18 (Ext). We define the group Ext*(H, G) as H*(P; G) where P is a projective resolution of
H.

4.2.2 Backto Universal Coefficients

We are now ready to provide the following theorem.

Theorem 4.19 (Universal coefficients). Fix a chain complex (C, 0) of free abelian groups, and let G be an
abelian group. Then there is a (split) short exact sequence

0 — BExt'(H,_1(C),G) - H"(C;G) — Homgz(H,(C),G) — 0.

Proof. Surjectivity on the rightis Proposition 4.7. The computation of the kernel we saw came from wanting
the cokernel from the right of (4.1), which is exactly the needed Ext-group upon noting that (4.1) is in fact
what we get upon dualizing the free resolution B,,_1 — Z,,—1 — H,,—1(C,) — 0. [ |

In light of Theorem 4.19, it will be beneficial for us to be able to compute the Ext-groups.

Lemma 4.20. We have the following.
(a) Ext'(H® H',G) = Ext'(H,G) ® Ext'(H', G).
(b) If H is projective, then Ext’(H,G) = 0 foralli > 0.
(c) We have Ext'(Z/nZ,G) = G/nG and 0 for higher indices.
(d) If H is finitely generated, then Ext' (H,Z) = Hy,, is the torsion subgroup of H.

Proof. Here we go.

a) Taking a projective resolution for H, and a projective resolution for H’, their direct sum produces a

(a) Taki jecti lution for H, and jecti lution for H’, their di d
projective resolution for H @ H’, so dualizing preserves the direct sum, and taking homology will still
preserve this direct sum.

(b) Note that H has a projective resolution 0 - H — H — 0, which we can then dualize and compute
that all the images of the boundary morphisms are zero, so the cohomology is zero.

(c) Take the free resolution
027257 —7Z/nZ—0,

which dualizes to
0 — Hom(Z/nZ,G) — G 5 G,

so Ext'(Z/nZ,G) = G/nG. At higher indices, the resolution is simply zero everywhere, so our coho-
mology vanishes.
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(d) This follows from combining the previous parts plus the fact that any finitely generated abelian group
H is the direct sum of Zs and Z/nZs. [ |

Corollary 4.21. Suppose (C, 0) is a chain complex of free abelian groups. If H,,(C) and H,,_1(C) are
finitely generated, then
Hn(ca Z) = Hn (C)/Hn(c)tor @ Hn—l(c)tor-

Proof. Apply Theorem 4.19, nothing that the sequence splits and that Ext!(H,,_1(C),Z) is H,_1(C)tor by
Lemma 4.20, and H,,(C)/H,(C)tor = Homz(H,(C),G). ]
We close our discussion by noting that Theorem 4.19 is natural.

Proposition 4.22. Fix a morphism a: (C, ) — (C’, ") of chain complexes of free abelian groups, and
let G be an abelian group. Then there is a morphism of short exact sequences as follows.

0 —— Ext'(H,_1(C),G) —— H"(C,G) —— Homgz(H,(C),G) —— 0

] | ]

0 —— Ext'(H,_,(C"),G) —— H™(C'",G) —— Homgz(H,(C"),G) —— 0

Proof. Everything in sight is functorial, so all the maps are at least well-defined. The main point is that the
right square commutes by tracking through the construction of the horizontal maps: indeed, the map simply
sends a class in H™(C, G) to its evaluation on a cycle. This then induces a map on the kernels, which is the
left-hand map above. |

4.2.3 Cohomology of Spaces

We now apply the abstract machinery we built to topological spaces X. In particular, we now build sin-
gular cohomology. Let (C,,(X), ) denote the singular chain complex, which then dualizes to a complex
(C™(X),d), where C™"(X, G) := Homz(C,(X), G), and the boundary d sends ¢ — (¢ o00). Itis worth our time
to describe this a little more explicitly. Given a singular simplex o: A"*! — X and some p € C"(X, G), we

can compute that
n+1

(60)(0) = 9(00) = D (=1 ([v0s- -, Bis -+, vns1]),s

i=0

where we are notating A" ! = [vg,. .., v 1]
We now list some properties of our cohomology groups.

« Negating indices as desired, one sees that short exact sequences of cochain complexes induce long
exact sequences of cohomology; the main pointis that a cochain complex s essentially a chain complex
where one negates the indices, so the arguments of Proposition 3.38 apply.

» Relative cohomology: given a pair (X, A), one has the short exact sequence of chain complexes
0— Co(A) - Co(X) - Co(X,A) - 0,

and because these are chains of free abelian groups, this produces a short exact sequence of cochain
complexes

0> Co(X,4;,G) > Co(X;G) > Co(4;G) - 0,
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and the cohomology of C. (X, A; G) will be denoted H™ (X, A; G); one can see that the map of Proposi-
tion 4.7 will have H™ (X, A; G) output to H, (X, A). Anyway, this thus fits into the long exact sequence

. — HY(X,A;G) —— H"(X;G) —— H"(A;G)

H" (X, A;G) —— H"H(X;G) —— H"(X;G) — -
as before.

« The boundary maps of our long exact sequences commute. Namely, the morphisms of Proposition 4.7
fit into the following commuting square.

H"(A;G) —— H"™ (X, A;G)

| l

Homyz(H,(A),G) —— Homgz(H,+1(X, A),G)

To prove this, one should track through all the boundary morphisms, which | cannot be bothered to
do.

Functoriality: as usual, we see that a continuous map f: X — Y induces a map C,(f): Cn(X) —
C,,(Y), which then induces a map C"(f): C"(Y;G) — C™(X; G), which then will induce a morphism
on homology H"(f): H"(Y;G) — H"(X;G). This is essentially the composite of many functorial
constructions, so the total thing is functorial.

Homotopy invariance: exactly as in the proof of homology, homotopic maps f,g: (X,4) — (Y, B)
induce isomorphisms H"(Y, B;G) — H"(X, A; G). The proof is entirely dual, the main point being
that one can take the chain homotopy produced in that proof and then take its dual to produce the
needed chain homotopy here.

Excision: there is an excision statement using relative cohomology exactly given as one would expect.
Its proof is dual to the case of homology.

+ Axioms: one can axiomatize cohomology theories as one would expect. Here are some axioms for
CW-complexes. These are functors h"™ satisfying the following properties.

- Homotopic maps produce the same map on cohomology.

- Excision: there is a long exact sequence for CW-pairs (X, A) given by
oo WYX JA) = BM(X) > hMY(A) > RN(XJA) > -
- Wedge sums: given X = \/_ X, with embeddings i, : X, — X, the induced map

~

Ha ’Nln(ia) T
hn(X) ——— H hn(Xa)

is an isomorphism.
+ Simplicial cohomology: A-complexes have H} (X, A; G) defined as the cohomology given by dualiz-
ing the chain complex C4 (X, A). One can show, as in the homology situation, that H2 (X, 4;G) =~
H™(X, A; G).

84



4.3. NOVEMBER 16 215A: ALGEBRAIC TOPOLOGY

« Cellular cohomology: as in the situation with homology, one has the following complex from a CW-
complex X, where the diagonal maps are produced by repeatedly applying excision.

H* (X*,G)

T

Hk (Xk,X]H—l;G) Hk'+1 (X]H—l,Xk;G) Hk+1 (X]H—I,Xk;G)

\ /

Hk+1 (Xk)

(-/:k‘+1

Then the cohomology of this cochain complex is called cellular cohomology and agrees with the usual
cohomology. Alternating, one can just appeal to the case with homology: note that Theorem 4.19 tells
us that

H* (X", X"\ G) =~ Homg, (H. (X", X"") ,G)

because Hj, (X™, X"~ !) is always Z-free and thus has vanishing Ext. So the cellular homology com-
plex simply dualizes.

4.3 November 16

Today we will discuss the cup product.

4.3.1 The Cup Product

In the discussion that follows, we choose coefficients in a ring R, which we will assume is commutative and
has unity and so on.

Definition 4.23. Fix a topological space X and a ring R. Given p € C*(X;R) and ¢ € C*(X;R), we
define the cup product as the cochain (¢ U ) € C*+¢(X; R)

(e U ) () = 2([w,....0 )Y (Ol [vr,....00])

whereo: [vg,...,v,] = X (withn = k + £) is a singular simplex.

Extending linearly, we see that this defines a map
C*"(X;R) ®r C*(X; R) — C*"(X).

For example, we would like this to agree with the boundary map.

Lemma 4.24. Fix a topological space X and aring R. Given ¢ € C*(X; R) and ¢ € C*(X; R), we have

dpu ) =dp U+ (=1)Fp U dy,

where ¢ is the boundary map.

Proof. We check on a single singular simplex o: [vg,...,v,] — X, wheren = k + £. Indeed, we directly
compute

(a(p Y ’(/J)(U) = a(p U|[?10,<~~7Uk+1])1/}(0'|[?1k+17---7’0n+1)
k+1

(71)7;SD(J|[’UU,A..,ﬁi,...,Uk_;_l])¢(U|[’Uk+1,.‘.,’un+1)7
0

+

%
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and
(—1)k(%’ o 57@(0) = (_1)k90(0|[vo,...,vk])aw(0|[vk,...,anrl])
n+1
= i(—l)i¢(0|[vo ..... oDV O o Bireomin])s
and

n+l
QDUQZJ Z SDUQ;Z) U| [0, yDise- ,v,L+1])
N
2,1

J|[Uo7 Uiy ,Uk+1]) (J|['Uk+la-~~ﬂ)n+1])

[}

1=

n+1
+ Z (71)1@(O’|[UU,...,Uk])w(U‘[’Uk_;_l,...,@i,...,anrl])'
i=k+1
Collecting the terms completes the proof; notably, the last term of the (dp U ¢) sum cancels with the first
term of the (—1)*(¢ U 0v) sum, making the total number of terms agree. [ |

Corollary 4.25. Fix a topological space X and a ring R. Given ¢ € C*(X; R) and ¢y € C*(X; R), if ¢ and
1) are cocycles, then sois ¢ U .

Proof. Note that dp = 0and d¢ = 0, so the result follows from Lemma 4.24. |

Corollary 4.26. Fix a topological space X and aring R. Given ¢ € C*(X; R)and v € C*(X; R), if p or 1)
is a coboundary and the other is a cocycle, then sois ¢ U 9.

Proof. For example, if ¢ is a coboundary and v is a cocycle, then write ¢ = dipg, so

puUd=0dpyuth=0d(pouty) —(—1)Fp U aw = 0(po U ).
O

The other argument is similar. ]
The point now is that we have induced a multiplication structure
u: H*(X;R)®@p H (X;R) — H***(X; R)

because we send cocycles to cocycles and coboundaries to coboundaries; a direct computation shows that u
is associative and distributes over addition, so we are in fact getting a graded ring structure, perhaps without
unity and perhaps not commutative. Let’s see some examples.

Example 4.27. Consider the genus-2 surface M, which can be visualized as an octagon with every other
edge identified in the opposite orientation. Now, there is a map H'(M) x H'(M) — H?*(M). Re-
call that we computed H; (M) is always free abelian, with ranks 1, 4, and 1 in degrees 0, 1, and 2. Then
Theorem 4.19 tells us that we may identify H(M ) with Homgz,(H; (M), Z); for example, distinguish gen-
erators aq, ag, by, and by for Hy (M), and then we let the corresponding indicators (i.e., the dual basis)
be a4, as, 81, and Bs. This produces a cocycle “for free” by Theorem 4.19, but one can also just check
it directly. For example, up to labeling the edges appropriately, [a;] U [81] will be nonzero on a single
2-simplex by a direct computation; a dual computation (with opposing signs) explains that [81] U [a1]
is exactly the negative of this.

Cup products also come with a naturality.
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Proposition 4.28. Fix a continuous map f: X — Y. Then the maps H*(f) induce a homomorphism of
graded rings
H*(f): H*(Y;R) - H*(X; R).

Proof. This is a direct computation. Of course H*(f) is already additive, so it only remains to show that it
is multiplicative. As usual, we fix some ¢ € C*(X; R) and v € C*(Y’; R) along with some singular simplex
o: A" — X wheren =k + £. Then

Hy(f)(pui)(o) =(pui)(foo)
= 0(f vy DU © Olfvg,.0n])
= H,(£)(#) (@ 1vo,....on) Hn(F) @l o, v01)
= H,(f)(p) v Hu(f)(9),

as desired. [ |

Remark 4.29. Let's take a moment to provide a geometric interpretation of the cup product if two 1-
cocycles o, 3 € HY(X;Z). By Theorem 4.19, we are computing the product of two elements of

H(X;7Z) = Homz(H,(X),Z) = Hom(m,(X), Z),

where in the last equality we have used the fact that 7 (X )2 = H,(X). So we may choose mapsa: X —
Standb: X — S such that the induced maps 71 (X) — 71(Z) and 71 (X) — 71(Z) are simply a and §3.
Now, taking the product of a x b produces a map X — S! x S* for which 7 (a x b) projects down to «
and 3. From here, an explicit computation (using the above result) can show « u 8 is simply given by
mi(ax b)(zuy) wherez,y € H? (S x S') are the generators by the edges of the corresponding square
diagram.

Remark 4.30. We take a moment to note that there are relative cup products
H*(X,A;R) x HY(X,B;R) - H***(X,A U B; R).

The point is that ¢ vanishing on A and 1 vanishing on B will have ¢ U ¥ vanishing on their union by
Lemma 4.24. From here, we note that we then get another graded ring structure on H* (X, 4; R).

Example 4.31. We can compute that H* (RP", F;) is isomorphic to Fo[z]/ (2" 1) where x has degree 1.
Similarly, we can compute that H* (RP*,F3) is isomorphic to Fo[x] where = has degree 1.

Proof. We will work on RP" only. The point is that RP" can be given a triangulation by viewing it as S™/~
where ~ is the antipodal equivalence relation. Now, taking joins via #, we note that S™ = S% ... S™ which
provides S™ with a simplicial structure. Explicitly, realizing S° on an axis of R"*!, we see that we can view
S™ as sitting inside R™*! as connecting the dots of the form (0,..., +1,...,0); then modding out by ~, we
receive a simplicial structure on RP" with n + 1 vertices.

We now acknowledge that Theorem 4.19 tells us that H*(RP",Fy) = F, for 0 < k < n, so we are at least
correct on the level of abelian groups. It remains to compute the cup product, where we must show that a
generator of H*(RP", F,) cupped with a generator of H*(RP", Fy) produces a generator of H**¢(RP", Fy).
One must make some choice of generator, so we choose a generator of H!(RP", F5) by being 1 on each edge
meeting the plane z¢ + - -+ + x,, = 0 and 0 elsewhere. Then we compute the cup product with itself a few
times to conclude. [ |
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Remark 4.32. One can similarly compute for CP" and CP%; the cohomology turns out to be the same
“ring” but with the generator = in degree 2 so that the ring is in fact commutative.

4.4 November28

Today we will continue talking about the cup product. Homework has been posted.

4.4.1 More on Projective Space

Let's make a few remarks on projective space. Last time we computed the cohomology ring of H* (RP",F5)
fairly explicitly as Fo[a]/ (a™T!), and by taking the direct limit with n — o0, we get H* (RP*,F5) = Fs[a].
We note that we can recover H* (RP®,Z) in the following way. The map Z — F, induces a map on cellular
cohomology chain complexes as follows.

2

By computing the cohomology, we see that the ring map H* (RP*,Z) — H* (RP*,F3) is an isomorphism
in positive degree, from which we can pull back to get

Z[a]
(20)

where o has degree 2. There is a similar computation for CP™.

H* (RP®,Z) ~

4.4.2 Moreon Cup Products

Let's go ahead and prove that the cup product is graded commutative.

Proposition 4.33. Fix pairs (X, A) and (X, B) with classes o € H*(X, A; R) and 8 € H*(X, A; R). Then

auf==D)¥Bua).

Remark 4.34. Roughly speaking, one expects this anticommutativity from differential geometry and in
particular the anticommutativity of the wedge product for differential forms.

Proof. We take A = B = &; the general case can be derived from this. The main point is that trying to com-

pute S U « wants us to reverse [vg, . .., v,] t0 [vy, ..., vo]. Thus, given a singular n-simplexo: [vg,...,v,] —
X, we will define : [vp,...,v,] — X by extending 7(v;) := v, linearly. One can then extend ¢ — & lin-
early to all n-cycles. However, we kind of are introducing a sign here because (vg, ..., v,) — (vn,...,v9)isa

permutation of sign e,, := (—1)"("*1/2 by explicitly computing the number of needed transpositions, so we
will actually define p: Co(X) — C.(X) by extending

plo) =eno

linearly to all n-cycles. By a short computation with boundaries, we see that p is actually a chain map, and
we note that p squares to the identity. In fact, one can write down an explicit chain homotopy from p to
the identity; alternatively, one can use the Eilenberg—Steenrod axioms in order to show that “switching the
vertices” of all our n-simplices is producing a naturally isomorphic cohomology theory.
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From here, we can now compute

(0*99 Y P*w)(a) = 90(6/60-|[vk:,...,vo])¢(€éa|[vn ..... vk])
P*(SO Y ¢)(U) = €k+Zw(0—|[Un,...,vk])(p(0—|[Uk,“.,vo])v

where n = k + {. Passing to cohomology will make p* be the identity as discussed above, so the above
equalities imply ex[¢] U ¢[¥] = ex+e([0] U [¢]), which is the result upon counting our signs. [ |
Remark 4.35. For a surface ¥, we note that the cup product induces an antisymmetric form
H'(Z;Q)® H'(%Q) — H(%;Q) = Q,

which shows up in differential geometry.

4.4.3 The Kiinneth Formula

Given two graded rings R and S, we can form a graded ring R ® S in the usual way. However, due to our
graded anticommutativity, we will require that our multiplication introduce the sign

(T’@S)(T’I@S/) _ (71)(degs)(degr’)(rr1®SS/)

to account for switching s and 7’.

Example 4.36. Take the graded polynomial ring Ag[a, ..., a,] where the a; have degree 2i + 1. Note
that o? = 0 for each «;. One sees that

H* (S™7Z) = Aglan]
by an explicit computation.
With this in mind, we define the cross product.

Definition 4.37 (cross product). Fix spaces X and Y. Then we define the cross product x: H*(X; R) ®
H*(Y;R) —> H*(X x Y; R) by extending

(a x B) = px(a) ®py(B)
R-linearly to the entire tensor product.

Remark4.38. One can recover the cup product from the cross product by using the diagonal embedding
A: X — X x X. Then the composite

H*(X;R)® H*(X;R) % H*(X x X;R) A—> H*(X;R)
is equal to the cup product. Indeed, the main point is that A composed with either projection is simply

the identity.

Remark 4.39. In fact one can directly define a cross product by defining a chain map
Co(X)®Ce(Y) > Co(X xY)

by taking two singular simplices ox : A* — X and oy : A® - Y by producingamap A* x A - X x Y,
essentially by viewing everything as a cube.
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The construction of the graded anticommutativity above assures that x is in fact a ring homomorphism.
Indeed, we compute

(ax B)u (e’ up)=px(a)upy(B) vpx(e)upy(F)
= (—1)\s)E N (a) U px(a') U py(8) U pv(8)
= (-1) dega)(degﬁ)px(aua’)upy(ﬂuﬁ’)
= (-1 )(dega )(degﬂ)(a U a’) x (B U 5/)_

In simple cases, the cross product map defines an isomorphism.

Theorem 4.40. Fix CW-complexes X and Y. If H(Y; R) is a finitely generated free R-module for all ¢,
then
x: H(X;R)Q H*(Y;R) > H*(X xY; R)

is an isomorphism.

Proof. We use the Eilenberg—Steenrod axioms. Define the cohomology theories
WX, A) = @ HY(X,AR)®r H(Y;R)
i+j=n

E(X,A) = H"(X x Y, A x Y;R).

Note that there is a natural transformation p: h™ — k™ given by the cross product. Now, one can check
that 4™ and k™ are both cohomology theories, and p,, is an isomorphism on the point, so one can see purely
formally that p,, will be an isomorphism on all CW pairs (X, A).

Let's give a few of the details here.

« We note that i is natural in the topological spaces automatically, and it is also natural in the excision
long exact sequence by an explicit computation of the boundary maps.

+ Being an isomorphism on the point extends to all CW complexes approximately as follows: one gets
contractible spaces immediately, and then the wedge sum axiom allows us to get the skeleton to any
finite-dimensional CW-complex. Then cellular homology allows us to get an isomorphism for any
finite-dimensional CW-complex. One then gets the general case by taking some kind of limit.

» The axioms for h* and k* are checked rather immediately from the axioms for H*. |

Let's give a quick application to division rings.

Proposition 4.41. If D is a finite-dimensional division R-algebra, then dimg K is a power of 2.

Proof. Say D = R", and we want to show that n is a power of 2; take n > 2. Now, defineg: S"~! x §»~1 —
gn— 1 by

|z -yl

where the point is that = - y is always nonzero when = and y are nonzero because D is a division algebra.
Now, having (—z)y = —(zy) = z(—y) implies that g(—z,y) = —g(z,y) = g(z, —y), so we descend to a map

g(z,y) =

g: RP"! x RP"! — RP" 1.
This then produces a ring homomorphism
H* (RP" ' Fy) —» H* (RP" ', Fo) @ H* (RP",Fy).

Let the generators (in degree 1) of the above three rings be v, «, and 3, respectively. A topological computa-
tion reveals that v goes to a + 3, but then having 4" = 0 will force (a + 8)™ to vanish, upon which expanding
by the binomial theorem will enforce n to be a power of 2. |
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4,5 November 30

Today we're going to discuss orientations.

4.5.1 Primeron Poincaré Duality

Poincaré duality is a relationship between the homology and cohomology of a manifold. Historically, what
happened is that we realized that Betti numbers were symmetric, which were then realized via homology ad
cohomology, from which duality was seen. For example, one expects to have H,,(M; F) =~ H"(M;F) ~ F
for any field F (where M is a closed orientable n-manifold). From here, one also expects to have a perfect

pairing _ _
H'(M;F)x H" *(M;F) - H"(M; F) = F,

which is a nice statement of Poincaré duality. This is in some sense our end goal.
Instead of showing this directly, we will produce a non-degenerate map

H'(X;R) — Hompg(H;(X),R),

which we will call the "cap product.” In some sense, we are trying to take an i-cocycle and a j-cycle to
produce an (i — j)-cocycle.

4.5.2 Manifolds

Before we begin any rigorous discussion of Poincaré duality, we must define manifolds and provide some
discussion of their homology.

Definition 4.42 (manifold). Fix a nonnegative integer n. Then an n-manifold is a second-countable
Hausdorff topological space which is locally homeomorphic to R™. (Here, locally homeomorphic to R™
means that any point has an open neighborhood isomorphic to R™.)

Let’s put the local homeomorphic to good use.

Notation 4.43. Fix an n-manifold M. For a subset A € M, we define H;(M|A) to mean HIi(M, M\A).

Lemma 4.44. Fix an n-manifold M. For any z € M, we have

R ifi=n,

Hi(Miz; B) = {0 else

Proof. Find an open neighborhood U = M around x homeomorphic to R™. Then excision followed by the
long exact sequence in homology assures us that

Hy(M|a; R) =~ H'(Ula; R) = H,_1 (R"\{0}; R) =~ H'(S" ' x R;R) =~ H' (S" "} R),

from which the result follows. [ ]

Remark 4.45. The same argument will show that H;(M|A) is the same for any open ball A © M iso-
morphic to an open ball in a neighborhood of M isomorphic to R™.

We would now like to add in compactness.

Definition 4.46 (closed). An n-manifold M is closed if and only if it is compact.

Note that we are not talking about manifolds with boundary anywhere in our discussion.
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4.5.3 Orientations of Manifolds

With Lemma 4.44 in mind, we take the following definition.

Definition 4.47 (orientation). Fix an n-manifold M. A local orientation at z € M is a choice of generator
wy € H™(M|x). To make these orientations cohere with each other, we define an orientation of M to
be a choice of local orientations x — pu, for each x € X which is locally constant in the following sense:
any point in M has an open neighborhood U € M homeomorphic to R and open neighborhood ball
B < U homeomorphic to a ball of finite radius with a choice of 3 € H,, (M|B) such that ., is the image
of ug in H,,(M|y) foreachy € B.

Lastly, M is called orientable if and only if an orientation on M exists.

We will write M for the collection of local orientations 1z as © € M varies. Note that we have a 2-to-1 map
M — M because every z € M has two choices for generator p,, € H,,(M|z). We can also give Ma topology
to make this map into a covering space: on any U < M isomorphic to M, there are exactly two ways to
choose orientations on U, so the pre-image up in M may as well be two disjoint copies of U. Asserting
that we have defined a local homeomorphism on these basic open subsets provides us with a topology on

~

M.

Remark 4.48. From here, one can see that a connected n-manifold M is orientable if and only if M has
two connected components. If we did have an orientation, then M separates into the two choices of
orientations; conversely, if M separates into two components, then each component yields an orienta-
tion.

Remark 4.49. There is a generalization of M up to Mg by choosing generators of u, € H,,(M|z; R) for
each x € M, and we can again produce a covering space Mr — M via the projection p, — x.

Example 4.50. The Mébius strip fails to be orientable: if we did have orientation, then we could go
“around” the strip (keeping the same generator locally) to flip the given orientation, which is a con-
tradiction.

Example 4.51. One can show that RP" is orientable only in odd dimensions. For example, RP! is basi-
cally a circle, which is orientable.

We have been taking Z coefficients everywhere in the previous discussion, but we might as well take R
coefficients instead.

Definition 4.52 (R-orientation). Fix an n-manifold M. Then an R-orientation on M is a choice of gen-
erators p, € H,(M|z; R) for each x € M such that the map « — p, is locally constant.

Remark 4.53. One can check that every manifold is Fo-orientable. This essentially follows from the
above discussion and a careful tracking through of the definitions.

Here is the main result on R-orientability.
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Theorem 4.54. Fix a closed connected n-manifold.
(@) If M is R-orientable, then the map H,,(M; R) — H, (M|x; R) is an isomorphism for allx € M.

(b) If M fails to be R-orientable, then the map H,,(M; R) — H, (M|z; R) is injective with image ex-
actly {r € R : 2r = 0}. In particular, we recall that H,,(M|z; R) = R here.

(c) We have H;(M; R) = 0fori > n (even if M is not closed).

Remark 4.55. Itis true that M has a CW-structure with cells of dimension at most n, which would prove
(c) easily. However, showing this is somewhat difficult; for example, one must get around the fact that
not every manifold has a simplicial structure.

Remark 4.56. Parts (a) and (b) show that one can detect if M is orientable via H,,(M;Z). However,
H, (M;Fs5) = Fy always.

To prove Theorem 4.54, we will instead prove the following more technical lemma, from which the theorem
will follow quickly. Approximately, speaking, the lemma is a version of the statement where we allow non-
compact manifolds.

Lemma 4.57. Fix an n-manifold M, and let A € M be a compact subspace.

(a) Given a locally constant section  — «, of the projection Mr — M, there exists a unique class
ag € H,(M|A; R) whose image in M, (M|z; R) is simply a,.

(b) H;(M|A;R) =0fori>n.

Proof. We proceed in steps. For brevity, we abbreviate the ring R everywhere.

1. We remark that an induction via Mayer—Vietoris implies that if the statement is true for A and B and
A n B, then we also get the statement for A U B. For example, this allows us to divide up the compact
set A into pieces contained in open balls locally homeomorphic to R", so we may assume that A is
contained in such an open ball.

2. We show the result for R” and A = B where B is a compact ball. Here, we know that H,, (R"|B) —
H"™(R™|z) is always an isomorphism for any z € B, which produces uniqueness of the needed class in
(a). For existence, at any point y € B, choose some generator, but then there is an open neighborhood
U of y so that we can lift p1,, to some uy € H,,(M|U) via excision. Then for any two points z,y € M, a
path connecting them will enforce that the orientations cohere into a single class up in H"*(M|B).

3. We show the result for R™ and A a general compact set. To show that the class exists, just use a very
large simplex containing A and then reduce to the previous case. For uniqueness, take a difference
and apply excision and the Mayer—Vietoris reduction cleverly in order to produce the result. |

And now here is the proof of the theorem from the lemma.

Proof of Theorem 4.54. Take A = M; part (c) is immediate. Note that the set of sections Mr — M is an
R-module; call this R-module I'g(M). Then there is a homomorphism H,,(M; R) — I'r(M) sending a class
a to the corresponding section x — «,; part (a) of the lemma tells us that this map is an isomorphism, from
which parts (a) and (b) of the theorem follow quickly from an understanding of the covering map Mz —
M. [ ]

4.6 December?7

Today we will discuss Poincaré duality.
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4.6.1 Statement of Poincaré Duality
Theorem 4.54 allows us to make the following definition.
Definition 4.58 (fundamental class). Fix a closed R-orientable n-manifold. Then there is a class [M] €

H,(M;R), called the fundamental R-class, such that the image of [M] under the maps H,,(M; R) —
H, (M|z; R) goes to a generator.

Remark 4.59. If the manifold M is a A-complex, then [M] can simply be defined as the sum of the n-
simplices: each point € M will live in (roughly speaking) one of these n-simplices, so the image of
[M] will indeed go to a generator because the only n-simplex in [M] which fails to vanish is the one
containing x.

Remark4.60. Further, suppose that M hasatriangulation, making it piecewise linear. Then one can give
M adual cell structure, from which Poincaré duality can be seen. Namely, an i-cycle essentially assigns
a number to each cell, but then this will simply define an (n — i)-cocycle via the dual cell structure.

The above remark can be seen as a concrete construction of the “cap product.”

Definition 4.61 (cap product). Fix a topological space X. We define the cap product n: C(X; R) x
C*(X; R) — Cr—o(X; R) for k > £ by extending the relation

(0 0 9)(0) = @(l[wg,...01) O [ve,.. 08]

bilinearly.

One can check that d(o n ) = (=1)*(do N — 0 N dy) by an explicit computation, so the cap product of a
cycle and a cocycle will be a cycle. The main point is that n descends to

Hy(X;R) x HY(X;R) — Hy_¢(X; R).

A direct computation shows that the following diagram commutes for any continuous map f: X — Y.

Hy(X;R) x HYX;R) —"— Hp (X;R)

Hk(f)J{ THe(f) J{Hk—z(f)

Hy(Y;R) x HYY;R) —"— Hj_(Y;R)
So our cap product is natural. We are now able to state Poincaré duality.

Theorem 4.62 (Poincaré duality). Fix a closed R-orientable n-manifold with fundamental class [M] €
H,,(M; R). Then there is an isomorphism D: H*(M; R) — H,_(M; R) given by [M] n —.

Remark 4.63. If R is a field, then we see that H"(M; R) = Ho(M;R) = R when M is connected. As
such, roughly speaking, Poincaré duality says that we have a non-degenerate pairing

H*(M;R) x H"""(M;R) - H"(M;R) = R.

Theorem 4.62 is proven by going up to a stronger statement for non-compact manifolds; this will allow us
to prove the statement by induction. This will require a new cohomology theory.
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4.6.2 Cohomology with Supports

Here is our new cohomology theory.

Definition 4.64. Fix a topological space X. Then we define C!(X; G) to be the subgroup of C*(X; G) of
cochains : C;(X) — G such that there is a compact K with ¢|¢, x\x) = 0. In other words,

CiX;G) = lim C*(X,X\K;G).
KcX

Now, given an R-oriented n-manifold M, we note that we have a unique [Mk] € H,(M|K; R) for each
compact K, and so we can let ¢ € C*(M; R) be a cochain vanishing on Ci(M\K; R). Then we see that
[Mk] n ¢ and thus gives a homomorphism

Dy: H¥(M; R) — H,_1(M; R)

by taking the colimit of the maps H*(M|K; R) — H,,_(M|K; R) over compacts K. (One has to check that
the cup product coheres with this restriction of compacts defining the direct limit, but this is no issue.) This
setting now generalizes our earlier Theorem 4.62 into the following theorem.

Theorem 4.65. Fix an R-orientable n-manifold M, the map
Dyt HE(M;R) — H,,_1,(M; R)
given as above is an isomorphism.

We prove the above theorem by induction; note that it generalizes Theorem 4.62 by taking M to be compact,
where the point is that M being compact forces cohomology with compact support to simply agree with
regular cohomology.

Remark 4.66. There are various inductive approaches which “almost” work provided we had some ex-
tra structure. For example, if M is homeomorphic to a A-complex, then one can build the preceding
theorem by gluing together a discussion in the compact case, proving the needed isomorphism. For

example, this approach will work for M = R™ as well as any surface.

We now sketch Theorem 4.65. We will use the following technical result.

Lemma4.67. Suppose that an orientable n-manifold M is the union of two open orientable n-manifolds
U and V. Then the following diagram (with rows given by Mayer—Vietoris) commutes.

HYUANV) —— HYU)® H¥Y(V) ——— HF(M) ——— HY U~ V)

DUAVJ/ DU@*DVJ/ J/Dl\l lDUmv

Hn—k(U N V) I Hn—k(U)®Hn—k(V) B Hn—k:(M) B Hn—k—l(Um V)

One can take coefficients in any ring.

Proof. One does a long and tedious computation. | cannot be bothered to write out the details today. Es-
sentially, one checks the result by replacing H. with an explicit compact K < U and L < V and then pass to
the colimit to produce the result. |

From here, one proves Theorem 4.65 by induction: with M = U n V, induction will allow us to assume that
Dy, Dy, and Dy .y are allisomorphisms, from which it follows that D), is an isomorphism. It is not totally
clear what we induct on or what our base case is, which is the remaining content of the proof.
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attach, 11 join, 11

based topological space, 20 K(G,1),35

cap product, 94 local degree, 61

cellular homology, 63 locally path-connected, 29
chain, 41 )

chain complex, 47 manifold, 91

closed, 91

cochain complex, 76 orientation, 92

composition, 14
contractible, 8
covering space, 17
cross product, 89 quotient, 10
CW complex, 9

product, 10
projective resolutions, 79

R-orientable, 92

deck transformation, 31 reduced homology, 45
deformation retract, 6 relative homology, 49
A-complex, 36, 40 resolution, 79

dual chain complex, 76
semilocally simply-connected, 30
Euler characteristic, 65 simplex, 36, 40
Ext, 82 simplicial homology, 42
singular homology, 43
singular simplex, 43
smash product, 11
subcomplex, 10

free product, 21
fundamental class, 94
fundamental group, 13

fundamental groupoid, 15 subgraph, 34
suspension, 10
graph, 34
tree, 34
homology group, 47
homotopy, 6 univesal cover, 30
homotopy equivalence, 7
homotopy extension property, 12 wedge product, 11
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