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THEME 1
COMPACTNESS

That something so small could be so beautiful.

—Anthony Doerr, [Doel4]

1.1 August24

It begins.

1.1.1 Logistics

Here are some logistical notes.

ThereisabCourses.

We will use [Mar02].

Professor Montalban and Scanlon will teach the course jointly.

There will be a midterm (in-class on the 19th of October) and final exam (take-home over three days).
There are suggested but technically ungraded exercises. They are helpful.

We will assume basic first-order logic, and examples will be taken from a few other areas of mathe-
matics.

This is a graduate class. It will be pretty fast.

We are studying model theory, which is the study of models and theories. Our main two theorems are the
Compactness theorems and results on admitting types. We will use these results again and again.

1.1.2 Languages and Structures

Let's review chapter 1 of [Mar02]. Here is a language.
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Definition 1.1 (language). A language L consists of the sets 7, R, and C of symbols. Here, F are func-
tions, R are relations, and C are constants. Notably, there is an arity functionn: (F UR) — N.

Concretely, fix a language £ = (F,R,C). If f € Fand n(f) = 3, then we say that f has arity three; the
analogous statement holds for relations.

We will often abbreviate a language to just a long tuple. For example, the notation (N, 0, 1, +, <) has the
domain N and constants 0 and 1 and function + and relation <, even though the notation has not made it
obvious what any of these things are.

So far we only have the prototype of data. Here is the data.
Definition 1.2 (structure). Fix a language £. Then an £-structure M consists of the following data.

» Domain: a nonempty set M.

« Functions: for each f € F, thereis a function fM: M) — M.

« Relations: for each R € R, there is a relation RM C M™("),

« Constants: for each ¢ € C, there is a constant ¢™ € M.

The various (—)™ data are called interpretations.

Example 1.3. Consider the language £ with the constants 0 and 1 and operations + and x. Then Nis an
L-structure, in the obvious way.

In general, algebra provides many examples of languages.
We would like to relate our structures.

Definition 1.4 (homomorphism, embedding, isomorphism). Fix a language £. An £-homomorphism
n: M — N of L-structures M and N is a one-to-one map n: M — N preserving the interpretations,
as follows.

« Functions: for each f € F, we have o fM = fN o p(f),
« Relations: for each R € R, if m € RM, then (") (m) € RV
« Constants: for each ¢ € C, we have ) (M) = V.

Ifn: M — N is one-to-one and the relations condition is an equivalence, then 7 is an £L-embedding. If
n: M — N is the identity M C N, then we say that M is an £-substructure. In addition, if 5 is onto,
then nis an L-isomorphism.

Explicitly, being a substructure means that the functions and relations are restricted appropriately, and the
constants remain the same.

Example 1.5. In the language of groups, subgroups make substructures. A similar sentence holds for
other algebraic structures.

1.1.3 Formulae

Thus far we have described a vocabulary: the language provides the data for us to manipulate. We now
discuss how to “speak” in this language.
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Definition 1.6 (term). Let £ be a language. The set of L-terms is the smallest set T satisfying the fol-
lowing.

« Constants: foreachc e C,wehavece T.
« Variables: z; € T for each i € N. Notably, we have only countably many variables.
« Functions:if t1,...,t, € T wheren = n(f) forsome f € F, then f(t1,...,t,) €T.

Given an L-structure M and term ¢ € 7 with variables z1,...,z, and elements a4, ...,a, € M, we
define t™(@) in the obvious way.

Terms are basically just nouns. We would now like to put them into sentences.

Definition 1.7 (atomic formula). The set of atomic £-formulae is the set of expressions of one of the
following forms.

« Equality: t; = t5 forany £L-terms ¢; and t,.

« Relations: R(ty,...,t,) forany n-ary relation Rand £-terms ty,...,t,.

Definition 1.8 (formula). The set of £-formulae is the smallest set satisfying the following.
« Any atomic £-formula ¢ is an £-formula.
« Forany £-formulae ¢ and ¢, then —¢p and ¢ A ¢» and ¢ V ¢ are L-formulae.

« Forany variable v; fori € N, then Jv;¢ is an L-formula.

One can then define the shorthand “¢ — " for = V ¢ and “Vu;" for =3v;—.

Now that we can talk about our structure, we would like to know if we are making sense.

Definition 1.9 (free variable). Fix a language L. A variable v in a formula ¢ is free if and only if it is not
bound to any quantifier 3v or Vu. If ¢ has free variables contained in the variables z1, ..., z,, we write

(1,5 Tp)-

This definition is vague because we have not said what “bound” means, but it is rather obnoxious to explain
what it is rigorously, so we will not bother.

Definition 1.10 (sentence). Fix a language £. An £-formula with no free variables is a sentence.
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Definition 1.11 (truth). Fix an £-structure M. Further, fix an £-formula ¢(z1,...,z,) and atuplea €
M™. Then we define truth as M E ¢(a@) to mean that ¢ is true upon plugging in @, where our definition
is inductive on atomic formulae as follows.

« ME (t; = t5)(a) if and only if t}(a) = 5 (a).
« MER(ty,...,t,) ifand onlyif (tM(a),. .., 15" (@)) € RM.
We define truth inductively on formulae now as follows.
« ME (pAY)(a)ifand only if M E p(a) and M E ¢(a).
« ME (¢ V)(a)ifandonly if M E p(a) or M E ¢(a).
« M E —y(a) if and only if we do not have M E (a).
« M E Jup(a,v) if and only if there exists b € M such that M E ¢(@, b).

In this case, we say that M satisfies, models, etc. (@) and so on.
Here is our first result of substance.

Proposition 1.12. Fix a language £ and an £-embedding n: M — N. Further, fix a quantifier-free
formula g anda € M". Then M E ¢(a) if and only if N E ¢(a).

Proof. Induction on . Roughly speaking, the point is that the interpretations are the same before and after.
|

Remark 1.13. If we allow variables, the statement is false. For example, (N, 0, <) embeds into (Z, 0, <),
but V2 (0 < z) is true in the first formula while false in the second.

In the case of isomorphism, we can say more.

Proposition 1.14. Fix a language £ and an £-isomorphism n: M — N. Further, fix any formula ¢ with
free variables z1,...,x, and atuple@ € M™. Then M E ¢(a) if and only if N E ¢(f(a)).

Proof. Induction on ¢. The point is that the definition of truth is the same before and after . |

1.2 August29

We continue with the speed run of first-order logic. The goal for today is to state the Compactness theorem.

1.2.1 Theories

Now that we have a notion of truth, it will be helpful to keep track of which sentences exactly we want to be
true.

Definition 1.15 (theory). Fix an £-structure M. Then the theory Th(M) of M is the set of all sentences
@ such that M F ¢.

The theory is essentially all that first-order logic can see.

7
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Definition 1.16 (elementary equivalence). Fix £-structures M and N. Then we say that M and AV, writ-
ten M = N, are elementarily equivalent if and only if Th(M) = Th(N).

Example 1.17. It happens that (Q, +) = (R, +) but are not isomorphic because they have different car-
dinalities.

Example 1.18. Let s denote the successor function. It happens that (Z, s) = (Q, s), but one can show
that they are not isomorphic.

This notion is different from isomorphism, but it is related.

Lemma 1.19. Fix £-structures M and N. If M = N, then M = N.

Proof. This is the content of Proposition 1.14 upon unraveling the definitions. |

Going in the other direction, we might start with some sentences we want to be true and then look for the
corresponding models.

Definition 1.20 (theory). Fix a language £. Then an L-theory T is a set of L-sentences. For an £-
structure M, we say that M models T, written M E T, if and only if M E ¢ forall ¢ € M. We let
Mod(T") denote the class of all models M of T', and we call it an elementary class.

Example 1.21. The class of all groups arises from the language {e, -} with some sentences to make a
theory. However, the class of torsion groups is not an elementary class.

We want might want to understand what sentences follow from a given theory.

Definition 1.22. Fix a language £ and theory T. Then we say that T logically implies a sentence ¢, writ-
ten T E ¢, if and only if any £-structure M modelling T has M E ¢.

Remark 1.23. Godel's completeness theorem shows that T E pif and only if there is a “proof” of o from
T. We will not use the notion of proof so much, though its proof is similar to the proof of compactness,
which we will show.

1.2.2 Definable Sets

We will want the following notion.

Definition 1.24 (definable). Fix an £-structure M and subset B C M. Then a subset X C M" is B-
definable if and only if there is a formula ¢(vy, ..., v,, w1, ..., wy) and tuple b € B* such that@ € X if
and only if M E ¢(@,b). The tuple b might be called the parameters. We may abbreviate M -definable
to simply definable.

Example 1.25. Any finite set is definable by using the parameters to list out the elements.

Example 1.26. Work with M = (Z, <). Then X = Nis {0}-definable by ¢(z, 0) where ¢(z,y) is given
by y < z. However, N is not @-definable, as shown by the following proposition.
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Proposition 1.27. Fix an L-structure M and subset A C M. Further, suppose X C M™ is A-definable.
For any automorphism o: M — M fixing A pointwise must fix X (not necessarily pointwise).

Proof. Suppose ¢(v,w) defines X with the parametersa € A®. Thenz € X if and only if M E ¢(Z,a), but
then M E ¢(0(T),0(a)), so M E ¢(c(Z),a) so o(Z) € X. For the converse, use the inverse automorphism
oL ]

To further explain Example 1.26, we see that there are automorphisms of Z (namely, by shifting) which do
not fix N, so N cannot be @-definable.

Example 1.28. Work with M = ({14,1B,2A, 2B}, <) with partial ordering given by the number. The
set X := {1A,1B} is @-definable by ¢(z) given by Jy((z # y) A (x < y)). However, there is an auto-
morphism of our model swapping 14 with 1B and 2A with 2B, but this automorphism does not fix X
pointwise.

1.2.3 The Compactness Theorem

To state compactness, we want a few definitions.

Definition 1.29 (satisfiable). Fix a language £ and theory T. Then T is satisfiable if and only if it has a
model M.

With a notion of proof, one can show that being satisfiable means that there is no proof of L, but we will
avoid a discussion of proofs in this course.

Definition 1.30 (finitely satisfiable). Fix a language £ and theory T. Then T is finitely satisfiable if and
only if any finite subset of T is satisfiable.

Of course, being satisfiable implies being finitely satisfiable; the converse will be true but is far from obvious.
The following example explains why this is strange.

Example 1.31. Consider the naturalnumbers V' = (N, 0,1, +, x, <)and NV, == (N, 0,1, +, x, <, ¢), where
¢ is some constant symbol, and set

T:=ThMUSc>1+1+---+1:neN
—_—

n

Then T is finitely satisfiable by A" because, for any finite subset of T, the sentencesc > 1+1+---+1 will
have to be bounded in length in our finite subset, so we simply find some c large enough in A/. However,
N does not model T'!

Anyway, here is our statement.

Theorem 1.32 (compactness). Fix a language £ and theory T. If T is finitely satisfiable, then T is satis-
fiable. Furthermore, T has a model M with cardinality at most | £| + Ro.
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Remark 1.33. In particular, the theory T' of Example 1.31 has a model A/, which is going to look very
strange. To begin, there is a segment

0<l<2<---.
But there is now an element ¢ larger than any natural, which produces ¢ + 1,¢ + 2,¢ + 3, .... But also
any nonzero element has a predecessor, so we have elementsc—1,c¢—2,¢—3, . ... Further, any natural

number is either odd or even, so there is also either (¢ — 1)/2 or ¢/2 sitting between the initial piece of
N and the ¢ piece with Z added everywhere. In fact, a similar argument holds to produce an element
approximately equal to gc for any rational ¢ € Q.

Remark 1.34. One can of course always make our model larger. For example, suppose we have a theory
T with an infinite model. If we want a model with cardinality at least R, we add constants {¢, : 7 € R}
to our language and add in the sentences

{e; # ¢ : distinct r, s € R}.

This remains finitely satisfiable: these constants merely ask for our model to be larger than any finite
set. One can even require the new model to be elementarily equivalent to the previous one.

Here are some applications of compactness.

Corollary 1.35. The class of torsion groups is not elementarily definable in the language £ = {e, x} of
groups.

Notably, it is not okay to write something like
\ (V99" =e)
neN

to encode any torsion because this statement is infinitely long.

Proof. Suppose the class is elementarily definable. Then we have a theory T' such that Mod(7T') consists
exactly of all torsion groups. Now the trick is to build a model of T' which is not actually a torsion group. For
this, we expand our language to £ = {e, , ¢}, and let

S::TU{C*C*---*C;«éezn>2}.
~——

n

For any finite subset of S, we can satisfy S by a torsion group containing an element which is not n-torsion
for sufficiently large n; for example, Z/nZ will do.
Thus, by Theorem 1.32, there is a model G of S, so in particular, G has an element g € G with

grgx---xg#Fe
N——

n

forallm > 2 (namely, g is the interpretation of the constant symbol ¢), so it follows that G is not torsion.
However, G is also a model of T and thus is supposed to be torsion, so we have a contradiction! This com-
pletes the proof. |

1.3 August3l

Professor Scanlon is back. Let’s prove the Compactness theorem. We are going to prove 2.5 times.

10
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1.3.1 Proof of Compactness

Recall the statement.

Theorem 1.32 (compactness). Fix a language £ and theory T. If T is finitely satisfiable, then T is satis-
fiable. Furthermore, T has a model M with cardinality at most | £| + N,.

Remark 1.36. This result is special to first-order logic: in some sense, Theorem 1.32 combined with a
corollary characterizesfirst-order logicamong various logics. Roughly speaking, one wants to formalize
what a logic is with its various structures and sentences should do.

Proof with completeness. We can prove this result fairly quickly given the Completeness theorem. Recall
that the Completeness theorem says that any theory fails to be satisfiable if and only if there is a proof of
contradiction L ; one writes that atheory T proves a sentence p by T' - . We have not discussed how formal
proofs work, and we won't discuss it further because this is not a proofs class. Approximately speaking, a
formal proof is a list of steps one can use the sentence sin 7" to produce ¢ syntactically.

Now, suppose that T fails to be satisfiable. Then thereis a proof of L. But then one can look at the proof,
which is necessarily finite in length, and then we pick up any sentence ¢ occurring in the proof of L. But
then we have a proof of | using only finitely many sentences in T', so T fails to be finitely satisfiable! This
completes the proof. [ |

Anyway, let's present an actual proof.

Definition 1.37 (witness). Fix a theory T' of a language £. Then T has witnesses (or Henkin constants)
if and only if each formula ¢(x) in one free variable x has a constant symbol ¢ such that Jzp(x) — ¢(c)
livesinT.

Remark 1.38. If T' has witnesses, then T’ D T also has witnesses for any theory 7’ extending T'.

Let's quickly sketch our proof.

1. We will show that if T is finitely satisfiable, then there is an expanded language £’ O £ and expanded
finitely satisfiable £'-theory T 2 T of £’ such that |£'| < |£| 4+ Rg, and T” has witnesses (as does any
extended theory T" of T").

2. Next, suppose T is a maximally finitely satisfiable theory (i.e., T is finitely satisfiable, and any proper
extension 7" D T fails to be finitely satisfiable). Then we will show T is complete (i.e., each sentence
@ has either p € T or —p € T).

3. From here, we want to extend maintaining being complete: if T is finitely satisfiable, then there is an
extended language £’ D L of size |£'| = |£] + Ny and extended theory T” of T" which is complete,
finitely satisfiable, and has witnesses. This essentially follows from a Zorn's lemma argument.

4. We are now ready to do our construction. At this point, we may assume that our theory T is finitely
satisfiable, complete, and has witnesses. Then we claim that there is a model M such that |[M]| < |L].

In fact, the model can be described somewhat explicitly. Take M := C/~ where C is our set of con-
stants, and our equivalence relation ~ is given by ¢ ~ d if and only if (¢ = d) € T. Notably, constants
c € C are interpreted as ¢™ = [c]. To interpret functions f, we have f™([ai],...[a,]) = [d] if and only
if (f(a1,...,a,) = d) € T. Lastly, to interpret relations R, we have RM([a1],...,[a,]) if and only if
(R(ai,...,an)) €T.

Let’s start implementing the details.

1Such a thing exists by some sort of Zorn’s lemma argument: note that there is a theory containing 7' which fails to be finitely
satisfiable: take the set of all sentences!

11
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Remark 1.39. In logic, the answer to a question is often the question. For example, in step 4, we see
that 7" has a model because T says that it has a model.

Here is our first step.

Lemma 1.40. Fix a finitely satisfiable theory T' of a language £. Then there is an expanded language

L' O L and expanded finitely satisfiable £'-theory 77 D T of £’ such that |[£/| < |£]| + o, and T” has
witnesses.

Proof. We would like to just set 7" to be T'together with new constants providing witnesses for all formulae.
But these new constants will make new formulae, so we need to do some kind of induction to go upwards.
With this in mind, we will build an increasing sequence of languages

Lo=LCL, CLyC---

and theories
To=TCTh CT>, C---

such that 7, is always a finitely satisfiable £,,-theory, and each £,,-formula ¢ with one free variable has a
constant ¢ € C, such that Jxp(z) — ¢(c) livesin T,,. We will then set £’ to be the union of the £, and 7" to
be the union of the T, and this will complete the proof.

We have already built the n = 0 stage, as above. Then to build £,,+1 from £,,, add in new constant
symbols ¢, for each £,,-formula ¢(x) with one free variable; all the functions and relations remain the
same. Note £,,;1 is now the size of the formulae with one free variable in £,,, so |£,,11] = | L] + RNo.

As for our theory, let T, be T, plus the sentences Jzp(x) — ¢ (cy(a)) for each L£,,-formula ¢(x) with
one free variable. We are now ready to set

L= U L and T = U T,.
neN neN

We see that £’ then has the right size, and 7" has witnesses: for any £'-formula ¢(z) with one free variable,
note that () has only finitely many symbols, so we can find some fixed level £,, containing all the symbols
used in p(z). But then ¢(x) has a witness from T,,; C 77, as needed.

It remains to show that 7" is finitely satisfiable. It suffices to show that T, is finitely satisfiable for any
n € N because any finite set will be contained in some T,,. We show this by induction. For n = 0, there is
nothing to say. Now suppose T, is finitely satisfiable, and we show that T}, is finitely satisfiable.

Fix some finite subset A C T,,.1 which we would like to build a model for. Now, A will be built by
some sentences in T, plus some new sentences from T, 1. Looking hard at T;,11 \ T}, we see that we can
enumerate A \ T,, as some sentences

Hxll)k (1‘) — Il)k(Ck)

where {9}, is some L,,-formulae in one free variable.

We now begin building our model. Note A N T, is a finite subset of T},, so it is satisfiable by some model
M. Now, for each k, if there is some a € M such that M k ¢y (a), set a == ay; otherwise, set a;, :== m for
any chosen m € M. (Note structures are nonempty.) We now let M’ be the £, 11 -structure with universe
M, interpretations of functions and relations the same as in M, and all old constant symbols are also all still
interpreted the same way. Then for each new constant symbol, we interpret ¢! := aj, and each other new
constant symbol can also go to m. Now M’ is a model for A because it models everything in ANT,, for free,
and it has satisfied A \ 7},+1 by construction, so we are done. [ |

To show the second step, we begin with the following lemma.

Lemma 1.41. Fix a finitely satisfiable theory T  of a language L. Forany £-sentence ¢, then either TU{}
or T'U {—¢} is finitely satisfiable.

12
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Proof. Suppose that both T'U {¢} and T'U {—} both fail to be finitely satisfiable. We will show that T fails
to be finitely satisfiable.

Well, we are given finite subsets Ay C T U {y} and A_ C T U {—¢} which are not satisfiable. If A
fails to contain ¢, then A is a finite subset of T' which is not satisfiable, so T fails to be satisfiable. Thus,
we may assume that ¢ € A, . Analogously, we may assume that = € A_. Now, (A} UA_)\ {¢} and
(Ay UA_)\ {—p} both fail to be satisfiable.

But now suppose for the sake of contradiction that T is finitely satisfiable. Then (A} U A_)\ {p, ~¢}
has a model M. But M E ¢ or M E —¢, so we see that M will model at least one of (AL UA_)\ {p} or
(Ay UA_)\ {—¢}, which is the desired contradiction. [ |

The second step now follows from a Zorn's lemma argument.

Lemma 1.42. Fix a maximally finitely satisfiable theory T of a language £. Then T' is complete.

Proof. Let ¢ be any L-sentence. Then either T'U {¢} or T'U {—¢} is finitely satisfiable by Lemma 1.41, so
by maximality, we may conclude that either T'= T U {¢} or T = T U {—}, so either ¢ € T or ~¢ € T, which
is what we wanted. |

Combining the work so far completes the third step.

Lemma 1.43. Fix a finitely satisfiable theory T of a language £. Then there is an extended language
L' D L of size |£'| < |L£] + Xy and extended theory 7" of T which is complete, finitely satisfiable, and
has witnesses.

Proof. We can prove this using the previous two steps.

1. Lemma 1.40 provides an extended language £’ (of cardinality at most |£| + R) and extended theory
T’ which is finitely satisfiable and has witnesses.

2. We use Zorn's lemma to become maximally finitely satisfiable. Let P denote the set of finitely satis-
fiable £’-theories T extending T” which is finitely satisfiable. Containment shows that P is a partial
order, and it's nonempty because 7" € P. Next up, we note that any nonempty chain {7, } e, is upper-

bounded by
U 7.

aEA

which we can see continues to be finitely satisfiable (any finite set belongs to some fix T for 8 perhaps
large) and thus lives in P and succeeds to upper-bound our chain. Thus, Zorn's lemma provides a
maximally finitely satisfiable theory T" containing 7", which will be complete by Lemma 1.42. Because
T" contains 1”7, we continue to have witnesses. [ |

1.4 September5

In this lecture, we will complete our proof of Theorem 1.32.

1.4.1 Completingthe proof of Theorem 1.32

Last class, we left off having shown Lemma 1.43, which was the third step of our outline. The last step of
the proof is the following lemma.

Lemma 1.44. Fix a language £ with a theory T' which is finitely satisfiable, complete, and has witnesses.
Then T has a model M with cardinality at most |£|.

13
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Proof. As we did last class, we go ahead and explicitly describe our model and then show that it makes
sense. Take M = C/~ where C is our set of constants, and our equivalence relation ~ is given by ¢ ~ d if
and only if (c = d) € T. Notably, constants ¢ € C are interpreted as ¢c™ := [c]. To interpret functions f, we
have fM([a1],...[an]) = [d] if and only if (f(a1,...,a,) = d) € T. Lastly, to interpret relations R, we have
RM(la1], ..., [an]) ifand only if (R(ay, ..., a,)) € T.

We now check that this makes sense. Note that in the following checks, we are a bit sloppy in differ-
entiating between constants and their equivalence classes in C when there is unlikely to be problems from
doing so.

1. We show that ~ is in fact an equivalence relation on C. There are the following checks.

« Reflexive: we must show ¢ = cis a sentence in T'. Because T is complete, one of ¢ = cor =(c = ¢)
isinT. But T is finitely satisfiable, and the sentence —(c = ¢) has no model, so it cannot live in T'.
Soinstead ¢ = clivesinT.

« Symmetric: suppose ¢ ~ ¢ so that ¢ = ¢ is a sentence in T; we want to show that ¢/ = cis
a sentence in T. Well, by completeness one of ¢ = ¢ or =(¢’ = ¢) lives in T. But if we have
—(c’ = ¢), then the finite theory {—(¢’ = ¢), ¢ = ¢/} will have no model (symmetry of equality will
hold in the model), violating that T is finitely satisfiable. So we must have ¢’ = cinstead.

» Transitive: suppose ¢ ~ ¢’ and ¢’ ~ ¢’ sothatc = ¢’ and ¢/ = ¢’ are sentences in T. We want to
show that ¢ ~ ¢, or equivalently that ¢ = ¢” lives in T. Well, by completeness, one of ¢ = ¢ or
—(c= ") livesinT. However, if =(c = ¢") livesin T, then we note that {c = ¢/, ¢/ = ¢, ~(c = ")}
is a subset of T' with no model, which is a contradiction. So instead ¢ = ¢” livesin T..

2. We show that our interpretation of functions makes sense. Fix an n-ary function f. We need to show
that f(aq,...,a,) has aunique interpretation in M.

« Existence: for constants ay, ..., a,, we show that there is a constant b such that f(a1,...,a,) =
bin T. This holds by having witnesses: let p(z) be the formula f(a1,...,a,) = z, and having
witnesses tells us that 7' contains the sentence

Jz p(z) = ¢(b)

for some constant b. We show that T contains the sentence p(b). Otherwise, because T' is com-
plete, T will have the sentence —¢(b), but being finitely satisfiable means that

{Fzp(z) = @(b), ~p(b)}

must have a model; this is an issue because all models satisfy 3z f(a1,...,a,) = x and therefore
must satisfy ¢(b), which is a contradiction to satisfying —(b).

» Uniqueness: for constants ay,...,a, andaj,...,al, andband b’ such that a; ~ a; foralliand both
f(ay,...,a,) =0band f(a},...,al,) = b, we must show that actually b ~ ¥'.
Well, by completeness, if b ~ V' is not true, then —(b = ¥’) lives in T'. Then the theory

{a’l :a’?[7"'7a’n:a/;l7f(a/17"'7a‘n):b7f(a//17"'7a';L):b,7_‘(b:b/)}

is a subset of T but is not satisfiable (because of how functions work in set theory), which is a
contradiction.

3. We show that our interpretation of relations makes sense. Fix an n-ary relation R. Essentially, if we

have constantsay,...,a,andal,...,a, suchthata; ~ o} foreachi,thenwewillhave R(aq,...,a,) € T
if and only if R(a},...,al,) € T. Because ~ is symmetric as shown above, it suffices to show that
R(ay,...,an) € T'implies R(a,...,a,) € T.
Well, T is complete, so if T fails to contain R(a,...,al), then it must contain —=R(aj,...,a,) instead.
But then

{ax =a},...,a, = a,,R(ay,...,an),~R(a},...,a,)}

is a finite subset of T"with no model because of how relations work in set theory; this is a contradiction.

14
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4. As anintermediate step, before going on to show that M E T, we show that terms behave: suppose

t(x1,...,xy,) is a term. For constants ¢y, ..., ¢y, ¢/, we show that ¢(cy,...,¢,) = disin T if and only if
tM([er], .- [en]) = [d)-

Let 7" be the subset of T with this property. Note that 7" contains constants by our first check above.
To show that 77 = T, we suppose that ¢, ... ,t,, € T’ and that f is an m-ary function, and we want to
showthat f(¢y,...,t,)isin T". Fixenough constants ¢y, . . ., ¢,, (namely, more than the number of free
variables of each t,). Then we note tM([cy], ..., [ca]) = [di] for some [d] € M, which then implies that

ti(cla c '7Cn) = dz

is a sentence in T for each ¢;. Now, fM (¢1,... t)1) (¢) is certainly equal to some constant [d], which
is now equivalent to having

fldy,...;dn)=4d

in T by the functions check above. Now, the finite satisfiable and completeness of T"imply that having
the above sentence in T is equivalent to having the sentence

flt1, ... tm)(@) =d

in T because T already contains t;(¢) = d; for each i. For example, if T fails to contain f(t1,...,tm)(¢),
then it will contain —f(t1,...,t,)(¢) = d by completeness, but this contradicts f(di,...,d,) = dand
t;(¢) = d; for each i and therefore the finite subset with all these sentences is not satisfiable. The
reverse implication is similar.

5. We show that M actually satisfies all sentences in T'; in fact, we will show T E (@) for any ¢ and @ if
and only if M E p(@). We proceed by induction, starting with atomic formulae.

« Our most basic cases are sentences of the form ¢; = ¢; and R(cy, ..., ¢,) where R is some n-
ary relation and ¢y, ..., ¢, are constants. These are satisfied by M basically by construction: the
definition of ~ establishes from ¢; = ¢, that ¢; ~ ¢y and thus ¢ = [¢1] = [co] = ¢!. And
RM (M, ..., c)") is equivalent to R(cy, ..., c,) € T.

« Foranytermstand s and enough constants @ and b, we claim that having (¢ = s)(@, b) in T implies
M E (t = 5)(@,b). The previous step promises constants c and d such that t(@) = cand s(b) = d
are in T and that this is equivalent to t™ (@) = [c] and s™(b) = [d].

Now, (t = s)(a,b) being in T is thus equivalent to having ¢ = d in T' by the usual argument using
the completeness and finite satisfiability of 7. Then having ¢ = d is equivalent to [c] = [d], which
is equivalent to t* (@) = s™(b), which is equivalent to M F (t = 5)(@, b).

« For any n-ary relation R and terms ¢4, ..., t, and enough constants @, we claim R(t4,...,t,)(a)

being in T implies M E R(t1,...,t,)(@). Well, for each term ¢;, the previous step promises us a
constant ¢; such that ¢;(@) = ¢; is in T'and has t (@) = [¢;].
Now, having the sentences t¢;(a) = ¢; for each i implies that R(t1,...,t,)(@) lives in T if and only
if R(c1,...,cn) livesin T by the usual argument using the completeness and finite satisfiability of
T. But by our relations check, we know that R(cy, ..., ¢,) livesin T ifand only if R ([e1], ..., [ca)])
is true, which is equivalent to RM (1'(a), ..., t}"(a)).

We now build up from atomic formulae. Let F’ be the subset of formulae such that ¢(a) being in T for
some constants @ if and only if M F ¢(@). The above checks show that F’ contains atomic formulae.

« Suppose p € F’'. We show —p € F’. Well, —p(a) fails to live in T if and only if ¢(a) lives in T' (by
completeness), which is equivalent to M F ¢(@), which is equivalent to M not satisfying —¢(a).

« Suppose ¢, € F'. We show that o Ayp. Well, (¢ Av) (@) livesin T if and only if both ¢ (@) and ¢ (a)
live in T (using the usual argument with the completeness and finite satisfiability of T'), which is
equivalent to M F p(a) and M F ¢ (a), which is equivalent to M E (¢ A ¢)(a).

15
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» Suppose ¢(z) € F'. We show that 3z ¢(z) € F'. Well, M E (3z ¢(z))(a) if and only if there is
[b] € M such that M E ¢(a, b). By hypothesis, this is equivalent to having some constant b such
that ¢(a@,b) isin T.

Now, if p(a, b) is in T for some constant b, then the usual argument with completeness and finite
satisfiability requires (3z ¢(z))(@) to be in T. Conversely, if (3z ¢(x))(@) is in T, then the fact that
T has witnesses implies that there is a constant ¢ such that (@, b) is in T from the usual argument.

In particular, the sentence 3z p(a)(z) — ¢(a)(b) belongs to T for some constant b.
The above checks complete the induction on formulae.

Theorem 1.32 now follows from combining Lemmas 1.43 and 1.44.

1.5 September?7

In this lecture, we will provide another proof of Theorem 1.32, using ultrafilters.

1.5.1 Ultrafilters

Unsurprisingly, the main character of our story will be ultrafilters.

Definition 1.45 (filter). Fix a set I. Then a filter F on I is a subset of P(I) satisfying the following.
(a) I e F.
(b) Finite intersection: for X,Y € F,wehave X NY € F.

(c) Containment: if X € FandY C I contains X, thenY € F also.

The intuition here is that filters contain “large” subsets of I.

Example 1.46. Fix aset I. Then {I} is afilter.

Example 1.47. Fix a set I and a filter F on I. If @ € F, then we see that any subset X C I contains &
and thus must live in 7. Thus, 7 = P(I), which is in fact a filter. We call P(I) the “trivial filter.”

Example 1.48. More generally, fix any subset X C I. Then Fx :={Y C I: X C Y}isafilter.
(@) Note X CI,so01 € Fx.
(b) Intersection:ifY,Z € Fx,thenX CYand X C Z,so X CYNZ,soYNZ e Fx.

(c) Containment:ifY € F,,and Z C I containsY,then X CY C Z,s0 Z € F,.

Example 1.49. Fix a set I, and define 7 C P(I) by X € Fifandonlyif I \ X is finite. We check that F
is afilter.

(@) NoteI € Fbecause I\ I = @ is finite.
(b) Intersection: if X, Y € F,then I\ (X NY) =T\ X)U (I \Y)isfiniteandthus X NY € F.
(c) Containment:if X € FandY C I contains X,then I\ Y C I\ X is finite,soY € F.

Ultrafilters are the largest filters.

16
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Definition 1.50 (ultrafilter). Fix a set I. Then an ultrafilter F on I is a nontrivial filter on I such that each
subset X C Thasoneof X € ForI\ X € F.

Example 1.51. Fix a set I and element a € I. Define the “principal ultrafilter”
Fo={XCIl:a€eX}.

We show that F, is an ultrafilter. Note F, is already a filter by Example 1.48. To be ultrafilter, for each
X C I, eitherae Xora e I\ X,whichimply X € 7, orI\ X € F, respectively.

The following result rigorizes the notion that ultrafilters are the largest filters.

Lemma 1.52. Fix a set I and a filter ¢/ on I. The following are equivalent.
(a) U is an ultrafilter.

(b) U is maximal among the partially ordered set of nontrivial filters on I, ordered by inclusion.

Proof. We have two implications to show.

» We show (a) implies (b). Suppose U/’ is a filter properly containing ¢/, and we want to show that &/’ =
P(I). Well, i’ properly contains U/, so there is some X € U’ \ U. But X ¢ U requires I\ X € U, so
I'\ X € U’ too, but then

g=XnN({I\X)

livesini{f’. It follows that U/’ = P(I) by Example 1.47.

» We show (b) implies (a). Certainly i/ is nontrivial. Now, fix any subset X C I. Suppose I \ X ¢ U, and
we want to show that X € Y. Indeed, consider the filter

U ={Y CI:Y2XnNX forsomeX' €U}.
Quickly, we check that &/’ is a nontrivial filter containing U.

- NoteI D XnNnI,solcl.

— Intersection: if Y1,Y5 € U/, thenfind X, X5 € U suchthatY; D X N X, foreachi,so X NXs €U
impliesY1NY, D XN(X;NXs)andso Y1 NY; e .

— Containment: if Y € U’ and Z C I contains Y, then find X’ € U suchthatY O X N X/, so
ZO2XNX',soZecl.

— ContainsU: foreach X' e U, note X' D X NX',so X' ell'.

- Nontrivial: having @ € U’ would imply @ 2 X N X’ for some X’ € U, which is equivalent to
X' C I\ X,soitwouldfollow that I \ X € U, which is a contradiction.

We conclude that &/ = U’ by maximality of &/. However, X D I N X forces X € U’ = U, so we are
done. [ |

It is important to know that it is relatively easy to build ultrafilters.

Proposition 1.53. Fix a nontrivial filter 7 on a set I. Then there exists an ultrafilter ¢/ containing F.

Proof. Let P be the set of nontrivial filters containing F, which we turn into a partially ordered by set by
inclusion; note F € P, so P is nonempty. Using Lemma 1.52, we would like to show that P has a maximal

17
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element, for which we use Zorn's lemma. Fix a nonempty chain C C P, which we must upper-bound. We
claim that
Fu = U i
Frec

is a filter containing F upper-bounding C, which will complete the proof. Here are our checks.
» Upper-bounds: forany F’ € C, we see that 7' C F,, by construction.
« Any 7' € C contains I,so I € F,.

+ Intersection: if X,Y € F,, then we can find F, F{, € C containing X and Y, respectively. Because
C is a chain, we may find 7' € C containing both 7% and F;.. Then X,Y € F/,so X NY ¢ 7/ C F,
because F' is a filter.

» Containment: if X € F, and we have a subset Y C I containing X, then we find 7' € C containing X
and find that Y € F’ C F,, because F' is afilter. [ ]

1.5.2 Compactness via Ultraproducts

For our application, we will want the notion of an ultraproduct.

Lemma 1.54. Fix a language £ and some L-structures {M,}.cr. Now, define an L-structure M as
follows.

« The universe M is [],; M, modded out by the equivalence relation ~ given by (a,) ~ (b ) if and
only if
{a€T:a,=0,} €U.

« Functions are interpreted component-wise.

« Forann-aryrelation R, R ((a14), - . -, (ana)) ifand only if the set of asuch that RMa (ay,, . . ., apna)
isinl.

Then M is a well-defined £-structure.

Proof. Here are our various checks.
« We check that ~ is an equivalence relation.

- Reflexive: note (a,) ~ (aq) because {a € I : ay = an} = I livesinl.

- Symmetric: if (ay) ~ (ba), then
{ael:by=an}={acl:a,="0,},

which is in U by hypothesis.
— Transitive: if (ay) ~ (by) and (ba) ~ (co), then {a € I : a,, = o} contains the set

{a€T:apa=bo=co}={ael:as=0b}N{a€l:a,=ca},
which lives in U/ because U is a filter.

« We check that interpretation of functions makes sense. Fix an n-ary function f and some elements
(a14);- -+, (ana) and (bia), - - ., (bna). We must show

(fM(a1a,- - ana)) ~ (F(b1ay - bna)) -

18
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Well, we note {a € I : fM(a1a,...,ana) = fM(bias- .., bna) } contains the set
ﬂ{a el: Qi = bia}a
i=1

which lives in U/ because U is a filter.

» We check that interpretation of relations makes sense. Fix an n-ary function R and some elements
(a1a)s- -5 (ana) and (bia), - - -, (bpa). We must show

R((a1a);-- - (ana)) <= R((b1a)-- - (bna))-
Unwrapping the definition of RM, this is equivalent to
{ael:RM(a1a,...,a4n0)} €U = {a €T :RM*(bia,...,bpa)} EU.

By symmetry, it's enough to show the forward direction, for which we note that the right-hand set
contains

{a el: RM‘*(ala,...,ana)} N ﬂ{a €1:a;n=0bi},
i=1

which lives in U/ because U is a filter. [ |

Definition 1.55 (ultraproduct). Fix a language £ and some L-structures { M, }.c:. The ultraproduct is
the L-structure defined in Lemma 1.54, denoted [[,.; Mo /U or [ ], Ma.

We are now ready to begin our proof of Theorem 1.32. We want the following definition.

Definition 1.56 (expansion). Fix a language £ and structure M. Given a subset A C M, we define the
expansion L 4 as having the same constants in addition to the constants in A but the same functions
and relations.

Remark 1.57. Fix a language £ and structure M and subset A C M. Then M isinfactan £ 4-structure,
where we interpret the new constants a € A by a™ = a.

Compactness will follow from the result.

Theorem 1.58 (Los). Fix a language £ and £-structures {M,}ncs. Expand L to the language £’ =
El_laez M, - Now, let U/ be an ultrafilter on I so that M := [],, M, is an £L'-structure. Then for any £L-

formula ¢(z1,...,2,) has M E ¢ (af!, ..., a2") if and only if

{ael: MyEp(al,...,an)} €U.

Proof. To see that M isin fact an £'-structure, note M is already an £-structure, and we may interpret the
constant (a,) of L' by the corresponding equivalence class in M. Anyway, the content of the proof is to
induct on ¢.

« Letc; and ¢, be constants. Then M E (¢; = ¢3) if and only if ¢t = ¢3! if and only if the set of a such
that ¢ = e isinU.

» Lett(zy,...,z,) beatermand c be a constant. We claim that M E (t = ¢)(ay, ..., ay) ifand only if

{ael: M,E(t=c)ar,...,an)} €U.

19
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This is done by induction on the term ¢. If ¢ is a constant there is nothing to say. Otherwise, sup-
pose that f is an m-ary function, and we have terms t1(x1,...,2p), ..., tm(z1,...,2,). Now, M E
(f(t1,-- - tm) = ©)(a1,...,a,) ifand only if fM (tM(a),...,t)1(a@)) = M, which after taking enough
intersection is equivalent to having fM (¢, ..., c)!) = ¢M for suitable constants ¢, coming from the
inductive hypothesis. One can then continue the argument backwards to complete.

rm

o Lett(z1,...,2,) and ta(zy,...,2,) be terms. Then M E (t; = to) (a1, ..., a") if and only if the set
of a such that

B (@) @) = 1 (@), (@)

is contained in . Choosing constants ¢; and ¢ suitably as above and using the filter property, this is
equivalent to having ¢! = ¢3!, from which we can go backwards to complete the argument.

» The same argument holds for atomic formulae of the form R(¢4, ..., ¢,) where R is an n-ary relation.

We now begin inducting on formulae. Let 7’ be the set of desired £’-formulae. The above checks show that
F’ contains atomic formulae.

» Suppose ¢, € F'. Then M E (p A ) (@) if and only if M E ¢(@) and M E ¢(a) if and only if
{ael - MiEp@}n{aecl: M,Ey@)}

lives in U, which is equivalent to
{aeT: MsE (eA¥)(a)}
by the intersection property of i.

» Suppose ¢ € F'. Then M E (—¢)(a) is false if and only if M F (@) if and only if
{ael: My Ep@}el,
which because U is an ultrafilter is equivalent to
IN{fael: MoFe@)}¢U,

from which we can work backwards to complete the argument. (To see the last equivalence, note that
each X C I has exactlyoneof X € U/ or I \ X € U: at least one is true because U is an ultrafilter, and
at most one is true because both being true requires @ € U, making U the trivial filter.)

» Suppose ¢(z,a) € F'. Then M E (3z ¢(x))(a) if and only if there is some b € M (i.e., b a constant
because we expanded our language) such that M E ¢(b, @), which is equivalent to

{ael : M,Epba)}eld

for some constant b. [ |

Corollary 1.59. Let T be a finitely satisfiable £-theory. Then T is satisfiable.

Proof. We follow [Mar02, Exercise 2.5.20]. We may suppose that T"is nonempty. Let I be the set of finite
subsets of T', and for each A € I, let M be a model for A. We have two steps.

1. We define afilter. Foreach ¢ € T', let X, := {A € I : Ma E ¢}. Then we define
D={Ael:ADX,forsomeypecT}.
We show that D is a nontrivial filter on I.

 Note that @ ¢ D because this would require that @ O X, for some ¢ € T, which is bad because
M,y F ¢ shows X, is nonempty.
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» Noteanyp € Thas X, CI,sol € D.

« Intersection: if A, B € D, then find ¢, € T'such that X, C Aand X, C B. Then AN B contains
X, N Xy, but X, N X, consists of A such that M models both ¢ and 1), which is equivalent to
M ’ZQD/\’l/},SOXmeXw :Xgo/\w-

+ Containment: if A € D is contained in B C I, then find ¢ € T'with A O X, sothat B O X, as
well.

2. Let U be an ultrafilter containing D, and let M be [],, Ma. Then for each ¢ € T, we see by Theo-
rem 1.58 that M E ¢ if and only if
{Ael: MaFp}el,

which is true by construction of U. |

Remark 1.60. Theorem 1.32 was able to bound the size of the model, but the above proof does not.
Indeed, the models M are potentially large, and M is approximately the size of all of them multiplied
together.

1.6 September12

We started class by showing that Theorem 1.58 implies the compactness theorem. Professor Scanlon'’s
proof is distinct from the one in my notes, but | have not bothered to record his proof.

1.6.1 Elementary Equivalence

The following notion will be helpful.

Definition 1.61 (theory). Fix a language £ and an £-structure M. Then the theory Th, (M) is the set of
sentences ¢ such that M & ¢. For a subset A C M, we may abbreviate Th. , (M) to just Th4 (M) for
brevity.

The following notions are also sometimes helpful.
Definition 1.62 (diagram). Fix a language £ and an L-structure M. The diagram Diag(M) is the set ¢

of atomic £,/-sentences (in the expanded language £j) or negations of atomic sentences such that
M E ¢. The elementary diagram is the theory Th,,, (Myy).

The theory is in some sense everything that a structure can see. As such, we make the following defini-
tion.

Definition 1.63 (elementarily equivalent). Fix a language £. Then two £-structures M and N are ele-
mentarily equivalent, written M = N if and only if Thz (M) = Thz(N).

Remark 1.64. In fact, it is enough to merely have Th, (M) D Th,(N). Indeed, suppose for the sake of
contradiction that Thz (M) 2 Thz(N). Then there is a sentence ¢ with M F ¢ but A" does not satisfy
©. But then A/ E =y, so M E —p too! But this does not make sense because M cannot satisfy both ¢
and —p.

Proposition 1.65. Fix a language £ and isomorphic £-structures M and A/. Then M and A/ are elemen-
tarily equivalent.
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Proof. We show this by induction. Fix an isomorphism f: M — A. We will actually show that M, = Ny,
where Ay, means M viewed as an £;-structure where the constants a € M are interpreted as o’V = f(a).
Anyway, we induct on ¢.

» Suppose that ¢ is atomic of the form t1(a) = t2(a). If My, E (¢t1(a) = t¢2(a)), then an induction on
terms t shows that

N @) = f (t"M(@)).

Indeed, if ¢ is a constant term, then this follows directly from f being an isomorphism. Otherwise, t
takes the form g(¢1, ..., t,) for a function symbol g, and the interpretation of g is also respected by f
because it is an isomorphism.

Now, My E (t1(@) = t2(a)) if and only if (@) = t5(@), which is equivalent to Ny F (¢1(@) = t2(a))
by passing through f as above.

+ Suppose that ¢ is atomic of the form R(t1 (@), ..., t,(a)). Well, M E R(t1 (@), ..., t,(a)) if and only if
(tM(@), ..., )" (@)) € R™M, and then passing everything through f shows that this is equivalent to

Y @),...,t (@) € RV,
whichis Ny E R(t1(a), ..., t,(a)).
» Suppose that ¢ takes the form —). Then the usual semantic argument takes care of us.
+ Suppose that ¢ takes the form ¢ A 6. Then the usual semantic argument takes care of us.

» Suppose that ¢ takes the form 3z ¢(x). Then M ; models this if and only if there is some a € M
such that My, E 9(a), but ¥(a) is a perfectly valid sentence in our language because we expanded
our constants, so this is equivalent to Ny, F ¢(a) for some a € M. This last assertion is equivalent
to Ny E Jzp(z) (the forward direction is clear, and the backward direction is because any b € N
witnessing takes the form f(a) for some a € M because f is a bijection on the universe).

The above induction completes the argument. |

Proposition 1.65 is a nice result. We might hope for a converse, but it is false in general. There is a converse
for finite structures.

Proposition 1.66. Fix a finite language £ and a finite structure M. Then M = A if and only if M = A/,

Proof. Saythat M hasn elements. Then we build a sentence which asserts that there are exactly n elements
Z1,...,Zn, and then add on conditions for each m-ary function symbol f what f(z;,,...,z;, ) should equal,
for each m-ary function symbol R whether R(z;,, ..., ;) should be, and so on.

Let’s write this out. The start of this sentence

Jxq -+ - Jzp (/\ﬁ(a;ﬁéxj)) A (Vy\/(yzwi)> A---

i#j i=1

dictates that any model satisfying this sentence has exactly n elements. (Namely, the first part asserts that
the model has at least n elements, and the second bit says that any element equals one of the given n ele-
ments.) Next we write in function symbols. Enumerate M as a4, . .., a,. For each m-ary function symbol f
in the language £, and m elements a;,, ..., a;, of M, we note that f™(a;,,...,a;, ) is some element of M,
which by abuse of notation we will write as OF (i) AS such, we next tack on the sentence

i1
/\ /\ (f(xiu e T,) = x?(?‘,l,.“,im)) :

me-ary f1<i1,...,im<n
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Next up, we interpret constant symbols: by abuse of notation, let ¢™ be az, so we add on the sentence

c constant

Lastly, we interpret relations: we need the sentence

/\ /\ R(l’il,...7l'im).

m-ary R1<i1,...,i, <n
R(a,;l,...,aim)

In total, our sentence looks like

ETREE Hmn<< N\ (@i # wj)) A <Vy (y= xz‘))
i#j i=1

A /\ /\ (f(xil,...,xim) 296?(1-17”,),»7”))

m-ary f 1<i1,...,i;m <n

A /\ (c = z7)

c constant

A /\ /\ R(xil,...,xim)

m-ary R1<i1,...,im, <n
R(aiy yees@ipy, )

A\ /\ /\ ﬁR(.’ﬂu,...,.’ﬁ@ﬂ)).

m-ary R 1<i1,...,i; <n
ﬁR(ail ey

<=

Let's quickly explain why this works. Notably, M satisfies the above sentence by taking z; to be a;. On the
other hand, for any N which is an £-structure satisfying the above sentence, the first line dictates that A/
must have exactly n elements by, ..., b,. The second line dictates what fV (b;,,...,b; ) must equal for each
m-ary function symbol f. The third line dictates what ¢V for each constant symbol c. Lastly, the last two lines
dictate what RV (b;,, ..., b;, ) for each m-ary relation symbol R. Thus, we see that we have an isomorphism
p: M —>J\/‘byai — b;.

Writing this out a bit, let's check that p preserves function symbols. The other checks are no harder. By
construction, we see that

P (fM(a’il’ R aim)) =p (a?(il,.“,im))

= OF(ir, i)
= fN(bi17 sy bim)a
which is what we wanted. Notably, the last equality holds because it was required by our sentence. |

Remark 1.67. The infinite language case might be an interesting question for the midterm exam. The
proof should be quite similar.

Let's verify that infinite structures are not determined by their theories.

Proposition 1.68. Fix a language £ and infinite £-structure M. Then there exists an £-structure N such
that M 2 N but M = V.

Proof. We will choose A to simply be larger than M. Choose a cardinal « strictly larger than | M|, and let £’
be an expanded language with x new constants ¢, for each a € .
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We now use compactness to construct . Choose the theory T to be
The(M)U{cq #cp:a# Bfora,p € k}.

We claim that T is finitely satisfiable. Indeed, for any finite subset A, we claim that M can be made into a
model for A. Well, M certainly satisfies TN A C Th,(M), and then A\ Th; (M) is just asserting that M
has some finite number of distinct elements, which is true

More explicitly, let A C k be a finite subset such that any ¢,, appearing in a sentence of A has a € A. Then
choose some element ag € M and then || distinct elements a,, for each « € A. We interpret ¢, as a,, for
each o € A and interpret each ¢ as ag for each 8 ¢ A. We can see that this new model M’ models A, so we
are safe.

Anyway, Theorem 1.32 now provides us with a model NV of T.. Notably, A/’ can be restricted to an £-
structure by simply forgetting how to interpret the x new constants, and we see that Th,(N) 2 Th, (M), so
M = N follows by Remark 1.64. However, |N| > k > | M| requires that M and A are not isomorphic. W

Here are some follow-up questions. Fix a language L.

1. If we have M = N and |[M| = |V, can we construct an example with M 2 N? This is true for some
theories Th, (M) where this is true but not always. For example, for countable models, this is (roughly
speaking) the theory of types.

2. If M = N, can we find a nonempty index set I and an ultrafilter ¢/ such that M /U = N1 /U? The
converse is certainly true by Theorem 1.58. This forward direction turns out to be yes and is Keisler—
Shelah. By the end of the course, we will be able to show this under some assumptions (countable
languages, countable structures, and assuming the continuum hypothesis).

1.7 September 14

Today we will prove the Lowenheim-Skolem Theorem.

1.7.1 The Lowenheim-Skolem Theorem

We will want the following definition.

Definition 1.69 (elementary substructure). Fix a language £ and two structures M and AV. Then we say
that M is an elementary substructure of N, written M < A/ if and only if M is a substructure of A" and

Remark 1.70. It is not enough to have M C N and M = N. For example, take the language £ = {<}
andlet M = (N,<)and N = (Z*,<). Then M C N,and M = N. To see that M = A because M = N/
(subtracting one is an isomorphism Z* — N), which is enough by Proposition 1.65. However, M £ N:
the sentence Vx 1 < zis true in M but notin \V.

Here is the result we are going to show.

Theorem 1.71. Fix a language £ and infinite structure M. For all subsets A C M, there exists an ele-
mentary substructure " < M containing A with |[N| = |A| + |£| + Ro.

Proof. We essentially do a more careful version of the Henkin construction. SetT' := Th(M4). Let £ and T”
be the language and theory extending £ and T (respectively) obtained from the construction in Lemma 1.40
by adding witnessing constants. Quickly, we recall that 7" and £’ are constructed inductively as follows.

e SetTy:=Tand Ly := L.
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 Set L, tobe £, witha constant ¢, for each £,,-formula ¢ with avariable z, and then we add 3¢ (z) —
¢(c,) to T". The function and relation symbols are the same between £,, and £,, 1.

o Lastly, £’ is the union of the £,;s, and T” is the union of the T},s.

We now expand M to be a model M’ of T’. One only has to deal with the constants added by £’. We will do
this inductively.

o Set M := My, and we construct M,, to model T,.

+ Given M,, E T},, we construct M, to be an £,,.1-structure as follows. Well, we only need to worry

aboutinterpreting the new constants ¢, where is an £,,-formula with free variable z, and we interpret

" as some a, € M, if M,, E ¢(ay,) if such some ay, exists, and we set ;" to be any element of

M,, if no such a,, exists.

Then M, 1 certainly satisfies everything in T;, (by inductive hypothesis), and it satisfies every one
of the new sentences Jzp(xz) — ¢(c,) by construction of cﬁl"“, so we conclude M, y; F T,,14, as
needed.

+ Lastly, we define M’ to be the union of the M,,, and we conclude our construction. One can see that
M’ E T’ directly from the construction of the previous step because any ¢ € T’ belongs to some T,
for finite n.

To continue the proof, we want the following result to check that we have built an elementary substruc-
ture.

Lemma 1.72 (Tarski—Vaught test). Fix an £-structure M and asubset A C M. Call A “realizable” if and
only if any £-formula (1, ..., 2,,y) and n-tuple@ € A™ has M E (Jyo(Z,y))(a) if and only if there is
someb € Asuchthat M E ¢(a,b). Then Ais realizable if and only if there is an elementary substructure
A < M with universe A.

Proof. There is some content here because the assertion M4 = A4 does not even make sense without
having constructed .A. Anyway, we have two implications to show.

» Suppose that A is the universe of an elementary substructure A < M. We want to show that A is real-
izable. Well, let (21, ..., 2,,y) be an L-formula, and choose some @ € A™. Now, M E (3yp(Z,y))(a)
if and only if M4 F Jyp(a,y). Now, because A < M, this is equivalent to A4 E Jyp(a,y), which his
equivalent to having some b € A such that A4 E ¢(a,b), which is equivalent to M 4 E ¢(a,b), which
means there is b € A such that M E ¢(a, b).

» Suppose A is realizable. The main content here is to check that A is the universe of an £-substructure
of M. We have the following checks.
- Certainly A C M.

- For each constant symbol ¢, we need c™ € A. Well, look at the formula o (y) given by y = c. Then
M E Jye(y) by ¢M, so being realizable grants some b € A such that M E (b), which means
cM =b e A, as needed.

- For each n-ary function symbol f(z1,...,7,) and @ € A, we need to check fM(@) € A. Well,
look at the formula p(z1,...,z,,y) Whichisy = f(z1,...,2,,y). Then M E Jyp(a), so being
realizable promises some b € A such that M E ¢(a, b), which is asserting f(a1,...,a,) =b.

We now need to show M 4 = A4. We induct to show that an £ 4-sentence ¢ has M 4 E ¢ if and only
if A4 E 1. Let 7' be the set of such £ 4-sentences.

- Foratomic formulae, we use Proposition 1.12 so that we don’t have to do any more work.

- The usual arguments tell us that ¢, ) € 7' implies that = € F' and p A € F'. We won't write
this out.
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- Lastly, suppose ¢ is of the form Jyp(y). Because Jyy is an L 4-sentence, we can write p(y) as
¢ (a,y) where ¢’ (21, ...,2,,y) is some L-formulaanda € A™.
Now, in one direction, A4 F ¢ if and only if some b € A such that A4 F ¢(a), so by induction
M 4 E ¢(b), which is implies M E 9, as needed.
To go the other direction, we need to pull a witness down from M to A, which is harder. Suppose
Ma E . Then M4 E (Fy¢'(z,y))(a), from which being realizable grants b € A such that M4 F
¢'(@,b). This sentence is simpler, so by induction we get A F ¢'(@,b), which is equivalent to
A E Jyp(y), as needed. [ ]

Remark 1.73. There is not really anything to do when checking the reverse direction of being realizable:
having b € A such that M E ¢(a, b) of course implies that M E (3yp(Z,y))(a) by choosing y to be this
b € A. The content is the reverse direction where we pull down the witness from M to A.

Now, let the set N be the set of interpretations of constant symbols <™’ for each constant symbol ¢ of £’.
Notably, A C £, and aM' =a,s0a € N,so A C N. Wewould liketoturn N intoan elementary substructure,
for which we use Lemma 1.72.

It suffices to check that NV is realizable. Let ¢(x1,...,x,,y) be an L-formula and (a4,...,a,) € N™.
Suppose M E (Fyo(Z,y))(@). Then M’ E (3yp(T, y)) (@) by choosing the same y, which means M’ E ¢(a, y),
but M’ E Jyp(a,y) — ¢(a,c) for some constant symbol ¢ of L. Combining, we get M’ E ¢(a, ¢). But then
setting d := ™’ (which lives in N1), we achieve M’ k (@, d).

Thus, N is the universe of some elementary substructure A/ < M. We saw that N contains 4, and we
see | N|is at most the size of the constants of £’, which has size |£|+ Xg + | A|. This completes the proof. W

One can also go up, which was essentially Proposition 1.68.

Proposition 1.74. Fix an infinite £-structure M. For any cardinal k > |M| + |L£|, there exists an L-
structure A with cardinality s and M < N.

Proof. Asin Proposition 1.68, let £’ be the language £ where we add constants ¢,, for each « € «, and then
we let 7’ be

Th(Mp) U {ca #cp:a# Bfora, € k}.

We showed in Proposition 1.68 that 7" is finitely satisfiable, so we produce a model Ny of T”. Now, let A
be the set of interpretations of constants ¢o for each constant ¢ in £’. Notably, A contains M, and the map
k — Agivenbya — V0 is one-to-one, so |A| > k. Onthe other hand, | A| has size bounded by the constants
of £’, which has size x + | M| + | £|, which is k, so | A| has size exactly .

Now, by Theorem 1.71, we produce an elementary substructure A" < A containing A. Because M C
N < Ny and M < N (by construction of Ap), so we conclude M < N by chasing our formulae around. W

1.8 September19

Here we go.

1.8.1 An Example of the Back-and-Forth Method

For our example, let £ be a language with one binary relation E, which will be considered to be an equiva-
lence relation. Consider the structure M, with universe (x,y) € N? where z < y, where (z,y)E(z',y') if and
onlyify = v/

We claim that there is another countable model with the same theory. For example, we consider M.,
which is M, with a disjoint copy of N2 x {0} where (z,y,0)E(z’,y’,0) if and only if y = ¢/'. Let's check that
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the theory of M has the same theory of M,,. This essentially follows from compactness (Theorem 1.32)
and Theorem 1.71 to the theory T consisting of the elementary diagram of M, plus the sentences

{Cay # cory = for (z,y) # (2", y)} U{coyEcyry s x,2",y € N} U{cayEcyy : z,2',y,y' € Nwherey # y'},

where we have introduced these new constants ¢,, to an extended language £’. Namely, Theorem 1.32
permits us to find a countable model of this above theory: to see that the above set of sentences is satisfiable,
we note that My is able to model any finite subset of the above theory is only asking for arbitrary many
arbitrarily large equivalence classes, which M provides.

So we produce a countable model M’ of T. We claim that M’ = M,, in the language L. This will use the
back-and-forth method.

Lemma 1.75. Fix everything as above. Then M’ = M,,, where M’ is considered as an £-structure.

Proof. We build our isomorphism via approximations f;: X; — Y; fori € N, where X; € M’ andY; C
M,,. We require thati < jmeans X; C X, andY; C Yj and then f;|x, = fi, and we also want f; to be
an isomorphism of L-strucutres for i > 0. By the end of this process, we will want |,y Xi = M’ and
Uien Yi = M., so that we have a well-defined isomorphism f: M’ — M, at the end. This last bit is going
to be a little tricky. For this, we enumerate M’ = {a;}5°,and M, = {b;}°,, and we will ask that each n have
{aj:j <n} C Xgy,and{b; : j <n} Cim fo,11.

Alright, let's get started. Take fj to be the unique function Xy, — Yy where Xy = Yy = &. One can check
that this trivially works for all of our hypotheses. We now induct in two cases.

« Suppose we have fo,,: X5, — Y5, and we want to produce fa,+1: Xont+1 — Yo,41. The point is that
b, now needs to appear in the range of f5,1. We have the following cases.

- If b, is already in the range, do nothing. In the following cases, we suppose that b,, is not in the
range of f,, already.

— Suppose that b, is not equivalent to some element of im fs,. If b, is in a finite equivalence class,
map it to the corresponding unique equivalence class in M’, which cannot have been chosen so far
because fs, is an isomorphism. If b, lives in an infinite equivalence class, then go find an unused
infinite equivalence class in M’, which is possible because f5,, has finite domain currently.

- Suppose that b, is equivalent to some element &’ € im fs,. By the nature of f, being an isomor-
phism, we are arranging so that the size of the equivalence class of a and f,(a) are always the
same. So the size of the equivalence class of f,,"(b') must have space (even if finite!) because the
element of b,, not being hit so far requires us to have space in the equivalence class of f;,!(¥').

» Going forward the argument is essentially the same just talking in reverse.

Assembling the f, together produces the desired result. |
We now conclude by remarking that The,,, (Mo) = Thg,,, (M), s0 Mo < M,,.

Remark 1.76. We can now define M,, .= MoUNx {0,1,...,n—1} x {0} as a substructure of M,,. One
can repeat the above argument with M replaced by M,, to conclude that M,, < M, again. We con-
clude that My = M,, for each n. In total, we have produced countably many non-isomorphic models.
It turns out that these are all the countable ones.

One might now go back and ask for the number of models of Th.,, (M) of cardinality X;. It turns out
that there are again countably many. The point is that a model M of cardinality X, can be attached the two
invariants

ko(M) == #{[z] € M/E : [x]g has size Ny},

k1(M) = #{[z] € M/E : [x]g has size ¥, }.
One can show that M; 2 My if and only if ko(M1) = ko(M2) and k1 (M1) = k1(M2) by using some set

theory, and then one can produce a model with given invariants o and k; arbitrarily provided that Rgko +
Nlﬂl = Nl.
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1.8.2 Dense Linear Orders Without Endpoints

Let's see another example.

Proposition 1.77. Fix a language £ with a single binary relation <. Then Th,(Q, <) is Xo-categorical.

We should perhaps define Ry-categorical.

Definition 1.78 (x-categorical). A theory T of a language L is x-categorical if and only if T has exactly
one isomorphism class of models of cardinality x.

In fact, we will show the following.
Proposition 1.79. Fix a language £ with a single binary relation <, and let DLO be the following theory,
of dense linear orders without endpoints.
« <isatotal ordering.
» Dense: VaVy(z <y — Jz(x < 2 Az < y)).
« Without endpoints: Vz3y(y < ) and VzIy(z < y).
Then DLO is Ry-categorical.

Note that Q models DLO, so Proposition 1.77 will follow. Anyway, let’s show Proposition 1.79.

Proof of Proposition 1.79. Let Aand B be models of DLO. Enumerate A = {a;};2,and B = {b;}32,, and we
will work in the same set-up as the back-and-forth argument previously described. Namely, we describe a
sequence of compatible isomorphisms f;: X; — Y; where X5, contains {ay,...,a,—1} and Y3,41 contains
{b1,...,bn—1}. Take fy to be the unique function & — .

» Suppose we have fs,_1, and we want to build fs,. If a, is already in the domain of f5,_1, do nothing.
We have three cases.
- Ifa, < zforallz € X,,_1, use that BB has no endpoints to find f(a,) less than everyone in Ya,,_;.
- Ifa, > zforallz € X,,_1, make a similar argument as the previous case.

— Otherwise, find 2,y € Xs,_1 so that z < a, < y, and nothing in X5, lives between z and y;
this is possible because < is a total ordering. Then use the density of B to find some f(a,,) strictly
between z and y to complete.

» To extend fo, to fon41, repeat the above argument in reverse.

Now, assembling our f, produces our isomorphism. |

Remark 1.80. We now might ask how many models DLO has of cardinality 8;. There are apparently
281 many up to isomorphism. Of course, this is an upper bound on the number of models because an
ordering is asking for a subset of X; x X;. So the name of the game now is to produce enough models;
one cannot really hope to precisely describe all the models.
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Example 1.81. It is not too hard to provide two models of DLO of cardinality 8; which are not isomor-
phic. We take M := Rand NV := R; UR,. Here, R; is a copy of R where every element of R, is greater
than any element of Ry, and for any r € R, we will write r; for the copy of 7 in R;.

Now, suppose for contradiction there is an isomorphism ¢: N/ — M. The point is that A/ has a
sequence which “goes to infinity” (in Ry) which still has an upper bound (by R5). To rigorize, we have
the following steps.

1. Considerthe sequence ¢o(11),p(21),...inR, where1y,2,...aretheir copiesinR;. Thisisastrictly
increasing sequence in R, and it is bounded above by (say) ¢(02). Thus, noting that the order
topology on R is just the usual topology, our sequence must converge to some 3 € R. Say o € N/
has ¢(a) = 8. The point is that this a must lie "between” R; and Rs.

2. Indeed, note a > r; for any r; € Ry because p(a) > ¢(r1). Namely, select any integer n; > rq,
and we have g(a) > ¢(n1) > p(r1).

On the other hand, we claim a < ry for any r, € R,. Indeed, otherwise we have « > 75 and thus
p(a) > p(rz), souse p(ny) — ¢(a)asny — oo to find ny such that p(a) > w(n1) > @(r2). But
then ny > r9, which contradicts the ordering on V.

The second step above has produced a € A bigger than anything in R; and less than anything in Rg,
which is a contradiction.

To wrap us up, let’s pick up the following result.

Proposition 1.82. Fixan L-theory T'which is k-categorical for cardinality . If T"has only infinite models,
then T"is complete; i.e., any L£-sentence ¢ has either T'F g or T' F —p.

Proof. Let M be a model of T of cardinality x. Now, for any sentence ¢, if T' = p and T E =, then there is
a model M, and M _ satisfying T'U {¢} and T' U {—}, respectively. By Theorem 1.71, we may bring M
and M_ to have cardinality «, so being x-categorical requires M = M_, which is a contradiction because
then M, = M_. |

Example 1.83. Thus, Proposition 1.79 requires that DLO is complete. As such, the theory DLO must
complete to exactly Th(Q, <).
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THEME 2
ELIMINATING QUANTIFIERS

Freedom is just another word for nothing left to lose.

—Janis Joplin, [Jop10]

2.1 September21

Today, we will go on to some more nontrivial examples.

2.1.1 Algebraically Closed Fields

Consider the language £ with binary operations + and -, a unary operation —, and constants 0 and 1. The
theory of fields has the sentences given by the ones in a standard algebra class.

e VaVy((ze+y=y+a)N(z-y=y-x)).

o VaVyVz((z+y)+z=a+ (y+2)A((z-y) - 2=z (y-2))).
« Va((z + (—2) = 0) A ((—2) + z = 0)).

e Vady(z -y = 1).

o VaVyVz(z - (y+2)=x-y+x-2).

e Va((z+0=2)A(z-1=1)).

- ~(0=1).

To make this algebraically closed, we want every monic polynomial to have a root. For this, we should go
degree-by-degree. For example, for degree d which is a positive integer, we write the sentence ¢4 to be

d—1

Yap ---Vag_13x (md+ad—1$ +Ftair+ao :O) :

Call this theory ACF. Notably, we then have used infinitely many axioms.
As an aside, we note there is no finite set of sentences characterizing algebraically closed fields. Let's
show this.
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Lemma 2.1. Suppose a satisfiable theory T is finitely axiomatizable: there is a finite set of sentences
©1, - .-, ¢n such that M F T for a structure M if and only if M E ¢, for each ¢,. Then there is a finite
subset Ty C T such that M E T if and only if M F Tj.

Proof. The reverse direction is clear by just taking Tj to be our finite set of axioms.

In the other direction, suppose that ¢ = ¢ A -+ A @, axiomatizes T. We now apply compactness
Y =T U{-p}. Note X is not satisfiable because M E T if and only if M E ¢. Thus, by Theorem 1.32, we
see that X cannot be finitely satisfiable. But 7' is finitely satisfiable, so there is some finite subset of the form
To U {—¢} which is not satisfiable.

We now check that Ty does the trick. However, this means that any structure M such that M E T,
requires M E ¢, and conversely, M £ ¢ implies M E T implies M E Tj. Thus, Tj is the needed subset. W

Let's apply this lemma to ACF. Let T be some finite subset of ACF, and we show that Ty is not equivalent
to ACF. Add in any of the field axioms necessary, and we know there is some upper bound N such that Tj is
then contained in the field axioms plus {¢1, . . ., w4 }. To show that Tj is not equivalent to ACF, we construct
afield K/Q which models Tp but not ACF. Well, construct K by a tower

Q=K¢C K, C---,

where K, 11 consists of all numbers which are roots of polynomials in K,, of degree at most N. Then set
K =, K, andwe see K F Tj.

Well, for a piece of algebra, we note that the polynomial f,(z) = 2P — 2 € Q[z] is irreducible for any
prime p. Choosing p > N, we then claim that f,(xz) € KJz] has no root. Indeed, any root would need to
live in some K1 [x], which means that 2P — 2 has some root shared with a polynomial of degree at most N
whose coefficients live in K,,. However, extracting out the necessary coefficients into a field L, we see that
L/Q has degree coprime to p (it's constructed using roots of polynomials of degrees at most N, andp > N
is prime), but then Q[z]/ (z? — 2) C L has degree p, so it cannot possibly be a subfield.

Remark 2.2. The same argument shows that one can finitely axiomatize fields of characteristic 0. We
produce the theory of characteristic-0 fields by adding in the sentences

1+ +1=0
——

p

for each positive prime p. But then no finite subset of these axioms will do because there are fields of
arbitrarily large (but still finite) characteristic.

Anyway, here is our theorem.
Theorem 2.3. The completion of ACF are the theories ACF, where p is a prime or zero, where ACF,,
adds in the condition of being characteristic p (via the sentence 1 + --- + 1 = 0 for nonzeropand 1 +

-+ 1 # 0forall lengths when p = 0).

In fact, we will show the following stronger result.

Theorem 2.4. Fix p to be prime or zero. Then ACF,, is k-categorical for any x > R.

This will be enough to prove Theorem 2.3 by Proposition 1.82 because ACF,, certainly has models of size

Kk > Ng by taking k(x) where & is being used as a transcendence basis. Notably, k(x) has size k + Xy = k.
Anyway, let's prove Theorem 2.4.

Proof with algebra. Let k be the smallest field of that characteristic (the finite field when p > 0 and Q when
p = 0).
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Now, suppose we have two fields K7 and K, which satisfy ACF,, of cardinality x. Now, let X; C K be
a transcendence basis for each i, meaning that X; is a maximal algebraically independent set of elements.
As such, K; is algebraic over F),(X;). Now, |k(X;)| = | X;| + Ro, so taking algebraic closure has k = |K;| =
[k(X;)] + No = | X;| + Ro, so k = |X;]|. Thus, k(X7) = k(X3), so taking algebraic closure enforces K; = Ko
by taking algebraic closure. |

Corollary 2.5. Let U be a non-principal ultrafilter on P. Then we have a field isomorphism

cx]]F,.
u

Proof. By Theorem 1.58, we see that [];, I, is algebraically closed because being algebraically closed field
is held in each factor of the ultraproduct. It remains to compute the characteristic. Well, the sentence 1 +
---+ 1 = 0forany length p fails to hold in all but finitely many of these factors, so we see that the sentence

1+ 4+1#0
|
p

holds in all but finitely many of the factors of our ultrafilter. Thus, the ultraproduct has characteristic 0 by
Theorem 1.58 again, and we see that C has the same cardinality as our ultrafilter, so the result follows by
Theorem 2.4. To compute this cardinality, we note that

[17,
u

One can then embed this ultraproduct into a tree; one uses Theorem 1.58. More generally, one we will be
able to show that | X;| > 2 for some collection {X;};en has [],, X; of cardinality 2%, [ ]

< Njo = 2%o,

Let's improve our proof of Theorem 2.4. We will show the following stronger result.

Theorem 2.6. The theory ACF eliminates quantifiers. In other words, for any formula ¢(z1,...,z,),
there is a quantifier-free formula ¢ (z1, . .., 2,) such that ACF E VZ(¢(Z) <> ¢(T)).

Remark 2.7. The theory of Peano arithmetic does not eliminate quantifiers: there are very complicated
sets that one can define.

There is a proof in Tarski's RAND paper. We are not going to follow it. We are going to do a back-and-forth
argument. To begin, we have the following step.

Proposition 2.8. Fix two algebraically closed fields K; and K of cardinality x > R,. Suppose, we have
an isomorphism f: L; — Lo of subfields L; € K; and Ly C K5 where L; and L, are subfields of
cardinality less than x. Then f extends to an isomorphism K; — K.

Proof. We construct this isomorphism using a back-and-forth argument. Treat « as an ordinal, and enu-
merate K1 = {a, : a € k} and Ky = {b, : a € k}. We will build a sequence of isomorphisms g,,: L} — L?
for each a € « so that g5 extends g, whenever a < 3. We will also arrange so that gy := f and ag € L., and
bs € L2 for each 8 € q; it will also help to have L? always have cardinality less than . If we can do this, we
simply define g: K7 — K> by taking the union of all these isomorphisms.

For go, there is nothing to do. If « is a limit ordinal, then take g, to be the union of the g3 for 8 < a.
Notably, the domain and codomain are the unions of the domains and codomains; of course, this is still an
isomorphism, and it satisfies our necessary property because any 8 < «a has ag and bg in the domain and
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codomain of gz 1, respectively. Lastly, the domain and codomain is an ascending union of sets of cardinality
less than x, which is typically less than x.*

In our last case, take a := 4+ 1. Then we need to tell g5 where to send ag. If ag is already in the domain,
do nothing. Otherwise, there are two cases.

« Suppose that ag is algebraic over L} with monic irreducible polynomial P(x). Passing through gs, we
seethat gs(P(x)) € L[] willfully factorin Ky, and one of the roots cannot have been hit by g5 because
then their pre-images in Lg includes ag already. So send ag to a root not hit yet.

 Suppose that ag is transcendental over L}g. Now, ‘f%‘ = ’L%‘ + Ny < K, so there is a transcendental
element of K notin L3. Send as to such a transcendental element.

For b to go backwards, do the same argument in reverse. |

Corollary 2.9. Fix algebraically closed fields K; and K, and fix tuples @ € K} and b € K%. Then the
following are equivalent.
(a) The structures (K1, @) and (Ko, b) are equivalent in an expanded language.

(b) ki1(a) = ko(B) where ky C K7 and ky C K5 are the prime subfields.

(c) For any quantifier-free formulae 6, we have K & 0(a) if and only if K5 = 0(b).

2.2 September 26

Today, we will give a structural way to look at quantifier elimination.

2.2.1 ATasteof Types

We split our discussion of quantifier elimination into the following lemmas.
Lemma 2.10. Fix £-structures A and B. Further, fixa € A" and b € B™ with n > 1. Then the following
are equivalent.

(a) Forany quantifier-free £-formula ¢, we have A E ¢(a) if and only if B E ¢(b).

(b) Thereis anisomorphism of substructures A’ C Aand B’ C B containing @ and b respectively, and
the isomorphism sends @ to b.

We will prove this in a moment, but we quickly note that it motivates the following definition.

Definition 2.11 (quantifier-free type). Fix an £-structure A and some @ € A™. Then the quantifier-free
type of a, denoted qftp™(a), is the set of quantifier free formulae ¢ such that A E ¢ (a).

Anyway, here is our proof of Lemma 2.10.
Proof of Lemma 2.10. We have two implications to show.

+ We show (b) implies (a). Suppose we have an isomorphism f: A’ — B’ as described. Now, suppose
©(T) is a quantifier-free £-formula with n free variables. Then A’ F ¢(a) if and only if B’ = ¢(b) by the
nature of our isomorphism (see Proposition 1.14). Then this comes down to the substructure because
 is quantifier-free by Proposition 1.12.

1 One needs to do something here in the case that & is a singular.
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« We show (a) implies (b). Define A’ C A to be the set of terms ¢ evaluated on @ as t*(a), and define
B’ C Bsimilarly. We do need to check that A’ is the universe of an £-substructure of A, and the check
for B’ will be similar. Well, we interpret constants (which are terms) exactly as they were interpreted
in A. We interpret functions exactly as they were interpreted in A because terms are closed under
applying functions. Lastly, relations are defined by intersection with A, which is what is needed to
provide a substructure.

We now define A’ — B’ by sending the term t(a1,...,a,) to t5(by,...,b,). We have the following
checks.

- Well-defined and injective: if s and t are terms with s(@) = t*(a@), then this is equivalent to

AE (s(%) = t(Z))(a), which is equivalent to B F (s(Z) = t())(b) by hypothesis, which at the end
is equivalent to s53(b) = t5(b).

— Surjective: any element of B’ takes the form t5(b) for some term ¢, which is hit by t(a).

— Isomorphism: this has many checks in itself. For any constant symbol ¢, we see f (C‘A/) = B by

viewing ¢ as a term which does not care about the input @. Now suppose F' is an m-ary function
symbol, then

F(FAE @t @) = F(FL@), - (@) @)

some term!

= FP(P (D), ..., 15, (D))
= FB (f(tvlét(a% s 7t:741(a))) .

Lastly, let R be an m-ary relation symbol. Then (t{@),...,tA@) € RA ifand only if A’ F
R(ty,... ty) (@) ifand only if A F R(t,...,t,)(@) by Prop05|t|on 1.12, which is now equivalent
to BE R(ty,...,ty)(b) and then equivalent to B’ F R(t1,...,t) (D). [ |

Remark 2.12. The A’ given in the proof above is the smallest substructure of A containing a.

More generally, we might be interested in types.

Definition 2.13 (type). Fix an L-structure A. Further, fix an n-tuple @ € A™. Then the type, denoted
tp”(@) is the set of £L-formulae ¢(T) such that A E ¢(a).

Here is the corresponding result.

Lemma 2.14. Fix L-structures A and B, and further fixa € A" and b € B". Suppose that there are
elementary extensions A" > A and B’ > B with an isomorphism f: A" — B’ sending @ to b. Then
tp*(a) = tp® (D).

Proof. Note that we have elementary expansions Az < A7 and B; < B;. By hypothesis, the isomorphism
A’ 2 B’ sends @ to b, so in fact AZ is isomorphic to B;. Tracking everything through, we see A E ¢(a) if
and only if Az E ¢(a) if and only if AL F ¢(a) if and only if B’ F ¢(b) if and only if B; F ¢(b) if and only if

BE o(b). ]

Remark 2.15. The converse of this result is true, and we will prove it later in this class.
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2.2.2 Backto Algebraically Closed Fields

Let's return to our discussion of algebraically closed fields.

Definition 2.16 (eliminates quantifiers). An L-theory T' eliminates quantifiers if and only if any formula
©(Z) has some quantifier-free formula ¢ (Z) such that T' F Va(o(Z) < ¥(T)).

Theorem 2.17. Say that an £-theory T is “isomorphism-extendable” if and only if it has the following
property: forany models A, B E T with fixed n-tuplesa € A" andb € B™ equipped with anisomorphism
f: A" — B’ of substructures containing @ and b (respectively) which sends @ to b, then any elementary
superstructures A* > A and B* > B have an isomorphism extending f. Then if T" is isomorphism-
extendable, then T eliminates quantifiers.

Proof. Fixaformula¢(Z). Observe that beingisomorphism-extendable implies that@and b having the same
quantifier-free type implies that they have the same type by combining Lemmas 2.10 and 2.14.

For technical reasons, we extend the language to £* to have some new constants ¢; and ¢, for each of
the old constants c¢. Our functions are the same, and we add in one more unary relation U. The point of
introducing £* is to be able to talk about two £-structures of the same type.

Explicitly, given an £*-structure where U contains the ¢;s and the complement contains the ¢;s (and
these are nonempty), then we can restrict to U and its complement to provide two £-structures. Conversely,
given L-structures A and B, we build an L*-structure with universe AL B as follows: interpret the constants
c1 and ¢, as in A and B, respectively. Interpret the values f(@) and f(b) fora € A*andb € B® asin A
and B, respectively, and interpret f(€) for any other € however we wish. One does something similar for
the relations. Notably, the £*-structure, which we call A4, is not exactly the same data as two £-structures
because one has to say what happens on the function and relation symbols when we have not been told by
Aand Balone.

Anyway, let o(Z) be an £-formula, and we expand £* to add in some new constant symbols @ and b. We
now relative to build a new theory. The observation is that, using the construction of the previous paragraph,
there is a function ™ such that A £ ¢(a@) if and only if C F ¢*(@). As such, we adjust T to the theory ¥ be
an L*-theory by adjusting ¢s to ¢1s and cas in the natural way, and we also add in the sentences U(a,) and
—U(bs). Further, we add in the sentences

{o(@) & P ()}

as well as (@) « ¢B(b). This theory is inconsistent by the type discussion at the very beginning of this
proof: we are being promised that @ and b have the same type, but then they disagree on ¢!

Thus, by compactness, there is a finite set ¥ of quantifier-free formulae with the following property for
any models A,B E T witha@ € A" and b € B™: if A F (@) is equivalent to B F 1 (b) for each ) € ¥, then

we must have A F (a) is equivalent to B E ¢(b). We now construct our quantifier-free formula: for each

X C ¥, we define
ox = N\ vn N\ o

YeX PYEW\ X

and we let G be the set of subsets such that there is a model A F T with A £ 3%(¢(T) A 0x (Z)). Then we set
7(Z) to be the disjunction over all the fx where X € G. Note that n(Z) is quantifier-free.

We now claim that T E VZ(7n(Z) <> ¢(T)). Suppose A E T and we have some @ € A with A E ¢(a). Then
we consider the subset X of ¥ such that. 4 F ¢ (a) ifand only if¢) € X. Then Aisin fact modelling ¢ (@) along
with the sentences ¢ (@) for each ¢y € X and then - (a) foreach ¢ ¢ X. Thus, AF 0x (@) A p(a),so X € G,
and T' E VZ(p(T) — n(z)) follows.

We now go in the other direction. Suppose A k£ T'is a model, and suppose we havea € A™ and A & (a).
Then there is some X € G such that A F 0x (@), but being in G promises us amodel B F T and b € B™ with
B E o(b) A 0x(b). Butthen any ) € ¥ has A F ¢ (a) if and only if B F v(b) by definition of §x, so A and B
must agree on o(b). In other words, we conclude A F ¢(@), and we are done. [ |
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Corollary 2.18. The theory ACF eliminates quantifiers.

Proof. We show the hypothesis of the above theorem. Given two algebraically closed fields K and L with
an isomorphism f: K’ — L'’ where K’ C K and L'’ C L are algebraically closed subfields, we need an
isomorphism f*: K* — L* extending f. Aslong as K and L have the same cardinality, we can simply do this
with K = K*and L = L*. In general, with | K| < |L|, we might need to use a transcendence basis to expand
K and take an algebraic closure, and this is an elementary extension because ACF is k-categorical. |

Corollary 2.19. The theory of dense linear order without endpoints eliminates quantifiers.

Proof. Use the theorem. [ ]

Non-Example 2.20. The theory of an equivalence relation with exactly one equivalence class of size each
positive integer does not eliminate quantifiers. To see this, consider the sentence which says that a free
variable z is in an equivalence class of size 2.

2.3 September28

Let's talk about some game.

2.3.1 Ehrenfeucht-Fraissé Games

For today's lecture, let’s discuss Ehrenfeucht—Fraissé Games. Recall the following definition.

Definition 2.21 (unnested). An atomic £L-formula ¢ is unnestedif and only if it takes one of the following
forms.

« Equalities: t; = t; or 2; = c where the t, are variables or constants.
« Relations: R(t1,...,t,) where the ¢, are variables or constants.

« Functions: f(t1,...,t,) = t,+1 Where the t, are variables or constants.

For our discussion today, we let Uy denote the set of finite boolean combinations of unnested atomic for-
mulae, up to provable equivalence (e.g., we don’t want to include ¢ A ¢ from ¢), and we inductively set U,, 1,
to be finite boolean combinations (again, up to provable equivalence) of formulae of the form 3zt where
v € Uy, and z is a variable.

Proposition 2.22. Fix a finite language £. Then for each n and m, there are only finitely many formulae
in U,, with the variables z1, ..., z,, (up to provable equivalence).

Proof. Fix m, and we induct on n. We start with n = 0. For number unnested atomic formulae is finite
because the problem is just combinatorics to count sentences of each type. As for the boolean combinations,
we note that the boolean algebra generated by a finite set is finite, so there are only finitely many classes up
to provable equivalence. Then to go up, we place 3z, or not in front of each formula, so there continue to be
only finitely many formulae, and the boolean algebra generated continues to be finite, so we are okay. N

Our observation, now, is that every £-formula is equivalent to some formula in one of the U,,.
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Proposition 2.23. Fix a language £. Then any £-formula ¢ is equivalent to some ¢ € U,, for some n.

Proof. It suffices to check this for atomic formulae; all other formulae follow by adding enough quantifiers
and taking boolean combinations. Here are our cases.

« Take sentences of the form t; = t5. We now have to induct on the complexity of the terms. If we
have an equality of variables z; = x; or an equality z; = ¢ for constant ¢, there is nothing to say. If we
have ¢ = x;, then this is equivalent to the unnested formula xz; = c. Lastly, ¢ = d is equivalent to the
sentence Jz(x = c Az = d).

Now if we have something of the type t; = f(s1,. .., sn), then by induction, we can achieve any of the
formulae x,,11 = t; and z; = s; for each i where the x, are variables. Sot; = f(s1,...,s,) is equivalent
to

n
dzq - Jzy, (/\zisi/\xn-‘rl =11 A ZTpt1 f(xlw-'axn))'

i=1

This induction completes this case.

» For relations, one does essentially the same trick. If we have R(t1,...,t,), we simply look at the sen-
tences x; = t; combined with R(x1,...,z,), reducing to the previous case. [ |

Now let's play a game. Fix a language £ with two £-structures A and 3, and we fix a natural number n. The
game EF, (A, B) of length n is played as follows.

+ Player | picks A or Band chooses some a; € Aorb; € B. Then Player Il chooses an element b; € B or
a1 € Afrom the opposite universe to the one Player | chose.

» Then the above move is repeated until we have two n-tuples (a1, ...,a,) or (by,...,by).

« Player Il wins if, for any unnested atomic formula ¢(z1,...,2,), we have A F i (a) is equivalent to
B E 1(b). Otherwise, Player | wins.

Roughly speaking, Player | wants to make A and B look different, and Player Il wants them to look similar.
We write A =™ B to mean that Player |l can win the E'F,, game.

Example 2.24. Fix the language £ = {<}, and take A to be w + w*, where the w* means we have con-
catenated w on top of w* but in reverse (so that 0* is the largest element). We then let B be the set
{0,1,2,...,6} for some natural m, and we play the game. Player | can win the game in four moves, but
Player Il can win in three moves.

Here is our result.

Proposition 2.25. Fix a finite language £. For each n and structures A and B, Player Il has a winning
strategy in the E'F,, (A, B) game if and only if A F ¢ is equivalent to B E v for all sentences ¢ € U,.

Proof. We prove this by induction on n, but the inductive hypothesis will allow A and B to vary. At n = 0,
we are asking for A E ¢ if and only if B E ¢ where ¢ is an unnested atomic formula, so Player Il wins if and
only if this is satisfied.

For our induction, suppose n, and we get n + 1. There are two implications to show.

+ Inonedirection, suppose Player Il has a winning strategy. Suppose Player | has picked a; € A (without
loss of generality). Then Player Il responds with some b; € B according to the winning strategy. Now,
the rest of the gameis a length n game |n the language £’ expanded by a constant symbol ¢ with the
structures A’ and B’ have ¢" = a; and ¢® = b;. So we are now playing EF, (A’, B'). So Player Il has
a winning strategy in EF,,11(A, B) if and only if, for alla € Ay, there exists b; € B such that Player ||
has a winning strategy in EF,,(A’, B'). Anyway, by the induction, we get A’ =" ' in L'.
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We now show that A ="*! B. Thus far we are given that A’ E v ifand only if B’ F v forany £’-sentence
¥ € U,. We now do our check. Fix a sentence 6 € U, of the form 3z, where ¢ € U,,. Then AE 0 is
equivalent to having some a; € A such that A E p(aq). Let by be the resulting choice of Player Il. But
now using our hypothesis at the beginning of the paragraph, we achieve A’ E ¢(¢), so B’ F ¢(c), so
B E ¢(b1). The reverse implication is similar.

« Conversely, suppose that A F ¢ is equivalent to B E ¢ for all sentences ¢ € U,,. We give a winning
strategy for Player Il. Let's say a; € A is chosen by Player I. Let ¥ be the set of formulae ¥(x;) € U,
with at most (n + 1) variables such that A E ¢ (a; ), which is a finite set up to provable equivalence by
Proposition 2.22. It is important that U is finite because now

AF 3y )\ ().

Ppew

This formula lives in U, 1, so by hypothesis, we get

B ': E|$1 /\ w(xl),
Yew
sowe get b; € B satisfyingall BE ¢(b;) fory € 0.

Now build £’ and structures A’ and B’ as before. We claim that A" E ¢ if and only if B’ F ¢ for all
L'-sentences ¢ € U,. Indeed, simply view ¢ as an £-formula ¢(z) by extracting out the constant ¢
and replacing it with ¢, and we see A’ F ¢ is equivalent to A F $(ay), which is indeed equivalent to

BE @(by).
Now by induction, Player Il has a winning strategy in the game EF,,(A’, '), which is equivalent to
winning the original game, as discussed in the previous implication. |

Corollary 2.26. Fix a language £. Then A = B if and only if, for all finite language £’ C £, we have
A‘Ll =S B|£/.

Proof. Playthe above game. Note A = Bif and only if they satisfy the same formulae, which is equivalent to
having A|.. = Bl forallfinite £’ C £ because any formula will only contain finitely many symbols. Then this
is in fact equivalent to satisfying the same £’-sentences in U, for all n, which finishes by Proposition 2.25.

]

Remark 2.27. Here is a challenge problem: for which m and n does Player Il win the game of length n
between the groups Z and Z/mZ? There does exist some n such that Player | will always win this game.
Approximately speaking, one needs a sentence true in Z which is false in the Z/mZs.

2.4 October3

Let’s play the game to start off the class.

Example 2.28. We work with ordinals in the language £ = {<}.

« We play with g = sup {w,w®, ...} and 2. Then Player Il loses after, say, 2 moves: Player | selects
anything, Player Il selects (say) 0, and then Player | chooses something smaller than what they
chose in .

« We play with g and w;. Then Player Il can always win. The point is that there is some kind of
finite-length back-and-forth argument
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2.4.1 Real Closed Fields

Let's discuss real closed fields because they, in some sense, will tell us that Euclidean geometry is decidable
(approximately speaking). Our language will be the language £ = {+,—,-, <,0, 1} of ordered rings. The
theory of ordered fields OrdF1d is axiomatized by writing the axioms for fields, for a total order, and requiring
that addition and multiplication respect this ordering. We won't bother writing down the first two lists of
axioms, but the third list is given as follows.

s Ya¥bVe((a < b) = (a+c < b+c)).
e Vav¥bVe(((a <b) A (c>0)) = (a-c<b-¢)).

So we have a finitely axiomatized our theory OrdF1d.

Example 2.29. Any subfield of R will do is a model.

Example 2.30. We can use compactness to provide a model of R with an element larger than any other
element but the same cardinality.

We will be actually be interested in the theory RCF of real closed fields, which is the theory OrdFld plus the
intermediate value theorem for polynomials. This is an infinite list of axioms, approximately saying that, for
any model R with universe R, and polynomial f € R[z] with inputs a,b € R such that f(a) < 0 < f(b) has
some ¢ € Rsuchthat f(c) = 0.

To write this out, we choose a degree of n and write down the sentence

Vag - - Va,Va¥b( ((a < b) A (aga’ + -+ + ana™ < 0 < agh® + -+ + apb™))
—3e(a<c<bAapd + - +anc® =0)).

We cannot finitely axiomatize these sentences using an argument like Lemma 2.1.

Remark 2.31. Any ordered field (R, +, —,0,1, <) has (R, <) satisfying DLO. We know that we are a
linear order, we have no endpoints because z+—1 < © < x+1forantz € R, and we are dense because
x < %ﬂ’ < yforany z,t € R. Note that checking z < x + 1 (for example) requires knowing that 0 < 1,
which is a nontrivial fact on its own (one should use trichotomy and rule our 0 = 1 by fields and rule our
0 > 1 because this would imply —1 > 0 and then 1 > 0 by squaring). There are lots of these nontrivial
facts (e.g., we also want to know 0 < 1/2 < 1), but we won't bother to show this.

For ordered fields, there is an order topology, and one can show that various functions like + and - and
polynomials are all continuous.
We will define the function |-| : R — R given by
2] = +z ifz >0,
T )-2 ifz<o.
Now, if z < 0, then —z > 0 by subtraction, so we see that || > 0 forall z # 0. The standard casework is also
able to prove the triangle inequality |z + y| < |z|+|y| by some casework. If both nonpositive or nonnegative,
then we have equality, and if they have different signs (say, z > 0 > y without loss of generalityand |z| > |y|),

then we are looking at x + y < x — y, which is true.
For notation, we will also want the function sgn given by

+1 ifx >0,
sgn(z) =10 ifz=0,
-1 ifz <0.

Now, one is able to check the following, which tells us that polynomials “go off to infinity.”
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Proposition 2.32. Fix an ordered field R and a polynomial f(z) € R[z] of positive degree d, written

d
flx) = chxd
=0
where ¢4 # 0. If
=
z>1+— lei] s
ed &5

thensgn f(z) = sgncy.

Proof. Boring bounding. Note

d—1
- ) d G d
sgn f(x) = sgnegy - sgn (J; —&—;Cdaz ),

so by scaling down, it is enough to consider the case where ¢; = 1.

As an aside, we note thatany x > 1and nonnegative integer n willhave ™ > z, which is true by induction
because z""*! > 2™, where our base case is z! = 2 > 1 = z°. With this in mind, we see that x satisfying the
desired inequality will have

d—1 d—1 d—1
2=z 2?1 > Z lei| x971 > Z lei| z* > Z —ca,
i=0 i=0 i=0

so f(x) > 0follows. [ |

Corollary 2.33. If R is a real closed field and a > 0, then there exists b > 0 such that b? = a.

Proof. If a = 0, set b = 0. Otherwise, consider the polynomial f(z) := 22 — a. Note f(0) < 0, and Proposi-
tion 2.32 tells us that f(1 4+ a) > 0, so the intermediate value theorem for polynomials tells us that there is
some b such that f(b) = 0, s0 b? = a. [ ]

Corollary 2.34. If R is a real closed field, then any polynomial f(z) of odd degree has a root.

Proof. Write

where d is odd and ¢; # 0, and let N = 2 + ﬁ Zf;ol |c;]. By Proposition 2.32, we have N such that
sgn f(N) = sgncg, and we see similarly that the polynomial f(—z) will now have sgn f(—N) = sgn(—cq).
Thus, f(N) and f(—N) have different signs, so the intermediate value theorem for polynomials grants f a
root. ]

The above two corollaries turn out to characterize real closed fields.

Remark 2.35. We can now remove the ordering from our real closed fields by declaring that squares are
exactly the nonnegative elements. It is in general an interesting question when we can give a field an
order; for example, —1 cannot be a sum of squares because —1 < 0. This turns out to be good enough
to make a field orderable!
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2.5 October5

Here we go.

2.5.1 Quantifier Elimination via Back-and-Forth

Our goal is to show that RCF eliminates quantifiers and is thus complete. Here will be our test.

Proposition 2.36. Fix an £-theory T. Then T' is complete and has quantifier elimination if the following
two properties hold.

(i) Thereis a “prime” structure: there is an £-structure A such that any model M E T has an em-
bedding A C M.

(i) Extension: for any two models M and A with an isomorphism ¢: My — Ny between substruc-
tures My € M and Ny C N, then any chosen element a € M has an extension g: M’ — N’
extending f where a € M’ C M and A is a substructure of an elementary extension N'* of \V.

Proof. We Wlll show that (ii) implies that there are elementary extensions M < Mand NV < N with an iso-
morphism f: M = N extending f. This is a back-and-forth argument, using (ii) to extend our isomorphism
one element at a time.

We build a chain of models M = M° < M! < M2 < --- and V' := N0 < N! < N2 < ..., and M and
N will be the union of the chains. Roughly speaking, the idea is to construct our models W|th fl, fa,...into
the following diagram.

P
/\L /fs/\l (2.1)
%!

Let's begin by exhibiting f;. Enumerate M = {my, : a € x} where x = |M|. Now, we write down our maps.
(a) Setgo = f.
(b) We will have a map go: A, — N2, where mg € A, forany 3 < a.
(c) If @ < Barein k, then we require A, € Ag € Mand N° < NV < V.

Then taking the union of the g, will produce the needed map M° — A!, and reversing the picture produces
Nt — M!, and we can keep going up the chains.
Anyway, let's construct our g,. We have already defined gq.

+ Suppose we have defined g,,: A, — N2, and we want to get to a successor ordinal g, +1. Then (ii) using
the single element m,,; € M9 on the morphism g, provides us with an extension go41: Aatr1 —
N2, wherea € Ayr1 € Mand N2 < N2. So we are done.

« On limit ordinals, we just take a union. If « is a limit ordinal, then we get to suppose that we have
defined gg for all 5 < «, and we define

A, = U Ag and NO = U NY,

B<a B<a

and we satisfy all the needed hypotheses by how chains work.
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Alright, so we have constructed our map f1: M® — A by taking unions of the above g,s. We can repeat
this process to produce the maps f. and then go up the chain (2.1) to complete the argument. Namely, going
up the chain tells us that we get embeddings in both directions whose compositions are the identity, so we
do have an isomorphism. Thus, Theorem 2.17 tells us that T eliminates quantifiers.

It remains to check that T" is complete, which is where (i) will appear. Fix models M and A of T.. Now,
our prime structure A embeds into both M and A/, whose images we will call A; and As. Now, the above
result tells us that we can extend this isomorphism of substructures to an isomorphism of elementary su-
perstructures M — N.Thus, M = M =N =N, so ThM = ThN, which produces completeness. |

Remark 2.37. Professor Scanlonis lightly considering putting the following weak form of Keisler—Shelah
on the exam: if A = B, then there is a direct limit of ultrapowers of A and B which are

Remark 2.38. More generally, the above proof shows that we can complete a theory T which eliminates
quantifiers by adding in the diagram of any particular substructure of a model 7.

2.5.2 Backto Real Closed Fields

Let's use Proposition 2.36.

| Theorem 2.39. The theory RCF eliminates quantifiers and is complete.

Proof. Let's start with the prime structure.

Lemma 2.40. The theory RCF has a prime structure.

Proof. The integers Z as an ordered integral domain is contained in any ordered field, so it works as our
prime substructure. |

Now for the hard part. Fix real closed fields R; and R, with an isomorphism of substructures f: A; — As,
and choose some a € R;. We would like to extend f up to a. Note that there is some content in deciding
how to extend A; to a domain of f.

For example, note that .4; and As as substructures of a field must be an integral domain, and so of course
we note that f can be extended to Frac A; — Frac As as a field homomorphism. Additionally, note that this
extension also to the fraction field also respects the order: it suffices to note that f will respect positivity,
so we note sgn f(a) = sgna forany a € Ay, soa/b € Frac A; being positive implies sgna = sgnb and so
sgn f(a) = sgn f(b) and so f(a)/f(b) is positive. In total, we may assume that .4; and A, are ordered fields.

Next up, we may assume that the degree of the field extension [4; (a) : 4;]is minimalamongthe degrees
[A1(a’) : A1]fora’ € Ri\ Ay and [A3(Y) : Ag]ford € Ro\ As. The pointis that we can deal with the elements
a’ and V' one at a time, starting with the smallest possible degree, and this is okay because we can take a
countable union, and the total number of elements to deal with are countable over 4, and the number of
degrees is also countable.

Now, if a is algebraic over Ay, then let p be its minimal monic polynomial over A;; if o is transcendental,
take p = 0. Now, define

Cut™ (a/4;) ={a € A1 :a<a} and Cut(a/A;) ={B € Ay :a <}

If a is algebraic, then both of these sets are nonempty: Proposition 2.32 grants us a number N, € A; such
that |z| > N, will have p(x) # 0in any ordered field, so |z| > «.? Now, we note that we have the chain of

2|f ais transcendental, one can in fact have a bigger than anything in A;. For example, compactness provides a model of RCF which
is just R, and then we add in an element bigger than anything in R.
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isomorphisms

To continue, we need to place a inside As,.

Proposition 2.41. Fix an ordered field R. Given a polynomial F(z) € R[z] and d € R, if F'(d) > 0, then
there exists b < d < csuchthatb < z < d <y < cimplies F(z) < F(d) < F(y).

Proof. We are basically trying to show that F'is locally increasing. Now, we acknowledge that any polyno-
mial F(z) € S[z] will have
de

0
<

F(X+Y)= %F(Z)(X)YZ.
=0
Then
deg f 1 4 4 deng(z) d ‘
F(y) = F(d) = F'(d)(y — d) + Z 5F(”(d)(y—d)z = F'(d)(y — d) <1+ 3 e d ),_1)

Repeating the computation Proposition 2.32, one sees that |y — d| being sufficiently small makes the sign
of the bit in parentheses positive, so sgn(F(y) — F(d)) = sgn(y — d), and we complete the argument. |

We will complete the proof next class. |

2.6 October10

The examisina little over aweek. Exercises will be focused on content covered in class (and harder exercises
will be chosen from there), but it is possible to be asked about other topics in Marker. Some exercises on the
midterm will be taken from exercises assigned to us.

The class began by showing that

2.6.1 Backto Backto Real Closed Fields

For the time being, take a to be algebraic. We claim that there is o € Cut ™ (a/A;) and B € Cut™ (a/A;) with
sgn(P(a)) # sgn(P(3)), which is a sign change that we will be able to push over to R, in order to produce a
root over there. Well, note P’(a) # 0 because we are in characteristic 0, so everything is separable. We take
P’'(a) > 0; otherwise simply reverse all signs. Then Proposition 2.41 grants b < a < cwith P(z) < 0 < P(y)
whenever b < x < a < ¢ < y, but technically the argument only gives b,¢ € R;, and the same holds for
everything between.

It remains to bring these down to A;. For this, we use the following lemma.

Lemma 2.42. Fix a real closed field R. For Q[z] € R[z] and o < B with Q(a) = Q(8) = 0, there is
v € [, B] suchthat Q'(v) = 0

Proof. If Q'(a) = 0 or Q' (8) = 0, there is nothing to do. Now, if Q'(a) and Q'(8) have different signs, R
being a real closed field grants us our ~.

Lastly, suppose Q'(«) and Q'(8) have the same sign. Without loss of generality, make both of them
positive. Then thereise > Osuchthata < a+¢ < 8 —¢ < such that havinga < v < a + ¢ implies
Q(v) > 0and having 8 —e < v < Bimplies Q(v) < 0. So @ has another root strictly between aand 3, so we
replace 8 with this root 5’

Namely, check if @'(8’) < 0, we get our root of Q’; otherwise, we repeat the process for [a, 5] to get yet
another root 8”. This process must eventually terminate because @ can only have finitely many roots, so we
get our needed root of Q. |
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Now, choose a € Cut™ (a/A;) and 8 € Cut™(a/A;). For concreteness, list the roots of P(z) asa; < as <
.-+ < ap, and suppose a = a; forsomei. Now, set A := «aifa = a; orinstead aroot of P’(x) between a;_; and
a; = a of i > 1. Similarly, set u := S if a = a,, orinstead a root of P’(x) between a; and a;11 if i < n. (These
exist by the above lemma.) Notably, A and p are at worst roots of polynomials of P/, which has degree less
thana, so A\, u € Ay!

As such, we have A < a < pwith A, 4 € A;. Note that P(\) and P(u) have different sign: certainly these
are not roots, so we have sign in {#1}, and if they had the same sign, say they are both of sign P/(a), then
P being locally strictly monotone at a will produce a root either between A and a or between a and p, which
contradicts the construction of A and .

The point is that the data (P, A, ) uniquely determine a, and these are data we can push through the
isomorphism f: A; — As. Namely, the sign of P(\) and P(u) continue to be different after passing through
our isomorphism, so the intermediate value property in Ro grants us some b € Ry between f(\) and f(u).
So we get an isomorphism of fields

We will later upgrade this to an isomorphism of ordered fields, which will complete the argument in this
case.

Before running this check, though, let’s take care of the transcendental case. Add a new constant symbol
b to our language. We claim that

elDiag(Ra) U {f(a) < b:a € Cut (a/A1)}U{b< f(B): B € Cutt(a/A1)} (2.2)

is satisfiable. It's enough to check that this is finitely satisfiable. Upon using the linear order in Ay, it is
enough to check that there is %2 € R, with f(a) < b®2 < f(B) for some a € Cut™ (a/A;) and B €
Cut™(a/A;), for which %(a + ) will do. Now, let RS model (2.2); by construction, Rz, and we let b de-
note the interpretation of the corresponding constant, and we get an isomorphism A;[a] = A,[b]. (Note
that we can promise b is also transcendental because of yet another compactness argument avoiding the
root of any polynomial.) Now choose some A\, u € A7 sothat A < a < y, provided they exist.

We now check that our field isomorphism A;[a] & As[b] extends to an isomorphism of ordered fields.
Well, forany Q € A;[x] such that deg @ < deg P (take deg P = +o0 in the transcendental case), we need to
check that sgn Q(a) = sgn Q(b). Quickly, if a > A; always, then the sign of Q(a) is the sign of the leading
coefficient (we have gone off to infinity), and f(a) > A also, so the sign of Q(b) is also the sign of the leading
coefficient. The case of a < A, is similar.

Now, we may recall that we have some extra information A and . Certainly Q(a) # 0 because deg Q <
deg P. Without loss of generality, we take Q(a) > 0. Now, all roots of @ will live in A; by our induction, so
we let A\g denote the maximum of X and also all the roots y of Q) with y < a, and we construct pg dually as a
minimum greater than a. Now, @ has no roots between A\ and 1. by construction, so the intermediate value
property promises that Q maintains sign over this entire interval, and this signis the sign of Q((Ag+1¢q)/2) €
A;. The same holds over in A, and we note that this sign will agree with Q((f(Ag) + f(1@))/2) € Az. So
the sign of Q(a) is the same as the sign of Q(f(a)).

2.6.2 o-Minimality

In life one might want explicitly eliminate quantifiers, perhaps with few quantifiers and modest complexity.
For this, one can use cell decomposition.
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Definition 2.43 (o-minimal). A theory T in a language £ extending the language of ordered sets is o-
minimal if and only if the following conditions are satisfied.

1. T restricted to the language of ordered sets is equivalent to DLO

2. Any model R E T with an Lz-formula ¢(x) has some partition —co = ag < a; < -+ < a, = +00
and subsets I C {1,2,...,n—1}and J C {0,...,n} such that

REp+ \/mzai\/ \/(ai<x<ai+1)
il jeJ

Remark2.44. Aboolean combination of sets of the form points plus intervals willagain then be aboolean
combination of sets plus intervals. So if T eliminates quantifiers, we may as well assume that ¢(z) is
quantifier-free and hence atomic for the second check.

2.7 October12

The exam is in a week. I'm probably going to fail.

2.7.1 More on o-Minimality

Let's check something.

Theorem 2.45. The theory RCF is o-minimal.

Proof. We already know that any model restricted to the language of ordered sets is a dense linear order. So
we need to check that the definable subsets of a model R F RCF given by a one-variable £Lz-formula ¢(x)
has the partition as needed. By quantifier elimination, we may as well assume that ¢(z) is quantifier-free, so
upon taking boolean combinations, we may as well assume that ¢ (z) is atomic. Well, we note that an atomic
formula is equivalent to one of the form f(z) > 0 or of the form g(x) = 0 where f and g are polynomials; the
point is that a general atomic formula is “a term equals or is bigger than some other term.”

« Inthe case g(z) = 0, we are looking at either a discrete set of points or all of R, both of which are of
the needed form.

+ Inthe case f(z) > 0(where f is nonzero), we note that the intermediate value property has that f(x) >
0 is the union of some intervals whose endpoints are roots of f(x). Explicitly, enumerate the roots as
a1 < ag < --- < ap, and we note that f(x) > 0 for some = between a; and a;11 implies that the entire
interval will have f(x) > 0, and sign changes for f can only take this form.

The above checks complete the proof. |

We should probably prove the fundamental theorem of o-minimality, which is cell decomposition. This
requires the notion of a cell.
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Definition 2.46 (cell). Fix a model R of an o-minimal theory T. Then a cell is defined as follows.
* AO-cellis a point.
« Al-cellin R is a set of the form (a,b) where —oco < a < b < 0.
« Fromn, an (n + 1)-cellin R"! is a set of one of the following forms.

— We can have
{(x1,. -y xn,y) : (21,...,2,) € Xandy = f(x1,...,2n)}
where X C R™isann-celland f: X — R is continuous and definable.
- We can have (—oo, f)x or (f,g)x or (g,00)x where

(fvg)X = {(mla"'axnvy) : f(f) <y<f(y)}

where X isann-celland f,g: X — R is continuous and definable with f(Z) < ¢(Z) always
(where (—oc0, f)x and (g, 00) x are defined analogously).

- Lastly, we can have all of R™.

Remark 2.47. An induction shows that n-cells are homeomorphic to open n-balls when R is R F RCF.

We can now define a cell decomposition.

Definition 2.48 (cell decomposition). Fixa model R of an o-minimal theory T'. Then a cell decomposition
C of R™ is a finite set of cells in R™ such that

R":Uc.

ceC

Anyway, here is our theorem.

Theorem 2.49. Fix a model R of an o-minimal theory T..

(a) Given afinite collection X1, ..., X,, € R" of definable subsets, then there is a cell decomposition
C of R™ such that each X, is a union of some of these cells.

(b) Any definable function f: R™ — R is piecewise continuous. In other words, there is a cell decom-
position C of R™ such that f is continuous upon restriction to each cell.

Remark 2.50. The above theory is true even if we only assume that R is o-minimal, which lets us prove
that 7" is then o-minimal! We will not prove this stronger notion because it would take more time than
we want to spend.

We will prove (a) and (b) essentially simultaneously by some kind of awkward induction.
To get us started, we need the following lemma.

Lemma 2.51. Fix a model R of an o-minimal theory T. Given some Lz-formula ¢(z,y1,...,yn), there
is a bound B (depending only on ¢) such that

#0{a € R:RF ¢(a,b)} < B

forany b € R™.
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Proof. Note that T is o-minimal implies any definable subset X’ of a model R’ E T has 0X equal to a finite
set of points; namely, choose the formula ¢(z) defining X’, and then use the hypothesis so that X’ becomes
a set of points plus some intervals, whose boundary is just a finite set of points.

Now, to continue our proof, fix some b, and define X; C R to be the set defined by ¢(xz, b). We note that
0Xz is definable as saying that y € Xy ifand only ify € X7 andy € R\ X3. However, we can describe the
closure of a definable set X (defined by ¢ (x)) by saying that any interval around y € R hits X, which can be
said as

Vy-Vyr (- <y <yy) = Io((y- <z <yy) = P(2))).

Intersecting, we can define our boundary.
Now, if the lemma were false, then the theory of

elDiag R U {#0X; > N},

where b have been taken to be some new constants, is finitely satisfiable and hence satisfiable. So compact-
ness provides an elementary extension R’ where #0.Xj5 is infinite, which contradicts our initial hypothesis.
Notably, R’ will still satisfy T because R < R'. [ |

Remark 2.52. If we only took R to be o-minimal instead of the full theory, then the above lemma is
actually the hardest part of the proof. Notably, we used that the theory is o-minimal at the end of the
proof.

Remark 2.53. This is essentially the typical use of compactness: we know that some value is always
finite, so it cannot be arbitrarily large lest compactness enforce infinity.

Alright, let's start proving Theorem 2.49.

Proof of Theorem 2.49 atn = 1. We show (a) and (b) separately. For (a), this is essentially the statement of
o-minimality. Each of the X, is a finite union of points or intervals whose endpoints live in X,, so we take

Write F = {a1,...,a,—1} Witha; < a1 < -+ < ap—1,and add in @y == —oo and a,, := oo. Then our cell
decomposition is F plus the intervals (a;,a;+1) for each i. Then we can write X, as required as points or
unions of intervals from points in 9.X,, so we are done.

Now, (b)is harder. Let f: R — R is definable. We will actually show that f is actually piecewise continu-
ous and either constant or strictly monotone; i.e., there is a cell decomposition C such that f|. is continuous
and either constant or strictly monotone. The point is that continuity (and monotonicity) can be expressed as
a first-order sentence, so this should approximately happen only finitely many times. Anyway, we proceed
in steps.

1. We begin by noting that continuity is actually implied by other assumptions. Suppose f: R — R is
definable is piecewise strictly monotone or constant; then we claim that f is piecewise continuous. If f
is constant on a cell, then f is of course continuous there, so we just need to worry about being strictly
monotone. Also, if the cell is a point, there is nothing to do.

So without loss of generality, let I := (a, b) be aninterval on which f is strictly increasing, and we need
to show that we can finitely subdivide the interval to make f continuous. Now, the main point is that
f(I) is definable, defined by the sentence ¢(y) = 3z f(x) = y, so o-minimality tells us that it is a finite
union of points and intervals. Further, f is strictly increasing and hence injective, so f(I) is infinite, so
f has some open intervals in this image.

Now, it is enough to check that f is discontinuous at only finitely many points. Well, if f were dis-
continuous at infinitely many points, we note that the points of discontinuity is definable and hence a
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finite union of points and intervals, so f will actually be discontinuous everywhere in an interval inside
1. Re-applying the above logic to this new smaller interval, so f is discontinuous everywhere on I even
though f(I) has some intervals in its image.

Now, let J' C f(I’) is an interval, and we want to show that f is continuous. Well, suppose f(z) € J'.
Thenforanye; < f(z) < e2 where (e1,£2) C J’, we choose §; = f~!(g;) for each i, and monotonicity
implies that 6; < 2/ < d9 impliese; < f(2') < €3, as needed.

We will complete the proof next class. |

2.8 October17

There is an exam on Thursday. It will be about four or five questions similar to ones on the homework but
hopefully of the more reasonable kind (namely, solvable in something like 20 minutes).

2.8.1 The Cell Decomposition Theorem

Let’s continue the proof from last class. We continue with our definable function f which we are trying to
show is piecewise constant or strictly monotone.

2. For notation, let A(x) be a function outputting + if f is locally increasing to the left of z, — if f is locally
decreasing to the left of x, 0 if f is locally constant to the left of z, and x otherwise. We define u(z) to
the needed right versions of these properties. This produces 16 cases for the pair (A\(x), u(x)).

Quickly, we argue that « is in fact never outputted; this follows from o-minimality. By symmetry, we
might as well argue this for \. Define p(y, z) to be < or > or = depending on how y and z relate.
Now, if A(z) = %, then any 6 > 0 produces y and z between = — ¢ and z such that p(f(y), f(z)) #
p(f(2), f(x)). This allows us to build ascending sequences {y;}32, and {z;}32, (always less than z)
such that p(f(v:), f(2)) # p(f(2:), f(z)) always. By the pigeonhole principle, we may reduce to a sub-
sequence so that p(f(y;), f(z)) and p(f(z;), f(x)) are each constant and not equal. However, the de-
finable set

{y <z :p(f(y), f(x)) = p(f(y:), f(x)) for each i}

cannot be the union of finitely many intervals because the sequence {z;} puts infinitely many holes in
it around z. Explicitly, any interval containing infinitely many of the y, (which must be possible by the
pigeonhole principle) will also contain infinitely many of the z,.

So we have left to deal with the 9 cases for (A(z), u(z)).

3. Continuing, by o-minimality, we may decompose R into intervals and points so that A and p are both
constant on these intervals, essentially using all 9 cases. Let I be such an interval upon which A and
are constant. We would like to show that A and x are the same on I. Looking locally, we may as well
assume that [ is a bounded interval.

For example, take A(z) = 0 on I; a similar argument works if ;(z) = 0. We claim that p(z) = 0 for
eachz € I. Then we get § < x to check constant to the left of =, we may as wellassume that§ € I, and
we are promised that f(y) = f(z) for all y between § and z. Now, choosing any z > ¢ > y such that
p(f(2), f(y)) corresponds to u(y) for any y < z, which is doable because p is constant in this region.
But then f(z) = f(z) is forced because § < z < z, and f(z) = f(y), so f(z) = f(y), sou(y) =0
follows. But y is constant on I, so i vanishes everywhere on 1.

Next up, suppose \ is 4+ on I but x is — on I; in other words, every point is a local maximum!® The
other cases will be analogous. We claim that for all sufficiently large z, there is some y > x such that
f(y) > f(z). Well, let B be the set of allz € I such thatally > x have f(y) < f(z). Now, if our
claim were false, then B would have infinitely many elements and hence contain an interval. But then
looking locally at some point in the interval would require that A(y) = —, which is a contradiction.

3 This is weird but not immediately a contradiction: the function @ — Q defined by p/q — 1/q (where ged(p, ¢) = 1and ¢ > 0) has
every point as a local maximum. We will have to use o-minimality.
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So because we worked with x large enough, we might as well replace I with an interval upon which the
claim was true. We now claim that each € X and y sufficiently larger than z will have f(y) > f(z).
Well, consider the set

Bi={y>z: f(y) < f(x)}.

Because 1 is constantly —, this set is nonempty; similarly, the complement is nonempty. Further, the
set is certainly definable, so we may let z denote the largest boundary point. If f(z) > f(z), then one
finds that f(x) > f(u)for some u close but below z, say above § < x. But then an interval consisting of
elements from ¢ to a little above 2z does not live in the complement of B, so z is in fact not a boundary
point. (Namely, everything after z needs to be less than f(z).)

Assuch, f(z) < f(z). By the previous claim, we produce w > z such that f(z) < f(w). Further, if there
is 0 < z such that each u between § and z such that f(u) < f(z). But then any v between z and u has
f(v) < f(z), so again B contains points beyond z, which is a contradiction.

Similarly, if one has f(v) > f(x) forallv > z, then because p is 4+ on I, we see that the set of all v such
that f(v) = f(z) must be finite, so thereist > z such that u > ¢ implies f(u) < g(z).

We are now ready to define a function 8: I — I sending x € I to the least element of the set B,
consisting of y > x such thatall z > y has f(z) > f(x), which exists by what we've just shown.
Quickly, note that there is 6 < §(z) such that any w between ¢ and 5(z) has f(w) > f(x). Indeed,
if no such thing exists, then instead there is some § < §(x) such that any w between ¢ and () has
f(w) < f(x). Choosing any such w will violate the fact that 3(x) is supposed to be the infimum of B,.

So we have a property §_ 4 (v) such that we have §; < z < Jy withd1 < u < v < w < 43 has
f(u) < f(w). We have checked that §_  (5(z)) by the above argument.

Now, 3 is definable, so 8(I) is definable, satisfying 8(x) > = (and hence infinite), so we can find an
interval J C B(I) which is a “cofinal” interval, meaning that any point in I has a larger point living in
J. Because J lives in the image of 3, we see that, in J, having (v) = —and A(v) = + implies 6_ 1 (v).
Now, we go ahead and replace J with I because we can.

As a weird trick, we now reverse the ordering and rerun all our arguments. For example, any suffi-
ciently small x has some y < z such that f(y) > f(x), and we are able to restrict J to a “coinitial”
interval upon which the above statement is true. Continuing, we can show as before thatany z € J
and y sufficiently smaller than = has f(y) > f(x), so we are able to define a function « equal to the
supremum of all y such that any z < y has f(z) > f(x). As before, we are able to find an interval
K C «(J), and we again get the analogous property 64 _ everywhere on K. But this is a contradiction
because we already have 6_ .

. Thus, we have shown that any interval I as defined at the top of the previous step has = A if pand A

are constant. It remains to show that f is strictly increasing or strictly decreasing or constant on such
an interval. The constant case is relatively easy, so without loss of generality, we take A = p = +.
Well, select = € I, and define

By ={y>xz:f(y) > f(z)}

Certainly B, is nonempty because 1 = +. We would like to show that B, contains everything above z.
If there is an element of I bigger than = but not in B,,, we may as well as choose some z the minimum
of the boundary of B,. If f(z) < f(z), then everything between z and « must have the same value, but
this is not okay because we are locally increasing at z. Similarly, if f(z) > f(z), we note that locally
increasing at z causes similar problems.

We can now prove (a) of Theorem 2.49, assuming (b). Namely, suppose that definable functions R"™ — R are
piecewise continuous, and we prove the cell decomposition theorem in R" 1. Well, suppose X C R"t! =
R"™ x R is definable. Then for b € R"™, we define X, to be the set of a € R such that (b,a) € X; note that X
is a definable subset of R™.

Now, we note that there is an upper bound N (only depending on X) such that each b € R™ with #0X, <
N; this is by some compactness argument. Then we can choose By, ..., By C R™ such that B; is the set
of b with X, having i elements. Now, for any z € R, define a function g;: R"™ — R as sending b to the ith
element of 9X;, which is definable and hence piecewise continuous. Namely, one has a cell decomposition
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C’ of R™ such that g;|c/ is continuous for each ¢, and we may as well assume that the C’ decomposes the B,.
One can now decompose X using C’. Explicitly, take C to be the graphs of the g; on C for each C € ¢’ and
also the cells between the g,s (and also the cells below g; and the cell above gy ).
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THEME 3
TYPES

| felt profoundly stupid in that moment and he has a PhD in SYNTAX

—Beth Piatote, [Pia]

3.1 October 26

Today we begin discussing types. The final will be a three-day take-home exam during finals week.

3.1.1 Introducing Types

Let's give some examples to motivate types.

Example 3.1. Note that (N,0,s) < (N U Z,0,s), where s denotes the successor function (Z is placed
“after” N). The point is that the theory is the theory of an infinite set with an injective function with
no cycles such that only 0 is not in the image of s. This theory eliminates quantifiers, so it is model-
complete.

Example 3.2. Note (Q,0,1,+, x) < (C,0,1,+, x) because these are algebraically closed fields. This
theory eliminates quantifiers, so it is model-complete.

However, we would still somehow like to tell these structures apart despite being elementarily equivalent.
In the case of N C N LI Z, we note that any a € N has a = s*(0) for some k; equivalently, N U Z has some
a € NUZ such that
a7 s(s(---(s(0) ).
Namely, take anything in the alternate copy of Z. Similarly, C has some element ¢t € C such that ¢ is not the
root of any polynomial with Z-coefficients. The point is that we want to look more locally at the formulae
satisfied by some particular elements of our models.
This motivates the following definition.

Definition 3.3 (type). Fix an £-structure M. Givena € M", we define the type tp2!(@) to be the set of
all £L-formulae ¢(Z) with n free variables such that M E ¢(a@). For a subset A C M, we may abbreviate

tp2" () to tp%'(a).
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The pointis that elements of NUZ achieves types which N does not. Similarly, elements of C achieves types
which Q does not.
However, it is important that we are considering all the formulae at once.

Proposition 3.4. Fix £-structures M < N, and fixb € N™. For any finite subset A C tpN(E), there exists
@ € M™ such that A C tpM(a).

Proof. Translating, we are asking for
ME 3x< A <p(x)> .
p(T)eA
However, the construction of b promises
NE 3:1:( A ga(I)),
p(@)eA
so we are done because M < N. [ ]

Remark 3.5. The proof above tells us that it is enough for the extension M C N to merely be "existen-
tially closed,” meaning that existential formulae go down.

We can even go the other way.

Proposition 3.6. Fix an £-structure M, and let A be a set of £-formulae with at most one free variable x
such thatany finite subset Ag C Ahas M F 3z A\ A (). Thenthereisan elementary superstructure

N of M such that there is a € N with A C tp" (a).

Proof. Add a new constant symbol a to our language. Let ® denote the set of sentences ¢(a) forany ¢ € A.
As usual, we want to know that elDiag M U @ is satisfiable. Well, by compactness, it is enough to show that
elDiag M U @, is satisfiable for any finite subset ®; C ®. But M will do: certainly M E elDiag M, and by
hypothesis we have

ME 3z /\ o(x)

PEAD

for the subset Ag C A corresponding to ®, by replacing a back with z. So we interpret a in M to be the
element promised by the above satisfaction.

Thus, elDiag M U @ is finitely satisfiable and hence satisfiable, so we produce an elementary superstruc-
ture N of M with ' £ ®. So /' is the desired element with A C tpV (aN), as desired. [ ]

3.1.2 Types with Parameters

Even using types, it is difficult to tell N U Z apart from N U Z Ll Z, and it is difficult to tell C apart from C(t).
Namely, the problem is that the formulae in our languages are not using the full power of the models we
gave them. For example, N LI Z U Z has elements which are not reachable from N U Z, but one can only say
this by using parameters from N U Z. So we refine our definition of types.

Definition 3.7 (type). Fix an L-structure M and a subset A C M. Then an n-type is a set P of L4-
formulae with n free variables such that P U Th4 (M) is satisfiable.
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Remark 3.8. For PUTh4 (M) to be satisfiable, compactness tells us that it is enough for it to be finitely
satisfiable: namely, it is enough for any finite subset Py C P to have Py U Th 4 (M) to be satisfiable. For
example, itis enough for M F 3z A\ . p # (7).

We are allowing our n-types to be rather small sets. So we add an adjective to fix this.

Definition 3.9 (complete). Fix an £-structure M and a subset A C M. Then a type P is complete if any
L-formula ¢(Z) with n free variables has either ¢(Z) € P or (%) € P. Otherwise, we say that the type
P is partial. As notation, we let S/ (A) denote the set of all complete n-types.

We would like for our types to be realized by elements of M, but this need not always be the case (as we
have with N < N U Z). So we have the following definition.

Definition 3.10 (realizes). Fix an £-structure M and a subset A C M. Given an n-type P, we say that
a € M" realizes P if and only if M F ¢(@) forall ¢ € P. If no such @ exists for an n-type P, we say that
M omits P.

Example 3.11. The set
{z # s(s(--- (s(0))) : n € N}
n

is a 1-type for (N, 0, s) (it's satisfiable by the usual compactness argument), but there is no element of
N realizing this type, so this type is omitted. However, this type is realized by elements of Z in N LI Z.

We can now immediately generalize Proposition 3.6 to n-types.

Proposition 3.12. Fix an £-structure M and a subset A C M, and let P be an n-type. Then there is an
elementary superstructure A of M such that there is a € N realizing P.

Proof. Approximately speaking, one can repeat the proof of Proposition 3.6 upon unpacking all the defini-
tions.

As before, it is enough to show that elDiag M U P is satisfiable, for which it is enough to show that it
is finitely satisfiable. Taking conjunctions, we may assume that we are trying to satisfy just two sentences
©(@,b) (from elDiag M) and 37 (%, @) (from P) where@ € A®* and b € M".

Well, we are given that there is a model NV satisfying Th4 (M) U P. By construction, we are reassured
that Ny E 3z ¢ (T, @), and we note that

NO F Hy 50(67 y)

as well because 3y (@, 7) is an £ 4-sentence satisfied by M. So we interpret the needed constants from b
as the tuple promised by Ay E 35 (@, 7) to complete the proof. [ |

Corollary 3.13. Fix an £-structure M and a subset A C M, and let P be a subset of £-formulae with n
free variables. Then P is a complete n-type if and only if there is an elementary superstructure N of M
such that P = tp¥ (@) for somea € N".

Proof. Certainly P = tp¥ (@) implies that P is a complete n-type: certainly it is an n-type, and completeness
follows because any ¢(7) has exactly one of N E ¢ (@) or N F —p(a).

Conversely, suppose that P is a complete n-type. Then the previous proposition grants ' > N and
@ € N™ such that P C tp¥ (@). Because P is complete, equality must follow: if o(Z) ¢ P, we will have

~p(T) € P, 50 =p(7) € tpf (@), 50 p(7) ¢ trY (). u
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3.1.3 Automorphisms

Let’s take a moment to discuss automorphisms.

Remark 3.14. Suppose o : M — M isan L-automorphism which fixes a subset A C M pointwise. Then
foranya € M™, automorphisms preserving formula satisfaction means that

tp' (@) = tp' (0(a)).

This tells us that automorphisms preserve types.

Example 3.15. However, types are not enough to determine the automorphism orbit of an element of
M. For example, let N/ = (Q,<)and A == {1/n : n > 1}. Now, there is no automorphism switching
0 and 1 while fixing A (being an automorphism must be a homeomorphism for the order topology and
thus fix the limit point 0).

However, 0 and 1 have the same type: any £ 4-formula will only use finitely many constants from
A, so it is enough to show that tp% (0) = tpﬁ/(‘)(l) for any finite subset Ay C A. But now there is an
automorphism switching 0 and 1 while fixing Ag fixed because there is some positive distance between
0and Ay now.

However, our elements are automorphic upon passing to an elementary superstructure.

Proposition 3.16. Fix an £-structure M and a subset A C M. Givena,b € M™, suppose tphi(a) =
tp/y!(b). Then there is an elementary extension A" > M and an automorphism o: N' — N fixing A
pointwise and swapping o(a) = b.

Note that Remark 3.14 provides the converse.

3.2 October31

Today we discuss partial elementary embeddings.

3.2.1 Partial Elementary Embeddings

Last class we stated Proposition 3.16, which we will show today. The main character of the proof will be the
following definition.

Definition 3.17 (partial elementary map). Fix £-structures M and N with a subset A C M. Then a map
f: A — Nisapartial elementary map if and only if it preserves types: forall £L-formulae p(Z) anda € A,
we have M E ¢(a) if and only if N E ¢(a).

The point is that we want to extend such maps to full elementary embeddings.

Example 3.18. Such extensions are not possible in general. For example, use the elementary substruc-
ture (N, s) < (NUZ,s). However, there is a partial elementary map from N C N U Z back to all of N,
which cannot be extended to a full elementary embedding simply because there is nowhere for Z to go!

Somehow the above problem is “set-theoretic” in that (N, s) is too small to be an elementary superstructure
of (NUZ, s). So perhaps we should only hope to have an extension of a partial elementary map after taking an
elementary superstructure of . In an attempt to do this inductively, we pick up the following lemma.
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Lemma 3.19. Fix £-structures M and A with a subset A C M. Suppose f: A — N is a partial ele-
mentary map. Forany b € M, there is an elementary extension N’ of A" and a partial elementary map
g: (AU {b}) — N’ extending f.

Proof. For convenience, identify A with itsimage in AV via f. Also, we may assume that b ¢ A, for otherwise
we can take f = g. Choose a new constant symbol ¢, which is where b is going to go. Now, let T be the
theory

elDiag V' U {p(c) : ¢ € tp'(b) } .

Here, ¢ is an L4-formula. This will complete the proof: namely, let AV be a model, which we see is an
elementary extension of A, and we define g extending f by defining g(b) := ¢"'. And by construction we
have M E ¢(a) ifand only if V' F (@) foranya € (AU {b}).

We now check that T is satisfiable by compactness: after taking conjunctions, we may reduce the right-
hand side to a single formula ¢(c) where ¢ is an £ 4-formula, and we note that M E 3z ¢(x) by hypothesis
onbandso N F 3z p(z) because f is a partial elementary map. So NV is the required model by interpreting
cto witness N F 3z ¢(z). ]

And now here is our transfinite induction.

Lemma 3.20. Fix £-structures M and A/ with a subset A C M. Suppose f: A — N is a partial elemen-
tary map. Then there is an elementary extension A/ of A/ and an elementary embedding g: M — N’
extending f.

Proof. Find a cardinal x so that we can enumerate M = {a,, : a € x}. Now, define Ay :== Aand N := N and
fo = f,and we will define a sequence of maps f,: A, — N, for a < k by transfinite recursion, arranged so
that the following hold for each o < k.

e Ay, =AU{ag: B € al.
« N <N,
» fo is a partial elementary embedding.
These are satisfied by construction at « = 0. Well, by the induction, there are two checks we have to do.

» Suppose o = 3 + 1 is a successor ordinal. Then Lemma 3.19 allows us to extend f3 up to a partial
elementary embedding f,: A, — N, where Nz < N,. Because ' < N also, we see N < N,,.

+ Suppose «a is a limit ordinal. Then we note A, is the union of the A for § € «, and so we define NV, as
the union of the /g for 5 € a. Because we have an ascending chain {N3} geq, it follows that Ny < N,.
Lastly, we define f, by extending all the f3, and f,, is a partial elementary embedding because such a
thing can be checked on the level of points of Ag for each 5.

So at all stages of our recursion, we know how to keep going. This completes the transfinite induction. W

3.2.2 Backto Automorphisms

We are now ready to show Proposition 3.16.

Proposition 3.16. Fix an £-structure M and a subset A C M. Givena,b € M™, suppose tp}y'(a) =
tp’y'(b). Then there is an elementary extension N* > M and an automorphism o: N' — N fixing A
pointwise and swapping o(a) = b.
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Proof. To begin, note that the function f: (A U {@}) — M defined by f|4 = id4 and f(a@) = b is a partial
elementary embedding. This simply holds because @and b satisfy all the same £ 4-formulae. So Lemma 3.20
produces an elementary extension A7 of M with an elementary extension f;: M — A7 extending f.

To continue, f;': f(M) — M is a partial elementary embedding because f; is an elementary embed-
ding, so using Lemma 3.20 produces a full elementary extension M; of M and an elementary extension
g1: N1 — M extending f; . Repeating this step, we produce an elementary extension A of A/} with an
elementary embedding fo: M; — A3 which extends g; !. Iterating this process, we build the following
diagram.

Aufa} AU 5}
o
M, i 91 Pt N
Lo

Now, at the end of it all, let V' be the union of all the N, which is also the union of all the M, (for suitable
notion of union). All these vertical arrows are elementary embeddings, so AV is an elementary extension of
M. Lastly, we realize that the map o: N' — N given by the union of all the f,s sends @ + b because we are
extending f, and o will be invertible with inverse given by the union of all the g,s. |

Remark 3.21. A careful examination of the above proof reveals that we have actually proven the fol-
lowing: suppose that we have £-structures M and A and a subset A C M such that there is a partial
elementary embedding f: A — N. Then there are elementary superstructures M’ of M and N’ of N/
with anisomorphismo: M’ — N’ extending f. Indeed, the proof of this result is the above proof minus
the first two sentences.

Next class we will put a topology on our types.

3.3 November?2

Today we discuss Stone spaces. | will not record any topological background.

3.3.1 The Stone Topology

As usual, we will let M be an £-structure, and we let A C M be a subset. Recall we defined S (A) to be
the set of complete n-types with parameters from A.

Definition 3.22 (Stone topology). Fixan £-structure M and a subset A C M. For each £ 4-formula ¢(z)
with n free variables, we define
[p] = {P € S} (A): p € P}.

The Stone topology is the topology generated by the [¢] as a sub-basis.
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Remark 3.23. Note that we are able to bring in some semantics: for a complete type P, observe p A €
Pifandonlyif ¢ € Pand vy € P, where both directions can be argued by contradiction. For example, if
pw € Pandy € Pbutp Ay ¢ P, then —(p A ) € P, but this is now impossible to satisfy along with ¢
and ¢. These arguments tell us that

[l N [$] = [p A Y]

Similarly, one can see that S (A) \ [¢] = [~] because —~p € P if and only if » ¢ P by completeness.
Combining, we get

[l U] = S (A)\ ([m] N [=9]) = [=(—wo A ~)] = [0V 9],

which of course we could also have proven directly similarly to the argument with A.

In fact, we have a basis.

Lemma 3.24. Fix an £L-structure M and a subset A C M. For a given nonnegative integer n, the sets [¢]
form a basis of a topology on S (A)

Proof. Itis enough to show that the intersection of any two basic sets [¢] and [¢)] can be written as the union
of basic open sets. But this is automatic from Remark 3.23. |

Remark 3.25. Thus, if £ is finite or even countable, we have provided a countable basis for the topology
on SM(A).

So the open sets of the stone topology on S2*'(A) are unions of the basic open sets [] for various £-formulae
© with n free variables. For example, this allows us to explicitly describe convergence: for a net {p, }aeca, we
have p, — ¢ifand only if any basic open set [¢] containing ¢ (i.e., ¢ € g), thereissome A € Asuchthata > A
implies p,, € [¢] (i.€., ¥ € Pa)-

Let’s discuss the topology on SM(A).

Proposition 3.26. Fix an £-structure M and a subset A C M. Then S (A) is totally disconnected when
given the Stone topology.

Proof. We show that S (A) is totally disconnected. In other words, we have to show that singletons are
the largest connected sets. So for any set S C S'(A) with more than one point, we want to show that S is
not connected. Well, we are given two points P, @ € S; they are distinct, so find p € P with ¢ ¢ Q. But then
S C [¢] U [~¢] even though [¢] N [~¢]and P € SN [p]and Q € S N [~¢]. So [¢] and [-p] disconnect S. W

Remark 3.27. The argument above in fact shows that S/*(A) is Hausdorff as well: we have placed any
two distinct complete types P and @ into disjoint open subsets [¢] and [-¢] where ¢ € P\ Q.

For something a little more interesting, let's use compactness.

Theorem 3.28. Fix an £-structure M and a subset A C M. Then S} (A) is compact and totally discon-
nected when given the Stone topology.

Proof. We show that S(A) is compact.

57



3.3. NOVEMBER 2 225A: MODEL THEORY

1. Wetranslate coversinto semantics. Fixa subset of £ 4-formulae ®. The main claimisthat {[¢] : ¢ € ®}
covers SM(A)ifand only if {—p : ¢ € @} U Ths M is not satisfiable.

In one direction, suppose that {—y : ¢ € ®} U Th M is satisfiable by a structure A" and tuple @. Then
we let P be the type tp¥ (@). By construction, P is complete, and N’ E —(a) for each ¢ € ®, so we
conclude that P is a complete type not covered by one of the [¢] for ¢ € ®.

In the other direction, suppose that {[¢] : ¢ € ®} fails to cover S7(A). So choose P which does not
live in any [¢] for ¢ € @, implying that —¢ € P for each ¢ € ®. Now, Corollary 3.13 grants us some
elementary superstructure A/ of M and somea € N" so that P = tp/){(a). Thus, by construction,
N E —¢(a) for each ¢ € ® and ' E Th4 M because we have an elementary superstructure, so we are
done.

2. Now, Suppose that we have an open cover U of S (A) which we would like to reduce to a finite sub-
cover. By writing each open set in U/ as a union of basic open subsets, we may assume that I/ has only
basic open subsets, which we enumerate as [¢] for various ¢ € ®. We would like to extract a finite
subcover. The previous step implies that

{~¢:pe @}

fails to be satisfiable, so by compactness, a finite subset fails to be satisfiable, so we have some finite
®y C ® such that

{—p:p € do}

fails to be satisfiable, so by the previous step once again, we see that {[¢] : ¢ € D¢} is the needed finite
subcover. [ ]

Remark 3.29. Notably, the main input to the above proof was the compactness theorem! In some sense,
this is where the compactness theorem gets its name.

There are a bunch of other functoriality checks one can do with continuous maps.

3.3.2 Isolated Types
Topology motivates the following definition.
Definition3.30 (isolated). Fixan £-structure M andasubset A C M. Thenatype P € SM(A)isisolated

if and only if P is isolated in the Stone topology. In other words, there exists an open subset around P
only containing P.

Let’s get a better understanding of this term.
Proposition 3.31. Fix an £-structure M and a subset A C M. Let P € S}M(A) be a type. Then the
following are equivalent.

(a) Pisisolated.

(b) {P} = [p] for some L 4-formula .

(c) Thereisan L4-formula ¢ € P such that, for any other £ 4-formula ¢, we have ¢ € P if and only if
Tha(M) E (¢ = ¥).

Note that the completeness of Th4 (M) makes Th,(M) E (¢ — ) equivalent to (¢ — ) being in
Th 4 (M), which is equivalent to M E (p — ).
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Proof. Note that (b) implies (a) by the definition of being isolated. For (a) implies (b), we note that {P} is
an open set by definition, so we can find some ¢ such that P € [¢] and [¢] C {P} by using our basis, so of
course {P} = [p] follows.

So the interesting part is showing that (c) is equivalent to the other two. The main claim is that [p] C [¢)]
if and only if Th4 (M) E (¢ — 9). We show the implications separately.

» Inone direction, if Tha(M) E (¢ — ¢), then M E (¢ — ), thenif P € [¢], we have p € P,soy € P
by completeness, so P € [¢].

+ In the other direction, if M fails to satisfy (¢ — ), then there is some @ € M such that M E ¢(a@) A
—(@). Thus, tp" (@) € [¢] \ [¢].

We now show (b) implies (c): we have {P} = [¢], so € Pifandonlyif P C [¢]if and only if [¢] C [¢], which
by the claim is equivalent to M E (¢ — ). Lastly, we show (c) implies (b): given our special ¢, we want to
show that {P} = [¢]. Well, certainly P € [¢]. Conversely, if @ # P for some complete n-type Q, pick up
P € P\ Q, butthen M E (¢ — 9), so by the claim, [¢] C [¢], butthen Q ¢ [¢], so Q ¢ [¢]- |

Remark 3.32. The point is that isolated types are determined by a single formula. Note that the formula
¢ yielding P is unique up to equivalence by (c) because then Th4 (M) E (¢ < ¢) if {P} = [¢] = [¢].

Example 3.33. Let M = (R,0,1,+, x, <). Then P = tp}!(A) is isolated given by formula = = 0.
More generally, we have the following.

Proposition 3.34. Fix an £L-structure M and a subset A C M. Suppose that b € M is definable over A.
Then tp’!(b) is an isolated type.

Proof. Well, suppose ¢() defines b, and we claim that tp%'(b) = [¢], for which we use Proposition 3.31.
Well, we see that 1)(Z) € tp'(b) if and only if M E ¥ (b) if and only if M E VZ(p(z) — ¥(T)), which is
equivalent to M E (¢ — ). To finish, we note that this is equivalent to ¢ — ¥ living in Th 4 (M), which is
equivalent to Ths (M E (¢ — ¢) by completeness. |

In fact, we have the following partial converse.

Proposition 3.35. Fix an £-structure M and a subset A C M. If P is an isolated type, then P = tp’!(@)
for some .

Proof. Suppose that {P} = [¢]. But now Th(M) U {3Z ¢(Z)} is satisfiable because this is the same as
Tha(M) U P. So 3T p(T) € Tha(M) by completeness, so M E ¢(a) forsomea € M. To complete the
argument, we note that ¢ € P if and only if Th4(M) F (¢(@) — ¥(a)), so M E 9(a), so ¢ € tp'(@). So
P C tp!(a), and equality follows by completeness. |

Example 3.36. One can use the above proposition to show that there are types which aren’t isolated in
M= (R,0,1,+, x, <). For example, take the type given by any transcendental.

3.4 November?7

We continue.
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3.4.1 Types of Theories

Let’'s move from types of models M to types of theories T

Definition 3.37 (type). Fix an £L-theory T.. Then an n-typeis a set P of £-formulae with n free variables
such that P U T is satisfiable. A type is complete if o € P or —¢ € P for each £-formula ¢ with n free
variables. We let S,,(T') denote the set of complete n-types.

Example 3.38. For an £-structure M, we have

S,(Th M) = SM(2).

The main content here is that we are allowing 7" to not be complete. Note that S,,(T") has a topology given
by the basic open sets

[p] :=={P € Su(T) : ¢ € P}.

The checks on this topology are the same as when T' is complete; namely, we have defined basis as in
Lemma 3.24, and it is totally disconnected as in Proposition 3.26, and it is compact as in Theorem 3.28.

We are also able to provide definitions motivated by this topology.

Definition 3.39 (isolated). Fix an £-theory T. Then a complete n-type P is isolated if and only if there is
an L-formula ¢ with n free variables such that { P} = [¢].

Remark 3.40. The argument of Proposition 3.31 generalizes immediately to show that the following
are equivalent for a complete n-type P and £-formula ¢ with n free variables.

(@) Pisisolated with {P} = [¢].

(b) Thereis an £-formula ¢ € P such that, for any other £-formula 1), we have ¢ € P if and only if
TFE ().

As before, the main input is to show that [¢]| C [¢] if and only if T E (¢ — %), and the proof of this is
quite similar.

So we take the above remark as providing our definition of isolated types.

Definition 3.41 (isolated). Fix an £-theory T. Then an n-type P is isolated if and only if there is an £-
formula ¢ such that T' U ¢ is satisfiable and the following holds: for any other £-formula ¢, we have
e Pifandonlyif T E (¢ — ).

We can also use topology to define a notion of density.

Definition 3.42 (dense). Fix an £-theory T. Then a set X of complete n-types is dense if and only if X
intersects each nonempty basic open set of S, (T). In other words, for each £-formula ¢ with n free
variables such that T U {} is satisfiable, there is a complete n-type P € X such that ¢ € P.

Example 3.43. The set S,,(T) C S,,(T) is dense.
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Example 3.44. Suppose T' = Th M for some L-structure M. Then the set
X = {P € S}"(@) : Pisrealized in M}

isdensein S, (7). Indeed, suppose pis an L-formula with n free variables such that TU{} is satisfiable.
But I’ = ThM is complete, so M E JTo(Z), so we may find @ € M such that M E ¢(a). Thus,
tp™ (@) € X contains ¢, as needed.

Remark 3.45. Let T' be an L-theory. If P is a complete isolated n-type, and X C S, (T) is dense, then
we claim P € X. Indeed, write { P} = [¢]; then [p] N X # @ needs P € X, as desired.

Professor Montalban recommends reading types of discrete linear orders and of algebraically closed fields
to understand what is going on. Here is a taste for the sort of thing one can show.

Proposition 3.46. Fix a discrete linear order (M, <), and let A C M be a subset. Then the types in
S{M(A) which are not realized in A correspond to a cut (L, U) of A. (Here, LUU = A and L is closed
downwards and U is closed upwards.)

Sketch. The pointisthateveryformulainacomplete n-typeis equivalent to a quantifier-free formula, which
amounts to requiring some list of satisfiable inequalities. These lists of inequalities amount to a cut. |

Proposition 3.47. Fix a discrete linear order (M, <), and let A C M be a subset. Thena complete 1-type
P € S{M(A) notrealized in A corresponding to the cut (L, U) of A fails to be isolated if and only if L fails
to have a maximum or U fails to have a minimum.

Notably, if L = @ or U = @, then P remains isolated.

Sketch. The point here is that we need to be determined by a single inequality. Being “above L and below U"
being encoded into a single formula requires that L or U contain their supremum or infimum (respectively).
|

3.4.2 Type Omitting

Here is our theorem.

Theorem 3.48 (Type omitting). Fix a countable language £, and let 7" be an L-theory. Further, let P be
an n-type which is not isolated. Then there is a countable model M E T which omits P.

The “non-isolated” hypothesis on P is necessary: for example, if ' = Th(N, 0, s), then the type of 0 is always
realized, which is notably an isolated type. More generally, isolated types are always realized by Proposi-
tion 3.35. Theorem 3.48 above is the converse.

Proof of Theorem 3.48. We do a Henkin construction. Namely, we use an argument like Lemma 1.43 to
expand our language to £* by adding in new constant symbols C to our language, and then we extend 7" to
an L*-theory T* to be complete (and satisfiable) and have witnesses. We will also arrange our construction
sothateachtuple (cy,...,¢,) € C"hassome p € Psuchthat—p(cy,...,c,)isinT*. Thenthe construction of
Lemma 1.44 produces the needed model M whose universe is C modded out by some equivalence relation
dictated by T*. Namely, having —¢(c1,...,¢,) in T implies that P is omitted because the universe of M
arises exactly from C.

We will construct T* to be T'U {6y, 01, . . .} by adding one sentence at a time; by compactness, the satis-
fiability of T* follows from the satisfiable at each finite step. (Technically, we will eventually have T* E ¢ or
T* E - for each ¢ at the end of the construction.) We will also require that T' & (6,,4.1 — 0,,) for each n, for
psychological reasons. For convenience, we will also need the following enumerations.
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» Let {¢n : n € w} be an enumeration of all £L*-sentences.
+ Let {¢),(z) : n € w} be an enumeration of £*-formulae with one free variable.
« Enumerate the n-tuples ¢ of constants in C.
We now proceed in steps.
0. Onstep s =0, we let 6y be the sentence Vz(z = x), which is always true.

1. Onstepswhichares+1 = 3i+1, we deal with completeness. Here, let 65 be either 8, Ap; or 6, A—;,
one of which we know is going to be satisfiable with T'.

2. Onsteps which are s + 2 = 3i 4 2, we deal with witnesses. Here, we choose a constant ¢ € C notin 6,
and we let 6,1 be the sentence

Os A (Fzi(z) = ¥i(c)),

which continues to satisfiable by interpreting ¢ to be the needed witness to 3z ¢;(x) (if it exists) in a
model of 4.

3. Onsteps which are s + 3 = 3i + 3, we deal with omitting P. Let ¢ be the ith n-tuple of constants in C.
We would like to find some (%) in P such that T'U {0; A —¢(¢)} is satisfiable.

The point is to contradict the fact that P is not isolated. Write 6, as 6(d,¢) where d are the con-
stants which appear in 6, despite not appearing in ¢. By the satisfiability of 7" U {0}, we see that T'U
{3y3z 0(y,T)}. But because Pisnotisolated, thereis ¢ € P suchthatT does not prove Vy3z (0(y, ) —
©(T)). Thus, there is a model M of T such that all@ € M have some b € M with

ME (0(b,a) A ~p(a)).

Interpreting constants in (d,¢) as in (b, @), we have shown that T U {0, A —~p(¢)} is satisfiable by M, as
required. |

Remark 3.49. The above proof can also show that we can omit countably many non-isolated types
{P, }nen simply by modifying the third step to yield the sentence —¢,,(¢) where ¢, € P,; the point
here is to use the countability of N x N.

3.5 November?9

We continue.

Example 3.50. Let N = (N, 0, 1, +, x, <), and choose a countable proper elementary extension M of N,
so for example, M is still a model of PA. Now, we build a proper elementary extension A/ of M. For
example, for each m € M, we can try to omit the type p,,, defined by

{wv<m)}U{(v#h):h<m}.

We could then build a model A/ E elDiag M omitting all the types p,, (which are not isolated because
they are not realized in M).

3.5.1 Prime and Atomic Models

For the next few weeks, we examine prime, atomic, and saturated models.
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Definition 3.51 (prime). Fix an £-theory T.. Then a model M of T is a prime model if and only if ' & T
implies that there is an elementary embedding M — N

We would like to know when these exist and that they are unique. These require proof.

Example 3.52. In the theory ACF,, of algebraically closed fields of characteristic p, then F,, is a prime
model: it will embed into any other algebraically closed field of characteristic p, and these are elemen-
tary extensions because ACF,, eliminates quantifiers and hence is model-complete.

Example 3.53. Similarly, the theory DLO has Q as a prime model for essentially the same reason.

Remark 3.54. A theory T' needs to be complete to have prime models. Namely, suppose M is a prime
model. Then N T implies that M < N, so Th M = ThN. Thus, M E ¢ if and only if V' E ¢ for all
models NV of T', which is then equivalent to T' F ¢, so completeness of T follows.

Remark 3.55. Suppose our language £ is countable. Given a prime model M of T, then tp™ (@) must be
isolated. Indeed, if not, then there is a model M’ omitting tp” (@), but then the promised elementary
extension M < M’ requires there to be an element in M’ with the same type! Note that this implies
that the isolated types are dense in S,,(T'), which need not be the case in general.

And now for atomic models.

Definition 3.56 (atomic). Fix an £-theory T. Then a model M of T is an atomic model if and only if
tpM(a) is isolated for alla € M.

Actually, these are the same.

Proposition 3.57. Let £ be a countable language, and let 7' be a complete £-theory with an infinite
model. Then a model M is prime if and only if it is atomic and countable.

Proof. Remark 3.55 tells us that prime models are atomic, and Theorem 1.71 tells us that T" does have
countable models, so any prime model must be countable in order to embed into such models.

Thus, the difficulty will come from the converse direction. Suppose M is atomic and countable, and
let ¥ E T. We want to show that there is an elementary embedding M < N. Well, enumerate M as
{m; : i € w}. We will create our elementary embedding inductively: namely, we want to define a sequence
ng,ni, ... € N such that

tpM(mo,...,mp) = tpN(ng, Cey M)
This will imply our elementary embedding: for any ¢(Z), we see that M E ¢(my, ..., m;) if and only if
N E ¢(ng,...,nk). (Evenif a formula ¢ does not use every single variable in {my, ..., my}, we might as well

include them anyway.) Let’s do our induction.
« At step 0, we may find ng because the isolated type tp™ (my) is realized in A by Proposition 3.35.

» Atstep k + 1, we want to find ny; such that

tp™(mo, ..., mp, May1) = tp™M(no, ..., Nk, Npg1).
The issue here is that we want to find ny; without adjusting ny, . .., nx. To get around this, we find
o(x0,...,xy) isolate tp™ (my, . .., ms). We want ny 1 such that N’ E ¢(nq, . .., nz,), but we know that
ME Jzpi1 o(mo, ..., mE, Tit),
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sothe sentence 3z 11 (g, ..., Tk, Tx11) belongs to tp™(mo, . . ., z), so the inductive hypothesis im-
plies that it belongs to tpN(no, ...,ng) too, so

N E 3zpy1 0(ng, ...y g, Tha1),
which provides us with the needed ny, 1. |

If M and NV are both countable and atomic, one can turn the above argument into a genuine back-and-forth,
allowing us to conclude that M = N,

Proposition 3.58. Let £ be a countable language, and let T be a complete £-theory with an infinite
model. Then any two countable and atomic models M and A are isomorphic.

Proof. Turn Proposition 3.57 into a back-and-forth argument. Essentially, enumerate both M and A and
then alternate steps going back and forth to make sure we produce a bijection. |

Theorem 3.59. Let £ be a countable language, and let 7' be a complete £-theory with an infinite model.
Then the following are equivalent.

(@) T has a prime model.
(b) T has an atomic model.

(c) Theisolated typesin S, (T) are dense for all n.

Proof. Note that (a) implies (b) by Remark 3.55. For (b) implies (a), we note that any atomic model M by
Theorem 1.71 has some My < M which is countable, but then all types will remain isolated, so Proposi-
tion 3.57 completes. Next, (a) implies (c) by Remark 3.55.

Thus, the difficulty comes from showing that (c) implies (b). For the proof, say that a sentence p(T) is
isolating if and only if T E 3¢(Z) and any ¢(Z) has either T' E VZ(p(Z) — ¢(T)) or T E VE(p(T) — —9(T)).
Namely, ¢(z) implies a complete set of formulae.

Now, consider the set P,, of formulae —¢(Z) where this is an isolating formula ¢ (Z) with n free variables.
This is countably many types, so we would like to use Remark 3.49 to provide a model M E T which omits
all the types P,. For this, we must check that P, is not an isolated (partial) n-type. (If they are not consistent
with T', they are omitted automatically, so we don’t have to worry about that.)

Well, suppose for the sake of contradiction that P, is isolated by ¢ (). This means that 7' = 34 (%) and
T E (¢(T) — o(T)) for each ¢(Z) in P. But by the hypothesis (c), we may find an isolated n-type @ containing
1 (T), meaning that it is isolated by the formula 6(%), so T F VZ(6(T) — (T)). This is contradiction because
—6(Z) lives in P,,, so T E VZ(¢(T) — —0(T)), meaning we have shown § implies —4.

We now complete the proof. Remark 3.49 now grants us a model M omitting all the types P,. Thus,
each@ € M" cannot realize P, means that M F 6(a) for some isolating formula (z), but then tp™ (@) must
be the type isolated by 6(z). So M is an atomic model. |

Remark 3.60. Now combining with Proposition 3.58 assures us that these prime models are in fact
unique.

3.6 November 14

Office hours will be on Tuesdays at 11:30AM.
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Example 3.61. Let's build a theory whose isolated types are not dense. Our language £ will contain
countably many unary relations { Py, P, ...}, and let T be the theory consisting of sentences of the form

3a¢< N Piz) A N\ ﬁfﬁ(x)>v

i€S i¢s

where S C Nis any finite subset. On the other hand, for each subset S C N, thereis a type Ps consisting
of the sentences P;(z) fori € Sand —P;(x) fori ¢ S; note PsUT is consistent by compactness. Further,
Pgisacomplete type, which one can see by showing that 7" eliminates quantifiers by the usual syntactic
arguments; from here, Ps(x) willimply any formula or its negation because one can replace formula by a
quantifier-free one. Now, we note that all the 1-types take this form again by the quantifier elimination.

However, T has no isolated types. Indeed, suppose that a type Ps is contained in [p]; we will argue
that [¢] has another 1-type. We may assume that ¢ is quantifier-free, and we may assume that ¢ has
only conjunctions. The problem is that ¢ only mentions finitely many of the P;, so we can find multiple
complete 1-types Ps and Pg living in [¢] which complete ¢.

3.6.1 Homogeneous Models

Another useful kind of model for our discussion is homogeneous models.

Definition 3.62 (x-homogeneous). Fix an £-structure M. Then M is k-homogeneous if and only if the
following holds: for any subset A, B C M of cardinality less than « equipped with a partial elementary
embedding f: A — M, and given an element a € M, then thereis b € M and some partial elementary
embedding f*: AU{a} — M extending f and sending f*: a — b. We then say that M is homogeneous
if and only if M is |[M|-homogeneous.

Intuitively, homogeneity allows us to extend partial elementary embeddings from subsets one element at a
time. By an inductive argument, one achieves the following.

Proposition 3.63. Fix a homogeneous £-structure M. Given subsets A, B C M of strictly smaller car-
dinality than M, any partial elementary embedding f: A — M extends to an automorphism of M.

Proof. We do transfinite induction, applying a back-and-forth argument. Enumerate the elements of M by
{mq : @ € K}, where k = |M]. We now build a sequence of partial elementary embeddings f, : M, — M of
partial elementary embeddings satisfying the following.

* fo=1.

 fpextends f, whenever 8 > a.

o |im fo| < |A] + 20

* My is in the domain and range of f, 1.

Taking the union of the f, will complete the proof. Indeed, the union of partial elementary maps is a partial
elementary map, but the union now contains all of M in the domain and codomain.

We quickly deal with limit stages in our induction first. Namely, if «cis a limit ordinal, we define f, as the
union of all the previous fzs. Thisisaunion of partial elementary embeddings f3, so f, is a partial elementary
embedding too. The a+ 1 check has no content, and the extensions are satisfied by construction. Lastly, the
size of the image of the im f,s is the supremum of all the im f3s, which is upper-bounded by the supremum
of all the |A| + 253, which is |A] + 2a.

We now must argue the successor stage. Suppose we are given f,, and we must construct g,. To add
Mmq+1 to the domain, we use the homogeneity of M. On the other hand, applying the same argument to
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the inverse g, ': im g, — dom g, allows us to extend g; ' to the new element m, 1 in the image, which is
exactly the f,1 we needed. Notably, we have only added two elements in total, so the inequality onim f,;
is still satisfied. |

Non-Example 3.64. Consider A := Q% as asubspace of M := Q. But then there is a partial elementary
embedding A & M, and it cannot be extended to an automorphism because it is already surjective! Note
that M is in fact homogeneous: one may assume that A is a full subspace, and then one extends to a
single extra point in M arbitrarily as long as the single extra point is away from A.

Here's an example.

Lemma 3.65. Fix a countable language £ and an £-structure M. If M is atomic, then M is Xy-homo-
geneous.

Proof. Fix a finite subset A C M and a partial elementary embedding f: A — M. Given some ¢ € M, we
must extend f to AU {c}. Namely, because A is already finite, it will be enough to must find some d € M
such that

tpM(ala cee ,an,c) = tpM(f(a1)7 ey f(an)a d)»
where A = {ay, ..., a,}. Because M is atomic (!), we note that tp™(a@, c), we can find some (7, y) isolating
this type. Now, 3y 0(z, ) lives in tp™(a) and hence in tp™(f(a@)), so we can find some d such that M
0(f(a),d). This d is the one required because 6 isolated the type, so M F 0(f(a), d) requires that

™ (a1, . an,0) = 0] € ™ (flar),- ., flan), d),

so the completeness of these types enforces equality. |

We can even go in the other direction.

Theorem 3.66. Fix a countable language £, and let M and A/ models of a complete £-theory T' which
are countable homogeneous models realizing the same types in S, (T') for alln. Then M = N

Proof. These modelsare countable, sowe will do aback-and-forthargument. Enumerate M by {m; : i € N}
and A by {n; : i € N}. We will build finite partial elementary maps f;: M), — N where dom f;, contains m;
fori < k and im f;, contains n; for i < k. At¢ = 0, we simply take the empty function for fq.

Now, suppose we are given fi, and we want to build fx11. We will discuss how to add my to the domain
of fi; taking the inverse will allow us to add ny to the image of f, so we will omit writing out the argument.
Anyway, fully enumerate the domain of f;, by @ and the image of f; by b. We would like to add in my, so we
set P = tp™M (@, my).

At this point, we would like to use the homogeneity of A/. Well, M realizes P, so A’ must realize P too,
so we can find some (¢, d) realizing P. But then tp"'(2) = tp™ (@) = tp?'(b). So we may define a partial
elementary embedding by sending ¢ > b, which by homogeneity extends to a map (¢, d) — (b,n’) for some
n' € N. This n' is the needed element where m;, should go because tp™ (@, my,) = tp™ (¢, d) = tp™ (b, n’) by
construction. |

3.6.2 Saturated Models

At the end of class, we are now ready to define saturated models.

Definition 3.67 (x-saturated). An L-structure M is k-saturated if and only if any A C M of cardinality
less than  has all types P € S (A) realized in M. Then M is saturated if and only if it is | M|-saturated.
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Example 3.68. Consider the theory DLO of dense linear orders.

« The model Q is Rg-saturated. The point is that, by quantifier elimination, any finite set A C Q has
only the types saying that

» The model Q is not N;-saturated because, for example, there is a 1-type saying that the given
element is bigger than every integer, which is not realized. In fact, no countable model M is N; -
saturated because one can build a type saying that the given element is not equal to each individual
element of M.

3.7 November 16

Today we continue with saturated models.

3.7.1 Countable Saturated Models

Whenever necessary, we will continue with £ being a countable language and T being a complete £-theory
with infinite models.

Example3.69. Let's describe a model of DLO whichis 8; -saturated. Let M consist of functions f: w; —
Q with countable support, ordered lexicographically: namely, f < g if and only if the least ¢ with f(i) #
g(i) has f(i) < g(i). Thisis a dense linear order (between any two functions f and g, they differ at some
least point i, and so define a function between the two by sending i — 5 (f(i) + g(4))).

To see that M is N;-saturated, one makes some argument using the countable support. Now, we
note that it has cardinality 2%0: there are certainly at least 2% functions, and the number of functions
can be upper-bounded by the number of countable “graphs” living in w; x Q, which simply has size
NYo < 9RoxRo — 9o 5o ynder the continuum hypothesis, M achieves a cardinality of X, so M is
indeed saturated.

Example 3.70. The algebraically closed field C is 8; -saturated. The point is that quantifier elimination
means that we only need to worry about types which either say that an element is a root of some poly-
nomial or avoids being a root of some set of polynomials with parameters in a countable set. But C is
big enough that it has enough transcendental elements, so we are okay.

Here are some other ways of thinking about saturated types.

Proposition 3.71. Fix an £-structure M and an infinite cardinal x. Then the following are equivalent.
(a) M is k-saturated.

(b) Forall A € M of cardinality less than «, all (possibly partial) types P with parameters in A are
realized in M.

(c) Forall A C M of cardinality less than x, any type P € S{M(A) is realized in M.

Proof. Of course, (b) implies (a) with no content because complete types are types. To show that (a) implies
(b), note that a type can be extended to a complete type, so having (a) is enough to realize the needed partial
type.

Similarly, we note that (a) implies (c) again with no content. For the converse, suppose we have a com-
plete n-type P(Z) € SM(A) which we want to realize. Then we will add in one variable at a time. Namely,
start with P (x1) € S{*'(A) be the type of formulae in P only mentioning z;, and we see that this is a com-
plete 1-type, which is then realized in M by some aj;.
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Now, because « is infinite, we may consider the complete type P (a1, 72) € S{*(A U {a;}) of formulae
in P only mentioning z; and x5 but with z; replaced with a;. Notably, Py(a;,z2) is indeed consistent with
M: foreach p(x1,z2) € Pa(x1,22), we see that Iz p(21, 22) would need to live in Py, so M E 35 ¢(ay, x2),
so (ay, xz2) is consistent. So we may find as so that (a1, az) realizes P,. From here, we can continue the
argument inductively up to P53 and so on. |

Remark 3.72. We only needed « to be infinite in order to show that (c) implies (a).

Let's go ahead and start to construct saturated models.

Example 3.73. Consider the theory ACF of algebraically closed fields of characteristic 0. Then an ex-
tension F/Q with countable transcendence degree will be countable and so in particular countable and
saturated. The point is that we are only going to consider parameter sets A which are finite, and then
F realizes all types to consider, which by quantifier elimination either is asking to be the root of some
polynomialin A or to be transcendental with respect to parameters in the finite set A.

Theorem 3.74. Fix a countable language £ and a complete £-theory T. Then T has a countable satu-
rated model if and only if S,,(T') is countable.

Proof. The forward direction is easier: if T has a countable saturated model M, then each distinct complete
n-type P must correspond to a distinct n-tuple in M (note distinct complete types have distinct sentences,
so they cannot be satisfied by the same n-type!), of which there are only countably many, so there can only
be countably many types.

We now show the reverse direction. Suppose we have a countable model M E T. Then we claim that
there is a countable model M’ > M realizing any countable set of types. Indeed, add in (countably many)
new constants ¢’ corresponding to each of the countably many types P(Z), and everything is finitely satis-
fiable by M because T is complete. So we can find a model M’ satisfying everything including elDiag M.

Iterating this construction grants an ascending sequence

Mo <My <My <--o

where M, is constructed from M, by asking for all the types in 2! (A) to be realized for each finite subset
A C M;. The key point is that S7!(A) is still countable: for each 1-type P(z,a) € SMi(A) (where @ is
an enumeration of A), we can turn this into an (n + 1)-type P(z,35) € S,4+1(T), of which there are only
countably many. This function is countable-to-one, so we conclude that there are only countably many
types in 57 (A).

To complete the proof, we let M be the union of the M;s, which is an elementary extension of all the
M;, so M will realize all the types from all the M;. Now M is countable, so we still only need to worry about
finite parameter sets A C M, which means that we might as well put the parameter set inside some fixed
level M;, so we know the types will be realized in M, ;. |

Remark 3.75. In fact, the above proof has shown that any countable model M, can be embedded (in an
elementary way) into a saturated countable model (provided a single saturated countable model exists).

3.7.2 Universal Models

The above proof motivates the following definition.
Definition 3.76 (k-universal). Fix a complete £-theory T. A model M of T is k-universal if and only if

any model NV of T of cardinality less than x has some elementary embedding AV — M. Then we say M
is universalif only if it is | M| universal.
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Example 3.77. Consider the theory T of infinitely many equivalence classes with infinite size. Then any
model M with X; many classes of size X; will be universal by embedding in the necessary number of
equivalence classes. Notably, this example informs us that universal models are not isomorphic despite
having some kind of universal property.

Soin the above language, we now know that countable and saturated implies universal. More generally, we
have the following.
Theorem 3.78. Fix a complete £-theory T'and a model M of T'. Then the following are equivalent.
(@) M is k-saturated.

(b) M is kT -universal and k-homogeneous.

We will show this next class.

3.8 November?21

Today we will finish our discussion of saturated models.

3.8.1 Miscellaneous Saturated Models

We begin with the following lemmas.

Lemma 3.79. Fix a complete £-theory T If M is k-saturated, then M is k-homogeneous.

Proof. Fix some subset A C M of cardinality less than « and a partial elementary embedding f: A — M
which we would like to extend to an element a € M.

To do this, set p(x) = tp’*(a). We now push the parameters to B, defining ¢(z) to be the set of formulae
defined by taking any constants from A in any formula ¢(z) € p(z) and pushing them to B. We would like
to show that ¢(x) is actually a type (with parameters in B), and M being x-saturated implies that it will be
realized by some b € M, which will complete the argument by extending f to send a — b.

So it remains to show that ¢(z) is consistent with Thz M. Well, it suffices to show that ¢(z) U Thp M
is satisfiable, for which it is enough to show that it is finitely satisfiable, so it is enough to show that any
single formula ¢(x,b) € q(z) is consistent with Thz M. Well, this is ¢(z, f(a)) for somea € A, and f being
a partial elementary embedding then implies that ¢(z, f(@)) € Thg M is equivalent to p(z,a) € Tha M,
which is true by construction of ¢(z,b) € q(z). |

Lemma 3.80. If M and \V are saturated models of the same cardinality, then M = N

Proof. This is a back-and-forth argument proceeding via transfinite induction. Let x be the cardinality of M
and N, and enumerate M = {m, : « € K} and N = {n,, : « € x}. Then one proceeds as in Proposition 3.57.
]

Remark 3.81. The above proof actually shows that any partial elementary embedding fo: A — A with
|A] < &, then we can extend fj to an isomorphism. Indeed, just replace the Oth step of the transfinite
induction with fo.

While we're here, we also show Theorem 3.78.
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Theorem 3.78. Fix a complete £-theory T and a model M of T. Then the following are equivalent.
(a) M is k-saturated.

(b) M is kT -universal and k-homogeneous.

Proof. We already show that x-saturated implies k-homogeneous. To show that k-saturated implies kT -
universal, argue as in Lemma 3.80 but only use embeddings in one direction (i.e., do the forth but not the
back).

We now show the other direction; choose M as in (b). We would like to show that M realizes any type
P(z) € S{M(A) for some A C M of cardinality less than . By Proposition 3.12, we know that p(z) will be
realized in some elementary extension A of M, and Theorem 1.71 allows us to reduce the size of A/ back
down to x, so k*-universality grants an elementary embedding ¢o: N' — M. However, this elementary
embedding need not fix 4, so we use the homogeneity of M to move f(A) backto A C M, and extending
this up to automorphism moves the element realizing p(z) in A to the needed element of M. |

3.8.2 Construction of Saturated Models

We now have the following step to construct saturated models.

Lemma 3.82. Fixan infinite cardinal x and a language £ with |£| < xkand a complete £-theory T'. Forany
model M, thereis a k™ saturated model A which is an elementary extension of M and with |N| < |M*|.

Proof. Asan intermediate step, we claim that there is an elementary extension M’ > M which realizes any
type p(z) € S{M(A) where A C M is a subset of cardinality |[A| < x. We will do this by compactness: let
Ty be the theory of elDiag M plus the sentences in all the types p(c,) we need to satisfy, where ¢, is a new
constant we added. We want to show that Ty is satisfiable, for which we note that it is enough to check that
only finitely many sentences in finally many of these types is satisfiable with elDiag M, for which we use
Proposition 3.12.

We take a moment to recognize that there are |M|" subsets A available, and for each subset A, there are
214IHILI+R0 — 9% possible subsets of sentences (and hence possible types), so the number of added constants
in the above construction was at most

M- 2% = [ M".

So our M’ may have size at most |M|".
We now define an elementary sequence using the above steps

Mo <My < Mo <o S Mg <o
R

foreacha € k™, where at successor stages we use the above claim, and at limit stages we take unions (which
remains an elementary extension due to the chain). Then we define NV, .+ as the union of all these chains.

We take a moment to compute the size of these models. Looking at our stages, we claimthat | N,,| < |M|"
by induction: at limit stages, we are taking the union of at most x-many sets of cardinality at most |M|",
which is okay; at successor steps, we note that

|Not1]™ < [No|™ < M™% = |M|"

by the induction.
It remains to check that V,.+ is k™ -saturated. Well, for any subset A C N+ of size at most , there is
some a < k1 such that A C NV,,* but then NV, ; realizes any type with parameters in A. |

1 Namely, finding a bijection of A to a subset A C x™, of cardinality at most x, we note that the supremum of X is an ordinal which
is the union of all elements in A, which has cardinality at most k X x = k, so we must have A < xt.
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Theorem 3.83. Fix an infinite cardinal x and a language £ with |£| < x and a complete £-theory T.
o If kT = 2%, then there is a saturated model of cardinality x+.

o If Xis infinite, and each 7 < A has 2™ < ), then there is a saturated model of cardinality \.

Proof. Note 2¢ = k", so one can iterate the construction of Lemma 3.82 to produce the needed model.
Namely, in the first case, there is nothing to do because being xT-saturated implies just being saturated by
the size condition. For the second case, one builds a sequence {M,, : « < A} where M,, is R} -saturated
but M, | < A and then take the union. [ ]

Remark 3.84. Some cardinal arithmetic shows that cardinals satisfying the second case exist. For ex-
ample, one can find A with 8, = X (take the limit of 8o, Ry, Rx,, - . .), Wwhere the result is true.

3.9 November28

The final exam will be released Wednesday the 13th of December morning (at 5AM) and due on Friday the
15th of December at 10PM. It will be released and submitted by email. It is expected to be the length of a
regular exam, open-note.

3.9.1 PrimeronIndiscernibles

We are going to do a little from chapter 5, which is on indiscernibles. Let T" be an £-theory, where L is a
countable language. Recall that if T' has an infinite model, compactness implies that 7" has an infinite model
of cardinality x for each infinite cardinal k. However, if we require that 7" omit some type, then we may no
longer have arbitrarily large models.

Example 3.85. Take the language £ consisting of countably many constants ¢; for each i € N, where T’
is the theory that ¢; # ¢; whenever ¢ # j. Then omitting the type p(x) given by = # ¢; for eachi € N
requires that any model of T is now countable!

Example 3.86. Take the language £ consisting of countably many constants ¢; for each i € N, and we
addinaunary relation wand a binary relation E. The point is that we will require models to look like they
have some w and also subsets of w. With this in mind, we require our theory 7' to have the following.

« Constants are distinct: ¢; # ¢; for eachi # j.
« Constants are in w: w(c;) for each i.
« Subsets are outside w: for all z and y with 2 E'y, we have w(x) and —w(y).

« Subsets satisfy extensionality: given z and y with —w(z) A ~w(y), if wEz +» wEy for each w, then
x=1y.

We now ask to omit the type p(x) given by requiring w(x) and x # ¢;. This means that any model M of
T omitting p(z) has that M F w(a) implies a = ¢M for any a € M. Now every element outside w in M
can be read off as living in P(M) C P(w).

One can also iterate the above example, adding in a relation for subsets of subsets of w and so on. Namely,
there is a language £ and theory T such that omitting a given type p(z) has only models of size at most 3,
for a < w. With some effort, we can extend this to any countable a. However, we will show that if T has a
model of size J,,, omitting a given type p(z), then T has a model of any larger size.
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As another motivation, take T to be a theory in a countable language. We would like models with “lots”
of automorphisms.

Example 3.87. Consider T' = Th(N, 0, 1, +, -, <). There are only countably many types, so find a model
M of T of cardinality Xy; then we can surely find two elements of the same type, so the two elements
have an automorphism between them in an elementary extension by Proposition 3.16.

We might want to enforce having countable models, which the above example does not require.

3.9.2 Introducing Indiscernibles

Anyway, let’s provide our definition.

Definition 3.88. Fixa countable language £ and £L-theory T'. Further, fixamodel M and a linear ordering
(I,<). Then{z;}icr € Misasequence ofindiscerniblesif and only if the z; are distinct, and any ordered
sequences i < -+ < ipandj; < -+ < j, will have

ME (‘p(xilv"wxin) A @(l‘]N?x]n))

for any £L-formula ¢ with n free variables.

Example 3.89. For any dense linear order, any subset will produce a sequence of indiscernibles, using
the ordering provided by the linear ordering. Indeed, one can write down an automorphism sending
any finite subset to another finite subset.

Example 3.90. Give Z x Z the lexicographical ordering. Then {(x,0) : € Z} is a sequence of indis-
cernibles: there is no first-order way to tell these elements apart because they are already “infinitely”
apart.

Remark 3.91. Given a set of indiscernibles {x; : ¢ € I} as above, one can define its type as
tp() = {e(v1,...,vn) : ME @(xiy,...,x;, ) foranyi; < -+ <i,}.
Note the choice of z;,, ..., x;, does not matter by definition of the indiscernibles.

Let's try to find indiscernibles.

Theorem 3.92. Let T be an L-theory with infinite models. Fix a linear ordering (I, <). Then there is a
model M E T with a sequence {z; : ¢ € I} of indiscernibles.

This result requires Ramsey’s theorem. For notation, let [ X]™ denote the sets of X with n elements.

Theorem 3.93 (Ramsey). Any k-coloring ¢: [N]™ — {0, 1,..., k} has an infinite monochromatic set H C
N. Namely, there is £ such that any S € [H]™ will have ¢(S) = ¢.

For example, n = 0 has nothing to show, and n = 1 is the Pigeonhole principle. If we have time, we will
prove Theorem 3.93 next class. Anyway, here is our proof of Theorem 3.92.

Proof of Theorem 3.92 using Theorem 3.93. We use compactness. Add to our language new constants ¢;
foreachi € I, and let 7" be the theory T adding in the requirements that ¢; # ¢; for each i # j and also the
sequences

O(CiyseorCiy) > @(Ciyseos6,)
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for each pair of ordered sequencesi; < --- < iyandj; < --- < j,inI. We need to show that 7" is satisfiable,
soitis enough by compactness to show that 7" is finitely satisfiable. Well, any finite subset A C T” will only
mention finitely many formulae ¢4, . . ., ¢ and finitely many constants ¢y, . . ., ¢;.

We now show that A is satisfiable. Well, pick up some model M, and we may as well assume that M is
countable.? We would now like to assign the finitely many constants c, to distinct places to satisfy A. For
this, we use Theorem 3.93. Namely, order M as M = {q; : i € N}, and we define the coloring

c: [M]™ — 2,

where ¢({a1,...,a,}) is the subset of {1,2, ..., k} determined by having ¢ if and only if M F ¢,(a1,as,...)
and not having ¢ otherwise. (The arity of ¢, matters here, which is why we have written a1, as,....) Now,
Theorem 3.93 produces an infinite subset H C M such that c is constant on [H]|™. Thus, we may send the
constants cy, ..., ¢, wherever we please in H (ordered properly). |

Remark 3.94. The above proof in fact promises a model M of cardinality |£| + |I]| + Ro.

Let's think a little about using indiscernibles to produce automorphisms. This requires an adjective to our
theory.

Definition 3.95 (Skolem functions). Fixan L-theory T. Then T has built-in Skolem functions if and only
if any £-formula (7, 7) has a term #(Z) such that

T EVZ(Ig¢(T,9) = (T, H(T)))-

We call ¢(Z) a Skolem function.

Remark 3.96. A theory T' with built-in Skolem functions is model-complete: for any substructures M C
N, we canuse the Tarski—Vaught test to show M < A. Namely, looking at Lemma 1.72, choosing some
formula ¢(Z,y) anda € M™ with N E Jy (@, y), then the existential is witnessed by a Skolem function,
meaning that we can find it in M.

Example 3.97. Peano arithmetic has “definable” Skolem functions by finding the least element satisfy-
ing some formula. Adding in function symbols produces an extension of the theory with built-in Skolem
functions.

3.10 November 30

It's the last class for this course.

3.10.1 Skolem Functions

We note that we can always add in Skolem functions to a theory.

Proposition 3.98 (Skolemization). Fix a language £ and theory T'. Then we can extend the language and
theory to £* and T, respectively, so that T has built-in Skolem functions.

2 Even if £ is countable, A only uses a finite subset of this language, so we may restrict T" to this language when concerned with the
satisfiability of A.
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Proof. Set Ly := L and Ty := T Then for each i, we can make £, ; from £; by adding a function symbol f,
for each formula ¢(Z, y) and then make T from T; by adding the sentences

VIZ(3y o(T,y) = (T, f(T)))
Taking the union over all the £; and T; will produce the needed £* and T™*. |

Remark 3.99. A theory T with Skolem functions has quantifier elimination: any formula ¢(z, y) with
Skolem function f,, has
T EVZ(Jy o(@,y) < ¢(T, f,(T))),

effectively eliminating the outer existential from 3y (7, y). So we can eliminate quantifiers, by hand,
one at a time. For example, it follows that T" is model-complete, recovering Remark 3.96.

Anyway, we are permitted the following definitions.

Definition 3.100 (Skolemization). Fix an £L-theory T'. Then a Skolemization of T is an extension T™* of T
to a new language £* D £ which has built-in Skolem functions.

To continue, we pick up the following definition.

Definition 3.101. Fix an £L-theory T with built-in Skolem functions. Given a subset X of amodel M E T,
we let H(X) be the £-substructure generated by X.

Remark 3.102. Explicitly, the universe of H(X) is the collection of terms whose inputs come from X.

Remark 3.103. By Remark 3.96, we note that H(X) < M in the above situation.

3.10.2 Building Automorphisms
We now get the following theorem on automorphisms of indiscernibles.
Theorem 3.104. Fix an £-theory T with built-in Skolem functions. Further, fix a model M and a se-

quence of indiscernibles {z; };c, with X := {a; : i € I}. Given any order-preserving automorphism
o: I — I,thereis aunique automorphism 7: H(X) — H(X) such that 7(z;) = z,(; foreachi € I.

Proof. The uniqueness is easier, and only needs us to preserve the relevant structure (namely, not bijec-
tivity): any element of H(X) is of the form ¢(Z) where t is a term and Z € X, but then any automorphism
7: H(X) — H(X) with 7(z;) = x,(;) must have

thus defining 7.
For existence, we need to show that the 7 defined above is well-defined and an automorphism. Here are
our checks.

 Suppose we have equal terms t(z;,, ..., z;, ) = s(zj,,...,;,), and we need to show that

-
=5(Tojys- -1 Toj,)-

t(.%‘gil, ce ,xgik)
Well, this follows from X being a sequence of indiscernibles: we see that the sentence
t(yh?' 3 ayik) = S(yj17' i vyje)
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is going to be in the type of {z;,,...,2;,,2;,,...,2;,} (suitably ordered and so on), so because apply-
ing o (which is order-preserving!) cannot change the type, we see that the sentence still holds upon
applying o, achieving the needed equality.

« We show that 7 preserves the structure. Essentially the same argument goes through. For exam-
ple, M E R(t1(Z),...,t,(T)) is equivalent to M E R(t1(cZ),...,t,(cT)) because we are asking for
R(t1(Z),...,t,(T)) to be in the type of Z, which does not change because X is a sequence of indis-
cernibles, and o is order-preserving.

« We show that 7 is an isomorphism. Well, we can define some automorphism 7’ which sends z; to
Zs-1; Using the argument above, but then 7 and 7’ are inverse maps of structures: 7 o 7/ and 7/ o 7
are morphisms sending x; — x; and so must be the identity by uniqueness, so we do indeed have an
automorphism. |

As a corollary, we get to build models that have lots of automorphisms!

Corollary 3.105. Fixan £-theory T'with £ countable, where T has infinite models. Forany k > Ry, there
isamodel M E T of cardinality x and 2% automorphisms.

Proof. We may as well extend T to be a complete theory which has built-in Skolem functions by taking
the Skolemization. (Note that the language remains countable due to the construction in Proposition 3.98.)
Now, chose a linear ordering (I, <) of cardinality x, and then Theorem 3.92 promises the existence of a
model M E T of cardinality s with a sequence of indiscernibles {z; : i € I'}. We now may replace M with
H({z; : i € I'}), which we note still has cardinality I.

Now, Theorem 3.104 promises that M = H({x; : i € I}) will have at least as many automorphisms as
order-preserving maps I — I, so it remains to choose I so that I has 2" order-preserving maps I — I. Well,
choose I := Z x k to be k many copies of Z, named Z,, for a € Z. Then for any subset S C x, we can build
an order-preserving map og by applying a +1 shift to Z,, for each « € S and do nothingto Z, fora ¢ S. R

Here is another application.

Lemma 3.106. Fix an £-theory T, and let X = {«; : ¢ € I} be a sequence of indiscernibles. For any
linear ordering J, there is a model \V with a sequence of indiscernibles Y = {y; : j € J} such that

™ (X) = N (Y).

Further, if T' has built-in Skolem functions and M omits any type p(z), then we may require that A/
omits the same type p(z).

Proof. We use compactness. For the first claim, build A by compactness, as in Theorem 3.92. Namely,
add in constants {¢; : j € J} and force A to satisfy elDiag M along with the sentences ¢(c;, , ..., ¢;,) when
j1 < --- < jn and @ lives in tpM (X). This is finitely satisfiable by M because any finite segment of .J looks
just like a finite segment of .

To get the second claim, move everything up to a Skolemization first and then replace the given model
N with H(Y). Indeed, the type of any sequence of elements in A/ only uses finitely many elements of V, so
we can move the used subsequence of y,s back to z,s to show that the types in A/ are a subset of the types
in M. |

Theorem 3.107. Fix a countable language £ and an £-theory T with built-in Skolem functions. Further,
suppose that any o € wy has a model M E T of size at least 3, which omits a given type p(z) € S1(T).
Then there is a model N E T still omitting p(z) with an infinite sequence of indiscernibles.
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Proof. Intuitively, we will pick up some large subset of M and slowly make it smaller and smaller in order to
avoid the type and all satisfy the same formulae (to be a sequence of indiscernibles). The process of making
it smaller but maintaining an infinite size is some kind of coloring problem with every formula colored by
which formulae they satisfy. So we will want the following purely combinatorial result.

Theorem 3.108. Fix a set B of size J,,(k) T and a coloring ¢: [B]"*! — k. Then there is a monochromatic
subset A C B of cardinality x+.

Here, we recall that J,, means repeating P a total of n times.

Let's provide afew more details. Add in constants {c; : i € N} to ourlanguage. To begin our compactness
argument, we add to our theory ¥ O T the requirements that each the ¢; are distinct and that we are making
the {¢; : ¢ € N} into a sequence of indiscernibles. This is still satisfiable, so we will try to complete ¥ in a
way that has this continue to be satisfiable. Now, the main idea is to add in the constraints that each term

t(v) has ¢(y) € p(y) such that = (t(c)).

To do this construction, we will build ¥ inductively via a sequence ¥y C ¥; C ---. At each step of the
construction & € wy, we ensure that we have a model V,, omitting p(z) but satisfying 3, and we ensure that
N, has a sequence of 2, indiscernibles. [ ]

Remark 3.109. The above theorem answers many of the questions of Section 3.9.1 on trying to con-
struct models with lots of automorphisms but still omitting a type.
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