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THEME 1

COMPACTNESS

That something so small could be so beautiful.

—Anthony Doerr, [Doe14]

1.1 August 24

It begins.

1.1.1 Logistics
Here are some logistical notes.

• There is a bCourses.

• We will use [Mar02].

• Professor Montalbán and Scanlon will teach the course jointly.

• There will be a midterm (in-class on the 19th of October) and final exam (take-home over three days).

• There are suggested but technically ungraded exercises. They are helpful.

• We will assume basic first-order logic, and examples will be taken from a few other areas of mathe-
matics.

• This is a graduate class. It will be pretty fast.

We are studying model theory, which is the study of models and theories. Our main two theorems are the
Compactness theorems and results on admitting types. We will use these results again and again.

1.1.2 Languages and Structures
Let’s review chapter 1 of [Mar02]. Here is a language.
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1.1. AUGUST 24 225A: MODEL THEORY

Definition 1.1 (language). A language L consists of the sets F , R, and C of symbols. Here, F are func-
tions, R are relations, and C are constants. Notably, there is an arity function n : (F ∪R) → N.

Concretely, fix a language L = (F ,R, C). If f ∈ F and n(f) = 3, then we say that f has arity three; the
analogous statement holds for relations.

We will often abbreviate a language to just a long tuple. For example, the notation (N, 0, 1,+,≤) has the
domain N and constants 0 and 1 and function + and relation ≤, even though the notation has not made it
obvious what any of these things are.

So far we only have the prototype of data. Here is the data.

Definition 1.2 (structure). Fix a language L. Then an L-structure M consists of the following data.

• Domain: a nonempty set M .

• Functions: for each f ∈ F , there is a function fM : Mn(f) →M .

• Relations: for each R ∈ R, there is a relation RM ⊆Mn(r).

• Constants: for each c ∈ C, there is a constant cM ∈M .

The various (−)M data are called interpretations.

Example 1.3. Consider the language L with the constants 0 and 1 and operations + and ×. Then N is an
L-structure, in the obvious way.

In general, algebra provides many examples of languages.
We would like to relate our structures.

Definition 1.4 (homomorphism, embedding, isomorphism). Fix a language L. An L-homomorphism
η : M → N of L-structures M and N is a one-to-one map η : M → N preserving the interpretations,
as follows.

• Functions: for each f ∈ F , we have η ◦ fM = fN ◦ ηn(f).

• Relations: for each R ∈ R, if m ∈ RM, then ηn(R)(m) ∈ RN .

• Constants: for each c ∈ C, we have η
(
cM
)
= cN .

If η : M → N is one-to-one and the relations condition is an equivalence, then η is an L-embedding. If
η : M → N is the identity M ⊆ N , then we say that M is an L-substructure. In addition, if η is onto,
then η is an L-isomorphism.

Explicitly, being a substructure means that the functions and relations are restricted appropriately, and the
constants remain the same.

Example 1.5. In the language of groups, subgroups make substructures. A similar sentence holds for
other algebraic structures.

1.1.3 Formulae
Thus far we have described a vocabulary: the language provides the data for us to manipulate. We now
discuss how to “speak” in this language.
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1.1. AUGUST 24 225A: MODEL THEORY

Definition 1.6 (term). Let L be a language. The set of L-terms is the smallest set T satisfying the fol-
lowing.

• Constants: for each c ∈ C, we have c ∈ T .

• Variables: xi ∈ T for each i ∈ N. Notably, we have only countably many variables.

• Functions: if t1, . . . , tn ∈ T where n = n(f) for some f ∈ F , then f(t1, . . . , tn) ∈ T .

Given an L-structure M and term t ∈ T with variables x1, . . . , xn and elements a1, . . . , an ∈ M , we
define tM(a) in the obvious way.

Terms are basically just nouns. We would now like to put them into sentences.

Definition 1.7 (atomic formula). The set of atomic L-formulae is the set of expressions of one of the
following forms.

• Equality: t1 = t2 for any L-terms t1 and t2.

• Relations: R(t1, . . . , tn) for any n-ary relation R and L-terms t1, . . . , tn.

Definition 1.8 (formula). The set of L-formulae is the smallest set satisfying the following.

• Any atomic L-formula φ is an L-formula.

• For any L-formulae φ and ψ, then ¬φ and φ ∧ ψ and φ ∨ ψ are L-formulae.

• For any variable vi for i ∈ N, then ∃viφ is an L-formula.

One can then define the shorthand “φ→ ψ” for ¬φ ∨ ψ and “∀viφ” for ¬∃vi¬φ.

Now that we can talk about our structure, we would like to know if we are making sense.

Definition 1.9 (free variable). Fix a language L. A variable v in a formula φ is free if and only if it is not
bound to any quantifier ∃v or ∀v. If φ has free variables contained in the variables x1, . . . , xn, we write
φ(x1, . . . , xn).

This definition is vague because we have not said what “bound” means, but it is rather obnoxious to explain
what it is rigorously, so we will not bother.

Definition 1.10 (sentence). Fix a language L. An L-formula with no free variables is a sentence.
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1.2. AUGUST 29 225A: MODEL THEORY

Definition 1.11 (truth). Fix an L-structure M. Further, fix an L-formula φ(x1, . . . , xn) and a tuple a ∈
Mn. Then we define truth as M ⊨ φ(a) to mean that φ is true upon plugging in a, where our definition
is inductive on atomic formulae as follows.

• M ⊨ (t1 = t2)(a) if and only if tM1 (a) = tM2 (a).

• M ⊨ R(t1, . . . , tn) if and only if
(
tM1 (a), . . . , tM2 (a)

)
∈ RM.

We define truth inductively on formulae now as follows.

• M ⊨ (φ ∧ ψ)(a) if and only if M ⊨ φ(a) and M ⊨ ψ(a).

• M ⊨ (φ ∨ ψ)(a) if and only if M ⊨ φ(a) or M ⊨ ψ(a).

• M ⊨ ¬φ(a) if and only if we do not have M ⊨ φ(a).

• M ⊨ ∃vφ(a, v) if and only if there exists b ∈M such that M ⊨ φ(a, b).

In this case, we say that M satisfies, models, etc. φ(a) and so on.

Here is our first result of substance.

Proposition 1.12. Fix a language L and an L-embedding η : M → N . Further, fix a quantifier-free
formula φ and a ∈Mn. Then M ⊨ φ(a) if and only if N ⊨ φ(a).

Proof. Induction onφ. Roughly speaking, the point is that the interpretations are the same before and after.
■

Remark 1.13. If we allow variables, the statement is false. For example, (N, 0,≤) embeds into (Z, 0,≤),
but ∀x(0 ≤ x) is true in the first formula while false in the second.

In the case of isomorphism, we can say more.

Proposition 1.14. Fix a language L and an L-isomorphism η : M → N . Further, fix any formula φ with
free variables x1, . . . , xn and a tuple a ∈Mn. Then M ⊨ φ(a) if and only if N ⊨ φ(f(a)).

Proof. Induction on φ. The point is that the definition of truth is the same before and after η. ■

1.2 August 29

We continue with the speed run of first-order logic. The goal for today is to state the Compactness theorem.

1.2.1 Theories
Now that we have a notion of truth, it will be helpful to keep track of which sentences exactly we want to be
true.

Definition 1.15 (theory). Fix an L-structure M. Then the theory Th(M) of M is the set of all sentences
φ such that M ⊨ φ.

The theory is essentially all that first-order logic can see.
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1.2. AUGUST 29 225A: MODEL THEORY

Definition 1.16 (elementary equivalence). Fix L-structures M and N . Then we say that M and N , writ-
ten M ≡ N , are elementarily equivalent if and only if Th(M) = Th(N ).

Example 1.17. It happens that (Q,+) ≡ (R,+) but are not isomorphic because they have different car-
dinalities.

Example 1.18. Let s denote the successor function. It happens that (Z, s) ≡ (Q, s), but one can show
that they are not isomorphic.

This notion is different from isomorphism, but it is related.

Lemma 1.19. Fix L-structures M and N . If M ∼= N , then M ≡ N .

Proof. This is the content of Proposition 1.14 upon unraveling the definitions. ■

Going in the other direction, we might start with some sentences we want to be true and then look for the
corresponding models.

Definition 1.20 (theory). Fix a language L. Then an L-theory T is a set of L-sentences. For an L-
structure M, we say that M models T , written M ⊨ T , if and only if M ⊨ φ for all φ ∈ M. We let
Mod(T ) denote the class of all models M of T , and we call it an elementary class.

Example 1.21. The class of all groups arises from the language {e, ·} with some sentences to make a
theory. However, the class of torsion groups is not an elementary class.

We want might want to understand what sentences follow from a given theory.

Definition 1.22. Fix a language L and theory T . Then we say that T logically implies a sentence φ, writ-
ten T ⊨ φ, if and only if any L-structure M modelling T has M ⊨ φ.

Remark 1.23. Gödel’s completeness theorem shows thatT ⊨ φ if and only if there is a “proof” ofφ from
T . We will not use the notion of proof so much, though its proof is similar to the proof of compactness,
which we will show.

1.2.2 Definable Sets
We will want the following notion.

Definition 1.24 (definable). Fix an L-structure M and subset B ⊆ M . Then a subset X ⊆ Mn is B-
definable if and only if there is a formula φ(v1, . . . , vn, w1, . . . , wk) and tuple b ∈ Bk such that a ∈ X if
and only if M ⊨ φ(a, b). The tuple b might be called the parameters. We may abbreviate M-definable
to simply definable.

Example 1.25. Any finite set is definable by using the parameters to list out the elements.

Example 1.26. Work with M := (Z,≤). Then X = N is {0}-definable by φ(x, 0) where φ(x, y) is given
by y ≤ x. However, N is not ∅-definable, as shown by the following proposition.
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1.2. AUGUST 29 225A: MODEL THEORY

Proposition 1.27. Fix an L-structure M and subset A ⊆ M . Further, suppose X ⊆ Mn is A-definable.
For any automorphism σ : M → M fixing A pointwise must fix X (not necessarily pointwise).

Proof. Suppose φ(v, w) defines X with the parameters a ∈ A•. Then x ∈ X if and only if M ⊨ φ(x, a), but
then M ⊨ φ(σ(x), σ(a)), so M ⊨ φ(σ(x), a) so σ(x) ∈ X. For the converse, use the inverse automorphism
σ−1. ■

To further explain Example 1.26, we see that there are automorphisms of Z (namely, by shifting) which do
not fix N, so N cannot be ∅-definable.

Example 1.28. Work with M := ({1A, 1B, 2A, 2B},≤) with partial ordering given by the number. The
set X := {1A, 1B} is ∅-definable by φ(x) given by ∃y((x ̸= y) ∧ (x ≤ y)). However, there is an auto-
morphism of our model swapping 1A with 1B and 2A with 2B, but this automorphism does not fix X
pointwise.

1.2.3 The Compactness Theorem

To state compactness, we want a few definitions.

Definition 1.29 (satisfiable). Fix a language L and theory T . Then T is satisfiable if and only if it has a
model M.

With a notion of proof, one can show that being satisfiable means that there is no proof of ⊥, but we will
avoid a discussion of proofs in this course.

Definition 1.30 (finitely satisfiable). Fix a language L and theory T . Then T is finitely satisfiable if and
only if any finite subset of T is satisfiable.

Of course, being satisfiable implies being finitely satisfiable; the converse will be true but is far from obvious.
The following example explains why this is strange.

Example 1.31. Consider the natural numbersN = (N, 0, 1,+,×,≤) andNc := (N, 0, 1,+,×,≤, c), where
c is some constant symbol, and set

T := Th(N ) ∪

c ≥ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

: n ∈ N

 .

ThenT is finitely satisfiable byN because, for any finite subset ofT , the sentences c ≥ 1+1+ · · ·+1will
have to be bounded in length in our finite subset, so we simply find some c large enough inN . However,
N does not model T !

Anyway, here is our statement.

Theorem 1.32 (compactness). Fix a language L and theory T . If T is finitely satisfiable, then T is satis-
fiable. Furthermore, T has a model M with cardinality at most |L|+ ℵ0.
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1.3. AUGUST 31 225A: MODEL THEORY

Remark 1.33. In particular, the theory T of Example 1.31 has a model N ′, which is going to look very
strange. To begin, there is a segment

0 < 1 < 2 < · · · .

But there is now an element c larger than any natural, which produces c + 1, c + 2, c + 3, . . .. But also
any nonzero element has a predecessor, so we have elements c− 1, c− 2, c− 3, . . .. Further, any natural
number is either odd or even, so there is also either (c − 1)/2 or c/2 sitting between the initial piece of
N and the c piece with Z added everywhere. In fact, a similar argument holds to produce an element
approximately equal to qc for any rational q ∈ Q.

Remark 1.34. One can of course always make our model larger. For example, suppose we have a theory
T with an infinite model. If we want a model with cardinality at least R, we add constants {cr : r ∈ R}
to our language and add in the sentences

{cr ̸= cs : distinct r, s ∈ R}.

This remains finitely satisfiable: these constants merely ask for our model to be larger than any finite
set. One can even require the new model to be elementarily equivalent to the previous one.

Here are some applications of compactness.

Corollary 1.35. The class of torsion groups is not elementarily definable in the language L = {e, ∗} of
groups.

Notably, it is not okay to write something like ∨
n∈N

(∀g gn = e)

to encode any torsion because this statement is infinitely long.

Proof. Suppose the class is elementarily definable. Then we have a theory T such that Mod(T ) consists
exactly of all torsion groups. Now the trick is to build a model of T which is not actually a torsion group. For
this, we expand our language to L = {e, ∗, c}, and let

S := T ∪

{
c ∗ c ∗ · · · ∗ c︸ ︷︷ ︸

n

̸= e : n ≥ 2

}
.

For any finite subset of S, we can satisfy S by a torsion group containing an element which is not n-torsion
for sufficiently large n; for example, Z/nZ will do.

Thus, by Theorem 1.32, there is a model G of S, so in particular, G has an element g ∈ G with

g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n

̸= e

for all n ≥ 2 (namely, g is the interpretation of the constant symbol c), so it follows that G is not torsion.
However, G is also a model of T and thus is supposed to be torsion, so we have a contradiction! This com-
pletes the proof. ■

1.3 August 31
Professor Scanlon is back. Let’s prove the Compactness theorem. We are going to prove 2.5 times.

10
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1.3.1 Proof of Compactness
Recall the statement.

Theorem 1.32 (compactness). Fix a language L and theory T . If T is finitely satisfiable, then T is satis-
fiable. Furthermore, T has a model M with cardinality at most |L|+ ℵ0.

Remark 1.36. This result is special to first-order logic: in some sense, Theorem 1.32 combined with a
corollary characterizes first-order logic among various logics. Roughly speaking, one wants to formalize
what a logic is with its various structures and sentences should do.

Proof with completeness. We can prove this result fairly quickly given the Completeness theorem. Recall
that the Completeness theorem says that any theory fails to be satisfiable if and only if there is a proof of
contradiction⊥; one writes that a theoryT proves a sentenceφ byT ⊢ φ. We have not discussed how formal
proofs work, and we won’t discuss it further because this is not a proofs class. Approximately speaking, a
formal proof is a list of steps one can use the sentence sin T to produce φ syntactically.

Now, suppose that T fails to be satisfiable. Then there is a proof of ⊥. But then one can look at the proof,
which is necessarily finite in length, and then we pick up any sentence φ occurring in the proof of ⊥. But
then we have a proof of ⊥ using only finitely many sentences in T , so T fails to be finitely satisfiable! This
completes the proof. ■

Anyway, let’s present an actual proof.

Definition 1.37 (witness). Fix a theory T of a language L. Then T has witnesses (or Henkin constants)
if and only if each formula φ(x) in one free variable x has a constant symbol c such that ∃xφ(x) → φ(c)
lives in T .

Remark 1.38. If T has witnesses, then T ′ ⊇ T also has witnesses for any theory T ′ extending T .

Let’s quickly sketch our proof.

1. We will show that if T is finitely satisfiable, then there is an expanded language L′ ⊇ L and expanded
finitely satisfiable L′-theory T ′ ⊇ T of L′ such that |L′| ≤ |L|+ ℵ0, and T ′ has witnesses (as does any
extended theory T ′′ of T ′).

2. Next, suppose T is a maximally finitely satisfiable theory (i.e., T is finitely satisfiable, and any proper
extension T ′ ⊇ T fails to be finitely satisfiable1). Then we will show T is complete (i.e., each sentence
φ has either φ ∈ T or ¬φ ∈ T ).

3. From here, we want to extend maintaining being complete: if T is finitely satisfiable, then there is an
extended language L′ ⊇ L of size |L′| = |L| + ℵ0 and extended theory T ′ of T which is complete,
finitely satisfiable, and has witnesses. This essentially follows from a Zorn’s lemma argument.

4. We are now ready to do our construction. At this point, we may assume that our theory T is finitely
satisfiable, complete, and has witnesses. Then we claim that there is a model M such that |M | ≤ |L|.
In fact, the model can be described somewhat explicitly. Take M := C/∼ where C is our set of con-
stants, and our equivalence relation ∼ is given by c ∼ d if and only if (c = d) ∈ T . Notably, constants
c ∈ C are interpreted as cM := [c]. To interpret functions f , we have fM([a1], . . . [an]) = [d] if and only
if (f(a1, . . . , an) = d) ∈ T . Lastly, to interpret relations R, we have RM([a1], . . . , [an]) if and only if
(R(a1, . . . , an)) ∈ T .

Let’s start implementing the details.
1 Such a thing exists by some sort of Zorn’s lemma argument: note that there is a theory containing T which fails to be finitely

satisfiable: take the set of all sentences!

11



1.3. AUGUST 31 225A: MODEL THEORY

Remark 1.39. In logic, the answer to a question is often the question. For example, in step 4, we see
that T has a model because T says that it has a model.

Here is our first step.

Lemma 1.40. Fix a finitely satisfiable theory T of a language L. Then there is an expanded language
L′ ⊇ L and expanded finitely satisfiable L′-theory T ′ ⊇ T of L′ such that |L′| ≤ |L| + ℵ0, and T ′ has
witnesses.

Proof. We would like to just setT ′ to beT together with new constants providing witnesses for all formulae.
But these new constants will make new formulae, so we need to do some kind of induction to go upwards.

With this in mind, we will build an increasing sequence of languages

L0 := L ⊆ L1 ⊆ L2 ⊆ · · ·

and theories
T0 := T ⊆ T1 ⊆ T2 ⊆ · · ·

such that Tn is always a finitely satisfiable Ln-theory, and each Ln-formula φ with one free variable has a
constant c ∈ CLn

such that ∃xφ(x) → φ(c) lives in Tn. We will then set L′ to be the union of the L• and T ′ to
be the union of the T•, and this will complete the proof.

We have already built the n = 0 stage, as above. Then to build Ln+1 from Ln, add in new constant
symbols cφ(x) for each Ln-formula φ(x) with one free variable; all the functions and relations remain the
same. Note Ln+1 is now the size of the formulae with one free variable in Ln, so |Ln+1| = |Ln|+ ℵ0.

As for our theory, let Tn+1 be Tn plus the sentences ∃xφ(x) → φ
(
cφ(x)

)
for each Ln-formula φ(x) with

one free variable. We are now ready to set

L′ :=
⋃
n∈N

Ln and T ′ :=
⋃
n∈N

Tn.

We see that L′ then has the right size, and T ′ has witnesses: for any L′-formula φ(x) with one free variable,
note that φ(x) has only finitely many symbols, so we can find some fixed level Ln containing all the symbols
used in φ(x). But then φ(x) has a witness from Tn+1 ⊆ T ′, as needed.

It remains to show that T ′ is finitely satisfiable. It suffices to show that Tn is finitely satisfiable for any
n ∈ N because any finite set will be contained in some Tn. We show this by induction. For n = 0, there is
nothing to say. Now suppose Tn is finitely satisfiable, and we show that Tn+1 is finitely satisfiable.

Fix some finite subset ∆ ⊆ Tn+1 which we would like to build a model for. Now, ∆ will be built by
some sentences in Tn plus some new sentences from Tn+1. Looking hard at Tn+1 \ Tn, we see that we can
enumerate ∆ \ Tn as some sentences

∃xψk(x) → ψk(ck)

where {ψk}mk=1 is some Ln-formulae in one free variable.
We now begin building our model. Note ∆∩Tn is a finite subset of Tn, so it is satisfiable by some model

M. Now, for each k, if there is some a ∈ M such that M ⊨ φk(a), set a := ak; otherwise, set ak := m for
any chosen m ∈ M . (Note structures are nonempty.) We now let M′ be the Ln+1-structure with universe
M , interpretations of functions and relations the same as in M, and all old constant symbols are also all still
interpreted the same way. Then for each new constant symbol, we interpret cMk := ak, and each other new
constant symbol can also go tom. Now M′ is a model for ∆ because it models everything in ∆∩Tn for free,
and it has satisfied ∆ \ Tn+1 by construction, so we are done. ■

To show the second step, we begin with the following lemma.

Lemma 1.41. Fix a finitely satisfiable theoryT of a languageL. For anyL-sentenceφ, then eitherT∪{φ}
or T ∪ {¬φ} is finitely satisfiable.

12
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Proof. Suppose that both T ∪ {φ} and T ∪ {¬φ} both fail to be finitely satisfiable. We will show that T fails
to be finitely satisfiable.

Well, we are given finite subsets ∆+ ⊆ T ∪ {φ} and ∆− ⊆ T ∪ {¬φ} which are not satisfiable. If ∆+

fails to contain φ, then ∆+ is a finite subset of T which is not satisfiable, so T fails to be satisfiable. Thus,
we may assume that φ ∈ ∆+. Analogously, we may assume that ¬φ ∈ ∆−. Now, (∆+ ∪ ∆−) \ {φ} and
(∆+ ∪∆−) \ {¬φ} both fail to be satisfiable.

But now suppose for the sake of contradiction that T is finitely satisfiable. Then (∆+ ∪ ∆−) \ {φ,¬φ}
has a model M. But M ⊨ φ or M ⊨ ¬φ, so we see that M will model at least one of (∆+ ∪ ∆−) \ {φ} or
(∆+ ∪∆−) \ {¬φ}, which is the desired contradiction. ■

The second step now follows from a Zorn’s lemma argument.

Lemma 1.42. Fix a maximally finitely satisfiable theory T of a language L. Then T is complete.

Proof. Let φ be any L-sentence. Then either T ∪ {φ} or T ∪ {¬φ} is finitely satisfiable by Lemma 1.41, so
by maximality, we may conclude that either T = T ∪{φ} or T = T ∪{¬φ}, so either φ ∈ T or ¬φ ∈ T , which
is what we wanted. ■

Combining the work so far completes the third step.

Lemma 1.43. Fix a finitely satisfiable theory T of a language L. Then there is an extended language
L′ ⊇ L of size |L′| ≤ |L| + ℵ0 and extended theory T ′ of T which is complete, finitely satisfiable, and
has witnesses.

Proof. We can prove this using the previous two steps.

1. Lemma 1.40 provides an extended language L′ (of cardinality at most |L| + ℵ0) and extended theory
T ′ which is finitely satisfiable and has witnesses.

2. We use Zorn’s lemma to become maximally finitely satisfiable. Let P denote the set of finitely satis-
fiable L′-theories T ′′ extending T ′ which is finitely satisfiable. Containment shows that P is a partial
order, and it’s nonempty becauseT ′ ∈ P . Next up, we note that any nonempty chain {Tα}α∈λ is upper-
bounded by ⋃

α∈λ

Tα,

which we can see continues to be finitely satisfiable (any finite set belongs to some fix Tβ for β perhaps
large) and thus lives in P and succeeds to upper-bound our chain. Thus, Zorn’s lemma provides a
maximally finitely satisfiable theoryT ′′ containingT ′, which will be complete by Lemma 1.42. Because
T ′′ contains T ′, we continue to have witnesses. ■

1.4 September 5
In this lecture, we will complete our proof of Theorem 1.32.

1.4.1 Completing the proof of Theorem 1.32
Last class, we left off having shown Lemma 1.43, which was the third step of our outline. The last step of
the proof is the following lemma.

Lemma 1.44. Fix a languageL with a theory T which is finitely satisfiable, complete, and has witnesses.
Then T has a model M with cardinality at most |L|.

13
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Proof. As we did last class, we go ahead and explicitly describe our model and then show that it makes
sense. Take M := C/∼ where C is our set of constants, and our equivalence relation ∼ is given by c ∼ d if
and only if (c = d) ∈ T . Notably, constants c ∈ C are interpreted as cM := [c]. To interpret functions f , we
have fM([a1], . . . [an]) = [d] if and only if (f(a1, . . . , an) = d) ∈ T . Lastly, to interpret relations R, we have
RM([a1], . . . , [an]) if and only if (R(a1, . . . , an)) ∈ T .

We now check that this makes sense. Note that in the following checks, we are a bit sloppy in differ-
entiating between constants and their equivalence classes in C when there is unlikely to be problems from
doing so.

1. We show that ∼ is in fact an equivalence relation on C. There are the following checks.

• Reflexive: we must show c = c is a sentence in T . Because T is complete, one of c = c or ¬(c = c)
is in T . But T is finitely satisfiable, and the sentence ¬(c = c) has no model, so it cannot live in T .
So instead c = c lives in T .

• Symmetric: suppose c ∼ c′ so that c = c′ is a sentence in T ; we want to show that c′ = c is
a sentence in T . Well, by completeness one of c′ = c or ¬(c′ = c) lives in T . But if we have
¬(c′ = c), then the finite theory {¬(c′ = c), c = c′} will have no model (symmetry of equality will
hold in the model), violating that T is finitely satisfiable. So we must have c′ = c instead.

• Transitive: suppose c ∼ c′ and c′ ∼ c′′ so that c = c′ and c′ = c′′ are sentences in T . We want to
show that c ∼ c′′, or equivalently that c = c′′ lives in T . Well, by completeness, one of c = c′′ or
¬(c = c′′) lives in T . However, if ¬(c = c′′) lives in T , then we note that {c = c′, c′ = c′′,¬(c = c′′)}
is a subset of T with no model, which is a contradiction. So instead c = c′′ lives in T .

2. We show that our interpretation of functions makes sense. Fix an n-ary function f . We need to show
that f(a1, . . . , an) has a unique interpretation in M.

• Existence: for constants a1, . . . , an, we show that there is a constant b such that f(a1, . . . , an) =
b in T . This holds by having witnesses: let φ(x) be the formula f(a1, . . . , an) = x, and having
witnesses tells us that T contains the sentence

∃xφ(x) → φ(b)

for some constant b. We show that T contains the sentence φ(b). Otherwise, because T is com-
plete, T will have the sentence ¬φ(b), but being finitely satisfiable means that

{∃xφ(x) → φ(b),¬φ(b)}

must have a model; this is an issue because all models satisfy ∃x f(a1, . . . , an) = x and therefore
must satisfy φ(b), which is a contradiction to satisfying ¬φ(b).

• Uniqueness: for constants a1, . . . , an and a′1, . . . , a′n and b and b′ such that ai ∼ a′i for all i and both
f(a1, . . . , an) = b and f(a′1, . . . , a′n) = b′, we must show that actually b ∼ b′.
Well, by completeness, if b ∼ b′ is not true, then ¬(b = b′) lives in T . Then the theory

{a1 = a′1, . . . , an = a′n, f(a1, . . . , an) = b, f(a′1, . . . , a
′
n) = b′,¬(b = b′)}

is a subset of T but is not satisfiable (because of how functions work in set theory), which is a
contradiction.

3. We show that our interpretation of relations makes sense. Fix an n-ary relation R. Essentially, if we
have constantsa1, . . . , an anda′1, . . . , a′n such thatai ∼ a′i for each i, then we will haveR(a1, . . . , an) ∈ T
if and only if R(a′1, . . . , a′n) ∈ T . Because ∼ is symmetric as shown above, it suffices to show that
R(a1, . . . , an) ∈ T implies R(a′1, . . . , a′n) ∈ T .
Well, T is complete, so if T fails to contain R(a′1, . . . , a′n), then it must contain ¬R(a′1, . . . , a′n) instead.
But then

{a1 = a′1, . . . , an = a′n, R(a1, . . . , an),¬R(a′1, . . . , a′n)}

is a finite subset of T with no model because of how relations work in set theory; this is a contradiction.
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4. As an intermediate step, before going on to show that M ⊨ T , we show that terms behave: suppose
t(x1, . . . , xn) is a term. For constants c1, . . . , cn, c′, we show that t(c1, . . . , cn) = d is in T if and only if
tM([c1], . . . , [cn]) = [d].

Let T ′ be the subset of T with this property. Note that T ′ contains constants by our first check above.
To show that T ′ = T , we suppose that t1, . . . , tm ∈ T ′ and that f is an m-ary function, and we want to
show that f(t1, . . . , tm) is in T ′. Fix enough constants c1, . . . , cn (namely, more than the number of free
variables of each t•). Then we note tMi ([c1], . . . , [cn]) = [di] for some [d] ∈ M, which then implies that

ti(c1, . . . , cn) = di

is a sentence in T for each ti. Now, fM
(
tM1 , . . . , tMm

)
(c) is certainly equal to some constant [d], which

is now equivalent to having
f(d1, . . . , dm) = d

in T by the functions check above. Now, the finite satisfiable and completeness of T imply that having
the above sentence in T is equivalent to having the sentence

f(t1, . . . , tm)(c) = d

in T because T already contains ti(c) = di for each i. For example, if T fails to contain f(t1, . . . , tm)(c),
then it will contain ¬f(t1, . . . , tm)(c) = d by completeness, but this contradicts f(d1, . . . , dm) = d and
ti(c) = di for each i and therefore the finite subset with all these sentences is not satisfiable. The
reverse implication is similar.

5. We show that M actually satisfies all sentences in T ; in fact, we will show T ⊨ φ(a) for any φ and a if
and only if M ⊨ φ(a). We proceed by induction, starting with atomic formulae.

• Our most basic cases are sentences of the form c1 = c2 and R(c1, . . . , cn) where R is some n-
ary relation and c1, . . . , cn are constants. These are satisfied by M basically by construction: the
definition of ∼ establishes from c1 = c2 that c1 ∼ c2 and thus cM1 = [c1] = [c2] = cM2 . And
RM (

cM1 , . . . , cMn
)

is equivalent to R(c1, . . . , cn) ∈ T .

• For any terms t and s and enough constants a and b, we claim that having (t = s)(a, b) in T implies
M ⊨ (t = s)(a, b). The previous step promises constants c and d such that t(a) = c and s(b) = d
are in T and that this is equivalent to tM(a) = [c] and sM(b) = [d].
Now, (t = s)(a, b) being in T is thus equivalent to having c = d in T by the usual argument using
the completeness and finite satisfiability of T . Then having c = d is equivalent to [c] = [d], which
is equivalent to tM(a) = sM(b), which is equivalent to M ⊨ (t = s)(a, b).

• For any n-ary relation R and terms t1, . . . , tn and enough constants a, we claim R(t1, . . . , tn)(a)
being in T implies M ⊨ R(t1, . . . , tn)(a). Well, for each term ti, the previous step promises us a
constant ci such that ti(a) = ci is in T and has tMi (a) = [ci].
Now, having the sentences ti(a) = ci for each i implies that R(t1, . . . , tn)(a) lives in T if and only
ifR(c1, . . . , cn) lives in T by the usual argument using the completeness and finite satisfiability of
T . But by our relations check, we know thatR(c1, . . . , cn) lives in T if and only ifRM([c1], . . . , [cn])
is true, which is equivalent to RM (

tM1 (a), . . . , tMn (a)
)

.

We now build up from atomic formulae. Let F ′ be the subset of formulae such that φ(a) being in T for
some constants a if and only if M ⊨ φ(a). The above checks show that F ′ contains atomic formulae.

• Suppose φ ∈ F ′. We show ¬φ ∈ F ′. Well, ¬φ(a) fails to live in T if and only if φ(a) lives in T (by
completeness), which is equivalent to M ⊨ φ(a), which is equivalent to M not satisfying ¬φ(a).

• Supposeφ,ψ ∈ F ′. We show thatφ∧ψ. Well, (φ∧ψ)(a) lives in T if and only if bothφ(a) andψ(a)
live in T (using the usual argument with the completeness and finite satisfiability of T ), which is
equivalent to M ⊨ φ(a) and M ⊨ ψ(a), which is equivalent to M ⊨ (φ ∧ ψ)(a).
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• Suppose φ(x) ∈ F ′. We show that ∃xφ(x) ∈ F ′. Well, M ⊨ (∃xφ(x))(a) if and only if there is
[b] ∈ M such that M ⊨ φ(a, b). By hypothesis, this is equivalent to having some constant b such
that φ(a, b) is in T .
Now, if φ(a, b) is in T for some constant b, then the usual argument with completeness and finite
satisfiability requires (∃xφ(x))(a) to be in T . Conversely, if (∃xφ(x))(a) is in T , then the fact that
T has witnesses implies that there is a constant c such thatφ(a, b) is inT from the usual argument.
In particular, the sentence ∃xφ(a)(x) → φ(a)(b) belongs to T for some constant b.

The above checks complete the induction on formulae. ■

Theorem 1.32 now follows from combining Lemmas 1.43 and 1.44.

1.5 September 7
In this lecture, we will provide another proof of Theorem 1.32, using ultrafilters.

1.5.1 Ultrafilters
Unsurprisingly, the main character of our story will be ultrafilters.

Definition 1.45 (filter). Fix a set I. Then a filter F on I is a subset of P(I) satisfying the following.

(a) I ∈ F .

(b) Finite intersection: for X,Y ∈ F , we have X ∩ Y ∈ F .

(c) Containment: if X ∈ F and Y ⊆ I contains X, then Y ∈ F also.

The intuition here is that filters contain “large” subsets of I.

Example 1.46. Fix a set I. Then {I} is a filter.

Example 1.47. Fix a set I and a filter F on I. If ∅ ∈ F , then we see that any subset X ⊆ I contains ∅
and thus must live in F . Thus, F = P(I), which is in fact a filter. We call P(I) the “trivial filter.”

Example 1.48. More generally, fix any subset X ⊆ I. Then FX := {Y ⊆ I : X ⊆ Y } is a filter.

(a) Note X ⊆ I, so I ∈ FX .

(b) Intersection: if Y,Z ∈ FX , then X ⊆ Y and X ⊆ Z, so X ⊆ Y ∩ Z, so Y ∩ Z ∈ FX .

(c) Containment: if Y ∈ Fa, and Z ⊆ I contains Y , then X ⊆ Y ⊆ Z, so Z ∈ Fa.

Example 1.49. Fix a set I, and define F ⊆ P(I) by X ∈ F if and only if I \X is finite. We check that F
is a filter.

(a) Note I ∈ F because I \ I = ∅ is finite.

(b) Intersection: if X,Y ∈ F , then I \ (X ∩ Y ) = (I \X) ∪ (I \ Y ) is finite and thus X ∩ Y ∈ F .

(c) Containment: if X ∈ F and Y ⊆ I contains X, then I \ Y ⊆ I \X is finite, so Y ∈ F .

Ultrafilters are the largest filters.
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Definition 1.50 (ultrafilter). Fix a set I. Then an ultrafilter F on I is a nontrivial filter on I such that each
subset X ⊆ I has one of X ∈ F or I \X ∈ F .

Example 1.51. Fix a set I and element a ∈ I. Define the “principal ultrafilter”

Fa := {X ⊆ I : a ∈ X} .

We show that Fa is an ultrafilter. Note Fa is already a filter by Example 1.48. To be ultrafilter, for each
X ⊆ I, either a ∈ X or a ∈ I \X, which imply X ∈ Fa or I \X ∈ Fa respectively.

The following result rigorizes the notion that ultrafilters are the largest filters.

Lemma 1.52. Fix a set I and a filter U on I. The following are equivalent.

(a) U is an ultrafilter.

(b) U is maximal among the partially ordered set of nontrivial filters on I, ordered by inclusion.

Proof. We have two implications to show.

• We show (a) implies (b). Suppose U ′ is a filter properly containing U , and we want to show that U ′ =
P(I). Well, U ′ properly contains U , so there is some X ∈ U ′ \ U . But X /∈ U requires I \ X ∈ U , so
I \X ∈ U ′ too, but then

∅ = X ∩ (I \X)

lives in U ′. It follows that U ′ = P(I) by Example 1.47.

• We show (b) implies (a). Certainly U is nontrivial. Now, fix any subset X ⊆ I. Suppose I \X /∈ U , and
we want to show that X ∈ U . Indeed, consider the filter

U ′ := {Y ⊆ I : Y ⊇ X ∩X ′ for some X ′ ∈ U}.

Quickly, we check that U ′ is a nontrivial filter containing U .

– Note I ⊇ X ∩ I, so I ∈ U ′.
– Intersection: if Y1, Y2 ∈ U ′, then findX1, X2 ∈ U such that Yi ⊇ X ∩Xi for each i, soX1 ∩X2 ∈ U

implies Y1 ∩ Y2 ⊇ X ∩ (X1 ∩X2) and so Y1 ∩ Y2 ∈ U ′.
– Containment: if Y ∈ U ′ and Z ⊆ I contains Y , then find X ′ ∈ U such that Y ⊇ X ∩ X ′, so
Z ⊇ X ∩X ′, so Z ∈ U ′.

– Contains U : for each X ′ ∈ U , note X ′ ⊇ X ∩X ′, so X ′ ∈ U ′.
– Nontrivial: having ∅ ∈ U ′ would imply ∅ ⊇ X ∩ X ′ for some X ′ ∈ U , which is equivalent to
X ′ ⊆ I \X, so it would follow that I \X ∈ U , which is a contradiction.

We conclude that U = U ′ by maximality of U . However, X ⊇ I ∩ X forces X ∈ U ′ = U , so we are
done. ■

It is important to know that it is relatively easy to build ultrafilters.

Proposition 1.53. Fix a nontrivial filter F on a set I. Then there exists an ultrafilter U containing F .

Proof. Let P be the set of nontrivial filters containing F , which we turn into a partially ordered by set by
inclusion; note F ∈ P , so P is nonempty. Using Lemma 1.52, we would like to show that P has a maximal
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element, for which we use Zorn’s lemma. Fix a nonempty chain C ⊆ P , which we must upper-bound. We
claim that

Fu :=
⋃

F ′∈C
F ′

is a filter containing F upper-bounding C, which will complete the proof. Here are our checks.

• Upper-bounds: for any F ′ ∈ C, we see that F ′ ⊆ Fu by construction.

• Any F ′ ∈ C contains I, so I ∈ Fu.

• Intersection: if X,Y ∈ Fu, then we can find F ′
X ,F ′

Y ∈ C containing X and Y , respectively. Because
C is a chain, we may find F ′ ∈ C containing both F ′

X and F ′
Y . Then X,Y ∈ F ′, so X ∩ Y ∈ F ′ ⊆ Fu

because F ′ is a filter.

• Containment: if X ∈ Fu and we have a subset Y ⊆ I containing X, then we find F ′ ∈ C containing X
and find that Y ∈ F ′ ⊆ Fu because F ′ is a filter. ■

1.5.2 Compactness via Ultraproducts
For our application, we will want the notion of an ultraproduct.

Lemma 1.54. Fix a language L and some L-structures {Mα}α∈I . Now, define an L-structure M as
follows.

• The universeM is
∏
α∈IMα modded out by the equivalence relation ∼ given by (aα) ∼ (bα) if and

only if
{α ∈ I : aα = bα} ∈ U .

• Functions are interpreted component-wise.

• For ann-ary relationR,RM((a1α), . . . , (anα)) if and only if the set ofα such thatRMα(a1α, . . . , anα)
is in U .

Then M is a well-defined L-structure.

Proof. Here are our various checks.

• We check that ∼ is an equivalence relation.

– Reflexive: note (aα) ∼ (aα) because {α ∈ I : aα = aα} = I lives in U .
– Symmetric: if (aα) ∼ (bα), then

{α ∈ I : bα = aα} = {α ∈ I : aα = bα},

which is in U by hypothesis.
– Transitive: if (aα) ∼ (bα) and (bα) ∼ (cα), then {α ∈ I : aα = cα} contains the set

{α ∈ I : aα = bα = cα} = {α ∈ I : aα = bα} ∩ {α ∈ I : aα = cα},

which lives in U because U is a filter.

• We check that interpretation of functions makes sense. Fix an n-ary function f and some elements
(a1α), . . . , (anα) and (b1α), . . . , (bnα). We must show(

fM(a1α, . . . , anα)
)
∼
(
fM(b1α, . . . , bnα)

)
.
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Well, we note
{
α ∈ I : fM(a1α, . . . , anα) = fM(b1α, . . . , bnα)

}
contains the set

n⋂
i=1

{α ∈ I : aiα = biα},

which lives in U because U is a filter.

• We check that interpretation of relations makes sense. Fix an n-ary function R and some elements
(a1α), . . . , (anα) and (b1α), . . . , (bnα). We must show

R((a1α), . . . , (anα)) ⇐⇒ R((b1α), . . . , (bnα)).

Unwrapping the definition of RM, this is equivalent to{
α ∈ I : RMα(a1α, . . . , anα)

}
∈ U ⇐⇒

{
α ∈ I : RMα(b1α, . . . , bnα)

}
∈ U .

By symmetry, it’s enough to show the forward direction, for which we note that the right-hand set
contains {

α ∈ I : RMα(a1α, . . . , anα)
}
∩

n⋂
i=1

{α ∈ I : aiα = biα},

which lives in U because U is a filter. ■

Definition 1.55 (ultraproduct). Fix a language L and some L-structures {Mα}α∈I . The ultraproduct is
the L-structure defined in Lemma 1.54, denoted

∏
α∈IMα/U or

∏
U Mα.

We are now ready to begin our proof of Theorem 1.32. We want the following definition.

Definition 1.56 (expansion). Fix a language L and structure M. Given a subset A ⊆ M , we define the
expansion LA as having the same constants in addition to the constants in A but the same functions
and relations.

Remark 1.57. Fix a language L and structure M and subsetA ⊆M . Then M is in fact an LA-structure,
where we interpret the new constants a ∈ A by aM := a.

Compactness will follow from the result.

Theorem 1.58 (Łoś). Fix a language L and L-structures {Mα}α∈I . Expand L to the language L′ :=
L∏

α∈I Mα
. Now, let U be an ultrafilter on I so that M :=

∏
U Mα is an L′-structure. Then for any L-

formula φ(x1, . . . , xn) has M ⊨ φ
(
aM1 , . . . , aMn

)
if and only if

{α ∈ I : Mα ⊨ φ(a1, . . . , an)} ∈ U .

Proof. To see that M is in fact an L′-structure, note M is already an L-structure, and we may interpret the
constant (aα) of L′ by the corresponding equivalence class in M. Anyway, the content of the proof is to
induct on φ.

• Let c1 and c2 be constants. Then M ⊨ (c1 = c2) if and only if cM1 = cM2 if and only if the set of α such
that cMα

1 = cMα
2 is in U .

• Let t(x1, . . . , xn) be a term and c be a constant. We claim that M ⊨ (t = c)(a1, . . . , an) if and only if

{α ∈ I : Mα ⊨ (t = c)(a1, . . . , an)} ∈ U .
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This is done by induction on the term t. If t is a constant there is nothing to say. Otherwise, sup-
pose that f is an m-ary function, and we have terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn). Now, M ⊨
(f(t1, . . . , tm) = c)(a1, . . . , an) if and only if fM

(
tM1 (a), . . . , tMm (a)

)
= cM, which after taking enough

intersection is equivalent to having fM
(
cM1 , . . . , cMm

)
= cM for suitable constants c• coming from the

inductive hypothesis. One can then continue the argument backwards to complete.

• Let t1(x1, . . . , xn) and t2(x1, . . . , xn) be terms. Then M ⊨ (t1 = t2)
(
aM1 , . . . , aMn

)
if and only if the set

of α such that
tMα
1

(
(aMα

1 ), . . . , (aMα
2 )

)
= tMα

2

(
(aMα

1 ), . . . , (aMα
2 )

)
is contained in U . Choosing constants c1 and c2 suitably as above and using the filter property, this is
equivalent to having cM1 = cM2 , from which we can go backwards to complete the argument.

• The same argument holds for atomic formulae of the form R(t1, . . . , tn) where R is an n-ary relation.

We now begin inducting on formulae. Let F ′ be the set of desired L′-formulae. The above checks show that
F ′ contains atomic formulae.

• Suppose φ,ψ ∈ F ′. Then M ⊨ (φ ∧ ψ)(a) if and only if M ⊨ φ(a) and M ⊨ ψ(a) if and only if

{α ∈ I : Mα ⊨ φ(a)} ∩ {α ∈ I : Mα ⊨ ψ(a)}

lives in U , which is equivalent to
{α ∈ I : Mα ⊨ (φ ∧ ψ)(a)}

by the intersection property of U .

• Suppose φ ∈ F ′. Then M ⊨ (¬φ)(a) is false if and only if M ⊨ φ(a) if and only if

{α ∈ I : Mα ⊨ φ(a)} ∈ U ,

which because U is an ultrafilter is equivalent to

I \ {α ∈ I : Mα ⊨ φ(a)} /∈ U ,

from which we can work backwards to complete the argument. (To see the last equivalence, note that
each X ⊆ I has exactly one of X ∈ U or I \X ∈ U : at least one is true because U is an ultrafilter, and
at most one is true because both being true requires ∅ ∈ U , making U the trivial filter.)

• Suppose φ(x, a) ∈ F ′. Then M ⊨ (∃xφ(x))(a) if and only if there is some b ∈ M (i.e., b a constant
because we expanded our language) such that M ⊨ φ(b, a), which is equivalent to

{α ∈ I : Ma ⊨ φ(b, a)} ∈ U

for some constant b. ■

Corollary 1.59. Let T be a finitely satisfiable L-theory. Then T is satisfiable.

Proof. We follow [Mar02, Exercise 2.5.20]. We may suppose that T is nonempty. Let I be the set of finite
subsets of T , and for each ∆ ∈ I, let M∆ be a model for ∆. We have two steps.

1. We define a filter. For each φ ∈ T , let Xφ := {∆ ∈ I : M∆ ⊨ φ}. Then we define

D := {A ∈ I : A ⊇ Xφ for some φ ∈ T}.

We show that D is a nontrivial filter on I.

• Note that ∅ /∈ D because this would require that ∅ ⊇ Xφ for some φ ∈ T , which is bad because
M{φ} ⊨ φ shows Xφ is nonempty.
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• Note any φ ∈ T has Xφ ⊆ I, so I ∈ D.
• Intersection: ifA,B ∈ D, then find φ,ψ ∈ T such thatXφ ⊆ A andXψ ⊆ B. ThenA∩B contains
Xφ ∩Xψ, but Xφ ∩Xψ consists of ∆ such that M∆ models both φ and ψ, which is equivalent to
M ⊨ φ ∧ ψ, so Xφ ∩Xψ = Xφ∧ψ.

• Containment: if A ∈ D is contained in B ⊆ I, then find φ ∈ T with A ⊇ Xφ so that B ⊇ Xφ as
well.

2. Let U be an ultrafilter containing D, and let M be
∏

U M∆. Then for each φ ∈ T , we see by Theo-
rem 1.58 that M ⊨ φ if and only if

{∆ ∈ I : M∆ ⊨ φ} ∈ U ,

which is true by construction of U . ■

Remark 1.60. Theorem 1.32 was able to bound the size of the model, but the above proof does not.
Indeed, the models M∆ are potentially large, and M is approximately the size of all of them multiplied
together.

1.6 September 12
We started class by showing that Theorem 1.58 implies the compactness theorem. Professor Scanlon’s
proof is distinct from the one in my notes, but I have not bothered to record his proof.

1.6.1 Elementary Equivalence
The following notion will be helpful.

Definition 1.61 (theory). Fix a language L and an L-structure M. Then the theory ThL(M) is the set of
sentences φ such that M ⊨ φ. For a subset A ⊆ M , we may abbreviate ThLA

(M) to just ThA(M) for
brevity.

The following notions are also sometimes helpful.

Definition 1.62 (diagram). Fix a language L and an L-structure M. The diagram Diag(M) is the set φ
of atomic LM-sentences (in the expanded language LM ) or negations of atomic sentences such that
M ⊨ φ. The elementary diagram is the theory ThLM

(MM ).

The theory is in some sense everything that a structure can see. As such, we make the following defini-
tion.

Definition 1.63 (elementarily equivalent). Fix a language L. Then two L-structures M and N are ele-
mentarily equivalent, written M ≡ N if and only if ThL(M) = ThL(N ).

Remark 1.64. In fact, it is enough to merely have ThL(M) ⊇ ThL(N ). Indeed, suppose for the sake of
contradiction that ThL(M) ⊋ ThL(N ). Then there is a sentence φ with M ⊨ φ but N does not satisfy
φ. But then N ⊨ ¬φ, so M ⊨ ¬φ too! But this does not make sense because M cannot satisfy both φ
and ¬φ.

Proposition 1.65. Fix a language L and isomorphic L-structures M and N . Then M and N are elemen-
tarily equivalent.
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Proof. We show this by induction. Fix an isomorphism f : M → N . We will actually show that MM ≡ NM ,
where NM means M viewed as an LM-structure where the constants a ∈M are interpreted as aN := f(a).

Anyway, we induct on φ.

• Suppose that φ is atomic of the form t1(a) = t2(a). If MM ⊨ (t1(a) = t2(a)), then an induction on
terms t shows that

tN (a) = f
(
tM(a)

)
.

Indeed, if t is a constant term, then this follows directly from f being an isomorphism. Otherwise, t
takes the form g(t1, . . . , tn) for a function symbol g, and the interpretation of g is also respected by f
because it is an isomorphism.
Now, MM ⊨ (t1(a) = t2(a)) if and only if tM1 (a) = tM2 (a), which is equivalent to NM ⊨ (t1(a) = t2(a))
by passing through f as above.

• Suppose that φ is atomic of the form R(t1(a), . . . , tn(a)). Well, MM ⊨ R(t1(a), . . . , tn(a)) if and only if(
tM1 (a), . . . , tMn (a)

)
∈ RM, and then passing everything through f shows that this is equivalent to(

tN1 (a), . . . , tNn (a)
)
∈ RN ,

which is NM ⊨ R(t1(a), . . . , tn(a)).

• Suppose that φ takes the form ¬ψ. Then the usual semantic argument takes care of us.

• Suppose that φ takes the form ψ ∧ θ. Then the usual semantic argument takes care of us.

• Suppose that φ takes the form ∃xψ(x). Then MM models this if and only if there is some a ∈ M
such that MM ⊨ ψ(a), but ψ(a) is a perfectly valid sentence in our language because we expanded
our constants, so this is equivalent to NM ⊨ ψ(a) for some a ∈ M . This last assertion is equivalent
to NM ⊨ ∃xψ(x) (the forward direction is clear, and the backward direction is because any b ∈ N
witnessing takes the form f(a) for some a ∈ M because f is a bijection on the universe).

The above induction completes the argument. ■

Proposition 1.65 is a nice result. We might hope for a converse, but it is false in general. There is a converse
for finite structures.

Proposition 1.66. Fix a finite language L and a finite structure M. Then M ≡ N if and only if M ∼= N .

Proof. Say thatMhasn elements. Then we build a sentence which asserts that there are exactlyn elements
x1, . . . , xn, and then add on conditions for each m-ary function symbol f what f(xi1 , . . . , xim) should equal,
for each m-ary function symbol R whether R(xi1 , . . . , xim) should be, and so on.

Let’s write this out. The start of this sentence

∃x1 · · · ∃xn

(∧
i ̸=j

¬(xi ̸= xj)

)
∧

(
∀y

n∨
i=1

(y = xi)

)
∧ · · ·


dictates that any model satisfying this sentence has exactly n elements. (Namely, the first part asserts that
the model has at least n elements, and the second bit says that any element equals one of the given n ele-
ments.) Next we write in function symbols. Enumerate M as a1, . . . , an. For each m-ary function symbol f
in the language L, and m elements ai1 , . . . , aim of M , we note that fM(ai1 , . . . , aim) is some element of M ,
which by abuse of notation we will write as af(i1,...,im). As such, we next tack on the sentence∧

m-ary f

∧
1≤i1,...,im≤n

(
f(xi1 , . . . , xim) = xf(i1,...,im)

)
.
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Next up, we interpret constant symbols: by abuse of notation, let cM be ac, so we add on the sentence∧
c constant

(c = xc).

Lastly, we interpret relations: we need the sentence∧
m-aryR

∧
1≤i1,...,im≤n
R(ai1 ,...,aim )

R(xi1 , . . . , xim).

In total, our sentence looks like

∃x1 · · · ∃xn

((∧
i̸=j

¬(xi ̸= xj)

)
∧

(
∀y

n∨
i=1

(y = xi)

)

∧
∧

m-ary f

∧
1≤i1,...,im≤n

(
f(xi1 , . . . , xim) = xf(i1,...,im)

)
∧

∧
c constant

(c = xc)

∧
∧

m-aryR

∧
1≤i1,...,im≤n
R(ai1 ,...,aim )

R(xi1 , . . . , xim)

∧
∧

m-aryR

∧
1≤i1,...,im≤n
¬R(ai1 ,...,aim )

¬R(xi1 , . . . , xim)

)
.

Let’s quickly explain why this works. Notably, M satisfies the above sentence by taking xi to be ai. On the
other hand, for any N which is an L-structure satisfying the above sentence, the first line dictates that N
must have exactly n elements b1, . . . , bn. The second line dictates what fN (bi1 , . . . , bim) must equal for each
m-ary function symbol f . The third line dictates what cN for each constant symbol c. Lastly, the last two lines
dictate whatRN (bi1 , . . . , bim) for eachm-ary relation symbolR. Thus, we see that we have an isomorphism
ρ : M → N by ai 7→ bi.

Writing this out a bit, let’s check that ρ preserves function symbols. The other checks are no harder. By
construction, we see that

ρ
(
fM(ai1 , . . . , aim)

)
= ρ

(
af(i1,...,im)

)
= bf(i1,...,im)

= fN (bi1 , . . . , bim),

which is what we wanted. Notably, the last equality holds because it was required by our sentence. ■

Remark 1.67. The infinite language case might be an interesting question for the midterm exam. The
proof should be quite similar.

Let’s verify that infinite structures are not determined by their theories.

Proposition 1.68. Fix a languageL and infiniteL-structureM. Then there exists anL-structureN such
that M ≁= N but M ≡ N .

Proof. We will choose N to simply be larger than M. Choose a cardinal κ strictly larger than |M |, and let L′

be an expanded language with κ new constants cα for each α ∈ κ.
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We now use compactness to construct N . Choose the theory T to be

ThL(M) ⊔ {cα ̸= cβ : α ̸= β for α, β ∈ κ}.

We claim that T is finitely satisfiable. Indeed, for any finite subset ∆, we claim that M can be made into a
model for ∆. Well, M certainly satisfies T ∩∆ ⊆ ThL(M), and then ∆ \ ThL(M) is just asserting that M
has some finite number of distinct elements, which is true

More explicitly, let λ ⊆ κ be a finite subset such that any cα appearing in a sentence of ∆ has α ∈ λ. Then
choose some element a0 ∈ M and then |λ| distinct elements aα for each α ∈ λ. We interpret cα as aα for
each α ∈ λ and interpret each cβ as a0 for each β /∈ λ. We can see that this new model M′ models ∆, so we
are safe.

Anyway, Theorem 1.32 now provides us with a model N ′ of T . Notably, N ′ can be restricted to an L-
structure by simply forgetting how to interpret theκ new constants, and we see thatThL(N ) ⊇ ThL(M), so
M ≡ N follows by Remark 1.64. However, |N | ≥ κ > |M| requires that M and N are not isomorphic. ■

Here are some follow-up questions. Fix a language L.

1. If we have M ≡ N and |M| = |N |, can we construct an example with M ≁= N ? This is true for some
theoriesThL(M)where this is true but not always. For example, for countable models, this is (roughly
speaking) the theory of types.

2. If M ≡ N , can we find a nonempty index set I and an ultrafilter U such that MI/U ∼= N I/U? The
converse is certainly true by Theorem 1.58. This forward direction turns out to be yes and is Keisler–
Shelah. By the end of the course, we will be able to show this under some assumptions (countable
languages, countable structures, and assuming the continuum hypothesis).

1.7 September 14
Today we will prove the Löwenheim–Skolem Theorem.

1.7.1 The Löwenheim–Skolem Theorem
We will want the following definition.

Definition 1.69 (elementary substructure). Fix a language L and two structures M and N . Then we say
that M is an elementary substructure of N , written M ≤ N if and only if M is a substructure of N and
MM ≡ NM .

Remark 1.70. It is not enough to have M ⊆ N and M ≡ N . For example, take the language L = {<}
and let M = (N, <) and N = (Z+, <). Then M ⊆ N , and M ≡ N . To see that M ≡ N because M ∼= N
(subtracting one is an isomorphism Z+ → N), which is enough by Proposition 1.65. However, M ̸≤ N :
the sentence ∀x 1 ≤ x is true in M but not in N .

Here is the result we are going to show.

Theorem 1.71. Fix a language L and infinite structure M. For all subsets A ⊆ M , there exists an ele-
mentary substructure N ≤ M containing A with |N | = |A|+ |L|+ ℵ0.

Proof. We essentially do a more careful version of the Henkin construction. SetT := Th(MA). LetL′ andT ′

be the language and theory extending L and T (respectively) obtained from the construction in Lemma 1.40
by adding witnessing constants. Quickly, we recall that T ′ and L′ are constructed inductively as follows.

• Set T0 := T and L0 := L.
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• SetLn+1 to beLn with a constant cφ for eachLn-formulaφwith a variable x, and then we add ∃φ(x) →
φ(cφ) to T ′. The function and relation symbols are the same between Ln and Ln+1.

• Lastly, L′ is the union of the Lns, and T ′ is the union of the Tns.

We now expand M to be a model M′ of T ′. One only has to deal with the constants added by L′. We will do
this inductively.

• Set M0 := MA, and we construct Mn to model Tn.

• Given Mn ⊨ Tn, we construct Mn+1 to be an Ln+1-structure as follows. Well, we only need to worry
about interpreting the new constants cφ whereφ is anLn-formula with free variablex, and we interpret
c
Mn+1
φ as some aφ ∈ Mn if Mn ⊨ φ(aφ) if such some aφ exists, and we set cMn+1

φ to be any element of
Mn if no such aφ exists.
Then Mn+1 certainly satisfies everything in Tn (by inductive hypothesis), and it satisfies every one
of the new sentences ∃xφ(x) → φ(cφ) by construction of cMn+1

φ , so we conclude Mn+1 ⊨ Tn+1, as
needed.

• Lastly, we define M′ to be the union of the Mn, and we conclude our construction. One can see that
M′ ⊨ T ′ directly from the construction of the previous step because any φ ∈ T ′ belongs to some Tn
for finite n.

To continue the proof, we want the following result to check that we have built an elementary substruc-
ture.

Lemma 1.72 (Tarski–Vaught test). Fix an L-structure M and a subsetA ⊆M . CallA “realizable” if and
only if any L-formula φ(x1, . . . , xn, y) and n-tuple a ∈ An has M ⊨ (∃yφ(x, y))(a) if and only if there is
some b ∈ A such that M ⊨ φ(a, b). ThenA is realizable if and only if there is an elementary substructure
A ≤ M with universe A.

Proof. There is some content here because the assertion MA ≡ AA does not even make sense without
having constructed A. Anyway, we have two implications to show.

• Suppose thatA is the universe of an elementary substructure A ≤ M. We want to show that A is real-
izable. Well, let φ(x1, . . . , xn, y) be an L-formula, and choose some a ∈ An. Now, M ⊨ (∃yφ(x, y))(a)
if and only if MA ⊨ ∃yφ(a, y). Now, because A ≤ M, this is equivalent to AA ⊨ ∃yφ(a, y), which his
equivalent to having some b ∈ A such that AA ⊨ φ(a, b), which is equivalent to MA ⊨ φ(a, b), which
means there is b ∈ A such that M ⊨ φ(a, b).

• SupposeA is realizable. The main content here is to check thatA is the universe of an L-substructure
of M. We have the following checks.

– Certainly A ⊆M .
– For each constant symbol c, we need cM ∈ A. Well, look at the formulaφ(y) given by y = c. Then

M ⊨ ∃yφ(y) by cM, so being realizable grants some b ∈ A such that M ⊨ φ(b), which means
cM = b ∈ A, as needed.

– For each n-ary function symbol f(x1, . . . , xn) and a ∈ A, we need to check fM(a) ∈ A. Well,
look at the formula φ(x1, . . . , xn, y) which is y = f(x1, . . . , xn, y). Then M ⊨ ∃yφ(a), so being
realizable promises some b ∈ A such that M ⊨ φ(a, b), which is asserting f(a1, . . . , an) = b.

We now need to show MA ≡ AA. We induct to show that an LA-sentence ψ has MA ⊨ ψ if and only
if AA ⊨ ψ. Let F ′ be the set of such LA-sentences.

– For atomic formulae, we use Proposition 1.12 so that we don’t have to do any more work.
– The usual arguments tell us that φ,ψ ∈ F ′ implies that ¬φ ∈ F ′ and φ ∧ ψ ∈ F ′. We won’t write

this out.
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– Lastly, suppose ψ is of the form ∃yφ(y). Because ∃yφ is an LA-sentence, we can write φ(y) as
φ′(a, y) where φ′(x1, . . . , xn, y) is some L-formula and a ∈ An.
Now, in one direction, AA ⊨ ψ if and only if some b ∈ A such that AA ⊨ φ(a), so by induction
MA ⊨ ψ(b), which is implies M ⊨ ψ, as needed.
To go the other direction, we need to pull a witness down from M to A, which is harder. Suppose
MA ⊨ ψ. Then MA ⊨ (∃yφ′(x, y))(a), from which being realizable grants b ∈ A such that MA ⊨
φ′(a, b). This sentence is simpler, so by induction we get A ⊨ φ′(a, b), which is equivalent to
A ⊨ ∃yφ(y), as needed. ■

Remark 1.73. There is not really anything to do when checking the reverse direction of being realizable:
having b ∈ A such that M ⊨ φ(a, b) of course implies that M ⊨ (∃yφ(x, y))(a) by choosing y to be this
b ∈ A. The content is the reverse direction where we pull down the witness from M to A.

Now, let the set N be the set of interpretations of constant symbols cM′ for each constant symbol c of L′.
Notably,A ⊆ L′, andaM′

= a, soa ∈ N , soA ⊆ N . We would like to turnN into an elementary substructure,
for which we use Lemma 1.72.

It suffices to check that N is realizable. Let φ(x1, . . . , xn, y) be an L-formula and (a1, . . . , an) ∈ Nn.
Suppose M ⊨ (∃yφ(x, y))(a). Then M′ ⊨ (∃yφ(x, y))(a) by choosing the same y, which means M′ ⊨ φ(a, y),
but M′ ⊨ ∃yφ(a, y) → φ(a, c) for some constant symbol c of L′. Combining, we get M′ ⊨ φ(a, c). But then
setting d := cM

′ (which lives in N !), we achieve M′ ⊨ φ(a, d).
Thus, N is the universe of some elementary substructure N ≤ M. We saw that N contains A, and we

see |N | is at most the size of the constants of L′, which has size |L|+ℵ0+ |A|. This completes the proof. ■

One can also go up, which was essentially Proposition 1.68.

Proposition 1.74. Fix an infinite L-structure M. For any cardinal κ ≥ |M | + |L|, there exists an L-
structure N with cardinality κ and M ≤ N .

Proof. As in Proposition 1.68, let L′ be the language L where we add constants cα for each α ∈ κ, and then
we let T ′ be

Th(MM ) ⊔ {cα ̸= cβ : α ̸= β for α, β ∈ κ}.

We showed in Proposition 1.68 that T ′ is finitely satisfiable, so we produce a model N0 of T ′. Now, let A
be the set of interpretations of constants cN0 for each constant c in L′. Notably,A containsM , and the map
κ→ A given by a 7→ cN0

α is one-to-one, so |A| ≥ κ. On the other hand, |A| has size bounded by the constants
of L′, which has size κ+ |M|+ |L|, which is κ, so |A| has size exactly κ.

Now, by Theorem 1.71, we produce an elementary substructure N ≤ N0 containing A. Because M ⊆
N ≤ N0 and M ≤ N0 (by construction of N0), so we conclude M ≤ N by chasing our formulae around. ■

1.8 September 19
Here we go.

1.8.1 An Example of the Back-and-Forth Method
For our example, let L be a language with one binary relation E, which will be considered to be an equiva-
lence relation. Consider the structure M0 with universe (x, y) ∈ N2 where x < y, where (x, y)E(x′, y′) if and
only if y = y′.

We claim that there is another countable model with the same theory. For example, we consider Mω

which is M0 with a disjoint copy of N2 × {0} where (x, y, 0)E(x′, y′, 0) if and only if y = y′. Let’s check that
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the theory of M0 has the same theory of Mω. This essentially follows from compactness (Theorem 1.32)
and Theorem 1.71 to the theory T consisting of the elementary diagram of M0 plus the sentences

{cxy ̸= cx′y′ : for (x, y) ̸= (x′, y′)} ∪ {cxyEcx′y : x, x′, y ∈ N} ∪ {cxyEcx′y′ : x, x
′, y, y′ ∈ N where y ̸= y′},

where we have introduced these new constants cxy to an extended language L′. Namely, Theorem 1.32
permits us to find a countable model of this above theory: to see that the above set of sentences is satisfiable,
we note that M0 is able to model any finite subset of the above theory is only asking for arbitrary many
arbitrarily large equivalence classes, which M0 provides.

So we produce a countable model M′ of T . We claim that M′ ∼= Mω in the language L. This will use the
back-and-forth method.

Lemma 1.75. Fix everything as above. Then M′ ∼= Mω, where M′ is considered as an L-structure.

Proof. We build our isomorphism via approximations fi : Xi → Yi for i ∈ N, where Xi ⊆ M′ and Yi ⊆
Mω. We require that i ≤ j means Xi ⊆ Xj and Yi ⊆ Yj and then fj |Xi

= fi, and we also want fi to be
an isomorphism of L-strucutres for i > 0. By the end of this process, we will want

⋃
i∈NXi = M′ and⋃

i∈N Yi = Mω so that we have a well-defined isomorphism f : M′ → Mω at the end. This last bit is going
to be a little tricky. For this, we enumerateM ′ = {ai}∞i=0 andMω = {bi}∞i=0, and we will ask that each n have
{aj : j < n} ⊆ X2n and {bj : j < n} ⊆ im f2n+1.

Alright, let’s get started. Take f0 to be the unique functionX0 → Y0 whereX0 = Y0 = ∅. One can check
that this trivially works for all of our hypotheses. We now induct in two cases.

• Suppose we have f2n : X2n → Y2n, and we want to produce f2n+1 : X2n+1 → Y2n+1. The point is that
bn now needs to appear in the range of f2n+1. We have the following cases.

– If bn is already in the range, do nothing. In the following cases, we suppose that bn is not in the
range of f2n already.

– Suppose that bn is not equivalent to some element of im f2n. If bn is in a finite equivalence class,
map it to the corresponding unique equivalence class inM′, which cannot have been chosen so far
because f2n is an isomorphism. If bn lives in an infinite equivalence class, then go find an unused
infinite equivalence class in M′, which is possible because f2n has finite domain currently.

– Suppose that bn is equivalent to some element b′ ∈ im f2n. By the nature of f• being an isomor-
phism, we are arranging so that the size of the equivalence class of a and f•(a) are always the
same. So the size of the equivalence class of f−1

2n (b′) must have space (even if finite!) because the
element of bn not being hit so far requires us to have space in the equivalence class of f−1

2n (b′).

• Going forward the argument is essentially the same just talking in reverse.
Assembling the f• together produces the desired result. ■

We now conclude by remarking that ThLM0
(M0) = ThLM0

(Mω), so M0 ≤ Mω.

Remark 1.76. We can now define Mn := M0⊔N×{0, 1, . . . , n−1}×{0} as a substructure of Mω. One
can repeat the above argument with M0 replaced by Mn to conclude that Mn ≤ Mω again. We con-
clude that M0 ≡ Mn for each n. In total, we have produced countably many non-isomorphic models.
It turns out that these are all the countable ones.

One might now go back and ask for the number of models of ThLM0
(M0) of cardinality ℵ1. It turns out

that there are again countably many. The point is that a model M of cardinality ℵ1 can be attached the two
invariants

κ0(M) := #{[x] ∈M/E : [x]E has size ℵ0},
κ1(M) := #{[x] ∈M/E : [x]E has size ℵ1}.

One can show that M1
∼= M2 if and only if κ0(M1) = κ0(M2) and κ1(M1) ∼= κ1(M2) by using some set

theory, and then one can produce a model with given invariants κ0 and κ1 arbitrarily provided that ℵ0κ0 +
ℵ1κ1 = ℵ1.
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1.8.2 Dense Linear Orders Without Endpoints

Let’s see another example.

Proposition 1.77. Fix a language L with a single binary relation <. Then ThL(Q, <) is ℵ0-categorical.

We should perhaps define ℵ0-categorical.

Definition 1.78 (κ-categorical). A theory T of a language L is κ-categorical if and only if T has exactly
one isomorphism class of models of cardinality κ.

In fact, we will show the following.

Proposition 1.79. Fix a language L with a single binary relation<, and let DLO be the following theory,
of dense linear orders without endpoints.

• < is a total ordering.

• Dense: ∀x∀y(x < y → ∃z(x < z ∧ z < y)).

• Without endpoints: ∀x∃y(y < x) and ∀x∃y(x < y).

Then DLO is ℵ0-categorical.

Note that Q models DLO, so Proposition 1.77 will follow. Anyway, let’s show Proposition 1.79.

Proof of Proposition 1.79. Let A and B be models of DLO. Enumerate A = {ai}∞i=0 and B = {bi}∞i=0, and we
will work in the same set-up as the back-and-forth argument previously described. Namely, we describe a
sequence of compatible isomorphisms fi : Xi → Yi where X2n contains {a1, . . . , an−1} and Y2n+1 contains
{b1, . . . , bn−1}. Take f0 to be the unique function ∅ → ∅.

• Suppose we have f2n−1, and we want to build f2n. If an is already in the domain of f2n−1, do nothing.
We have three cases.

– If an < x for all x ∈ X2n−1, use that B has no endpoints to find f(an) less than everyone in Y2n−1.

– If an > x for all x ∈ X2n−1, make a similar argument as the previous case.

– Otherwise, find x, y ∈ X2n−1 so that x < an < y, and nothing in X2n−1 lives between x and y;
this is possible because< is a total ordering. Then use the density of B to find some f(an) strictly
between x and y to complete.

• To extend f2n to f2n+1, repeat the above argument in reverse.

Now, assembling our f• produces our isomorphism. ■

Remark 1.80. We now might ask how many models DLO has of cardinality ℵ1. There are apparently
2ℵ1 many up to isomorphism. Of course, this is an upper bound on the number of models because an
ordering is asking for a subset of ℵ1 × ℵ1. So the name of the game now is to produce enough models;
one cannot really hope to precisely describe all the models.
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Example 1.81. It is not too hard to provide two models of DLO of cardinality ℵ1 which are not isomor-
phic. We take M := R and N := R1 ⊔ R2. Here, Ri is a copy of R where every element of R2 is greater
than any element of R1, and for any r ∈ R, we will write ri for the copy of r in Ri.

Now, suppose for contradiction there is an isomorphism φ : N → M. The point is that N has a
sequence which “goes to infinity” (in R1) which still has an upper bound (by R2). To rigorize, we have
the following steps.

1. Consider the sequenceφ(11), φ(21), . . . inR, where 11, 21, . . . are their copies inR1. This is a strictly
increasing sequence in R, and it is bounded above by (say) φ(02). Thus, noting that the order
topology on R is just the usual topology, our sequence must converge to some β ∈ R. Say α ∈ N
has φ(α) = β. The point is that this α must lie “between” R1 and R2.

2. Indeed, note α > r1 for any r1 ∈ R1 because φ(α) > φ(r1). Namely, select any integer n1 > r1,
and we have φ(α) ≥ φ(n1) > φ(r1).
On the other hand, we claim α ≤ r2 for any r2 ∈ R2. Indeed, otherwise we have α > r2 and thus
φ(α) > φ(r2), so use φ(n1) → φ(α) as n1 → ∞ to find n1 such that φ(α) > φ(n1) > φ(r2). But
then n1 > r2, which contradicts the ordering on N .

The second step above has produced α ∈ N bigger than anything in R1 and less than anything in R2,
which is a contradiction.

To wrap us up, let’s pick up the following result.

Proposition 1.82. Fix anL-theoryT which isκ-categorical for cardinalityκ. IfT has only infinite models,
then T is complete; i.e., any L-sentence φ has either T ⊨ φ or T ⊨ ¬φ.

Proof. Let M be a model of T of cardinality κ. Now, for any sentence φ, if T ⊨ φ and T ⊨ ¬φ, then there is
a model M+ and M− satisfying T ∪ {φ} and T ∪ {¬φ}, respectively. By Theorem 1.71, we may bring M+

and M− to have cardinality κ, so being κ-categorical requires M+
∼= M−, which is a contradiction because

then M+ ≡ M−. ■

Example 1.83. Thus, Proposition 1.79 requires that DLO is complete. As such, the theory DLO must
complete to exactly Th(Q, <).

29



THEME 2

ELIMINATING QUANTIFIERS

Freedom is just another word for nothing left to lose.

—Janis Joplin, [Jop10]

2.1 September 21
Today, we will go on to some more nontrivial examples.

2.1.1 Algebraically Closed Fields
Consider the language L with binary operations + and ·, a unary operation −, and constants 0 and 1. The
theory of fields has the sentences given by the ones in a standard algebra class.

• ∀x∀y((x+ y = y + x) ∧ (x · y = y · x)).

• ∀x∀y∀z(((x+ y) + z = x+ (y + z)) ∧ ((x · y) · z = x · (y · z))).

• ∀x((x+ (−x) = 0) ∧ ((−x) + x = 0)).

• ∀x∃y(x · y = 1).

• ∀x∀y∀z(x · (y + z) = x · y + x · z).

• ∀x((x+ 0 = x) ∧ (x · 1 = x)).

• ¬(0 = 1).

To make this algebraically closed, we want every monic polynomial to have a root. For this, we should go
degree-by-degree. For example, for degree d which is a positive integer, we write the sentence φd to be

∀a1 · · · ∀ad−1∃x
(
xd + ad−1x

d−1 + · · ·+ a1x+ a0 = 0
)
.

Call this theory ACF. Notably, we then have used infinitely many axioms.
As an aside, we note there is no finite set of sentences characterizing algebraically closed fields. Let’s

show this.
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Lemma 2.1. Suppose a satisfiable theory T is finitely axiomatizable: there is a finite set of sentences
φ1, . . . , φn such that M ⊨ T for a structure M if and only if M ⊨ φ• for each φ•. Then there is a finite
subset T0 ⊆ T such that M ⊨ T if and only if M ⊨ T0.

Proof. The reverse direction is clear by just taking T0 to be our finite set of axioms.
In the other direction, suppose that φ := φ1 ∧ · · · ∧ φn axiomatizes T . We now apply compactness

Σ := T ∪ {¬φ}. Note Σ is not satisfiable because M ⊨ T if and only if M ⊨ φ. Thus, by Theorem 1.32, we
see that Σ cannot be finitely satisfiable. But T is finitely satisfiable, so there is some finite subset of the form
T0 ∪ {¬φ} which is not satisfiable.

We now check that T0 does the trick. However, this means that any structure M such that M ⊨ T0
requires M ⊨ φ, and conversely, M ⊨ φ implies M ⊨ T implies M ⊨ T0. Thus, T0 is the needed subset. ■

Let’s apply this lemma to ACF. Let T0 be some finite subset of ACF, and we show that T0 is not equivalent
to ACF. Add in any of the field axioms necessary, and we know there is some upper boundN such that T0 is
then contained in the field axioms plus {φ1, . . . , φd}. To show that T0 is not equivalent to ACF, we construct
a field K/Q which models T0 but not ACF. Well, construct K by a tower

Q = K0 ⊆ K1 ⊆ · · · ,

where Kn+1 consists of all numbers which are roots of polynomials in Kn of degree at most N . Then set
K :=

⋃∞
n=0Kn, and we see K ⊨ T0.

Well, for a piece of algebra, we note that the polynomial fp(x) := xp − 2 ∈ Q[x] is irreducible for any
prime p. Choosing p > N , we then claim that fp(x) ∈ K[x] has no root. Indeed, any root would need to
live in someKn+1[x], which means that xp − 2 has some root shared with a polynomial of degree at mostN
whose coefficients live in Kn. However, extracting out the necessary coefficients into a field L, we see that
L/Q has degree coprime to p (it’s constructed using roots of polynomials of degrees at most N , and p > N
is prime), but then Q[x]/ (xp − 2) ⊆ L has degree p, so it cannot possibly be a subfield.

Remark 2.2. The same argument shows that one can finitely axiomatize fields of characteristic 0. We
produce the theory of characteristic-0 fields by adding in the sentences

1 + · · ·+ 1︸ ︷︷ ︸
p

= 0

for each positive prime p. But then no finite subset of these axioms will do because there are fields of
arbitrarily large (but still finite) characteristic.

Anyway, here is our theorem.

Theorem 2.3. The completion of ACF are the theories ACFp where p is a prime or zero, where ACFp
adds in the condition of being characteristic p (via the sentence 1 + · · · + 1 = 0 for nonzero p and 1 +
· · ·+ 1 ̸= 0 for all lengths when p = 0).

In fact, we will show the following stronger result.

Theorem 2.4. Fix p to be prime or zero. Then ACFp is κ-categorical for any κ > ℵ0.

This will be enough to prove Theorem 2.3 by Proposition 1.82 because ACFp certainly has models of size
κ > ℵ0 by taking k(κ) where κ is being used as a transcendence basis. Notably, k(κ) has size κ+ ℵ0 = κ.

Anyway, let’s prove Theorem 2.4.

Proof with algebra. Let k be the smallest field of that characteristic (the finite field when p > 0 and Q when
p = 0).
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Now, suppose we have two fields K1 and K2 which satisfy ACFp of cardinality κ. Now, let Xi ⊆ Ki be
a transcendence basis for each i, meaning that Xi is a maximal algebraically independent set of elements.
As such, Ki is algebraic over Fp(Xi). Now, |k(Xi)| = |Xi| + ℵ0, so taking algebraic closure has κ = |Ki| =
|k(Xi)| + ℵ0 = |Xi| + ℵ0, so κ = |Xi|. Thus, k(X1) ∼= k(X2), so taking algebraic closure enforces K1

∼= K2

by taking algebraic closure. ■

Corollary 2.5. Let U be a non-principal ultrafilter on P . Then we have a field isomorphism

C ∼=
∏
U

Fp.

Proof. By Theorem 1.58, we see that
∏

U Fp is algebraically closed because being algebraically closed field
is held in each factor of the ultraproduct. It remains to compute the characteristic. Well, the sentence 1 +
· · ·+ 1 = 0 for any length p fails to hold in all but finitely many of these factors, so we see that the sentence

1 + · · ·+ 1︸ ︷︷ ︸
p

̸= 0

holds in all but finitely many of the factors of our ultrafilter. Thus, the ultraproduct has characteristic 0 by
Theorem 1.58 again, and we see that C has the same cardinality as our ultrafilter, so the result follows by
Theorem 2.4. To compute this cardinality, we note that∣∣∣∣∣∏

U
Fp

∣∣∣∣∣ ≤ ℵℵ0
0 = 2ℵ0 .

One can then embed this ultraproduct into a tree; one uses Theorem 1.58. More generally, one we will be
able to show that |Xi| ≥ 2i for some collection {Xi}i∈N has

∏
U Xi of cardinality 2ℵ0 . ■

Let’s improve our proof of Theorem 2.4. We will show the following stronger result.

Theorem 2.6. The theory ACF eliminates quantifiers. In other words, for any formula φ(x1, . . . , xn),
there is a quantifier-free formula ψ(x1, . . . , xn) such that ACF ⊨ ∀x(φ(x) ↔ ψ(x)).

Remark 2.7. The theory of Peano arithmetic does not eliminate quantifiers: there are very complicated
sets that one can define.

There is a proof in Tarski’s RAND paper. We are not going to follow it. We are going to do a back-and-forth
argument. To begin, we have the following step.

Proposition 2.8. Fix two algebraically closed fields K1 and K2 of cardinality κ > ℵ0. Suppose, we have
an isomorphism f : L1 → L2 of subfields L1 ⊆ K1 and L2 ⊆ K2 where L1 and L2 are subfields of
cardinality less than κ. Then f extends to an isomorphism K1 → K2.

Proof. We construct this isomorphism using a back-and-forth argument. Treat κ as an ordinal, and enu-
merate K1 = {aα : α ∈ κ} and K2 = {bα : α ∈ κ}. We will build a sequence of isomorphisms gα : L1

α → L2
α

for each α ∈ κ so that gβ extends gα whenever α ≤ β. We will also arrange so that g0 := f and aβ ∈ L1
α and

bβ ∈ L2
α for each β ∈ α; it will also help to have L•

α always have cardinality less than κ. If we can do this, we
simply define g : K1 → K2 by taking the union of all these isomorphisms.

For g0, there is nothing to do. If α is a limit ordinal, then take gα to be the union of the gβ for β < α.
Notably, the domain and codomain are the unions of the domains and codomains; of course, this is still an
isomorphism, and it satisfies our necessary property because any β < α has aβ and bβ in the domain and
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codomain of gβ+1, respectively. Lastly, the domain and codomain is an ascending union of sets of cardinality
less than κ, which is typically less than κ.1

In our last case, take α := β + 1. Then we need to tell gβ where to send aβ . If aβ is already in the domain,
do nothing. Otherwise, there are two cases.

• Suppose that aβ is algebraic over L1
β with monic irreducible polynomial P (x). Passing through gβ , we

see that gβ(P (x)) ∈ L2
β [x]will fully factor inK2, and one of the roots cannot have been hit by gβ because

then their pre-images in L1
β includes aβ already. So send aβ to a root not hit yet.

• Suppose that aβ is transcendental over L1
β . Now,

∣∣∣L2
β

∣∣∣ = ∣∣∣L2
β

∣∣∣ + ℵ0 < κ, so there is a transcendental
element of K2 not in L2

β . Send aβ to such a transcendental element.

For bβ to go backwards, do the same argument in reverse. ■

Corollary 2.9. Fix algebraically closed fields K1 and K2, and fix tuples a ∈ Kn
1 and b ∈ Kn

2 . Then the
following are equivalent.

(a) The structures (K1, a) and (K2, b) are equivalent in an expanded language.

(b) k1(a) = k2(β) where k1 ⊆ K1 and k2 ⊆ K2 are the prime subfields.

(c) For any quantifier-free formulae θ, we have K1 ⊨ θ(a) if and only if K2 ⊨ θ(b).

2.2 September 26
Today, we will give a structural way to look at quantifier elimination.

2.2.1 A Taste of Types
We split our discussion of quantifier elimination into the following lemmas.

Lemma 2.10. Fix L-structures A and B. Further, fix a ∈ An and b ∈ Bn with n ≥ 1. Then the following
are equivalent.

(a) For any quantifier-free L-formula φ, we have A ⊨ φ(a) if and only if B ⊨ φ(b).

(b) There is an isomorphism of substructures A′ ⊆ A and B′ ⊆ B containing a and b respectively, and
the isomorphism sends a to b.

We will prove this in a moment, but we quickly note that it motivates the following definition.

Definition 2.11 (quantifier-free type). Fix an L-structure A and some a ∈ An. Then the quantifier-free
type of a, denoted qftpA(a), is the set of quantifier free formulae φ such that A ⊨ φ(a).

Anyway, here is our proof of Lemma 2.10.

Proof of Lemma 2.10. We have two implications to show.

• We show (b) implies (a). Suppose we have an isomorphism f : A′ → B′ as described. Now, suppose
φ(x) is a quantifier-free L-formula with n free variables. Then A′ ⊨ φ(a) if and only if B′ ⊨ φ(b) by the
nature of our isomorphism (see Proposition 1.14). Then this comes down to the substructure because
φ is quantifier-free by Proposition 1.12.

1 One needs to do something here in the case that κ is a singular.
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• We show (a) implies (b). Define A′ ⊆ A to be the set of terms t evaluated on a as tA(a), and define
B′ ⊆ B similarly. We do need to check thatA′ is the universe of an L-substructure of A, and the check
for B′ will be similar. Well, we interpret constants (which are terms) exactly as they were interpreted
in A. We interpret functions exactly as they were interpreted in A because terms are closed under
applying functions. Lastly, relations are defined by intersection with A, which is what is needed to
provide a substructure.

We now define A′ → B′ by sending the term tA(a1, . . . , an) to tB(b1, . . . , bn). We have the following
checks.

– Well-defined and injective: if s and t are terms with sA(a) = tA(a), then this is equivalent to
A ⊨ (s(x) = t(x))(a), which is equivalent to B ⊨ (s(x) = t(x))(b) by hypothesis, which at the end
is equivalent to sB(b) = tB(b).

– Surjective: any element of B′ takes the form tB(b) for some term t, which is hit by tA(a).

– Isomorphism: this has many checks in itself. For any constant symbol c, we see f
(
cA

′
)
= cB

′ by
viewing c as a term which does not care about the input a. Now suppose F is an m-ary function
symbol, then

f
(
FA′

(tA
′

1 (a), . . . , tA
′

m (a))
)
= f

(
F (t1(x), . . . , tm(x))︸ ︷︷ ︸

some term!

(a)
)

= FB(tB1 (b), . . . , t
B
m(b))

= FB (f(tA1 (a), . . . , tAm(a))
)
.

Lastly, let R be an m-ary relation symbol. Then
(
tA1 (a), . . . , t

A
m(a)

)
∈ RA′ if and only if A′ ⊨

R(t1, . . . , tm)(a) if and only if A ⊨ R(t1, . . . , tm)(a) by Proposition 1.12, which is now equivalent
to B ⊨ R(t1, . . . , tm)(b) and then equivalent to B′ ⊨ R(t1, . . . , tm)(b). ■

Remark 2.12. The A′ given in the proof above is the smallest substructure of A containing a.

More generally, we might be interested in types.

Definition 2.13 (type). Fix an L-structure A. Further, fix an n-tuple a ∈ An. Then the type, denoted
tpA(a) is the set of L-formulae φ(x) such that A ⊨ φ(a).

Here is the corresponding result.

Lemma 2.14. Fix L-structures A and B, and further fix a ∈ An and b ∈ Bn. Suppose that there are
elementary extensions A′ ≥ A and B′ ≥ B with an isomorphism f : A′ → B′ sending a to b. Then
tpA(a) = tpB(b).

Proof. Note that we have elementary expansions Aa ≤ A′
a and Bb ≤ B′

b
. By hypothesis, the isomorphism

A′ ∼= B′ sends a to b, so in fact A′
a is isomorphic to Bb. Tracking everything through, we see A ⊨ φ(a) if

and only if Aa ⊨ φ(a) if and only if A′
a ⊨ φ(a) if and only if B′

b
⊨ φ(b) if and only if Bb ⊨ φ(b) if and only if

B ⊨ φ(b). ■

Remark 2.15. The converse of this result is true, and we will prove it later in this class.

34



2.2. SEPTEMBER 26 225A: MODEL THEORY

2.2.2 Back to Algebraically Closed Fields
Let’s return to our discussion of algebraically closed fields.

Definition 2.16 (eliminates quantifiers). An L-theory T eliminates quantifiers if and only if any formula
φ(x) has some quantifier-free formula ψ(x) such that T ⊨ ∀x(φ(x) ↔ ψ(x)).

Theorem 2.17. Say that an L-theory T is “isomorphism-extendable” if and only if it has the following
property: for any modelsA,B ⊨ T with fixedn-tuplesa ∈ An and b ∈ Bn equipped with an isomorphism
f : A′ → B′ of substructures containing a and b (respectively) which sends a to b, then any elementary
superstructures A∗ ≥ A and B∗ ≥ B have an isomorphism extending f . Then if T is isomorphism-
extendable, then T eliminates quantifiers.

Proof. Fix a formulaφ(x). Observe that being isomorphism-extendable implies that a and bhaving the same
quantifier-free type implies that they have the same type by combining Lemmas 2.10 and 2.14.

For technical reasons, we extend the language to L∗ to have some new constants c1 and c2 for each of
the old constants c. Our functions are the same, and we add in one more unary relation U . The point of
introducing L∗ is to be able to talk about two L-structures of the same type.

Explicitly, given an L∗-structure where U contains the c1s and the complement contains the c2s (and
these are nonempty), then we can restrict toU and its complement to provide twoL-structures. Conversely,
givenL-structuresA andB, we build anL∗-structure with universeA⊔B as follows: interpret the constants
c1 and c2 as in A and B, respectively. Interpret the values f(a) and f(b) for a ∈ A• and b ∈ B• as in A
and B, respectively, and interpret f(e) for any other e however we wish. One does something similar for
the relations. Notably, the L∗-structure, which we call A, is not exactly the same data as two L-structures
because one has to say what happens on the function and relation symbols when we have not been told by
A and B alone.

Anyway, let φ(x) be an L-formula, and we expand L∗ to add in some new constant symbols a and b. We
now relative to build a new theory. The observation is that, using the construction of the previous paragraph,
there is a function ·̂A such that A ⊨ φ(a) if and only if C ⊨ φA(a). As such, we adjust T to the theory Σ be
an L∗-theory by adjusting cs to c1s and c2s in the natural way, and we also add in the sentences U(a•) and
¬U(b•). Further, we add in the sentences {

φA(a) ↔ ψB(b)
}

as well as φ̂A(a) ↔ φB(b). This theory is inconsistent by the type discussion at the very beginning of this
proof: we are being promised that a and b have the same type, but then they disagree on φ!

Thus, by compactness, there is a finite set Ψ of quantifier-free formulae with the following property for
any models A,B ⊨ T with a ∈ An and b ∈ Bn: if A ⊨ ψ(a) is equivalent to B ⊨ ψ(b) for each ψ ∈ Ψ, then
we must have A ⊨ φ(a) is equivalent to B ⊨ φ(b). We now construct our quantifier-free formula: for each
X ⊆ Ψ, we define

θX :=
∧
ψ∈X

ψ ∧
∧

ψ∈Ψ\X

¬ψ,

and we letG be the set of subsets such that there is a model A ⊨ T with A ⊨ ∃x(φ(x)∧ θX(x)). Then we set
η(x) to be the disjunction over all the θX where X ∈ G. Note that η(x) is quantifier-free.

We now claim that T ⊨ ∀x(η(x) ↔ φ(x)). Suppose A ⊨ T and we have some a ∈ A with A ⊨ φ(a). Then
we consider the subsetX of Ψ such that A ⊨ ψ(a) if and only ifψ ∈ X. Then A is in fact modellingφ(a) along
with the sentences ψ(a) for each ψ ∈ X and then ¬ψ(a) for each ψ /∈ X. Thus, A ⊨ θX(a) ∧ φ(a), so X ∈ G,
and T ⊨ ∀x(φ(x) → η(x)) follows.

We now go in the other direction. Suppose A ⊨ T is a model, and suppose we have a ∈ An and A ⊨ η(a).
Then there is some X ∈ G such that A ⊨ θX(a), but being in G promises us a model B ⊨ T and b ∈ Bn with
B ⊨ φ(b) ∧ θX(b). But then any ψ ∈ Ψ has A ⊨ ψ(a) if and only if B ⊨ ψ(b) by definition of θX , so A and B
must agree on φ(b). In other words, we conclude A ⊨ φ(a), and we are done. ■
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Corollary 2.18. The theory ACF eliminates quantifiers.

Proof. We show the hypothesis of the above theorem. Given two algebraically closed fields K and L with
an isomorphism f : K ′ → L′ where K ′ ⊆ K and L′ ⊆ L are algebraically closed subfields, we need an
isomorphism f∗ : K∗ → L∗ extending f . As long asK andL have the same cardinality, we can simply do this
withK = K∗ andL = L∗. In general, with |K| ≤ |L|, we might need to use a transcendence basis to expand
K and take an algebraic closure, and this is an elementary extension because ACF is κ-categorical. ■

Corollary 2.19. The theory of dense linear order without endpoints eliminates quantifiers.

Proof. Use the theorem. ■

Non-Example 2.20. The theory of an equivalence relation with exactly one equivalence class of size each
positive integer does not eliminate quantifiers. To see this, consider the sentence which says that a free
variable x is in an equivalence class of size 2.

2.3 September 28
Let’s talk about some game.

2.3.1 Ehrenfeucht–Fräıssé Games
For today’s lecture, let’s discuss Ehrenfeucht–Fräıssé Games. Recall the following definition.

Definition 2.21 (unnested). An atomicL-formulaφ is unnested if and only if it takes one of the following
forms.

• Equalities: ti = tj or xi = c where the t• are variables or constants.

• Relations: R(t1, . . . , tn) where the t• are variables or constants.

• Functions: f(t1, . . . , tn) = tn+1 where the t• are variables or constants.

For our discussion today, we let U0 denote the set of finite boolean combinations of unnested atomic for-
mulae, up to provable equivalence (e.g., we don’t want to includeφ∧φ fromφ), and we inductively setUn+1

to be finite boolean combinations (again, up to provable equivalence) of formulae of the form ∃xψ where
ψ ∈ Un and x is a variable.

Proposition 2.22. Fix a finite language L. Then for each n and m, there are only finitely many formulae
in Un with the variables x1, . . . , xm (up to provable equivalence).

Proof. Fix m, and we induct on n. We start with n = 0. For number unnested atomic formulae is finite
because the problem is just combinatorics to count sentences of each type. As for the boolean combinations,
we note that the boolean algebra generated by a finite set is finite, so there are only finitely many classes up
to provable equivalence. Then to go up, we place ∃x• or not in front of each formula, so there continue to be
only finitely many formulae, and the boolean algebra generated continues to be finite, so we are okay. ■

Our observation, now, is that every L-formula is equivalent to some formula in one of the Un.
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Proposition 2.23. Fix a language L. Then any L-formula φ is equivalent to some ψ ∈ Un for some n.

Proof. It suffices to check this for atomic formulae; all other formulae follow by adding enough quantifiers
and taking boolean combinations. Here are our cases.

• Take sentences of the form t1 = t2. We now have to induct on the complexity of the terms. If we
have an equality of variables xi = xj or an equality xi = c for constant c, there is nothing to say. If we
have c = xi, then this is equivalent to the unnested formula xi = c. Lastly, c = d is equivalent to the
sentence ∃x(x = c ∧ x = d).
Now if we have something of the type t1 = f(s1, . . . , sn), then by induction, we can achieve any of the
formulae xn+1 = t1 and xi = si for each iwhere the x• are variables. So t1 = f(s1, . . . , sn) is equivalent
to

∃x1 · · · ∃xn

(
n∧
i=1

xi = si ∧ xn+1 = t1 ∧ xn+1 = f(x1, . . . , xn)

)
.

This induction completes this case.

• For relations, one does essentially the same trick. If we have R(t1, . . . , tn), we simply look at the sen-
tences xi = ti combined with R(x1, . . . , xn), reducing to the previous case. ■

Now let’s play a game. Fix a language L with two L-structures A and B, and we fix a natural number n. The
game EFn(A,B) of length n is played as follows.

• Player I picks A or B and chooses some a1 ∈ A or b1 ∈ B. Then Player II chooses an element b1 ∈ B or
a1 ∈ A from the opposite universe to the one Player I chose.

• Then the above move is repeated until we have two n-tuples (a1, . . . , an) or (b1, . . . , bn).

• Player II wins if, for any unnested atomic formula ψ(x1, . . . , xn), we have A ⊨ ψ(a) is equivalent to
B ⊨ ψ(b). Otherwise, Player I wins.

Roughly speaking, Player I wants to make A and B look different, and Player II wants them to look similar.
We write A ≡n B to mean that Player II can win the EFn game.

Example 2.24. Fix the language L = {<}, and take A to be ω + ω∗, where the ω∗ means we have con-
catenated ω on top of ω∗ but in reverse (so that 0∗ is the largest element). We then let B be the set
{0, 1, 2, . . . , 6} for some natural m, and we play the game. Player I can win the game in four moves, but
Player II can win in three moves.

Here is our result.

Proposition 2.25. Fix a finite language L. For each n and structures A and B, Player II has a winning
strategy in the EFn(A,B) game if and only if A ⊨ ψ is equivalent to B ⊨ ψ for all sentences ψ ∈ Un.

Proof. We prove this by induction on n, but the inductive hypothesis will allow A and B to vary. At n = 0,
we are asking for A ⊨ φ if and only if B ⊨ φ where φ is an unnested atomic formula, so Player II wins if and
only if this is satisfied.

For our induction, suppose n, and we get n+ 1. There are two implications to show.

• In one direction, suppose Player II has a winning strategy. Suppose Player I has picked a1 ∈ A (without
loss of generality). Then Player II responds with some b1 ∈ B according to the winning strategy. Now,
the rest of the game is a length-n game in the language L′ expanded by a constant symbol c with the
structures A′ and B′ have cA′

= a1 and cB′
= b1. So we are now playing EFn(A′,B′). So Player II has

a winning strategy in EFn+1(A,B) if and only if, for all a ∈ A1, there exists b1 ∈ B such that Player II
has a winning strategy in EFn(A′,B′). Anyway, by the induction, we get A′ ≡n B′ in L′.
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We now show thatA ≡n+1 B. Thus far we are given thatA′ ⊨ ψ if and only ifB′ ⊨ ψ for anyL′-sentence
ψ ∈ Un. We now do our check. Fix a sentence θ ∈ Un+1 of the form ∃x1φ where φ ∈ Un. Then A ⊨ θ is
equivalent to having some a1 ∈ A such that A ⊨ φ(a1). Let b1 be the resulting choice of Player II. But
now using our hypothesis at the beginning of the paragraph, we achieve A′ ⊨ φ(c), so B′ ⊨ φ(c), so
B ⊨ φ(b1). The reverse implication is similar.

• Conversely, suppose that A ⊨ ψ is equivalent to B ⊨ ψ for all sentences ψ ∈ Un. We give a winning
strategy for Player II. Let’s say a1 ∈ A is chosen by Player I. Let Ψ be the set of formulae ψ(x1) ∈ Un
with at most (n+ 1) variables such that A ⊨ ψ(a1), which is a finite set up to provable equivalence by
Proposition 2.22. It is important that Ψ is finite because now

A ⊨ ∃x1
∧
ψ∈Ψ

ψ(x1).

This formula lives in Un+1, so by hypothesis, we get

B ⊨ ∃x1
∧
ψ∈Ψ

ψ(x1),

so we get b1 ∈ B satisfying all B ⊨ ψ(b1) for ψ ∈ Ψ.
Now build L′ and structures A′ and B′ as before. We claim that A′ ⊨ φ if and only if B′ ⊨ φ for all
L′-sentences φ ∈ Un. Indeed, simply view φ as an L-formula φ̃(x) by extracting out the constant c
and replacing it with c, and we see A′ ⊨ φ is equivalent to A ⊨ φ̃(a1), which is indeed equivalent to
B ⊨ φ̃(b1).
Now by induction, Player II has a winning strategy in the game EFn(A′,B′), which is equivalent to
winning the original game, as discussed in the previous implication. ■

Corollary 2.26. Fix a language L. Then A ≡ B if and only if, for all finite language L′ ⊆ L, we have
A|L′ ≡ B|L′ .

Proof. Play the above game. Note A ≡ B if and only if they satisfy the same formulae, which is equivalent to
havingA|L′ ≡ B|L′ for all finiteL′ ⊆ Lbecause any formula will only contain finitely many symbols. Then this
is in fact equivalent to satisfying the same L′-sentences in Un for all n, which finishes by Proposition 2.25.

■

Remark 2.27. Here is a challenge problem: for which m and n does Player II win the game of length n
between the groups Z and Z/mZ? There does exist some n such that Player I will always win this game.
Approximately speaking, one needs a sentence true in Z which is false in the Z/mZs.

2.4 October 3
Let’s play the game to start off the class.

Example 2.28. We work with ordinals in the language L = {<}.

• We play with ε0 = sup {ω, ωω, . . .} and 2. Then Player II loses after, say, 2 moves: Player I selects
anything, Player II selects (say) 0, and then Player I chooses something smaller than what they
chose in ε0.

• We play with ε0 and ω1. Then Player II can always win. The point is that there is some kind of
finite-length back-and-forth argument
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2.4.1 Real Closed Fields
Let’s discuss real closed fields because they, in some sense, will tell us that Euclidean geometry is decidable
(approximately speaking). Our language will be the language L = {+,−, ·, <, 0, 1} of ordered rings. The
theory of ordered fieldsOrdFld is axiomatized by writing the axioms for fields, for a total order, and requiring
that addition and multiplication respect this ordering. We won’t bother writing down the first two lists of
axioms, but the third list is given as follows.

• ∀a∀b∀c((a < b) → (a+ c < b+ c)).

• ∀a∀b∀c(((a < b) ∧ (c > 0)) → (a · c < b · c)).

So we have a finitely axiomatized our theory OrdFld.

Example 2.29. Any subfield of R will do is a model.

Example 2.30. We can use compactness to provide a model of R with an element larger than any other
element but the same cardinality.

We will be actually be interested in the theory RCF of real closed fields, which is the theory OrdFld plus the
intermediate value theorem for polynomials. This is an infinite list of axioms, approximately saying that, for
any model R with universe R, and polynomial f ∈ R[x] with inputs a, b ∈ R such that f(a) < 0 < f(b) has
some c ∈ R such that f(c) = 0.

To write this out, we choose a degree of n and write down the sentence

∀a0 · · · ∀an∀a∀b
( (

(a < b) ∧
(
a0a

0 + · · ·+ ana
n < 0 < a0b

0 + · · ·+ anb
n
))

→ ∃c
(
a < c < b ∧ a0c0 + · · ·+ anc

n = 0
) )
.

We cannot finitely axiomatize these sentences using an argument like Lemma 2.1.

Remark 2.31. Any ordered field (R,+,−, 0, 1, <) has (R, <) satisfying DLO. We know that we are a
linear order, we have no endpoints because x+−1 < x < x+1 for ant x ∈ R, and we are dense because
x < x+y

2 < y for any x, t ∈ R. Note that checking x < x+ 1 (for example) requires knowing that 0 < 1,
which is a nontrivial fact on its own (one should use trichotomy and rule our 0 = 1 by fields and rule our
0 > 1 because this would imply −1 > 0 and then 1 > 0 by squaring). There are lots of these nontrivial
facts (e.g., we also want to know 0 < 1/2 < 1), but we won’t bother to show this.

For ordered fields, there is an order topology, and one can show that various functions like + and · and
polynomials are all continuous.

We will define the function |·| : R→ R given by

|x| :=

{
+x if x ≥ 0,

−x if x ≤ 0.

Now, if x < 0, then −x > 0 by subtraction, so we see that |x| > 0 for all x ̸= 0. The standard casework is also
able to prove the triangle inequality |x+ y| ≤ |x|+|y| by some casework. If both nonpositive or nonnegative,
then we have equality, and if they have different signs (say,x > 0 > ywithout loss of generality and |x| ≥ |y|),
then we are looking at x+ y ≤ x− y, which is true.

For notation, we will also want the function sgn given by

sgn(x) :=


+1 if x > 0,

0 if x = 0,

−1 if x < 0.

Now, one is able to check the following, which tells us that polynomials “go off to infinity.”
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Proposition 2.32. Fix an ordered field R and a polynomial f(x) ∈ R[x] of positive degree d, written

f(x) =

d∑
i=0

cdx
d

where cd ̸= 0. If

x > 1 +
1

|cd|

d−1∑
i=0

|ci| ,

then sgn f(x) = sgn cd.

Proof. Boring bounding. Note

sgn f(x) = sgn cd · sgn

(
xd +

d−1∑
i=0

ci
cd
xd

)
,

so by scaling down, it is enough to consider the case where cd = 1.
As an aside, we note that anyx ≥ 1 and nonnegative integernwill havexn ≥ x, which is true by induction

because xn+1 ≥ xn, where our base case is x1 = x ≥ 1 = x0. With this in mind, we see that x satisfying the
desired inequality will have

xd = x · xd−1 >

d−1∑
i=0

|ci|xd−1 ≥
d−1∑
i=0

|ci|xi ≥
d−1∑
i=0

−cixi,

so f(x) > 0 follows. ■

Corollary 2.33. If R is a real closed field and a ≥ 0, then there exists b ≥ 0 such that b2 = a.

Proof. If a = 0, set b = 0. Otherwise, consider the polynomial f(x) := x2 − a. Note f(0) < 0, and Proposi-
tion 2.32 tells us that f(1 + a) > 0, so the intermediate value theorem for polynomials tells us that there is
some b such that f(b) = 0, so b2 = a. ■

Corollary 2.34. If R is a real closed field, then any polynomial f(x) of odd degree has a root.

Proof. Write

f(x) =

d∑
i=0

cix
i

where d is odd and cd ̸= 0, and let N := 2 + 1
|cd|
∑d−1
i=0 |ci|. By Proposition 2.32, we have N such that

sgn f(N) = sgn cd, and we see similarly that the polynomial f(−x) will now have sgn f(−N) = sgn(−cd).
Thus, f(N) and f(−N) have different signs, so the intermediate value theorem for polynomials grants f a
root. ■

The above two corollaries turn out to characterize real closed fields.

Remark 2.35. We can now remove the ordering from our real closed fields by declaring that squares are
exactly the nonnegative elements. It is in general an interesting question when we can give a field an
order; for example, −1 cannot be a sum of squares because −1 < 0. This turns out to be good enough
to make a field orderable!
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2.5 October 5
Here we go.

2.5.1 Quantifier Elimination via Back-and-Forth
Our goal is to show that RCF eliminates quantifiers and is thus complete. Here will be our test.

Proposition 2.36. Fix an L-theory T . Then T is complete and has quantifier elimination if the following
two properties hold.

(i) There is a “prime” structure: there is an L-structure A such that any model M ⊨ T has an em-
bedding A ⊆ M.

(ii) Extension: for any two models M and N with an isomorphism φ : M0 → N0 between substruc-
tures M0 ⊆ M and N0 ⊆ N , then any chosen element a ∈ M has an extension g : M′ → N ′

extending f where a ∈ M′ ⊆ M and N ′ is a substructure of an elementary extension N ∗ of N .

Proof. We will show that (ii) implies that there are elementary extensions M ≤ M̃ and N ≤ Ñ with an iso-
morphism f̃ : M̃ → Ñ extending f . This is a back-and-forth argument, using (ii) to extend our isomorphism
one element at a time.

We build a chain of models M := M0 ≤ M1 ≤ M2 ≤ · · · and N := N 0 ≤ N 1 ≤ N 2 ≤ · · · , and M̃ and
Ñ will be the union of the chains. Roughly speaking, the idea is to construct our models with f̃1, f̃2, . . . into
the following diagram.

...
...

M2 N 2

M1 N 1

M0 N 0
f̃1

f̃2

f̃3

f̃4

(2.1)

Let’s begin by exhibiting f̃1. Enumerate M = {mα : α ∈ κ} where κ = |M|. Now, we write down our maps.

(a) Set g0 = f .

(b) We will have a map gα : Aα → N 0
α, where mβ ∈ Aα for any β < α.

(c) If α ≤ β are in κ, then we require Aα ⊆ Aβ ⊆ M and N 0 ≤ N 0
α ≤ N 0

β .

Then taking the union of the gα will produce the needed map M0 → N 1, and reversing the picture produces
N 1 → M1, and we can keep going up the chains.

Anyway, let’s construct our gα. We have already defined g0.

• Suppose we have defined gα : Aα → N 0
α, and we want to get to a successor ordinal gα+1. Then (ii) using

the single element mα+1 ∈ M0 on the morphism gα provides us with an extension gα+1 : Aα+1 →
N 0
α+1 where a ∈ Aα+1 ⊆ M and N 0

α ≤ N 0
α. So we are done.

• On limit ordinals, we just take a union. If α is a limit ordinal, then we get to suppose that we have
defined gβ for all β < α, and we define

Aα :=
⋃
β<α

Aβ and N 0
α :=

⋃
β<α

N 0
β ,

and we satisfy all the needed hypotheses by how chains work.
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Alright, so we have constructed our map f̃1 : M0 → N 1 by taking unions of the above g•s. We can repeat
this process to produce the maps f̃• and then go up the chain (2.1) to complete the argument. Namely, going
up the chain tells us that we get embeddings in both directions whose compositions are the identity, so we
do have an isomorphism. Thus, Theorem 2.17 tells us that T eliminates quantifiers.

It remains to check that T is complete, which is where (i) will appear. Fix models M and N of T . Now,
our prime structure A embeds into both M and N , whose images we will call A1 and A2. Now, the above
result tells us that we can extend this isomorphism of substructures to an isomorphism of elementary su-
perstructures M̃ → Ñ . Thus, M ≡ M̃ ≡ Ñ ≡ N , so ThM = ThN , which produces completeness. ■

Remark 2.37. Professor Scanlon is lightly considering putting the following weak form of Keisler–Shelah
on the exam: if A ≡ B, then there is a direct limit of ultrapowers of A and B which are

Remark 2.38. More generally, the above proof shows that we can complete a theoryT which eliminates
quantifiers by adding in the diagram of any particular substructure of a model T .

2.5.2 Back to Real Closed Fields
Let’s use Proposition 2.36.

Theorem 2.39. The theory RCF eliminates quantifiers and is complete.

Proof. Let’s start with the prime structure.

Lemma 2.40. The theory RCF has a prime structure.

Proof. The integers Z as an ordered integral domain is contained in any ordered field, so it works as our
prime substructure. ■

Now for the hard part. Fix real closed fields R1 and R2 with an isomorphism of substructures f : A1 → A2,
and choose some a ∈ R1. We would like to extend f up to a. Note that there is some content in deciding
how to extend A1 to a domain of f .

For example, note thatA1 andA2 as substructures of a field must be an integral domain, and so of course
we note that f can be extended to FracA1 → FracA2 as a field homomorphism. Additionally, note that this
extension also to the fraction field also respects the order: it suffices to note that f will respect positivity,
so we note sgn f(a) = sgn a for any a ∈ A1, so a/b ∈ FracA1 being positive implies sgn a = sgn b and so
sgn f(a) = sgn f(b) and so f(a)/f(b) is positive. In total, we may assume that A1 and A2 are ordered fields.

Next up, we may assume that the degree of the field extension [A1(a) : A1] is minimal among the degrees
[A1(a

′) : A1] for a′ ∈ R1\A1 and [A2(b
′) : A2] for b′ ∈ R2\A2. The point is that we can deal with the elements

a′ and b′ one at a time, starting with the smallest possible degree, and this is okay because we can take a
countable union, and the total number of elements to deal with are countable over A1, and the number of
degrees is also countable.

Now, if a is algebraic overA1, then let p be its minimal monic polynomial overA1; if α is transcendental,
take p = 0. Now, define

Cut−(a/A1) = {α ∈ A1 : α < a} and Cut+(a/A1) = {β ∈ A1 : α < β}.

If a is algebraic, then both of these sets are nonempty: Proposition 2.32 grants us a number Np ∈ A1 such
that |x| > Np will have p(x) ̸= 0 in any ordered field, so |x| > α.2 Now, we note that we have the chain of

2 If a is transcendental, one can in fact have a bigger than anything in A1. For example, compactness provides a model of RCF which
is just R, and then we add in an element bigger than anything in R.
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isomorphisms

A1[a] ∼=
A1[x]

p(x)
∼=

A2[x]

f(p)(x)
.

To continue, we need to place a inside A2.

Proposition 2.41. Fix an ordered field R. Given a polynomial F (x) ∈ R[x] and d ∈ R, if F ′(d) > 0, then
there exists b < d < c such that b < x < d < y < c implies F (x) < F (d) < F (y).

Proof. We are basically trying to show that F is locally increasing. Now, we acknowledge that any polyno-
mial F (x) ∈ S[x] will have

F (X + Y ) =

deg f∑
i=0

1

i!
F (i)(X)Y i.

Then

F (y)− F (d) = F ′(d)(y − d) +

deg f∑
i=2

1

i!
F (i)(d)(y − d)i = F ′(d)(y − d)

(
1 +

deg f∑
i=2

F (i)(d)

i!F ′(d)
(y − d)i−1

)
.

Repeating the computation Proposition 2.32, one sees that |y − d| being sufficiently small makes the sign
of the bit in parentheses positive, so sgn(F (y)− F (d)) = sgn(y − d), and we complete the argument. ■

We will complete the proof next class. ■

2.6 October 10
The exam is in a little over a week. Exercises will be focused on content covered in class (and harder exercises
will be chosen from there), but it is possible to be asked about other topics in Marker. Some exercises on the
midterm will be taken from exercises assigned to us.

The class began by showing that

2.6.1 Back to Back to Real Closed Fields
For the time being, take a to be algebraic. We claim that there is α ∈ Cut−(a/A1) and β ∈ Cut+(a/A1) with
sgn(P (α)) ̸= sgn(P (β)), which is a sign change that we will be able to push over to R2 in order to produce a
root over there. Well, note P ′(a) ̸= 0 because we are in characteristic 0, so everything is separable. We take
P ′(a) > 0; otherwise simply reverse all signs. Then Proposition 2.41 grants b < a < cwith P (x) < 0 < P (y)
whenever b < x < a < c < y, but technically the argument only gives b, c ∈ R1, and the same holds for
everything between.

It remains to bring these down to A1. For this, we use the following lemma.

Lemma 2.42. Fix a real closed field R. For Q[x] ∈ R[x] and α < β with Q(α) = Q(β) = 0, there is
γ ∈ [α, β] such that Q′(γ) = 0.

Proof. If Q′(α) = 0 or Q′(β) = 0, there is nothing to do. Now, if Q′(α) and Q′(β) have different signs, R
being a real closed field grants us our γ.

Lastly, suppose Q′(α) and Q′(β) have the same sign. Without loss of generality, make both of them
positive. Then there is ε > 0 such that α < α + ε < β − ε < β such that having α < γ < α + ε implies
Q(γ) > 0 and having β − ε < γ < β impliesQ(γ) < 0. SoQ has another root strictly between α and β, so we
replace β with this root β′.

Namely, check ifQ′(β′) ≤ 0, we get our root ofQ′; otherwise, we repeat the process for [α, β′] to get yet
another root β′′. This process must eventually terminate becauseQ can only have finitely many roots, so we
get our needed root of Q. ■
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Now, choose α ∈ Cut−(a/A1) and β ∈ Cut+(a/A1). For concreteness, list the roots of P (x) as a1 < a2 <
· · · < an, and suppose a = ai for some i. Now, setλ := α if a = a1 or instead a root ofP ′(x)between ai−1 and
ai = a of i > 1. Similarly, set µ := β if a = an or instead a root of P ′(x) between ai and ai+1 if i < n. (These
exist by the above lemma.) Notably, λ and µ are at worst roots of polynomials of P ′, which has degree less
than a, so λ, µ ∈ A1!

As such, we have λ < a < µ with λ, µ ∈ A1. Note that P (λ) and P (µ) have different sign: certainly these
are not roots, so we have sign in {±1}, and if they had the same sign, say they are both of sign P ′(a), then
P being locally strictly monotone at awill produce a root either between λ and a or between a and µ, which
contradicts the construction of λ and µ.

The point is that the data (P, λ, µ) uniquely determine a, and these are data we can push through the
isomorphism f : A1 → A2. Namely, the sign ofP (λ) andP (µ) continue to be different after passing through
our isomorphism, so the intermediate value property in R2 grants us some b ∈ R2 between f(λ) and f(µ).
So we get an isomorphism of fields

A1[a] ∼=
A1[x]

(P (x))
∼=

A2[x]

(P (x))
∼= A2[b].

We will later upgrade this to an isomorphism of ordered fields, which will complete the argument in this
case.

Before running this check, though, let’s take care of the transcendental case. Add a new constant symbol
b to our language. We claim that

elDiag(R2) ∪ {f(α) < b : α ∈ Cut−(a/A1)} ∪ {b < f(β) : β ∈ Cut+(a/A1)} (2.2)

is satisfiable. It’s enough to check that this is finitely satisfiable. Upon using the linear order in A1, it is
enough to check that there is bR2 ∈ R2 with f(α) < bR2 < f(β) for some α ∈ Cut−(a/A1) and β ∈
Cut+(a/A1), for which 1

2 (α + β) will do. Now, let R∗
2 model (2.2); by construction, R2, and we let b de-

note the interpretation of the corresponding constant, and we get an isomorphism A1[a] ∼= A2[b]. (Note
that we can promise b is also transcendental because of yet another compactness argument avoiding the
root of any polynomial.) Now choose some λ, µ ∈ A1 so that λ < a < µ, provided they exist.

We now check that our field isomorphism A1[a] ∼= A2[b] extends to an isomorphism of ordered fields.
Well, for any Q ∈ A1[x] such that degQ < degP (take degP = +∞ in the transcendental case), we need to
check that sgnQ(a) = sgnQ(b). Quickly, if a > A1 always, then the sign of Q(a) is the sign of the leading
coefficient (we have gone off to infinity), and f(a) > A2 also, so the sign ofQ(b) is also the sign of the leading
coefficient. The case of a < A2 is similar.

Now, we may recall that we have some extra information λ and µ. Certainly Q(a) ̸= 0 because degQ <
degP . Without loss of generality, we take Q(a) > 0. Now, all roots of Q will live in A1 by our induction, so
we let λQ denote the maximum of λ and also all the roots y ofQwith y < a, and we construct µQ dually as a
minimum greater thana. Now,Qhas no roots betweenλQ andµQ by construction, so the intermediate value
property promises thatQmaintains sign over this entire interval, and this sign is the sign ofQ((λQ+µQ)/2) ∈
A1. The same holds over in A2, and we note that this sign will agree with Q((f(λQ) + f(µQ))/2) ∈ A2. So
the sign of Q(a) is the same as the sign of Q(f(a)).

2.6.2 o-Minimality

In life one might want explicitly eliminate quantifiers, perhaps with few quantifiers and modest complexity.
For this, one can use cell decomposition.
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Definition 2.43 (o-minimal). A theory T in a language L extending the language of ordered sets is o-
minimal if and only if the following conditions are satisfied.

1. T restricted to the language of ordered sets is equivalent to DLO

2. Any model R ⊨ T with an LR-formula φ(x) has some partition −∞ = a0 < a1 < · · · < an = +∞
and subsets I ⊆ {1, 2, . . . , n− 1} and J ⊆ {0, . . . , n} such that

R ⊨ φ↔

∨
i∈I

x = ai ∨
∨
j∈J

(ai < x < ai+1)

 .

Remark 2.44. A boolean combination of sets of the form points plus intervals will again then be a boolean
combination of sets plus intervals. So if T eliminates quantifiers, we may as well assume that φ(x) is
quantifier-free and hence atomic for the second check.

2.7 October 12

The exam is in a week. I’m probably going to fail.

2.7.1 More on o-Minimality

Let’s check something.

Theorem 2.45. The theory RCF is o-minimal.

Proof. We already know that any model restricted to the language of ordered sets is a dense linear order. So
we need to check that the definable subsets of a model R ⊨ RCF given by a one-variable LR-formula φ(x)
has the partition as needed. By quantifier elimination, we may as well assume thatφ(x) is quantifier-free, so
upon taking boolean combinations, we may as well assume thatφ(x) is atomic. Well, we note that an atomic
formula is equivalent to one of the form f(x) > 0 or of the form g(x) = 0 where f and g are polynomials; the
point is that a general atomic formula is “a term equals or is bigger than some other term.”

• In the case g(x) = 0, we are looking at either a discrete set of points or all of R, both of which are of
the needed form.

• In the case f(x) > 0 (where f is nonzero), we note that the intermediate value property has that f(x) >
0 is the union of some intervals whose endpoints are roots of f(x). Explicitly, enumerate the roots as
a1 < a2 < · · · < an, and we note that f(x) > 0 for some x between ai and ai+1 implies that the entire
interval will have f(x) > 0, and sign changes for f can only take this form.

The above checks complete the proof. ■

We should probably prove the fundamental theorem of o-minimality, which is cell decomposition. This
requires the notion of a cell.
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Definition 2.46 (cell). Fix a model R of an o-minimal theory T . Then a cell is defined as follows.

• A 0-cell is a point.

• A 1-cell in R is a set of the form (a, b) where −∞ ≤ a < b ≤ ∞.

• From n, an (n+ 1)-cell in Rn+1 is a set of one of the following forms.

– We can have
{(x1, . . . , xn, y) : (x1, . . . , xn) ∈ X and y = f(x1, . . . , xn)}

where X ⊆ Rn is an n-cell and f : X → R is continuous and definable.
– We can have (−∞, f)X or (f, g)X or (g,∞)X where

(f, g)X := {(x1, . . . , xn, y) : f(x) < y < f(y)}

where X is an n-cell and f, g : X → R is continuous and definable with f(x) < g(x) always
(where (−∞, f)X and (g,∞)X are defined analogously).

– Lastly, we can have all of Rn.

Remark 2.47. An induction shows that n-cells are homeomorphic to open n-balls when R is R ⊨ RCF.

We can now define a cell decomposition.

Definition 2.48 (cell decomposition). Fix a modelRof an o-minimal theoryT . Then a cell decomposition
C of Rn is a finite set of cells in Rn such that

Rn =
⋃
c∈C

c.

Anyway, here is our theorem.

Theorem 2.49. Fix a model R of an o-minimal theory T .

(a) Given a finite collectionX1, . . . , Xm ⊆ Rn of definable subsets, then there is a cell decomposition
C of Rn such that each X• is a union of some of these cells.

(b) Any definable function f : Rn → R is piecewise continuous. In other words, there is a cell decom-
position C of Rn such that f is continuous upon restriction to each cell.

Remark 2.50. The above theory is true even if we only assume that R is o-minimal, which lets us prove
that T is then o-minimal! We will not prove this stronger notion because it would take more time than
we want to spend.

We will prove (a) and (b) essentially simultaneously by some kind of awkward induction.
To get us started, we need the following lemma.

Lemma 2.51. Fix a model R of an o-minimal theory T . Given some LR-formula φ(x, y1, . . . , yn), there
is a bound B (depending only on φ) such that

#∂{a ∈ R : R ⊨ φ(a, b)} ≤ B

for any b ∈ Rn.
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Proof. Note that T is o-minimal implies any definable subset X ′ of a model R′ ⊨ T has ∂X equal to a finite
set of points; namely, choose the formulaφ(x) definingX ′, and then use the hypothesis so thatX ′ becomes
a set of points plus some intervals, whose boundary is just a finite set of points.

Now, to continue our proof, fix some b, and defineXb ⊆ R to be the set defined by φ(x, b). We note that
∂Xb is definable as saying that y ∈ ∂Xb if and only if y ∈ Xb and y ∈ R \Xb. However, we can describe the
closure of a definable set X (defined by ψ(x)) by saying that any interval around y ∈ R hits X, which can be
said as

∀y−∀y+((y− < y < y+) → ∃x((y− < x < y+) → ψ(x))).

Intersecting, we can define our boundary.
Now, if the lemma were false, then the theory of

elDiagR∪ {#∂Xb ≥ N},

where b have been taken to be some new constants, is finitely satisfiable and hence satisfiable. So compact-
ness provides an elementary extension R′ where #∂Xb is infinite, which contradicts our initial hypothesis.
Notably, R′ will still satisfy T because R ≤ R′. ■

Remark 2.52. If we only took R to be o-minimal instead of the full theory, then the above lemma is
actually the hardest part of the proof. Notably, we used that the theory is o-minimal at the end of the
proof.

Remark 2.53. This is essentially the typical use of compactness: we know that some value is always
finite, so it cannot be arbitrarily large lest compactness enforce infinity.

Alright, let’s start proving Theorem 2.49.

Proof of Theorem 2.49 at n = 1. We show (a) and (b) separately. For (a), this is essentially the statement of
o-minimality. Each of the X• is a finite union of points or intervals whose endpoints live in ∂X•, so we take

F :=

m⋃
i=1

∂X•.

Write F = {a1, . . . , an−1} with a1 < a1 < · · · < an−1, and add in a0 := −∞ and an := ∞. Then our cell
decomposition is F plus the intervals (ai, ai+1) for each i. Then we can write X• as required as points or
unions of intervals from points in ∂X•, so we are done.

Now, (b) is harder. Let f : R → R is definable. We will actually show that f is actually piecewise continu-
ous and either constant or strictly monotone; i.e., there is a cell decomposition C such that f |c is continuous
and either constant or strictly monotone. The point is that continuity (and monotonicity) can be expressed as
a first-order sentence, so this should approximately happen only finitely many times. Anyway, we proceed
in steps.

1. We begin by noting that continuity is actually implied by other assumptions. Suppose f : R → R is
definable is piecewise strictly monotone or constant; then we claim that f is piecewise continuous. If f
is constant on a cell, then f is of course continuous there, so we just need to worry about being strictly
monotone. Also, if the cell is a point, there is nothing to do.
So without loss of generality, let I := (a, b) be an interval on which f is strictly increasing, and we need
to show that we can finitely subdivide the interval to make f continuous. Now, the main point is that
f(I) is definable, defined by the sentence φ(y) = ∃x f(x) = y, so o-minimality tells us that it is a finite
union of points and intervals. Further, f is strictly increasing and hence injective, so f(I) is infinite, so
f has some open intervals in this image.
Now, it is enough to check that f is discontinuous at only finitely many points. Well, if f were dis-
continuous at infinitely many points, we note that the points of discontinuity is definable and hence a
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finite union of points and intervals, so f will actually be discontinuous everywhere in an interval inside
I. Re-applying the above logic to this new smaller interval, so f is discontinuous everywhere on I even
though f(I) has some intervals in its image.
Now, let J ′ ⊆ f(I ′) is an interval, and we want to show that f is continuous. Well, suppose f(x) ∈ J ′.
Then for any ε1 < f(x) < ε2 where (ε1, ε2) ⊆ J ′, we choose δi = f−1(εi) for each i, and monotonicity
implies that δ1 < x′ < δ2 implies ε1 < f(x′) < ε2, as needed.

We will complete the proof next class. ■

2.8 October 17
There is an exam on Thursday. It will be about four or five questions similar to ones on the homework but
hopefully of the more reasonable kind (namely, solvable in something like 20 minutes).

2.8.1 The Cell Decomposition Theorem
Let’s continue the proof from last class. We continue with our definable function f which we are trying to
show is piecewise constant or strictly monotone.

2. For notation, let λ(x) be a function outputting + if f is locally increasing to the left of x, − if f is locally
decreasing to the left of x, 0 if f is locally constant to the left of x, and ∗ otherwise. We define µ(x) to
the needed right versions of these properties. This produces 16 cases for the pair (λ(x), µ(x)).
Quickly, we argue that ∗ is in fact never outputted; this follows from o-minimality. By symmetry, we
might as well argue this for λ. Define ρ(y, z) to be < or > or = depending on how y and z relate.
Now, if λ(x) = ∗, then any δ > 0 produces y and z between x − δ and x such that ρ(f(y), f(x)) ̸=
ρ(f(z), f(x)). This allows us to build ascending sequences {yi}∞i=0 and {zi}∞i=0 (always less than x)
such that ρ(f(yi), f(x)) ̸= ρ(f(zi), f(x)) always. By the pigeonhole principle, we may reduce to a sub-
sequence so that ρ(f(yi), f(x)) and ρ(f(zi), f(x)) are each constant and not equal. However, the de-
finable set

{y < x : ρ(f(y), f(x)) = ρ(f(yi), f(x)) for each i}

cannot be the union of finitely many intervals because the sequence {zi} puts infinitely many holes in
it around x. Explicitly, any interval containing infinitely many of the y• (which must be possible by the
pigeonhole principle) will also contain infinitely many of the z•.
So we have left to deal with the 9 cases for (λ(x), µ(x)).

3. Continuing, by o-minimality, we may decompose R into intervals and points so that λ and µ are both
constant on these intervals, essentially using all 9 cases. Let I be such an interval upon which λ and µ
are constant. We would like to show that λ and µ are the same on I. Looking locally, we may as well
assume that I is a bounded interval.
For example, take λ(x) = 0 on I; a similar argument works if µ(x) = 0. We claim that µ(x) = 0 for
each x ∈ I. Then we get δ < x to check constant to the left of x, we may as well assume that δ ∈ I, and
we are promised that f(y) = f(x) for all y between δ and x. Now, choosing any x > ε > y such that
ρ(f(z), f(y)) corresponds to µ(y) for any y < z, which is doable because µ is constant in this region.
But then f(z) = f(x) is forced because δ < z < x, and f(x) = f(y), so f(z) = f(y), so µ(y) = 0
follows. But µ is constant on I, so µ vanishes everywhere on I.
Next up, suppose λ is + on I but µ is − on I; in other words, every point is a local maximum!3 The
other cases will be analogous. We claim that for all sufficiently large x, there is some y > x such that
f(y) ≥ f(x). Well, let B be the set of all x ∈ I such that all y > x have f(y) < f(x). Now, if our
claim were false, thenB would have infinitely many elements and hence contain an interval. But then
looking locally at some point in the interval would require that λ(y) = −, which is a contradiction.

3 This is weird but not immediately a contradiction: the function Q → Q defined by p/q 7→ 1/q (where gcd(p, q) = 1 and q > 0) has
every point as a local maximum. We will have to use o-minimality.
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So because we worked with x large enough, we might as well replace I with an interval upon which the
claim was true. We now claim that each x ∈ X and y sufficiently larger than x will have f(y) > f(x).
Well, consider the set

B := {y > x : f(y) < f(x)}.

Because µ is constantly −, this set is nonempty; similarly, the complement is nonempty. Further, the
set is certainly definable, so we may let z denote the largest boundary point. If f(x) > f(z), then one
finds that f(x) > f(u) for some u close but below x, say above δ < x. But then an interval consisting of
elements from δ to a little above z does not live in the complement of B, so z is in fact not a boundary
point. (Namely, everything after z needs to be less than f(x).)What?
As such, f(x) ≤ f(z). By the previous claim, we producew ≥ z such that f(z) ≤ f(w). Further, if there
is δ < z such that each u between δ and z such that f(u) < f(x). But then any v between z and u has
f(v) < f(x), so again B contains points beyond z, which is a contradiction.
Similarly, if one has f(v) ≥ f(x) for all v > z, then because µ is + on I, we see that the set of all v such
that f(v) = f(x) must be finite, so there is t ≥ z such that u > t implies f(u) ≤ g(x).What?
We are now ready to define a function β : I → I sending x ∈ I to the least element of the set Bx
consisting of y > x such that all z > y has f(z) > f(x), which exists by what we’ve just shown.
Quickly, note that there is δ < β(x) such that any w between δ and β(x) has f(w) > f(x). Indeed,
if no such thing exists, then instead there is some δ < β(x) such that any w between δ and β(x) has
f(w) < f(x). Choosing any such w will violate the fact that β(x) is supposed to be the infimum of Bx.
So we have a property θ−,+(v) such that we have δ1 < x < δ2 with δ1 < u < v < w < δ2 has
f(u) < f(w). We have checked that θ−,+(β(x)) by the above argument.
Now, β is definable, so β(I) is definable, satisfying β(x) > x (and hence infinite), so we can find an
interval J ⊆ β(I) which is a “cofinal” interval, meaning that any point in I has a larger point living in
J . Because J lives in the image of β, we see that, in J , having µ(v) = − and λ(v) = + implies θ−,+(v).
Now, we go ahead and replace J with I because we can.
As a weird trick, we now reverse the ordering and rerun all our arguments. For example, any suffi-
ciently small x has some y < x such that f(y) ≥ f(x), and we are able to restrict J to a “coinitial”
interval upon which the above statement is true. Continuing, we can show as before that any x ∈ J
and y sufficiently smaller than x has f(y) > f(x), so we are able to define a function α equal to the
supremum of all y such that any z < y has f(z) > f(x). As before, we are able to find an interval
K ⊆ α(J), and we again get the analogous property θ+,− everywhere onK. But this is a contradiction
because we already have θ−,+.

4. Thus, we have shown that any interval I as defined at the top of the previous step has µ = λ if µ and λ
are constant. It remains to show that f is strictly increasing or strictly decreasing or constant on such
an interval. The constant case is relatively easy, so without loss of generality, we take λ = µ = +.
Well, select x ∈ I, and define

Bx := {y > x : f(y) > f(x)}.

CertainlyBx is nonempty because µ = +. We would like to show thatBx contains everything above x.
If there is an element of I bigger than x but not inBx, we may as well as choose some z the minimum
of the boundary ofBx. If f(z) ≤ f(x), then everything between z and xmust have the same value, but
this is not okay because we are locally increasing at z. Similarly, if f(z) > f(x), we note that locally
increasing at z causes similar problems.

We can now prove (a) of Theorem 2.49, assuming (b). Namely, suppose that definable functionsRn → R are
piecewise continuous, and we prove the cell decomposition theorem in Rn+1. Well, suppose X ⊆ Rn+1 =
Rn ×R is definable. Then for b ∈ Rn, we define Xb to be the set of a ∈ R such that (b, a) ∈ X; note thatXb

is a definable subset of Rn.
Now, we note that there is an upper boundN (only depending onX) such that each b ∈ Rn with #∂Xb ≤

N ; this is by some compactness argument. Then we can choose B0, . . . , BN ⊆ Rn such that Bi is the set
of b with ∂Xb having i elements. Now, for any x ∈ R, define a function gi : Rn → R as sending b to the ith
element of ∂Xb, which is definable and hence piecewise continuous. Namely, one has a cell decomposition
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C′ of Rn such that gi|C′ is continuous for each i, and we may as well assume that the C′ decomposes theB•.
One can now decompose X using C′. Explicitly, take Ĉ to be the graphs of the gi on C for each C ∈ C′ and
also the cells between the g•s (and also the cells below g1 and the cell above gN ).
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THEME 3

TYPES

I felt profoundly stupid in that moment and he has a PhD in SYNTAX

—Beth Piatote, [Pia]

3.1 October 26
Today we begin discussing types. The final will be a three-day take-home exam during finals week.

3.1.1 Introducing Types
Let’s give some examples to motivate types.

Example 3.1. Note that (N, 0, s) ≤ (N ⊔ Z, 0, s), where s denotes the successor function (Z is placed
“after” N). The point is that the theory is the theory of an infinite set with an injective function with
no cycles such that only 0 is not in the image of s. This theory eliminates quantifiers, so it is model-
complete.

Example 3.2. Note (Q, 0, 1,+,×) ≤ (C, 0, 1,+,×) because these are algebraically closed fields. This
theory eliminates quantifiers, so it is model-complete.

However, we would still somehow like to tell these structures apart despite being elementarily equivalent.
In the case of N ⊆ N ⊔ Z, we note that any a ∈ N has a = sk(0) for some k; equivalently, N ⊔ Z has some
a ∈ N ⊔ Z such that

a ̸= s(s(· · · (s(0)) · · · )).
Namely, take anything in the alternate copy of Z. Similarly, C has some element t ∈ C such that t is not the
root of any polynomial with Z-coefficients. The point is that we want to look more locally at the formulae
satisfied by some particular elements of our models.

This motivates the following definition.

Definition 3.3 (type). Fix an L-structure M. Given a ∈ Mn, we define the type tpML (a) to be the set of
all L-formulae φ(x) with n free variables such that M ⊨ φ(a). For a subset A ⊆ M , we may abbreviate
tpMLA

(a) to tpMA (a).

51



3.1. OCTOBER 26 225A: MODEL THEORY

The point is that elements of N⊔Z achieves types which N does not. Similarly, elements of C achieves types
which Q does not.

However, it is important that we are considering all the formulae at once.

Proposition 3.4. FixL-structuresM ≤ N , and fix b ∈ Nn. For any finite subset∆ ⊆ tpN (b), there exists
a ∈Mn such that ∆ ⊆ tpM(a).

Proof. Translating, we are asking for

M ⊨ ∃x

( ∧
φ(x)∈∆

φ(x)

)
.

However, the construction of b promises

N ⊨ ∃x

( ∧
φ(x)∈∆

φ(x)

)
,

so we are done because M ≤ N . ■

Remark 3.5. The proof above tells us that it is enough for the extension M ⊆ N to merely be “existen-
tially closed,” meaning that existential formulae go down.

We can even go the other way.

Proposition 3.6. Fix an L-structure M, and let ∆ be a set of L-formulae with at most one free variable x
such that any finite subset∆0 ⊆ ∆hasM ⊨ ∃x

∧
φ∈∆0

φ(x). Then there is an elementary superstructure
N of M such that there is a ∈ N with ∆ ⊆ tpN (a).

Proof. Add a new constant symbol a to our language. Let Φ denote the set of sentences φ(a) for any φ ∈ ∆.
As usual, we want to know that elDiagM∪Φ is satisfiable. Well, by compactness, it is enough to show that
elDiagM ∪ Φ0 is satisfiable for any finite subset Φ0 ⊆ Φ. But M will do: certainly M ⊨ elDiagM, and by
hypothesis we have

M ⊨ ∃x
∧
φ∈∆0

φ(x)

for the subset ∆0 ⊆ ∆ corresponding to Φ0 by replacing a back with x. So we interpret a in M to be the
element promised by the above satisfaction.

Thus, elDiagM∪Φ is finitely satisfiable and hence satisfiable, so we produce an elementary superstruc-
ture N of M with N ⊨ Φ. So aN is the desired element with ∆ ⊆ tpN

(
aN
)

, as desired. ■

3.1.2 Types with Parameters

Even using types, it is difficult to tell N ⊔ Z apart from N ⊔ Z ⊔ Z, and it is difficult to tell C apart from C(t).
Namely, the problem is that the formulae in our languages are not using the full power of the models we
gave them. For example, N ⊔ Z ⊔ Z has elements which are not reachable from N ⊔ Z, but one can only say
this by using parameters from N ⊔ Z. So we refine our definition of types.

Definition 3.7 (type). Fix an L-structure M and a subset A ⊆ M . Then an n-type is a set P of LA-
formulae with n free variables such that P ∪ ThA(M) is satisfiable.
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Remark 3.8. For P ∪ThA(M) to be satisfiable, compactness tells us that it is enough for it to be finitely
satisfiable: namely, it is enough for any finite subset P0 ⊆ P to have P0 ∪ThA(M) to be satisfiable. For
example, it is enough for M ⊨ ∃x

∧
φ∈P0

φ(x).

We are allowing our n-types to be rather small sets. So we add an adjective to fix this.

Definition 3.9 (complete). Fix an L-structure M and a subset A ⊆ M . Then a type P is complete if any
L-formulaφ(x) with n free variables has eitherφ(x) ∈ P or ¬φ(x) ∈ P . Otherwise, we say that the type
P is partial. As notation, we let SM

n (A) denote the set of all complete n-types.

We would like for our types to be realized by elements of M, but this need not always be the case (as we
have with N ≤ N ⊔ Z). So we have the following definition.

Definition 3.10 (realizes). Fix an L-structure M and a subset A ⊆ M . Given an n-type P , we say that
a ∈ Mn realizes P if and only if M ⊨ φ(a) for all φ ∈ P . If no such a exists for an n-type P , we say that
M omits P .

Example 3.11. The set
{x ̸= s(s(· · · (s︸ ︷︷ ︸

n

(0))) : n ∈ N}

is a 1-type for (N, 0, s) (it’s satisfiable by the usual compactness argument), but there is no element of
N realizing this type, so this type is omitted. However, this type is realized by elements of Z in N ⊔ Z.

We can now immediately generalize Proposition 3.6 to n-types.

Proposition 3.12. Fix an L-structure M and a subset A ⊆ M , and let P be an n-type. Then there is an
elementary superstructure N of M such that there is a ∈ N realizing P .

Proof. Approximately speaking, one can repeat the proof of Proposition 3.6 upon unpacking all the defini-
tions.

As before, it is enough to show that elDiagM ∪ P is satisfiable, for which it is enough to show that it
is finitely satisfiable. Taking conjunctions, we may assume that we are trying to satisfy just two sentences
φ(a, b) (from elDiagM) and ∃xψ(x, a) (from P ) where a ∈ A• and b ∈ M•.

Well, we are given that there is a model N0 satisfying ThA(M) ∪ P . By construction, we are reassured
that N0 ⊨ ∃xψ(x, a), and we note that

N0 ⊨ ∃y φ(a, y)

as well because ∃y φ(a, y) is an LA-sentence satisfied by M. So we interpret the needed constants from b
as the tuple promised by N0 ⊨ ∃y φ(a, y) to complete the proof. ■

Corollary 3.13. Fix an L-structure M and a subset A ⊆ M , and let P be a subset of L-formulae with n
free variables. Then P is a complete n-type if and only if there is an elementary superstructure N of M
such that P = tpNA (a) for some a ∈ Nn.

Proof. CertainlyP = tpNA (a) implies thatP is a completen-type: certainly it is ann-type, and completeness
follows because any φ(x) has exactly one of N ⊨ φ(a) or N ⊨ ¬φ(a).

Conversely, suppose that P is a complete n-type. Then the previous proposition grants N ≥ N and
a ∈ Nn such that P ⊆ tpNA (a). Because P is complete, equality must follow: if φ(x) /∈ P , we will have
¬φ(x) ∈ P , so ¬φ(x) ∈ tpNA (a), so φ(x) /∈ tpNA (a). ■

53



3.2. OCTOBER 31 225A: MODEL THEORY

3.1.3 Automorphisms
Let’s take a moment to discuss automorphisms.

Remark 3.14. Supposeσ : M → M is anL-automorphism which fixes a subsetA ⊆M pointwise. Then
for any a ∈Mn, automorphisms preserving formula satisfaction means that

tpMA (a) = tpMA (σ(a)).

This tells us that automorphisms preserve types.

Example 3.15. However, types are not enough to determine the automorphism orbit of an element of
M. For example, let N = (Q, <) and A := {1/n : n ≥ 1}. Now, there is no automorphism switching
0 and 1 while fixing A (being an automorphism must be a homeomorphism for the order topology and
thus fix the limit point 0).

However, 0 and 1 have the same type: any LA-formula will only use finitely many constants from
A, so it is enough to show that tpMA0

(0) = tpMA0
(1) for any finite subset A0 ⊆ A. But now there is an

automorphism switching 0 and 1 while fixingA0 fixed because there is some positive distance between
0 and A0 now.

However, our elements are automorphic upon passing to an elementary superstructure.

Proposition 3.16. Fix an L-structure M and a subset A ⊆ M . Given a, b ∈ Mn, suppose tpMA (a) =
tpMA (b). Then there is an elementary extension N ≥ M and an automorphism σ : N → N fixing A
pointwise and swapping σ(a) = b.

Note that Remark 3.14 provides the converse.

3.2 October 31

Today we discuss partial elementary embeddings.

3.2.1 Partial Elementary Embeddings
Last class we stated Proposition 3.16, which we will show today. The main character of the proof will be the
following definition.

Definition 3.17 (partial elementary map). Fix L-structures M and N with a subsetA ⊆M . Then a map
f : A→ N is a partial elementary map if and only if it preserves types: for allL-formulaeφ(x) and a ∈ A,
we have M ⊨ φ(a) if and only if N ⊨ φ(a).

The point is that we want to extend such maps to full elementary embeddings.

Example 3.18. Such extensions are not possible in general. For example, use the elementary substruc-
ture (N, s) ≤ (N ⊔ Z, s). However, there is a partial elementary map from N ⊆ N ⊔ Z back to all of N,
which cannot be extended to a full elementary embedding simply because there is nowhere for Z to go!

Somehow the above problem is “set-theoretic” in that (N, s) is too small to be an elementary superstructure
of (N⊔Z, s). So perhaps we should only hope to have an extension of a partial elementary map after taking an
elementary superstructure ofN . In an attempt to do this inductively, we pick up the following lemma.
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Lemma 3.19. Fix L-structures M and N with a subset A ⊆ M . Suppose f : A → N is a partial ele-
mentary map. For any b ∈ M , there is an elementary extension N ′ of N and a partial elementary map
g : (A ∪ {b}) → N ′ extending f .

Proof. For convenience, identifyAwith its image in N via f . Also, we may assume that b /∈ A, for otherwise
we can take f = g. Choose a new constant symbol c, which is where b is going to go. Now, let T be the
theory

elDiagN ∪
{
φ(c) : φ ∈ tpMA (b)

}
.

Here, φ is an LA-formula. This will complete the proof: namely, let N ′ be a model, which we see is an
elementary extension of N , and we define g extending f by defining g(b) := cN

′ . And by construction we
have M ⊨ φ(a) if and only if N ⊨ φ(a) for any a ∈ (A ∪ {b}).

We now check that T is satisfiable by compactness: after taking conjunctions, we may reduce the right-
hand side to a single formula φ(c) where φ is an LA-formula, and we note that M ⊨ ∃xφ(x) by hypothesis
on b and so N ⊨ ∃xφ(x) because f is a partial elementary map. So N is the required model by interpreting
c to witness N ⊨ ∃xφ(x). ■

And now here is our transfinite induction.

Lemma 3.20. Fix L-structures M and N with a subsetA ⊆M . Suppose f : A→ N is a partial elemen-
tary map. Then there is an elementary extension N ′ of N and an elementary embedding g : M → N ′

extending f .

Proof. Find a cardinal κ so that we can enumerateM = {aα : α ∈ κ}. Now, defineA0 := A andN0 := N and
f0 := f , and we will define a sequence of maps fα : Aα → Nα for α ≤ κ by transfinite recursion, arranged so
that the following hold for each α ≤ κ.

• Aα = A ∪ {aβ : β ∈ α}.

• N ≤ Nα

• fα is a partial elementary embedding.

These are satisfied by construction at α = 0. Well, by the induction, there are two checks we have to do.

• Suppose α = β + 1 is a successor ordinal. Then Lemma 3.19 allows us to extend fβ up to a partial
elementary embedding fα : Aα → Nα where Nβ ≤ Nα. Because N ≤ Nβ also, we see N ≤ Nα.

• Suppose α is a limit ordinal. Then we noteAα is the union of theAβ for β ∈ α, and so we define Nα as
the union of the Nβ for β ∈ α. Because we have an ascending chain {Nβ}β∈α, it follows that N0 ≤ Nα.
Lastly, we define fα by extending all the fβ , and fα is a partial elementary embedding because such a
thing can be checked on the level of points of Aβ for each β.

So at all stages of our recursion, we know how to keep going. This completes the transfinite induction. ■

3.2.2 Back to Automorphisms
We are now ready to show Proposition 3.16.

Proposition 3.16. Fix an L-structure M and a subset A ⊆ M . Given a, b ∈ Mn, suppose tpMA (a) =
tpMA (b). Then there is an elementary extension N ≥ M and an automorphism σ : N → N fixing A
pointwise and swapping σ(a) = b.
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Proof. To begin, note that the function f : (A ∪ {a}) → M defined by f |A = idA and f(a) = b is a partial
elementary embedding. This simply holds because a and b satisfy all the sameLA-formulae. So Lemma 3.20
produces an elementary extension N1 of M with an elementary extension f1 : M → N1 extending f .

To continue, f−1
1 : f(M) → M is a partial elementary embedding because f1 is an elementary embed-

ding, so using Lemma 3.20 produces a full elementary extension M1 of M and an elementary extension
g1 : N1 → M1 extending f−1

1 . Repeating this step, we produce an elementary extension N2 of N1 with an
elementary embedding f2 : M1 → N2 which extends g−1

1 . Iterating this process, we build the following
diagram.

A ∪ {a} A ∪ {b}

M M

M1 N1

M2 N2

...
...

f

f1

g1

f2

g2

Now, at the end of it all, let N be the union of all the N•, which is also the union of all the M• (for suitable
notion of union). All these vertical arrows are elementary embeddings, so N is an elementary extension of
M. Lastly, we realize that the map σ : N → N given by the union of all the f•s sends a 7→ b because we are
extending f , and σ will be invertible with inverse given by the union of all the g•s. ■

Remark 3.21. A careful examination of the above proof reveals that we have actually proven the fol-
lowing: suppose that we have L-structures M and N and a subset A ⊆ M such that there is a partial
elementary embedding f : A → N . Then there are elementary superstructures M′ of M and N ′ of N
with an isomorphism σ : M′ → N ′ extending f . Indeed, the proof of this result is the above proof minus
the first two sentences.

Next class we will put a topology on our types.

3.3 November 2

Today we discuss Stone spaces. I will not record any topological background.

3.3.1 The Stone Topology

As usual, we will let M be an L-structure, and we let A ⊆ M be a subset. Recall we defined SM
n (A) to be

the set of complete n-types with parameters from A.

Definition 3.22 (Stone topology). Fix an L-structure M and a subsetA ⊆M . For each LA-formulaφ(x)
with n free variables, we define

[φ] :=
{
P ∈ SM

n (A) : φ ∈ P
}
.

The Stone topology is the topology generated by the [φ] as a sub-basis.
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Remark 3.23. Note that we are able to bring in some semantics: for a complete typeP , observeφ∧ψ ∈
P if and only if φ ∈ P and ψ ∈ P , where both directions can be argued by contradiction. For example, if
φ ∈ P and ψ ∈ P but φ ∧ ψ /∈ P , then ¬(φ ∧ ψ) ∈ P , but this is now impossible to satisfy along with φ
and ψ. These arguments tell us that

[φ] ∩ [ψ] = [φ ∧ ψ]

Similarly, one can see that SM
n (A) \ [φ] = [¬φ] because ¬φ ∈ P if and only if φ /∈ P by completeness.

Combining, we get

[φ] ∪ [ψ] = SM
n (A) \ ([¬φ] ∩ [¬ψ]) = [¬(¬φ ∧ ¬ψ)] = [φ ∨ ψ],

which of course we could also have proven directly similarly to the argument with ∧.

In fact, we have a basis.

Lemma 3.24. Fix an L-structure M and a subsetA ⊆M . For a given nonnegative integer n, the sets [φ]
form a basis of a topology on SM

n (A)

Proof. It is enough to show that the intersection of any two basic sets [φ] and [ψ] can be written as the union
of basic open sets. But this is automatic from Remark 3.23. ■

Remark 3.25. Thus, if L is finite or even countable, we have provided a countable basis for the topology
on SM

n (A).

So the open sets of the stone topology onSM
n (A) are unions of the basic open sets [φ] for variousL-formulae

φwith n free variables. For example, this allows us to explicitly describe convergence: for a net {pα}α∈Λ, we
have pα → q if and only if any basic open set [φ] containing q (i.e.,φ ∈ q), there is some λ ∈ Λ such thatα ≥ λ
implies pα ∈ [φ] (i.e., φ ∈ pα).

Let’s discuss the topology on SM
n (A).

Proposition 3.26. Fix anL-structureM and a subsetA ⊆M . ThenSM
n (A) is totally disconnected when

given the Stone topology.

Proof. We show that SM
n (A) is totally disconnected. In other words, we have to show that singletons are

the largest connected sets. So for any set S ⊆ SM
n (A) with more than one point, we want to show that S is

not connected. Well, we are given two points P,Q ∈ S; they are distinct, so find φ ∈ P with φ /∈ Q. But then
S ⊆ [φ] ∪ [¬φ] even though [φ] ∩ [¬φ] and P ∈ S ∩ [φ] and Q ∈ S ∩ [¬φ]. So [φ] and [¬φ] disconnect S. ■

Remark 3.27. The argument above in fact shows that SM
n (A) is Hausdorff as well: we have placed any

two distinct complete types P and Q into disjoint open subsets [φ] and [¬φ] where φ ∈ P \Q.

For something a little more interesting, let’s use compactness.

Theorem 3.28. Fix an L-structure M and a subsetA ⊆M . Then SM
n (A) is compact and totally discon-

nected when given the Stone topology.

Proof. We show that SM
n (A) is compact.
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1. We translate covers into semantics. Fix a subset ofLA-formulaeΦ. The main claim is that {[φ] : φ ∈ Φ}
covers SM

n (A) if and only if {¬φ : φ ∈ Φ} ∪ ThAM is not satisfiable.

In one direction, suppose that {¬φ : φ ∈ Φ} ∪ThAM is satisfiable by a structure N and tuple a. Then
we let P be the type tpNA (a). By construction, P is complete, and N ⊨ ¬φ(a) for each φ ∈ Φ, so we
conclude that P is a complete type not covered by one of the [φ] for φ ∈ Φ.

In the other direction, suppose that {[φ] : φ ∈ Φ} fails to cover SM
n (A). So choose P which does not

live in any [φ] for φ ∈ Φ, implying that ¬φ ∈ P for each φ ∈ Φ. Now, Corollary 3.13 grants us some
elementary superstructure N of M and some a ∈ Nn so that P = tpNA (a). Thus, by construction,
N ⊨ ¬φ(a) for each φ ∈ Φ and N ⊨ ThAM because we have an elementary superstructure, so we are
done.

2. Now, Suppose that we have an open cover U of SM
n (A) which we would like to reduce to a finite sub-

cover. By writing each open set in U as a union of basic open subsets, we may assume that U has only
basic open subsets, which we enumerate as [φ] for various φ ∈ Φ. We would like to extract a finite
subcover. The previous step implies that

{¬φ : φ ∈ Φ}

fails to be satisfiable, so by compactness, a finite subset fails to be satisfiable, so we have some finite
Φ0 ⊆ Φ such that

{¬φ : φ ∈ Φ0}

fails to be satisfiable, so by the previous step once again, we see that {[φ] : φ ∈ Φ0} is the needed finite
subcover. ■

Remark 3.29. Notably, the main input to the above proof was the compactness theorem! In some sense,
this is where the compactness theorem gets its name.

There are a bunch of other functoriality checks one can do with continuous maps.

3.3.2 Isolated Types
Topology motivates the following definition.

Definition 3.30 (isolated). Fix anL-structureM and a subsetA ⊆M . Then a typeP ∈ SM
n (A) is isolated

if and only if P is isolated in the Stone topology. In other words, there exists an open subset around P
only containing P .

Let’s get a better understanding of this term.

Proposition 3.31. Fix an L-structure M and a subset A ⊆ M . Let P ∈ SM
n (A) be a type. Then the

following are equivalent.

(a) P is isolated.

(b) {P} = [φ] for some LA-formula φ.

(c) There is an LA-formula φ ∈ P such that, for any other LA-formula ψ, we have ψ ∈ P if and only if
ThA(M) ⊨ (φ→ ψ).

Note that the completeness of ThA(M) makes ThA(M) ⊨ (φ → ψ) equivalent to (φ → ψ) being in
ThA(M), which is equivalent to M ⊨ (φ→ ψ).
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Proof. Note that (b) implies (a) by the definition of being isolated. For (a) implies (b), we note that {P} is
an open set by definition, so we can find some φ such that P ∈ [φ] and [φ] ⊆ {P} by using our basis, so of
course {P} = [φ] follows.

So the interesting part is showing that (c) is equivalent to the other two. The main claim is that [φ] ⊆ [ψ]
if and only if ThA(M) ⊨ (φ→ ψ). We show the implications separately.

• In one direction, if ThA(M) ⊨ (φ → ψ), then M ⊨ (φ → ψ), then if P ∈ [φ], we have φ ∈ P , so ψ ∈ P
by completeness, so P ∈ [ψ].

• In the other direction, if M fails to satisfy (φ → ψ), then there is some a ∈ M such that M ⊨ φ(a) ∧
¬ψ(a). Thus, tpMA (a) ∈ [φ] \ [ψ].

We now show (b) implies (c): we have {P} = [φ], so ψ ∈ P if and only if P ⊆ [ψ] if and only if [φ] ⊆ [ψ], which
by the claim is equivalent to M ⊨ (φ → ψ). Lastly, we show (c) implies (b): given our special φ, we want to
show that {P} = [φ]. Well, certainly P ∈ [φ]. Conversely, if Q ̸= P for some complete n-type Q, pick up
ψ ∈ P \Q, but then M ⊨ (φ→ ψ), so by the claim, [φ] ⊆ [ψ], but then Q /∈ [ψ], so Q /∈ [φ]. ■

Remark 3.32. The point is that isolated types are determined by a single formula. Note that the formula
φ yielding P is unique up to equivalence by (c) because then ThA(M) ⊨ (φ↔ ψ) if {P} = [φ] = [ψ].

Example 3.33. Let M = (R, 0, 1,+,×,≤). Then P = tpM∅ (A) is isolated given by formula x = 0.

More generally, we have the following.

Proposition 3.34. Fix an L-structure M and a subset A ⊆ M . Suppose that b ∈ M is definable over A.
Then tpMA (b) is an isolated type.

Proof. Well, suppose φ(x) defines b, and we claim that tpMA (b) = [φ], for which we use Proposition 3.31.
Well, we see that ψ(x) ∈ tpMA (b) if and only if M ⊨ ψ(b) if and only if M ⊨ ∀x(φ(x) → ψ(x)), which is
equivalent to M ⊨ (φ → ψ). To finish, we note that this is equivalent to φ → ψ living in ThA(M), which is
equivalent to ThA(M ⊨ (φ→ ψ) by completeness. ■

In fact, we have the following partial converse.

Proposition 3.35. Fix an L-structure M and a subset A ⊆M . If P is an isolated type, then P = tpMA (a)
for some a.

Proof. Suppose that {P} = [φ]. But now ThA(M) ∪ {∃xφ(x)} is satisfiable because this is the same as
ThA(M) ∪ P . So ∃xφ(x) ∈ ThA(M) by completeness, so M ⊨ φ(a) for some a ∈ M . To complete the
argument, we note that ψ ∈ P if and only if ThA(M) ⊨ (φ(a) → ψ(a)), so M ⊨ ψ(a), so ψ ∈ tpMA (a). So
P ⊆ tpMA (a), and equality follows by completeness. ■

Example 3.36. One can use the above proposition to show that there are types which aren’t isolated in
M = (R, 0, 1,+,×,≤). For example, take the type given by any transcendental.

3.4 November 7
We continue.
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3.4.1 Types of Theories

Let’s move from types of models M to types of theories T .

Definition 3.37 (type). Fix an L-theory T . Then an n-type is a set P of L-formulae with n free variables
such that P ∪ T is satisfiable. A type is complete if φ ∈ P or ¬φ ∈ P for each L-formula φ with n free
variables. We let Sn(T ) denote the set of complete n-types.

Example 3.38. For an L-structure M, we have

Sn(ThM) = SM
n (∅).

The main content here is that we are allowing T to not be complete. Note that Sn(T ) has a topology given
by the basic open sets

[φ] := {P ∈ Sn(T ) : φ ∈ P}.

The checks on this topology are the same as when T is complete; namely, we have defined basis as in
Lemma 3.24, and it is totally disconnected as in Proposition 3.26, and it is compact as in Theorem 3.28.

We are also able to provide definitions motivated by this topology.

Definition 3.39 (isolated). Fix an L-theory T . Then a complete n-type P is isolated if and only if there is
an L-formula φ with n free variables such that {P} = [φ].

Remark 3.40. The argument of Proposition 3.31 generalizes immediately to show that the following
are equivalent for a complete n-type P and L-formula φ with n free variables.

(a) P is isolated with {P} = [φ].

(b) There is an L-formula φ ∈ P such that, for any other L-formula ψ, we have ψ ∈ P if and only if
T ⊨ (φ→ ψ).

As before, the main input is to show that [φ] ⊆ [ψ] if and only if T ⊨ (φ → ψ), and the proof of this is
quite similar.

So we take the above remark as providing our definition of isolated types.

Definition 3.41 (isolated). Fix an L-theory T . Then an n-type P is isolated if and only if there is an L-
formula φ such that T ∪ φ is satisfiable and the following holds: for any other L-formula ψ, we have
ψ ∈ P if and only if T ⊨ (φ→ ψ).

We can also use topology to define a notion of density.

Definition 3.42 (dense). Fix an L-theory T . Then a set X of complete n-types is dense if and only if X
intersects each nonempty basic open set of Sn(T ). In other words, for each L-formula φ with n free
variables such that T ∪ {φ} is satisfiable, there is a complete n-type P ∈ X such that φ ∈ P .

Example 3.43. The set Sn(T ) ⊆ Sn(T ) is dense.
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Example 3.44. Suppose T = ThM for some L-structure M. Then the set

X :=
{
P ∈ SM

n (∅) : P is realized in M
}

is dense inSn(T ). Indeed, supposeφ is anL-formula withn free variables such thatT∪{φ} is satisfiable.
But T = ThM is complete, so M ⊨ ∃xφ(x), so we may find a ∈ M such that M ⊨ φ(a). Thus,
tpM(a) ∈ X contains φ, as needed.

Remark 3.45. Let T be an L-theory. If P is a complete isolated n-type, and X ⊆ Sn(T ) is dense, then
we claim P ∈ X. Indeed, write {P} = [φ]; then [φ] ∩X ̸= ∅ needs P ∈ X, as desired.

Professor Montalban recommends reading types of discrete linear orders and of algebraically closed fields
to understand what is going on. Here is a taste for the sort of thing one can show.

Proposition 3.46. Fix a discrete linear order (M, <), and let A ⊆ M be a subset. Then the types in
SM
1 (A) which are not realized in A correspond to a cut (L,U) of A. (Here, L ∪ U = A and L is closed

downwards and U is closed upwards.)

Sketch. The point is that every formula in a completen-type is equivalent to a quantifier-free formula, which
amounts to requiring some list of satisfiable inequalities. These lists of inequalities amount to a cut. ■

Proposition 3.47. Fix a discrete linear order (M, <), and letA ⊆M be a subset. Then a complete 1-type
P ∈ SM

1 (A) not realized inA corresponding to the cut (L,U) ofA fails to be isolated if and only ifL fails
to have a maximum or U fails to have a minimum.

Notably, if L = ∅ or U = ∅, then P remains isolated.

Sketch. The point here is that we need to be determined by a single inequality. Being “aboveL and belowU”
being encoded into a single formula requires that L or U contain their supremum or infimum (respectively).

■

3.4.2 Type Omitting
Here is our theorem.

Theorem 3.48 (Type omitting). Fix a countable language L, and let T be an L-theory. Further, let P be
an n-type which is not isolated. Then there is a countable model M ⊨ T which omits P .

The “non-isolated” hypothesis onP is necessary: for example, if T = Th(N, 0, s), then the type of 0 is always
realized, which is notably an isolated type. More generally, isolated types are always realized by Proposi-
tion 3.35. Theorem 3.48 above is the converse.

Proof of Theorem 3.48. We do a Henkin construction. Namely, we use an argument like Lemma 1.43 to
expand our language to L∗ by adding in new constant symbols C to our language, and then we extend T to
an L∗-theory T ∗ to be complete (and satisfiable) and have witnesses. We will also arrange our construction
so that each tuple (c1, . . . , cn) ∈ Cn has someφ ∈ P such that¬φ(c1, . . . , cn) is inT ∗. Then the construction of
Lemma 1.44 produces the needed model M whose universe is C modded out by some equivalence relation
dictated by T ∗. Namely, having ¬φ(c1, . . . , cn) in T implies that P is omitted because the universe of M
arises exactly from C.

We will construct T ∗ to be T ∪ {θ0, θ1, . . .} by adding one sentence at a time; by compactness, the satis-
fiability of T ∗ follows from the satisfiable at each finite step. (Technically, we will eventually have T ∗ ⊨ φ or
T ∗ ⊨ ¬φ for each φ at the end of the construction.) We will also require that T ⊨ (θn+1 → θn) for each n, for
psychological reasons. For convenience, we will also need the following enumerations.
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• Let {φn : n ∈ ω} be an enumeration of all L∗-sentences.

• Let {ψn(x) : n ∈ ω} be an enumeration of L∗-formulae with one free variable.

• Enumerate the n-tuples c of constants in C.

We now proceed in steps.

0. On step s = 0, we let θ0 be the sentence ∀x(x = x), which is always true.

1. On steps which are s+1 = 3i+1, we deal with completeness. Here, let θs+1 be either θs∧φi or θs∧¬φi,
one of which we know is going to be satisfiable with T .

2. On steps which are s+2 = 3i+2, we deal with witnesses. Here, we choose a constant c ∈ C not in θs,
and we let θs+1 be the sentence

θs ∧ (∃xψi(x) → ψi(c)) ,

which continues to satisfiable by interpreting c to be the needed witness to ∃xψi(x) (if it exists) in a
model of θs.

3. On steps which are s+ 3 = 3i+ 3, we deal with omitting P . Let c be the ith n-tuple of constants in C.
We would like to find some φ(x) in P such that T ∪ {θs ∧ ¬φ(c)} is satisfiable.
The point is to contradict the fact that P is not isolated. Write θs as θ(d, c) where d are the con-
stants which appear in θs despite not appearing in c. By the satisfiability of T ∪ {θs}, we see that T ∪
{∃y∃x θ(y, x)}. But becauseP is not isolated, there isφ ∈ P such thatT does not prove∀y∃x (θ(y, x) →
φ(x)). Thus, there is a model M of T such that all a ∈M have some b ∈M with

M ⊨ (θ(b, a) ∧ ¬φ(a)).

Interpreting constants in (d, c) as in (b, a), we have shown that T ∪ {θs ∧¬φ(c)} is satisfiable by M, as
required. ■

Remark 3.49. The above proof can also show that we can omit countably many non-isolated types
{Pn}n∈N simply by modifying the third step to yield the sentence ¬φm(c) where φm ∈ Pn; the point
here is to use the countability of N× N.

3.5 November 9
We continue.

Example 3.50. Let N = (N, 0, 1,+,×,≤), and choose a countable proper elementary extension M of N,
so for example, M is still a model of PA. Now, we build a proper elementary extension N of M. For
example, for each m ∈M , we can try to omit the type pm defined by

{(v < m)} ∪ {(v ̸= h) : h < m}.

We could then build a model N ⊨ elDiagM omitting all the types pm (which are not isolated because
they are not realized in M).

3.5.1 Prime and Atomic Models
For the next few weeks, we examine prime, atomic, and saturated models.
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Definition 3.51 (prime). Fix an L-theory T . Then a model M of T is a prime model if and only if N ⊨ T
implies that there is an elementary embedding M → N .

We would like to know when these exist and that they are unique. These require proof.

Example 3.52. In the theory ACFp of algebraically closed fields of characteristic p, then Fp is a prime
model: it will embed into any other algebraically closed field of characteristic p, and these are elemen-
tary extensions because ACFp eliminates quantifiers and hence is model-complete.

Example 3.53. Similarly, the theory DLO has Q as a prime model for essentially the same reason.

Remark 3.54. A theory T needs to be complete to have prime models. Namely, suppose M is a prime
model. Then N ⊨ T implies that M ≤ N , so ThM = ThN . Thus, M ⊨ φ if and only if N ⊨ φ for all
models N of T , which is then equivalent to T ⊨ φ, so completeness of T follows.

Remark 3.55. Suppose our language L is countable. Given a prime model M of T , then tpM(a) must be
isolated. Indeed, if not, then there is a model M′ omitting tpM(a), but then the promised elementary
extension M ≤ M′ requires there to be an element in M′ with the same type! Note that this implies
that the isolated types are dense in Sn(T ), which need not be the case in general.

And now for atomic models.

Definition 3.56 (atomic). Fix an L-theory T . Then a model M of T is an atomic model if and only if
tpM(a) is isolated for all a ∈M .

Actually, these are the same.

Proposition 3.57. Let L be a countable language, and let T be a complete L-theory with an infinite
model. Then a model M is prime if and only if it is atomic and countable.

Proof. Remark 3.55 tells us that prime models are atomic, and Theorem 1.71 tells us that T does have
countable models, so any prime model must be countable in order to embed into such models.

Thus, the difficulty will come from the converse direction. Suppose M is atomic and countable, and
let N ⊨ T . We want to show that there is an elementary embedding M ≤ N . Well, enumerate M as
{mi : i ∈ ω}. We will create our elementary embedding inductively: namely, we want to define a sequence
n0, n1, . . . ∈ N such that

tpM(m0, . . . ,mk) = tpN (n0, . . . , nk).

This will imply our elementary embedding: for any φ(x), we see that M ⊨ φ(m0, . . . ,mk) if and only if
N ⊨ φ(n0, . . . , nk). (Even if a formula φ does not use every single variable in {m0, . . . ,mk}, we might as well
include them anyway.) Let’s do our induction.

• At step 0, we may find n0 because the isolated type tpM(m0) is realized in N by Proposition 3.35.

• At step k + 1, we want to find nk+1 such that

tpM(m0, . . . ,mk,mm+1) = tpM(n0, . . . , nk, nk+1).

The issue here is that we want to find nk+1 without adjusting n0, . . . , nk. To get around this, we find
φ(x0, . . . , xk) isolate tpM(m0, . . . ,mk). We want nk+1 such that N ⊨ φ(n0, . . . , nk), but we know that

M ⊨ ∃xk+1 φ(m0, . . . ,mk, xk+1),

63



3.6. NOVEMBER 14 225A: MODEL THEORY

so the sentence ∃xk+1 φ(x0, . . . , xk, xk+1) belongs to tpM(m0, . . . , xk), so the inductive hypothesis im-
plies that it belongs to tpN (n0, . . . , nk) too, so

N ⊨ ∃xk+1 φ(n0, . . . , nk, xk+1),

which provides us with the needed nk+1. ■

IfM andN are both countable and atomic, one can turn the above argument into a genuine back-and-forth,
allowing us to conclude that M ∼= N .

Proposition 3.58. Let L be a countable language, and let T be a complete L-theory with an infinite
model. Then any two countable and atomic models M and N are isomorphic.

Proof. Turn Proposition 3.57 into a back-and-forth argument. Essentially, enumerate both M and N and
then alternate steps going back and forth to make sure we produce a bijection. ■

Theorem 3.59. Let L be a countable language, and let T be a complete L-theory with an infinite model.
Then the following are equivalent.

(a) T has a prime model.

(b) T has an atomic model.

(c) The isolated types in Sn(T ) are dense for all n.

Proof. Note that (a) implies (b) by Remark 3.55. For (b) implies (a), we note that any atomic model M by
Theorem 1.71 has some M0 ≤ M which is countable, but then all types will remain isolated, so Proposi-
tion 3.57 completes. Next, (a) implies (c) by Remark 3.55.

Thus, the difficulty comes from showing that (c) implies (b). For the proof, say that a sentence φ(x) is
isolating if and only if T ⊨ ∃φ(x) and any ψ(x) has either T ⊨ ∀x(φ(x) → ψ(x)) or T ⊨ ∀x(φ(x) → ¬ψ(x)).
Namely, φ(x) implies a complete set of formulae.

Now, consider the set Pn of formulae ¬φ(x) where this is an isolating formula φ(x) with n free variables.
This is countably many types, so we would like to use Remark 3.49 to provide a model M ⊨ T which omits
all the typesPn. For this, we must check thatPn is not an isolated (partial) n-type. (If they are not consistent
with T , they are omitted automatically, so we don’t have to worry about that.)

Well, suppose for the sake of contradiction that Pn is isolated by ψ(x). This means that T ⊨ ∃ψ(x) and
T ⊨ (ψ(x) → φ(x)) for eachφ(x) inP . But by the hypothesis (c), we may find an isolatedn-typeQ containing
ψ(x), meaning that it is isolated by the formula θ(x), so T ⊨ ∀x(θ(x) → ψ(x)). This is contradiction because
¬θ(x) lives in Pn, so T ⊨ ∀x(ψ(x) → ¬θ(x)), meaning we have shown θ implies ¬θ.

We now complete the proof. Remark 3.49 now grants us a model M omitting all the types Pn. Thus,
each a ∈Mn cannot realizePn, means that M ⊨ θ(a) for some isolating formula θ(x), but then tpM(a) must
be the type isolated by θ(x). So M is an atomic model. ■

Remark 3.60. Now combining with Proposition 3.58 assures us that these prime models are in fact
unique.

3.6 November 14
Office hours will be on Tuesdays at 11:30AM.
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Example 3.61. Let’s build a theory whose isolated types are not dense. Our language L will contain
countably many unary relations {P0, P1, . . .}, and let T be the theory consisting of sentences of the form

∃x

( ∧
i∈S

Pi(x) ∧
∧
i/∈S

¬Pi(x)

)
,

whereS ⊆ N is any finite subset. On the other hand, for each subsetS ⊆ N, there is a typePS consisting
of the sentencesPi(x) for i ∈ S and¬Pi(x) for i /∈ S; notePS∪T is consistent by compactness. Further,
PS is a complete type, which one can see by showing that T eliminates quantifiers by the usual syntactic
arguments; from here,PS(x)will imply any formula or its negation because one can replace formula by a
quantifier-free one. Now, we note that all the 1-types take this form again by the quantifier elimination.

However, T has no isolated types. Indeed, suppose that a type PS is contained in [φ]; we will argue
that [φ] has another 1-type. We may assume that φ is quantifier-free, and we may assume that φ has
only conjunctions. The problem is that φ only mentions finitely many of the Pi, so we can find multiple
complete 1-types PS and PQ living in [φ] which complete φ.

3.6.1 Homogeneous Models
Another useful kind of model for our discussion is homogeneous models.

Definition 3.62 (κ-homogeneous). Fix an L-structure M. Then M is κ-homogeneous if and only if the
following holds: for any subset A,B ⊆ M of cardinality less than κ equipped with a partial elementary
embedding f : A → M , and given an element a ∈ M , then there is b ∈ M and some partial elementary
embedding f∗ : A∪{a} →M extending f and sending f∗ : a 7→ b. We then say that M is homogeneous
if and only if M is |M |-homogeneous.

Intuitively, homogeneity allows us to extend partial elementary embeddings from subsets one element at a
time. By an inductive argument, one achieves the following.

Proposition 3.63. Fix a homogeneous L-structure M. Given subsets A,B ⊆ M of strictly smaller car-
dinality than M , any partial elementary embedding f : A→M extends to an automorphism of M.

Proof. We do transfinite induction, applying a back-and-forth argument. Enumerate the elements ofM by
{mα : α ∈ κ}, where κ = |M |. We now build a sequence of partial elementary embeddings fα :Mα →M of
partial elementary embeddings satisfying the following.

• f0 = f .

• fβ extends fα whenever β ≥ α.

• |im fα| ≤ |A|+ 2α.

• mα is in the domain and range of fα+1.

Taking the union of the fα will complete the proof. Indeed, the union of partial elementary maps is a partial
elementary map, but the union now contains all of M in the domain and codomain.

We quickly deal with limit stages in our induction first. Namely, if α is a limit ordinal, we define fα as the
union of all the previous fβs. This is a union of partial elementary embeddings fβ , so fα is a partial elementary
embedding too. Theα+1 check has no content, and the extensions are satisfied by construction. Lastly, the
size of the image of the im fαs is the supremum of all the im fβs, which is upper-bounded by the supremum
of all the |A|+ 2β, which is |A|+ 2α.

We now must argue the successor stage. Suppose we are given fα, and we must construct gα. To add
mα+1 to the domain, we use the homogeneity of M. On the other hand, applying the same argument to
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the inverse g−1
α : im gα → dom gα allows us to extend g−1

α to the new element mα+1 in the image, which is
exactly the fα+1 we needed. Notably, we have only added two elements in total, so the inequality on im fα+1

is still satisfied. ■

Non-Example 3.64. ConsiderA := Q2Z as a subspace ofM := QZ. But then there is a partial elementary
embeddingA ∼=M , and it cannot be extended to an automorphism because it is already surjective! Note
that M is in fact homogeneous: one may assume that A is a full subspace, and then one extends to a
single extra point in M arbitrarily as long as the single extra point is away from A.

Here’s an example.

Lemma 3.65. Fix a countable language L and an L-structure M. If M is atomic, then M is ℵ0-homo-
geneous.

Proof. Fix a finite subset A ⊆ M and a partial elementary embedding f : A → M . Given some c ∈ M , we
must extend f to A ∪ {c}. Namely, because A is already finite, it will be enough to must find some d ∈ M
such that

tpM(a1, . . . , an, c) = tpM(f(a1), . . . , f(an), d),

where A = {a1, . . . , an}. Because M is atomic (!), we note that tpM(a, c), we can find some θ(x, y) isolating
this type. Now, ∃y θ(x, y) lives in tpM(a) and hence in tpM(f(a)), so we can find some d such that M ⊨
θ(f(a), d). This d is the one required because θ isolated the type, so M ⊨ θ(f(a), d) requires that

tpM(a1, . . . , an, c) = [θ] ⊆ tpM(f(a1), . . . , f(an), d),

so the completeness of these types enforces equality. ■

We can even go in the other direction.

Theorem 3.66. Fix a countable language L, and let M and N models of a complete L-theory T which
are countable homogeneous models realizing the same types in Sn(T ) for all n. Then M ∼= N .

Proof. These models are countable, so we will do a back-and-forth argument. EnumerateMby{mi : i ∈ N}
and N by {ni : i ∈ N}. We will build finite partial elementary maps fk : Mk → N where dom fk contains mi

for i < k and im fk contains ni for i < k. At i = 0, we simply take the empty function for f0.
Now, suppose we are given fk, and we want to build fk+1. We will discuss how to addmk to the domain

of fk; taking the inverse will allow us to add nk to the image of fk, so we will omit writing out the argument.
Anyway, fully enumerate the domain of fk by a and the image of fk by b. We would like to add in mk, so we
set P := tpM(a,mk).

At this point, we would like to use the homogeneity of N . Well, M realizes P , so N must realize P too,
so we can find some (c, d) realizing P . But then tpN (c) = tpM(a) = tpN (b). So we may define a partial
elementary embedding by sending c 7→ b, which by homogeneity extends to a map (c, d) 7→ (b, n′) for some
n′ ∈ N . This n′ is the needed element wheremk should go because tpM(a,mk) = tpN (c, d) = tpN (b, n′) by
construction. ■

3.6.2 Saturated Models
At the end of class, we are now ready to define saturated models.

Definition 3.67 (κ-saturated). An L-structure M is κ-saturated if and only if any A ⊆ M of cardinality
less than κ has all typesP ∈ SM

n (A) realized inM. ThenM is saturated if and only if it is |M |-saturated.
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Example 3.68. Consider the theory DLO of dense linear orders.

• The model Q is ℵ0-saturated. The point is that, by quantifier elimination, any finite setA ⊆ Q has
only the types saying that

• The model Q is not ℵ1-saturated because, for example, there is a 1-type saying that the given
element is bigger than every integer, which is not realized. In fact, no countable model M is ℵ1-
saturated because one can build a type saying that the given element is not equal to each individual
element of M.

3.7 November 16
Today we continue with saturated models.

3.7.1 Countable Saturated Models
Whenever necessary, we will continue with L being a countable language and T being a complete L-theory
with infinite models.

Example 3.69. Let’s describe a model ofDLOwhich isℵ1-saturated. LetM consist of functions f : ω1 →
Q with countable support, ordered lexicographically: namely, f < g if and only if the least i with f(i) ̸=
g(i) has f(i) < g(i). This is a dense linear order (between any two functions f and g, they differ at some
least point i, and so define a function between the two by sending i 7→ 1

2 (f(i) + g(i))).
To see that M is ℵ1-saturated, one makes some argument using the countable support. Now, we

note that it has cardinality 2ℵ0 : there are certainly at least 2ℵ0 functions, and the number of functions
can be upper-bounded by the number of countable “graphs” living in ω1 × Q, which simply has size
ℵℵ0
1 ≤ 2ℵ0×ℵ0 = 2ℵ0 . So under the continuum hypothesis, M achieves a cardinality of ℵ1, so M is

indeed saturated.

Example 3.70. The algebraically closed field C is ℵ1-saturated. The point is that quantifier elimination
means that we only need to worry about types which either say that an element is a root of some poly-
nomial or avoids being a root of some set of polynomials with parameters in a countable set. But C is
big enough that it has enough transcendental elements, so we are okay.

Here are some other ways of thinking about saturated types.

Proposition 3.71. Fix an L-structure M and an infinite cardinal κ. Then the following are equivalent.

(a) M is κ-saturated.

(b) For all A ⊆ M of cardinality less than κ, all (possibly partial) types P with parameters in A are
realized in M.

(c) For all A ⊆M of cardinality less than κ, any type P ∈ SM
1 (A) is realized in M.

Proof. Of course, (b) implies (a) with no content because complete types are types. To show that (a) implies
(b), note that a type can be extended to a complete type, so having (a) is enough to realize the needed partial
type.

Similarly, we note that (a) implies (c) again with no content. For the converse, suppose we have a com-
plete n-type P (x) ∈ SM

n (A) which we want to realize. Then we will add in one variable at a time. Namely,
start with P1(x1) ∈ SM

1 (A) be the type of formulae in P only mentioning x1, and we see that this is a com-
plete 1-type, which is then realized in M by some a1.
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Now, because κ is infinite, we may consider the complete type P2(a1, x2) ∈ SM
1 (A ∪ {a1}) of formulae

in P only mentioning x1 and x2 but with x1 replaced with a1. Notably, P2(a1, x2) is indeed consistent with
M: for each φ(x1, x2) ∈ P2(x1, x2), we see that ∃x2 φ(x1, x2) would need to live in P1, so M ⊨ ∃x2 φ(a1, x2),
so φ(a1, x2) is consistent. So we may find a2 so that (a1, a2) realizes P2. From here, we can continue the
argument inductively up to P3 and so on. ■

Remark 3.72. We only needed κ to be infinite in order to show that (c) implies (a).

Let’s go ahead and start to construct saturated models.

Example 3.73. Consider the theory ACF0 of algebraically closed fields of characteristic 0. Then an ex-
tension F/Q with countable transcendence degree will be countable and so in particular countable and
saturated. The point is that we are only going to consider parameter sets A which are finite, and then
F realizes all types to consider, which by quantifier elimination either is asking to be the root of some
polynomial in A or to be transcendental with respect to parameters in the finite set A.

Theorem 3.74. Fix a countable language L and a complete L-theory T . Then T has a countable satu-
rated model if and only if Sn(T ) is countable.

Proof. The forward direction is easier: if T has a countable saturated model M, then each distinct complete
n-type P must correspond to a distinct n-tuple in M (note distinct complete types have distinct sentences,
so they cannot be satisfied by the same n-type!), of which there are only countably many, so there can only
be countably many types.

We now show the reverse direction. Suppose we have a countable model M ⊨ T . Then we claim that
there is a countable model M′ ≥ M realizing any countable set of types. Indeed, add in (countably many)
new constants cP corresponding to each of the countably many types P (x), and everything is finitely satis-
fiable by M because T is complete. So we can find a model M′ satisfying everything including elDiagM.

Iterating this construction grants an ascending sequence

M0 ≤ M1 ≤ M2 ≤ · · · ,

whereMi+1 is constructed fromMi by asking for all the types inSMi
1 (A) to be realized for each finite subset

A ⊆ Mi. The key point is that SMi
1 (A) is still countable: for each 1-type P (x, a) ∈ SMi

1 (A) (where a is
an enumeration of A), we can turn this into an (n + 1)-type P (x, y) ∈ Sn+1(T ), of which there are only
countably many. This function is countable-to-one, so we conclude that there are only countably many
types in SMi

1 (A).
To complete the proof, we let M be the union of the Mis, which is an elementary extension of all the

Mi, soMwill realize all the types from all theMi. NowM is countable, so we still only need to worry about
finite parameter sets A ⊆ M , which means that we might as well put the parameter set inside some fixed
level Mi, so we know the types will be realized in Mi+1. ■

Remark 3.75. In fact, the above proof has shown that any countable model M0 can be embedded (in an
elementary way) into a saturated countable model (provided a single saturated countable model exists).

3.7.2 Universal Models
The above proof motivates the following definition.

Definition 3.76 (κ-universal). Fix a complete L-theory T . A model M of T is κ-universal if and only if
any model N of T of cardinality less than κ has some elementary embedding N ↪→ M. Then we say M
is universal if only if it is |M |+ universal.
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Example 3.77. Consider the theory T of infinitely many equivalence classes with infinite size. Then any
model M with ℵ1 many classes of size ℵ1 will be universal by embedding in the necessary number of
equivalence classes. Notably, this example informs us that universal models are not isomorphic despite
having some kind of universal property.

So in the above language, we now know that countable and saturated implies universal. More generally, we
have the following.

Theorem 3.78. Fix a complete L-theory T and a model M of T . Then the following are equivalent.

(a) M is κ-saturated.

(b) M is κ+-universal and κ-homogeneous.

We will show this next class.

3.8 November 21
Today we will finish our discussion of saturated models.

3.8.1 Miscellaneous Saturated Models
We begin with the following lemmas.

Lemma 3.79. Fix a complete L-theory T . If M is κ-saturated, then M is κ-homogeneous.

Proof. Fix some subset A ⊆ M of cardinality less than κ and a partial elementary embedding f : A → M
which we would like to extend to an element a ∈M .

To do this, set p(x) := tpMA (a). We now push the parameters toB, defining q(x) to be the set of formulae
defined by taking any constants from A in any formula φ(x) ∈ p(x) and pushing them to B. We would like
to show that q(x) is actually a type (with parameters in B), and M being κ-saturated implies that it will be
realized by some b ∈ M, which will complete the argument by extending f to send a 7→ b.

So it remains to show that q(x) is consistent with ThBM. Well, it suffices to show that q(x) ∪ ThBM
is satisfiable, for which it is enough to show that it is finitely satisfiable, so it is enough to show that any
single formula φ(x, b) ∈ q(x) is consistent with ThBM. Well, this is φ(x, f(a)) for some a ∈ A, and f being
a partial elementary embedding then implies that φ(x, f(a)) ∈ ThBM is equivalent to φ(x, a) ∈ ThAM,
which is true by construction of φ(x, b) ∈ q(x). ■

Lemma 3.80. If M and N are saturated models of the same cardinality, then M ∼= N .

Proof. This is a back-and-forth argument proceeding via transfinite induction. Let κ be the cardinality ofM
andN , and enumerateM = {mα : α ∈ κ} andN = {nα : α ∈ κ}. Then one proceeds as in Proposition 3.57.

■

Remark 3.81. The above proof actually shows that any partial elementary embedding f0 : A → N with
|A| < κ, then we can extend f0 to an isomorphism. Indeed, just replace the 0th step of the transfinite
induction with f0.

While we’re here, we also show Theorem 3.78.
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Theorem 3.78. Fix a complete L-theory T and a model M of T . Then the following are equivalent.

(a) M is κ-saturated.

(b) M is κ+-universal and κ-homogeneous.

Proof. We already show that κ-saturated implies κ-homogeneous. To show that κ-saturated implies κ+-
universal, argue as in Lemma 3.80 but only use embeddings in one direction (i.e., do the forth but not the
back).

We now show the other direction; choose M as in (b). We would like to show that M realizes any type
P (x) ∈ SM

1 (A) for some A ⊆ M of cardinality less than κ. By Proposition 3.12, we know that p(x) will be
realized in some elementary extension N of M, and Theorem 1.71 allows us to reduce the size of N back
down to κ, so κ+-universality grants an elementary embedding φ : N ↪→ M. However, this elementary
embedding need not fixA, so we use the homogeneity of M to move f(AN ) back toA ⊆M , and extending
this up to automorphism moves the element realizing p(x) in N to the needed element of M. ■

3.8.2 Construction of Saturated Models
We now have the following step to construct saturated models.

Lemma 3.82. Fix an infinite cardinalκ and a languageLwith |L| < κ and a completeL-theoryT . For any
modelM, there is aκ+ saturated modelN which is an elementary extension ofM and with |N | ≤ |Mκ|.

Proof. As an intermediate step, we claim that there is an elementary extension M′ ≥ M which realizes any
type p(x) ∈ SM

1 (A) where A ⊆ M is a subset of cardinality |A| ≤ κ. We will do this by compactness: let
T0 be the theory of elDiagM plus the sentences in all the types p(cp) we need to satisfy, where cp is a new
constant we added. We want to show that T0 is satisfiable, for which we note that it is enough to check that
only finitely many sentences in finally many of these types is satisfiable with elDiagM, for which we use
Proposition 3.12.

We take a moment to recognize that there are |M |κ subsetsA available, and for each subsetA, there are
2|A|+|L|+ℵ0 = 2κ possible subsets of sentences (and hence possible types), so the number of added constants
in the above construction was at most

|M |κ · 2κ = |M |κ .

So our M′ may have size at most |M |κ.
We now define an elementary sequence using the above steps

M0︸︷︷︸
M

≤ M1 ≤ M2 ≤ · · · ≤ Mα ≤ · · ·

for eachα ∈ κ+, where at successor stages we use the above claim, and at limit stages we take unions (which
remains an elementary extension due to the chain). Then we define Nκ+ as the union of all these chains.

We take a moment to compute the size of these models. Looking at our stages, we claim that |Nα| ≤ |M |κ
by induction: at limit stages, we are taking the union of at most κ-many sets of cardinality at most |M |κ,
which is okay; at successor steps, we note that

|Nα+1|κ ≤ |Nα|κ ≤ |M |κ×κ = |M |κ

by the induction.
It remains to check that Nκ+ is κ+-saturated. Well, for any subset A ⊆ Nκ+ of size at most κ, there is

some α < κ+ such that A ⊆ Nα,1 but then Nα+1 realizes any type with parameters in A. ■

1 Namely, finding a bijection of A to a subset λ ⊆ κ+, of cardinality at most κ, we note that the supremum of λ is an ordinal which
is the union of all elements in A, which has cardinality at most κ× κ = κ, so we must have λ < κ+.

70



3.9. NOVEMBER 28 225A: MODEL THEORY

Theorem 3.83. Fix an infinite cardinal κ and a language L with |L| < κ and a complete L-theory T .

• If κ+ = 2κ, then there is a saturated model of cardinality κ+.

• If λ is infinite, and each τ < λ has 2τ ≤ λ, then there is a saturated model of cardinality λ.

Proof. Note 2κ = κκ, so one can iterate the construction of Lemma 3.82 to produce the needed model.
Namely, in the first case, there is nothing to do because being κ+-saturated implies just being saturated by
the size condition. For the second case, one builds a sequence {Mα : α ≤ λ} where Mα is ℵ+

α -saturated
but |Mα| ≤ λ and then take the union. ■

Remark 3.84. Some cardinal arithmetic shows that cardinals satisfying the second case exist. For ex-
ample, one can find λ with ℵλ = λ (take the limit of ℵ0,ℵℵ0

,ℵℵ0
, . . .), where the result is true.

3.9 November 28
The final exam will be released Wednesday the 13th of December morning (at 5AM) and due on Friday the
15th of December at 10PM. It will be released and submitted by email. It is expected to be the length of a
regular exam, open-note.

3.9.1 Primer on Indiscernibles
We are going to do a little from chapter 5, which is on indiscernibles. Let T be an L-theory, where L is a
countable language. Recall that if T has an infinite model, compactness implies that T has an infinite model
of cardinality κ for each infinite cardinal κ. However, if we require that T omit some type, then we may no
longer have arbitrarily large models.

Example 3.85. Take the language L consisting of countably many constants ci for each i ∈ N, where T
is the theory that ci ̸= cj whenever i ̸= j. Then omitting the type p(x) given by x ̸= ci for each i ∈ N
requires that any model of T is now countable!

Example 3.86. Take the language L consisting of countably many constants ci for each i ∈ N, and we
add in a unary relationω and a binary relationE. The point is that we will require models to look like they
have some ω and also subsets of ω. With this in mind, we require our theory T to have the following.

• Constants are distinct: ci ̸= cj for each i ̸= j.

• Constants are in ω: ω(ci) for each i.

• Subsets are outside ω: for all x and y with xEy, we have ω(x) and ¬ω(y).

• Subsets satisfy extensionality: given x and y with ¬ω(x) ∧ ¬ω(y), if wEx↔ wEy for each w, then
x = y.

We now ask to omit the type p(x) given by requiring ω(x) and x ̸= ci. This means that any model M of
T omitting p(x) has that M ⊨ ω(a) implies a = cMi for any a ∈ M . Now every element outside ω in M
can be read off as living in P(M) ⊆ P(ω).

One can also iterate the above example, adding in a relation for subsets of subsets of ω and so on. Namely,
there is a language L and theory T such that omitting a given type p(x) has only models of size at most ℶα
for α < ω. With some effort, we can extend this to any countable α. However, we will show that if T has a
model of size ℶω1

omitting a given type p(x), then T has a model of any larger size.
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As another motivation, take T to be a theory in a countable language. We would like models with “lots”
of automorphisms.

Example 3.87. Consider T = Th(N, 0, 1,+, ·, <). There are only countably many types, so find a model
M of T of cardinality ℵ1; then we can surely find two elements of the same type, so the two elements
have an automorphism between them in an elementary extension by Proposition 3.16.

We might want to enforce having countable models, which the above example does not require.

3.9.2 Introducing Indiscernibles
Anyway, let’s provide our definition.

Definition 3.88. Fix a countable languageLandL-theoryT . Further, fix a modelMand a linear ordering
(I,≤). Then {xi}i∈I ⊆ M is a sequence of indiscernibles if and only if thexi are distinct, and any ordered
sequences i1 < · · · < in and j1 < · · · < jn will have

M ⊨ (φ(xi1 , . . . , xin) ↔ φ(xj1 , . . . , xjn))

for any L-formula φ with n free variables.

Example 3.89. For any dense linear order, any subset will produce a sequence of indiscernibles, using
the ordering provided by the linear ordering. Indeed, one can write down an automorphism sending
any finite subset to another finite subset.

Example 3.90. Give Z × Z the lexicographical ordering. Then {(x, 0) : x ∈ Z} is a sequence of indis-
cernibles: there is no first-order way to tell these elements apart because they are already “infinitely”
apart.

Remark 3.91. Given a set of indiscernibles {xi : i ∈ I} as above, one can define its type as

tp(I) := {φ(v1, . . . , vn) : M ⊨ φ(xi1 , . . . , xin) for any i1 < · · · < in} .

Note the choice of xi1 , . . . , xin does not matter by definition of the indiscernibles.

Let’s try to find indiscernibles.

Theorem 3.92. Let T be an L-theory with infinite models. Fix a linear ordering (I,≤). Then there is a
model M ⊨ T with a sequence {xi : i ∈ I} of indiscernibles.

This result requires Ramsey’s theorem. For notation, let [X]n denote the sets ofX with n elements.

Theorem 3.93 (Ramsey). Any k-coloring c : [N]n → {0, 1, . . . , k} has an infinite monochromatic setH ⊆
N. Namely, there is ℓ such that any S ∈ [H]n will have c(S) = ℓ.

For example, n = 0 has nothing to show, and n = 1 is the Pigeonhole principle. If we have time, we will
prove Theorem 3.93 next class. Anyway, here is our proof of Theorem 3.92.

Proof of Theorem 3.92 using Theorem 3.93. We use compactness. Add to our language new constants ci
for each i ∈ I, and let T ′ be the theory T adding in the requirements that ci ̸= cj for each i ̸= j and also the
sequences

φ(ci1 , . . . , cin) ↔ φ(cj1 , . . . , cjn)
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for each pair of ordered sequences i1 < · · · < in and j1 < · · · < jn in I. We need to show thatT ′ is satisfiable,
so it is enough by compactness to show that T ′ is finitely satisfiable. Well, any finite subset ∆ ⊆ T ′ will only
mention finitely many formulae φ1, . . . , φk and finitely many constants c1, . . . , cn.

We now show that ∆ is satisfiable. Well, pick up some model M, and we may as well assume that M is
countable.2 We would now like to assign the finitely many constants c• to distinct places to satisfy ∆. For
this, we use Theorem 3.93. Namely, order M as M = {ai : i ∈ N}, and we define the coloring

c : [M ]n → 2k,

where c({a1, . . . , an}) is the subset of {1, 2, . . . , k} determined by having ℓ if and only if M ⊨ φℓ(a1, a2, . . .)
and not having ℓ otherwise. (The arity of φℓ matters here, which is why we have written a1, a2, . . ..) Now,
Theorem 3.93 produces an infinite subset H ⊆ M such that c is constant on [H]m. Thus, we may send the
constants c1, . . . , cn wherever we please in H (ordered properly). ■

Remark 3.94. The above proof in fact promises a model M of cardinality |L|+ |I|+ ℵ0.

Let’s think a little about using indiscernibles to produce automorphisms. This requires an adjective to our
theory.

Definition 3.95 (Skolem functions). Fix an L-theory T . Then T has built-in Skolem functions if and only
if any L-formula φ(x, y) has a term t(x) such that

T ⊨ ∀x(∃y φ(x, y) → φ(x, t(x))).

We call t(x) a Skolem function.

Remark 3.96. A theoryT with built-in Skolem functions is model-complete: for any substructuresM ⊆
N , we can use the Tarski–Vaught test to showM ≤ N . Namely, looking at Lemma 1.72, choosing some
formula φ(x, y) and a ∈Mn with N ⊨ ∃y φ(a, y), then the existential is witnessed by a Skolem function,
meaning that we can find it in M.

Example 3.97. Peano arithmetic has “definable” Skolem functions by finding the least element satisfy-
ing some formula. Adding in function symbols produces an extension of the theory with built-in Skolem
functions.

3.10 November 30

It’s the last class for this course.

3.10.1 Skolem Functions
We note that we can always add in Skolem functions to a theory.

Proposition 3.98 (Skolemization). Fix a language L and theory T . Then we can extend the language and
theory to L∗ and T ∗, respectively, so that T ∗ has built-in Skolem functions.

2 Even if L is countable, ∆ only uses a finite subset of this language, so we may restrict T to this language when concerned with the
satisfiability of ∆.
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Proof. Set L0 := L and T0 := T . Then for each i, we can make Li+1 from Li by adding a function symbol fφ
for each formula φ(x, y) and then make Ti+1 from Ti by adding the sentences

∀x(∃y φ(x, y) → φ(x, f(x))).

Taking the union over all the Li and Ti will produce the needed L∗ and T ∗. ■

Remark 3.99. A theory T with Skolem functions has quantifier elimination: any formula φ(x, y) with
Skolem function fφ has

T ⊨ ∀x(∃y φ(x, y) ↔ φ(x, fφ(x))),

effectively eliminating the outer existential from ∃y φ(x, y). So we can eliminate quantifiers, by hand,
one at a time. For example, it follows that T is model-complete, recovering Remark 3.96.

Anyway, we are permitted the following definitions.

Definition 3.100 (Skolemization). Fix an L-theory T . Then a Skolemization of T is an extension T ∗ of T
to a new language L∗ ⊇ L which has built-in Skolem functions.

To continue, we pick up the following definition.

Definition 3.101. Fix anL-theoryT with built-in Skolem functions. Given a subsetX of a modelM ⊨ T ,
we let H(X) be the L-substructure generated by X.

Remark 3.102. Explicitly, the universe of H(X) is the collection of terms whose inputs come from X.

Remark 3.103. By Remark 3.96, we note that H(X) ≤ M in the above situation.

3.10.2 Building Automorphisms
We now get the following theorem on automorphisms of indiscernibles.

Theorem 3.104. Fix an L-theory T with built-in Skolem functions. Further, fix a model M and a se-
quence of indiscernibles {xi}i∈I , with X := {xi : i ∈ I}. Given any order-preserving automorphism
σ : I → I, there is a unique automorphism τ : H(X) → H(X) such that τ(xi) = xσ(i) for each i ∈ I.

Proof. The uniqueness is easier, and only needs us to preserve the relevant structure (namely, not bijec-
tivity): any element of H(X) is of the form t(x) where t is a term and x ∈ X, but then any automorphism
τ : H(X) → H(X) with τ(xi) = xσ(i) must have

τ(t(x)) = t(τ(x)),

thus defining τ .
For existence, we need to show that the τ defined above is well-defined and an automorphism. Here are

our checks.

• Suppose we have equal terms t(xi1 , . . . , xik) = s(xj1 , . . . , xjℓ), and we need to show that

t(xσi1 , . . . , xσik)
?
= s(xσj1 , . . . , xσjℓ).

Well, this follows from X being a sequence of indiscernibles: we see that the sentence

t(yi1 , . . . , yik) = s(yj1 , . . . , yjℓ)

74



3.10. NOVEMBER 30 225A: MODEL THEORY

is going to be in the type of {xi1 , . . . , xik , xj1 , . . . , xjℓ} (suitably ordered and so on), so because apply-
ing σ (which is order-preserving!) cannot change the type, we see that the sentence still holds upon
applying σ, achieving the needed equality.

• We show that τ preserves the structure. Essentially the same argument goes through. For exam-
ple, M ⊨ R(t1(x), . . . , tn(x)) is equivalent to M ⊨ R(t1(σx), . . . , tn(σx)) because we are asking for
R(t1(x), . . . , tn(x)) to be in the type of x, which does not change because X is a sequence of indis-
cernibles, and σ is order-preserving.

• We show that τ is an isomorphism. Well, we can define some automorphism τ ′ which sends xi to
xσ−1i using the argument above, but then τ and τ ′ are inverse maps of structures: τ ◦ τ ′ and τ ′ ◦ τ
are morphisms sending xi 7→ xi and so must be the identity by uniqueness, so we do indeed have an
automorphism. ■

As a corollary, we get to build models that have lots of automorphisms!

Corollary 3.105. Fix anL-theoryT withL countable, whereT has infinite models. For anyκ ≥ ℵ0, there
is a model M ⊨ T of cardinality κ and 2κ automorphisms.

Proof. We may as well extend T to be a complete theory which has built-in Skolem functions by taking
the Skolemization. (Note that the language remains countable due to the construction in Proposition 3.98.)
Now, chose a linear ordering (I,≤) of cardinality κ, and then Theorem 3.92 promises the existence of a
model M ⊨ T of cardinality κ with a sequence of indiscernibles {xi : i ∈ I}. We now may replace M with
H({xi : i ∈ I}), which we note still has cardinality I.

Now, Theorem 3.104 promises that M = H({xi : i ∈ I}) will have at least as many automorphisms as
order-preserving maps I → I, so it remains to choose I so that I has 2κ order-preserving maps I → I. Well,
choose I := Z × κ to be κ many copies of Z, named Zα for α ∈ Z. Then for any subset S ⊆ κ, we can build
an order-preserving map σS by applying a +1 shift to Zα for each α ∈ S and do nothing to Zα for α /∈ S. ■

Here is another application.

Lemma 3.106. Fix an L-theory T , and let X = {xi : i ∈ I} be a sequence of indiscernibles. For any
linear ordering J , there is a model N with a sequence of indiscernibles Y = {yj : j ∈ J} such that

tpM(X) = tpN (Y ).

Further, if T has built-in Skolem functions and M omits any type p(x), then we may require that N
omits the same type p(x).

Proof. We use compactness. For the first claim, build N by compactness, as in Theorem 3.92. Namely,
add in constants {cj : j ∈ J} and force N to satisfy elDiagM along with the sentences φ(cj1 , . . . , cjn) when
j1 < · · · < jn and φ lives in tpM(X). This is finitely satisfiable by M because any finite segment of J looks
just like a finite segment of I.

To get the second claim, move everything up to a Skolemization first and then replace the given model
N withH(Y ). Indeed, the type of any sequence of elements in N only uses finitely many elements of N , so
we can move the used subsequence of y•s back to x•s to show that the types in N are a subset of the types
in M. ■

Theorem 3.107. Fix a countable language L and an L-theory T with built-in Skolem functions. Further,
suppose that any α ∈ ω1 has a model M ⊨ T of size at least ℶα which omits a given type p(x) ∈ S1(T ).
Then there is a model N ⊨ T still omitting p(x) with an infinite sequence of indiscernibles.
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Proof. Intuitively, we will pick up some large subset of M and slowly make it smaller and smaller in order to
avoid the type and all satisfy the same formulae (to be a sequence of indiscernibles). The process of making
it smaller but maintaining an infinite size is some kind of coloring problem with every formula colored by
which formulae they satisfy. So we will want the following purely combinatorial result.

Theorem 3.108. Fix a setB of sizeℶn(κ)+ and a coloring c : [B]n+1 → κ. Then there is a monochromatic
subset A ⊆ B of cardinality κ+.

Here, we recall that ℶn means repeating P a total of n times.
Let’s provide a few more details. Add in constants {ci : i ∈ N} to our language. To begin our compactness

argument, we add to our theory Σ ⊇ T the requirements that each the ci are distinct and that we are making
the {ci : i ∈ N} into a sequence of indiscernibles. This is still satisfiable, so we will try to complete Σ in a
way that has this continue to be satisfiable. Now, the main idea is to add in the constraints that each term
t(v) has φ(y) ∈ p(y) such that ¬φ(t(c)).

To do this construction, we will build Σ inductively via a sequence Σ0 ⊆ Σ1 ⊆ · · · . At each step of the
constructionα ∈ ω1, we ensure that we have a model Nα omitting p(x) but satisfying Σs, and we ensure that
Nα has a sequence of ℶα indiscernibles. ■

Remark 3.109. The above theorem answers many of the questions of Section 3.9.1 on trying to con-
struct models with lots of automorphisms but still omitting a type.
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