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THEME 1
GROUP GRIND

Groups, as men, will be known by their actions.

—Guillermo Moreno

1.1 August26

1.1.1 Logistics

Course websiteis bcourses.berkeley.edu/courses/1504926.

1.1.2 Group Talk

Recall the definition.
Definition 1.1 (Group, concrete). A group G is the set of symmetries of something.

“Something” here is quite vague, but it's generally something like a graph or vector space or group.

Also, “symmetry” is quite vague, but it's somewhat intuitive: we are more or less asking for structure-
preserving mappings. Namely, our “something” is a set X, we are asking for our group G to be a structure-
preserving maps in Sym(X). In practice, what “structure-preserving” means is clear.

There is also an abstract definition of groups.

Definition 1.2 (Group, abstract). A group is a set G with an operation x : G x G — G which satisfies the
following properties for any a, b, c € G.

« Associative: a* (bxc) = (axb) * c.
« |dentity: thereis an identity e € G suchthataxe =ex*xa = a.

« Inverses: thereisana~!suchthataxa ' =a lxa=c.
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We might ask how the abstract and concrete definitions interplay.

For example, suppose we have a concrete group GG. Then we can recover our abstract group by having
the binary operation be composition. Association holds because function application is associative; id is our
identity; inverses exists because symmetries are bijective.

In the other direction, it's less obvious how we take an abstract group to a concrete one.

Question 1.3 (Cayley). Given an abstract group G, can we realize G as the symmetries of some object
X?

To make this rigorous, we should talk about group actions so that “some object” can be rigorized.

Definition 1.4 (Group action). Fix G a(n abstract) group and S a set. We say that G (left) actsonaset S
if we haveamap - : G x S — S which satisfies the following.

« Identity: es = sforany s € S.

« Associativity: (gh) -s =g - (h-s)foranyg,h € G.

Above we have technically defined a left group action; right group actions are defined analogously.

Toanswer Question 1.3, we let G act on S := G (as the set) where the group action is defined by left mul-
tiplication. This is indeed an action, where the identity and associative laws follow from the corresponding
laws in a group. This implies that we have a map

G — Sym(G).

In fact, this is injective because its kernel is trivial: the only map taking e — e is e itself by the identity law.

How can we restrict Sym(.S) so that this is injection is also surjective? To add extra structure to S, we
equip S with a right G-action.! The key observation, now, is that the left action on S by G preserves the
right action. Namely, if we have g/, g € G and s € G, then

(9¢8)9r = ge(s9r)

by associativity. In other words, we can multiply on the left or right in any order.

Warning 1.5. We do not need to have that the left action preserves the left action. Namely, this is asking
forg- (hs) = h- (gs), which need not be true for non-abelian groups.

So in fact we have the restriction that
G — SymG—right(S)'

We claim this is surjective. Indeed, suppose ¢ : S — S is a bijection such that o(sg) = (¢s)g forany g € G.
Then we claim ¢ is multiplication by oe € G. Indeed,

os =o(es) = (oe)s,

which is what we wanted. So we have the following.

Theorem 1.6 (Cayley). Any abstract group G is the group of symmetries of some mathematical object.

1.1.3 Representation Talk

Perhaps we would like a more natural object than the group acting on literally itself. It turns out that we can
also realize any group G as the symmetry group of a graph. We'll do this for finite groups.

1 For these keeping score, we now have three copies of G: we have S = G, as well as actions of G on S on the left and right.

8
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Theorem 1.7. Any finite group G is the symmetry group of some finite graph.

Proof. We again do a little bit of cheating. We set our graph S to have vertices labeled by G. Next we color
the edges of the graph according to the group action. Here is an example graph for Z/47.

07 £
e
|
1 1
| J
3 = — 11— 2
- j o

So we have a colored graph, and we can check that the only symmetries of this graph corresponds to the
action of G itself: once we decide which vertex we should take 0 to, the preservation of each colored arrow
forces the other vertices. (For example, if we take 0 to 2, there is only one red edge which was going out
from 0, and there is only one edge currently going out from 2, so we have to send 1 to 3 as well. The other
vertices are similar.)

Now we would like to get rid of the colors and directions of the graph. For example, we might take a

directed edge and add markers along the edge to ensure the symmetries are well-defined. For example,
here is one way we could add markers to the graph of Z/4Z.

Here the colors are added for clarity though the graph is actually uncolored. The point is that we should need
to send the big vertices to other big vertices and fake “colored and directed” edges to ones that match. W

These are called Cayley graphs. Let’'s do some examples now.
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Example 1.8. Here is a rectangle.

Our symmetries are do-nothing e, flip vertically v, flip horizontally %, and rotate 180 degrees r. Our
Cayley graph looks like this.

Vi
A

To round things out, we note that group theory is roughly about the following.

« We want to classify all groups. For example, what kinds of groups act on crystals?
« Given a group G, we want to see what are the interesting things that groups act on. In general, these

are permutation representations, but we are often just interested in linear representations acting on
vector spaces. For example, there is some story here in physics.

(We can also represent groups via their multiplication table. Professor Borcherds does not like these.)

1.1.4 Maps of Groups

Here is our motivating question.

Question 1.9. When are two groups the same?
For example, we might have Gi; be the symmetry group of a rectangle and G the set of elements (a,b : a* =

b% = ab~1b~1), then these are in fact the same: name a the horizontal flip and b the vertical flip. Then we see
we have a bijective, structure-preserving map from G; — Gs.

Definition 1.10 (Homomorphism). A map of groups ¢ : G1 — G2 is a homomorphism if and only if

o(gh) = ¢(g)p(h)

forany g, h € G1. We can check this implies ¢(e1) = ez and p(g71) = ¢(g9) %

Then an isomorphism is a bijective homomorphism.

Definition 1.11. An map of groups ¢ : G; — G2 is an isomorphism if and only if it is a bijective homo-
morphism.

Let’s give some examples.

Example1.12. Considerexp : (R,+) — (R*, x). Thisisahomomorphism because exp(a+b) = exp(a) x
exp(b). However, this is not an isomorphism because it does not hit negative elements.

10
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Example 1.13. Fix G = Z /47 and H = (Z/5Z)*. Then we have the isomorphism by sending
leG—2€ H.

In other words, ¢ (k) = 2*. We can check this really is a bijection.

1.1.5 Lagrange’s Theorem
Let's list all groups.
1. Thereis only one group of order 1: it has to be trivial.

2. Thereisonly one group of order 2: we need an identity and a non-identity element, which has to square
to the identity.

3. Fororder 3, we introduce Lagrange’s theorem.

| Theorem 1.14 (Lagrange). The order of an element g of a group G divides #G.

We won't prove this yet.

3. Now, with Lagrange's theorem, we note that a non-identity element needs to have order bigger than
one but dividing 3 and so must be three. So there is an element of order 3, so it must be cyclic.

We remark that this same argument gives the following.

Proposition 1.15. Suppose G is a group of prime order. Then G = Z /pZ.

Let's prove Lagrange's theorem then.

Proof of Theorem 1.14. The point is that the order of g is the size of the subgroup (g). So we show the more
general statement as follows.

| Theorem 1.16 (Lagrange, Il). Fix H C G a subgroup of a group. Then #H | #G.

Proof. We need to study the geometric meaning of a subgroup H. Well, suppose G is the group of symme-
tries of some object S and pick up a point p € S. Then we could set Stab(s) to be the set of elements fixing
s € S. For example, for an icosahedron, there is a Z/5Z fixing a vertex, there is a Z/3Z fixing a face, and so
on.

So we can realize subgroups as stabilizers of subsets. We would like the converse: given a subgroup H,
we would like a set S with a G-action such that H is the stabilizer of some subset of S.

To make the problem easier, suppose that the G-action is transitive so that it lives in one orbit. Namely,
fixing so € S, we have a function G — S by

g — gso.

We would like for gsy = sg to be equivalent to g € H for our particular subgroup H. Quickly, we note that
gso = g'soifandonlyif g(g')"1sg = spifandonlyif g(¢')~! € Hifandonlyifg € ¢’H ifand only if gH = ¢'H.

This suggests a construction of our set S as G/H, the set of cosets {gH : g € G}, or the equivalence
classes as given above. We do have to check that g € ¢’ H is an equivalence relation (say ~), however. We
will not be detailed about this.

« Note g ~ g becausee € H.
« Note g ~ ¢’ implies ¢’ ~ g because H has inverses.

« Noteg ~ ¢’ and ¢’ ~ ¢’ implies g ~ ¢” because H is associative.

11
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Remark 1.17. If we work with monoids, this is no longer an equivalence relation because of the lack of
inverses.

In fact, we can check that equivalence classes have the same size: if we have two cosets g; H and g2 H, then
we have a bijection g1 H — goH by g1h + g2g; ' - g1h. (We will not check that this is bijective here, but it is
at least injective, and it has an inverse, so it is.)

So we have G act on G/H by left multiplication. Any two of these equivalence classes have the same
size, so they all have size #(eH) = #H, so we see that the order of G is #H times the number of classes
#(G/H) =: |G : H].Soindeed, #H | #G. |

This completes the proof. |
We remark that we also have the following.
Proposition 1.18. If G acts transitively on a set .S, then we see #S5 = #G/# Stab(sg) for any chosen

sg €5,

Proof. This follows from the above proof: consider the (surjective) map G — S defined by g — gsq. This is
actually defined up to coset of Stab(sg) because we have that gi50 = gaso if and only if g5 'g1 € Stab(sg) if
and only if g; Stab(sg) = g2 Stab(sg). So we actually have a bijection G/ Stab(sg) — S, whichistheresult. W

Example 1.19. How many rotations of an icosahedron are there? Well, take H to be the subgroup fixing
a vertex. By spinning along a vertex, there are 5 such rotations fixing the subgroup, and there are 12
total vertices, so there are 60 total rotations here.

Let's see some other applications of Lagrange’s theorem.

Proposition 1.20 (Fermat's little). Fix x € (Z/pZ)*. Then zP~! = 1.

Proof. Well, the order of (Z/pZ)* is p — 1, so the order of z divides p — 1, from which the result follows. B

More generally, we have the following.

Proposition 1.21 (Euler’s totient). Fix z € (Z/mZ)*. Then 2#("™) = 1.

Proof. The point is that the order of « has to divide the order of #(Z/mZ)* = ¢(m). So the result follows.
|

1.2 August3l

1.2.1 Groups of Order Four

Let's continue our list of groups. Let's work with groups G of orders 4. All elements must have order dividing
4.

« If there's an element of order 4, we are cyclic.

12
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« Otherwise, all non-identity elements have order 2. Note that we know this group is abelian already!
Indeed, fora,b € G, we see (ab)? = e implies that abab = ¢, so

ab = aababb = ba.

Note that this is very special for 4; it is not the case that if all groups have order dividing 3.

Well, now that we are abelian, we see G is a vector space over 5, which we can check by hand, and
size reasons force us to have G = (F,)? by choosing a suitable basis.

So we have the following.

Theorem 1.22. We have exactly two groups of order 4, up to isomorphism.

Proof. Above we showed that all groups of order 4 are isomorphic to either Z/4Z or (Z/27)?. Note that
these are different because Z/47Z has an element of order 4, though (Z/2Z)? does not. |

1.2.2 Product Groups

We remark that F3 is an example of a product.

Definition 1.23 (Product groups). Given two groups G, H we can define the product group G x H of
pairs (g, h) where g € G and h € H. Here, multiplication is defined componentwise.

Example 1.24. For any field k, we have that k" is a product group, for any positive integer n.

Example 1.25. We have that C* = R x S!. This is merely saying that we can represent nonzero
complex numbers uniquely by z = re'® s (r,6). Here is the image.

Example 1.26. We have that Z/6Z = Z/2Z x Z/3Z, which is an instance of the Chinese remainder
theorem.

We can generalize the previous example.

Proposition 1.27. More generally, we have that Z/mnZ = Z/mZ x Z/nZ when ged(m, n) = 1.

Remark 1.28. This does not hold form = n = 2.

13
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Proof of Proposition 1.27. This follows from the mapping
Z/mnZ — Z/mZ x Z/nZ

by taking [k]n — ([K]m, [k]n). We can check that this is homomorphic by hand. This is injective because if
k =0 (mod m)and k = 0 (mod n), then m,n | k, so mn | k because ged(m,n) = 1,s0 k = 0 (mod mn).
Then this map is surjective for size reasons, giving our isomorphism. |

Example 1.29. Consider the group of rotations of the various platonic solids. They have orders as fol-
lows.

« Tetrahedron: 12.

o Cube: 24.

« Octahedron: 24.

« lcosahedron: 60.

« Dodecahedron: 60.

If we add in reflections, the number of these objects doubles, and in fact the bottom four are a product
of Z/27 times the group of rotations. As for why, the added Z/27Z comes from the reflection which
inverts the entire figure, sending a vertex to its opposite. (This inversion is not a rotation because it has
determinant —1, when thought of as a matrix over R3.)

Example 1.30. Consider the set of all roots of unity in C. These can be written explicitly as
Ues = {62“"1 1q €Q}.
We can decompose this into

Us =2 {2z : z has order a power of 2} x {z : z has odd order}.

Note that we can also take infinite products of groups, but sometimes that'’s too strong.

Definition 1.31 (Sum). Given an infinite collection of groups {G, }acx, we define the sum group

@ Go = {{ga}ae)\ € H Ga : go = e With finitely many exceptions} .

aEN aEX

This is a subgroup of the big product group.

Example 1.32. We can check that

U = @ {z : z has order a power of p}.

p prime

This proof essentially boils down to the Chinese remainder theorem.

14
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Example 1.33. By unique prime factorization, we see that

Q* = {z1}e @ ),

p prime

where (p) = p” consists of the powers of p.

1.2.3 Groups of Orders Five and Six
For groups of order 5, they are cyclic. Here is an exercise, for fun.
Question 1.34. Find a graph whose automorphism groups is Z/5Z.
For groups of order 6, we note that we we have two obvious groups already:
» We have Z/6Z, which is Z/2Z x 7./3Z.

« We have Ss, the permutation group on three letters.

Remark 1.35. Additionally, we see that Ss is our first example of a nonabelian group! We see that
(12)(23) = (123)  but  (23)(12) = (132).
So this also shows that S5 is not abelian.

These are not isomorphic because Si is not cyclic. Alternatively, we can draw out our subgroup chart; here
is the chart for Z/6Z.

7./61.

7.)27 7./3Z

(€)
And we could write out the subgroup table of S3, and find that there are lots of subgroups of order 2.

S3

]

{e,(1,2)} {e, (1,3 {e,(2,3)}

)}
\ e, (123), (132)}
{e} /

In fact, the subgroup table of S5 has “lots” of subgroups of order 2. What's going on? These are an instance
of “non-normal subgroups.”

15
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1.2.4 Normal Subgroups and Quotients

Our motivation here is the following question.

Question 1.36. Given groups H C G, can we define a group G/H? more precisely? Can we have a
(surjective) homomorphism ¢ : G — G/H with kernel exactly H?

We can write this as a short exact sequence
1-H—-G—-G/H—1

In general, we can define an exact sequence.
Definition 1.37 (Exactness). Given a sequence of maps
A— B—C,

we say that this is exact at B if the image of A — B is the kernel of B — C.

This lets us define short exact.

Definition 1.38 (Short exact sequence). We define a short exact sequence as an exact sequence of the
form
1-A—-B—->C—1

Namely, A — Bis injective, B — Cis surjective, and the image of A — B is the kernelof B — C.

Anyways, let's return to talking about our question. We are hoping that we have a well-defined map. So
suppose that g; and g» have the same image in G/H: this is equivalent to g;h = g, for some h € H by
rearranging ¢(g1) = ¢(g2). So we define left cosets.

Definition 1.39 (Left cosetes). We define G/H as the set of left cosets {gH : g € G}. Note that we are
not claiming this is a group in general.

We hope that our group law is
91H - g2H = (g192)H.
However, this might not be well-defined! The issue is that, forany h € H, we also need
g1hH - goH = (g1hge) H.

Note that this is free for abelian groups, for hgs = g2h, so we can move the h over. However, we can weaken
this condition to merely requiring hg, = g2’ for some &', which is equivalent to gohg, ' € H for each h €
H.

Definition 1.40 (Normal). We say that a subgroup H C G is normal if, for each ¢ € G, we have that
gHg ' = H.(Actually, gHg~! C H is good enough here.)

Proposition 1.41. Fix H a normal subgroup of G. Then G/H is a group.

Proof. The main check is that G/H has well-defined multiplication. Indeed, if s H = g1 H and go H = g5 H,
then g; = g1 h1 and g2 = ghhs for some Hy, hy € H so that
g1l - g2H = (g192)H = (91l gsha) H = g1H - g5 (95) " hagsha H = g1 H - gy H.
—_——
€H

From here, checking that G/ H is actually a group is inherited more or less directly from G because G — G/H
is homomorphic and surjective. |
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Example 1.42. The subgroup {e, (123), (132)} C Ssis normal. Forexample, forany o € S3, we can check
that
0(123)07 ! = (01,02,03} € {e, (123), (132)}

because ¢ is a permutation. This normal subgroup gives us the exact sequence
1—Z/3Z — S3 — Z/2Z — 1

because the quotient S5/{e, (123)(132)} has order 2 and must be Z/2Z.

Non-Example 1.43. The subgroup {e, (12)} C Ss3 is not a normal subgroup. Indeed, we can just check

that
(13)(12)(13) = (23) ¢ {e, (12)}.

However, we can check that conjugating H = {e, (12)} by g € (23), we have that H is conjugate to
gHg™" ={e, (23)}.

As a side remark, we note that the left cosets equal the right ones for normal subgroups: any coset gH can
be written as a right coset by writing itas gH = gHg~'g = Hg by normality.
However, for non-normal subgroups, there are dangers.

Example 1.44. Again take H = {e, (12)} C Ss. Our left cosets are

H= {e’ (12)}a
(123)H = {(123), (13)},
(132)H = {(132), (23)}.

However, our right cosets are

H = {e, (12)},
H(123) = {(123), (23)},
H(132) = {(132),(13)}

1.2.5 Cauchy’s Theorem

Let’s use this an excuse to introduce some theorems. Here is a motivating question.

Question 1.45. Suppose that d | #G for a group G. Is there an element of order d?

Well, of course not: Z/27 x Z/2Z has order 4 but does not have an element of order 4. However, we have
the following.

Theorem 1.46 (Cauchy). Suppose that p is a prime dividing the order of a group G. Then there is an
element of order p.

Proof. We do casework on if G is abelian.
Remark 1.47. Trying to prove something for groups G by doing casework on G abelian vs. G nonabelian

is like trying to prove something for objects O in the universe by doing casework on if O is a banana or
O is not a banana. But here we go.

17
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« If G is abelian, we start by pickingup a € G\ {e}. (If G = {e}, there is nothing to show.) Then we can
raise a to a power to kill all the primes in its order except for, say, ¢. If p = ¢, then we are done.

Otherwise, we can look at G/{a), where this quotient is good because our groups is abelian. Then this
has order #G/q, which is still divisible by p because ¢ # p. So induction can give us a coset b(a) € G/(a)
of order p.

However, b € {(a) is either the identity or some generic element of (a), but certainly ¥?¢ = e. The order
cannot be 1 (b(a) € G/{a) has order p), nor can it be ¢ (this would force b7 € (a), but p f g), so the order
is either p or pq. If p, we are done; if pq, then b? has order p.

« If G is nonabelian, then we again have two cases: if G has a proper subgroup of order divisible by p,
then we can do induction to finish. Otherwise, all proper subgroups have order not divisible by p with
index [G : H] always divisible by p.

Now the trickis to look at the action of G on G by conjugation, and split up the action into orbits, which
are conjugacy classes. Explicitly,

Gg={ghg™' :heG}.
Now we check that the size of any orbit Gg is #G/# Stab(g) by the Orbit-stabilizer theorem. But this
is always divisible by p, except when # Stab(g) = G because | said so.

To finish, we do the class equation by hand. We see that

G=|JGy (+)
Gy

because we are partitioning by the action. The left-hand side has size divisible by p, and the right-hand
orbits are all divisible by p except for elements h € G such that ghg=! = hforall g € G. This gives us
the following definition.

Definition 1.48 (Center). For g a group, we define Z(G) = {g € G : ghg~! = h}.In otherwords, gh = hg
foreach g € Z(G)and h € G, so Z(G) commutes with everyone.

Finishing up the proof, we see that (x) reads as

#G=2(G)+ > #Gyg
#géq>1

after taking sizes, and everything here is divisible by p except Z(G), requiring that Z(G) has size di-
visible by p. But now Z(G) is an abelian subgroup (everything commutes by definition), so it has an
element of order p, finishing.

Alternatively, Z(G) is a proper subgroup (proper because G is nonabelian) with order divisible by p,
which is a contradiction to our assumption that G has no proper subgroups with order divisible by
p- |

Remark 1.49. The above argument actually shows that if all proper subgroups have index divisible by p,
then Z(G) is divisible by p.

18
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Remark 1.50. There are many ways for a group G to act on itself.
» Thereis a left action, by g - h = gh..
« Thereisatrivialaction: g - h = h.
 Thereis arightaction: g - h = hg~!. (Note the inverse is required for associativity reasons.)
1

« There is the conjugacy action: g - h = ghg™*.

Then there are the corresponding right actions.
Let’s use this to classify groups of order 6.

Proposition 1.51. There are only two non-isomorphic groups of order 6, which are Z/6Z and Ss.

Proof. Fix G of order 6. Then we are promised an element a of order 3 and an element b of order 2. Well, we
claim that (a) is normal. More generally, we have the following.

Lemma 1.52. Fix H C G a subgroup of index 2. Then H is normal.

Proof. Indeed, forany g € H, we see that gHg~! = H for free. Otherwise, when g € G \ H, we have that
gH and Hg must both be disjoint from H while having size H (recall [G : H] = 2),sogH = Hg= G\ H. In
particular, gH = Hgimplies gHg~! = H still. [ |

Thus, we have a short exact sequence

1—-2Z/3Z -G —Z/2Z — 1.
(a)

Remark 1.53. Filling in the middle here need not be unique, even in basic cases. For example, we have

a short exact sequence
1—-Z/2Z - G—7Z/2Z — 1

where G = (Z/2Z)? or Z/AZ.
Regardless, we simply do this by hand. We have the following definition.

Definition 1.54 (Split short exact sequence). The short exact sequence
1-A—-B—->C—1

splits if B has a subgroup Cp isomorphic to C lifting B — C.

In particular, we see that

1—-2Z/32 —- G —ZJ/2Z — 1.
(a)
a

splits because G does have a subgroup (b) isomorphicto Z/27Z. The point is that (b) acts on (a) by conjugation
because (a) is normal (this is the restriction of G — Aut({a)) to from G to (b)). So we have induced an action
of Z/2Z on Z/3Z, but we only have a few automorphisms of Z/3Z, so we are forced to have one of

bab~! = a,
bab—! = a?.
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So we have the group presentations

G={(a®=1,>=1,bab™' = a) = Z/27 x Z/3Z,
G = <a3 =1, =1,bab™! = a2> = Ss.

The last group is isomorphic to S5 by taking a = (123) and b = (12), say. |

1.2.6 Semidirect Products

What's happening with our split short exact sequences is semidirect products.

Definition 1.55 (Semidirect products). Suppose that A and C are groups such that A has a C-action. (In
other words, there isa homomorphism C' — Aut(A).) Then we define G as the semidirect product if we
can form the short exact sequence

12A-G—-C—1

such that G has (isomorphic copies of) A as a normal subgroup and C as another subgroup.

We should actually exhibit our semidirect product. We have the following.

Proposition 1.56. Fix A and C' as above. We define the semidirect product G = A x C as a set, with
multiplication defined by
(&1701)@12702) = (al(Cl : az),C102)’

well ¢; - as refers to the C'-action on A.

Remark 1.57. Let's try to motivate this multiplication. Informally, we want the action of C' on A to be
conjugation so that A stands a pretty good chance of being normal, and we want to be able to think of
pairs (a, ¢) as actual products ac. These forces combine to let us write

(a1701)(a2702) = a1C1G2C2
= aj1c1a2 (cl_lcl) Co
=a (610,2(31_1) (c1c2)

= (ai(c1 - ag),cic2) .

Proof of Proposition 1.56. We have to check that this is a group, which can be checked by force. We run
down the properties because some of this more subtle than it appears.

« Associativity in the second coordinate is inherited from C. Associativity in the first coordinate comes
from writing

((a1,c1)(ag, c2))(as, c3) = (ar(cr - az), crc2)(as, c3) = (a1(cr - az)(cicz - az), o),
and comparing it with
(a1, c1)((az, c2)(az, c3)) = (a1, 1) (az(c2 - az), ) = (arc1 - (az(cz - az)), o).
These are equal because our C-action is inducing a homomorphism C' — Aut(A).
« Ouridentity elementis (e, e).
« Ourinverse element s (a,¢)™! = (¢7*-a~!,¢7!) . On one side,
(a,¢) (¢ a e )y =(a(c-crat)e) = (ee).
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On the other side,
(cfl ~a71,cfl) (a,¢) = ((cfl ~a71) (cfla) ,e) = (071 . (aila) ,e) = (e,e),

where we again used that the C-action is inducing a homomorphism C' — Aut(A).

Now we will check that the short exact sequence

12 A->G—-C—>1

splits, as well as that A is normalin G. We have the following to check.

Exact at A: the map A — G is injective, defined by a — (a, e). It's not hard to see that this is homo-
morphic.

Exact at C: the map G — C'is surjective, defined by (a,c) — c¢. This is homomorphic because the
second coordinate of A x C'is merely multiplication.

Exact at G: the map A — G surjects onto points of the form {(a,¢e) : a € A}, and the kernelof G — C
is exactly the points such that (a, ¢) — ¢ = e, whichis again {(a,¢e) : a € A}. Soim(A — G) = ker(G —
).

We split: The subgroup {(e, ¢) : ¢ € C} isisomorphic to C and lifts our G — C projection, so the given
short exact sequence splits.

Ais normal: We need to show that Ag := {(a,e) : a € A} is normalin G. It is enough to note that, for
any (ag,e) € Ag and (a,c) € G, we have

(a,c)(ao,€)(a,c)" = (a,c)(ag,e) (¢ ra™ )
= (garbage,c) (c'a™t, )
= (more garbage, cc™)

= (

more garbage, e). |

Example 1.58. We have that S5 is the semidirect product of Z/3Z by Z /27, notated Z/Z x Z /2Z. Notice
that the construction of “semidirect” takes more data than is provided by Z/3Z and Z/27Z: we also need
to know the action.

Let’'s do some more examples.

Example 1.59. Take the set of all linear functions z — ax + b, where our multiplication is composition.
We can check that we have a normal subgroup = — z+b, and its quotient group isisomorphicto z — azx.

Example 1.60. The Poincaré group consists of the automorphisms of space-time. It has a normal sub-
group consisting of translations through space-time, and the quotient is the “Lorentz group” all rota-
tions of space-time which preserve the metric t? — 22 — % — 22 = 0.

1.3 September2

Why do | hear boss music?
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1.3.1 Groups of Order 8

Last time we classified all groups of order 6. Note that groups of order 7 are cyclic because 7 is prime.
So let’s look at order 8. Fix G a group of order 8. Note that our orders are all in {1, 2,4, 8}. If there's an
element of order 8, are cyclic, so we may ignore this order. So we have two possibilities.

« If all elements have order 2, then we see that all elements commute (again, abab = e implies ab = ba),
so G is a vector space over [y, so we are G =2 F3 = (Z/27)3 by size reasons.

« Otherwise thereis at least one element of order 4. Calling this element a € G, then we have an order-4
subgroup {(a), which is index 2 and hence normal. So, as usual, we get a short exact sequence
1—72/47 - G — Z/2Z — 1.
(a)

So we have another extension problem to fill in G. Some possibilities for G include Z/4Z x Z/2Z or
Z./8Z (even though we don't care about this case currently), but perhaps there are others.

The point of our short exact sequence is that we have a Z/2Z-action on (a) by conjugation because {(a) is
abelian: given any coset b{a) € G/(a), the action of b on (a) only depends on the coset.

So we need to understand the actions of Z/2Z on (a). Well, (a) = Z/47Z only has the automorphisms id
and a® — a=*. Now, fixb € G\ (a) so that we know

bab~! = a, or
bab~! = a1

However, we note that forb € G/{a), we see that b* needs to be in (a), so b* € {1,a,a? a3}, butinfactb? = a
and b? = a? are the same by taking a — a~!. This gives us lots of cases, which we tabulate.

‘ bab™' =a bab ! =a7!

b =e ? ?
b2 =a ?
b2 = a? ?

We note that bab~—! = a forces our group to be abelian because a and b generate. We now go through these
in sequence.

+ The case of b = e gives us G = (b) x (a) = Z/27 x 7/AZ.
« The case b? = a gives Z/8Z (b has order 8).

« In the last case, we see that (ba)? = 1, so ba — b throws us into the abelian with b? = e case, so we
have Z/27Z x Z/4Z again.

Remark 1.61. The case of b> = e makes the short exact sequence
1—={a)—>G—G/{a) =1
split with (b) as our lift of G/(a).

So here is the table so far.
‘ bab~1 =a bab=1 =¢q~1

=1 | )27 x ZJAZ 7
V¥ =a Z/8Z 7
b2 =a? | Z/27 x /AT ?

Now we start looking at our nonabelian groups.
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« The case of b? = e is our split case, which is Z /47 x Z/27Z. This turns out to be the symmetries of the
square, which we name Dg. (Here, a is a rotation by 90°, and b is a reflection.)

In the case of b2 = a, we have a problem because the order of b looks like 8. In particular, we supposed
that we have no element of order 8, so a? = b* = e, which violates the order of a.

The last case is the most interesting: it gives us the quaternion group. Renaming our elements to i, j,
we have the group presentation

Qs = (i,j:i'=j" =iji”'j=e).

So does this group actually exist? Well, let's realize Qg as an action on a vector space. It turns out we

can write
Lo - [o 1 L [0
“lo —i|l> 77T |1 ol E

We can check that 7 and j satisfy the relations needed of them from Qg and that they generate a group
of order 8.

So we have the following table.

‘ bab~!l =a bab=1l =g~

=1 |Z2Z x ZJiZ Ds
¥ =a Z/8Z impossible
b =a? | Z)27 x Z)AZ Os

In total, we have the following proposition.

Proposition 1.62. We have the following classification of groups of order 8.
« Abelian: Z/8Z,Z/AZ x Z./27Z, and (Z/27)3.
« Nonabelian: Dy, Qs.

Proof. Given above.

1.3.2 Quaternion Talk

Let's study Dg and Qs a bit more closely by studying their subgroups. Before giving the subgroup lattice for

Dg, we name our elements more concisely. They are as follows.

4 3 4 3 4 3 3
LN 0%

1 2 1 2 1 2 4

4 3 2 1 4 3 1
1804 270

1 2 3 4 1 2 2

4 3 3 4 4 3 1
LN N

1 2 2 1 1 2 4

4 3 4 1 4 3 2

d1 d2

— —

1 2 3 2 1 2 1
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And so here is the subgroup lattice for Dg.

Dy
(h,v) (90°) (d1,d2)
o | e
(h) (v) (180°) (d1) (d2)

Note in particular that all of our order-4 subgroups ((h, v), (90°), and (d;, d2)) are normal because they are
index-2, but not all of the order-2 subgroups are normal. For example, conjugating (h) by 90° gives (v).
(However, (180°) is our center and hence normal.)

And here is the lattice for Qs.

Qs

Again, our subgroups (i), {j), and (k) are all normal because they are index-2, but in fact all of our subgroups
are normal! Indeed, we only have one element of order 2 (which can be checked by hand), which is —1, and
(—1) is our center and hence normal.

Also, the Qg group also creates a group ring, which is called H, the Hamiltonians.

Definition 1.63 (Hamiltonians). The Hamiltonians H = Z[Qs] is a noncommutative ring satisfying the
relationsi? = j2 = k? = ijk = —landij = —ji = k2and jk = —kj =iand ki = —ik = ;.

Can we go further? There are octonians, but their multiplication isn't even associative, so we don't care
much about them.

Remark 1.64. For some reason, crackpots spend a long time trying to invent new R-algebras like the
above.

One reason that the quaternions are not too terrible to work with is that we were able to represent them
inside of C2*2 as given above, so we have a pretty physical realization of these numbers. Also, quaternions
are very good at describing rotations. The idea is to embed R? into H by

(z,y,2) — xi+yj + zk.

Then a quaternion g € H acts on (x,, z) by conjugation: v —+ ghg~!. We can check that this is a rotation of
R3, which can be done by hand. And we can see that we can achieve all rotations by restricting our view to
the elements with norm 1. In fact, the norm has the nice properties that g = a + bi + ¢j + dk has

g9 = (a+bi+cj+dk)(a—bi—cj+dk)=a’>+ b+ +d%

so in fact our norm is nicely multiplicative. In other words, we get a surjective homomorphism from S =
{(a,b,c,d) € R*: a® + b% + 2 + d% = 1} to rotations SO3(R). It turns out that there is nontrivial kernel here,
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and in fact we have the short exact sequence
1— {£1} = S% = SO3(R) — 1,

and this sequence turns out to be non-split!

Remark 1.65. Quaternions only require 4 numbers to represent a rotation, which is much nicer than
representing these as 3 x 3 matrices, which requires more than twice as many numbers. As faras making
money is concerned, this is probably the most useful fact you'll learn in this course.

Our non-split short exact sequence gives us ideas.

Definition 1.66 (Binary rotation groups). Given a rotation group G C SO3(R), we can check what hap-
pens when we pull it back into SO3(R). For example, we can make G the rotations of a cube or the
pentagon. The pullback will have twice that size because of the kernel S — SO3(R), which are called
the binary rotation groups.

1.3.3 Philosophy

Our work above more or less classifies all extension problems
1—=Z/AZ - G = Z/2Z — 1.

Doing this in general is hard, but there are tools. For example, the following theorem exists.

Theorem 1.67 (Schur—Zassenhaus). Fix
1-A—-B—>C—1

a short exact sequence such that #A and #C are coprime. Then the short exact sequence splits, so
B2 AxC.

This isn't that terrible to prove, but the following theorem is very hard.

Theorem 1.68. Fix as above. Then all liftings of C' into B are conjugate.

This turns out to be very hard, which requires maybe 300 pages to prove. This happens in group theory,
where simple statements turn out to have very long and difficult proofs; roughly speaking, this is because
it requires a proof of the Feit—-Thompson theorem, which is also notoriously hard (and has been computer-
verified!).

Remark 1.69 (Nir). In fact, this is a general property of math: simple statements can have complicated

proofs, and in fact, some simple statements must have complicated proofs. Roughly speaking, this is
because determining if a given statement is true is uncomputable.

1.3.4 Rooks on a Chessboard

We have the following classical problem, which we'll talk about.
Question 1.70. How many ways can we place 8 rooks on a chessboard?

In other words, we are placing 8 objects on an 8 x 8 grid, none of which are in the same row or column. For
example, the following is valid arrangement of rooks ina 4 x 4 grid.
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=4

The answer to Question 1.70 turns out to be not that hard: it's just 8 x 7 x - - - x 1 because we can just move
from each column, going left to right, choosing a row that hasn’t been chosen before to place our new rook.
The first column has 8 options for row, then 7 options, then 6 options, and so on, totaling to 8!. Here is an
example of the process for the 4 x 4 case.

B z B B
B B z B
B ~ = ~ = ~ =

B z z z

Let's make Question 1.70 more difficult.
Question 1.71. How many ways, up to symmetry, can we place 8 rooks on a chessboard?

As an example of what we mean, here are two ways to place rooks on a 4 x 4 board, which are the same “up
to symmetry,” the symmetry here being the horizontal flip A.

=4 )={
)= =4

)=t )=¢

For this, we need to understand the symmetries of chessboard, which is simply Dg, which acts on the set
of all 8! arrangements of rooks on a chessboard. We want to know how many orbits of this Dg-action there
are.

A first approximation is that any given arrangement gives rise to 8 different arrangements in its orbit,
yielding 8!/8 = 5040 total arrangements, but this is not the case. For example, the following two arrange-
ments are a single orbit.

)= =4

)=( )=¢

Namely, the problem is that some arrangements are more symmetric than others: the above arrangement
only has an orbit of size 2 because it is fixed by 4 symmetries. So this appears very hard because we would
have to check each individual arrangement of rooks and then check their symmetries. This seems very hard.

1.3.5 (Not)Burnside's Lemma

To solve this problem, there is Burnside’'s lemma.

Remark 1.72. Burnside's lemma is the Lemnma which is not Burnside's. It was called Burnside's lemma
by pure incompetence, and the name has stuck.
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Theorem 1.73 (Not Burnside’s). The number of orbits of G on a set S is the average number of fixed
points of elements of g. Namely,

#(S/G) = #Z#{xe S :gx =z}

geG

This is much better because summing over the number of elements of G is much more tractable than sum-
ming over all possible arrangements of the rooks.

Proof of Theorem 1.73. The ideais to look at pairs (g, z) € G x S such that gz = x. We count these pairs in
two ways. In one direction, we can write

{(g,z)€G><S:g:c:z}:Z#{xES:gaz:x}.
geG
Alternatively, we can sum over S, which looks like
{(g,2) erS’:gm:x}:Z{gerS’:gm:x}:Z#Stab(m).
zesS zeS

However, because we have a G-action, we may group the sum by orbits Gzy € S/G. Indeed, for each orbit
Gzo € S/G, we see that the size of the stabilizer {g € G : gz = z} is the same for any z € Gz(. (Namely, ¢
fixes z¢ if and only if hgh~! fixes hxy € Gxg, so Stab(hxzg) = h Stab(zg)h~!.) Thus, we see

{(g;2) eGxS:gx=x}= Z #(Gxg) - # Stab(zg).
GxoeS/G
However, by the Orbit-stabilizer theorem, we see that #(Gzy) = [G : Stab(zg), so
{(g.2) G x S:gz=a}=#G Y 1=#G #(5/G).
Gzo€S/G

It follows that
#G x #(5/G) = Z{x €S:gxr=uz},

geG

which is what we wanted. ]

Remark 1.74. If we look at the group element g = e, then we see that {x € S : ex = 2} = 5, so we get
#(S/G) = #S/#G, which was our first-order approximation.

1.3.6 Backtothe Rooks

Let's use this for our rooks. Take G = Dg. Our elements, as before, areid, h, v, d1, and ds. Then we also have
90°,180°, and 270°. However, there is some repetition here because i and v have the same number of fixed
points; similarly, d; and dy or 90° and 270° also have the same number of fixed points.

Remark 1.75. Note that these are the conjugacy classes of Dg. More generally in a group G, if two ele-
ments of our group g; and g» are conjugate, then they have the same number of fixed points. Namely,
if we have g € G such that g; = ggog~ ', then

{zeS: giz=2} 5 {zeS:gur=uz}

In words, 2 € S is a fixed point of ¢; if and only if gz is a fixed point of g5.
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@ Warning 1.76. Note that the 90° and 270° rotations, though they “look the same,” are conjugate only in
Dsg but not in the group of rotations (90°). In Rhea's words, we need a reflection to make this work.

We now go down the list of Ds.
« For e, everything is a fixed point, so there are 8! arrangements here.

« For h and v, nothing is a fixed point because a rook in a particular row (respectively, column) would
get moved somewhere else in the same row (respectively, column), which violates the conditions of
placing rooks.

Here is the image for the 4 x 4 case.

= = B

« For 180°, there are 8 x 6 x 4 x 2 arrangements because placing one rook forces its inverse as well. So
we place one rook and lose two options simultatenously.

Here is the image for the 4 x 4 case, where we only make two choices.

)= )=
)= )=

D8 | D | DE | Dg
DE
DE

)= E

« For90° and 270°, we get 6 x 2. This is because, placing a rook in the first row, we can only place rooks
outside the corners (or else they run into each other), which gives 6 options. Here is the image of this
inthe 4 x 4 case.

)={ )= )=¢

90°
5

E E

After placing a rook in the first row, we lose four options because we need to place four rooks from the
first one, which gives 2 options afterwards because we still cannot place in corners.

Here is the image for the 4 x 4 case, where we only make one choice.

)=

E

t —
)=

=4

» We have d; and d, are the hardest. For concreteness, we count for dy. We do this by a recursion: let ¢,
be the number of arrangements fixed by d; in an x n board. We claim that¢,, = ¢,,—1 + (n — 1)cp—s.
We have two cases.

If we place the first rook in the top left corner, then we reduce this problem to the (n — 1) x (n — 1)
board. Here is the image for that in the 4 x 4 case.
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DG | g | D | D¢
d
I
i

Otherwise, if we place our rook somewhere else in the first row, then we lose both a row and a column
from the d; symmetry, reducing to the (n — 2) x (n — 2) case. Here is the image for that in the 4 x 4
case.

4

D8 | D€ | D | Dg

Soindeed, ¢,, = ¢;,—1 + (n — 1)¢,—2, and we can compute that c¢g = 764.

In total, we get

403204+2-04+2-764+2-12+8-6-4-2
=|5282
8

This is a bit bigger than our first guess, which was 8!/8 = 5040.

Remark 1.77. We can bypass Burnside’s lemma by cheating a bit. Theideais to weight each orbitin S/G
we are counting so that we don't have to look directly at the group: we weight an orbit by the reciprocal
of its symmetry group. (This is contrast to weighting the orbits equally to count them.) For example,
the following arrangement is weighted 1/4 because of its four symmetries.

=4

=4

=4

=4

Why do we do this? Well, it turns out that the number of weighted orbits is #5/#G exactly: write

1 - o #Gm_ﬂ
Z #{geG:gr=12} Z #Stab(z) Z £G  #G°

GzeS/a GzeS/G GzeS/G

1.3.7 Groups of Order Nine

For groups of order 9, the obvious groups are Z/97Z and (Z/3Z)?. These are the only abelian ones: if there's
an element of order 9, then we are cyclic; otherwise, all elements have order 3, then we are an F3-vector
space, forcing us to be (Z/3Z)? for the usual size reasons.

What about non-abelian groups? We claim there are no nonabelian groups.

Proposition 1.78. All groups of order p? are abelian, for p prime.

Proof. Fix G of order p2. Note that all proper subgroups have index divisible by p (the index is either p or
p?). In particular, the center has order divisible by p, borrowing the class equation logic from the proof of
Cauchy’s theorem.

We claim that Z(G) = G. Well, suppose for the sake of contradiction that thereisb € G \ Z(G) so
that #Z(G) = p. The problem is that the set of elements C(b) of G which commute with b is a subgroup
of G, which contains {b} U Z(G) and hence has order exceeding p. Thus, C(b) has order p?, implying that b
commutes with all elements, violating b ¢ Z(G). [ ]
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1.4 September7

You are filled with determination.

1.4.1 Groups of Order 10

Last time we classified groups of order 9. So let's do groups G of order 10. Well, Cauchy’s theorem promises
subgroups (a) and (b) of order 5 and 2 respectively. But now [G : (a)] = 2 is normal, so we have the short
exact sequence

1—=(a) = G— () =1,

so in particular, it follows that G is the semidirect product of Z/5Z x Z/2Z. So we can determine G entirely
based off of the Z/27Z-actions on Z /57Z.

This isn't very hard because Aut(Z/5Z) = (Z/5Z)* = Z/47Z, but Z/47Z only has two elements of order
two, so the only Z/2Z-actions on Z/5Z are id and z — x~1. So we get two groups of order 10, defined by

bab~! = a,

bab~! =a~1.
The first case is abelian and hence is Z/5Z x 7 /27 = 7./10Z. The second case is nonabelian, and we know a
nonabelian group of order 10, namely Dg, so this must be that group.
Definition 1.79 (Dihedral group). The dihedral group D3, is the group of symmetries of a regular n-gon.
We remark that this logic can be generalized.

Proposition 1.80. Let G be a group of order 2p for p prime. Then G = Z/(2p)Z or G = Dy,,.

1.4.2 Dihedral Groups and Involutions
Let's look at some dihedral groups.

« D, is the group of symmetries of a line, which is Z/27Z x Z/2Z. This should really be imagined as the
symmetries of a rectangle, where one of the sides is very thin. Here we have highlighted the horizontal
and vertical flips.

- =2 -

« Dg is the group of symmetries of a triangle, which is S5 because reflections can transpose any two
vertices. For example, the following reflection transposes the bottom two vertices.

» Dg is the group of symmetries of a square.

« In general D, is the group of symmetries of a regular n-gon.
In general Dy, = Z/nZ % Z/27, where Z/nZ is a rotation and Z/2Z is a reflection. Here's the picture for
Doy = <a2 =b0=¢ aba! = b71> .
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|
a

Also observe that each Dy, Dg, D12, and so on all have nontrivial center, namely rotation by 180°. (In the
group presentation Dy, = (a? = b** = ¢,aba™! = b~') , thisis Z(Dy) = {e,b*}.)

Let’s continue talking about order-2 elements, or “involutions.” In Dy, Dg, D1g, and so on all have their
order-2 are conjugate. Indeed, all order-2 elements are reflections (there is no 180° rotation), which can all
be rotated into each other, and this rotation corresponds to conjugation. Here is the image of rotating a
translation for D1g, the symmetries of a nonagon.

Regardless, Dy, only has three types of involutions: a 180° rotation, reflection where the line goes through
a vertex, and reflection where the line goes through the midpoint of a side. Here's a picture for the three
types in Dyg, the symmetries of a decagon.

(To reiterate, in Dy, 0, there is no 180° rotation, and reflections all go through both a vertex and a side.) In
particular, having the 180° rotation in the center implies that there is a nontrivial element which commutes
with all of our order-2 elements.

This property turns out to answer the following question.

Question 1.81. Is there a general property which holds for all groups of finite order but fails for some
groups of infinite order?

Well, of course, "the group is finite” is some property, but this is not what we want. Namely, we want our
property to be stated in terms of group theory: we only want to use group elements, their multiplication

structure, and first-order logic.

Non-Example 1.82. Here is something which doesn’t work: Vg € G,3n € Z, g" = e. This doesn’t work
because n € Zis invalid.
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However, this can be done. For example,
Vg,h,[g9=hh=eNg#e#h] = [(Bgo:g0hgy " =gV 390 # €,990 = gog A hgo = goh)]. (*)

In other words, any two elements of order-2 are conjugate or have a nontrivial third element commuting
with both of them. We see (x) works for any finite group because g and h will generate a dihedral group
(generated by the “reflection” g and the “rotation” gh), and we checked that this statement holds for dihedral
groups.

However, (x) fails for the “infinite” dihedral group as symmetries of Z, which is Z x Z/2Z. To be explicit,
we can imagine this as the group of symmetries of the number line.

»
L

3 9 1 0 1 32 3

We can checkthat g : = —zand h : x = 1 — z are neither conjugate nor commuting with a third element?
even though g% = h? = id, so indeed, (x) fails here.
Something else funny about dihedral groups is that some of these split as products.

« Dy 2 7/27 x 727, generated by the vertical and horizontal flips.

» Dis = Dg X Z/2Z. Here, this is the symmetries of a hexagon, but inside the hexagon we can draw a
triangle.

e
IS

We see that we can write D5 as the symmetries of the blue triangle, times perhaps a 180° rotation
mapping the blue triangle to the orange triangle. This turns out to create a direct product, commuting
because the 180° rotation is in the center.

« Ingeneral, Dsyt4 = Doy X Z/27Z by generalizing the above argument.

Remark 1.83. The above product decomposition does not work for (say) D1¢. If we tried, we would get
the following two squares.

The issue is that the 180° rotation that is supposed to send the blue square to the orange one already
lives in the symmetries of the embedded square. Perhaps we could map the blue square to the red one
in some other way, but this would lose being a direct product because 180° is the only element of the
center.

Remark 1.84. It's not hard to see that any group generated by two elements of order 2 are either abelian
or dihedral. However, for two elements of order three turns into a terrible mess: for example, we can
achieve any finite simple group. So elements of order two are nice.

2 They aren't conjugate because g has one fixed point while k has none. They don’t commute with any third element by brute force:
our group is generated by x +— = + 1and z — —z, so all elements take the form go : z — 4z + n for some n € Z. We see
(990)(1) = (gohg)(1) implies n = 0, so the only nontrivial option for gg is g itself, but gh # hg.
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1.4.3 GroupsofOrders1land12

Groups of order 11 are cyclic because 11 is prime. So let's just jump into 12. There are five of them; here are
some obvious ones:

Z/6Z x Z]Z, S3 X Z/2Z, Z]12Z, Ay.
We note that Z/37Z x Z/4Z = 7./127 and D,y = S3 X Z /27, so these are already in our list. So where's the
fifth group? Well, let’s find out.

1.4.4 SylowTime

Let’s return to our attempt at reversing Lagrange.

Question 1.85. We know that H C G as groups implies #H | #G. But if we have n | #G, then is there
a subgroup of order n?

The answer turns out to be no: A4 has no subgroups of order 6. (Again, we can check this by hand.)

However, we can salvage Question 1.85: it turns out to be true if n is a prime power, which is a special
case of the Sylow theorems.

Remark 1.86. Nobody actually knows how to pronounce “Sylow.” There's no point trying to pronounce
it correctly because no matter how hard you try, a Norwegian will smile patronizingly at you and tell you

you're wrong.

Here's the statement.

Theorem 1.87 (Sylow, |). Fix p*»(™) the largest prime power of p dividing n := #G < co. Then there is a
subgroup of order p*»("),

Definition 1.88 (Sylow subgroups). The subgroups in Theorem 1.87 are called Sylow p-subgroups.

Proof. There are two possibilities.

« If there are some subgroups which have proper subgroups with index not divisible by p, then we can
just induct on one of these subgroups because their orders will also be divisible by p*»(™).

« Otherwise, all proper subgroups have index divisible by p. But we saw in Remark 1.49 that this implies
that Z(G) has order divisible by p. So Cauchy’s theorem gives us an element g € Z(G) with order p. In
particular, we have the short exact sequence

1—={g)—>G—G/{g) — 1.

Indeed, because (g) is in the center, (g) is normal, so G/(g) is actually a group. To finish, we use induc-
tion to get a Sylow p-subgroup of G/(g), and we can pull this backwards along the modulo by g map
to get a subgroup of G of the correct order. |

Remark 1.89. The end of this proof uses the fact that pre-images of subgroups are subgroups. To see
why this is true, fix ¢ : G — H a group homomorphism and B C H a subgroup. Then 4 := ¢~ }(B)
contains e € p~1({e}), is closed under multiplication (¢(a1),¢(a2) € B = ¢(a1a2) € B), and is
closed under inversion (p(a) € B = ¢(a™!) = p(a)~! € B).
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1.4.5 Backto Groups of Order 12

Let's return to groups of order 12; fix G with #G = 12. From Theorem 1.87, we see that G has a subgroup of
order 3 and a group of order 4. We would like a normal subgroup; do we have one? Well, let's do casework.

(@) If our subgroup Hj of order 3 is normal, then G = Z/3Z x H,, where H, is our Sylow 2-subgroup.

(b) If Hs is not normal, then it has four conjugates, by another Sylow theorem we will prove later. This
gives us 4 - 2 elements of order 3, so we have exactly four elements left over, which must be our H, of
order 4, and we see that H, is normal because we can only have one of them.

So in this case, we see that G = H, x Z/37Z by letting an H3 = Z/3Z act on our Sylow 2-subgroup.

We now work out our cases separately.

Case (b)
We start with (b). We have the following table.

trivial Z/3Z-action nontrivial Z/3Z-action

(z/2z2)?
7JAZ

When Z/3Z acts trivially, our group is abelian, so the top leftis (Z/27)? x Z/3Z, and the bottom left is Z /127Z.
trivial Z/3Z-action nontrivial Z/3Z-action

(Z]27)* | (Z]2Z)® x Z/3Z
Z/AZ Z)127

We now work on the right column. We need to consider a nontrivial map Z/3Z — Aut ((Z/2Z)*) . Writing
our (Z/2Z)*as {e, a1, az,a3} C G, we see that an element of Aut ((Z/2Z)?) must fix e and hence essentially
be a permutation in S5 on {a1, as, az}. It turns out that these are all actually automorphisms.?

Now, if Z/3Z — Aut ((Z/2Z)*) = S5 is to be nontrivial, then we need to send our order-3 element (which
we name conjugation by b) to a three-cycle in S3. By switching around our elements, it doesn’t matter which
one, so we have the restrictions

<b3 = a% = ag = ag = alagag_l =e, ba b~ ! = as, basb™! = as, basb™! = a1> ,

or after doing some reduction,
(b =a® = (ab)® =¢).

This turns out to be A4 because we can take a = (12)(34) and b = (123). (We can check by hand that there
are twelve elements in the above group presentation.) So our table looks like the following.

| trivial Z/3Z-action nontrivial Z/3Z-action
(Z]27)* x Z/3Z Ay
7127

(Z/2Z)?
7JAZ

Lastly we can have Z/3Z act on Z/4Z. However, Aut(Z/4Z) = (Z/4Z)* = (Z/2Z) has no order-3 elements,
so this is impossible. So in total, we have the following table.

| trivial Z/3Z-action nontrivial Z/3Z-action
(Z)272)* | (Z/2Z)* x Z/3Z Ay
7.]AZ Z/127 impossible
3] think the most “pure thought” way to see this is to view (Z/2Z)? as a Z-module, so we see that it is actually a F2-vector space,
so Aut((Z/2Z)?) = Homy, ((Z/2Z)?, (Z/2Z)?) = GLy(F2). As described previously, we have an injection Aut((Z/2Z)?) < Ss, but
#GLQ(]Fz) =6, so Aut((Z/ZZ)Q) >~ Ss.
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Case (a)

In part (a), we have the following table.

\ trivial action nontrivial action

by Z/4Z
by (2/22)?

Here everything is acting on our Sylow 3-subgroup Z/3Z. In the left column, our group is abelian, so we can

fill these out.
trivial action nontrivial action

Z/12Z
(Z.)27)? x Z/3Z

by Z/4Z
by (2/22)?

In the bottom right, we have (Z/27)? acting nontrivially on Z/3Z. Again, there is only nontrivial automor-
phism of Z/3Z, so we had better send some element of (Z/27)? there. Without loss of generality, we send
(1,0) to the nontrivial automorphism; then exactly one of (1, 1) or (0, 1) will be nontrivial as well, so we'll say
(0,1) is nontrivial. In total, we have the presentation

<a§ = a% =p = e, albal_l = 6L2ba2_1 = b2> .

This turns out to be Z/27Z x S;. For example, we can take a; — (1,id) and az — (1,(12)) and b — (0, (123)).
So our table so far is the following.

trivial action nontrivial action
by Z/4Z Z/12Z
by (Z/27Z)? | (Z/27)* x Z/3Z Z/27 x S3

In the top right, we have Z /47 acting nontrivially on Z/3Z. Well, Aut(Z/37) = 7./2Z, letting Z/4Z = (a) C G
and Z/3Z = (b) C G, we are forced into aba=! = b~!. So we have the following presentation.

<a4 = =e, abal= b2>.
And here, we call it quits, having more or less classified all groups of order 12.
Remark 1.90. This last group is hard to visualize. It turns out to be a binary dihedral group. Namely,
we recall that our binary dihedral groups were defined as pull backs from SO3(R) in the short exact

sequence
1— {£1} = S* = SO3(R) — 1.

Namely, we take Dg = S3 C SO3(R) as the group of symmetries of a triangle (which is in SO3(R) by
placing the triangle in 3-space) and pull it back into S® to get Gg.

1.4.6 Backto Sylow

Let's go back and prove that one fact that told us H3 C G has four subgroups of order 3 if not normal. We
will go through the Sylow theorems one at a time, though we will not do this in order.

Theorem 1.91 (Sylow, llI(a)). Fix G afinite group and p prime. Then the number n,, of Sylow p-subgroups
is1 (mod p).

Proof. We show thatn, =1 (mod p). The following lemma is the meat of the argument.

Lemma 1.92. Fix G afinite group with Sylow p-subgroups named S; and Sz. Then S; does not normalize
Ss.
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Proof. Note that if S; normalizes Ss for Sylow p-subgroups S; and Ss, then 5155 is a subgroup of order
which is larger than p*»(") which is a contradiction.
For completeness, we check that 5155 a subgroup if S; normalizes Ss. Well, for g1,92 € S; and hy, g2 €
SQ, then
(91h1)(g2h2) = (9192) (97 "h1gihz) € 5152

because S; normalizes S,. This gives us closure under multiplication. For closure under inversion, we see
g€ Siandh € Sy has (gh)"' =h~lg =g lgh g7l € S, 9,. [ |

To finish, fix a Sylow p-subgroup S. We check the action of S on all Sylow p-subgroups by conjugation.
Oneorbitis { S} because S should certainly fix itself. Otherwise, all orbits have at least one element because
S doesn’t normalize any other Sylow p-subgroup.

However, each orbit size not 1 still must divide #S by Orbit-stabilizer, so the size of each orbit which
isn't {S} must be divisible by p. It follows that the sum of the sizes of all orbits is 1 (mod p), where the 1
comes from {S}. [ ]

Theorem 1.93 (Sylow, Il). Fix G a finite group and p prime. Then all Sylow p-subgroups are conjugate.

Proof. Fix .S and T two Sylow p-subgroups so that we want to show they are conjugate. The trickisto let T
act on the left cosets G/S of S. We note that we can use the end of the previous argument on this action to
note that the number of fixed points by this action equals the number size-1 orbits, which is

[G:S] (mod p)

after adding in the sizes of all the other orbits (which divide T" and hence are divisible by p). Because [G :
S] £ 0 (mod p), there is some fixed point; namely, for some gP € G/P, we have tgP = gP foranyt € T. It
follows T C gPg~ ', so T = gPg~! for size reasons. This finishes. [ |

Theorem 1.94 (Sylow, llI(b)). Fix G afinite group and p prime. Then the number n,, of Sylow p-subgroups
divides #G.

Proof. Lastly, because all Sylow p-subgroups are conjugate, we see that their number is

#G
#{g € G : g normalizes some S}’

which divides #G. Namely, this is just the Orbit-stabilizer theorem because there is only orbit, so the size
of this orbit is the index in G. [ |

Remark 1.95. We used Theorem 1.91 in our classification of groups of order 12: the number of Sylow
3-subgroups needed to be 1 (mod 3) and divide into 12 and hence must have been 1 or 4.

As a consequence of the Sylow theorems, because all Sylow subgroups are conjugate, it follows that they
are isomorphic. However, this is not true in general.

Example 1.96. The group Z/2Z x Z/2Z has non-conjugate subgroups of order 2. Namely, it has more
than one subgroup of order 2, and Z/27Z x 7Z/2Z is abelian, so these are normal. (However, there is an
outer automorphism connecting them.)

Example 1.97. The group Dg has subgroups isomorphic to Z /47 and Z/27Z x Z./27, which are not even
isomorphic though they both have order 4.

So it is somewhat surprising that looking at the largest power of p forces the p-subgroups to be isomorphic.

36



1.4. SEPTEMBER 7 250A: GROUPS, RINGS, FIELDS

1.4.7 Nilpotent Groups

Recall that if #G = p™ > 1, then we know that G has nontrivial center. We showed this by using the class
equation. This lets us fix Z; = Z(G) and we note that G; = G/Z; again has order a power of p; if it is
trivial, we declare we are done, and otherwise we can fix Z; to be the pre-image of Z(G/Z;) in G and look
at Gy :== G/Z>. Then we can just continue this inductively.

Note that killing the center by modding might still have a center afterwards, so this process isn't triv-
ial.

Example 1.98. With Qg, we have center {+1}, but G/{%1} has center Z/27Z x Z/27Z because Qg/{£1}
is abelian.

What's happening is that we get the sequence
ley=2vCc21C2,C---CZy 1 CZ, =G,
where Gg = {e} and Zy11/Zr = Z(G/Zy,).

Definition 1.99 (Nilpotent). Call a group G nilpotent if G has such a chain.

Non-Example 1.100. The group Ss is not nilpotent. Indeed, S5 has trivial center, so the chain of taking
centers never descends.

It turns out that nilpotence and Sylow subgroups are connected.

Proposition 1.101. The following are equivalent for a finite group G.
(@) G is nilpotent.
(b) All proper subgroups H have normalizer strictly bigger than H.

(c) AllSylow p-subgroups are normal.

(d) Gisaproduct of groups order a power of prime.

Proof. We take these one at a time, in varying amounts of detail.

+ We show that (a) implies (b). We show the contrapositive: suppose that we have a proper subgroup
H C G suchthat N(H) = H, and we show that G is not nilpotent.

The ideais to use H to bound the subgroup chain. Indeed, we show that Z,, C H C G for each k, which
keeps G from being nilpotent. Certainly this is true for Z, = {e}.

For the inductive step, take Z;, C H. Now, g € Zj11 implies that ¢Z;, € Z(G/Z};) implies that
(gh)Zy = 9Zy - hZy = hZy - 9Zy, = (hg)Zy

forany h € G. In particular, we see that ghg='h~!' € Z,, C Hforanyh € G.
Now, taking h € H, we see that ghg~! € H foreachh € H,sog € N(H) = H! Soindeed, g € H, from
which it follows that Z;,1 C H, completing our induction.

» We show that (b) implies (c). Fix P a Sylow p-subgroup so that we want to show P is normalin G. Well,
it suffices to show that N(P) = G.

The main claim is that N(N(P)) = N(P). From this it will follow that N(P) is not a proper subgroup,
forcing N(P) = G. Certainly N(P) C N(N(P)), so we spend our time with N(N(P)) C N(P).

Well, fixing any g € G, we see that g € N(N(P)) implies
N (gPg~') = gN(P)g~' = N(P).
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In particular, P C N(P) = N (gPg™').
But gPg~'isnormalin N (gPg~') while both gPg~! and P are both Sylow p-subgroups of N (gPg~!)
(compare the powers of p). Because Sylow p-subgroups are all conjugate, it follows that
P=gPg~!
because gPg~! is normalin N (gPg~"').Soindeed, g € N(P).
« We show that (c) implies (d). This follows from the homework; fix Hy, ..., H, our Sylow p-subgroups.
The main claim is that, for N; and Ny normal subgroups with trivial intersection, we have
NiNy =2 N; X Ns.
Our isomorphism is defined by N7 x Ny — Nj N, with
¢ : (n1,n2) — ning.

We see ¢ is homomorphic because niny = nany foranyn; € Ni,no € N, because nlngnglnfl €

N1 N Ny = {e}. We see ¢ is surjective by definition of N;N,. Lastly, we see that ¢ has trivial kernel
because niny = eimplies thatny, = n;l € N1 N Ny ={e} impliesn; =ny =e.
Now, we can simply inductively say

HHy---H,~H  xHy---H,~H x Hyx Hy---H, = ...~ H; x Hy x --- x H,.
This induction works because Hy 1 Hy 2 - - - H, is a normal subgroup always* and has order coprime
to Hy (and hence trivial intersection) because the prime-power orders separate.

« We show that (d) implies (a). The point that (d) means that G is the product of its Sylow p-subgroups,
and we know that p-groups are nilpotent from the above discussion. It follows that G is also nilpotent
by attaching the chains together; we will not be rigorous about this because | cannot be bothered. W

The point is that nilpotent groups are the ones which are the product of groups of prime-power order,
which seems very nice. However, it turns out that there are lots of groups of prime-power order.

1.4.8 Groups of Order 13,14, and 15

We see that 13 is prime, so all groups are cyclic. As for 14, it's twice a prime, so it's either cyclic or D14.
So let's look at groups of order 15.

Proposition 1.102. Suppose G is a group with #G = pg with p < ¢ primes. Then G = Z/qZ x Z/pZ. If
g #Z 1 (mod p), then G is cyclic.

Proof. The number of Sylow ¢-subgroups is 1 (mod ¢) and divides pq, so it must be 1. So our Sylow ¢-
subgroup is normal, which forces G = Z/qZ x Z/pZ.

In particular, if ¢ £ 1 (mod p), then the action of Z/pZ on Z/qZ must be trivial because Aut(Z/qZ) =
7Z/(q — 1)Z has no order-p elements. [ |

Example 1.103. With ¢ = 5and p = 3, we see that 5 # 1 (mod 3), so any group of order 15 is cyclic.

Example 1.104. With ¢ = 7 and p = 3, we do have a nonabelian group of order #G = 21, though it is
still Z/7Z x 7Z./37Z. We can represent this group by

{[g II’] :a,beF7anda€{172,4}}.

This is closed under multiplication because a € {1,2,4} is the same thing as a € (F;)*2.

1

“Note gHyy1Hyyo - Hng™t = gHp197 Y - gHpyog™ -+ gHng™t = HiHa -+ Hy,.
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1.4.9 Groups of Order 16

We're not going to classify all groups of order 16 because it is a mess. However, we can list them. We have
the following cases.

« Abelian: we have Z/16Z, Z/8Z x 7/27, LJAZ x ZJAZ, ZJAZ x (Z/27)*, and (Z/2Z)*.

» There are 4 cyclic subgroups of order 8: There is a generalized quaternion group, which is binary di-
hedral. Otherwise, there is an element a of order eight and an element b of order 2. Then we have the
cases bab~! € {a,a?, a’, a"}. Not all of these even have names.

« There are products: Qs x Z/2Z and Dg x Z/2Z.

« There are semidirect products: Z/47 x 7. /A7 and (Z/27)* x Z./4Z. Also there is (Z /27 x 7.]AZ) x 7./ 2.
This is sometimes called the Pauli group because it is the group generated by the Pauli matrices.

So yes, this list is rather a mess. It turns out that as we add more powers of 2, it just gets worse. It's just that
2-groups and p-groups in general have terrible structure.

1.4.10 Classification of Finitely Generated Abelian Groups

So we gave up on classifying all groups of order 16, but we can classify the abelian ones.

Theorem 1.105 (Classification of finitely generated abelian groups). Any finitely generated abelian group
is a product of cyclic groups.

Remark 1.106. This is not unique because, for example, Z/6Z = 7Z/3Z x Z/27Z. However, we can make
this unique by forcing

N
k=1

withny | na | --- | ny or by forcing the n, to be prime-powers. Either of these gives us uniqueness,
though using prime powers is only unique up to ordering the prime powers.

Example 1.107. We can classify all groups of order p®. This comes down to writing down all the permu-
tations of 5, which are

5 441, 3+2 34141,
24241, 241+14+1+1, 141+14+1+1+1.

Each partition gives us a group as follows.

Z/pE’Z7 Z/p4Z x Z7./pZ, Z/pBZ X Z/pQZ, 7./37 x (Z/pZ)Q,
(Z/p°Z)" x Z/pL,  Z/pL x (Z/pL)®,  (Z/pL).

Next lecture we will prove Theorem 1.105.

1.5 September9
You feel like you're going to have a bad time.
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1.5.1 Groups of Order 2"

Last lecture we noticed that groups of order 16 were rather a mess. In general, it turns out that groups of
order higher powers of 2 are even worse.

n_| number of groups of order 2"
4 14

6 267

10 49487365422

It turns out that the number of groups of order p™ is a roughly p(2/277" which is frankly huge; not even the

n = 10 case fully captures the enormity of having a cube in an exponential. There's an entire book for groups
of order 2" forn < 6.

Remark 1.108. It turns out that the vast majority of groups of order less than some bound are going to
be 2-groups; see this MathExchange thread. The next most common are groups of order 3 - 2™, then
5-2™. In general, classifying these is quite boring.

1.5.2 Classification of Finitely Generated Abelian Groups

Today we'll prove Theorem 1.105. Recall the statement.

Theorem 1.109 (Classification of finitely generated abelian groups). Any finitely generated abelian group
is a product of cyclic groups.

Proof. Fix our group G, and fix generators {g1, ..., gm }.- We will write the group operation of G additively.
There might be a list of relations among these elements; we list all relations, which gives us a large system
of equations

angr + -+ amgm = 0

azng1 + -+ agmgm = 0

We will abbreviate this system to the (unaugmented) matrix

air o Qim
azi st G2m

We would like to simplify this to be diagonal; more precisely, because the above matrix need not be square
(in fact, it might have countably infinite height), we want nonzero elements off the diagonal.

So, roughly speaking, we want to row-reduce. Here are our row operations; these correspond to moving
around our relations.

« We can swap rows. Effectively, swapping row k with row ¢ turns the system

a11g1 + -+ Aimdm = 0
a21gr + -+ + azmgm = 0
apigr + -+ + agmgm = 0
anngy + -+ amgm = 0
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into
aii1gi + -+ Aimdm = 0
a1 + -+ + azmgm = 0
angr + -+ +  Am9m = 0
akigr + -+ Gkm9m = 0

Merely rearranging the relations does not change the structure of the group.

« We can negate a row. Because negation of a row is an involution, this doesn’t change the underlying
structure.

+ We can add two rows. Adding row k to row £, we see that we are essentially saying that the system

a1 + -+ + aimgm = 0

a191 + -+ + azmgm = 0

apigr + -+ + agmGm = 0

apngr + - + agmgm = 0

implies

a1191 + e+ A1mGm =0
a2191 + -+ a2m9m = 0
ar191 I o AkmYm =0
(@ +ar)gr + - + (Gkm+am)gm = 0

which is true. Also, the converse (the second system implies the first) holds by subtraction, so these
do yield the same group.

« By induction, we can actually add any integer multiple of a row to another row.
Here are our column operations; these correspond to moving around our generators.

« We can swap columns. Effectively, swapping column k& with column £ turns the system

an1g1 + - + awgr + - + awge + - + aimgm = 0
agn + - 4+ aokgr + -+ axg + - + asmgm = 0
into the system
aign + - 4+ awgr + - + awkge + - + aimgm = 0
0

azgi + o 4 amgr + -+ amge + -+ Gongm =

We note that this is the same as taking (g%, g¢) — (g¢, gx), and rearranging the generators does not
alter the structure of the group.
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« We can negate a column, say k. Effectively, this turns the system

ai1gn + o+ + awgy + 0+ @imGm = 0
a191 + - + axgr + -+ + amGm = 0
into
a1g1 + -+ aw(—gr) + + aimgm = 0
angr + - 4+ aw(—gr) + -+ + azmgm = 0

Because inversion is an involution, we see that that the exchange of generators g, +— —gi does not
change the group structure.

« We can add two columns, say k to £. Effectively, this turns the system

angr + -+ awgge + -+ awge + -+ amgm = 0
as191 + -+ + agr + - 4+ axge + - + azpgm = 0
to
angr + -+ aw(gr—90) + + (ae+aig)ge + -+ + @imGm = 0
angt + - 4+ aok(gr—g0) + + (aze+azw)ge + -+ + amgm = 0

So we have taken the generator g to gr, — g¢, which is a reversible process and hence does not actually
change the group structure. (We could construct an isomorphism if we wanted.

« By induction, we can actually add any integer multiple of a row to another row.
To “row-reduce,” we do row and column operations. Here are the steps.
1. Consider the smallest we can make a1 by applying row and column operations while keeping a;; non-
negative. We have two cases.
« If a1; = 0, then we can apply operations to make the entire matrix vanish, so G = Z". Indeed, if
there is a nonnegative entry anywhere, then we can swap that entry to a;;.
« Otherwise a;; > 0. Currently our matrix looks like the following.

aix aiz2 - Gim
Q21 Q22 - G2m

We claim that a1 | ag; for each k. Indeed, if a11 1 ag1, then we can write a1 = gai; + r for
some r < ay1, SO subtracting g times the kth row from the first makes a;; smaller. So subtracting
ak1/a11 times the first row from the kth row gives the matrix

ailr a2 - Gim
0 ax -+ aoym

)

where the first column is all 0. Similarly,
The same division algorithm argument shows that a11 | a1, for each k. So subtracting a1x/a11
times the first column from the kth column gives the matrix

a; 0 - 0
0 ag -+ apm
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2. Then we simply repeat the process to the smaller matrix

[am GQm]

inside of our larger matrices. Note that applying row and column operations (which are swaps, nega-
tions, or additions) will not affect the Os surrounding this sub-matrix.

So again, making ass as small as possible and repeat the previous step lets us assert a matrix of the

form
a;n 0 o --- 0
0 a2 0 s 0
0 0 ass -+ A3m

and inductively continue

Once we are done with this process, we get the matrix of relations where all terms off the diagonal are 0.
This looks like the system

aingr + 092 + -+ + Ogp + -+ + 0gn = 0
01+ a2 + - + Ogp + - + 0gn = 0
Ogl + 092 + -+ AkkJk + -+ Ogm = 0
Ogr + 0g2 + -~ 4+ Og + - + admmgm = 0

It follows that each generator g has the sole relation axgr, = 0 (with possibly a;, = 0), so g +— 1 yields an
isomorphism (gx) — Z/axZ
G (Z/aZ) x (Z]asZ) x --- . ]

Remark 1.110. We can actually guarantee that a;; | age | - - - . Indeed, otherwise we could use our row
reduction to apply the division algorithm dividing as3 by a;1, thus making a1, smaller.

1.5.3 Groupsof Order 17 and 18

Groups of order 17 are cyclic because 17 is prime.

Let’s talk about groups G of order 18. We see G they have a subgroup Hy of order 9 by Sylow, which must
be normal, so G = Hy x Z/27Z, where the Z/2Z appears because it is our Sylow 2-subgroup. We have the
following cases.

e If Hy = Z/9Z, we see that Z/2Z only has the trivial action or the inversion action on Z/9Z.

« For Hy = (Z/3Z)?, the trick is to view (Z/3Z)? as a vector space over 3 of dimension 3. In particular,
we are looking for maps Z/27 — GLy(F3), which aside from the trivial map correspond to order-2
elements of GLy(F3). We can now do this by hand.

One of these groups turns out to be more interesting. Namely, there is a Z/2Z-action on (Z/3Z)? by switch-
ing the two copies of Z/3Z; this corresponds to the order-2 matrix

[(1) (1)} € GLy(F3).

In some sense, what is happening is that we have a nontrivial Z/2Z-action on Z/27Z-indexed sequences of
Z/3Z. \We can generalize this construction.
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Definition 1.111 (Wreath products). Pick up two groups G and H and a set Q with an H-action. (By
default, we take Q = H.) Then we define

Mor(,G) ={f: Q — G},

which is a group by with (say) pointwise operation: (fg)(z) = f(z)g(z). This has an H-action defined
by

h- f(z) = f(hx)
forh € H, f € Mor(Q2,G), and z € Q. So we define the wreath product G 1q H := Mor(Q2, G) x H.

At a high level, what is happening is that we have a list of symmetries of G (indexed by Q), but this list itself
has symmetries we want to keep track of (which is the H-action on Q). A perhaps more concrete way to look
at Mor(Q), G) is as sequences { g, }weq in G indexed by Q. Here, the group operation is component-wise, and
the H-action on 2 essentially induces a rearranging of the sequence.

Another quick fact that can we see straight from the definition is that

#(G o H) = #(Mor(Q2,G) x H) = #Mor(Q,G) - #H = #G** - #H.

Anyways, let's do some examples.

Proposition 1.112. We have Z/2Z Z./27 = Ds.

Proof. For concreteness, we fix G = H = 7Z/27 so that we are computing G H. To say that Dy is the
semidirect product of Mor(H, G) and H is to say that Ds can fit in the short exact sequence

1 — Mor(H,G) - Ds — H — 1,

where Mor(H, G)isnormalin Dg, Ds — H hasa pull-backinto Dg,and we also have a prescribed conjugation
action of H on Mor(H, G). We construct these manually from Dg as follows.

w h v

N | /

T

|

|
N

N

|

|

|

|

Ve AN

Each of v, w, h refer to the reflection over the prescribed line.

(a) We claim that we want Mor(H, G) = (v, w).

Note that Mor(H, G) consists of Z/2Z-indexed sequences of Z/2Z, so these are effectively ordered
pairs (Z/27)* where the group law is component-wise. So to check that Mor(H, G) = (v, w), it suffices
to say that v and w both have order 2, as does vw (which is the 180° rotation), so indeed, Mor(H, G) is
an Fy-vector space with 4 elements.

We also note that (v, w) is normalin Dg because it is index 8/4 = 2.

(b) We claim that we want H = (k). These are isomorphic because h has order 2. We also see that h €
Ds \ (v, w), so h{v,w) # (v, w), meaning that we do indeed have the short exact sequence

1 — (v,w) — Dg — (h) — 1.

(c) Lastly, we need to check that the H-action on Mor(H, G) matches what it should be. Applying force,
there are only two cases to check.
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» We note that, given {ag, b1} € Mor(H,G), 0 - {ag, b1} = {aot0,b110} = {ao, b1}, so the action by
0 € H is trivial; indeed, the action of e on (v, w) by conjugation is trivial.

« We note that, given {ag, b1} € Mor(H,G), 1 {ap,b1} = {ao+1,b1+1} = {bo, a1}, so the action by
0 € H swaps; indeed, the action of h on (v, w) by conjugation swaps v and w, for hvh~! = w and
hwh™! =v. |

Wreath products also show up naturally as symmetry groups of rooted trees. Here is the key lemma.
Proposition 1.113. Fix Tj a rooted tree with symmetry group Sym Tp. Then the symmetry group of the

/.\

T 15 20¢ Th-1 T,

made of a root and n copiesof Tp =Ty =Ty = --- =T, is Sym Ty U1, ny Sn

Note that the wreath product is now actually taking in a named Q = {1,...,n} parameter. The action of S,
on  is by permuting, of course.

Proof. Name the big tree T'and let [n] := {1, ..., n} for brevity. The main idea is that there are two steps to
choose a symmetry 7.

1. Pick a symmetry of each of the n copies of Ty. This more or less corresponds to an ordered sequence
{0k}, of elementsin Sym(7}), which is the same thing as picking up an element of Mor([n], Sym 7p).

2. Pick a way to rearrange the copies of Ty itself. This corresponds to picking a permutation o € S,,.

These steps combine into something which is believably Mor([n], Sym Ty) x S,, = Sym T ) S,,. We now
rigorize this but not by too much because | don't hate myself. We want to build a split short exact sequence

1 — Mor([n], SymTp) — SymT — S,, — 1

with prescribed S,,-action on Mor([n], Sym Tp).

(@) We claim that N := {0 € SymT : oT; C T} foreachk} is normal in Sym T and isomorphic to
Mor([n], Sym Tp).

« We show that N is normalin Sym T Indeed, forany 7 € Sym T and o € N, then we have to check
that
(77107') (Ty),

for any of the subtrees T}. Well, because the T}, are rooted trees, we see that 7 must move the
entire subtree T}, to some other tree T, wholesale. So any vertex t € Ty has 7t € Ty, so o7t € Ty,
and 7~ lort € Ty, finishing.

« We show that N = Mor([n],Sym Ty). We construct our map ¢ : N — Mor([n] — SymTp) by
restriction:

o(0) = {oln, tiz1-

This is homomorphic because look at it. It has an inverse map by taking {0} }}_, to the symmetry
of Sym T which applies o to T}. It follows that ¢ is an isomorphism.

(b) We note that thereis an embedding S,, into Sym 7" by sending o € S, to the permutation which merely
permutes the {1}, }7_,. We claim that we can set H to be the image of this permutation. (Technically,
we have to fix a standard equality of the T} to T; and then state that our elements of H do not alter
this, but we will not bother.) We get H = S, for free.

We also see that there is a map
SymT — S,
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by viewing o € Sym T as a permutation of the {7}, }}_,. Here we again use the fact that a symmetry of
T must send a subtree T}, to a Ty wholesale.

We see that the image of H fully covers S,, because H describes all the ways we can rearrange the
{T}}_,. Further, we see that the kernel of this map consists of the maps which fix each tree in place,
which is exactly N. So we indeed have the split short exact sequence

1—-N—>SymT — H — 1.

In particular, we do have Sym T' = Mor([n], Sym Tp) x S,,.

(c) It remains to check that the H-action on N (by conjugation: h - z = h~'xh) matches the S,,-action
on Mor([n], SymTy). Fix h € H correspondingto o € S, and g € N corresponding to {g|p, }}_, €
Mor([n], Sym Tp). On one hand,

- {g‘Tk}Zzl = {g|Tak }Zzl' (*)

On the other hand, for any ¢t € Ty, in any subtree T}, we see ht € T, so g will behave like g|r,, on ht,
which then gets sent back to g|r,, t after another 1.

So indeed, h~!gh restricts to g|r,, on each T}, which matches (x). ]

That was a lot of work, so here is a nice corollary.

Corollary 1.114. Fix T a complete binary rooted tree with n + 1 levels for n > 0. Then

SymT = S50 55015,
Nl

n

where { is left-associative. It follows (by induction) that there are 22"~ total symmetries.

Proof. We induct. Forn = 1, we have a complete binary tree with two levels, which looks like the following.

o/.\o

This has symmetry group S2, which is our base case. For the inductive step, we fix Ty the completed binary
rooted tree with n + 1 levels and construct the completed binary rooted tree with n + 2 levels as follows.

TO/.\TO

By Proposition 1.113, we see that the symmetry group of the big tree is Sym TS, which is what we wanted.
|

Remark 1.115. Technically we may permit the n = 0 as the base of our induction, which is the tree with
only a root.

Here are some more miscellaneous examples of the wreath product.

Example 1.116. In electrodynamics, it turns out that the symmetry group is also a wreath product.
Space-time acts as R*, and the Gauge group is S*. The symmetry group consists of (smooth) functions
R* — S on which the Poincare group acts.

46



1.5. SEPTEMBER 9 250A: GROUPS, RINGS, FIELDS

Example 1.117. We can also have the group of symmetries of an n-dimensional cube. Fix its vertices
are (+1,+£1,---). The symmetries are various inversions and permutations of coordinates, so our group
of symmetries is (Z/2Z)" ) Sy using similar logic as in Proposition 1.113.

1.5.4 Groups of Order 24

We're going to skip over groups of order 19, 20, 21, 22, and 23, and we're not even going to fully classify
groups of order 24. But let’s sketch this; fix G of order 24.

1. If there is a normal Sylow 3-subgroup, then this is a semidirect product. There are many possibilities
here for what is acting on our Sylow 3-subgroup.

2. Otherwise, the number of Sylow 3-subgroupis 1 (mod 3) and divides 24 and hence must divide 8 and
hence must be 4. The trick is for G to act by conjugation of G on its Sylow 4-subgroups, which gives a
homomorphism

G — S4.

What is the kernel? Well, it has order dividing 24, and in fact it has order 1,2, 3, or 6 because G acts
transitively on the Sylow 3-subgroups.

(@) Ifthe orderis1,we get G = 5.

(b) If the order is 2, we get the binary tetrahedral group. Namely, we can realize A, as the group of
rotations of a tetrahedron, which we can pull back along the short exact sequence

1 — {£1} - S% = SO3(R) — 1.

We can work out the other cases if we want, but we won't here.

1.5.5 Symmetric Groups

While we're here, let’s use this as a discussion to talk about symmetric groups. Recall the following defini-
tion.

Definition 1.118 (Symmetric group). The symmetric group S,, consists of the permutationsof {1,... , n}.
To talk about the conjugacy classes, we note that we can write any permutation as a product of cycles by

tracking the orbits of single elements. It turns out that the structure we need is the notion of the “cycle
shape.”

Definition 1.119 (Cycle shape). Fix o € S,,. We say that ¢ has “cycle shape
1mgnagns ...

if and only if the cycle decomposition of o has exactly n;, k-cycles. For example, note that ny, = 0 for
k > nandthat >"}_, niyk = n. We will not show that cycle shape is well-defined.

We have the following proposition.

Proposition 1.120. Any two permutations o and 7 of S,, are conjugate if and only if they have the same
cycle shape.

Proof. In one direction, suppose that o and 7 have the same cycle shape. We'll give the proof idea: conju-
gation “renames” the elements that o and 7 are acting on. This is clearer with an example.
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Example 1.121. Take o = (123)(45)(6) and 7 = (425)(16)(3). The point is that, forany z € S,,,
x(123)(45)(6)2 ™ = x(123)x™ " - 2(45)x™ " - 2(6)z ™! = (21, 22, 23) (x4, 25)(x6).

So we can make this equal to 7 by settingz1 = 4,22 = 2,23 = 4,24 = 1, 25 = 6, and 23 = 6. Visually,
we see that z is the vertical map in the following diagram.

@ 2 3 4 5 (6)
[ e e
(4 2 5) a 6) (3)

This idea generalizes into the proof. Indeed, the main trick is the following lemma.

Lemma 1.122. Fix a cycle (a1, a9, .. .,ax) € S, and some o € S,,. Then

olay,as,...,ap)o0 " = (cay,oas, ... ca).

Proof. This is by brute force. The main thing to check is that (c(a1, az, . .., ar)o ™) (car) = cas1. [ |

Now dissolve our given permutations o and 7 into a cycle decompositions

n Nk n Nk
o =[] II(ax.cr,ane2,. . ar0)  and TT Tk bex, bz, - - b o)
k=1¢=1 k=1¢=1

(Here we have organized the cycle decomposition by cycle length.) Our conjugating element = takes ay, ;;

to by,i;; because all elements of {1,...,n} appear in the a; ;; and by, ;;, this « is surjective map {1,...,n} —
{1,...,n},sox € S,,. So we merely check
n ng n o nNg
ror ! = H Hx(ak,z1,ak,zz7 ceap )T = H H(bk,m,bk,ez, cobeek) =T,
k=1¢=1 k=1¢=1

which finishes this direction of the proof.
In the other direction, we show that all conjugates of o have the same cycle shape. Well, fix the cycle
shape of o by

n ng

o= H H(a,]“gl, Ak 02y -+ -5 akfk)'

k=1¢=1

Then, for any permutation x € S,,, we can compute the conjugate

n ng n  ng
—1 —1
zort =[] [[2(arer, anez, - ane)z™ =[] [[(zane, xvanea, .. zak o).
k=1¢=1 k=1¢=1

Because z is injective, and the a;, ;; appear exactly once in the original cycle decomposition, we see that the
zay,;; still make a valid cycle decomposition of zoz~!. However, then the given cycle decomposition forces
the cycle shape of zox~! to match o, finishing. [ ]

We can also ask how many possible values of x there are which conjugate o into 7. Essentially, we are
having S,, act on the conjugacy class of ¢ by conjugation and asking how many elements take ¢ to 7; by
Orbit-stabilizer logic, it suffices to count # Stab o. The image is that we are roughly asking how many ways
we can rewrite

0= (k) (%) (k) oo (%) (ko) oo -

—_—
ny 1-cycles  no 2-cycles -
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Formally, we have the terrible cycle decomposition

n  ng
o= H H(ak,u,ak,ez, ceey QR 0k )-
k=1¢=1

Well, for each (a3 ¢1) of these 1-cycles, there are n;! ways we can rearrange them. Then there are ny! ways
to rearrange the 2-cycles, but then each individually 2-cycle has two ways to rearrange it internally, so we

get 2"2nyl. Continuing, we get
n
H k"knk'
k=1

total permutations stabilizing o. With this in mind, we can compute the number of elements of the conjugacy
classof o is
#5n n!

#Stab() 11—y k™ny!

by the Orbit-stabilizer theorem.

Example 1.123. Let’s work this out for S;. We get the following table.

cycle shape | centralizer of element size of class
4 4 6
31 3 8
22 22.21=38 3
122 21.2=4 6
14 41 =24 1

We can check the union of our conjugacy classes has 24 elements.

1.5.6 Solvability

We can also asking about the normal subgroups of S,,. Of course, there is {id} and S,,, but there is also the
alternating group.

Definition 1.124 (Alternating). Fix the determinant

A= H (:L'gf’lik).

1<k<t<n

Then S,, acts on A by permuting the coordinates, and the orbit of A is {+A} because it can only add
signs to each factor (and indeed, we can check by hand that transpositions do add signs). We define
Ay, = Stab(A). Note that because the orbit is fully {+A}, we have #A,, = #5,,/#{£A} = n!/2 by the
Orbit-stabilizer theorem.

These are almost all the normal subgroups of S,,. We have the following.

Proposition 1.125. The normal subgroups of S;, are the following.
o 1.
e Sp.
o« A,

» Forn = 4, we also have the normal subgroup {id, (12)(34), (13)(24), (14)(23)}. Namely, it just
so happens that the set {(12)(34), (13)(24), (14)(23)} is a conjugacy class in S4 (those are all the
elements with cycle type 22) so this subgroup is a union of conjugacy classes, by magic.
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Proof. We omit this proof because it is actually nontrivially annoying to classify the normal subgroups of
Sn. The key trick is that any normal nontrivial subgroup has an element o € S, \ {e}; then a commutator
Toto ! for 7 some transposition will force the normal subgroup to have a three-cycle, which forces the
normal subgroup to contain A,,. |

This shows that S, is solvable.
Definition 1.126 (Solvable). A group G is solvable if we can construct an ascending sequence of normal

subgroups
{ild}=GoCG1 CGC---CGr=G

such that each quotient G111 /Gy, is cyclic.

Remark 1.127. We can weaken the quotient condition to abelian, but it doesn’t matter that much.

Example 1.128. For S, we have
{id} C {(12)(34)} C {id, (12)(34), (13)(24), (14)(23)} € A4 C Ss.

These quotients have order 2,2, 3, 2 respectively, so they are cyclic because their order is prime.

This notion of solvable will come up again in Galois theory; it “turns out” that S5 is not solvable, and this
has to do with non-solvability of the quintic by radicals. Perhaps stranger, the weird exception for n = 4 in
Proposition 1.125 is why quartics are solvable by radicals.

Definition 1.129 (Simple). A group is called simple if it has no proper, nontrivial, normal subgroups.

Example 1.130. Consider As, the set of rotations of the icosahedron, of which there are 3 - 20 = 60
elements by the Orbit-stabilizer theorem. (Each of the 20 vertex has 3 rotations fixing it.) Let's write
out its conjugacy classes.

« We have id, which is a conjugacy class of size 1.

« Face symmetries: we can rotate a face by 27/3, of which there are 20 elements, of order 3.

Note that rotating a face by 47 /3 is the same as rotating its opposite face by 27/3, so we don't
count this symmetry.

« Edge symmetries: we can rotate an edge by 7/2, of which there are 30 elements, of order 2. How-
ever, flipping over an edge is the same as flipping over the opposite edge, so there are only 15
here.

« Vertex symmetries: we can rotate a vertex by 27 /5, of which there are 12 elements, of order 5. We
can also rotate a vertex by 47/5, of which there are 12 elements, of order 5.

Note that rotating by 67/5 is rotating the opposite vertex by 47 /5, so we don't count it; similarly,
we don't count rotation by 87 /5.

We can check that 1 + 20+ 15+ 12+ 12 = 60, so these are all our conjugacy classes. Now suppose we
have a normal subgroup. It must be a sum of the above conjugacy classes and have size dividing 60, but
it turns out that the only ways to do this are to have size 1 or 60.

It follows that A5 have no proper, nontrivial, normal subgroups, so As is simple and not solvable.

Example 1.131. We also have that Z/pZ is simple for p prime.
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It turns out that all simple groups of order less than 60 are of the form Z/pZ for p prime. The hard cases here
are 48 or 56. The point is that As is the first group we have some trouble understanding.
This gives us the following way to study groups. For any group G, we can find some maximal chain of
normal subgroups
{e}CGCGiC---CGr=G

such that Gy is normalin G411 and Gi1 /Gy is simple. So we have two problems.
1. Find all simple groups.
2. Find all ways to take the above chain and combine the simple groups into larger groups.

The second question is hopeless: for example, if we just have ten copies of Z/27Z, then we are back to trying
to classify groups of order 2!° again, which is very sad. The first question does have an answer: there are 18
infinite families of simple groups and 26 some exceptions.

Remark 1.132. Nobody actually knows how long the proof of the classification of simple groups is. It's
probably somewhere between ten or twenty thousand pages. It has not been computer verified because
it's too long and hard.

1.5.7 Miscellaneous Group Theory

There are some interesting groups of order 120. There are three groups built from Z/27Z and As.
« We cantake Z/2Z x As.
« We can also take S5 which has a normal subgroup A5 and quotient Z/27Z.

» We also have the binary icosahedron group, created by pulling back A5 as the symmetries of the icosa-
hedron as a subgroup of SO3(R) along

1— {+1} - S% = SO3(R) — 1.

These groups are different by counting the number of elements which square to ¢; for example, the binary
icosahedron group has exactly one element of order 2 from {£1}, yielding 2 elements. In contrast, Z/27Z x As
has 2 - (Z) -3 = 30 such elements, and S5 has more.

Remark 1.133. It turns out that binary icosahedron group G shows up in algebraic topology. It turns
out that $3/G is a three-dimensional manifold M with 71 (M) = G and first homology group the max-
imal abelian group of G, which is trivial. This motivated the Poincare conjecture: if 7; vanishes for a
3-manifold, then it must be a 3-sphere. (This is not true if the first homology group vanishes, as shown.)

After the cyclic groups and the alternating groups, the next simple group comes up as the symmetry group
of the Fano plane, which is the following finite geometry. (Here, the unit circle is a “line.”)

This group also turns out to be GL3(FF3) because the Fano plane is the the projective plane over Fy. Alterna-
tively, this group is PSLy(F7) & SLo(F7)/{%1}. There is no good reason why we should expect these groups
to be isomorphic, but they are.
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1.6 September 14

If you can’t stand the heat, turn the A/C on.

1.6.1 Free Abelian Groups

Thisis going to be our last lecture on group theory, and it will be on free groups. A free groups on generators
a, b, cis the "largest possible” group generated by those elements.

As an exercise, let's talk about free abelian groups. The free abelian group on generators {ax}}_; can
more or less be tracked by the sums

n
E mrgag
k=1

forintegers {m;}}_,. Indeed, a group containing {ax }}'_, must have the above elements, and being abelian,
we can always coerce a word in the above form. All of these elements are different, so we get the direct sum

é Zak = Zn,
k=1

where the isomorphism consists of coordinate-extraction. With this in mind, we take this as our definition
of the free abelian group.

Definition 1.134 (Free abelian group). Given letters {a:}}_,, we define the free abelian group F on the
letters {ay }}_, as the group

@Zak.

k=1

Let's prove some things; it turns out that free abelian groups are quite nice. We start with the universal
property because it's nicer than the actual definition we gave.

Proposition 1.135 (Universal property of free abelian groups). Fix F' the free abelian group generated by
{ar}}7_,- Then, givenanabelian group G with elements {g; }7_,, thereisaunique group homomorphism
¢ : F — Gsuchthat ¢ : a — gy for each k.

Proof. On one hand, certainly if ¢ exists, then, forany >°;'_, mya; € F, then we have

n n n
® (Z mkdk) = me(ak) = ka9k7
k=1 k=1 k=1

so ¢ has only one option for where it can send all the elements.
In the other direction, we claim that

¥ (Z mkak) = kagk
k=1 k=1
actually defines a group homomorphism. This is well-defined because every element of F' has a unique
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representation as >, _, myay, (by definition of the direct sum). This is homomorphic because we can sum

n n n
© (kaak + Zm;ak> = <Z my +mj)a >
k=1 k=1 =

NE

(my +mj,) gk

=~
Il
—

n
!
migik + § Mk,
1 k=1

I
NE

=~
Il

where the last equality holds because G is abelian. (Note this is the only place where we used that G is
abelian.) [ |

This gives the following properties with ease.

Proposition 1.136. The following are true.

(@) The rank of a free abelian group is well-defined.

(b) Any subgroup of a free abelian group on n generators is free abelian on at most n generators.

Proof. We do these one at a time.

(a)

Essentially, for n; # no, we want to show that Z™* % Z™2. To show this, we look at the number of
homomorphisms from Z™ — Z/27. Each homomorphism can be tracked by if it sends each generator
to 1 or0, so there are 2™ of these.

Explicitly, there is a unique homomorphism from the free abelian group on n letters

n

w: @Zak — Z/27
k=1

for each function f : {ax}}_, — Z/2Z, by the universal property. Because each homomorphism
also gives rise to a function f, we see that the number of homomorphisms is equal to the number of
functions f, so there are 2" total homomorphisms.

To finish, we see that the free abelian group on n; letters and the free abelian group on n, letters being
isomorphic implies that the number of homomorphisms to Z/27Z is equal, so 2™ = 2"2 so n; = ns.
This proof is the same in spirit to the classification of finitely generated abelian groups.® It suffices to
show that any subgroup G C Z" is free abelian on at most n letters.
We first show that G is finitely generated by n vectors; this is by induction. The idea is to project onto
the last coordinate, yielding the subgroup

G, = {kn : (k)l,kg,...,kn) S G} CcZ,

which must take the form d,,Z for some d,, € Z. Fixing (d1, ..., d,) € G, its vector, then we can embed
G/(d1,...,dp)Zinto Z" "t so G/(dy,...,d,) can be generated by n — 1 vectors by induction, so G can
be generated by at most n vectors.

So suppose that G is generated by the row vectors of

dll e dln

dnl e dnn

> In fact, this property can be used to show the Classification of finitely generated abelian groups, but I am having trouble going the
other direction.
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We can check again that the row and column operations seen in the Classification of finitely generated
abelian groups do not change the actual group structure (the check is identical, so we won't do it here),
so we can reduce our matrix to one that looks like

my 0 - 0
0 my -~ 0
0o 0 - m,
so that G = @, _, myZ, finishing the proof. [ ]

1.6.2 Free Nonabelian Groups

So let's look at free nonabelian groups. We want the biggest possible group generated by the elements.
Observe that it's not even obvious that such a thing exists!

Proposition 1.137. The free group F' on {ax}}_, exists and is a group.

Proof. Let S be the set of all possible words (empty allowed) whose letters are in {a; }7_, or {a; ' }?_,, and
we simply mod this out by all relations which give the group axioms. For example, we should mod out by

the relation that
(ab)(cc) = (a(be))e

and all of its friends. To be explicit, we define the equivalence relation = on S defined as follows.

« Inverse: if we have w = w0~ w, for some words wi,w, and letter £ € {ax}2_, U {a; '}7_,, then
W= wiws.

« Well-defined concatenation: if w; = ws and v1 = vy, then wivy = wavs.

To be rigorous, we could do something like declare S a graph where the above two rules define edges; then
= consists of equivalence classes of vertices, where two vertices are in the same equivalence if there is a
finite path connecting them. We now check the group axioms by hand.

Remark 1.138. It is almost obvious, but it's not obvious that it's obvious.

+ We make our group law concatenation. It is well-defined because our equivalence class forced it to
be.

« Associativity: given wy, w2, w3, then concatenating wyws with ws is the same as concatenating w; with
wWaWs.

Identity: our identity is the empty string because concatenating the empty string does nothing.

Inverse: given a string w = ]_[,]j=1 £y for letters ¢y, the inverse law implies

() (1L

is the empty string; formally we would do an induction here, but we won't bother. |

Even though we have defined the free group as being equivalence classes of words, we will liberally call the
elements of the free group “words"” and refer to specific representatives.
In reality, the easiest way to handle the free group is by universal property.
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Proposition 1.139 (Universal property of the free group). Given a group G with elements {g;}}_;, the
free group F on {ay}}_, has a unique map ¢ : F' — G such that (ax) = gs.

Proof. Again, the uniqueness of this map is the easier part: given a word w = Hszl a;f fore, € {£1}, we
see that ¢ being a homomorphism forces

N N N
p(w) = ¢ (H ) =TT elan)® = T] 95"
k=1 k=1 k=1

so indeed, ¢ is forced. It remains to show that

N N
¢ (H ai’“) =[] o
k=1 k=1
is actually a group homomorphism. Namely, we have to show that ¢ is well-defined and a homomorphism.

« We show that ¢ satisfies p(wv) = ¢(w)¢(v) for words w and v, where now we are not treating w and v

as equivalence classes but as actual words. Well, writing w = chvzl ap* andv = ]_[,CM:NJrl ap* (where
we have continued our indexing implicitly), we see that

N M M M N M
o= (Tl T1 o) = (L) = [ = [T 1] o =t
k=1 k=1 k=1 k=1

k=N+1 k=N+1

+ We show that ¢ is well-defined. Because two elements are equal if and only if we can finitely apply the
inverse and well-defined concatenation laws to make them term-wise equal, it suffices to show that
o is well-defined up to one application of each of these (and finish by induction).

For the inverse law, we show that (w1 aj,a; “w2) = p(wiws) for some letter af. We know that ¢ sat-
isfies the homomorphism property for words, so we may freely write

p(wiaga;, “w2) = p(w1)grg, “p(wz) = p(w)p(wz) = p(wiws).

For the well-defined concatenation law, we show that w; = ws and v; = vy implies that p(wivr) =
o(wavq). Well, by induction (say on the maximum word length among w1, w2, v1, v2), we may suppose
that p(w;) = p(w2) and p(v1) = (v2) so that

p(wivr) = e(wi)p(v1) = p(wz2)p(v2) = p(wavz).
This finishes. |
Note that the same proof as above works for other algebraic structures. So we can also define free rings, free
algebras, and so on as the “universal object” by all possible words and modding out by all relations.

@ | Warning 1.140. As a warning, there are no “free fields.”

Here are two reasons why there are no “free fields.”

« The core problem here is that the inverse function a —+ a~! is necessary but not defined everywhere,
so fields aren’t as nice as algebraic structures, in the sense that an algebraic structure should have
operations defined everywhere with some relations. This makes “all possible words” in the above
argument somewhat difficult.

« We can actually prove that there is no free functor for Fld. In short, all morphisms are injective, so if
our free object on n elements is to have a map into F, then our free object must inject into Fy and be
5. But then there is no map Fy into 5.

So free abelian groups are nicely behaved. Let’s move on to the nonabelian case.
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1.6.3 Reduced Words

Free groups are pretty huge; what do they look like? For example, is it nontrivial? This is not immediately
obvious because our construction was complicated in the sense that there were a lot of equivalence relations.
So let’s try to bound the size of our group.

To upper-bound the size of our group, we note that every element is a word in the letters a, and a; !, but
this is somewhat inefficient because we can immediately cancel a;a; ! and its friends. So we actually count
with the following definition.

Definition 1.141 (Reduced words). Let F be the free group on {ay}7_;. Then we define reduced words
as words in F which do not contain ¢/~ for some letter ¢ € {a;}?_, U {a; '}?_,, which is our upper
bound.

In particular, we see that every word in the free group has at least one representation as a reduced word
simply by removing all #/~! substrings.

It feels like reduced words cannot collide, but it is nontrivial to prove this. Well, suppose that we have
two reduced words w; and wo which are not equal term-wise so that we want to show wlwgl # e. In other

words, we have that wyw; ' does not immediately reduce to the identity (w; and w, are not term-wise equal),

and we want wyw; *.

So it suffices to show the following lemma.

Lemma 1.142. Fix F' the free group on {a; }}_,. Then all nontrivial reduced words w cannot collapse to
©o

The idea here is to use the universal property. Let’'s give some examples of things that we can do, just to get
the feeling for our power.

 Let's show that ay # e. Well, we can map a — 1inZ and a, — 0in Z so that a; — 1, which is not the
identity, so ay # e.

+ Let's show that ay, # a, for k # ¢. Well, we map a; — 1 and a; — 0 again, and the map any other
generator a, — 0. Then we see that aia, — 1 and is not the identity, so axa; ' # e.

In other words, we just showed that the map from our set of generators to the group is injective; I'm glad
we got that squared away. We continue.

o We show that a%agal_lagl is nontrivial. Well, send a; — 1 and as — 0in Z and our word gets sent to

1#£0.

+ In general, if a word w has an unequal number of a;, and a,;l letters, then we cansend a;, — 1 € Z and
all other generators to 0. Then w gets sent to some nontrivial integer.

In some sense, this last condition is the best we can do by mapping to abelian groups, for abelian groups

will always send elements with an equal number of 7 letters and £~ ! letters to the identity.
Now that we've gotten a feeling for the universal property, let's jump into the general case.

Proof of Lemma 1.142. Suppose that w is a word of length N; we map F'into Sy1. For concreteness, here
is an example of our idea.
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Example 1.143. Let's show that aaba=*b~ta~! is nontrivial in the free group on {a, b}. The idea is that
we want to give permutations a and b which satisfy the following movement.

1 2 3 4 ) 6 7

a b a b a a

The pointis that aaba='b~'a~! will surely get sent to a nontrivial permutation now: aaba='b=1a=11 = 7.
Actually exhibiting @ and b a matter of extending the constraints

12 3<T4 5 —— 6 —/— 7

to a permutation a and the constraints

1 2<T3 4T>5 6 7

to a permutation b. There are lots of ways to do this.

In general, fix our nontrivial reduced word w = Hfle a;®, where e, € {£1}. Then we would like to send ay,
to a permutation so that we can have the following computation.
EN—-1

EN
aN aN—l

aal
1 2 3 N-1—5 N

(A forward arrow of a;l is intended to mean a backward arrow for a;.) Here, w will be sent to a nontrivial
permutation, namely sending 1 to N. It remains to show that we can actually extend the above constraints
to actual permutations.

There are some obstructions to extending our constraints. For example, if we every end up with the
following constraints, we immediately violate injectivity and cannot be a permutation.

e — 0 ——— @
Similarly, the following constraints cannot even make a function.
o — 06 — @

However, these are the only obstructions to extending a permutation.® Further, neither of these obstruc-
tions in our constraints for a particular letter: having

Qg ap
e —" e i—— o
would mean that w contains aa;, ', violating that w is reduced. And having
ag ag
e o — e

would mean that w contains a; 'ax, again violating that w is reduced. So indeed, we can extend our con-
straints on {a }}_; to actual permutations on S,,41, finishing. [ |

So we see that all of our talk about reduced words has given us the following way to look at the free
group.

Proposition 1.144. Elements of the free group are in bijection with reduced words.

6 Showing this is annoying. Lacking the given obstructions, any constraint arrow k — k 4 1 must either have no arrow into k or an
arrow into k, but no arrow out of k; similar holds for k£ + 1. Essentially this means that all of our constraints look like disjoint “chains”
z—>z+1---— -+ = y—1— y(possibly backwards). We extend this to a permutation by fixing any element not in a chain and
sending y to x.
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Proof. This follows from the above discussion. [ ]

As a bonus, we get the following.
Definition 1.145 (Residually finite). A group G is residually finite if, for each g € G \ {e}, there exists a
finite group H and a homomorphism ¢ : G — H such that ¢(g) # e.

Proposition 1.146. If g € F' the free group on {ax}}_,, thenif g # e, then we can find some finite group
H such that g does notgotoe € H.

Proof. Indeed, in the proof of Lemma 1.142, we showed that we can take H = S, ;1. [ |

Non-Example 1.147. The rational numbers Q is residually finite: given any finite group H with a map
¢ : Q — H,we claim that ¢ is the trivial map. Indeed, for any element -, we claim that () = e, for

H4H
n n n
14 (E) — @ <#H' m#H> v <m#H) -G

where the last equality is by Lagrange’s theorem.

Remark 1.148. There is a terrible way to define the free group on reduced words by brute force defining
the multiplication law on reduced words, simply cancelling out neighbors. This gets bad when trying to
check associativity: for example, we have to keep track of how to associate

(ab)(b~1)(a"b).

While we're here, we present an alternate proof of Lemma 1.142. The idea is to find a set which G acts on
and then show that every element acts nontrivially. We choose a Cayley graph; as a warning they are large
graphs. For example, here is what our Cayley graph looks like for the free group F» generated by {a, b}.

k

« We start by writing down vertices for each word consisting of only as, connecting a* — a**! by a

directed red edge, as follows.

a=? a~t e a a?

« Next, for each a*, we add in vertices a*b’, where our edges are directed blue edges connecting a*b* —
akfbt*1, as follows.

|
a”2b? a”tb? b2 ab? a’b?
l I | | I
a"2b a~ b b ab a?b
| | | | I
e a~ ! e a a®
[ [ I I I
a=2p! a~tpt b1 ab™! a?b1

58



1.6. SEPTEMBER 14 250A: GROUPS, RINGS, FIELDS

« Then at each a*b’, we add in another red line using the same joining rules. This roughly looks like the

following; to avoid crowding, we choose one small part.

ba=t ——

H(’QH@*}...

« Then we can continue adding layers to the above graph, building a giant monstrosity recursively.
With this example in mind, here is the general case.

Proof of Lemma 1.142. We build our graph X as with vertices which are reduced words and add a directed
edge wi — ws of color k if and only if wiar = ws. In particular, an outgoing edge implies that the length of
the word is strictly increasing; rigorously, we would build X recursively as in the example (to make sure X
is a tree), but we will not bother here.

Then the action of g € G on X consists of sending vertices v € X to gv; it's not hard to check that this is
in Aut(X), and in fact g # e yields a nontrivial element of Aut(X) because the empty word is taken to g in
X. [ ]

This sort of process turns out to be easier for free abelian groups. For example, the Cayley graph for the
free abelian group on {a, b} looks like the following. (Add dimensions with more letters.)

— e — e —— @ — -

e — e — & — .-
— @ —> @ ——> @ ——

So this free abelian group has Cayley graph which fits nicely in Euclidean space. On the other hand, the free
group fits nicely on hyperbolic space, which itself does not fit nicely on Euclidean space.

Remark 1.149. In some sense, the free group is approximately the size of hyperbolic space in the same
way that the free abelian group is approximately the size of Euclidean space.

1.6.4 Free Groups as Fundamental Groups

Let’s talk about some properties of free groups, in the same way we talked about free abelian groups. For
example, we still have the following.
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Proposition 1.150. The rank of a free group is well-defined.

Proof. Again, given a free group on n letters named F, exactly the same argument as in Proposition 1.136
shows that there are 2" homomorphisms F' — Z/2Z. It follows that two free groups are isomorphic if and
only if they are generated by sets of the same cardinality. |

However, rank does not behave the way we might want it to. For example, intuitively the free group on three
elements ought to be larger than the free group on two elements, and indeed, for abelian groups, there is
no injective homomorphism Z? — Z2.” But life is not so good with general free groups.

Proposition 1.151. There is an injective homomorphism from the free group on three letters to the free
group on two letters.

Regardless, we will still be able to show the following, albeit with more effort.

Theorem 1.152. Any subgroup of a free group is free.

The main idea of this theorem is to show that G is free if and only if G is the fundamental group of some
graph. So we begin by defining the fundamental group.

Definition 1.153 (Circuit). Given a graph X, a circuit is an alternating sequence of vertices and adjacent
edges of X, say xyejxses . .. €412y, such that z,, = 2.

Warning 1.154. We are going to direct our edges but be sloppy about it: every edge e : v — w will have
a designated inverse edge e~! : w — v. Because our circuits are also tracking the endpoints where we
move, this does not matter most of the time, but it does matter for loops. The short version is that we
need to keep track of “which” way we move along loops but no other edges, so | will not keep careful
track of which way we move along non-loop edges (and so may write e = e~ when v # w).

Definition 1.155 (Homotopy). Fix a graph X and a basepoint 25 € X. We define the equivalence class
= on circuits starting and ending at zo € X by asserting that, if zox1 - - - z,20 is a circuit, then

_ —1
TOET1€] *  * TpepTo = TEL1€] - - - TRCYE  Tpek - Tn, (%)

and closing this under the requirements to be an equivalence relation. (Any two paths with that can
be translated into each other using a finite number of these moves are equivalent.) Here e~! explicitly
means moving backwards along the edge e.

If two circuits are equivalent under =, then we say that they are homotopic. Also, for brevity, we will
call a move of the form (x) a “back-and-forth move.”

Essentially, two paths are homotopic if there is some “back and forth” steps we can optimize out to make
the paths equivalent to each other. As an example, consider the following graph X.

)
x4

e
€5
v

€4

~N e

eo e: €1
AN e ° &l )
Ty —€0— 1

T2 T3

7 The basis “vectors” of Z go to some three “vectors” in Z2, but any three vectors in Z? C Q2 have a nontrivial Q-linear relation for
dimension reasons, which can be lifted to a nontrivial Z-linear relation by clearing denominators.
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In this graph, the circuits zgeszoesz3e310 is homotopic with zgesxaesriesxaesxzesxy but is not homotopic
with LOEQX2EFXAEGLACEL2€4TL3ESX.

Now, our fundamental group is more or less the same thing as seen in algebraic topology, but we will
define this algebraically.

Definition 1.156 (Fundamental group). Suppose that X is a connected graph, with loops permitted but
not multiple edges, with a particular basepoint 2y € X. Then the fundamental group of (X, z), notated
m1(X, zp), consists of the circuits around zo up to homotopy.

Given a circuit C starting and ending at zy, we will denote its homotopy equivalence class by [C].

Note that we have not actually made our fundamental group into a group yet. Our composition law will
be composition of circuits (follow the first circuit; then follow the second), but it might feel like we don’t
need homotopy for this. It turns out that homotopy is what makes this group law a group, giving us in-
verses.

Lemma 1.157. Fix X a connected graph and 2y € X a basepoint. Then 7 (X, z¢) is a group.

Proof. As promised, our group law is composition of circuits: write down the first circuit, subtract its last z
to avoid duplicates, and then write down the second circuit. We check the group conditions by hand.

« We show that the group law is well-defined: given circuits C; = C3 and D; = D5, we have to show
that C1D; = CoD5. Well, it requires finitely many back-and-forth moves to turn C; into Cs and finitely
many moves to turn D; into D, so it still requires finitely many moves to turn Cy D; into C3Ds.

« Associative: given circuits C1, Cs, C3, we see that concatenating C; with Cs first and then with Cj is
the same total string as concatenating Cy with C5 and then concatenating C; at the front.

« Identity: our identity is the do-nothing circuit “z(."” Concatenating with it does nothing.

« Inverse: reversing a circuit C' == zpepzie; - Tpenro to C71 = xpe, tay, - -~ef1xlef1xo gives its in-
verse. Indeed, concatenating gives

-1 _ -1, -1 |
C-C7" =xpepT1€1 " Tpo1€n—1TnnT0€, Tpe, _1Tn—1""'€] Ti1€y X0

— .1 -1 -1
= Tp€0x1€1 " Tp—1€n—-1Ln€, 1Tp—1"""€1 T1€y Lo

— . —1
= Tp€pT1€y To

£,
which is our identity. |

We now begin moving towards our description of fundamental groups.

Lemma 1.158. The free group F on {ay }}_, is a fundamental group.

Proof. Theideais to assign ay to a loop around the basepoint so that reduced words roughly correspond to
unique homotopy classes. Explicitly, we choose a graph X with one vertex zy and n different loops named
ai,...,ag. This looks like the following.
as
~\ )
v o \1/12
()
ay
We would like to show that (X, z¢) = F, where F'is the free group on {as}}_,. Because any circuit on X
must have z as its only vertex, so all of our circuits look like

xolozoly - - - Tplnxo
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for some letters ¢, € {a;}7_, U{a; '}7_,. Now, the point is that we have a function  from circuits to F' by
(V2R $0€0$0€1 s .’L‘nfnxo — 6061 s én
We can show that this is a group isomorphism 71 (X, z9) — F, which we do by hand.

« We can show that ¢ satisfies p(C1C3) = ¢(C1)p(C2) on circuits Cy, Cs. This follows directly from the
fact C,C5 corresponds to concatenation, as does ¢(C1)p(C5).

« The main obstruction is showing that ¢ is well-defined. By induction, it suffices to show that if two
circuits differ by a single back-and-forth move give the same element of F. Well, by the previous part,
we can take

o(xolozoly - wplrol ‘Tply - - - o)
to
o(zolozoly - - mp)p(zRlrol ™ zy)p(xply - - - T0),

which is indeed (xoloxzols - - - ) o(Tply - - - o) = @(x1ly -+ - T).
« Surjectivity is relatively apparent: pull a word of w € F directly backwards by punctuating it with .

« Injectivity is also difficult. In short, we can reduce a circuit by removing any stray fz,/~! terms by
a back-and-forth move. Then nontrivial homotopy classes will map to nontrivial reduced words, so
nontrivial homotopy classes are not in the kernel. So the kernel is trivial. |

And here is the other direction.
Lemma 1.159. Any fundamental group of afinite, connected graph is a free group. In fact, given a finite,

connected graph and basepoint (X, zg) and a spanning tree T', then 71 (X, x¢) is isomorphic to the free
group on the edges of X \ T.

Proof. The idea is to contract edges by homotopy. For example, we can take

€6
()
Tq
e
€5
/
T2 €4 T3
N s e1
€2 €3
o —¢— I1
to
ee
L)
To = T4 €4 T3
\ e el
e e
'~ L)

Trog —¢o— I

by contracting along the edge e5. The main thing we need to show is that the fundamental group does not
change after contracting along a non-loop edge.

Indeed, given a graph X with basepoint g € X, and non-loop edge e connecting v; and vy, we construct
the contracted graph X/e by deleting e and declaring v; = vo. It remains to show 71 (X, z¢) = 71 (X /e, z0).
We construct ¢ : w1 (X, z9) — m1(X/e, z) by taking a circuit

To€EoL1€1 " Tn

and deleting any occurrence of e while replacing each v, with a v;. We need to show that ¢ is a homomor-
phism; this is generally annoying but visually makes sense, so we outline.
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« Homomorphic on paths: we won't be rigorous about this. Essentially, concatenating two paths and
then contracting the paths about e to some reduced word is the same as contracting the paths about
e first and then concatenating.

« Well-defined: we can use the fact we are homomorphic on paths. Any back-and-forth move can be
isolated from the rest of the circuit in the same way as in the proof of Lemma 1.158 so that ¢ is well-
defined up to back-and-forth moves. Thus, ¢ is well-defined up to homotopy.

« Surjective: any path on X/e can be lifted to a path of X by, roughly speaking, just following the path
in X/ein X. Any time we hit v; or vy in X/e, the next edge in X in the path might not adjacent to our
current vy or vy, but it will be adjacent to one of {v,v2}, so we can use e to cross between with no
repercussions from ¢.

« Injective: essentially, it suffices to show that applying a back-and-forth move to a circuit in X/e does
not affect its lift described to X described in the surjectivity. Because our lift essentially just follows
the circuit in X /e with minor adjustments around e, a back-and-forth move will lift directly to a back-
and-forth move, so the lift is well-defined up to homotopy.

To finish, we fix T'a spanning tree of X. Recursively applying contraction along the edges of T will even-
tually® leave us with a single vertex and #E(X) — #E(T) loops around our basepoint. So we see 7 (X, z¢)
is isomorphic to the free group on #E(X) — #E(T) letters from Lemma 1.158. [ |

Remark 1.160. Technically, we can extend the above argument to work for all connected graphs, but
this requires more technical effort. Essentially, given a connected graph X and spanning tree T, we can
mod X by the entire tree T in one blow. | am under the impression that the same arguments that work
for a single edge generalize.

We now show our theorem.

Theorem 1.152. Any subgroup of a free group is free.

Proof of Theorem 1.152. Suppose that G C F'is a subgroup of a free group. Then we define the graph X
whose points are the cosets in F//G and the edges are the actions of the generators of F. Note that F' acts
transitively on F//G, so X is connected; we choose eG as our basepoint.

We now claim that G is 71 (X, eG), which will be sufficient because fundamental groups are free. Essen-
tially, the idea is that we can map words w = Hff:l L), € G to the circuit of X starting at eG and following ¢,
as edges:

€GN 0neG N5 Uy 1 tneG S Un ol NG — -

Then we see that the last coset we hitin the circuit is wG, so the path we make is a circuitifand only if w € G.
We briefly talk through the checks to show we have an isomorphism. Call this map from words to paths ¢.

+ Well-defined: we know that every word can be reduced to a unique reduced representative by simply
recursively removing £/~! subword, so it suffices to show that introducing an #/~! does not change the
homotopy class of the output. But introducing £/~! means inserting

N ¢ N eI [ e B
where we see that this is just a back-and-forth move and therefore does nothing.

« Homomorphic: both group laws are concatenation, and we concatenate before or after.

8 Technically, we have to show that the edges of the spanning tree never become loops when contracted. Well, contraction really
just declares vertices equal, so the only way to have a loop would be to have a circuit in our spanning tree.
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gk) ¢
1

———

=:w

« Surjective: all of our circuits take the form

eG @ IneG EN*;I In_14neG £N~7>2 In_olN_14NG — --- g <

=

for some word w, where w € G so that wG = G. It follows that w € G maps to this circuit.

« Injective: in the well-defined point, we showed that back-and-forth moves correspond to removing
201 substrings of words, so it follows that the inverse map introduced in the surjective point is also
well-defined. [ |

1.6.5 Applications of Fundamental Groups

We are going to actually use this spanning tree contraction algorithm, so we give an example of this algo-
rithm. We start with X as above with the designated red spanning tree.

€6
L)
T4
e
~
T2 o T3
~ -
e es
<L)
To —co— T1
Contracting along e; gives X/es.
eg
L)
T2 o4 T3
~ -
€2 €3
N~ L)
IO — €0 — 1’1
Contracting along e4 gives X/{e4, e5}.
€6
L)
T2
/ \ e1
Lo — 0 — 21
Contracting along es gives X /{es, e4, €5}
€6 €1
~L) L)
€2 o — 00— T
o
Lastly, contracting along e gives X /{eg, e3, e4, €5}
€6
€2 i) €1
o -

So we see that 71 (X, x¢) is isomorphic to the free group on {zge1 20, zoesxo, Toeazo }, which were exactly the
edges in X minus the spanning tree. We can even track this backwards to find generators of 71 (X, zp). We
will omit the edges to prevent overcrowding.
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» We have that w1 (X/{eo, €3, e4, €5}, 2o) is generated by {e;, eg, €2}
« We have that 71 (X/{es, e4, €5}, o) is generated by {6061661, e, e2} by lifting along eg.
« We have that m; (X/{es, e5}, z0) is generated by {ege; 'ey ', ese, ezege; '} by lifting along es.

We have that 71 (X/es5, z¢) is generated by {6061—160—1’ e3eqea, 6364666216??1} by lifting along e4.

+ We have that 71 (X, x) is generated by {eoeflegl, e3e4€a, 6364656665_16;16;1} by lifting along 4.

Let's do a more sophisticated example of this algorithm. We show the following.

Proposition 1.151. There is an injective homomorphism from the free group on three letters to the free
group on two letters.

Proof. We use the construction of graphs from the proof of Theorem 1.152. Fix F the free group generated
by the two letters a and b, and we study subgroups G of index 2. Using the construction from Theorem 1.152,
we make a graph with two vertices and edges dictated by the action of {a, b} on these vertices.

The case we care about is when a and b swaps both of the vertices, as follows. Call this graph X; we label
the a and b by subscripts for clarity.

PN
eG( lW\/&a
NI

We need to contract along something to make this a flower graph, so we contract along the red a;, which
gives the following graph X/a;.

G

So we see that X/a; is freely generated by {as, b1, b2}, so pulling back along a; we have that X is freely gen-
erated by {a1as,b1a; ", a1bs } . In other words, we can check that the subgroup generated by {a?,ba™!, ab}
is free on those generators, finishing. |

Note that the above discussion can extend to classify all subgroups of index two of F. We simply have to

do casework on what the possible (connected) graphs on two vertices are. We will not do this computation
here.

1.7 September 16

You feel your sins crawling on your back.

1.7.1 Categories

We interrupt our regularly scheduled programming to talk about category theory. We're skipping most of
the proofs.

Remark 1.161. All proofs in category theory are trivial and not very interesting.

We start some examples of categories.
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Example 1.162. The basic examples of categories are as follows.
« The category of sets is Set . There are objects which are sets and morphisms which are functions.

« The category of groups is Grp. There are objects which are groups and morphisms which are
homomorphisms.

» The category of topological spaces is Top. There are objects which are spaces and morphisms
which are continuous maps.

So we have the following definition, abstracting the common features.

Definition 1.163 (Category). A category C consists of the data of a set (or class) of objects with some
morphisms. Namely, given objects A and B in the category C, there is a set (or class) Mor(A, B) of
morphisms from A to B satisfying the following.

(@) We can compose morphisms: given f : Mor(A4, B) and g : Mor(B, C), there is a morphism go f :
Nor(A, C).

(b) There are identity morphisms: given any object A, there is a morphismids € Mor(A4, A).

(c) Composition should associate: given objects A, B, C, D with morphisms h € Mor(A, B) and g €
Mor(B,C) and f € Mor(C, D), then (fog)oh= fo(goh).

(d) Identity should be an identity: given a morphism f € Mor(A, B), we have f oids = idg of.

@ Warning 1.164. | may occasionally abbreviate f € Mor(A4, B) to f : A — B. For example, | might write
composition as o : Mor(B, C) x Mor(A, B) — Mor(A,C)aso: (B —C)x (A— B) = (A—C).

Remark 1.165. We don’t want to force all objects to live in a set because we would like Set to be a
category, and there is no set containing all sets.

Let's have more examples.

Example 1.166. Groups are categories, where the object is a single point, where the morphisms are the
elements of group, and we define the composition of two morphisms g, h to be g o h := gh.

Example 1.167. Preordered sets X are categories. A preordered set is an ordered set where the order
has reflexivity and transitivity. Our objects are elements of X, and we place exactly one morphism A —
Bifandonlyif A < Bfor A, B € X. Namely, theidentity morphism comes from A < A, and associativity
of composition comes from transitivity.

Of course, there are lots more things which are categories.

1.7.2 Fun with Morphisms

Here is the fundamental idea of category theory.

Idea 1.168. Ignore any internal structure of an object and instead look at its morphisms.

@

To be more explicit, given a category C with an object A € C, we study the morphisms of A instead of A
directly.
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For example, let's redefine injective. For sets, we usually say that f : A — B is injective if and only if
f(a1) = f(az) foray,as € A, then a; = ay. However, we would like to avoid talking about elements of A.
Here is our new definition.

Definition 1.169 (Monic). Fix a category C with a morphism f € Mor(A, B). Then we say that f is monic
(or “isa monomorphism") if and only if, for each other object X and morphisms g1, g2 : Mor(X, A), then
fogi = fogsimplies g = go. Here is the diagram.

f

g
x——=a-1.B
g2

Think “monic means left-cancellative,” which makes more sense after the example in Set .

Example 1.170. We check that monic is equivalent to injective in Set .

» Supposethat f : A — Bisinjective. Then, suppose we have an object X withmapsg;,¢2 : X — A
such that f o g1 = g o g2. Then, forany z € X, we have f(g1(x)) = f(g2(x)), from which g1 (z) =
g2(z) follows by injectivity of f. Soindeed, g1 = go.

» Conversely, suppose that f : A < B is monic. Fix elements a1,a2 € A such that we want to
show f(a1) = f(az) implies a; = az. Then consider the object X := {x} for any a. There is a map
g1: X = Abyx+— a;andamapgs : Xo — Aby gy : *x — as. Then we havethat fog; = fogo
because

flg1(%)) = fla1) = f(az) = f(g2(%))-

So because f is monic, it follows g1 = g2, 50 a1 = g1(*) = g2(*) = as.

So in Set, monic means injective, but now monic works for all categories.

What about surjectivity? Well, in Set, we are saying that f : A — B has, foreachb € B,somea € A
with f(a) € b. How do we do this without talking about elements? The answer turns out to be dualize the
definition of monic.

Definition 1.171 (Epic). Fix a category C with a morphism f € Mor(A4, B). Then we say that f is epic
(or "is an epimorphism”) if and only if, for each other object X and morphisms ¢1, g : Mor(B, X), then
g1o f =gso fimplies g1 = go. Here is the diagram.

f

g
At Bp——=x
g2

Think “epic means right-cancellative.”
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Example 1.172. We check that epic is equivalent to surjective in Set .

» Suppose that f : A — B is surjective. Then, suppose that we have an object X with maps g1, ¢ :
B — X suchthatg; o f = goo f sothat wewant g; = go. Well, forany b € B, there existsana € A
such that f(a) = b because f is surjective, so

91(b) = 91(f(a)) = (910 f)(a) = (g2 © f)(a) = g2(b),
indeed implying that g; = g».

« Conversely, we show the contrapositive: if f : A — Bis not surjective, then f is not epic. Indeed,
consider the object X = {0, 1} with maps g1, g2 : B — X defined by

g1(b) = {(1) Z Z 12;7 and g2(b) = 1.

We note that, forany a € A, we have g;(f(a)) =1 = g2(f(a)),so g1 o f = g2 o g. But f not being
surjective implies that there exists b € B\ im f so that g; (b) # g2(b). It follows f is not epic.

So again, in Set, this is equivalent to surjective, but now we can talk about epic in all categories.

Warning 1.173. Monic and epic do not always turn out to mean injective and surjective. For example,
in the category Ring, the map canonical map Z — Q is epic but not surjective.

To be more explicit, of course . : Z < Qis not surjective, but showing it is epic needs some work. Essentially
this is because Q is the fraction field of Z, so what Q does is determined by what Z does. More rigorously,
any good ring map Z — R can be uniquely lifted to a map Q — R.

Indeed, suppose that we have some ring R with ring homomorphisms g1, 92 : Q — Rsuchthatg; ot =
go o t. Then, for any rational m/n € Q with m,n € Z, we have’®

g (M) = 0 _ 120m) _ (g0 lm) _mlm) _ my

n/gin) (o)) (g200)(n)  g2(n)

Soindeed, g1 = g2 on Q.

Remark 1.174. Being epic can be subtle. In the category of planar graphs, it turns out that “every epi-
morphism is surjective” is equivalent to the Four color theorem.

1.7.3 Functors

Let's start with some examples.

Example 1.175. Here are some examples.
« We have a functor from Grp to Set by taking a group to its underlying set of objects.
« We have another functor from Set to Grp by taking any set S to the free group on S.

« Homology is a functor from topological spaces X to abelian groups He(X).

Again, let's extract our common information. For example, a topological map X — Y turns into a corre-
sponding map of homology groups He(X) — H.(Y). Wellin fact this is true for the other examples as well:
a map of groups is of course a map of sets, and a map of sets can be lifted to a map of free groups.

So here is our definition.

9 Showing that g(m/n) = g(m)/g(n) requires some care. Because certainly g(n)g(m/n) = g(m), it suffices to show thatn # 0
implies g(n) € R*.But g(n)g(1/n) = g(n/n) = g(1) = nlg because ring homomorphismssend g : 1 — 1p.
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Definition 1.176 (Covariant functor). Fix A and B categories. Then a (covariant) functor F : A — B has
the following data.

« The functor F takes objects of A to objects of B.

« Given a morphism f € Mor(A;, A>) with 41, As € A. Then there is a morphism F(f) : F(4;) —
F(As).
« Identity: given any object A, we have that F'(id4) = idp(a) -

« Composition: given objects A4;, A3, A3 with morphisms f € Mor(A;, A2) and g € Mor (43, A3),
then F(go f) = F(g) o F(f).

Remark 1.177. We may skip the boring parts of the definitions because we don’t care. Definitions in
category theory are rather unmemorable.

Let’s have another example.

Example 1.178. Fix a group G acting on a set S. This is actually a functor from the category the one-
object category representing G to Set . Namely, we take our one object to the set S, and each morphism
in the one-object category correspond to some specified function on S. It turns out that the axioms of
a group action correspond to the checks for being a functor.

To motivate the next definition, consider taking a vector space V over k in the category Vecy, to its dual.
Namely, we take V' € Vecy to V* := Homy(V, k) its dual. Then givenamap f : V — W, we might want a
morphism f*: V* — W*. Here is the diagram: given ¢ € V*, how do we induce y € W*?

Vv—07— W

However, there is no useful way to take p : V' — ktoamap W — k, so we appear stuck. But conversely, it
appears that given~ : W — k, we caninduce ¢ : V — k by precomposing as ¢ := v o f! Here is the diagram.

Vv —mMmMmMm W

So we can define the map f* : W* — V* by takingy € W* to~y o f € V*. But now the direction of our
morphisms is reversed, so we pick up the following definition.

Definition 1.179 (Contravariant functor). A functor F' : A — B is called contravariant if we “reverse”
morphisms f : Ay — A by F(f) : F(A3) — F(A;). The same definition still works, except we need to
write the composition law as follows.

« Composition: given objects A;, A3, A3 with morphisms f € Mor(A1, A2) and g € Mor(A4,, A3),
then F(go f) = F(f) o F(g).

So we can check that V. — V*and f — f*is a contravariant functor Vec, — Vecy . The composition law
boils down to checking that

[ (g7p) = f (v pgv) = (v (pg) fv) = v plgf)v = (fg)" (¥),
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which is more annoying than interesting.

Remark 1.180. It turns out homology is a covariant functor, but cohomology is contravariant. So it goes.

1.7.4 Size Problems

We can also compose functors! For example, given F : A — Band G : B — C, thereisafunctorGo F': A —
C. This lets us make the category of all categories where the objects are categories and the morphisms are
functors! Except this doesn't work for size reasons, for the same reason there is no set of all sets.

There are a few ways to fix this.

« We can merely consider the category of all “small” categories, where we only consider the categories
with at most some cardinal number of objects and morphisms.*°

+ We can use “classes” if we are careful.
« We can also use Grothendieck universes, which is common algebraic geometry.
« Ignore the problem completely.

We will take the last approach for our introduction here. We will have to encounter it later in life but not
now.

1.7.5 Natural Transformations

Of course, we start with an example.

Example 1.181. Fix V a finite-dimensional vector space and V* its dual. We know that V' = V* but
there is no “natural” isomorphism in general because we have to pick a basis first.

However, there is a “natural” isomorphism V' = V**. Namely, given an element of V, we can coni-
cally exhibit a map (V — k) — k in V**. To be explicit, we have a function V' — V** by

vi— (@ — o).

In A-calculus, this reads A(v : V).A(¢ : V*).ov. And we can take linear transformations f : V' — W to
[V = W which looks like f** : o — o f.

We would like to rigorize what “natural” means. To start, we note that we have two functors F, G : Vec, —
Vecy by F: V — Vand G : V — V** and we would like there to be a natural transformation between them.
What does this mean? Well, what do we have?

« ForanyV,thereisamapny : F(V) — G(V). Indeed, this was the map V' — V** given in the example.

« Forany morphism f : V' — W, the following diagram commutes.

1% F(V) ™5 q(V)
lf F(f)l lG(f)
14 F(W) —— G(W)

Namely, given v € V, we can track some v € V along both directions of the square, writing

vfﬁﬁf‘vM@va)

while

, G(f)
v (9 pu) 5 (0 = ofv).

10 The category of small categories would like to know your location.
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This is the general definition.

Definition 1.182 (Natural transformations). Given two functors F,G : A — B, we say that there is a
natural transformation n, : F' — G if we have the following data.

« Forany A € A, thereisamapna : F(A) — G(A).

« For any morphism A; — A, the following diagram commutes.

F(4;) 225 G(A1)

Ay
J{f F(f)J{ J{G(f)
Ay

F(Az) “hay G(A2)

So the statement that V' is naturally isomorphic with V** turns into the fact that there is a natural transfor-
mation between V +— Vand V — V**,

Definition 1.183 (Natural isomrphism). Fix everything as in the definition of a natural transformation.
Ifna : F(A) — G(A) is an isomorphism, we call  a natural isomorphism and the functors F' and G are
naturally isomorphic.

So we see that V — V and V — V** are naturally isomorphic in the category of finite-dimensional vector
spaces over k.

Example 1.184. Fix A and B categories. Then the functors from A to B make a category, where objects
are functors and morphisms are natural transformations. This is called a 2-category; we can even go
further to 3-categories, 4-categories, and so on upwards to co-categories in the limit.

1.7.6 Adjoint Functors

Here is our basic example.

Example 1.185. Consider the categories of Set and Grp . We have two functors.
« The forgetful functor from G : Grp — Set by simply forgetting the group structure.

« The free functor from F : Set — Grp by sending sets to their free groups.

These are not inverses, but they are “adjoint.” Namely, suppose we take a group X and set S and consider
G(X)and F(95). Last class we noticed that we have the universal property that any function of sets f : § —
G(X) induces (arguably, “lifts to") a unique morphism g : F(S) — X. Here is the diagram.

In particular, we have a bijection between Mor (S, GX) and Mor(F'S, X), and this bijection is “natural” in
some sense. Rigorizing what we mean vey "natural” gives the following definition.
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Definition 1.186 (Adjoints). Fix functors F' : A — Band G : B — A. We say that (F, G) form an adjoint
pair if and only if we have bijections

Tap:(A— GB) — (FA— B)

causing the following two diagrams to commute: for any .A-morphism f : A; — A, and B-object B,
the following must commute.

Ay - GB 222, FA, - B

Ay
Lo Jrs
Az

A1—>GBm>FA1—>GB

Additionally, there is an inverse diagram for TE}B : (FA — B) —» (A — GB), which we won't write
down. In this case, F is called left adjoint and G is called right adjoint.

It turns out that free functor is left adjoint with the forgetful functor; we won't check this here because it is
a bit arduous.

Remark 1.187. We call these adjoint functors because they are related to adjoint linear transformations.
Namely, given two linear transformations F,G : V' — V quipped with an inner product (-, -), they are

adjoint if and only if
(s,Gz) = (Fs,z)

fors,z € V.

In general, right adjoints tend to be “forgetful” while left adjoints are “free.” Here are some more examples
of this.

Example 1.188. The following functors are adjoint.
« The forgetful functor from commutative rings CRing to sets Set .

» The free functor from a set S’ € Set to the polynomial ring Z[S] € CRing.

Example 1.189. The following functors are adjoint.
» The forgetful functor taking a complete metric space to a metric space.

« The completion functor taking a metric space X to its completion X by Cauchy sequences modded
by some equivalence relation.

Here completion is left adjoint to the forgetful functor.

1.7.7 Products and Coproducts

Let's talk about products. The universal definition, say in Set is the set of pairs. This won't do in category
theory, so here is our definition.
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Definition 1.190 (Prodcuts). Given objects X and Y, the product object X x Y is universal in the set of
morphisms to X and Y. Namely, we are given maps7x : X xY — X and 7y : X x Y — Y such that,
given any object Z with maps fx : Z — X and fy : Z — Y, thereisauniquemap f : 7 - X xY
making the following diagram commute.

Example 1.191. We show that the product of sets S and T is indeed the product of sets; the maps 7s :
SxT —» Sandnr: S x T — T are the projections onto the corresponding coordinate. Now, suppose
that we have a set R and maps fs : R — S and fr : R — T making the following diagram commute.

Then we define f : R — S x T by f(r) = (fsr, frr). This works because ns(fsr, frr) = fsr and
mr(fsr, frr) = frr,and this is forced because we must have ng(fr) = fsrand np(fr) = frr.

Warning 1.192. Note that the product X x Y, is not unique, but any two products are canonically iso-
morphic.

Indeed, suppose we have two products X x Y and X x’ Y with projections tx : X x Y — X and 7y :
XxY—=>Yand7nyk : X xX'Y - Xandnl : X x’Y — Y.Then, weseethatwegetan’ : X Xx'Y - X xY
making the following diagram commute.
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But now we claim that 7 and 7’ are isomorphisms, for which we show that ron” = idx xy and 7’om = idx xv -
We show that 7 o 7’ = idx «/y, and the other follows by symmetry. Well, forany p € X x’'Y, we see

Te(p) = (e 0 7')(p) = me('p) = mo (7 0 7')(p)).

for either projection . It follows that the following diagram commutes.

Yy

However, making idx x -y the induced arrow also makes the above diagram commute, so we must have
mon =idyxy because the induced arrow is unique! (Here we used the uniqueness of the induced arrow.)

And now let’s talk about coproducts, which is defined by reversing the arrows of products.

Definition 1.193 (Coproducts). Given objects X and Y, the coproduct object X & Y is universal in the
set of morphisms to X and Y. Namely, we are given mapstx : X - X ®Y andiy : Y — X @Y such
that, given any object Z with maps fx : X — Zand fy : Y — Z, thereisauniquemap f : X Y — Z
making the following diagram commute.

fy

A similar warning as Warning 1.192 applies here, but a similar proof gives our canonical isomorphisms; we
will not write it down here.
Intuitively, the coproduct is the smallest object containing X and Y. Here are some objects.

Example 1.194. The coproduct of two sets S and T is the disjoint union S LI T. The inclusions tg : S <
SuUTandur : T — SUT are standard. Now, suppose that we have a set R and maps fs : S —+ Rand
fr : T — R making the following diagram commute.

fr

Then we define f : SUT — Rby f((s,0)) = fssand f((1,t)) = frt. This works because f(tgs) = fss
and f(crt) = frs, and this is forced by the same constraints.
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Example 1.195. Given two abelian groups G; and G, the coproduct is G; x G, where the inclusions
t1: Gy — Gy x Ggand 13 : Gy — Gy x G9 are defined by

t1: g1+ (91,0) and t2: g2 = (0,92).

In general, the (finite) product of two abelian groups is the coproduct, which is quite remarkable and
rare. For example, the product and coproduct are different in Set .

Example 1.196. More generally in groups, the coproduct of the two groups G and H, we want a group
G x H which is "as big as possible” given G and H as generators. So we take “reduced” words that look
like

gihihahg -+,
where g, and h, are nontrivial elements of G and H respectively. To show that all these “reduced”

words are nontrivial, we make our words act on some giant graph. The idea is to build a Cayley graph
by hand.

The point of this last example is that categorical coproducts, which look simple, are potentially very annoy-
ing.
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THEME 2
RING RAMBLES

One Ring to rule them all, One Ring to find them,
One Ring to bring them all and in the darkness bind them.

—J. R. R. Tolkien

2.1 September21

All around me darkness gathers.
2.1.1 Rings
Today we do rings. We have the definition.

Definition 2.1 (Ring). A ring is a set R with two operations + and x such that (R, +) is a group, x asso-
ciates, and we distribute by

a(b+c¢) = ab+ ac and(a + b)c = ac + be.

We have some extra axioms as well.

Definition 2.2 (Commutative ring). A commutative ring is one where multiplication commutes.

Definition 2.3 (Ring with unity). A ring with unity is one with a multiplicative identity. We might call the
multiplicative identity just “unity” or “identity.”

The above two definitions are generally assumed but not by all authors.

Warning 2.4. In this course, our rings will generally be commutative with identity.

Anyways, have some examples.
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Example 2.5. We have that Z is a ring.
Example 2.6. Any field is a ring.

Example 2.7. For R a commutative ring, the polynomials R[x] form a commutative ring. If R has a mul-
tiplicative identity, then R[z] has the same multiplicative identity.

Example 2.8. Given aring R, the n x n matrices R"*™ form a ring. If R has multiplicative identity, then
R™ ™ has the identity matrix. However, if R is commutative, it is not necessary for R"*" to be commu-
tative.

Example 2.9. The Gaussian integers Z[i] : {a + bi : a,b € Z} make a ring.
Most of these rings are commutative with identity. Let's do some examples not containing 1.

Example 2.10. The set Cy(R) consisting of all continuous real functions with compact support, where
addition and multiplication are pointwise. However, our multiplicative identity in {f : R — R} is the
x +— 1 function, which does not have compact support.

In general, analysis has lots of natural examples like this.

Example 2.11. We can also define multiplication on C(R) by

(f * 9@ /f

and makes a perfectly fine commutative ring, but there is no identity; note that this integral is surely
well-defined because f and g have compact support. (The identity should be 1,—q, which is not contin-
uous.)

The checks here are not very interesting; for example, distributivity comes down to noting

(f * (g +R)( /f (g+h)(z—y dy—/f x—y)der/Rf(y)h(x—

is (f * g)(@) + (f * h)(a).

2.1.2 Modules

We can also define modules.

Definition 2.12 (Module). A (left) module M over aring R has exactly the same axioms as a vector space
over a field.

» (M, +) is an abelian group.

« M has a left R-action - : (R, M) — M, satisfying (rs) - m = r - (s - m) and the various distributive
laws
r-(m+n)=r-m+r-n and (r+s)-m=r-m+s-m

forr,s € Rand m,n € M. In other words, there is a ring map R — End(M).
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We remark that sometimes we require 1zm = m when R has an identity element, which we will also usually
require.

Example 2.13. Vector spaces over a field are modules over that field.

Example 2.14. Abelian groups are Z-modules, where the Z-action is exponentiation.

2.1.3 Analogies

There is some correspondence between our algebraic structures, which for now are groups and rings.

« Groups act on sets in the same way that rings act on modules. There are even left and right actions in
the same way that rings have left and right modules.

+ There is the symmetric group S,,, which consist of all permutations of {1,...,n}. Inrings, this is the
matrix ring R"*", which are all linear transformations R" — R".

« Atahighlevel, sets S correspond to free modules R®, which is the module which consists of #5 copies
of R.

« Groups have permutation representations (which are group actions on a set), which correspond to
linear representations of a ring (which are ring actions on a module).

« If a group acts on two sets A and B, then we can consider the set-theoretic union A U B compute
cardinalities as
|[AUB|=|A|+|B|—|ANB|.

(Note there is a canonical way to get a group action on A U B.%) On the other hand, for vector spaces
V and W which are subspaces of a bigger vector space X, we can compute

dim(V+ W) =dimV 4+ dim W — dim(V N W),

which looks quite similar.

Warning 2.15. The principle of inclusion-exclusion does not work for three vector spaces. For example,
for three sets A, B, C' we have

[AUBUC| = |A|+|B|+|C|—|ANB|—|BNC|—|CNAl+]|AnBNC|.

The analogous formula for vector subspaces U, V, W C X fails.

To manifest the warning, the formula fails for U = (1,0)R, V = (1, 1)R, and W = (0, )R living in R%. We
can compute
dim(U +V + W) = dimR? = 2,

but
dimU +dimV +dimW —dim(UNV) —dim(VNW) —dim(W NU) + dim(U NV NW) = 3.
At a high level, the problem here is that bases do not behave enough like sets.

» Regardless, (disjoint) unions of sets correspond to (direct) sums of modules.

1 We remark that there is some care here: we want R"*"™ acts on the left of R”, but R acts on the left of R"*".
2 For example, if Z/2Z swaps A = {1, 2} and swaps B = {2, 3}, there is no good way for Z/2Z to act on AU B.
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+ Given sets S and T with a G-action, we see S x T has a G-actionby g - (s,t) := (g s,g - t), which has

#(S xT)=#S x #T.

This corresponds to tensor products of modules. As a quick and dirty definition, if V and W are k-
vector spaces with bases {v; }{mV and {w,}$m W then we force V x W to have a basis vy, ® v,. Then
we see

dim(Ve@ W) =dimV x dim W.

2.1.4 Burnside Ring

Let's define an exotic ring: the Burnside ring of a group. We fix G := S5 for concreteness. We want to look at
allisomorphism classes of finite sets with a G-action and make a ring, which will almost but not quite work.
For example, with sets S and T with a group action, we define

S+T=SuT SxT=8xT.

In other words, our addition is disjoint union, and our multiplication is product. To be explicit, our G-sets
are as follows.

» Theactionof Gon S U T isdefinedbyg- (s,0) :=(g-s,0)and g - (¢,1) :== (g - ¢t,1).
« The action of Gon S x T'is as given in the previous section.

Formally, we would have to check that that the isomorphism class of S1LUT and S x T' do not depend on the
specific representative of [S] and [T'], but this check is more annoying than difficult.

These operations obeys most of the ring actions, and multiplication even commutes! For example, our
additive identity is & (yes, groups can act on &), and the multiplicative identity is {*} with the trivial action.
However, there are no additive inverses because no operation can make our sets smaller.

To fix our additive inverse problem, we focus more closely on representatives of all transitive permuta-
tion representations of GG; the point is that any G-action on a set is a disjoint union of how G acts on each
orbit, which is transitive. Well, if G acts transitively on S, the order of our set S must be {1,2,3,6} by the
Orbit-stabilizer theorem. We can list the actions.

« If G acts on one element, then it is trivial.

« If G acts on two elements transitively, then one of the order-2 elements swaps, and the rest of the
action can be determined from this. There is one way to do this, up to isomorphism.

« If G acts on {a, b, c}, transitively, then note that no transposition can be trivial, for then the entire con-
jugacy class of transpositions will be trivial, vanishing the image.

Further, distinct transpositions must be sent to distinct transpositions in {1, 2, 3}, or else our action
collapses to a transitive action on a two-element set. Without loss of generality, we send (12) — (12)
and (23) — (be) and (13) — (ac) so that G is acting on S5 on {a, b, c}.

« If G acts on six elements, it acts like S5 on S5 by left multiplication. Essentially, the transpositions need
to all act on separate elements, else the action of G on the set will miss one of the six elements and
hence not be transitive.

From these transpositions we can determine the entire action, so there is at most one action here, up
toisomorphism. Well, we can exhibit S5 acting on S5 by left multiplication as an action, so one certainly
exists.

Label these isomorphism classes by [1], [2], [3], [6]. Now we see that any permutation representation of 53
are isomorphic to some disjoint union of the above orbits; namely our elements take the form

a1[1] + a2[2] + a3[3] + ag[6] ai,as,as3,a¢ > 0.

To make this a ring, we just let a1, as, a3, ag vary over all integers.
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Definition 2.16 (Burnside ring). Fix G a group, and given a G-set S, let [S] be the isomorphism class of
S as a G-set. Now, label {[T]} <7 the isomorphism classes of transitive G-actions. Then the Burnside
ring of G is defined as the free abelian group on T

P z(r)
TeT

with multiplication defined as

[Sl] X [Sg] = [Sl X SQ]

As an example, we'll compute [3] x [3]. Well, here S5 is acting on the following lattice.

(1,1) (2,1) (3,1)
(1,2) (2,2) (3,2)
(1,3) (2,3) (3,3)

For example, we can compute that (12) acts as red in the following diagram, and (23) acts as blue.

C(l,l) (1,2) «+— (1,3)

< !

(2,1) (2,2) (2,3)
(3,1) + (3,2) (3,3) |

From these we see that we have at most two orbits, namely the diagonal and everything off of the diagonal.
The diagonal is in fact an orbit because it is closed: for any (k, k) and o € S5, then o(k, k) = (ck, ok) remains
on the diagonal. It follows that the off-diagonal elements must also be closed and hence forms another
orbit.

So we see that S3 is acting transitively on a set of size 3 (the diagonal) and transitively on a set of size 6
(off the diagonal) so we find 73 X 73 = 73 + 6.

2.1.5 Group Rings

We remark that, as expected, Ring is a category of rings, where morphisms are homomorphisms are maps
between rings which preserve the ring structure.

Further, modules over a fixed ring R form a category in the same way that vector spaces are; namely, our
morphisms are linear transformations between R-modules.

We want some functors. Here is the group ring.

Definition 2.17 (Group ring). The group ring R[G] of a group G and ring R is defined as a free module of
G with basis given by the elements of G. Then we define multiplication to distribute and then multiply
as in the group:

(Z agg) (Z bhh> =) (aghn)k.

geG REG kEG gh=k
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Remark 2.18. We can check that G acting linearly on a group is the same thing as finding a module over
the group ring.

We note that the construction for a group ring also works for modules instead of groups. For example, we
have the following.

Example 2.19. If we take the monoid M = N, then the group ring Z[M] is the polynomial ring Z[z].
Namely, k € N gets taken to k > z*.

So where are our functors? Well, we have the following.

Proposition 2.20. We claim that the (forgetful) functor G : Ring — Grp by G : R — R* is right adjoint
to the group ring functor F' : Grp — Ring by F': A — Z[A].

Again, we are having that left adjoints appear free and right adjoints appear forgetful. At a high level, these
are isomorphic because maps G — R* are in correspondence with maps Z[G] — R because maps Z[G]
must send group elements to elements of R*.

Proof. We will actually do the checks for this because | should do this at least once in my life. The main
point is the following lemma; roughly speaking this says that the group ring is the ring freely generated by
agroup.
Lemma 2.21. Fix A a group and R a ring with identity. Then we have the following.

(@) Amorphism ¢ : A — R* can be uniquely lifted to a morphism @ : Z[A] — R.

(b) Any morphism @ : Z[A] — R can be restricted to a morphism ¢ : A — R*.

We remark that lifting and restriction are inverses of each other, well-defined by the uniqueness of the
lifting.

Proof. We take these claims one at a time.

(a) Suppose that we have a morphism ¢ : A — R*. Then, for any element
PP p ¥ Y

> kea € Z[A],

acA

properties of  force that
7 (Z kaa> = Z kap(a)
acA a€A

by distributing repeatedly. This shows that ¢ : Z[A] — Ris forced and hence unique. Conversely, the
above actually works as a definition for ¢, for which we have to check

7 <Z kaa - » m) =7 (Z kaa> 7 (Z m) ,

acA a€A acA acA

and
7 (Z koa + Zzaa> =7 <Z k:aa> +% <Z éaa> ,
a€A acA acA acA

which are true after some distributing. We do also have to check that ¥(e) = e = le, which holds
because ¢ : A — R* is a group homomorphism.
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(b) Conversely, suppose that we have a morphism @ : Z[A] — R. We note that ¥ being a ring homomor-
phism implies that $(aia2) = $(a1)P(asz), so @ restricted to A is homomorphic.

The main check is that restricting @ to A actually outputs into R*. Well, the multiplicative identity of
Z[A]is le = e, so forany a € A, we find
?(a)7 (a7') =9 (aa™") = B(e) = 1r,
soindeedimy C R*. [ ]
We now check that our functors are adjoint. There are two diagrams to check.

» Fixvy:A; — Ay. We show that the following diagram commutes, for any ring R.

A1 Ag — R* —— Z[AQ] — R
IR
Ay A - R —— Z[Al] — R

Here, the horizontal arrows are the ones promised by the bijection in Lemma 2.21. We check the
commutativity by hand. Fix ¢ : Ay — R*. Following the diagram around, we see that we are showing
povy =pory. Well, po7 is the unique morphism making the following diagram commute.

POy
A, 20, Rx

L

oy

However, % o v makes the following diagram commute.

A — T A, 2 5 R

[ [ |

Z[Al} — Z[AQ] — R
%
In particular, we see that % o v makes the diagram for o7 commute, so @ oy = o7 by uniqueness.

» Fixv: Ry — Ry. We show that the following diagram commutes, for any group A.

Ry A= R —— ZIA| - Ry
|-
Ry A— Ry —— Z[A] = Ry

Again, the horizontal arrows are coming from the bijection promised from Lemma 2.21. We check the
commutativity by hand. Fix ¢ : A — R{‘. Following the diagram around, we see that we are showing
Fop =7v0op. Well, yo g is the unique morphism making the following diagram commute.

yop
A %%, Ry

[

Yop
However, v o  makes the following diagram commute.

® v
A RY R}

[ ]

ZA] —— Ry Ry

Y
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In particular, we see that yop makes the diagram fory o @ commute, soyop = ¥o pbyuniqueness. W

Fun with C[G]

As an example, fix G = (Z/2Z)? giving the group ring Z[G]. But we can also look at, say, C[G], which is a
vector space with basis enumerated by G = (Z/27)?. We'll label G = {1, a, b, ¢} for brevity.

Remark 2.22. We are using G = (Z/27)? because Professor Borcherds is getting bored with cyclic
groups.

However, we claim that C[G] is actually just four copies of C, as a ring. Surely, C[G] is a vector space and
splits into one-dimensional vector spaces, but that’s not what we're interested in.
Roughly speaking, splittingaring R into a product S x T corresponds with idempotent elements.

Definition 2.23 (Idempotent). An element 2 € R is idempotent if and only if 2% = x.

Example 2.24. Anyring Rhas 0-0 = 0, so 0 is idempotent. If R has identity 1,then1-1 =1,so lisalso
idempotent.

Example 2.25. If R is a commutative ring with identity satisfying ab = 0 impliesa = 0 or b = 0, then

22 = zimplies x(z — 1) = 0 impliesz = 0 or x = 1. So in fact 0 and 1 are only idempotents.

The reason we care about this is that the ring S x T will have the extra idempotents (0, 0), (1, 1), (0, 1), (1,0),
which is a lot more that what we expect as just 0 and 1. It turns out that we can reverse: given nontrivial
idempotents, then we can decompose R into a product of smaller rings.

Proposition 2.26. Suppose R is a commutative ring with identity 1 and an idempotent element z € R.
Then we have the direct sum
Rz ® R(1—x)=R.

Note that the rings Rz and R(1 — x) need not contain the unity element of R and in fact in general may not.
But, for example in Rx, any rx € Rz has rz - x = ra? = rx, so x serves as an identity here.

Proof of Proposition 2.26. Note that we have the map ¢ : Rz @ R(1 — z) — Rby ¢ : (az,b(l — z)) —
ax + b(1 — x), which we will not check is actually homomorphic, but it is. Note that ¢ is surjective because
we can write

r=rl=rz+r(l—2z)=qp(zrl-u1).

Further, ¢ is injective because it has trivial kernel: if ax 4+ b(1 — z) = 0, then we claim ax = b(1 — z) = 0.
Indeed, the trick is that 22 = z implies that z(1 — x) = 0, so

ar = az® = az® + bx(l —z) =z (ax + b(1 — 2)) = 0.

Similarly,
b(l—z)=b1-z)*=az(l—2z)+b(l—2)*=(1—z)(az +b(l —z)) =0,

which is what we wanted. [ |

Remark 2.27. The representation if » = az + b(1 — ) is only unique up to axz and b(1 — z), not up to a
and b. In other words, it is possible for the map R x R — R defined by (a,b) — ax + b(1 — z) to have a
kernel, but this is not what Proposition 2.26 is claiming.
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Remark 2.28. There is an analogous construction for non-commutative rings with identity: if x € Ris
idempotent, we can write

R zRx®a2R(1—2z)® (1 —2)Rx® (1 — z)R(1 — z).

When the ring is commutative, the terms 2 R(1 — x) and (1 — =) Rz vanish because z(1 — z) = 0.

With this in mind, let’s find idempotents in C[G]. We can check that the following are idempotent.

l+a+b+c¢c 1—a+b—c 1+a—-b—c 1—a—-b+c
4 ’ 4 ’ 4 ’ 4 '

These are not the only idempotents (adding any of them will also give an idempotent), but they are good
enough for a basis of C[G]. Indeed, we claim that

1 1— - l4+a—b— l—a-—
Cle] = C +a+b+c ®C a+b—c ®C +a—-b—c oC a—b+c .
4 4 4 4
Note that each of the spaces on the right-hand side are still G-sets because they are closed under the G-
action; for example, {1, a, b, ¢} acting on 1’#“”” will get sent to £1=2tb=c ¢ C [l’azb’c] under multiplica-
tion by G. (This is the same check as kaf“’*c is idempotent.)

To show the direct sum, we note that C[G] is four-dimensional as a C-vector space, and the space

V::C{l—i-a—l—b—kc] @C[l—a—t—b—c] @C[l—ka—b—c} EBC[I—@—(H—C}7

4 4 4 4

is at most dimension 4, so it suffices to show that the above spaces will span into all C[G]. For this it is enough
to note the natural map

l+a+b+c l—-a+b-—c l+a—-b—c l—a—-b+c

(w,z,y,2) — w 1 +x 1 +y 1 +z 1

is in fact bijective because this transformation corresponds to the matrix

1 1 1
-1 1 -1
1 -1 -1|°
-1 -1 1

=
—

which has nonzero determinant. So indeed, we see that C[G] splits as claimed.

Remark 2.29. It turns out that any abelian group ring over C will split into various copies of C as a ring
as well, which is roughly speaking due to the representation theory of abelian groups.

Example 2.30 (Nir). Take G = (g) = Z/nZ. Then the group ring C[G] is decomposed with the idempo-
tents L 37" (¢*g)", where (is a primitive nth root of unity. Indeed, we can compute that

(Z(Cag)k> (Z(Cbg)z> _ Z CakerZng% _ Z ( Z Cak+b€> gm — Z (Z C(ab)k) Cbmgm.
k=0 =0 k=0 m=0 \k-l=m m=0 \k=0

If @ = b, then the internal sum evaluates to n; if a # b, then the internal sum vanishes. This shows that
these elements are orthogonal idempotents.
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Dirichlet Series

Let's do another example of a monoid ring, as formal series.

Example 2.31. So we have that C[N] is the polynomials over C, where N is the naturals under addition.

Example 2.32. We consider the set of formal Dirichlet series

oo
ag

Z s’

k=1

w‘k

Our multiplication is defined formally by

= ak = b[) i (Z ) 1
75 —s = akb[ 7
(k_l k ) <£—1 ¢ n=1 \kl=n n

Note that this is very different from the usual polynomial ring multiplication.

It turns out that the finite Dirichlet series are the ring C[N*], where N* is the monoid of the nonzero naturals
under multiplication. Then in the same way that we can make C|N] formal by making it infinite, we can make
Dirichlet series infinite.

As an example of what we can do, number theorists care a lot about Dirichlet series. For example, we
have

1 1 Gl
C(S)_;ks and <<s>—2 e

k=1

where 1 is the Mébius function.

2.1.6 Coproducts

We can also talk about categorical coproducts in R. To review, this means that we have rings R and S and
want a ring R x S with inclusions tp : R — R* Sandts : S — R xS that satisfies the universal property.
Explicitly, for any other ring A with maps ag : R — Aand ag : S — A, there is a unique induced map
a: R*S — A making the following diagram commute.

However, it is an important point that what the coproduct is depends on whether we are working with
commutative rings or non-commutative rings.
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Example 2.33. Consider R = S = Z][z].

« The coproduct Z[x] * Z[z] in the category of commutative rings is the two-variable polynomials
Z|z,y]. Indeed, any ring map Z[z] — X corresponds to deciding where z should go in X, so when
deciding on a map Z[z] x Z[x], we have two decisions to make for each Z[z]|. Making two choices
is the same as making choices for Z[z, y].

» The coproduct in the category of all rings is the “non-commutative polynomial ring,” which is the
ring formed over Z where the generators z,y do not need to commute. Namely, we have our
Z-module freely generated by

2 2 3 .2 2 2,2 3
1,£C,y, r-,2Y,yx, Yy, T ,TY,Yr ,2Y Y T,Y ...

So thisis similarto the story for groups, where things that commute are good, but things that don’t commute
are difficult to get a handle of. To be more explicit, the generators of the coproduct in non-commutative rings
turn look like some kind of free (non-commutative) monoid generated by z, .

2.1.7 lIdeals

We work with commutative rings here. We can also define rings based off of their generators and relations.
In the group story, we wanted normal subgroups, but here our story is different. Suppose that we have a
surjective ring homomorphism ¢ : R — S. Then ker ¢ satisfies the following.

« ker ¢ is closed under addition.
* ker ¢ is closed under multiplication by any element of R.
This defines an ideal.
Definition 2.34 (Ideal). An ideal I of a ring R satisfies the following, foranyr € Rand a,b € I.

cea+bel

e ra,ar € I.
Remark 2.35. If our rings are non-commutative, then we have to deal with left and right ideals, which
might be closed under multiplication on one side but not the other.
We can show that all kernels are ideals.

Lemma 2.36. Fix R and S commutative rings with identity. Fix a ring homomorphism ¢ : R — S. Then
ker ¢ is an ideal.

Proof. We check the conditions one at a time.
o If ky, ko € ker o, then (p(]ﬁ + ]€2) = (p(]ﬁ) + QO(]CQ) =05+ 05 =0g,50 k1 + ko € ker .

« Ifr € Rand k € ker ¢, then
p(rk) = @(r)p(k) = ¢(r) - 05 = Os,
sork € ker p as well. |

The converse is also true, using a similar construction as with quotient groups.
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Lemma 2.37. Fix R a commutative ring and I an ideal. Then we can define the quotient group R/I and
make R/I into aring by
al - bl = (ab)I

fora,b € R.If R has unity, then I does as well.

Proof. The quotient group R/I exists because (R, +) is abelian, so I is a subgroup and hence a normal sub-

group.
The mainthing to checkis that multiplication is well-defined. Well, supposethata,I = axland b1 = bol
sothata; —ag =:4, € Tand by — by =: i, € I. Then we want to verify that

(a1b1)I = (asbo)I.

Indeed, we see
agby = (a1 + ia)(bl + ib) = a1by + bii, + ayip + 140,
—_—

where the bracketed part is in I by definition of the ideal.
We will not check that all of the various ring axioms hold; they are mostly just inherited directly from
R. [ ]

The point is that the canonical map R — R/I by r — rI goes into the kernel if and only if » € I, so this map
has kernel I. So indeed, any ideal can be constructed as a kernel. In this way ideals are somewhat similar to
normal subgroups, in that they are the conditions we want to make quotients.

So now, to define a ring (or group) by generators and relations, we pick up some generators {a;}}_;,
which generate a free ring (or group). Then we want to quotient by the ideal (or normal subgroup) generated
by those relations. We give these constructions more explicitly as follows.

« To be formal, let Free(S) be the free group generated by S.

For our construction, doing this for groups means we start with the letters {a, }nc) generating the
free group Free({aq }acr). Then, given some relations we want to mod out by as words {wg}gex, we
note that there is a morphism ¢ : Free(x) — F lifting

@B ws.
Then the group G given by the letters {a, } and relations {ws} is
F/imp,
which is F modulo the normal closure of im . Explicitly,

imy = ﬂ M,
im eCN

where N loops over normal subgroups of F.

+ A bit more easily, we can define the ring generated by letters {aq }ocx and words {ws} e, to be the

free ring modulo
D Fus,
BEK

which is the ideal generated by the words {ws}scs.

Example 2.38. Fix G generated by a, b with relations a? = b? = (ab)" = e. We can check that G is Da,,,
where a and b are some particular reflections.

In general, it is very hard to find the group given generators and relations.
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Non-Example 2.39. Fix G generated by a, b, ¢ with relations aba=! = b? and beb=! = ¢? and cac™! = a?.

This problem turns out to be very hard, even to determine if G is trivial or not.

Remark 2.40. In fact, there is a theorem that there is no algorithm which can in general turn a system
of generators and relations into a group structure, or even if the group is trivial.

Example 2.41. Fix generators z, y with the relation y? = 23 — 2, and we look at the free polynomial ring
Clz, y]. Then we are studying
Clz, ]
(2 —ad+a)

Things ring can be interpreted as the polynomial functions from the curve 4> = 23—z to, say, C. Namely,

we want to identify two polynomials on y? = 23 — 2 if they are equal on all points of y? = 23 — 2, which

is the same as modding out by polynomials which identically vanish on y? = 2% — z.

For more related to the above example, see algebraic geometry.

2.2 September28
He was safe, for now. But the dark thoughts would soon return.

2.2.1 Introducing Unique Factorization

We're talking factorization today.

Warning 2.42. All rings today are commutative with identity and have no zero-divisors. In other words,
ab = 0 for a,bin our rings will imply a = 0 or b = 0.

Namely, we have the following definition.

Definition 2.43 (Integral domain). Aring Ris an integral domain if and only if it is nonzero, commutative
with identity, and ab = 0 impliesa = 0orb = 0.

The main thing that integral domains gives us is a cancellation law for multiplication: if ac = be with ¢ # 0,
then (a — b)c = 0 whilec # 0,s0a = b.
Here is the standard example of unique prime factorization.

Example 2.44. For Z, we have unique prime factorization: every positive integer is the product of posi-
tive primes, uniquely (up to permutation). Speaking more abstractly, every nonzero integer is the prod-
uct of primes and units, unique up to permutation and multiplication by some unit. For example, 1 and
—1 are both products of empty sets of primes.

Let's try to generalize our factorization.

Definition 2.45 (Prime). Fix R a commutative ring. Then p € R is prime if and only if p is nonzero, not a
unit,and p | abimpliesp | aorp | b.

This is not the definition most of us are used to from elementary school. The other definition has a different
name.
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Definition 2.46 (Irreducible). Fix R a ring with identity. Then p € R is called irreducible if and only if p is
nonzero, not a unit, and p = abimplies a or b is a unit.

Note that 1 (and units more generally) are neither prime nor irreducible. It just turns out to be more conve-
nient that way.

Remark 2.47. Professor Borcherds thinks arguing about whether 1 is prime or not is pointless. It is not
prime by definition.

We are going to talk about factorization in a few steps.
(i) We start with Z, which is everyone’s favorite.
(ii) 1t happens that Z is a Euclidean domain.
(iii) We will show all Euclidean domains are principal ideal domains.
(iv) Then we will show all principal ideal domains are unique factorization domains.

And unique factorization domains are the ones that we want.

Definition 2.48 (Unique factorization domain). A ring R is a unique factorization domain if and only if it
is an integral domain and every element can be written as a product of irreducibles, where the product
is unique up to permutation and multiplication by units.

2.2.2 Euclidean Domains

So let's start with Euclidean domains.

Definition 2.49 (Euclidean). A Euclidean domain is an integral domain R with a division algorithm. In
other words, given a, b with a # 0, we can divide

b=aq+r

where 0 < |r| < |a| for some notion of | - |. We also require that | - | : R — Z>,.

Warning 2.50. The above requirements on the Euclidean function are somewhat nonstandard. More
typicalwould be | - | : R\ {0} — Z>( satisfying a division algorithm and |a| < |ab| for any a,b € R.

The exact requirements on the “norm” | - | are not very standard and not worth memorizing. The main point
is that we can write down a statement of the division algorithm, we want 0 to be smaller than all the other
elements, and we want there to be only finitely many elements of bounded norm.

Anyways, here are some examples.

Example 2.51. We have that Z has a division algorithm, where | - | is the usual absolute value.

Example 2.52. The ring k[ X] for a field k, where we use deg for our size function. Technically we want
|0 =0and |f| = deg f + 1 for f # 0 to make this work with the above definition.

Example 2.53. The Gaussianintegers Z[i] = {a+bi : a,b € Z} have adivision algorithm, where |a+bi| =
a® + b

In general, here is our idea.
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Idea 2.54. A Euclidean domain is an integral domain where we cannot have infinite descending chains
of elements.

2.2.3 Principal Ideal Domains

Recall the following definition.

Definition 2.55. A ring R is principalif and only if all ideals are generated by one element, i.e., are prin-
cipal.

Lots of the rings we love are principal ideal domains: Z, k[X] for a field k, and so on. Let's see some rings
which aren't.

Non-Example 2.56. The ring k[ X, Y] is not a principal ideal domain: take I to be (X,Y), which cannot
be reduced to be a single generator. In other words, I is the ideal of polynomials with no constant term.

Indeed, suppose that (X,Y) C (f) for some f € k[X,Y]. Then f | X and f | Y, and degree argu-
ments show that f | X implies thereis some ¢, € k* suchthat f = ¢, or f = ¢, X. Butc, X 1Y because
X 1Y, sowe must have f = c € k*. Butthen (f) = k[X,Y],so (f) # (X,Y).

Non-Example 2.57. The ring Z[X] is also not a principal ideal domain: take I = (2, X). In other words,
I is the ideal of polynomials with even constant term.

The proof that I is not principal is similar to before. Suppose f € Z[X] has (2,X) C (f). Then f | 2,
so f = +1or f = +2. Note f = +2 generates an ideal missing X, so this does not work. So f = +1, so

(f) = Z[X],and (f) # (2, X).

Remark 2.58 (Nir). At a high level, what is happening with the above rings is that they are Noetherian
of dimension 2.

Here is one step in the outline we gave at the start, which is the reason we brought up Euclidean domains to
begin with.

Proposition 2.59. All Euclidean domains are principal ideal domains.

Proof. Fix R a Euclidean domain, and pick up an ideal I. Then by well-ordering we can find the minimum of
{la[ : a € T\{0}} C Z>o

as wellas somea € I\ {0} with the minimal |a|.
We claim I = (a). In one direction, a € I implies (a) C R. In the other direction, take any b € 1. We note
a # 0, so we can apply division, writing
b=aq+r
with |r| < |a|. But then by minimality of |a|, it follows that » ¢ I\ {0}, sor = 0. Thus, b = ag,and b € (a),
which shows I C (a), finishing. [ ]

We can ask if the converse is true: are all principal ideal domains Euclidean? Usually the answer is yes in
practice, but it is false in general.

Exercise 2.60. Thering R =7 {L \/2_19:| is a principal ideal domain but not a Euclidean domain.
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Proof. To see that R is a principal ideal domain, see any course on algebraic number theory. The words to
google are "“class group” and “Minkowski bound.”
To show that R is not Euclidean, we take the following lemma.

Lemma 2.61 (Universal side divisor criterion). Suppose that R is a Euclidean domain. Then there exists
anonzeroa € R\ R* such that the cosets R/(a) can each be represented by unit or zero.

Proof. The idea is to take a to have the smallest norm, outside of units. Well-ordering implies that the set
{la]:a € R\ ({0} UR*)} C Zxo

has a minimum, so we can find a nonzero a € R\ R* with minimal norm.
Now, pick up any coset b + (a) € R/(a). Applying division by a, we see that
b=aq+r

for some |r| < |a|. Then we see b + (a) = r + (a) while the minimality of |r| implies that » € {0} U R*. This
finishes. |

Remark 2.62. In fact, all elements of smallest norm (excluding 0) are units. Indeed, well-ordering im-

plies that
{la]: a € R\ {0}}
has a smallest element. Then for any v € R\ {0} minimizing |u|, we claim that u is a unit. Indeed,
dividing 1 by u we find
l=qu+r
where |r| < |u|. But by minimality of |u|, we must have » ¢ R\ {0}, sor = 0, implying that 1 = qu, and
wis a unit.

However, R does not satisfy the universal side divisor criterion, so it cannot be Euclidean. Indeed, the only
units® of R are {1} implying that we would need some a € R with 1 < #(R/(a)) < 3.

But no such a exists; the argument here is a bit technical and taken from here. The point is that, if such
an a existed, there would be a ring homomorphism

R — R/(a),

but1 < #(R/(a)) < 3implies that R/(a) is a ring with two or three elements, of which the only options are
Fg and Fg.

The obstruction, now, is that R has 6 := /=19 V2*19, whichisarootof 2?2 — 2 + 5 = 0, but F; and F3 have no
roots of this polynomial (this is checked by hand). Ring homomorphisms preserve polynomial equations, so
no ring homomorphism may exist. |

2.2.4 Getting Unique Factorization

We now show that all principalideal domains are unique factorization domains. Thisis donein steps.

Proposition 2.63. Fix R a principal ideal domain. Then allnonzero a € R\ R* are divisible by some irre-
ducible. In fact, we may weaken the condition that R is a principal ideal domain to require all ascending
chains of principal ideals to stabilize.

Proof. Roughly speaking, thisis done by aninduction-like argument. Fixag € R\{0}.Ifag € Risirreducible,
we are done. Otherwise, we can factor ag = a1b; with a;,b; € R\ R* and nonzero because R is an integral
domain. Then we can factor a; further, and so on. Formally, we have the following algorithm.

3fu|1,then@ | 1,s0u% | 1,and sou = a + b4—1 implies (a + %b)2 + (%b)2 =1,s0a = +1and b = 0 by bounding.
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1. Starting with a nonzero ay, € R\ R*, we may factor ay = ap41bx+1 Where ag11 and b4 are not units
and not zero.

2. If agy1 isirreducible, then it is an irreducible factor of ay, which is a factor of ag by working our way
back up the chain.

3. Otherwise, return to the first step with ax1. Any irreducible factor of a1 will also be an irreducible
factor of ay.

If this algorithm terminates, we are done. Otherwise, suppose for the sake of contradiction we can find
an infinite strictly descending sequence of elements {ag, a1, . . .} where

ag

€ R\ R
Ak+41

for each k. Equivalently, we have the strictly ascending chain

(ao) € (a1) C (az2) €S-+ .
(This is strictly ascending because (ax) = (ar+1) implies ax/ar+1 € R*.) By hypothesis, this chain of as-
cending chain of principal ideals should stabilize, but we should show this is true for principal ideal do-

mains.

Remark 2.64. The above condition is actually possible in “big” rings. For example,
k [X,Xl/Q,X1/4,...]
has the infinite strictly ascending chain
(%) ¢ (X2) ¢ (x4) ¢

Of course thisisascending, and it is strictly ascending because no X /2" isa unit by “degree” arguments.

Indeed, these infinite strictly ascending chains cannot happen for principal ideal domains for Noetherian
reasons.

Lemma 2.65. Fix R a principal ideal domain and suppose that we have an ascending sequence of ideals
(ao) C (a1) C (az) C---

Then there exists some N such that (a,) = (ay) forn > N.

Proof. The trick is to look at the ideal
U(ak) = (ag,a1,...) = (b),
k=0

where b € R exists because all ideals are principal! But then
be (an)

for some n by the definition of a union. It follows that

(an+1) € [J (ar) = (0) € (an),

k=0

s0we get (a,) = (au 1), ]
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In light of the above lemma, there exists some N in our chain so that (ax) = (an41). Butthenay/an41 €
R*, violating the construction of our chain, which is our contradiction. |

We continue.

Proposition 2.66 (Existence of factorizations). Fix R an integral domain in which every ascending chain
of principal ideals must stabilize. Every nonzero a € R is the product of irreducibles.

Proof. We do the same argument as above, factoring a nonzero ag € R by stripping out one irreducible at a
time. Formally, we have the following algorithm, for & > 0.

1. If ax is a unit, then we take the empty product of irreducibles and are done; i.e., our factorization is

u n

ag.
2. Otherwise, we know from Proposition 2.63 that ay, has an irreducible factor, say 7.
3. Now return to the first step with a1 == ar /7. We note a, = 7, - agq1.
This algorithm creates the strictly ascending chain of ideals
(ao) € (a1) € (az2) S -+,

where the ascending is strict because (a;) = (ar+1) would imply that 7, = ay/aky1 is a unit, which is not
the case because 7}, is irreducible.
So eventually the strictly ascending chain must stop, so there is some ay which is a unit. So we have

N-1
ag = 7141 = MT202 = -+ = 4N H Tk
k=1
which after pushing the unit anywhere becomes a factorization of ag into irreducibles. [ |

Remark 2.67. Being a product of irreducibles does not use the full power of being a principal ideal do-
main. We really only need to know the ring is “Noetherian,” which means every ideal is finitely gener-
ated. Indeed, the meat of the above argument is showing that there are no infinite strictly ascending
chain of (principal) ideals.

So the hard part is going to be showing uniqueness. The main claim will be that irreducibles are prime. It's
easy to show that primes are irreducible, but the reverse is hard.

Lemma 2.68. Fix R an integral domain. Then a prime p € Ris irreducible.

Proof. Being prime already gives p not a unit and nonzero. Now suppose that we can factor p = ab so that
we want to show one of the factors is a unit.

Well, p | ab, so p prime implies p | a or p | b. Without loss of generality, take p | a. Then we see p = ab
implies

1= (a/p) -,

so indeed, bis a unit. [ |

Anyways, let's show uniqueness assuming that all irreducibles are prime.
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Proposition 2.69 (Uniqueness of factorizations). Fix R an integral domain in which all irreducibles are
prime. Then factorization into irreducibles is unique up to permutation of the factors and multiplication
by units.

Proof. Suppose we have two factorizations into irreducibles notated
m n
H Pk = H qe.
k=1 =1

Without loss of generality, take m > ¢. If m = 0, then both sides are empty, and there is nothing to show.
Otherwise, we can pick up p,, an irreducible. By hypothesis, p,, is prime while dividing the right-hand
side, so p,,, divides one of the factors. Without loss of generality (permuting the elements), we take

Pm | @,

so we write ¢, = p,,u. But now ¢, is irreducible, so one of p,, or w is a unit, but it cannot be p,,, so u is the
unit. This means that we can divide out

m—1 n—1

H br=1u H qe

k=1 =1

to get a smaller factorization and finish by induction. Intuitively, we can just keep stripping off irreducible
factors from both sides, one at a time. [ ]

So let’s get into the meat of the proof.

Remark 2.70. According to Professor Borcherds, most of what we have been doing has been book-
keeping and has not required any ideas. What follows does.

Proposition 2.71. Fix R a principal ideal domain. Then all irreducibles are prime.

Proof. Fix p anirreducible so that we want to show p is prime. Well, suppose p | ab so that we want p | a or
p | b. The trick is to focus on

(p,a) = (c),

where ¢ € R exists because we live in a principalideal domain. We see p € (¢) implies ¢ | p, so writing p = cu,
one of ¢ or u is a unit. We now do casework.

+ If uis the unit, then a € (¢) implies ¢ | a implies cu | au implies p | auimplies p | a.
« Otherwise cis the unit so that (¢) = R. We can write
1=2p+ya
for some z,y € R, which implies
b = bxp + bya = (bx + yadb/p) - p,
so p | b. This finishes.
Soin all cases, we have p | a or p | b, finishing. [ ]

This finishes the proof.
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Theorem 2.72 (Unique factorization). Every principal ideal domain is a unique factorization domain.
Proof. This follows from combining Proposition 2.66 and Proposition 2.69. |

Remark 2.73. This proof is more or less in Euclid’'s Elements, but the statement was not. Euclid didn’t
have a good notion of multiplying more than three elements at once.

2.2.5 Gaussian Integers

Let's work with some examples now.

Theorem 2.74. The Gaussian integers Z[i] is a Euclidean domain and hence a unique factorization do-
main.
Proof. Our norm function on Z[i] will be
|z + yi| = 2% + 32
We want to show that, given a, b € Z[i] with a # 0, we can write
b=aq+r

where |r| < |a|. Equivalently, we are saying that
b T
- =q + )
a a

where we want |r| < |a|, which is equivalent to |r/a| < 1 because our norm is multiplicative in Z[i]. (The
norm is multiplicative in C.) So essentially we are asking if every Gaussian integer is off by a distance of at
most one from a Gaussian integer.

Well, geometrically, we place a unit circle around each Gaussian integer, as follows.

Now it's pretty clear that, for any z € C, we can find some = + yi € Z[i] such that the distance between 2
and z + yi is at most 1, which is what we wanted.

Formally, we can define ¢ by dividing ba by |b| coordinate-wise and rounding to get the components
of ¢. This argument is a bit long and annoying, so we will write it out exactly once. For concreteness, set
a = aj + asiand b = by + bai. Now,

G,E = (a1 —+ ag’i)(bl — bQZ) = (a1b1 —+ agbg) —+ (a2b1 — (leg) 7.

S1 S2
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Now, we set ¢; and ¢» defined by
s1=|blg1 +t1 and s2 = |blgz + L2,
where —%|b| <t1,ta < %|b\ by dividing in Z. Then we take ¢ := ¢; + ¢27 and t := ; + t2i so that

a ab qlbl+t t

- == =q+ -
b bl 0] 0]
In particular, our remainder comes out to r := % = %, which has norm
t] |t 3+t (1 1) |b]2
rl=|z|=+— = <l -4+-=])=<|b.
r=Jil == T = (34 3) <
This is what we wanted. [ ]

So what are the primes in Z[i]? Well, let’s start with the units.

Proposition 2.75. The units of Z[i] are {+1, +i}.

Proof. Of course {+1,+i}areunits:1-1=—1-—-1=14-—i = 1. Now, suppose that « is a unit so that there
exists [ with
af =1.

Taking norms, we find that |a| - || = 1, so |a|] = 1 because the only units in Z are {£1}. Now, letting
a = x + yi, we see 22 + y? = 1 for size reasons. Soz? < 1,and z € {-1,0,1}.

o Ifz==1,theny =0,sowegeta € {£1}.
o Ifx =0,theny = +1, sowe get a € {+i}.
This finishes the classification. u

Now let's classify primes.

Lemma 2.76. All primes in Z[i] divide a prime in Z.

Proof. Note that any Gaussian integer « divides
o = |o| € Z,

so in particular any Gaussian prime 7 divides some integer n. If we factor n in Z, we see
N
7| H Dk
k=1
for some rational primes py, from which it follows 7 divides one of the rational primes. |
Observe that if = + yi is a Gaussian prime dividing the rational prime p, then taking norms tells us that
2 4% | p2

In particular, 22 + y% € {1,p,p?}, and 1 is illegal because this would imply « + i is a unit. So part of this
question is if we can write p as the sum of two squares; for if we can, then

p=a"+y* = (z+yi)(z — yi)

will be the unique prime factorization of p. (We can’t factor = & yi further because, taking norms, one of the
factors would have norm 1 and hence be a unit.)
So let's start factoring primes.
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« Wecanwrite2 =12 +12%,s02 = (1 +4)(1 — i), but these are really the same prime because they are a
multiple of z away.

« We cannot write 3 as the sum of two squares, so it is prime.
« We canwrite 5 = 1% 4+ 22 = (1 + 2i)(1 — 2i).
« We cannot write 7 as the sum of two squares, so it is prime.

We can continue this list downwards; here is the general criterion.

Lemma 2.77. A positive prime p € Z is the sum of two squares if and only if p = 2orp =1 (mod 4).

Proof. In one direction, if p = 22 + y2, then checking (mod 4) gives p = 0,1,2 (mod 4), so p odd implies
p=1 (mod 4).

In the other direction, of course 2 = 12 + 12, so we take p = 1 (mod 4), and we have to show that p can
be written as the sum of two squares. We proceed in two steps.

1. We start by noting that p = 1 (mod 4) implies that —1 (mod p) is a square, which is true because
(Z/pZ)™ is cyclic of order p — 1, which is divisible by 4. So, say a has order 4, and then a? = —1.

2. Now, we write a? + 1 = np for n € Z, and we look at this in Z[i], where it factors as
p | (a+1i)(a—1).

However, p does not divide either of those factors, so pis not prime, so pis notirreducible. So p factors
as

p=(z+yi)(z —yi),
implying p* = (2% + y2)2 . It follows that p = x2 + 42 by positivity. [ |

Remark 2.78 (Nir). The above argument is really a more concrete version of saying that, for p an odd
prime,
Zi) ., Zlz] Fpla]

(7))  (a?+1)  (22+1)

Now, p =1 (mod 4) if and only if 22 + 1 has a root if and only if F,,[z]/ (2? + 1) has zero-divisors if and
only if Z[i]/(p) has zero-divisors if and only if p is not prime in Z][3].

Remark 2.79. This gives us an algorithm to write p as the sum of two squares. Trial and error would
require about O(,/p) time. Namely, we can apply the Euclidean algorithm in Z[i] to find the greatest
common divisor of p and a + 7, which will yield a nontrivial factor in Z[i] of p. (This is equivalent to doing
lattice basis reduction in Z?2 with the lattice (a,1)Z + (p,0)Z.)

Anyways, we get the following classification of primes in Z]i].

Theorem 2.80 (Gaussian primes). All Gaussian primes 7 come in one of the following forms.
» m = upwhere pisarational 3 (mod 4) prime.

o m=a+ biwhere p:= a® + b2 is arational primep =2orp =1 (mod 4).

Proof. We quickly check that each of the promised forms yield primes; note that none of them have norm
1, so none are units.
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e m=1+1is prime because it has prime norm.

« m = up for p a rational 3 (mod 4) prime remains prime: if we factor p = «f, then norms imply
lal, 18] € {1,p,p*}. We cannot have |a| = p because this would make p the sum of two squares, vi-
olating Lemma 2.77.

So one of || or | 5] is 1, implying one of « or S is a unit.

« ™= a+biwherep:=a®+b?forparational 1 (mod 4) prime is prime because || = pis prime. Indeed,
if T = ap, then || - |5] = p, so one of |a] or |B]is 1.

We now check that we have all the primes. Suppose 7 is a rational prime; by Lemma 2.76, we may take p so
that 7 | p. We have the following cases.

« If p is the sum of two squares, we can factor p = (a + bi(a — bi), and we checked above that these
factors are irreducible. By uniqueness, m must be one of these times a unit.

« If pis not the sum of two squares, then p = 3 (mod 4), so we checked above that p is prime, so 7 is a
unit times p. [ |

As an aside, we can use Gaussian integers to write general numbers as the sum of two squares.

Example 2.81. Let's do 65 = 5 - 13. We can factor 5 = (2 4 ¢)(2 —4) and 13 = (3 + 2¢)(3 — 27). Now we
have options: we could write

65=(2+14)(3+2i)-(2—4)(3—2i) = (4+Ti)(4—Ti) = 42 + 7,
65=(2+i)(3—2i)- (2—4)(3+2i) = (8—14)(8+1) =8>+ 12

Namely, different ways to factor 65 in Z[7] give different sums of squares.

2.2.6 Going Further

The theory we developed around Z[i] can be built for other number rings.

Talking Z[v/—2]
We start with Z[/—2].

Proposition 2.82. We have that Z[/—2] is a Euclidean domain.

Proof. Essentially the same proof as in Z[i] will work here. Again, embedding Z[/—2] < C, the division
algorithm comes down to showing that each z € C is at most one unit away from a point on the Z[/—2]
lattice.

Well, we can cover each point in Z[v/—2| by some unit disk and check
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So indeed, it looks like we can cover the entire plane by these disks. Again, the formal proof is somewhat
technical, and | don’t want to write it out again, so | won't. [ |

So we get that Z[v/—2] is a Euclidean domain and hence a unique factorization domain.
The classification of primes now has to deal with representing primes in the form z? + 2y2. We won't
write out the full proof explicitly, but here is the classification, for completeness.

Theorem 2.83 (Primes in Z[v/—2]). A prime = in Z[v/—2] comes in one of the following forms.
« 7 = uy/2 for some unit u.
« m = up for some rational prime p = +3 (mod 8) and unit w.

o ™ =a+ by/—2where p = a® + 2b% is some rational prime = +1 (mod 8).

Talking Z[/—3]

How about Z[v/—3]? Here, when we try to do the division algorithm and cover the plane in unit disks, it
doesn’t quite work. Here is the image.

The problem here is that the closed unit disks will cover the plane, but the open ones do not; e.g., 3 +3+/=3is
missed. This causes the entire proof to break down, and in fact Z[\/—3] is not a unique factorization domain

due to this problem! For example,
(1+vV=-3)(1-v=3)=2-2,

and we can check that all these elements are irreducible and do not differ by a unit, so this is a failure of
unique factorization. In particular, these factors are irreducible but not prime.

This can be fixed by making our ring bigger: we work with Z[w] where w := % instead. This turns
out to be a perfectly fine ring, isomorphic to Z[z]/ (z* — = — 1) . Now, when we embed Z[w] < C, the points
make a triangular lattice.

The point is that every point z € C is now within one unit from a point in the lattice Z[w], so we retain our
division algorithm.
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Proposition 2.84. Fix w := £¥=3 Then Z[w] is a Euclidean domain.

Proof. This follows from the preceding discussion; as usual, imitate the proof in Z[i]. |

Remark 2.85 (Nir). Something similar works for Z [@] where p € {7,11}. Notably, this does not

work for p = 19, and it could not because we showed earlier that Z [1*7 VZ_H’} is not Euclidean.

We could classify the primes in Z[w], but we did not say anything about this in class, so | will not write it out
here.

Talking Z[/—5]

This “make the ring bigger” algorithm does not always work. For example, in Z[/—5] we have the failure of
unique prime factorization

(1+V=5)(1-v=5)=2-3.

For reference, here is the image of unit disks trying and failing to cover the plane.

However, Z [%} is not a good ring. One might hope that its lattice in C is dense enough to cover the

entire plane by unit disks, but the issue is that

2[4 fo s ),

because the right-hand side isn’t closed under multiplication.*

So we have that Z[v/—5] is not a principal ideal domain, and we can't easily fix it either. Well, we are
promised non-principal ideal domains, so let’s try to see them. Visually, Z[/—5| is a rectangular lattice;
let's put our ideals in there.

A principal ideal domain aZ[v/—5] will look like the Z[/—5] lattice scaled by v/a@ and rotated by the angle
of a because that is how multiplication works in C. For example, in red is the ideal (1 4+ v/=5) .

4 (1+\2/?*3>2 _ —2-;7;\/5.
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° ° ° [ ] ° ° ° ° [ ] ° ° ° ° °
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@ L 4 @
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Note that it looks like a rectangular lattice, as we expect from Z[/—5].
In contrast, let's see a non-principal ideal domain. These tend to look like some kind of diamond lattice;
for example, hereis (2,1 4 +/=5) ,in red.

[ . [ . [ . [ [ (] [ ] (] [ ) . [ )
@ @ @ L 4 @ @ @
[ . [ . [ . [ [ (] [ ] (] [ ) . [ )

Similarly, any multiple of this ideal will rotate and magnify this “diamond lattice,” using the same logic as
when we looked at principal ideals. So the principal and non-principal ideals really look irreconcilably dif-
ferent.

In Z[/=5] it happens that all ideals come with the flavor (a) or () - (2,1 + +/=5) for some a € Z[/—5].
To see this, take a course on algebraic number theory. The point is that all of our ideals either look like
rectangular lattices or diamond lattices. In more complicated rings, there might be more kinds of ideals.

2.3 September 30

Let's just get to the point.

2.3.1 Primeldeals

We're having some kind of introduction to commutative algebra today.
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Warning 2.86. Rings in this lecture are commutative with identity, except when explicitly said other-
wise.

Let’s start by talking about prime ideals.

Definition 2.87 (Prime). An ideal I of aring R is prime if and only if R/I is an integral domain.

Recall that an integral domain means that ab = 0 impliesa = 0 orb = 0in R, as well as 1 # 0. Similarly, we
have the following.

Definition 2.88 (Maximal). An ideal I of aring R is maximal if and only if R/ is a field.

So we get the following for free.

Proposition 2.89. All maximal ideals are prime.

Proof. Fix I maximalin R. Then R/I is a field and hence an integral domain. ]

These are not the usual definitions, but Professor Borcherds likes looking at quotients. Here is the usual
definition of maximal.

Proposition 2.90. An ideal I of a ring R is maximal if and only if I is maximal among the set of proper
ideals.

Proof. We have two implications. Note the condition R/I # {0} is equivalent to R # I.

« If I is maximal among the set of ideals, we claim that R/I is a field. Indeed, for any nonzero coset
a+I€R/I(i.e.,a+ I #0), wenotethata ¢ I implies

IC(a)+1.
But then (a) + I = R by maximality, so there exists b € Rand j € I such that 1 = ab + j. But then
(a+I)b+1)=(ab)+I=(1—-j)+I=1+1,
so we have found a multiplicative inverse fora + I.
« If R/Iisafield, we claim that I is maximalamong the set of ideals. Suppose J 2 I'is anideal properly

containing I, and we show J = R. Then there exists a € J \ I, and we note that a ¢ I implies a + I #
0+ I,sothereisb € R such that

(a+D(b+1)=1+1.

In particular, ab =1+ j forsome j € I C J. Then
l=ab—j5¢€J
by closure, so it follows J = R. [ |

And here is the usual definition for prime.

> Here, 0 = 1is equivalentto R = {0}: if R = {0}, then1 = 0;if 1 = 0, thenr = 1r = 0r = 0.
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Proposition 2.91. Anideal I of aring R is prime if and only if I # Rand ab € I impliesa € T orb € I.

Proof. The condition is really rephrasing that R/I is an integral domain.

« The condition that R/I = {0} is equivalenttoa + I = 0 + I foralla € R is equivalent to a € I forall
r € Ris equivalent to I = R. By contraposition, R/I # {0} is equivalent to I being proper.

» The conditionthat R/I is anintegral domainis equivalentto “(a+1)(b+1) = 0+ I impliesa+1 =0+1
orb+ I"is equivalent to “ab € I impliesa € I orb € I,” which is the listed condition. |

Note that there is some bad terminology here. Note that p € R is a prime element in an integral domain
implies that (p) is a prime ideal, which we can check easily.® However, the converse is not true.

Warning 2.92. In R an integral domain, the ideal (0) is prime: if ab = 0, then a = 0 or b = 0 because R is
an integral domain. However, 0 is not a prime element by convention, even though it generates a prime
ideal.

Such is life.

2.3.2 The Spectrum

Suppose that, for aring map ¢ : R — S, suppose we have a maximal idealm C S. Then is o~ !'m maximal?
Well, no; here is an example.

Example 2.93. Consider the embedding ¢ : Z < Q. Then (0) is maximalin Q, but ¢=1((0)) = (0) is not
maximal in Z.

This is somewhat annoying. What is happening here is that we have the composite
R3S — S/m,

and we were hoping that the image R/¢~'m would be a field. Butin general, subrings of fields are not fields,
so have no reason to expect that R/¢~'m to be a field.
But subrings of fields do have to be integral domains, so we get the following.

Lemma 2.94. Fix ¢ : R — S aring map withp C S prime in S. Then ¢~ !p is prime.

Proof. We essentially repeat the above argument. Consider the composite map @ defined by
R% S — S/p.
Now, r € Ris in the kernel of the composite @ if and only if o(r) € p if and only if r € ¢ ~!p. Thus, we see
R/gflp ~imp C S/p.

So now it suffices to check that a subring of an integral domain is an integral domain. Well, if A C B are
rings with B an integral domain, then note that a;as = 0 fora;,as € Aimpliesthata; = 0oras = 0in B
and hence in A. This finishes. [ ]

So we have a functor from rings to sets that takes R to its set of prime ideals, which we denote Spec R. Then
we take morphisms ¢ : R — S to the map

o ! SpecS — SpecR,

and everything here is functorial.

6 Notep | ais equivalenttoa € (p). Sowe see that “p | abimpliesp | aorp | b" is equivalent to “ab € (p) impliesa € (p) orb € (p).”
Additionally, p not a unit is equivalent to (p) # R.
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Proposition 2.95. The function Spec : Ring — Set taking R — Spec Rand ¢ : R — Stop~!: Spec R —
Spec S is a contravariant functor.

1

Proof. We see Lemma 2.94 implies that ¢=! : Spec.S — Spec R is well-defined, so Spec is well-defined. It

remains to show that Spec is functorial.

« Note thatid : R — R goestoid ' : SpecR — Spec R, which is the identity map again because
id'p=p.

» Now suppose that ¢ : R — Sand~ : S — T are maps of rings. Then we need to show that, given
p € SpecT, we have

e () = (vow) T (p).

Well, r € ! (y'p) ifand only if o(r) € v~ *pifand only if y(¢(r)) € pifand only if (v o )(r) € pif
andonlyifr € (yop)~!p. |

Remark2.96. Grothendieck was the one who suggested that prime ideals would be better than maximal
ideals because of the above functor.

2.3.3 Zariski Talk

It turns out that we can make the spectrum into a topological space. So let’s think about topological spaces.
If X is a topological space, we can take the set

C(X) :== Morrop (X, C)

of continuous functions X — C. This is a ring with pointwise addition and multiplication; can we achieve all
rings like this?
The answer is no, but let’s try to make the answer closer to yes. Here is our question.

Question 2.97. Suppose R is a ring. How can we realize a space X so that R is the ring of continuous
functions from that space to (say) C?

Namely, fix R any ring, and we will try to find a space X with R = C(X). Well, we claim thatany z € X
induces a ring homomorphism ev, : R — C by taking ev, : r — rx. This kernel has some nice proper-
ties.

Exercise 2.98. Fix X a topological space and R := C(X). Then, given z € X, we haveev, : r — rzisa
ring homomorphism, and the ideal ker ev,, is a maximal ideal of X.

Proof. Showing that ev,, is a ring homomorphism comes down to checking the properties.
» Givenr,s € R,wehaveev,(r+s) = (r+s)z = re+sx = ev, r +ev, s by definition of the ring addition.

» Givenr,s € R, we have ev,(rs) = (rs)z = rx - st = ev,r - ev, s again by definition of the ring
multiplication.

« Lastly, the multiplicative identity in Risthe 1: z — 1 map, which goestoev, 1 = 1.
We now check that ker ev,. is maximal. For this, we study the quotient
R/kerev, = imev, C C.

So we need to show that im ev,, is a field. We will only outline this because this is not a topology class; note
it is an integral domain because it is a subring of C.
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So we have left to exhibit inverses in ev,, . Essentially, we need to know that z € imev, \ {0}, then 2~ €
imev, \{0}. However, r € imev, \{0} implies that there exists r € R such that rz = z, but then

(He-t

so indeed, 1/z € imev, . The point we need to rigorize is that /2% is actually a continuous function, which |
assert without proof. [ |

If the topology on R is good, then it turns out ker ev,, will also be a closed, maximal ideal. | don’t want to
define a topology on C(X), so | won't bother elaborating on this.

Conversely, if we were to give R a nice enough topology, we could check that (closed) maximal ideals
correspond to some x € X. So in some sense, we could imagine recovering X as the set of closed, maximal
ideals of R.

Remark 2.99. Non-closed ideals make Professor Borcherds nervous. We want ideals to have quotients,
and taking quotients by non-closed spaces make the quotient space not Hausdorff, which is sad.

Now, what is the topology on X? Well, what kinds of open sets can we generate from C(X)? The point is
that we have access to continuous functions, so, say, C \ {0} is an open set, which makes

fH(C\A{0})

anopensetforany f € R. These sets will turn out to make a perfectly fine basis for a topology; again details
ignored.

Now, points € X correspond with maximal ideals m C R, essentially behaving like kernels of special
functions, so our basis element of {z : fa # 0}, which corresponds to {m : f ¢ m} upon associating each
x € X withm = kerev, . So here is our topology: on the set of maximal ideals MaxSpec R, we define the
topology to have a basis of open sets given by

Dy :={m e MaxSpecR : f ¢ m},

where f is some element of R.

But this topology has the “concrete” C(X) part in sight! So we can do this more generally, still working
with maximal ideals, creating a topology MaxSpec R out of the maximal ideals of our ring R. But we want to
work with prime ideals

Definition 2.100 (Zariski). Fix R a ring. Then we define the Zariskitopology on Spec R to have open sets
defined by the basis elements B
V(f)={p €SpecR: f & p}

for any particular f € R. The closed set V(f) might be called the “vanishing set” of f.

It's not too hard to check that the set V(f) actually forms a basis. Indeed, given any two V(f;) and V(f2),
we can check that

V(fif2) =V (1) NV (f2).

In the analogy, this is saying that if f; and f> both fail to vanish at a point, then f; f5 fails as well. Anyways,
this comes down to checking that fi f> ¢ pifand only if f; ¢ pand f> ¢ p, which is true: forwards because p
is an ideal and backwards because p is prime.

Anyways, for all of our hard work, we get the following.

Proposition 2.101. The function Spec : Ring — Top taking R — SpecRand ¢ : R — Stop~! :
Spec S — Spec R is a contravariant functor.
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Proof. We have shown that R + Spec R is well-defined, but we do not yet know that o=! : Spec.S — Spec R

is a continuous function given ¢ : R — S'is a ring homomorphism. It suffices to check that the pre-image of
a basis element V() is open. Namely, we want to show that

(™) (V)

is open. Now, fix a prime q € Spec S with q € (@_1)71 (V(f)). This condition is equivalent to ¢~ 'q € V()
is equivalent to f ¢ ¢ ~!qis equivalentto ¢f ¢ q. So we find that

(e (VD) =1{a: of ¢ a} = V(e
This finishes. [ ]

2.3.4 Makingldeals

Anyways, let's do an example.

Example2.102. In the zeroring, we might want (0) to be a primeideal, butitis not proper. So Spec{0} =
@. Thankfully, trivialities correspond to trivialities.

This is somewhat troublesome: are there any maximal ideals? The way that maximal ideals are usually con-
structed is by Zorn's lemma.

Axiom 2.103 (Zorn's lemma). Fix X a nonempty partially ordered set. Further, suppose that any totally
ordered subset has an upper bound in X. In other words, for any ascending chain
ap <ap Sag <

)

there exists a € X with ae < a for each a.. Then X has a maximal element.
Be careful with what “maximal” means; these need not be unique.

Definition 2.104 (Maximal). An element m of a partially ordered set is maximal if and only if m < =z
impliesm = z forz € X.

Zorn's lemma requires the axiom of choice, which is somewhat annoying. Roughly speaking, the proofis as
follows.

Proof of Axiom 2.103. The idea is to apply “transfinite induction.”
« We can start with any ag € X.
« If ag is maximal, we are done; otherwise, we can find a; > ag.
« If a; is maximal, we are done; otherwise, we can find ay > a;.
« Then we can continue down the line, and if we never find our element, we have an ascending chain
ap < ay <ag <...,
which gives some a,, bigger than everyone by the ascending chain condition on X.
« If a,, is maximal, we are done; otherwise, we can find a1 > ag.
« If a,4+1 is maximal, we are done; otherwise we can find a2 > ap1.

« This process could theoretically continue to all ordinals, adding 1 to the index and using the ascending
chain condition to overcome limit ordinals. However, there is an absolute limit: there are ordinals with
size larger than # X, so the process will have to stop before then.
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We note that this requires making infinitely many choices, which iswhere the axiom of choiceisrequired. W

Anyways, we can now show that maximal ideals exist.

Proposition 2.105. Fix R a nonzero ring. Then R has a maximal ideal.

Proof. We use Zorn's lemma on the collection P of proper ideals so that a maximal ideal will be the same
as maximal element in this partially ordered set. We see P is nonempty because (0) # R is a proper ideal.
So now we check the ascending chain condition on P. Suppose that we have an ascending chain of proper
ideals
L CLCIz3C---.

I = G Ik
k=1

isanideal’ and is proper because 1 ¢ I because 1 ¢ I, forany k € N. So I is an upper bound for our chain in
P.

To finish, we see that Zorn's lemma gives an ideal m which is maximal among the set of proper ideals,
which is maximal by Proposition 2.90. |

Then we can check that

We can actually do a little better than this. Here are some variations.

Proposition 2.106. Given any proper R-ideal J, we can find a maximal ideal m containing J.

Proof. Note that Proposition 2.105 was essentially a proof that we can find a maximal ideal containing the
ideal (0), so we essentially repeat the argument from there, verbatim, instead using the partially ordered set
P of proper ideals which contain J. This collection is nonempty because it contains J. |

For the next variation, we pick up the following definition.
Definition 2.107. Fix Raring. A subset S C R is multiplicativeif and onlyif 1 € S, and S'is closed under

multiplication. In other words, x,y € S implies xy € S.

Proposition 2.108. Suppose S C R satisfies 1 € S andis closed under multiplication. Then any maximal
element among the proper ideals disjoint from S is prime, and such elements exist if 0 ¢ S.

Proof. To show that such an element exists, we use Zorn's lemma on the collection Pg of proper ideals
disjoint from S. Essentially the same argument as in Proposition 2.105 will again work here: Pg is nonempty
because 0 ¢ S, and for any ascending chain

LCLCI3C -

has upper bound given by
I = U Ik,
k=1

which is proper and disjoint from S because each of the Iy are.
Now, take p in the set of proper ideals disjoint from S. To show that p is prime, suppose that a ¢ p and
b ¢ p. Then (a) + p and (b) + p are ideals properly containing p and hence must intersect .S by maximality.
But now
((@) + 1) ((b) +p) = (ab) + (a)p + (b)p +p* 2 (ab) +p
will also contain an element of S, so we must have ab ¢ p because p N .S = @. This finishes. |

In general, any maximal ideal of some collection of ideals tend to be prime.

7 Givena,b € Iandr € R, we can find N suchthata,b € Iyy. Thenra € Ixy C Tanda +b € Iy C I because Iy is anideal.
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2.3.5 Examples of the Spectrum

Anyways, let's do more examples of the spectrum.

Example 2.109. For R a field, the only ideals are 0 or R, so Spec R = {(0)}, which is extraordinarily nice.

Example 2.110. For R = CJ[z], we note that C[z] is a principal ideal domain, so any ideal takes the form
(f) for some f € Clz]. This ideal will be prime if and only if f = 0 or f is an irreducible polynomial by
unique prime factorization. But over C, irreducibles only look like ¢(z — «) for some ¢, « € C, so we see

SpecClz] = {(0)} U{(z —a) : a € C}.

Note that we can correspond (z — a) € C[z] with o € C in some sense.

The above example seems to recover the complex plane from Spec C[z], but the topology on Spec Clz] is very
bad. Recall that our basis consisted of closed sets

V(f) = {p € SpecClz] : f € p},

for various f € Clz]. Unravelling this for our example, we see that f € (0) is equivalent to f = 0, and
f € (x — «)isequivalenttox — a | f is equivalent to f(a) = 0. So our vanishing sets are as follows.

o If f=c[li_y(z—ag)fore,{a}i_; CC,thenV(f) ={(z—a1),...,(z — a,)}, which corresponds to
some finite set of pointsin C.

« If f =0, then V(f) = Spec C|z], which corresponds to all of C.
e If f=cforce C* thenV(f) = 2.

In particular, we have the cofinite topology, which isn't even Hausdorff. In general, most of our spectrums
are sad like this.

Example 2.111. For R = Z, we have
SpecZ = {(0)} U{(p) : p prime}.
Again, let’s think about the topology. Well, given n € Z, a prime p “vanishes” at n if and only if n ¢ (n),

which corresponds to p t n. So we find that our vanishing sets are empty (n = 1), some finite set of
primes (n = [] ps), or everything (n = 0).

Remark 2.112. In the above examples, we tend to have sane primes in addition to the weird prime ideal
(0) which lives inside of all the other primes. This is an example of a “generic” point.

2.3.6 Localization

Our first example of localization is as follows.

Example 2.113. Take Z and force all nonzero elements to have inverses by making it Q.

This turns out to be a very useful, general operation. Here is our idea.

Idea 2.114. Fix R a ring with S a subset, we want to define a ring S~ R to be R where the elements of
S have inverses.
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This can be done, essentially, by taking S and looking at the quotient

R [{ts}ses]
({(sts = D}ses)
This is a very nice, universal way of forcing inverses, but we have no idea what it looks like. For example,

is the canonical embedding R < R [S™!] is injective? Well, it often isn't. Is R [S~!] even nonzero? These
questions are not at all obvious because we have a huge ring modded out by a huge ideal.

R[S =

Ignoring Zero-Divisors

So we want a little more control over our inverses, in the same way that we did for Q. So let’s try to imitate
Q. Here is our first attempt:

Definition 2.115 (Localization for integral domains). Fix R an integral domain and S a multiplicative
subset not containing 0. Then we define the localization S~ R to be the set of pairs (r, s) (denoted r/s)
modulo the equivalence relation r1 /sy = ry/s9 if and only if r1s5 = ros1. Then we define addition by

L T2 182 + 7281 TL T2 TiT2

=_—" and . =

S1 52 5152 S1 82 5152.

We note that the multiplication in the denominator is why we want S to be a multiplicative subset.

There are lots of things to check here; we will outline the things we have to check.

Lemma 2.116. Fix R aring and .S a multiplicative subset not containing any zero-divisors. The relation
= above on R x S is an equivalence relation.

Proof. We check the conditions one at a time.
« Reflexive: forr/s € ST R, we note that /s = r/s is implied by s = rs.
» Symmetric: note that ry/s; = ry/s implies rysa = ras1 implies ros; = 1155 implies ra/se = 1r1/55.
« Transitive: note that ry/s; = ra/soand ra/se = r3/s3 implies risa = 1281 and ras3 = r382. Then
52 T183 = (7"152)53 = (7"251)53 = (7"253)51 = (7‘382)51 = 82 - T351,

so we are done after applying the cancellation law to get rid of the ss. |

Remark 2.117. We had to use that R is an integral domain in the transitivity check to cancel s;. Namely,
transitivity need not be transitive when S has zero-divisors. For example, in R = Z/127Z, we can take
S =1{1,2,4,8} so that

3,3
but 5 # 5.

Lemma 2.118. Fix R an integral domain and S a multiplicative subset not containing any zero-divisors.
Then S'Ris aring.

Proof. This is identical to the proof that Q is a ring: we apply brute force to each of the checks to be a ring,
and they all work. We won't write them out here. |
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Lemma 2.119. Fix R an integral domain and S a multiplicative subset not containing any zero-divisors.
Then the canonical map R — S~ ! Ris injective.

Proof. Suppose rq,ry € Rhavery/1 =ry/1. Thenry = 1ry = 1ry = r9 by definition. [ |

Not Ignoring Zero-Divisors
What if our multiplicative set S does have zero-divisors? To deal with the problem, we set
I:={a€ R:as=0forsomes e S}.
We quickly check that I is an ideal.
e Ifay,as € I,thena;s; = 0and azso = 0 for some sy, 55 € S. Then
(ar1a2)(s1 + s2) = (a151)s2 + (az2s2)s1 = 0s2 + 0s1 = 0.
« Ifae ITandr € R, thenas = 0forsome s € S,s0 (ar)s = a(rs) = a0 = 0.

The point is that, in R/I, the set S/I has no zero-divisors because we have decided to kill all problematic
elements: if (r + I)(s +I) = I, thenrs € I, sothereis s’ € Ssuchthatrss’ = 0,sor(ss’) =0,sor € I
because S is multiplicative. So now we can define

S™R = (S/I)"Y(R/I).

This construction took two steps: take the quotient and then localize. However, it is possible to do this
by making a trickier equivalence relation.

Definition 2.120 (Localization). Fix R a ring and S a multiplicative subset. Then we define the localiza-
tion S~ R to be the set of pairs (r, s) (denoted r/s) modulo the equivalence relation r; /s1 = 73/s if and
only if sr1s5 = srys; for some s € S. Then we define addition by

Ty T2 T1S2+ 71281 rL T2 TiT2
. and = oLoem—F

S1 52 5152 S1  S2 8182.

We note that the multiplication in the denominator is why we want S to be a multiplicative subset.
We check that the trickier equivalence relation creates the same localization as (S/I)~'(R/I).

Proposition 2.121. Fix R, S, I as above. Then, given pairs (r1, s1), (r2,s2) € R x S has the following
equivalent relations.

« We write (r1, s1) = (12, s2) if and only if there exists s € S such that srys5 = s7357.
« We write (r1,s1) = (r2,82) ifand only if (ry + I)(se + 1) = (ro + I)(s1 + I).

In particular, = is an equivalence relation because =’ is.

Proof. Suppose that (71, s1) = (r2, s2), which is equivalent to the existence of s € S such that srysy = sras;.
Then this is equivalent to
s(r1se —res1) =0,

which is equivalent to 7155 — r2s1 € I. Moving arithmeticinto R/I, we have r1s2 — ras1 € I is equivalent to
(r1 + I)(82 +I) = (7“2 + I)(Sl +1)
after some rearranging, and this is equivalent to (r1,s1) = (r2, s2). |

So, for example, we get the following for free.
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Lemma 2.122. Fix R, S, I as above. Then S~!R is a well-defined ring where the map R — S~'R has
kernel I.

Proof. Proposition 2.121 tells us that S~! R is in bijection with (S/I)~!(R/I) by sending

T r—+1

— .
s s+ 1

(Explicitly, the equivalence relations on R x S are the same, so we are getting the same equivalence classes.)
Because the addition and multiplication laws are defined in the same way, we in fact have that S™'R =
(S/1) " (R/1).

So our work with S not containing zero-divisors tells us that S~ R is a ring for free, and the kernel of
R — S~'Ris the kernel of the composite map

R — R/TI — (S/I)"Y(R/I).

Here the first map has kernel I and the second map has trivial kernel, so the composite’s kernel is I. |

Remark 2.123. Professor Borcherds does not like the one-step construction because the equivalence
relation is somewhat unintuitive.

2.3.7 LocalizingataPrime

Let's try and use localization for something. Given a space X, we can look back at C(X) and note that we
actually have lots of possible functions: for each open set U C X, we can define the continuous functions
U — C as the space C(U). This has some nice properties.

+ Given two open sets U; C Us, we can take functions in C(Us) and “restrict” them to C(Uy). This gives
us a function Resy, .u, : C(Uz) — C(Uy).

+ Given continuous functions on a family {U, },cx of open sets such that the continuous functions be-
have nicely with restriction, we can build a larger continuous function on |, Ua-

» Given an open cover of U named {U, }acx, then if two continuous functions are identically equal on
each U,, then they are equal on U.

In other words, C(—) is a sheaf of rings, but we won't use this.

Now, back in the analogy, take R a ring with Spec R the spectrum, as usual. Now, take U to be an open
subset of Spec R, and we want to imagine what the analogue of C(U) should be. To start, we should take U
as a basis element V().

Let's check what V(f) means back in our example. Well, if U is the open sets where a fixed function
f € C(U) doesn’tvanish, then really the only truly obvious function we have added hereis f~!. Soin general,
we define the ring of U = V(f) to be

R(f™),

where we are just inverting out by that function f. One might think that we've added different functions with
the extra power to invert at a point, but, algebraically speaking, we don't have access to these.

Remark 2.124. The secret to making algebraic geometry easier is to ignore all open sets which are not
the basis elements V().

Anyways, here is an example.
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Example 2.125. Suppose we live in Z, but we want to kill the prime 2 because 2 has been really messing
up your day. Well, the idea is to take the open set

U=V(2)={p:2¢p}

so that we get Z[1/2], effectively killing the prime (2).

Example 2.126. Conversely, suppose we live in Z, and we want to focus on 2 alone. We start by ignoring
3,5,7, which means we want the open set

V(105) ={p:105¢p} ={p:3¢pand5¢pand 7 ¢p},

and we get Z[1/3,1/5,1/7]. To keep killing more primes, we take the direct limit of this process for all
open sets U containing 2. At the end of this process, we get

Z[1/3,1/5,1/7,.. ],
which is called the localization of Z at the prime of (2).

The above example can be generalized.

Definition 2.127 (Localization at a prime). Fix R aring and p a prime. Then S := R\ p is multiplicative,
so we define R, := S~ R to be the localization at p.
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THEME 3

MODULE MONOLOGUE

It is my experience that proofs involving matrices can be shortened by
50% if one throws the matrices out.

—Emil Artin

3.1 October5

Are you feeling nervous? Are you having fun?

3.1.1 Modules
Today we talk about modules. Here is the definition.
Definition 3.1 (Module). A (left) module M over a ring R is an abelian group with a “(left) ring action.”

In other words, we have an operation - : R x M — M satisfying some linearity axioms, as follows; fix
r,s € Randm,n € M.

« Distributive: r(m +n) = rm + rn.
« Distributive: (r + s)m = rm + sm.
« Associative: (rs)m = r(sm).

« ldentity: 1gm = m.

As usual, there is also a notion of right modules and two-sided modules, and this distinction matters for
non-commutative rings.

Example 3.2. Vector spaces are modules over fields. The field action is the scalar multiplication.
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Example 3.3. Abelian groups are modules over Z. The Z-action on an abelian group G is exponentiation
byn- g~ g™

Example 3.4. |deals are equivalent to R-submodules of R. Indeed, we have that left/right/two-sided
ideals are left/right/two-sided R-submodules. | will not do this check because | am lazy; the main point
is that closure of I under multiplication by R is the same thing as closure of I under the R-action.

We also have maps between modules.

Definition 3.5 (Module homomorphism). Fix M and N left modules over R. Then ¢ € Hompg (M, N)isa
group homomorphism ¢ : M — N such that

(rima + rama)e = ri(mip) + ra(mayp)

where r1,r, € Rand mq,mo € M.

Explicitly, if M and N are left modules, then ¢ € Hompg(M, N) should be written on the right because the
linearity condition requires

(rm)p = r(my)

forr € R,m € M,p € Homg(M, N). Whatis bad here is that writing on the other side gives r¢o(m) = ¢(rm),
which requires a switching of variables. This distinction matters for non-commutative rings, but | will largely
ignore this and continue to write functions on the left.

We note the following.

Proposition 3.6. If M and N are (left) modules over a commutative ring R, then Homp (M, N) is an R-
module, where the action is

(re)(m) =1 p(m).

Proof. We have that Homg(M, N) is an abelian group where addition is done pointwise; indeed, it is a sub-
group of Hom(M, N) closed under the subgroup test because ¢,y € Homg(M, N) still has (¢ — ) an R-
module homomorphism.

Lastly we have to check that the R-action makes Hompg (M, N) into an R-module. This is relatively un-
enlightening. For example, we can check that

((r1 +72)@) (m) = (r1 + r2)p(m) = r19(M) + ragp(m) = (110 + ragp)(m)

foranyry,rs € R, € Homg(M, N), m € M. |won't do the other checks out of lazy. |

We remark that if R is not commutative, then Homp (M, N) is merely an abelian group, not an R-module.
We continue with our examples.

Definition 3.7 (Opposite ring). Fix R a ring. Then we define the opposite ring R°P to have elements r°P
for r € R where our operations are defined by

roP + P = (r + 5)°P and roP . g% = (s1r)°P

This forms a ring, which can be checked by hand. In other words, the underlying abelian group is the
same for R and R°P, but the ring multiplication is flipped.

The point of the above definition is the following example.
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Example 3.8.If M is a left R-module, then M is a right R°P-module by m - r°P := r - m. All of the
distributivity axioms come for free from M being a left R-module, and the associativity axiom holds

because
(mrP) s°P = s(r(m)) = (sr)m = m(sr)°® = m (r°Ps°P).

Warning 3.9. Left and right modules can be very different fora particular ring, namely when non-commutative.

Explicitly, some rings have R = R°P, but not all. Of course this is true when R is commutative; here is a less
trivial example.

Proposition 3.10. Fix R a ring and G a group so that R[G] is the group ring. Then R[G] = R[G]°P.

Proof. Theidea is to consider the map G — R[G]°P by

g 1pg!

and use the universal property to lift this to a map ¢ : R[G] — R[G]°P. Explicitly,
© Z reg | = ngg_l.
geG geG
We now check that ¢ is an isomorphism of rings. This is not terribly interesting, but we will do it anyways.
+ We see that ¢ preserves addition because
®» Z Tgg + Z Sgg | =¥ Z(Tg +5g)9 | = Z(Tg + 59)9_1 = Z rgg_l + Z Sgg_l,
geG geG geG geG geG geG
which is what we need.

» We see that o preserves multiplication because

z€G yeG geG \zYy=g geG \zy=g
but in the opposite ring, we have

| D sy e (Z mx> =D sy (Z rw”) =y (Z rzsy> (y 'z,

yeG z€G yeG z€G geG \zy=g

whichisindeed }° ., (Zwy:q Tx5y> gt
« We see that ¢ preserves identity because ¢(le) = le™! = 1le.

» We see that ¢ is surjective because, forany > r,g € R[G]°P, we have

© Z rg-19 | = Z rgflg_l = ngg.

geG geG geG
« We see that ¢ is injective because, if > r,g7' = " 5,971, thenr, = s, for each g. [ |

115



3.1. OCTOBERS5 250A: GROUPS, RINGS, FIELDS

3.1.2 Homls Left Exact

Suppose that we have an exact sequence of R-modules as follows.

0 A" B-1sC 0
Given a a fixed R-module M, we can look at the following sequence.
0 —— Hom(M, A) == Hom(M, B) ——“— Hom(M,C) — 0
Most of this sequence is exact but not all.

Proposition 3.11. Suppose that we have an exact sequence of R-modules

0 A—*sB-1sC 0

Then, for any R-module M,
0 —— Hom(M, A) 2= Hom(M, B) —=— Hom(M,C)

is exact.

Proof. We have two things to check

» Exact at Hom(M, A): we have to show that Hom(M, A) — Hom(M, B) by f — ¢ o f is injective. Well,
suppose that p o f1 = p o fo for f1, fo € Hom(M, A). Then for any m € M, we have

p(fim) = o(fam),
so fi1(m) = fa(m) because p is injective. So indeed, f1 = f.

« Exact at Hom(M, B): we have to show that the kernel of Hom(M, B) — Hom(M,C)by g — ~vogis
exactly theimage of f — ¢ o f.

In one direction, if ¢ o f is in the image of Hom(M, A) — Hom(M, B), then forany m € M we have

(yowo f)(m) = (yo)(fm)=0(fm) =0,

so indeed, p o fisin the kernel of y o —.

In the other direction, fixany g € Hom(M, B) in the kernel of v o — so that v o ¢ = 0. This is equivalent
to, forany m € M, having

7(g(m)) =0,

which is equivalent to g(m) € ker~y, which is equivalent to g(m) € im ¢ by exactness. Now, ¢ is injec-
tive, so each g(m) has a unique lift into A, letting us define

f(m) = ¢~ (g(m)).

There is some check here to make sure f € Hom(M, A), which is not very interesting.! The point is
thatg = p o f,so gisintheimage of ¢ o —. [ ]

However, Hom(M, —) does not always produce sequences always exact at the end.

1 Note f(rimi1 + rama) is the unique element such that o(f(rim1 + roms)) = g(rimi + ramsa), but because g(rimi + rama) =
rig(m1) + rag(me), we see that ry f(m1) + r2 f(mz2) goes to the same place under ¢.
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Example 3.12. Consider the short exact sequence of Z-modules

02387 7/27Z -0

and take M := Z/27Z. Then applying Hom(Z/2Z, —), we note there are no nontrivial maps Z/2Z — Z
(the image of 1 must double to 0, but the only element of additive order dividing 2 is 0 itself).
On the other hand, Hom(Z/27Z,7/27) = Z/27Z by sending 1 — 0 or 1 — 1, so the sequence

0 — Hom(Z/2Z,7Z) — Hom(Z/27,7) — Hom(Z/2Z,7./2Z) — 0

becomes the sequences
0—-0—=0—2/2Z — 0,

which is not exact at the end, sadly.

Remark 3.13. The high-level way to see Proposition 3.11 is that Hom (M, —) is right adjoint (to tensor),
so Hom preserves limits, so Hom is left exact.

Similarly, we can continue fixing an R-module N and apply Hom(—, N). This turns the sequence

0 A—*5spB-1sC 0

into the sequence
0 +—— Hom(A4,N) +—2 Hom(B,N) +—— Hom(C,N) +— 0
where the arrows are still composition as labeled.
Warning 3.14. The above sequence of maps has the arrows reversed.
In this case, we have the following.

Proposition 3.15. Suppose that we have an exact sequence of R-modules

0 A2 2,C 0

Then, for any R-module N, the sequence
Hom(A, N) +—~ Hom(B, N) +—— Hom(C,N) +— 0

is exact.

Proof. This is essentially the same as Proposition 3.11. We have two things to check.

» Exactat Hom(C, N): essentially, we have to show that the kernel of — oy is trivial. So suppose that we
have f € Hom(C, N) such that f oy = 0. The, for any ¢ € C, we note that the surjectivity of v promises
b € B such that yb = ¢, implying
fle) = (fov)(b) =0,
so f is the zero map. So indeed, ker(f — fo~) = {0}.

+ Exact at Hom(B, N): we have to show that a map g € Hom(B, N) hasgop =0ifandonlyifg= foxy
for some f € Hom(C, N).
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In one direction, suppose that g = f o v for some f € Hom(M, C). Then we have that
gop=(foy)op=Ffo(yop)=[fo0=0,
where v o ¢ = 0 because im ¢ C ker v by exactness.

In the other direction, suppose that g o ¢ = 0. Then, g(imp) = {0}, soimp C kerg. In particular,
ker vy C im ¢ by exactness, so kery C ker g. It follows that g : B — N can be made into a well-defined
map

g:B/kery — N
such that B — N is the same as B - B/kery — N. Now, im~y 2 B/ ker~, so we have the sequence
of maps

Bl»imfy%B/ker’ygN

whose composite is equal to g by pushing through elements. Letting f : C — N be the composite
C =im~y = B/kery — N, we find that g = f o v, which is exactly what we wanted. |

And again, we don't have to be fully exact.

Example 3.16. Consider the short exact sequence of Z-modules

052387 —7/27 -0

and take N = Z/2Z. Then applying Hom(—, N), we see that Hom(Z, Z/2Z) = Z/2Z (we send 1 — 0 or
1+ 1), but also Hom(Z/27) = 7,/27Z as discussed last time.
So the sequence

0 + Hom(Z,7/2Z) < Hom(Z,Z/27) < Hom(Z/27Z,7./27) <+ 0

04 Z/27Z + Z/27Z <+ Z/27Z <+ 0,

which cannot be exact for size reasons: the left end would have to have size 2/2 = 1. And indeed, we
can verify that the x2 mapping is losing surjectivity at the end.

The lack of these exactness turns out to be a huge problemin algebra. The entire field of homological algebra
is dedicated to fixing this problem.

Remark 3.17. The short exact sequence
0>Z—Z—7Z/2Z—0

is a good universal counterexample to various statements.

3.1.3 Free Modules

We have the following definition.

Definition 3.18 (Free). An R-module M is free if it is the direct sum of some number of copies of R.

We have the following sequence of propositions.

Proposition 3.19. Suppose that we have a split short exact sequence of R-modules
0+A—>B—C—0.

Then B = A ¢ C, canonical up to the choice of lift C — B.
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Proof. This requires some care. Label:.: A — B,7: B— C,and p: C — B, where por = id¢ is our lift of
7. Here is the diagram.

00— A—— B é C——0
P
Now we note that we haveamap ¢ : A® C — B by
v :(a,c) = a+ pe.

We show that this map is an R-module isomorphism. Note that it is an R-module homomorphism by using
the universal property of A ® C on the morphisms: : A — Band p : C — B, so the main obstruction is
showing the isomorphism. We have two things to check.

« We show that ¢ is injective. Indeed, suppose that ¢((a,c)) = 0 so that .a + pc = 0 and

Applying 7 to both sides implies that 0 = —cbecauseim ¢ C ker 7 by exactness (!). Thus, ¢ = 0, implying
t(a) = 0,s0a = 0 because kert = {0}. Thus, ker ¢ = {(0,0)}.

« We show that ¢ is surjective. Indeed, fixany b € B. We start by taking ¢ := 7b and observe that
m(b—pc) = m(b) — (w0 p)(c) =c—c=0,
sob — pc € ker w. But ker m C im ¢ by exactness (!), so b — pc = ta for some a € A. Thus,
v :(a,c) = a4+ pc=0b,
which is what we needed. [ |
The reason we bring this up is to talk about free modules.
Proposition 3.20. If C is a free R-module in the short exact sequence
0—-A—-B—>C—=0,

then this short exact sequence splitssothat B~ A @ C.

Proof. Label our short exact sequence as follows.

0—— A ——>B—"-C—0

Now, find a basis {c, }aex for C, and lift each element to {b,}.cx in B along 7 so that 7 : b, — co. This
induces a map p : C — B defined by

() -3
aEX ac

where we might have to mumble something about the universal property of free objects. (Here, all but
finitely many of the 7, vanish.) Then we note that, for any element }" _ r,c, € C, we have

(mop) (Z raca> =7 <Z raba> = Z rom(be) = Z T Cors
aEX aEX aEX aEX

so o p = id¢, so the short exact sequence splits due to this map. Soindeed, B~ A ¢ C. |

In particular, free modules make Hom (M, —) into an exact functor.
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Proposition 3.21. Fix a split short exact sequence of R-modules
0+A—->B—C—0.
Then we have the short exact sequence
0 — Hom(M, A) — Hom(M, B) — Hom(M, C) — 0.

In particular, we get this whenever C'is free.

Proof. Set B~ A @ C as induced by the short exact sequence and label our sequence by
0 —— A—— ApC —— C —— 0

and
0 —— Hom(M, A) == Hom(M,A & C) == Hom(M,C) —— 0

At this point we only have to check that Hom(M, A & C') — Hom(M, C) by f — m o f is surjective. Indeed,
fixany g € Hom(M, C), and we can lift it to m — gm — (0, gm), which is what we needed. [ |

We remark that, given a free module M generated by {m }«c, then we can describe Homg (M, M) essen-
tially just using matrices: if f € Hompg (M, M), then we can describe

fma) =Y ansmg,

BEX

which extends to just matrix multiplication. For example, if M is finitely generated by {m}}_,, we can write

f(me) = Zakzmk
k=1

so that f corresponds to the matrix

Gn1 ctt Opn
Of course, we have to be careful about the direction here.

Warning 3.22. If M is a left module, then matrix multiplication should (in a moral sense) happen on the
right, as discussed earlier.

Namely,
f (Z Temz> =3 rearemy.

=1 14=1

corresponds to the multiplication

r1 a1l - Qin 1611 + -+ rplin

Tn apl ctr Qpn r1Qp1 + -+ Tplpn
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3.1.4 Ranks of Free Modules

We would like to define the rank of an R-module. The goal is for rank R™ = n at the end, but this needs to
depend only on the module itself. This is harder than it looks.

Non-Example 3.23. Take R = {0}. Then the rank is not well-defined because R" = {0} always.
So there is something to do when trying to define the rank.

Example 3.24. If R is a field, then we can use dimension, which we are assured is well-defined.

Example 3.25. If R is a nonzero commutative ring, then given a module M, we can take a maximal ideal
m (which exists because R # {0}) and measure

rank M = dimpgn M/mM.

Proposition 3.26. The above rank is well-defined. Explicitly, if R is a nonzero commutative ring with m
any maximal ideal, then n = dimp/ R™/mR".

Proof. Note that it suffices to show that n = dimp,n R"/mR", which will tell us that the rank does not
depend on m. The main point is to show that

RTL/mR’I'L g (R/m)n

as R/m-vector spaces, which will finish because (R/m)" is n n-dimensional R/m-vector space.
Indeed, we note that we have an R-module homomorphism

p:R" = (R/m)"

by taking (r1,...,7,) = (r1 +m,...,r, + m). (That ¢ is actually an R-module homomorphism comes down
to checking that R — R/m is a ring map, which is true.) Further, ¢ is surjective because we can lift any
(r1+m,...,r, +m)backup tosome (r1,...,75).

Lastly, we note that (rq,...,7,) € ker ¢ if and only if r + m = 0 4+ m for each r,, which is equivalent to
re € mfor each r,. So the kernel is exactly m™ = mR". So we have an R-module isomorphism

?:R"/mR" — (R/m)"

induced by ¢. To make this is an R/m-module isomorphism, we first note that R /mR" is indeed an R/m-
module where the R/m-action is induced by R: the thing to check here is that the action is well-defined, for
which it suffices to note r; + m = ro + mimplies

r1(v+mR") =riv+mR" =rov+ (11 —r2) v+ mR" = rov + mR",
———

em

so the action is well-defined up to coset of R/m. So we still have that
?: R"/mR" — (R/m)"

is an isomorphism of abelian groups, and the R/m-action is preserved because the R/m-action is induced
by the R-action, which is preserved. This finishes. |
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Example 3.27. Take R = k™*™. Then R is a finite-dimensional vector space over k, so may define
rank R" := dimy R"/dimy R. The point here is that we have managed to define rank for a special non-
commutative ring.

So it looks like maybe the rank is always well-defined for nonzero rings? This turns out to be true for “small”
rings in some sense, but of course not for general rings because algebra is terrible.

Proposition 3.28. We can construct a nonzero ring Rsothat R~ R & R.

Proof. Fix S aring with a free, right module M so that M = M @ M with M # {0}. For example, M = Z®"
as a Z-module will do the trick.

Now we define R := Endg(M). Checking that this is a ring is annoying, so we will not do it in detail.
The point is that we can add endomorphisms, and multiplication is composition. (In particular, R is not
commutative.) Closure under addition and composition are a matter of writing out what we need to check.

Visually, if M is free over S, then Ris the ring of matrices with infinite rows and columns with only finitely
many nonzero elements. Here, R acts on the left of M in order to preserve the S-action on the right, and we
can check that M is a left R-module.

« o(my + ma) = pmy + pmoy because these are endomorphisms.
* (o1 + p2)m = p1m + pom by definition of addition in R.
e Ipm =1idy m=m.

Theideais to study how R behaves with the isomorphism ¢ : M — M @& M. Because this is an isomorphism,
it must be a homomorphism in each of the coordinates, so a := 71 o p and ¢ := w3 o ¢ (Where 7, are the
projections) must be homomorphisms. So we have a, ¢ € Endg(M) =: R with

@ :m e (am,cm).

Conversely, because ¢ is an isomorphism, we have a map M @& M — M which again must be a homomor-
phism in both coordinate by using the inclusions defining M @ M. So by the universal property of @, we have
b,d € Endg(M) =: R with

o Y (m,n) — bm + dn.

1 1

Composingas g o p~ ' =idpgn and o=+ o p = idyy, we find
(m,n) = (pop ") (m,n) =p(bm+dn) = (abm + adn,cbm + cdn),

and
m= (9071 ° @) (m) = ¢~ Y(am, cm) = bam + dem.

Comparing componentwise, we see that
ab=1, ad =0, chb =0, cd =1, ba + dc=1.

We remark that if R were commutative, ab = 1and ¢d = 1and ba + dc = 1 would imply that 1 = 2and 0 =1,
forcing R to be the zero ring.
Anyways, the point is that we have R~ R & R by

v :r— (arcr) andy~!: (r,s) > br 4 ds.
Essentially directly from the above computations we can check that
(’y o ’y_l) (r,s) = y(br + ds) = (abr + ads, cbr + cds) = (r, s),

and
(vt o) (r) =~"ar,cr) = bar + der = (ba + dc)r = r.
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So we have a group isomorphism R = R & R. To make this an R-module homomorphism, we have R act
on itself on the right by multiplication, which is safe because v and 7~ only ever multiple on the left. For
example, v is an R-module homomorphism because, for z,r € R, we have

y(z) - r = (az,cx) - r = (axr, car) = y(zr),

and similar works for y~1. Thus, R = R @ R as (right) R-modules. If we wanted left R-modules, we could
switch the directions of everything above. |

Remark 3.29. It is also true that R = R?*2 but we've seen enough weird properties of this ring for
today.

So our rank is not always well-defined for the above R. This is why people (or at least 1) don't like modules
over non-commutative rings.

3.1.5 Projective Modules

Recall from Proposition 3.21 that free R-modules C had the nice property of preserving the exactness of
B—-C—0

upon applying Hom(M, —). In other words, for any map M — C, we can lift it toa map M — B so that
Hom(M, B) — Hom(M, C) is surjective. Here is the diagram.

This property of “lifting surjections” is so nice that it has a name.

Definition 3.30 (Projective). A module M is projective if it has the above property.

Example 3.31. Any free module is projective. Roughly speaking, this is by Proposition 3.21.

Remark 3.32 (Nir). Here is a quick way to be convinced that “projective” is a good idea to care about:
projective is what makes Proposition 3.20 work. Indeed, if

00— A——B—">5C—0

is a short exact sequence with C projective, then the surjection 7 : B — Cinduces p : C — B so that
7 o p = id¢ by projectivity, as in the following diagram.

So indeed, our original short exact sequence splits.

Here is one way for us to generate lots of projective modules.

123



3.1. OCTOBERS5 250A: GROUPS, RINGS, FIELDS

Proposition 3.33. Fix M a projective R-module. Then if M = P @& @ (as R-modules), then both P and
Q are projective. We may call P and Q the “split/direct summands.”

Proof. We show that P is projective, and @ projective will follow by symmetry (because M = Q@ P). Fixany
surjection ¢ : B — C'withamap f : P — C so that we lift f to f making the following diagram commute.

P
7 Lf
g

B——C—0

Now, f : P — C induces a composite map g by M —» P — C using the canonical projection M — P
by (p,q) — p, so because we have a map g : M — C, this lifts to a map g making the following diagram
commute.

However, we also have a canonical inclusion P < M by p + (p,0), so we have induced a map f by P —
M — B. We claim that this is the map we want. Indeed, we know that (¢ 0 §)(p,q) = f(p) by construction
of g, so

(o)) = (pog)(p,0) = f(p),

which is exactly what we need. u

Note that we are not claiming that general submodules P of free modules M are projective: we need the
short exact sequence

0—-P—-M-—->M/P—0

split.
Here is another nice property of projective modules: this is the converse of Proposition 3.33.

Proposition 3.34. Fix M a projective R-module. Then M & N is free for some R-module N. If M is
finitely generated, we may let M & N be finitely generated.

Proof. Fix F any free module which can surject onto M, and let 7 : F' — M be our surjection. (For example,
the free module @, ,, Rm generated by the letters of M would do the trick. If M is finitely generated,
use the corresponding F.) Then the idea is to lift idy; : M — M along the surjection 7 : F — M to some
p: M — F.Hereis the diagram.

The point here is that the short exact sequence
0—>kermr—F—-M—0

will split due to p: by construction of p, we have that 7 o p = idj;, which is exactly the condition to make this
short exact sequence split. Thus, M @ ker m 2 F'is free, which is what we wanted. |
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Remark 3.35 (Nir). Collecting our facts about projective modules, we have the following criteria for an
R-module C, which we claim are equivalent.

(i) For each surjection7 : B — C'and map ¢ : M — C, there existsamap : M — B so that

mTo

p =mop.(le., theinduced map Hom(M, B) — Hom(M, C) is surjective.)
(ii) Every short exact sequence 0 -+ A — B — C — 0 splits.
(iii) There exists a module N such that C & N is free.

From the above discussion, we already know (i) implies (ii) as well as (iii) implies (i). We can also see
that (ii) implies (iii) by considering the short exact sequence

0—)1(61‘7‘(‘—)@]%02»04)0,
ceC

which must split and gives C' @ ker 7 free.

3.1.6 Examples of Projective Modules

We've been providing some theory on projective modules, but most of what we've done would only produce
free modules as our examples. So it looks like projective might mean free, but here is an example saying
no.

Example 3.36. Note that R is a free R-module, so if we can decompose R = A @ B into R-modules,
then A and B will be projective. For example, fix R = Z/6Z = Z/2Z & 7./37Z implies that Z/2Z and
Z/3Z must then be projective Z/6Z-modules. (We technically have to check that Z/27Z and Z/3Z are
Z/6Z-modules, and they are, induced by the Z-action.)

However, Z/27Z is not free over Z/6Z because it would have to have dimension strictly between 0
and 1, which is impossible.

One potential complaint is that the above example more or less has zero-divisors built into R: if we can
decompose R = A @ B into two nonzero R-modules, then?

((l, O) ’ (07 b) = (Oa O)
fora € A\ {0}andb e B\ {0} forces R to have zero-divisors.

So here is an example where R is an integral domain.

Exercise 3.37. Fix R := Z[v/=5] and p := (2,1 + +/=5) a non-principal R-ideal. Then p is a projective
but not free module.

Proof. We start by showing that p is not free. Roughly speaking, this comes from the fact p is not a principal
ideal. Quickly, we see that p is not freely generated by zero elements because p # {0}, and p is not freely
generated by one element because p is not principal.

Now, supposing that p is generated by some set {z, }aecx C p with #X > 2, and we show the z, do not
freely generate. Indeed, the trick is that

(N(z8)7a)za + ( — N(za)25) 25 = 0 (+)

forany «, 8 € A distinct elements. If z, = 0 or z3 = 0, then of course the z, do not freely generate. Other-
wise, (x) tells us that the map
DRz v

aEX

2 Technically we are forcing some multiplication structure here.
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has kernel, making the z, still not freely generate.
We now check that p is projective. To start, we note that we have a surjection7: R® R — p by
m:(r,s) = 2r+ (14 V=5)s.
But in fact we can split m with p: p — R & R by

1—+/-5
piT (—x72x).

This is well-defined because p(2) = (-2,1—+v/=5) € R&@ R,and p (1++v/=5) = (-1-+/=5,3) € RO R.
Further, we can compute

(rop)(z)=m (—xl_;/?%) =22+ (1+v-5) (1_;/?5) r=-2r+3r=u,

soindeed, 7 o p = id, . The point is that the short exact sequence
0—kertr—ROER—-»p—0
splits, sop @ kerm = R & R. It follows that p is projective by Proposition 3.33. |

We continue with the examples.

Exercise 3.38. Consider the Mdbius strip X as a line bundle over S'; let 7 be our standard projection
X —» S*. I will not TeX a diagram of this, out of laziness. To get our module, we define

R = {continuous functions r : $* — R}

and
M := {continuous functions m : S* — X such thatr o p =idg: } .

Then M is a projective but not free R-module.

Proof. Here is the image of the Mdbius strip X projecting on S! by 7 : X — S*. We have highlighted the
fiber of a particular point = € S* and explicitly note that it is a (one-dimensional) vector space.

Sl

Now, an element of M is a “global section” of X, which means it is a continuous function m : S* — X such
that S % X 5 Sl is the identity. For example, here is such a section.

126



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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Sl

f\\
0

Now, foranyr € Rand m € M, we define rm to act pointwise. For example, if r = 2, then rm essentially
stretches r by 2.
To start, we claim that
MeM=ROR,

which will give the needed projectivity. Essentially, M & M allows us two copies of the Mébius strip, which
we can lay orthogonally as in the following diagram.

X
T~ ()
Nri(a)
m |
Sl
&

But having two axes at each point is merely assigning an R? to each point of S, so this is the vector bundle
St x RZ Now, a section S* — S! x R? is pretty much just a pair of functions S* — R, which precisely
describes R® R.Soindeed, M ® M = R® R.

We now check that M is not free. The main point is that, due to the twisting, going around the edge of
the Mobius returns us to the opposite side, so any continuous sectionm : S' — X must intersect the central
S somewhere.? In terms of the line bundle, we are saying that all global sections vanish somewhere.

Now suppose for the sake of contradiction M is free. Because we already know that

MeM=R®R,

and because R is a commutative ring, we see that ranks are well-defined, so M free implies that M is gen-
erated by a single element, say m. But m vanishes at some g, so anything in Rm will also vanish at zg, so

Rm # M, which is a contradiction. |
3 Thinking about 1 as the composite [0, 27) — S' — X, we are saying m(0) = —m(27) because walking around the loop flips the
sign.
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Remark 3.39. Nobody seems to be able to understand the above example in lecture. | am no exception.

In general, the above examples have been taking the theme of finding a module M suchthat M& M = RGO R.
What this means is that our projective modules look “locally” like a free module but not globally, in the sense
that we can add enough copies to get the free module.

3.1.7 Stably Free Modules

Recall from Proposition 3.34 that, if P is a projective R-module, then P & Q is free for some Q. We might
hope to be able to constrain @) in some way; of course it must be projective by Proposition 3.33, but perhaps
we can do more.

Proposition 3.40. Fix P a projective R-module. Then P & Q is free for some free R-module Q.

Proof. We start by using Proposition 3.34 to get some N such that P ¢ N is free. Then the trick is to study

Q=EPNnWaoPr).

k€EZ

Ononehand, N® P = P® N isfree, so Q is free because it is the direct sum of free modules. On the other
hand, we can write

PeQ=Pa@P(NaeP)=EPPaeN).

keZ keZ
In other words,

PpQ=Pa(NoP)o(NoP)d---=(PON)d(PON)D---.

Anyways, the pointis that P & Q is free because it is the direct sum of the free modules P® N. So Q is a free
module, and P & Q is a free module. |

Remark 3.41. This is similar to the “proof” that 0 = 1 by
O=1+-D+0A+-D+---=1+(-1+1D)+(-1+1)+---=1.
We might hope to make Q of finite rank, but this is not always possible. Such modules have a name.

Definition 3.42 (Stably free). Fix an R-module M. Then we say that M is stably free if and only if there
exists n € N such that M @ R" is free and finitely generated.

As promised, not all projective modules are stably free.

Proposition 3.43. There exist projective modules which are not stably free.

Proof. Asabove, take M the global sections Mobius strip form a R-module as defined above. Intuitively, M
is not stably free because adding any finite number of R to the M&bius band cannot “untwist” the Mobius
band, implying that it will never be free.

Explicitly, if M & R™ were free for some n > 0, then, comparing ranks of

(M®R") & (M®R") = (M® M) & R™ = R,

we still would need M @ R™ generated by n + 1 element. But we need n generators for R™, so we only have
one degree of freedom for M, which fails for the same reasons as before. (Please don't ask me to rigorize
this.) |

But nontrivial stably free modules do exist.
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Proposition 3.44. There exist stably free modules which are not free modules.

Proof. Take the tangent bundle of S2, where the total space consists of the tangent space of each point on
S2. Now our ring R consists of continuous functions S — R and our module M is vector fields on S?, where
the action is again just scalar multiplication.

We have the following checks.

+ We see that M is stably free (and hence projective) because
M® R~ R

Indeed, what is happening is that the extra @R will encode the orthogonal bundle to the tangent bun-
dle, so now are essentially associating a full R? to each point on S?, which is exactly R3.

« We check that M is not free. This follows from the Hairy ball theorem, which tells us that every vector
field in M must vanish somewhere.

Indeed, suppose for the sake of contradiction M was free. Then, comparing ranks of M & R = R?, we
see that M must have rank 2, with generators we name my, m», which vanish at (say) 21, 2z, € S?. But
then, any R-linear combination

r1my + remse

will have (rymq + rema) (1) = roma(xq) parallel to ma(z1) at 1. But there are vector fields which are
perpendicular to my(z) at z1, so we have not covered all of M, which is our contradiction. [ |

We remark that if we use a torus S* x St instead of the sphere, then the module is free because we no longer
have access to the Hairy ball theorem.

3.2 October?7
There must be some way out of here.

3.2.1 Tensor Products over Abelian Groups

Today we're going to define tensor products. For now, we work in the category of abelian groups.
To begin with we have the following warning.

Warning 3.45. The tensor product is not A x B, and in fact has little to do with this product. Instead,
the tensor product is arguably closerto A & B.

Anyways, the main idea behind tensor products is the following.

Idea 3.46. Tensor products turn bilinear maps A x B — C into linear maps from A ® B — C.

In particular, we should start by defining “bilinear.”

Definition 3.47 (Bilinear). Fix abelian groups A, B,C. Amap ¢ : A x B — C'is bilinear if and only if
f(a1+a/2ab):f(a17b)+f<a27b) and f(a>b1+b2>:f(aabl)+f(a7b2)

foreach ay,as,a € Aand by, by, b € B.

129



3.2. OCTOBER7 250A: GROUPS, RINGS, FIELDS

Equivalently, we see that
f(al + a27b) = f(a/hb) + f(a’Q,b)

foranyaj,as € Aandb € Bis merely asserting that b — f(—,b) is a function B — Hom(A, C). Similarly,

f(a, b1 + bz) = f(a, bl) + f(a, b2)

fora € Aand by,by € Bisasserting that a — f(a, —) is a function A — Hom(B, C).
We defined “bilinear” so that we could define tensor products.

Definition 3.48 (Tensor products). The tensor product A ® B of two abelian groups A and B to be “uni-
versal” as an abelian group equipped with a bilinear map ¢ : A x B — A ® B. Explicitly, for any bilinear
map ¢ : A x B — C, there exists a unique induced homomorphism (!) A® B — C making the following
diagram commute.
AxB - A®B
~ |
 bilinear :

e

We remark that tensor products are unique up to isomorphism, using a fairly typical argument.
As usual, we start by showing that tensor products actually exist.

Proposition 3.49. Given two abelian groups A and B, their tensor product A ® B exists.

Proof. Essentially, we want the “largest” abelian group with a bilinear map from A x B. To start off, we'll
say thatwe send ¢ : (a,b) — a ® b € A® B, and then we mod out by the minimal relations which will make
¢ bilinear.

Explicitly, A x B has a subgroup generated by

G = ((a1,b) + (az,b) — (a1 +az,b)  and  (a,b1) + (a,b2) — (a,b1 + b2)).

(For example, take the image from the free abelian group on (4 x B)®.) Now we define

A® B =

G

It remains to show the universal property. Well, suppose we have a bilinear map ¢ : A x B — C. Then by
hypothesis on ¢, we know that

gp((al,b)—i—(ag,b)—(a1+a2,b)) =0 and gp((bl,a)—i—(bg,a)—(bl—l—bg,a)) =0.

Asthese elements generate G, we see G C ker ¢, so we have a unique induced homomorphism from AQ B =
(A x B)/G to C, as requested. [ |

The above proof does establish existence, but, as seems to be the case a lot, we have just taken a huge
thing modulo a huge thing, so it is not even obvious if the tensor product is nonzero zero. And (unlike with
localization) there is actually danger here! For example,

ZINZQLJI9ZL A0  but  Z/91Z® Z/120Z = 0.

Soin practice, to actually compute the tensor product, we use the universal property and notably not the
explicit construction. Here are some examples of doing this by hand.

Proposition 3.50. Fix A any abelian group. ThenZ ® A = A.
By symmetry, we remark that A ® Z = A as well.
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Proof. The main point is that we can take elements of the form k£ ® a and turn them into 1 ® a*, which
projects nicely into A. Formally, we show that A satisfies the universal property of Z @ A. We define the
needed inclusion::Z x A — Aby

(k,a) — a*

forany k € Zanda € A.
Now, for any bilinear map ¢ : Z x A — C, we have to show that there exists a unique ¥ making the
following diagram commute.

ZxA—"- A
X

S

C
To start, fix any bilinear map ¢ : Z x A — C for some abelian group C. Then, for a;, as € A, we see
(,0(1, a1 + 0,2) = 90(17 0’1) + 90(17 a2)

because ¢ is bilinear, so ¢(1,—) € Hom(A, C). And we can check that the needed diagram commutes be-
cause, forany (k,a) € Z x A,

90(/‘5,@):@(1+"'+17a):¢(1aa)+"'+<ﬁ(1aa):kw(laa):kﬂa):@(ak),
k k

whichis (¢ o ¢)((k, a)), as needed.
We now show uniqueness. Suppose that some @ : A — C makes the given diagram commute. Then we
find that

@(a) =(po L)(lva) = <p(1,a)

uniquely determines . [ |

For completeness, we observe that the induced isomorphism A = Z ® Ais by a ® k +— a*, which we
see by applying the universal property to the canonical bilinear map Z x A — Z ® A. The inverse map is
a—a®l.

Remark 3.51 (Nir). In fact, we remark that a homomorphism of abelian groups ¢ : A — B will remain
unchanged after taking Z ® — and applying the above isomorphism. Indeed, the induced morphism
0:Z®A—7ZQ Bisby

(pl(k ® CL) =k ® @(a)v

which can be checked to be homomorphic. But applying the isomorphism z®k +— z* wegety, : A — B
which satisfies o5 (a*) = ¢(a)* for each a, k, which is true and the exact same ¢ morphism we had
before.

Proposition 3.52. Fix abelian groups A, B, C. Then we have the “distributive” law

(A®B)(C=2(A®C)® (B O).

Proof. The point is that bilinear maps from (A @ B) x C — X are the same as a pair of bilinear maps
AxC — X and B x C — X. Formally we show that (A ® C) & (B ® C) satisfies the universal property of
(A® B)® C.

To start off, we note that we havethemapt: (A® B) x C - (A C)® (B® C) by

t:((a,b),¢) = (a®c,b®c).
This map is bilinear, roughly by construction. For example,

t((a1,b1) + (ag,b2),¢) = (a1 @ c+as @ ¢, by c+ by ®c) = (a1 ® ¢, b1 @ ¢) + (az @ ¢,be R ¢),
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and the other side is similar.

It remains to show the universal property. Suppose that we have any bilinearmap ¢ : (A® B) x C — X
so that we want to exhibit a unique linearmap @ : (A ® C) @ (B ® C) — X making the following diagram
commute.

(ApB)x(C —— (A®C)® (B ()

\gp

\
We start by showing the uniqueness of . Indeed, foranya € A,b € B,c € C, we can push ((a,b),c) €
(A@® B) x C through the diagram to see the following.

D <6l -

((a,b),c) —— (a®c,b®c)
~

©

~
gp((a,b),c)

<6l

Namely, we must have
Pla®c,b®c)=p((a,b),c)
foreacha € A,b € B,c € C. It follows that

@(CL ® Cl7b® 62) = @(CL ® Clab® Cl) +¢(CL 0y 07b® (CQ - Cl)) = @((avb)vcl) + @((Ovb)vc2 - Cl)a

soindeed, @ is uniquely determined. More simply this is ¢((a,0),c1) + ©((0,b), c2) after some rearranging.
It remains to show that @ is actually well-defined. Well, by projecting on the a coordinate, we see that
induces a bilinear map 4 : A x C — X by

@A(aa C) = 90((6% 0)7 C)'
Similarly, we get a bilinear map ¢ : B x C — X by ¢5(b,¢) = ¢((0,b), c). We will not check that these are
bilinear explicitly.
The pointis that our bilinear maps ¢4 and ¢ induces linear mapsga : AQC — X (bya®c — ¢((a,0),¢))
and g : BRC — X (byb® ¢ — ¢((0,b), ¢)), so we have the following diagram.

A®C

LAl

BoC 25 (A®C)® (B®O)

Namely, we have an induced i defined by
Pla®cr,b®c) =pala®cy) + (bR c2) = pala,c1) + pr(b, ca),
whichisindeed p4((a,0),c1) + ©5((0,b), ca). So this map does exist. |

Remark 3.53 (Nir). The second part of the proof can be stated in terms of bijections between Hom sets
and show the uniqueness and existence simultaneously. However, the above proof feels more concrete
to me.

Example 3.54. We have that

Z"Q7L"=(Z® - ®L)QL" 2 (ZQRZL")® - ®(ZRL™) = (Z™)™ 2 7™
N ———

e m
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3.2.2 Tensor Is Right Exact

In general, we might want to compute tensor products with quotients. This would involve taking the short
exact sequence
0+A—-B—->C—=0

to a sequence
0>A®M —-BM —>CeM — 0.

The best possible world would make this sequence short exact. Well, at least part of the sequence is ex-
act.

Theorem 3.55. If
0-A—B—-C—0

is a short exact sequence, then
AM -BIM - C®M —0

is exact.

Proof. Thisis difficult to do with the specific construction we provided for the tensor product. So we use cat-
egory theory, which makes this result trivial but not obvious. The main point is the following lemma.

Lemma 3.56. Fix B an abelian group. Then the tensor functor — ® B is left adjoint to the hom functor
Hom(B, —).

Proof. We note that — ® B is actually a functor becauseamap f : A; — A, willinduceamapy: A; ® B —
As ® B by
a; @b f(al) ®b.

Less explicitly, we have a bilinear map defined as the composite 4; x B EN Ay x B — Az ® B, which will
induceamap A; ® B — A, ® B, defined as above.
Anyways, the main idea for the adjunction is that, for any abelian groups A, C,

Hom(A ® B, () = Bilinear(A x B,C) = Hom(A4, Hom(B, C)),

where the last step is by currying, and these isomorphisms are exactly we need for the lemma. We will
establish these isomorphisms, but we will not actually show the coherence laws for the adjunction because
I'm lazy.

Namely, linear maps A ® B — C are in canonical bijection with bilinear maps A x B — C by definition
of ®. In fact this is a group isomorphism, where the operation on Bilinear(A x B, C) is pointwise addition.
Indeed, we are homomorphic because ¢1, @2 € Bilinear(A x B, C) have

(P1+P2)(a®b) =P1(a®b) +P2(a®@b) = (1 + ¢2)(a, b).
This establishes the isomorphism Hom(A ® B, C) = Bilinear(A4 x B, ().
Now, currying says that bilinear maps ¢ : A x B — C are really curried homomorphisms: given a € A,
define ¢, € Hom(B, C) by ¢,(b) := ¢(a,b). Then ¢, is indeed in Hom (B, C) because
Pa(br + b2) = p(a, b1 + b2) = p(a, b1) + ¢(a, b2) = @a(br) + ¢a(b2).
But further, the map a — ¢, is itself a group homomorphism in Hom(A, Hom(B, C)); indeed, we have

Pay+as (b) = p(ar + az,b) = p(a1,b) + (az,b) + @a, (b) + @a, (b).
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So we have a map of sets Bilinear(4 x B,C') — Hom(A4, Hom(B, C)). In fact, this is homomorphic because
the sum ¢1 + o will have

((01)a + (92)a) (0) + (92)a(b) = p1(a,b) + p2(a,b) = (p1 + ¢2)(a,b).
And our map is injective because ¢ € Bilinear(A x B, C) going to the zero map in [ Hom](4, Hom(B, C))
would mean that ¢(a, b) = ¢, (b) = 0(b) = 0 for each (a,b) € A x B. So the set map has trivial kernel.

Lastly, our maps is surjective because ¢, € Hom(A, Hom(B, C)) can be induced by a ¢ € Bilinear(A4 x
B, C) by ¢(a,b) = ¢,(b). We see that ¢ is indeed bilinear because
(p(a’l + az, b) = Pai+asz (b) = Pay (b) + Pa, (b) = @(al’ b) + @(a% b)

and

@(a, by + ba) = pa(br + b2) = @a(b1) + pa(b2) = ¢(a,b1) + ¢(a, ba).
This finishes the isomorphism Bilinear(A x B, C') & Hom(A, Hom(B, C)). |

Now that we know — ® B is a left adjoint, we pick up the following fact about left adjoints.
Lemma 3.57. Left adjoints preserve colimits. In other words, fix categories A, B and an adjoint pair F :

A — Band G : B — A. Then suppose that we objects { A, } aex with commuting maps g, : Aq — Ag.
(Given a, 3, there might be no ¢ + Ba, or there might even be multiple.) Then

F (113 Aa) = lim F(A,),

supposing that the colimit on the left exists.

Proof. We outline the proof that F’ (ILn Aa) satisfies the universal property ofli_rr; F(A,).Forconcreteness,

set A :=1lim A,, and let ¢, be the promised map 4, — A.
Now, fix any object X € Bwith maps z,, : FA, — X which commute withthe pg, (i.e., 230 Fpgs = z4).
Here is our diagram, where we need to show that there is a unique induced arrow.

FA Foga

o FAg
XLO‘ FV
FA
T 1 g
X

Well, Hom(F A, X) = Hom(A, GX) (naturally) by the adjunction. But by definition of A as a colimit, we see
that Hom(A, GX) is in natural isomorphism with commuting tuples of morphisms as in

Hom(A,GX) = {{aa}ag € H Hom(A,,GX) :agopga = gog} .

aEA

But commuting tuples of morphisms in Hom(A,, GX) can be pushed back to Hom(F A, X) by the adjunc-
tion again, and the fact that the adjunction natural means that the morphisms will commute afterwards as
needed. So we have

{{aa}a@ e [[ Hom(4a,GX) : agoppa = W} = {{ba}ae/\ € [[ Hom(FA4, X) : bg o Fippa = F‘PB} :

aEX agA
Soin total,
Hom(FA, X) = {{ba}ae,\ € [[ Hom(FAq, X) : bg o Fipga = ngﬁ} ,
QaEX
which is exactly what we need for F'A to be the colimit of the F'A,,. This finishes. |
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And now we can realize right-exactness as a special kind of colimit.

Lemma 3.58. Suppose that the functor of abelian categories F' : A — B preserves colimits. (For exam-
ple, F' might be a left adjoint.) Then F'is right exact.

Proof. The point is the right short exact sequence

Al —— A T A 0
is equivalent to saying that A” is the colimit of the following diagram.

A —= A
0

Indeed, the right short exact sequence is equivalent to A” = A/ im ¢ by using the Homomorphism theorem,
and A/ imis the colimit of the above: for any X with maps A’ — X and A — X making the above commute,
surely there is at most one map A/im: — X, and this map exists because A - X = A’ = A — X implies

that A’ vanishes under A — X.
Thus, because F preserves colimits, it will preserves quotients in the above way. Explicitly, if

A —— A T A 0

is right exact, then

FA —— FA —— FA" 0

will be right exact. |

Remark 3.59. We also have the dual statement that right adjoints preserves limits, which implies right
adjoints preserve left exactness. For example, we could just move everything into an opposite category
and repeat the proofs above.

Now Theorem 3.55 follows by stringing the above lemmas together. |

Remark 3.60. As promised, category theory is a nice tool for making trivial results trivial. However, it is
not obvious that the result is trivial.

Category theory also gives us some other nice properties. For example, we have the following, practically
for free.

Proposition 3.61. Given abelian groups { A, } e, We have

(@Aa> ® B = P(A. ® B)

aEA aEA

Proof. Direct sums are colimits (where there are no commuting morphisms to worry about), so this follows
directly from Lemma 3.56 and Lemma 3.57. |

Proposition 3.62. We can show that Hom(B, —) is left exact.
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Proof. The point is that right adjoints preserve limits, so Hom(B, —) preserves limits. Then, as before, we
show that
0 Al —— A T A

is left exact if and only if A’ is the limit of the following diagram.

1=
Indeed, the left short exact sequence is equivalent to A’ = ker 7 by using the Homomorphism theorem. And
this is equivalent to being the limit of the above diagram because for any X with maps X — Aand X — A"
causing everything to commute, we see that X — A must map into ker v = A’, so the induced map exists
and is unique by restricting the image.
So we see that
0 Al —— A T A

is left exact if and only if A’ is the limit of some diagram if and only if F/(A4’) is the limit of a similar diagram
if and only if

0 FA Eey pa 7y par

is left exact. u

Similarly, Hom(B, —) preserves products in the same way that — ® B preserves direct sums.

3.2.3 Back To Examples

Let’s go back to examples.
Example 3.63. To compute Z/2Z ® 7. /27, we look at the short exact sequence

0237 — 77/2Z — 0.

Taking — ® Z/27 and using Remark 3.51 to keep track of the morphisms, we get right exact sequence
7/22. 3 7,)27 — 7./2Z — 0,

SO0 Z/27Z ® Z/2Z = Z/2Z. (Namely, the Z/27Z ak 7./27 at the front is the zero map.)

From the above example, we notice that the full sequence

0— Z/22 %3 7.)27 — 7./2Z — 0

is not short exact, at the very least for size reasons but more immediately because the first Z/2Z — Z/2Z is
not injective (it is the zero map). So indeed, tensor products do not preserve left exactness.

Example 3.64. Let's compute Z/27Z ® Z/37Z. Again, take

7237 —7/27 — 0,

and we apply — ® Z/3Z. This gives us
7./37. 53 7./3Z — 7./27. ® 7./3Z — 0.

However, the %% is surjective, so Z/2Z ® Z/3Z = 0.

So nonzero tensor products can give 0, sadly. Here is the general case.
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Exercise 3.65. Fix m, n positive integers. Then Z/mZ ® Z/nZ = 7./ ged(m,n)Z.

Proof. Again, consider the exact sequence

757 — Z/mZ — 0
and apply — ® Z/nZ to get
Z/nZ S 707 — L/mZ @ Z/nZ — 0.
Taking the quotient, our tensor product is
Z/nZ _ Z/nZ , L L

in X0 mZ/nZ ~ mZ+nZ  ged(m,n)Z’

which is what we wanted. [ |

This gets us tensor products for finitely generated abelian groups by distributing Proposition 3.52 repeat-
edly while applying Exercise 3.65 to each distributed factor. The actual statement is somewhat obnoxious
because a prime can appear multiple times, which is annoying to keep track of, so we will not write this out
explicitly.

What about groups which are not finitely generated?

Example 3.66. We compute Z/nZ ® Q for n a positive integer. Well, take
2237 — Z/nZ — 0.

Applying — ® Q, we get
Q¥ Q—-7Z/nZ®Q — 0.

But now Q =¥ Qs surjective, so Z/nZ ® Q = 0. In general, A ® Q for A a finite group will vanish.

However, if we want to work more closely with Q, we should realize it as a colimit. We claim that Q behaves

as the colimit of the system

1 2 3 4
2572572575 ...

To see this, observe that this is the same system as
1 1
77— =7 — =L —---.
2 6

Indeed, Qs the colimit of this system because, for any A with maps 1;Z — A which commute nicely, we can
induce the unique map Q — A by taking any § and running it through %Z — A. This map is well-defined

because the map 1Z — A commute nicely.
Namely, if we have an abelian group 4 and want to compute A ® Q, then it is the colimit of the diagram

1 2 3 4
AL AT A AL .

Now let's do some computations.

Example 3.67. We compute Q ® Q. From our work above, this will be the colimit of the diagram
¥ QBQXQ: -

However, each of the “% maps are isomorphisms, so we can just embed all these groups into Q. Ex-
plicitly, for any abelian group G with maps from the above system, we have a unique map Q — G
commuting with the above maps by using the leftmost Q — G, and this commutes because we had
isomorphisms. SoQ ® Q = Q.

The above example was nice because applying ® didn't lose injectivity, but we are not always so lucky.
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Example 3.68. If we wanted to compute Z/2Z ® Q, then we are computing the colimit of the diagram
222 2228 2/22. 3 2/22% - -,

but every other map is the zero map (and notably not injective!), so we just get Z/2Z @ Q = 0.
Explicitly, for any abelian group G with maps from the above system, we see that commuting with
the zero maps forces each Z/2Z — G to be the zero map: Z/2Z ) Z/2Z — G is the zero map, and

then Z/2Z ) Z/2Z — G is the zero map because Z/2Z — G is zero by the previous case.

So that covers abelian groups pretty well. Here are some last exercises.
+ Compute Q ® Q/Z.
» Compute Q/Z ® Z/nZ.
« Compute Q/Z ® Q/Z.

3.2.4 Tensor Products over Commutative Rings
Our definition in general commutative rings is roughly the same as for abelian groups.

Definition 3.69 (Bilinear). Fix R a commutative ring and (left) R-modules A, B,C. Then f : Ax B = C
is bilinear if and only if, for each a,a1,a2 € Aand b, b1, b2 € B, we have

fla,b1 +b2) = f(a,b1) + f(a,b2)  and  f(a1 + az,b) = f(a1,b) + f(az,b).
Additionally, we require, for each r € R,

f(?"a, b) = f(a‘7 Tb) = Tf(aa b)

Observe that the second condition was automatic for Z-modules by inducting off of the first condition. But
general rings do not have access to such an induction, so we want to say this explicitly to more closely em-
ulate an R-module homomorphism.

Anyways, we define tensor products by universal property again.

Definition 3.70 (Tensor products). Fix Ra commutative ring. Then for R-modules A and B, then we take
the tensor product A ® p B to be “universal” as an R-module equipped with a bilinearmap¢: Ax B —
A ® B. Explicitly, for any bilinear map ¢ : A x B — C, there exists a unique induced homomorphism (!)
A ® B — C making the following diagram commute.

AxB - A®B
™~ i
 bilinear :

e

We can quickly show that tensor products exist.

Proposition 3.71. Fix R a commutative ring. Then for R-modules A and B, A ® p B exists.

Proof. This construction is essentially the same as with abelian groups. Define N as the submodule of A® B
generated by the elements

(a,b1) + (a,b2) — (a, b1 + b2),

(bya1) + (b,az) — (b,ar + a2),

(ra,b) — (a,rd),
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forany a,aj,as € Aand b,by,b; € Bandr € R. Then we define A ®r B := (A @ B)/R, with an R-action
defined by r(a ® b) == (ra) ® b. We will omit the checks here because they are essentially the same as in
Z-modules, though we do note that we add the condition (ra, b) = (a, rb) because of the added condition to
being bilinear. |

We have many of the same properties. We will outline the properties bu tno more; they are pretty much
the same as for Z-modules.

Proposition 3.72. Fix R a commutative ring and A an R-module. Then we have A®r R = A.

Outline. We can show A satisfies the universal property A ® R in essentially the same way as in Z. At a
high level, for any R-module X, we see from the adjunction (written out below) that

HomR(A QR R,X) = HomR(A,HomR(R,X)),

but Homp (R, X) = X by tracking where 1 goes. So Hompg(A®pg R, X) = Homp(A, X) for all R-modules X,
so we are done by the Yoneda lemma. |

If we actually track everything through, then again, the isomorphism A —+ A ®g Risa — a ® 1, and the
inverse mappingisa ® r — ra.

Proposition 3.73. We have that — ® A is left adjoint to Hompg (A, —), so — ®g A is right exact.

Proof. This is essentially the same proof as for abelian groups, so we won't say much here. We will remark
that the extra bilinear condition on B ® g A corresponds to needing
p(ra) = ro(a)

for an R-module homomorphism ¢ : A — B. |

Example 3.74. Fix M a module and I an ideal of a commutative ring R, and we compute M ® (R/I). For
this we have the exact sequence
I+R—R/I—0

which becomes
M@I—+M®@R—M®(R/I)—0

after applying M ® —. Tracking our quotient through, we see M ® I — M by m ® i — im, which surjects
onto IM,so M ® I = IM.Sowe have M ® (R/I) = M/IM here.

3.2.5 Tensor Products Over General Rings

In commutative rings R, we had the very nice property that M ®z N was an R-module for R-modules M
and N by the linearity in the bottom. However, in general rings, the relations

rm@n=m®ern=r(men)

are a bit fuzzy because it moves r from the outside left to the inside left, which are different! So in general
rings, we should take
m®rn=mr@n,

where M is a right R-module and N is a left R-module, but now there is no good eay to make M ®p N is
not an R-module, so M ®pr N is merely an abelian group. We say this again.
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Warning 3.75. For general rings, the functor M ® i — for general rings takes right R-modules to abelian
groups, not R-modules to R-modules.

But we still have our definition as follows.

Definition 3.76 (Tensor product, I). Fix M a right R-module and N a left R-module. The tensor product
M ®pg N takes funny bilinear maps f : A x B — C (satisfying f(ar,b) = f(a,rb)) to linear maps
f:A®B—C.

If we want to make this good again, we should take bimodules.

Definition 3.77 (Tensor products, Il). Fix M and N R-bimodules. Then the tensor product M ® g N
imposes the conditions

ar@b=a®rb, r(a®b) = (ra) b, a® (br) = (a®b)r,

where the last two laws turn M ® g N into an R-bimodule.

Note that the above roughly just includes the commutative case because right R-modules can be turned
into right R-modules (by r - m :== mr) when R is commutative.

3.2.6 More Applications and Examples

Let's have some fun.

Example 3.78. Fix k-vector spaces V and W, and we study V ® W. We claim that 1V 2 (dim V)(dim W),
Tangibly, we can fix bases {v4 }acr and {ws}ges for Vand W respectively, and then V' @ W will have
basis given by

{va ® wﬁ}(a,ﬁ)EIx]-

Checking linear independence is nontrivial, but we can see this because tensor products preserve direct
sums, which implies

VoW = (@m) @ (Prus | 2P | kva@@Pkuws | = P k(va @ wp).
acl peJ acl peJ (a,B)eIXJ)

There is some work to track through the isomorphisms, but we have more or less done this in the no-
tation above.

Example 3.79. Fix a (finite-dimensional) k-vector space V,andwe study W =V @V @ V ® V*, where
V* is the dual space. Then if V has a basis {v; }4™ V' then W has a basis

va®vb®vc®vf,

totaling to a dimension of (dim V)*. Again, these elements span W by looking component-wise, and
these elements are linearly independent, roughly speaking, because there isn't a way to combine them
meaningfully. Alternatively, we could just inductively apply the previous example.

In differential geometry, we might omit everything except the coefficients of the basis in the above example
because they are a mess.
Tensor products also help out category theory (which is perhaps unsurprising).
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Proposition 3.80. The coproduct of two commutative rings Rand S'is R® S, where R® S is a ring with
multiplication defined by extending

(r1 ® 51)(r2 ® s2) = (r172) ® (5152)

linearly.

Proof. We already have that R ® S is an abelian group (because we took the tensor product in Z-modules),
so checking that it is a ring only needs to worry about the multiplication law. Showing that multiplication is
well-defined is surprisingly annoying; we do this in steps.

(i) We know that we have a bilinear map R x S — R® S by (r, s) — r ® s is bilinear, and the distributive
law in R and S promise that, for given (19, s0) € R x S, the map ji(,,,s) : (7, 8) = (ro7) ® (805) is still
bilinear:

H(ro,s0)(T1+T2,8) = (ro(r14+72)) @(808) = (1071) @ (505) + (1072) ® (808) = Li(r0,50) (715 8) F+ H(rg,50) (725 5),

and similarly,
H(ro,s0) (15 51+ 82) = (ro1) @ (50(51+52)) = (ro7) @ (5051) +(107) ® (5052) = H(rg,50) (75 51) F (g, 50) (T 52)-

(i) Because ji(y,,s) : RxS — R®@Sisbilinear, itinducesalinearmap R®S — RS byr®s — (ror)®(s05).

(iii) In fact, we claim that (7o, s0) = fi(r,,s,) is itself a bilinear map R x S — Hom(R ® S, R ® S). Indeed,
we have to check that

H(ri+ra,8) (To ® S0) = ((r1 +12)10) @ (850) = (r170) @ (850) + (r270) ® (850),

and
Hr,s14s2) (T0 ® 80) = (170) @ (51 + 82)80) = (770) @ (8180) + (770) @ (5250)

and then these extend outto allof R ® S.

(iv) So because e : R x S — Hom(R ® S,R ® S) is a bilinear map, we have a linearmap R ® S —
Hom(R® S,R® S) by
(ro® sg) — ((T ® 8§) > (To’l“ ® 808)),

which is exactly what we wanted.

To finish checking that R ® S is a ring, associativity is inherited from R and S. Our identity is 1 ® 1. The right
distributive law holds because 1, is a group homomorphism, and then we can get the left distributive law
because multiplication is commutative.

Now we have to actually check that R ® S is the coproduct. To start, we see that we have inclusions
tr: R— R®Sandis:S -+ R®Sbyr— r®lands+— s®1respectively. To show the universal property,
fix X aringwithmapsgpr: R — X and ps : S — X.

¥s

For the universal property, we need to induce ¢ uniquely.
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« We start by showing it is unique; it suffices to show that p(r ® s) is forced forr € Rand s € S. Well,
we see

p(res)=¢((rel)-1es) =prel)-e(1es)=(poir)(r)(pois)(s) = r(r)es(s),
which is now indeed forced.

« We now show that ¢ exists. Indeed, we note that the maps ¢ and s induce a bilinear map (r, s) —
vr(r)ps(s); we won't write out the check that this is bilinear this time, but it comes from the distribu-
tive laws in X.

The point is that the bilinear map R x S — X induces alinearmap¢: R® S — X by
o(r @ s) = @r(r)es(s).

We have to actually show that ¢ is a ring map; we are already given that it is a group homomorphism.
Then

@((rir2) ® (s152)) = @r(r1r2)@s(s152) = (Pr(r1)es(s1)) (Pr(r2)es(s2))

shows ¢ respects multiplication, and we cansee p(1®1) = pr(1)ps(1) = 1-1 =1, so palso preserves
the identity. This finishes. |

Asn an aside, we note that we can do something similar for R-algebras.

| Definition 3.81 (Algebra). Given aring R, an R-algebra is a commutative ring with an R-action.

Proposition 3.82. The tensor product is the coproduct in the category of R-algebras.

Proof. We omit this proof because | don’t want to think about algebras. |

Inalgebraic geometry, algebras are roughly schemes, and then the their tensor product is the “fiber product”
of the schemes.

Remark 3.83. Rigorizing the above sentence takes about five hours of book-keeping.

Example 3.84. Fix R = C and A = C[z] with B = Cly] which are R-algebras. Well, these are really
R-vector spaces, where A has a basis {x’“}kEN and B has a basis {y so A ®pr B has a basis (as an

R-module) z* ® y¢, which is C[z, y].

Feen:

Let's keep working with the above example. Taking spectrums, we see
Spec C[z] = CU {0},
where oo corresponds to the zero ideal. What about Spec Clz, y]? Well, certainly some of its primes look like
(x —a)or(y—p)or(x—a,y— B),which correspond to («a, o) or (8, ) or (e, 3) respectively.
But there are lots of other primes in Spec C|z, y] to keep track of. For example,
(«® +y* = 1)
is not from anyone in Spec A or Spec B. So in general, we do not always have

Spec A x Spec B z Spec(A ®@r B),

which is sad. Making these actually equal requires some care to redefine the product on the left.
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3.2.7 Group Actions

We continue. Let's talk about representations.

Example 3.85. We compute V := C ®g C. Viewing as an R-vector space, V hasabasisl ® 1and 1 ® ¢
and i ® 1 and i ® i. Viewing V aring, the elements

1®1—-i®i 1Qi+1®j1
— 3 M

are orthogonal idempotents (I won't check this explicitly), so we have a decomposition of rings (!)

C@RCNC[1®1_Z®Z]@(C|:1®Z+1®Z:|,

2 2

and we can check that the R-dimension on both sidesis2-2 =2 + 2.

Remark 3.86. Tensor products of fields like this come up in algebraic number theory quite a bit.

For our story here, fix G a group which acts on the vector spaces V and W. Then G acts on V & W pointwise,
andinfactGactsonV @ W by

9(v @ w) = (gv) ® (gw)
forg e Gandv € Vandw € W.Indeed, themap p1y : VX W — V ® W by (v,w) — (gv ® gw) is bilinear

because (v, w) — (v ® w) is, and g — p4 is @ group homomorphism because G acts on V and W. (We won't
write these out.)

Example 3.87. Take G = Z/nZ, we can take V.= W = C as C-vector spaces, where the G-actionon V'
is given by g - z i= 2e2™9/™ for some fixed a € Z, and the G-action on W is given by g - z := ze?79/"
for some fixed b € Z. Then

9(v @ w) = (gv) ® (quw) = 2@/ (y @ w)

isour G-actiononV @ W.

Recall from earlier that we had the Burnside ring of (equivalence classes of) sets with a G-action. The above
ideas let us maybe define an arithmetic on (equivalence classes of) linear representations of G. Here we
define

VW =VeWw and VxW=VW.

From earlier we had a distributive law
(ADB)C=2(A0C)® (B C).

We even have nice association
(A B) e C 2 A® (B (),

which is simply by (¢ ® b)) ® ¢ = a ® (b ® ¢). So we have most of what we need for a ring!

But again, we have no subtraction, but we can do a similar construction as with the Burnside ring, where
we just forced a subtraction to exist. This requires some care because it is possible for A& R = B&® R
while A % B for general rings R, as we saw last class. Regardless, this is still possible, and gives us the
representation ring.

Definition 3.88. Fix a field k. The representation ring of a group G is the ring more or less generated by
the k-linear representations of G with addition given by @ and multiplication given by ®.
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3.3 October12

| am a small boat, and these are big waves.

3.3.1 Duality for Vector Spaces
Today is module miscellany. Recall duality for vector spaces.
Definition 3.89 (Vector space duality). Given a k-vector space V, we define
V* == Homy (V, k).
Then we know there is a natural map V- — V** given by
v (o= pv),

which is notably canonical. Thisis anisomorphism if V is finite-dimensional because we can check V- — V**
is injective* and dim V = dim V* = dim V** shows that we are bijective for size reasons.

However, these size reasons are no longer valid for infinite-dimensional vector spaces, so we might have
V* larger than V.

Non-Example 3.90. Fix a k-vector space V with basis given by {v,, } nen such that

V= @kvn.

neN

Now we claim that V* = kN which is of strictly larger cardinality that V' = k®N. Indeed, we associate

{an }nen With the linear map
Z kn vy, — Z ankn,.
n=1 n=1

The sum converges because all but finitely many terms are nonzero. Now, certainly each {a, }nen is a
linear map, and all linear maps take this form by tracking where each individual v, goes.

In analysis, we usually put a topology on V, which makes things better to name.
Before going into the next example, we take the following definition.

Definition 3.91 (L? spaces). Fix X an integrable space. Then, for a real number p > 0, we define the
space LP(X) to consist of integrable functions f : X — R such that

</X |f(x)|pdx)1/p €R.

In line with this definition, we define L>°(X) to consist of bounded integrable functions.

Our example will take X = N, where [, dzturnsinto > ..

Example 3.92. Fix V := Cy(N), which consists all (continuous) sequences N — R which tend to 0, and
we note we have a topology induced by
sup |cp|

where {¢;, }neny € V.

41f o > o is the same as ¢ — ow for each ¢ € V*, then fixing a basis { 8a }aca, @ Projecting onto a basis element detects v = w
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Let’s talk through some of the duals of V' = Cj(N).
« Wesee V* = L}(N). Indeed, for each {d,, },en € L*(N), we have the linear map

{Cn}nEN = Z Cndp,

neN

which converges because the ¢, are bounded. In one direction, certainly all of these are linear maps.
In the other direction, suppose T : V' — Riis a linear transformation. Not by caring convergence too

much, we note that
T (Z Ck> = Z ce T ({1o=k}een),
k=1 k=1 T

where this works over finite sums and extends to infinite sums in the limit. In particular, because the
left-hand side must converge, the right-hand side needs to converge as well, so d;, — 0 as k — oo.

It remains to show that {d }ren € L(N). Suppose for the sake of contradiction that
> Jdx] = o
keN

Then, we set m = 0 and say that for each m > 1, there exists n,,, > n,,_1 such that

M

Z |dk‘ > 1.

k=nm_1+1

Now we set ¢, = sgn(dk)%, where n,,, 1 < k < n,,. The point is that

e ] [e'e} Nm [ee] Nm 0
1 1

E dkck = E E dka = E — E |dk| < E — = 00,
m m

k=1 m=1k=ny,_1+1 m=1 k=nm_1+1 m=1

which contradicts the {dj } rcn defining an element of V*.
+ We see V** 2 [°°(N) using a similar argument as above. | am too lazy to work this out.

« Continuing V*** has to do with “contents” of N, but at this point, we need the axiom of choice to find
an example which isn’t from V* = L1(N). Here we'll stop.

So the above examples show a strictly ascending chain of double duals even though, say, V and V** do have
the same cardinality.
We also have the following general result for L? spaces.

Exercise 3.93. Fixing p € (0, 0), we have that LP(N)* = L?(N), where ¢ € R is chosen with % + % = il

Proof. Again, the point is that we can associate {d,, }nen € L4(N) with the linear map
{Cn}nEN — Z Cnd,.
neN

Indeed, this converges by Hélder's inequality: we have

D leadal < (Z cn|p> " (Z cn|q> " < .

neN neN neN

And of course these functions are linear. We will omit the proof that this mapping is bijective because | fear
it is nontrivial, and | am lazy. |
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3.3.2 Duality for General Rings

Now we turn to generalizing duality from vector spaces because we're algebraists.

Definition 3.94 (Duality for free and projective modules). Fix M an R-module over a commutative ring
R, and we can define the dual module F* := Hompg(F, R).

Remark 3.95. We use commutative rings because noncommutative rings make Professor Borcherds
nervous.

Note that this definition makes sense because Homp(F, R) is an R-module by

(ro)(z) =7 - p(x)

forre Randz € F.
Some of the theory for vector spaces carries over nicely.

Proposition 3.96. Given a free R-module F' over a commutative ring, we have a canonicalinjection F' —
F**If Fis of finite rank, then F' = F**,

Proof. Thisis the same as for vector spaces. Form € F and ¢ € F'x, the mapping is
Yo :m i (> om).
We see 1), is linear because, given r1, 75 € Rand my, ms € F, we have
Vrimy+rams (9) = @(rima + rama) = rip(ma) + rag(ma) = r1¢hm, (9) + r2tm, (¢)

by plugging into the various module actions.
We canalso check that thisis injective: suppose thatm € ker 1, sothat ¢, : F* — Risthe zero mapping.
The key point is that F’ being free promises it is freely generated by some set {m, } e, and we note that

T - E TaMa > T
aEA

is a linear transformation, well-defined because the {m,, },c are a basis. Then we note that ¢,,,(7,) = 74 =
m, so each component of m under the basis will vanish. Thus, m = 0.

To show that F' = F** when F is of finite rank, we actually show that I’ = F* non-canonically. Indeed,
letting our basis be {my, }7_, where d = rank F, we see we have an isomorphism R" = F* by

n n
(aty...,ap) — E akmkHZakrk ,
k=1 k=1

where (a1, ...,a,) € R™and Y ;_, aymy is an arbitrary element of . We won't bother showing that this is
an isomorphism. [ ]

The following also holds more generally.
Lemma 3.97. Given R-modules A, B, X we have that
Homp(A @ B, X) = Homg(A, X) ® Homg(B, X).

Proof. This is essentially the universal property of A & B: maps A & B — X are in bijection with maps
A — X and B — X. We won't check that this is an R-module homomorphism and so on. |

The point of Lemma 3.97 is to give the following.
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Proposition 3.98. Given a projective R-module P over a commutative ring, we have a canonical, injec-
tive morphism P — P**.If P is finitely generated, this is an isomorphism.

Proof. The point is that there is an R-module @ such that F' .= P @ Q) is free, and if P is finitely generated,
we can force F to be finitely generated. To start, our canonical injective homomorphismis ! : P — P**
defined by

Ve ip = (9 = op),

and we define 1/)9; as usual, we won't check that this is an R-module homomorphism and so on.

We start by showing ¢/7 is injective and that ¢& is injective will be similar. Indeed, if p € ker /7 then vy
is the zero map so that (p) = 0 for each ¢ : P — R. But now, foreach @ : F — R, we see g = o + ¢@ for
oF : P — Rand ¢® — R by universal property, so

2(p,0) = " (p) + ©2(0) =0+0=0

foreach : F — R. But we know that the only element of ' which vanishes under all morphisms F — Ris
(0,0), so we must have p = 0. This finishes.

To show that ¢’ : P < P**is an isomorphism when P is finitely generated, we bound the size of P**.
Indeed, we note that we have the isomorphisms

Hompg(Homg(P & Q, R), R) & Homg(Homg (P, R) & Homg(Q, R), R)
>~ Hompg(Hompg (P, R), R) ® Homg(Hompg(Q, R), R)

by repeatedly applying Lemma 3.97. But now we have maps

where all maps are injective, and in fact the composition is idy if we track everything through.> It follows

that our map P — P** and Q < Q** are actually isomorphisms. |
Remark 3.99. It is not necessarily true that P = P* when P is a finitely generated projective module;

there is an example here.

Anyways, we should see some examples.

Example 3.100. For R = Z and M = 7Z/2Z, we have M* = Hom(Z/2Z,Z) = 0, which is not very
interesting.

This is not interesting because we've immediately killed our module. So here is another definition which
works better for abelian groups.

Definition 3.101 (Duality for abelian groups). For M an abelian group, define

M* := Homz(M,Q/Z).

Remark 3.102. We have chosen Q/Z for our “dualizing object” instead of Z because we can do what
we want. In specific cases, there might be good reasons to choose a different dualizing object than our
original ring.

We can check the following, continuing the idea that double duals should behave well.

> Please don't ask me to actually track this through.

147


https://math.stackexchange.com/a/1343962/869257

3.3. OCTOBER 12 250A: GROUPS, RINGS, FIELDS

Proposition 3.103. For M a finitely generated abelian group. Then M** = M.

Proof. The proof proceeds in steps.
1. We start by checking cyclic groups. We see
Homgy(Z/nZ,Q/Z) = Z/nZ

because an element of Z/nZ must map to an element of (additive) order n, so 1 % for some k €
Z/nZ. So our maps are in bijection to Z/nZ, and it is not too hard to check that the map Z/nZ —
Hom(Z/nZ,Q/Z) is in fact homomorphic.

Thus, (Z/nZ)* =2 Z/nZ.

2. We note that Lemma 3.97 implies that (M ¢ N)** = M** ¢ N** as before. In particular, if we know
M** = M and N** = N already, then we get (M & N)** = M** ¢ N**.

3. To finish, any finitely generated abelian group M is the direct sum of some cyclic group, so we finish
by applying 2 and then 1. |

Even though the above example worked so nicely, we lost things being canonical. Namely, the isomorphism
Homy(Z/nZ,Q/Z) = Z/nZ was not canonical because we had to choose the generator 1 € Z/nZ. Regard-
less, we do still have the canonical isomorphism M = M** where the homomorphism is canonical and
bijective for size reasons.

3.3.3 Fourier Analysis

Let's do some more examples. In what follows, we use S! as the dualizing object for our abelian groups
instead of Q/Z; to make the distinction clear, we have the following definition.

Definition 3.104 (Character). Given an abelian group M,  is a character if and only if Y € Hom(M, S').

If the abelian group G was finite to begin with, then this is the same as G* from earlier because eachg € G
must map into 4
2™k /#G for some k € Z,

which is in the image of Q/Z in S*. If our abelian group G was infinite to begin with, then it likely has some
topology going on, so it still makes sense to use S! instead of Q/Z.

Example 3.105. For (Z/8Z)™ , we see that (Z/8Z)* = (3,5) = (Z/2Z)?. So we can write out our char-
acters explicitly by tracking where 3 and 5 go.

|1 3 5 7
xo|1 1 1 1
x1|1 -1 1 -1
x2|1 -1 -1 1
xs|1 1 -1 -1

Remark 3.106. Dirichlet’s original use of Dirichlet characters x : (Z/mZ)* — S! was to work with

L-series of the form .
xX\n
Liws) =3 X0,
=i

where x(n) = 0 when ged(m,n) > 1. If you are interested in why he cared about such things, read up
on analytic number theory.

These ideas give us some notion of a Fourier transform. The following is our main result here.
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Theorem 3.107. Fix M some finite abelian group. Then we can define the (Hermitian) inner product on
functions f,g : M — C by
(fr9) = f(2)g(@).

xeM

Then the characters in Homy (M, S*) form an orthogonal basis of these functions in Mor(M, C).

The idea here is to generalize Fourier series, where we have as our specific case the abelian group R/Z, and

we have ‘
f(:C) _ che%mkw

keZ
where

c = /f(a:)e_%i"’” dx.
Proof. We show the claims in reverse order.
« We start by showing that distinct characters are orthogonal. Indeed, pick up x1,x2 : Hom(M, St).

Then we have
Y xi@xal@) = Y taxe (@),

xeM rzeM

If x1 = X2, then all entries are the trivial character xo = 1, so we get out #M from the sum. On the
other hand, we claim that
> x(z)=0

reM

where yx is not the trivial character. Explicitly, take some y € M such that x(y) # 1. Then

XW) D x(@) =Y xay) = Y xlay).

reM xeM zyeM

So we are forced to conclude that

S0 Y . em X(2) =0.
So in total, we find that

(xoxe) = Y xa@)xa(e) =

zeM

#M  x1= X2,
0 X1 7# X2-

In particular, distinct characters are indeed orthogonal.
» To show that characters span Mor(M, C), fixany f € Mor(M, C), and we claim
2 1
f= >, (hox
#M
x€Hom(M,S?1)

Expand this out, we are interested in evaluating, for some z € M,

S odx@ = [ DD x| x@) =" f@) Y x(@y ).

x€Hom(M,S1) X yeEM yeM b%

We claim that all terms except = = y vanish over the first sum, where the sumreads 3 x(e) = #M.
Well, if x # v, fix z := 2y~ ! # e so that we want to evaluate

> x(2).
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The main point is that there is some character y; such that x(z) # 1 because z # ¢.° Then we see that

xai(2) D> x(z) =Y _0ax)(z) =Y x(2),

X

so x1(z) # 1forces > x(2) = 0.
To finish, we see that

S Fx@) =) f@)Y x(zyT) = fa)#M,

x€Hom(M,S1) yeM X
which is what we wanted. [ |

The above also holds in some form in more generality for locally compact abelian groups.

Example 3.108. Consider the following two character duals. (We won't prove these in detail because
they would take us too far afield.)

« For G = Z, we have Hom(Z, S') = S! by tracking where 1 goes.

« For G = S, we have Hom(S, S') = Z because all such homomorphism take the form z +— 2" for
n € N.

These together give us the theory of Fourier series.

Example 3.109. For G = R, we have Hom(R, S') = R by y — (x — €2™*Y¥). The above is the theory for
the Fourier transform.

Example 3.110. For G = Q,, we still have Hom(Q,, S') = Q,.

Remark 3.111 (Nir). It is a remarkable fact that Hom(Q,, S*) = Q,, even though non-canonically. The
correct theory here turns out to be the fact that the Q, are “local fields.”

Remark 3.112. A lot of number theory has to do with Fourier analysis on things like Q, or Ag.

3.3.4 Injective Modules for Abelian Groups

Injective modules are roughly dual to projective modules, where duality does not mean what we have been
talking about so far. So we take the definition of projective and reverse the arrows. Here is the definition of
projective.

Definition 3.113 (Projective). A module M is projective if and only if each surjection B — C with a map
¢ : M — C, then we have a lifting map ¢ : M — B making the diagram commute.

And now we reverse the arrows.

6 This is surprisingly technical. One way to do this is to decompose M =2 @2’:1 Z/nyZ, find some coordinate Z/neZ where z is
nonzero, and thensend 1 € Z/neZ — e27™i/me while the other coordinates are sent to 1.
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Definition 3.114 (Injective). A module M is injective if and only if each injection B — C with a map
M — B — M, then we have a lifting map C' — M making the diagram commute.

00— B——C

DN

M

Remark 3.115 (Nir). Here is one reason why injective modules are nice; fix I an injective module. Dual
to projective modules, any short exact sequence

0+1-5B5C—0
will split. The way to see this is that the diagram

0—— I —5 B

p
idr

1

gives us some p : B — I such that p o+ =id; . This p can be used to induce an isomorphism B = [ ¢ C
by b — (pb, wb); we won't actually check that this is an isomorphism here.

At a high level, being injective means that each homomorphism from a submodule to an injective module
extends to a homomorphism from the full module. Let’s try to find some injective modules.

Non-Example 3.116. We have that Z is not injective because, for Z C 1Z, we cannot extendidy : Z — Z
to a full map $Z — Z because Z has no element which squares to 1. Here is the diagram.

0 — Z—— iZ
idy

Z

Non-Example 3.117. We have that Z/2Z is not injective because, for Z/2Z — 7 /47, we cannot extend
idz oz : Z/27 — Z/27. The problem is that no map Z/4Z — 7Z/27 sends 2 — 1. Here is the diagram.

0 — Z/2Z —— Z/AZ

|
I
idzmkt v

727

Non-Example 3.118. More generally, no nonzero finite abelian group G is injective. For example, we
canuseany g € G\ {0} tofixamapZ — G by 1 — g, but then this cannot be extended to ﬁZ because

every elementh € Ghas #G -h=¢ # g.

1
OHZ‘%EZ

(1—~g)

G
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Example 3.119. The group Q is injective. This will be true because Q is “divisible."”

Roughly speaking, the problem with Z being injective is that we could not “divide by 2,"” but Q has no such
problems. So we have the following property.

Definition 3.120. Fix G an abelian group. Then G is divisible if and only if the map  — nx foranyn € Z+
is surjective.

Proposition 3.121. We have that M an injective abelian group if and only if M is divisible.

Proof. We show this in two parts.

« Take M injective and n € Z™. Fixing any m € M, we need to show that there is z € M with m = nz.
The key point is the following diagram, well-defined becausen > 0. Set ¢ : Z — M by 1 — m.

Now injectivity induces % : 2Z — M such that 1 — m. Butthenn -3 (1) =3(1) = m,so () is the
desired element of M.

« Take M divisible, and we want to show M is injective. We are given an injection C — B with a map
¢ : C' — M which we want to extendtoamap @ : B — M. Well, take any b € B. We have two cases.

(@) Ifnb ¢ Cforalln € Z\ {0}, then (C,b) 2 C @ Z,sowecansend f : b+ 0.

(b) Otherwise, suppose nb € C where n is the least such positive integer. But now M is divisible, so
f(nb) =ny forsomey € M,sowe cansend f : b+ y.

Now we invoke the Axiom of choice (specifically Zorn's lemma) to extend this all the way upto B. R

It turns out that divisible implies injective even for principal ideal domains, but we won’t show this.

Remark3.122. Roughly speaking, itis harder to find injective modules than projective modules. Namely,
we needed the axiom of choice for the above proof.

Anyways, let’'s see some more examples.

Example 3.123. We have that Q/Z is injective because it is divisible: forany ¢ € Q and n € Z*, we have

Xn .
L g . Infact, we can split up

Q/Z = @{x € Q/Z: p*z = 0forsomek € Z},

p

M=

which is roughly the Chinese remainder theorem. (We noted this many lectures ago.) It happens that
each M, is also injective, again because they are divisible. Namely, for any M,, € Q we want to hit and

n € Z*, we can decompose n = p”m where p t m. Then there is m’ so that mm’ = 1 (mod p”) so that
n~?—;,:1andn- (?—;,-q) =q.
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3.3.5 Injective Modules for General Rings

So let's find injective modules for more general rings. We claim the following.

Proposition 3.124. Given a ring R, we have that Z-module R* := Homy(R, I) is an injective R-module,
where [ is a divisible abelian group.

Proof. The point is that being injective requires control of Hompg (M, R*). This is somewhat confusing be-
cause R* is itself a Hom-set.
Regardless, R* is in fact an R-module with R-action defined by

(re)(q) = w(qr).

Here multiplication is on the right because we want ((r172)¢)(q) = ¢(grir2) to be equal to (r1(r2¢))(q) =
(ro)(qr1) = @(grirs). We will repeat this because it is confusing.

Warning 3.125. If M isaright R-module and G is an abelian group, then Homy (M, G) is a left R-module,
and conversely.

The main claim is that, for any fixed R-module M,

Homp(M,Homgz (R, I)) = Homgz (M, I).

Indeed, we take ¥ € Hompg(M, Homyz (R, I)) to 1e(1) € Homyz (M, I). We have the following checks.

Well-defined: note that ¥, 11m, (1) = ¥, (1) + ¥, (1), so e € Homy (M, I).
Homomorphic: given !, 12 € Homg (M, Homgz(I)), we see that each m € M has
(Ya +93)(m)(1) = Uy (1) + 95, (1) = (Yo (1) +93(1)) (),

where the left-hand side has addition in Hom g (M, Homgz(R, I)), and the right-hand side has addition
in HomZ(M, I)

Injective: we show trivial kernel. Suppose that ¢4 € Homp(M,Homyz(R,I)) has ¢,,(1) = 0 for each
m € M. Then, for each r € R, the fact that 1,, is an R-module homomorphism forces

Um(r) =7 hm(1) =7-0=0,
so in fact ¢ always return the zero map, so it is the zero object in Hompg (M, Homz(R, I)).
Surjective: fix ¢ € Homy(M, I), and we define
Um(r) = @(rm).

Note that this does have ¢,,,(1) = ¢(m) for each m € M, so ¢, will go to ¢, upon checking that ¢, €
Hompg(M,Homgz (R, I)). Indeed, fixingany m € M and 1,72 € R, we see

Vm(r1 +12) = o((r1 +r2)m) = o(rim +ram) + e(rim) + e(ram) = Y (r1) + Y (r2),
so indeed, ¢,,, € Homy(R, I). Then forr,r1, 79 € Rand my, mg € M, we see
Crymitrams, (1) = @(rrima + rrama) = @(rrima) + @(rreme) = Vi, (1) + Yy (rr2).

Now the key point is that the definition of the R-action on Homgy(R, I') makes this equal to (r1¢m,, +
ro¥m, )(r), which is what we wanted.
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We now show that R* = Homy(R, I) is actually injective. Fix some injection B < C and map . : B — R*
so that we want to geta map g, : C — R*. Well, we can take ¢ € Hompg(B,Homz(R,I)) so that ¢.(1) €
Hom(B, I) as above.

Now, the injectivity of I promises some map @ : C' — I such that B(b) = ¢(1) for each b € B. Then we
can take @ up to the map

P, € Hom(C, R¥)
satisfying 3.(1) = @(c). We claim this 3, is the map we want. Indeed, foreachb € Band r € R, we see that
@y(r) = (1) (1) = @y (1) = (1) = (rp) (1) = (1),

so indeed, P does extend . |

Here is another source of injective modules, if we already have some.

Proposition 3.126. Suppose {1, }nc) are injective R-modules. Then [] ., I, is an injective R-module.

aEX

Proof. Fixaninclusion of R-modules B — C withamap ¢ : B — [], I». Then we have the composite maps
p5: B [[ I > I
Q€N

for some fixed /3. But because I; is injective, we have the extension @5 : C' — I3. So to finish, we define

@(C) = (@C)ae)\ € H Iou
aEX

for each ¢ € C. To see that this works, we note that any b € B has, forany g € A,
T5(P(b)) = 15 (Pab)acr) = P5(b) = wp(b),

so we conclude that 3(b) = (b). This is what we wanted. [ ]

So we have a reasonable supply of injective modules. Namely, we can show the following.

Proposition 3.127. Fix R a commutative ring. Then we have “enough injectives” in the category of R-
modules. Explicitly, for any module M, we can find an injective R-module N for which there is an injec-
tion M — N.

Remark 3.128. This is dual to saying that all R-modules M are projected onto from some projective
module, which is much easier because all R-modules M are projected onto by some free module (e.g.,

@mEM Rm)

Proof. We show this forabelian groups, so fix M an abelian group. The key step is that, givenanm € M\{0},
we want an injective module N so that f : M — N has f(m) # 0. Take N := Q/Z. We have two cases.

« If m hasinfinite order, then take f(m) to be anythingin N\ {0}, and extend this map to M by injectivity.
This uses that Q/Z is injective.

« If m has finite order n, then take f(m) = %, and extend this map to M by injectivity. This also uses that
Q/Z has elements of all finite orders.
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Now, for each m € M, we let the above map be f,, : M — Q/Z. So we can glue these maps together to get

f:M— I o/z,

meM

where the map f is injective because it has trivial kernel,” and the product is injective because products of
injective modules is injective. So we have embedded M into an injective module. |

The proof for general rings is similar, so we will not show it here. We will say that the main obstacle is again,
for each m € M, finding some ¢ € Hompg(M, Homgz(R,Q/Z)) such that ¢,, is nonzero.

To overcome this obstacle, the discussion above tells us how to find some v € Homy(M,Q/Z) with
¥(m) # 0, and the discussion in the proof of Proposition 3.124 shows us how to lift ¢ into some ¢, €
Hom (M, Homyz(R,Q/Z)) such that ¢,,(1) = ¢(m) # 0.

The injective module we made is frankly huge, but usually we can find a smaller one, and it turns out
there is a “best” such injective module. Observe that the same is not true for projective modules.

Example3.129. For M = Z/5Z,the free module Z canmap 1 — 1or 1+ 2, and neither of these appears
to be “best projective module.”

But here is what we have for injective modules.

Definition 3.130 (Injective evenlope). The smallest injective module containing some R-module M is
called the injective envelope.

We'll give examples in abelian groups.

Example 3.131. For Z, the injective envelope is Q. Note this is not finitely generated, sadly.

Example 3.132. For Z/p"Z, the injective envelope is
M, ={z € Q/Z: p"z = 0forsomek € Z}

from earlier.

3.3.6 Modules over Euclidean Domains
We're running out of time, so let's do something else. The main thing we have to say here is the follow-

ing.

Theorem 3.133. Any finitely generated module M over a principal ideal domain R is a direct sum of
cyclic modules R/aR fora € R.

We are not going to show this because it is somewhat technical. Instead, we provide a quick proof of the
following corollary to Theorem 3.133.

Corollary 3.134. Any finitely generated module M over a Euclidean domain R is a direct sum of cyclic
modules R/aR fora € R.

Proof. The exact same proof as for R = Z will work here. Namely, all that proof required was the ability to
use the division algorithm in Z, so the proof extends to Euclidean domains R. |

To see that we don't need the power of all principal ideal domains for applications, we have the following
application of Corollary 3.134.

7 Foreachm € M \ {0}, we see that f,,,(m) # 0 by construction, som ¢ ker f.
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Theorem 3.135 (Jordan normalform). Fix V afinite-dimensional k-vector space, where k is algebraically
closed. Then all linear transformations T' € End(V') are a direct sum of linear transformations which
under a suitable basis look like

A 10 0 0
0 A 1 0 0
0 0 A 0 0
0 0 0 A1
0 0 0 0 Al

where a € k.

Proof. The key trick is to throw Corollary 3.134 at R := k[x]. We see that R is Euclidean by using deg . Now,
by Corollary 3.134, we have that any k[z]-module named M will take the form

é k[a]
2 (Pn)
where p, € k[z] for each p,. Because k is algebraically closed, we may take p, = (x4 — )\.)d°.

Now fix some T' € End(V). To get the desired statement, the idea is to view V itself as a k[z]-module,
where our action is given by

p(x) v =p(T)v,
where p(x) € k[z] and v € V. Essentially, we are taking the typical k-action on V and adding in a “transcen-
dental linear operator T" to get out a k[x]-module. Anyways, the point is that we can write

N
k|x
VB

for some \,,d, € k. For concreteness, we note that we can pull back each k[z]/(z,, — A\, )% so that we can
decompose
k[z]

N
V == @ Vn SUCh that Vn = m
k=1

So now we see that the action of 7" on V will decompose nicely into the direct sum of the action of 7" on the
Vi
In particular, we claim that we can find a basis for which T restricted to V,, looks like

A, 10 0 0]
0 A 1 0 0
0 0 A 0 0
0 0 0 A 1

0 0 0 0 A

Indeed, using V;, = k[z]/(z — A,,)%", we may pull the basis {(z — )\n)dﬂ**e}igl back to {b.}%5* C V, so
that
- (x— M) = (= X)) T 4 Az — M)
corresponds to
T-be = Apbe +be—1
for0 < e <d, —1,whereb_; is the pull-back of (z — \,,)% = 0, which is 0. These equations exactly describe
the matrix we need, so we are done here. |

We leave with the exercise to describe the Jordan normal form over R by using the above proof, where we
have to add in the possible irreducible quadratics.
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3.4 October14

There's always more show.

3.4.1 Limits and Colimits

We're talking limits and colimits today. We have the following definitions. Here is the limit.

Definition 3.136 (Limit). Fix Z an index category and F' : Z — C a functor. Then the limit is an object
L= lim_ F(I)with maps 7y : L — F(I) for each I € Z, which commute such that, forany f : I; — I
inZ, we have 7y, = F(f) omy,.

Further, L is universal with respect to this property: for any object X with maps ¢; : X — F(I) for
each I € T (which commute in the same way), then there is a unique induced map ¢ : X — L making
the following diagram commute.

Py

/\

F(Iy) — g F(Iy)

N6 - e

The dual notion of a limit is the colimit.

Definition 3.137 (Colimit). FixZ an index category and F' : Z — C a functor. Then the colimitis an object
L= ligIF(I) with maps ¢y : F(I) — L for eachi € Z, which commute such that, forany f : I; — Iz in
Z,we have(r, o F(f) =¢p,.

Further, L is universal with respect to this property: for any object X with maps ¢; : F(I) — X for
each i € Z (which commute in the same way), then there is a unique induced map ¢ : L — X making
the following diagram commute.

FL) — 29 p)

\/

D6 -

And here are the standard examples.

Example 3.138. Fix the discrete category Z and functor F' : Z — A as follows.

[ ] [ [
|
Ay Ay Ag

Then the limit is the direct product (the universal object projecting down into each individual), and the
colimit is the direct sum (the universal objecting including each individual).
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Example 3.139. A kernel of a morphism f : A — B is the limit of the following index category and
functor.

Indeed, the kernel is the universal object Ker f with amap ¢ : Ker f — A suchthat for=00:=0.
The cokernel/quotient object is the colimit of this diagram: it is the universal object Coker f with a map
7w : B — Coker f suchthatmo f =700 =0.

Example 3.140. Pull-backs/fiber products are the limit of the following index category and functor.

° Y
i::F:> ‘PY\L
e — o X 2, 7z

We were asked in the homework to show that, in the category of abelian groups,
XxzY ={(z,y) € X XY : poxx = pyy}.
This also holds in R-modules, but we will not show it explicitly; roughly speaking, X x z Y should consist

of pairs of X x Y which are the “same"” under ¢ x and py.

Example 3.141. Push-outs/fiber coproducts are the colimit of the following index category and functor.

e — o ZTY
i :?:}\MPX
° X

In commutative rings, this is the tensor product X ® 7 Y, where X and Y have Z-action givenby z -z :=
vx(z)xand z - y == ¢y (z)y. We showed this a few days ago in the case where Z = Z (so that we are
looking at the coproduct), and | am too lazy to do it again. (If someone wants me to, yell at me.)

3.4.2 Direct Limits

Warning 3.142. For this section, | workin slightly more generality than Borcherds did in lecture. Namely,
all directed systems should be thought of as N under the usual ordering, and all inverse systems should
be thought of as N under the reverse ordering.

A special example of a colimit is the "direct limit.” We have the following definitions.
Definition 3.143 (Directed system). Fix Z a partially ordered set/category where every finite set has an

upper bound. Then an directed system is a covariant functor F' : Z — A satisfying the commutativity
requirements of a functor. Explicitly,

!
o I X Igoestoidp(y) : F(I) — F(I),

. IéJ%KimpliesF(QOf)ZF(Q)OF(f)-
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| Definition 3.144 (Direct limit). A direct limit is the colimit of a directed system.

@ | Warning 3.145. The condition that Z gives every finite set an upper bound will help us much later.

The most common example of such a directed system we might runinto is N under the usual ordering, which
is the category presented as follows.
1-2—=3—=---.

Intuitively, if these maps are injective after applying the functor, then we are doing a kind of union along a
chain of objects. If they aren’t injective, we have to be more careful.
We have already seen an example before.

Exercise 3.146. We have that M), is the direct limit of

7.)p7 — Z|p*7 — Z|p*L — ---

Proof. Indeed, our inclusions are given by Z/p*Z, = ﬁZ/Z < M, orin other words, 1 #. We can check

these commute: we need to check the map fi : Z/p*Z — Z/p'Z (for k < () does indeed satisfy 1, = 14 0 fis,

which is simply -
n np-—
w(n) = — = ];[ = v (np" ") = wu(frem),

hS]

as needed.
We now show the universal property. Fix an object X with maps ¢y, : Z/p*7Z — X such that o = ;0 fre.
We need to exhibit a unique induced map ¢ : M, = X making the following diagram commute.

7)pl — L|p*Z — L|p3Z — -

N J{L2 /
L3
Y2 Mp P3
¥1 |
(%]
~

X

We show uniqueness and existence one at a time.

+ We show that ¢ is unique. Indeed, fix any oF € My, Then we have oF = ti(n), so if the diagram is to
commute, we must have

n
¢ (5) = o =antn),
so ¢ is indeed forced.

+ We now show that ¢ exists. As we worked out, we need to define ¢ by

w<;)f¢mm‘

We see ¢ is well-defined as a function because, even though we might oF = ”’i—;k (where k < ¢
without loss of generality), it is still true that

or(n) = o (np"™") = (v o fre) (n),

where ¢, = @y o fre by hypothesis on the ¢,.
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We technically have to check that ¢ is a group homomorphism. Well,

(4 k
n m np* +mp
@ (pk + e) = (p’“”) = @rre (np" +mp")

but now ¢y is a group homomorphism, so this reads

Ph+e (npe) + Pr+e (mpk) = pr(n) + pe(m) = ¢ <TZ> + <ﬂz> )

which is what we wanted. [ |

3.4.3 Inverse Limits

If we wanted to compute the dual as Homg(M,,Q/Z), we see that Homy, (Z/p"Z,Q/Z) = Z/p"Z (tracking
where 1 goes shows Hom (Z/p"Z,Q/Z) = #Z), but now the arrows are reversed, so we end up with the

following system.
L)l ~—— L|p*L +—— L|p37 +—— -

Explicitly, our map g, : Z/p‘Z — Z/p*Z for k < (s really referring to the map Homy, (Z/p‘Z,Q/Z) —
Homy, (Z/p*7,Q/Z) induced by — o fis. So we see

(1»—>ne)»—><1&fp€_k»—>72>.
p p

Thus, our map gu : Z/p*Z — Z/p*7Z is just the projection n ~ n. We can check the commutativity laws
Jek © Gme = gmp for k < £ < m because both sidesaren — n

Now, when taking the limit (!), we are roughly asking for a “compatible” system of elements from each
of the Z/p*Z. This sort of limit is called an “inverse limit."” We have the following definitions.
Definition 3.147 (Invese system). Fix Z a partially ordered set/category where every finite set has an

upper bound. Then an inverse system s a contravariant functor F' : T — A satisfying the commutativity
requirements of a functor. Explicitly,

f
e I = Igoestoidp(p) : F(I) — F(I),

. IéJ%KimpliesF(gOf)ZF(f)OF(9)~

Definition 3.148 (Inverse limit). An inverse limit is the limit of an inverse system.

And now let’s work out our example because | should do this at least once in my life.

Exercise 3.149. The p-adic integers Z,, is the inverse limit of the following diagram.

Z)pl «—— Z|p*Z +—— Z|p3Z +—— -

Proof. Thisis essentially the definition of Z,,. Because | should say something here, | will show the following
to describe Z,,.

Lemma 3.150. Fix Z an index category, and fix C any of the category of sets, groups, rings, or modules.
Then, for any functor F' : Z — C, we can write

@F(I) = {(az)zez € HF([) :F(f)(ar) =ayforeach f: I — J}.
z

IeT
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Proof. We will in all of those categories at once as much as possible.® For brevity, let L be the given con-
struction. If we are in the category of sets, L is allowed to empty; in the other categories, L is nonempty
because it contains the identity. We can also check that the condition

F(f)(ar) =ay

foreach f : I — JinZ preserves group operation, ring multiplication, and linear combination, so L is closed
under each of these under the respective categories. Then because

Lc[[Fm
Iez
as constructed, we really only needed to test L as a subobject.
Continuing, we have projection maps 7 : L — F(J) for each J € Z by taking (ay) ez to ay. This map
preserves the (pointwise) operations on L, so it is a morphism in any of the given categories. We see that 7,
commute as needed because, forany f : J — K, we have

(F(f)omy)((ar)rez) = F(f)(as) = ax = 7k ((ar)1ez),

forany (ar)rez € L, by hypothesis on the (as) ;-

It remains to show the universal property. Fix X any object with maps ¢; : X — F(I)foreachI € T
such that F'(f) o ¢; = ¢y foreach f : I — J. Then we need to induce a unique map ¢ : X — L making the
following diagram commute.

N6 -

F(J)

% N
-
F(f)

As usual, we show uniqueness and existence of p one at a time.

pr

F(I)

+ We show that ¢ is unique. Indeed, forany z € X, if p(z) = (ar)ez, then the commutativity of the
diagram forces

ar = mr(p(r)) = er(x)
foreach I € Z, so we are forced to have p(x) = (p12)icz.

+ We show that ¢ exists. As above, we are forced to define

o(x) = (p17)1eT

for each z € X. This is indeed an element of L because, foreach f : I — J, we see F(f)(¢1z) = ¢z
by assumption on the ¢,.

Technically, we do have to show that ¢ is also a morphism. Well, we note that ¢ is actually the induced

map
X = [[F@
IeT
where we have restricted the output to live in L. So because the product exists as constructed in each
of the given categories, we see X — L is a morphism. |

The point is that we can realize Z, as

@Z/p'Z o {(ak)k>1 € H Z/p*7 : ap = ar  (mod p*) for each ¢ > k}
k=1

using the above construction. In words, Z,, consists of infinite sequences of elements of Z7p®*Z where the
elements are "compatible” with each other. |

8 Regardless, | will be somewhat vague in the checks that functions are morphisms because | don't want to each check four times.

161



3.4. OCTOBER 14 250A: GROUPS, RINGS, FIELDS

3.4.4 Duals of Direct Limits

Our story of Z,, was about dualizing the diagram for M, so it is a reasonable to hope that the dual of M, is
Z,. This is indeed true.

Exercise 3.151. We have that Hom(M,,, Q/Z) = Z,,.

Proof. We use the explicit construction of Z,, given by Lemma 3.150. We map ¢ : Z, — Hom(M,, Q/Z)
explicitly by taking (ax)x>1 € Z,, to the map

n nag
e \ag)k>1)  —/ — ——-
((ar)k=1) gy

The rest of the proof is book-keeping; we check that ¢ is indeed an isomorphism.

 This map is well-defined because, even though we might have oF = ¢ where k < ¢ without loss of
generality, we see that np=% = m (mod p*), which implies that

apnp’~F = aym  (mod p*)
because aj = a, (mod p"). Soindeed, %= = 24 (mod 1).

+ Wessee ¢ ((ax)r>1) is indeed a homomorphism. Indeed, given k. 7% € M,, we have

¢ k ¢ k ‘ &
no om\ np’ +mp*\  appenp’ | appemp®  (np mp
p(a) (pk + pz> = ¢(a) ( P+ ) T Tk + PR ¥ <pk+l) +¢ (pk+e> )

which collapses to what we want.

+ We see g is itself a homomorphism. Fix a,b € Z,. Then for any ﬁ € M,, we have

ooty (5 ) =PI 0 B (o o) (2.

p b p p

» We see g is injective. Indeed, it suffices to show that ¢ has trivial kernel. So suppose a € Z, has ¢(a)
the zero map. Well, forany k > 1, we see

ag 1

— =p(a)| =) =0,
=P (p’“)
soar =0 (mod p*). Soindeed, a is the zero element.

» We show ¢ is surjective. Fix f € Hom(M,,Q/Z) some homomorphism. Then, forany k > 1, we note
f(1/p") = ar/p" for some a;, € Z because p* - f (1/p*) = f(1) = f(0) = 0. We claim that

a = (ak)k21 € Zp.

Indeed, forany k < £, we see that
“k:f(1> :f(pH) _w
P P P’ P’ p*’

So we claim that f = p(a). Indeed, for any oF € My, we see that

1
(ORTORES O}

which is what we needed. [ ]

so ay = a; (mod pr).

162



3.4. OCTOBER 14 250A: GROUPS, RINGS, FIELDS

Putting everything together, we saw that

Hom (@Z/ﬁ%,@/z) =~ lim Hom (Z/p"Z, Q/Z) .

In fact, this holds more generally.

Proposition 3.152. Fix Z an index category and F' : Z — C a functor, where C is the category of sets,
groups, rings, or modules. Then, for any object X € C,

Homp (@F(I),X) = lim Homp (F(I),X).
z z

Proof. We essentially imitate the example. We use Lemma 3.150, which tells us that

@HomR(F(I),X) = {((p;) € HHomR(F(I),X) cpr=¢@goF(f)foreach f: I — J} =L,
z IeT

where the commutativity laws come from the fact that f : I — J induces the morphism Hom(F'(J), X) —
Hom(F(I),X) by — o F(f), so the condition F(f)(¢s) = 1 (where F(f) here is heavy abuse of notation)
readsas g o F(f) = ¢r.

Staring harder, we see L is tuples of maps ¢; : F(I) — X which make the following diagram commute.
(Here, we are naming the maps of lim F(I)by. : F(I) — lim | F(I).)

F(I) F(J)
iy (1)
X

But by the universal property of ligI F(I), we can take tuples () which commute with the F'(f) to unique
morphisms ¢ : ligz F(I) = X such that o5 = ¢ o ¢;pi. Call this map

: L — Homp | lim F(I), X | .
Y:L— R(% (1) >

We can check by hand that ¢ is an R-module homomorphism. This is more or less book-keeping.

« We seethat 1 is well-defined because the morphism lim F(I) — X induced by the universal property
is unique.

« We show that ¢ is an R-module homomorphism. Indeed, fix r1,72 € R and (p}), (¢%) € L so that
o' =1 ((¢})) and ©? := 1 ((¢3)) . Then we see that ¢ == 11! + r3¢? satisfies

(¢our)(ar) = rip' (rar) + rag®(urar) = (rigp + ra¢7)(ar),

forany a; € F(I). The point of this computation is that 7y ¢! + ro? commutes with the same diagram
that ¢ ((rlgp} + 7"2()0%)]) commutes with, so they are equal by uniqueness.

« We show that ¢ is injective, for which it suffices to check that « has trivial kernel. Well, suppose
¥ ((¢1)) = 0. Then, by the commuting in the universal property, we see that ¢; = 00 ¢; = 0 for
each I € Z, soindeed, (py) is the zero element.
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« We show that ¢ is surjective. Indeed, given a morphism ¢ : lim F(I) = X,weset p; = o, which
has ¢; : FI(I) — X. We can check that (p;) € L because, foreach f: I — J,

wroF(f)=gporoF(f)=ypoui =¢r

by hypothesis on the ¢,.
And to finish, we see that ¥ ((¢r)) = ¢ because ¢ o 17 = ¢ by construction. [ |

As aremark, the dual of Proposition 3.152 is not generally true for size reasons: limits are big, and hom-sets
tend to be bigger, so

Homp (X,L%nF(I))

is frankly huge. However, the direct limit tends to have a topology, and when this is taken to account, things
tend to be better behaved. But this is more analysis than algebra.

3.4.5 Profinite Groups

Let’s have another example.

Example 3.153. We have the “profinite” completion Z of Z by the inverse limit of the system Z/nZ,
where we have maps Z/nZ — Z/mZ by projection whenever m | n. Of course, we do have

7 — @Z/nZ,
and in fact this is a compact ring because it is the product of lots of compact Z, rings.

Explicitly, we can show the following.

Exercise 3.154. We have that R
V/

1%

112
P

where the product is taken over primes p.

Proof. There is some Yoneda stuff that we can do because both are inverse limits®, but we can just exhibit
the isomorphism by hand.
Indeed, we use Lemma 3.150 to write

A= {(an) € H Z/nZ : an = any  (mod m) form | n} .
neN
In particular, we note that we have a map ¢, : 7 — Z,, for each prime p by taking
op ((ay)) = (apk)k21 € Ly.

We do indeed get out an element of Z, because, forany k > ¢, we need a,c = a,» (mod p*), which is true

because p* | p*. We can also check that this is a group homomorphism: given (a,,) € Zand b, € Z, we see
that

@P((a’n) + (bn)) = @P((an =+ b’n)) = (ap’“ + bPk)kZl = (a‘p’“)k21 + (bpk)k21 = wp((an)) + @p(n)

9 Maps into I1, Zp are essentially maps into each of the 7./p*Z for each prime power p*¥ which commute at each prime. These maps

can be uniquely assembled into a map into each Z/nZ for each n € N, which are in bijection with maps into 7.
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Anyways, the morphisms ¢, : Z — Z, for each p can be used to assemble a morphism
@ 7 — H Ly,
p
by the universal property of the product. We claim that ¢ is an isomorphism.

+ We show that ¢ is injective. We already know that ¢ is a morphism, so it suffices to show that ¢ has
trivial kernel. Well, fix some a = (a,)nen Which goes to 0 under . Then, for any n € N, we show
ay, = 0, which will be enough to conclude (a,,) = 0. Indeed, fix the prime factorization

n = Hp%.
pln

Then p®r | nforeachp | n, so
an = aper  (mod pr),

but a,e = ¢p(a) = 0 because a € ker ¢, so we see
an =0 (mod p®)

for each p | n. Using the Chinese remainder theorem to assemble this (finite) system of congruences,
we see that
an, =0 (mod n),

which is exactly what we wanted.
+ We show that ¢ is surjective. Fix some tuple
a=(ap)p = ((ak)k’zl)p € HZI)
p

that we want to hit by . Well, for each n € N, we note that we have the prime factorization
n = le’p(”)’
p

so we conjure a,, by using the Chinese remainder theorem to solve the (finite) system of congruences

Ap = (app (n) )p

for each prime p. (This system is finite because we can ignore all the primes p where ,(n) = 0, and

only finitely many primes divide p.) We check that (a,, ) nen is @ well-defined element of Z: if m | n, then
vp(m) < v,(n) for each prime p, so

an = (aup(n))p = (aup(n))p =a, (mod pup(m))

because (ai), € Z,. So the Chinese remainder theorem now promises that a,, = a,, (mod m), as
needed.

It remains to check that ¢ ((a,)nen) = a. Well, by construction, we see that

@ ((@n)ner) = ((ap4)51) = (@)iz1), = a,

p
as needed. This finishes. [ ]

Anyways, here is the definition of profinite.

Definition 3.155 (Profinite). A profinite groupis a group which is the inverse limit of some finite groups.
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Remark 3.156. “Profinite” is short of “projective limit of finite things.” These are compact, topologi-
cally, which is nice. (In fact, we can define profinite groups topologically as Hausdorff, compact, totally
disconnected topological groups.)

As a warning, sometimes taking the profinite completion just gives 0, which is indeed compact, though not
very useful.

Number theorists tend to like Z because it almost looks like the ring of adeles.

Example3.157. Thering of adeles is (R x Z) ®zQ, sowe do have some reason to care about the profinite
completion. Roughly speaking, this is because we are really looking at

(R X Hzp> ®z Q,
p

and a specific tensor with Q can only “introduce” finitely primes into the denominator. At a high level,
the finite places are coming from the Z,, and the infinite places are coming from R.

3.4.6 Colimits and Exactness

Let's seeif limits and colimits preserve exactness. Namely, fix our index category Z with functors A,, B,, C, :
7 — C, with prescribed exact sequences

OHAIH)BIQC]—)O
foreach I € Z. We will also require each square induced by f : I — J

L s
AI%B]%O]

f{j] A fl Bfl cfl

AJ L> B] L) C]
to commute. Then we can ask if

O—>L1?A1—>¥i?BI—>Li?mCI—>O

is exact, as well as the same question for lim . To be explicit, the composite maps
. LI
%HA] — A[ - By

induce a (uniqgue commuting) map @I A — @I B because we can see that yr_nz — By — By and
@I A; — Bjarethe same by the commutativity hypothesis on the ¢,. In other words, the following diagram
commutes.

I Y&HIAI —_— A[ L> B[
| U
J A; — By

Thenwe caninduce lim  B; — lim_ C7 in the same way.
Similarly, the composite maps
A[ — By — llgl’lB[
z

induce a (unique commuting) map ligz Ar — ligz By, and we can induce ligz B — ligz C7 in the same
way.

As a more concrete example, taking Z to be a category with no morphisms, I&n is asking if products
preserve exactness, and hﬂ is asking if coproducts preserve exactness.
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Example 3.158. Taking direct sums if two short exact sequences
0—-A —B1—=-C1—0

and
0— Ay — By —+Cy—0

we get
O—)Al@AQ%Bl@BQ—)Cl@CQ—)O,

which is still exact.

In general, however, the best we can say is that limits will preserve left exactness, giving the exact sequence
0— @Aa — lgnBa — lgnCa,

and colimits will preserve right exactness, giving the short exactness
@Aa — hﬂBa — ligCa — 0.

Essentially this is because limits preserve kernels, which is equivalent to the left exactness; more generally,
limits preserve limits. (And dually, on the other hand, colimits will preserve colimits.)

Proposition 3.159. Limits preserve limits. Namely, if we have index categories Z and 7 with the system

{F(I,J)}ier,jes, then
ﬁglfglﬂl, J) %@@F(I, J).

Proof. The idea is to show that both sides are

lim F(I, J).
IxJ

We leave the details as an exercise. [ |
By considering duals, we have the following.

Corollary 3.160. Colimits preserve colimits.

Proof. Push everything into the opposite category, where the statement is that limits preserve limits. B

In particular, because cokernels are colimits, we find that colimits preserve cokernels, so colimits are right
exact.
And here is the corresponding counterexample: colimits do not always preserve left exactness.

Exercise 3.161. Colimits do not always preserve kernels.

Proof. Pick up our favorite counterexample
0237 7/27 — 0,
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and because Professor Borcherds is in an incredibly unimaginative mood this morning, we simply take the
fiber products of this sequence three times.

X2

0 Z z 7)27 — 0
Xﬁ Xﬁ -

0 7z, 7 7/2Z — 0
le le |

0 7 >, 7 7.)27. — 0

We really only have to pay attention to the map on the left. Indeed, we stare at the following diagram.

X2

Z Z
287 , __LOL
{2k, —2k)} {2k, —2k)}
] /’ . ] /’

The induced map here will follow the x2 through, so our map is

YASY/ (><2_,>><2) AW/
{(2k, —2k)} {(2k, —2k)}

We can check that this is not surjective because any representative in the output will vanish under projecting

into (Z/27,)2, but the projection {(2,??2%)} — 5722 still sends (1, 1) somewhere nontrivial. [ |

Remark 3.162. In fact, we have that

YASY/

Tor =2 = 7 & Z)2Z,

say by taking (z,y) — (z + y,y (mod 2)). We won't explicitly check that this is an isomorphism, but it
can be checked.

Anyways, it turns out that many cases do have colimits preserving kernels. Namely, in the case of direct
limits they do because we added the condition that every finite set has an upper bound (!).

Example 3.163. The integers with the usual ordering is a "directed set”: any finite set does indeed have
an upper bound by taking the maximum. More generally, any totally ordered set is directed.

Anyways, we have the following.

Proposition 3.164. Colimits over directed sets do preserve exactness.

Proof. We show this for index category given by the partially ordered set N, for ease of notation. Namely,
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we have a list of short exact sequences as follows.

T

0 Ag By Cs 0
|

0 Ay By Cy 0
|

0 Ao By Co 0

Recall that because colimits preserve colimits and hence cokernels (i.e., quotients), we know that

@Ak%ligBk%thk%O
keN keN keN

is exact. We want to get injectivity of the map lim Ax — lim By. Well, pick @ € lim Ay which is in the kernel
of this map, and because the set is directed, we may choose a particular a;, € Ay, representing A. Essentially,
what is happening here is that

@Ak = U Ak/some equivalence relation.
kEN

But now a; — 0 for some B, where ¢ > k, so a = 0 by exactness of the original sequence. |

Importantly, the above argument fails for the diagram

|

because elements of the fiber product do not need to come from either A or B, for they might come from a
pair of both.

Remark 3.165. Colimits do still preserve exactness over “filtered” categories, which are categories C
for which any objects A and B have a third object C' with A — C and B — C, as well as the condition
that any time we have two maps A — B, there isa map B — C for which the composites are equal.

We also have the following.

Proposition 3.166. Colimits preserve exactness over discrete categories.

Proof. Colimits over discrete categories are the direct sum, so we are saying that a set of short exact se-

quences
0> A, 8B, 8C,—=0

for @ € Ainduces a short exact sequence
0@ A0 5D B 50 0.
aEX aEX aEX

To show this, we again note that we are only interested in the injectivity of left-hand map. Well, suppose
that an element (aq)acr € @, Aa is in the kernel; tracking through the inclusions, we see that we must
have

™ ((aa)aEA)) = (ﬂ'aaa)ae)\ s
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so being in the kernel forces that a,, € ker 7, for each a € X. But by exactness, we must have a,, = 0 for each
a € A\, so indeed, (aq)acy is the zero element. [ ]

It is very sad that colimits preserve exactness of discrete categories and directed sets, but not in general.
These are perhaps our “trial-run” categories, so something very weird is happening to cause this to fail in
general.

3.4.7 The Mittag-Leffler Condition
As in our general set-up with limits, we have Z our index category and a given short exact sequence
0—>A[£>B1301—>0

foreachI € 7, such that, foreach f : I — JinZ,wehave Bfoi; =150 Ayand Cy om; = 7wy o By. Because
limits commute with limits and hence with kernels, we at least know that

0—>£1LnAk—>¥ingk—>£iLan

is exact, so we are worried about the surjectivity of the last map.
For example, do limits preserve exactness over “co-directed” categories? The answer is no.

Example 3.167. Of course, we start with our favorite sequence

02387 —7/27Z -0

and place all these sequences into a vertical sequence, where the vertical maps are multiplication by 3.

x3 x3 le

0 72,7 7/2Z — 0
x3 %3 J{><3
0 7 >, 7 7./27. — 0
X3 X3 lxiﬂ
X2

0 Z Z 7/22 —— 0
The limit of the Zs must be 0 because no element can be tripled to itself indefinitely, but the limit of the
Z,/2Zs will be nontrivial because multiplication by three is an isomorphism. So the resulting sequence
is

0 — 0 — 0 — nontrivial — 0,

which is sadly not exact.

So when do limits preserve exactness? The answer is the Mittag-Leffler condition. It turns out that here we
only care about the A, instead of trying to care about the B, or the map B, — C,, which is a testament to
short exact sequences caring about all the terms.

We slowly build towards the Mittag-Leffler condition. The set-up is that Z = N and Ay, By, and Cy,
functors giving a commuting sequence of short exact sequences in that, for ¥ < ¢, the following diagram
commutes with exact rows.

0 Ay —“5 B, = ¢, 0
I I
0 Ay —5 B — Oy, 0

Now here is our starting case.
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Exercise 3.168. Fix everything as above. If the maps f,f“ : Ag+1 — Ay are surjective, then l'ngk —
lim C is surjective.

Proof. The idea is to diagram-chase with Lemma 3.150. Fix any ¢ := {c¢j }ren 1£an which we want to hit.
We recursively'® construct a sequence b = {by, }ren € @Bk which hits c.
Our base case is to pick up any by which maps to ¢g, which exists by exactness of

0— Ayg — By — Cyp — 0.

For the inductive step, we start with {b;}}_, and want to find b,,+1 which maps down to b,, and across to
cny1- Well, we start by simply picking up any b, ; which goes to ¢, 1. Here is our diagram so far.

’ 41
nt+1 T Cntl

lhn-i—l

Tn
by, ——— ¢y

! !

n }/n+1 . . .
Now, the point is that b,,11 &S Cnt1 s e along one side of the diagram, so along the other side of the
diagram,

Wn(gZJrlbn_H —by) =cn—c, =0.

So g"*t1b, 11 — b, € ker 7, = im ¢, so there is some a,, such that v,,a,, = g7 b, 11 — by,.
But now the surjectivity of 4,1 — A, lets us lift a,, to some a,, .1 € A,1 with f"a,.1 = a,. And
lastly, we push a,, 1 forwards to define

. /
bn+1 = bn+1 — ln4+10n+41-
The point is that we stillhave 7, 10,41 = Mg 10), | — (Tp41 © tpg1)@ng1 = Cny1, but now

n+1 b/

1 nt+1ps 1 n+1
g:LH_ bny1 = QT bn+1(g:zb+ O lnt1)dnt1 = g n+10(5n O frt1)any1 = Q;LH_ b

;1+1 — InQn,
which collapses into what we want after plugging in for ¢,,a,,. This finishes the inductive step. [ ]

And here is our next case.

Exercise 3.169. Fix everything as in our set-up from earlier. Further suppose that A1 — Ay is the
zero map for each & € N. Then lim By, — lim CY is surjective.

Proof. Fix any {cp}nen € lim Cy which we want to hit. For each n € N, find any b, 12 € B2 such that
Tnaabnio = cpao. Similarly, find any b, 11 € B, 41 such that m,, 416,41 = ¢pa1. Then the main claim is that

2 ? 1
gnPbnsa = gn T bnga.

10|t is possible to rigorize the following argument with Zorn's lemma. In short, the partially ordered set is over countable sequences
{03}, with N € N U {0} such that m,by, = ¢, for each 0 < k < N. The ordering is given by restriction: {by }2_, < {b},}2_,, if and
only if N < N’ and by, = b} for each 0 < k < N. The inductive step shows that maximal elements have N = co.
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Here is the diagram.

Tn+42
bn+2 —_ Cn+2

n+2
lhn+1
n+2

Tn+1
In bn+1 ——— Cn+1

Igfg“

The claim is equivalent to evaluating g7 ** (g7t 7b,12 — by11) - Well, we see that

+2 +2
Tn+1 (gZ+1 bn+2 - bn+l) - (7Tn+2 o h2+1) (bn+2) - 7rn+lbn+1 = Cp+1 — Cpn4+1 = 0.

It follows that gﬁﬁan —byy1 € imiy,y 1 by exactness. But now we see that

gZ"'l(im lnt1) = img:zH_l Olpy1 = 1MLy O f’r?+1 = tp(im f:zH_l) = 1,({0}) = {0},

so indeed, we have that

gnt (gntibnge — bug1) =0,

which is what we needed.
With the claim finished, we are primed to give the proof. the point is that, we can pick any {b} } ,en such
that b}, = ¢, for each k € N. Now the final trick is to set

+1H

— n
bn, = g,, n+1>

for each n € N. Even though the original b, sequence need not be compatible to live in lim By, we now see
that eachn € N has

g2+1b n+1 (g7z+2b¢

— _ . n+23/
n+1 = Gp n+1 n+2) = 0n b

_ . n+1z/
n+2 — 9n b

n+1 — bn
by the claim from earlier. So indeed, {bx }ren € B while
ﬂ-nbn = 7Tn92+1b%+1 = h2+17rn+lb;l+1 = Tn+1Cn+1 = Cnp,

which is exactly what we needed. n

Remark 3.170 (Nir). We can in fact extend this to merely require A, — A;, to be the zero map for suffi-
ciently large /, given k. This was the way it was presented in lecture, but | did not do this for psychological
reasons.

We would like to unify the above two examples. Even though the examples are essentially opposite
(trivial cokernel vs. trivial kernel). Regardless, the way to do this is the following somewhat odd condi-
tion.

Definition 3.171 (Mittag-Leffler condition). Suppose we have a sequence of (say) modules { Ay } ren With
morphisms ff : Ay — Ay, for each ¢ > k, which commute in that f;" o f{ = fi" foreach k < ¢ < m.
Now, for each k, we check the sequence

1m(Ak — Ak), im(Ak+1 — Ak), im(Ak+2 — Ak),

If the images here stabilize, then we satisfy the Mittag-Leffler condition.

Briefly, we can check Definition 3.171 is satisfied in the given examples: whenthe A1 — Ay are surjective,
then the images stabilize to Aj; and when the maps are equal, then the images stabilize to 0.
We remark that because Ay, — Ay is equal to the composite

Apgn = Aggn—1 — -+ = Apyp1 — Ag,
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the sequence
1m(Ak — Ak), im(Ak_H — Ak), im(Ak+2 — Ak),

is in fact decreasing.
Before doing anything formal, we outline “where" this condition is coming from. For each k, set

Ay = ﬂ im(Agqe — Ar)
teN

to be the stable image of our sequence. Now, the point is that we have a system of short exact sequences
as follows.

L]

0 Aig A2 AQ/Aig — 0
0 E Al Al/Ail — 0
0 Aio AO AO/TO — 0

Indeed, the maps A, — A;, for £ > k induce the maps on the left and right, where A, maps into A, by the
stability.

In fact, the image of A; — A, is the stabilized image of 4,, — A, — A, form > k, which is the stabilized
image of A,, — Ay, which is A;. Thus, the maps on the left of our diagram are all surjective! So our work
from Exercise 3.168 emerges.

On the other hand, given some k, there is some ¢ > k so that the image of 4, — Ay is A; by the Mittag-
Leffler condition (1), in which case A,/ Ay — Ay /Ay is the zero map. So the maps on the right of our diagram
are all (eventually) zero! Again, again our work from Exercise 3.169 will come into play.

It turns out that there is a way to meld the given arguments for the left column and right column together
to get ths surjectivity of@Bk — @Ck from the Mittag-Leffler condition on the middle. Here is the main
result, as promised.

Theorem 3.172. Fix everything as in the set-up from earlier, and suppose that the { Ay }xen satisfy the
Mittag-Leffler condition. Then @a By — @a C}, is surjective.

Proof. Omitted; see Lang. |

To finish off, here’s a useful case of the Mittag-Leffler condition at work.

Example 3.173. If all the Ay are finite, then we satisfy the Mittag-Leffler condition, and here we do
indeed need the full Mittag-Leffler condition. Essentially this is because

A D im(Agy1 — Ag) D im(Agr1 — Ag) D im(Ags = Ag) 2 -+

is a decreasing sequence of finite groups and hence must stabilize.

3.4.8 Combining Limits and Colimits

Let's do some more abstract category theory.
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Remark 3.174. Professor Borcherds is quite aware how much everyone loves category theory.

Recall that limits preserve limits and colimits preserve colimits. However, limits do not necessarily preserve
colimits. For example, limits did not preserve right exactness.
However, there is something present.

Proposition 3.175. Given index categories Z and J with a functor F' : T x J — C, then there is a natural
map

lim Lim (7, J) — lim lim F (I, ).
r J J x

The direction of the arrows here matters significantly.

Proof. Fix some objectsi € Zand j € J. We start with our maps promised by the colimit, which are

F(i. ) — lim F(I.j).
IeT

Taking the limit over 7, we see that these maps induce®! a map

F(i,5) — lim lim F(I,.J).
JeJglel

Additionally, we have a map @Jej F(i,J) — F(i,7) promised by the limit, so we have the composites

lim F(i, J) = F(i,j) — lim lim F(1, J).
JeJg JeJ Iel

So now we have these maps into an object for each i € Z, so we may assemble these into a map

limy Jim F(1,.7) = lim lim F(7,.J),
IeLJeJg JeJglIlel

which is what we wanted. ]

Let's have an explicit example.

Example 3.176. We work in the category of sets, where Z = {0, 1} is a category with no maps, where
colimits are the coproduct L. We take J = {a, b} as the same category so that limits are the product is
x. Now given four sets Sy, Sop, S1a, S1p- Now

@@Sij = I'&H(Soj' L S15) = (Soa U S1a) X (Sos U S1p)
J T I

while
h%ny%n‘sij = h_;gl(sm X Siv) = (Soa % Sop) U (S14 X S15)-

These are not equal most of the time for size reasons (e.g., make all sets have size 4, and then 4-4+4-4-4 <
(4 4+ 4)(4 + 4)), though there is an inclusion map upwards by assembling Sy, X Sop < (Soq U S1a) X
(SOb L Slb) and Si, X Sip — (Soa L Sla) X (S()b [ Slb)-

1 Technically we have to show that maps we provided commute with the internal maps of the system hﬂlez F(1,3).1am going to
ignore these sorts of checks for this proof.
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THEME 4
POLYNOMIAL PAGES

The shortest path between two truths in the real domain passes
through the complex domain.

—Jacques Hadamard

4.1 October19

It knows no fear, possibly because it has no brain.

4.1.1 Polynomials Over Fields

So we're talking about polynomials today. Let's review polynomials over a field.
Theorem 4.1. Fix k a field. Then k[x] is Euclidean by using degree for the Euclidean metric.
This has some nice consequences, as usual.

Proposition 4.2. Fix k a field. Then k[z] is a principal ideal domain and hence a unique factorization
domain.

Proof. All Euclidean domains are principal ideal domains. And we showed that principal ideal domains are
unique factorization domains. |

We also saw the following directly.

Proposition 4.3. Fix k a field. Any finitely generated k[z]-module is a direct sum of cyclic modules.

Proof. We showed that this holds because k[z] is a Euclidean domain, though we technically only need to
know that k[z] is a principal ideal domain. [ |
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We saw that the above proposition implied the Jordan normal form for k algebraically closed.

Example 4.4. Let's look for irreducible polynomials over F5. Finding irreducible polynomials over Fs is
somewhat similar as finding primes for Z; for example, we can imitate the Sieve of Eratosthenes. We
start by writing out all polynomials over Fy[z], writing them in order of degree.

0, 1. z, z+1, 2, 2241, 224z, 22+z+1, o5,

We ignore 0 and 1, and then we have [z |and cross out multiples of : (which are elements of zero con-
stant term) giving

[z], =+1, 22+1, 22+z+1, 2341, B+z+1,

Now we find that z + 1 is irreducible, and so we can cross our multiples of x + 1, which are polynomials
whose coefficients sum to 0.

[z], , 2?+z+1, 22+zx+1, 22+22+1,
Now we see that is irreducible, and it is the only irreducible of degree 2. So the primes

{x,x+1,2% +x + 1} are enough to determine if any given polynomial of degree at most 4 is irreducible.

We also recall the following statement.

Lemma 4.5. Fix R a commutative ring. If f € R[z] has a € Rwith f(a) = 0, then (z — a) | f(z).

Proof. For R afield, we can do Euclidean division to write

f(z) = (z = a)g(x) + r(z)

where r(z) € Rbecauser =0o0r0 < degr < deg(x —a) = 1. But plugging in x = a forces r = 0, so conclude

f(z) = (z = a)g(2).

However, technically this holds for general rings. Indeed, write

deg f

flz) = Z apx®
k=0

so that we have

deg f deg f k—1
F@) = f@) = > (o -t = —a) Y ( z) ,
k=0 o prt

where the factorization of 2* — a* is purely formal and hence holds in any commutative ring. It follows that
f(a) =0implies (z — a) | f(z). [ ]

When we restrict to a field, we get the following.

Proposition 4.6 (Lagrange). A nonzero polynomial f over a field & of degree n has at most n roots.

Proof. This is by induction on n. For n = 0, we note that nonzero polynomials of degree 0 are constant and
nonzero and hence have no roots.

Then for the inductive step, take n := deg f > 0, and we note that if f has no roots, then we are done.
Otherwise, f hasaroot z¢ € k so that we can write

f(@) = (z = z0)g(x).
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We note that f # 0 implies that g # 0 as well because k[z] has no zero-divisors.

Now the key observation is that k£ has no zero-divisors, so if a is a root of f(z), then f(a) = 0 so that
a—1x9=0o0raisarootof g(x). Butdegg = deg f —1 =n — 1, so g has at most n — 1 roots by induction, so
we see that

#lack: fla)=0}<#{ack:a=x}+#{a€k:9(a) =0} <1+ (n—-1)=n,
which is what we wanted. |

So fields are nice, but we are obligated to note that things which are not fields are not nice.

Warning 4.7. Lagrange’s theorem on polynomials may fail over rings with zero-divisors or over rings
which are non-commutative.

Let's see some examples of the above warning.

Example 4.8. In R = Z/8Z, the polynomial 22 — 1 has the four roots 1, 3, 5, 7 despite having degree 2.

Example4.9. In R = Hthering of quaternions asan R-algebra, the polynomial #2+1 has an uncountable
number of roots. At the very least, +i, 45, =k are roots, but in fact

{bitci+dk:b*+F+d* =1}
are also roots. Indeed, we can expand and rearrange
(bi+cj + dk)* = (=b* — ¢ — d*) + be(ij + ji) + cd(jk + kj) + db(ki + ik),
which evaluatesto —14+0+0+0 = —1.

Here's a nice application of Lagrange's theorem.

Theorem 4.10. The group of units IF ¥ is cyclic.

Example 4.11. In F7, we have that 3 is a generator of F. Its powers are 1,3, 2, 6, 4, 5, which covers ev-
erything. In general, it is hard to explicitly find a generator.

In fact, we can show the following.

Proposition 4.12. Fix k a field and G a finite subgroup of £*. Then G is cyclic.

Essentially this is saying that the roots of unity are our only candidate finite multiplicative groups in a field.
Anyways, let's see this.

Proof. Forany n € N, note that the equation 2™ — 1 has at most n roots over k. In particular, this implies
that G has at most n elements of multiplicative order dividing n. Now there are a few ways to finish from
this condition on G.

« Take G a group with at most n elements of multiplicative order dividing n, and we show G is cyclic.
There is a clever way to do this by carefully counting the number of elements of a particular order n.

Let o (n) be the number of elements of multiplicative order exactly nin G. Itis possible that o (n) = 0;
but if o (n) > 0 so that there is an element g of order n, then we see that

(9) C{zeG:a" =¢}
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whilen = #(g) < #{z € G: 2" =e} < n.Thus, {g) = {x € G: 2™ = e}, so all elements of order
dividinginn arein {g). But we can count that the number of elements of order nin (g) = Z/nZis p(n).

The point is that o (n) € {0, ¢(n)}. Now, all elements have order dividing into n, so we see that

#G =Y paln) < Y ¢(d) = #G,

d|#G d|#G

where the last equality is by Mobius inversion. (Alternatively, count elements of prescribed additive
order in Z/#7Z.) So we need equalities everywhere, so pg(#G) = ¢(#G) # 0, meaning that there is
an element of order #G, so G is indeed cyclic.

+ Here take G a non-cyclic abelian group, and we show that it has an n with more than n elements of
multiplicative order dividing n. We use the structure theorem for abelian groups. If G is non-cyclic,
then its factorization

G @Z/p;kz
k=1

(with v4 > 1) must have the same prime repeated somewhere, lest the factors all be coprime and may
be combined by the Chinese remainder theorem.

So without loss of generality take p; = ps. Then we see that, for any a,b € Z/pZ, we have unique
elements

l/1—1 112—1 J—
10~(ap1 , bps ,O,O,...)—OEG7

but now this gives p? elements of multiplicative order dividing p, which finishes. (These elements are
unique because ap‘l’ﬁ1 lives in Z/p”*7Z and similar for bpgrl.) [ ]

Remark 4.13. Professor Borcherds does not care what happens for nonabelian groups.

Proof of Theorem 4.10. Because F,, is finite, )\ is a finite cyclic group of a field, so it is cyclic. |

Anyways, we do care for fields which are not finite sometimes.

Example 4.14. In C, we now see that any finite multiplicative subgroup G C C* must be cyclic and
hence essentially roots of unity. Of course, we can see this somewhat directly because all g € G must
have g#“ = 1 and hence be roots of unity, and then we can check for the smallest n for which g" —1 = 0
foreach g € G.

And naturally, this fails when k is not a field.

Non-Example 4.15. In Z/8Z, the group of units {1, 3,5, 7} is non-cyclic because it has no generator, or
no “primitive root.”

Non-Example 4.16. The quaternions have many finite non-cyclic subgroups. For example, the sub-
group {+£1, £4, +j, £k} is non-cyclic. Additionally, the binary permutation groups we found earlier in
this course work as well.

Remark 4.17. If the field is finite, then we can have a polynomial vanish at all points without being 0.
For example, in F,,, everything is a root of 2 — x. The point here is that being zero as a function or a
polynomial are different here. (However, this is “essentially” the only counterexample: if f(x) = g(x)
onF,, thena? —z=z(xz —1)(z—2)---(x —p+1) | f(z) — g(z).)

Regardless, if the field is infinite, then f(a) = g(a) on each a € k does imply f = g as polynomials because
f — g would have infinitely many roots and hence must be the zero polynomial.
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4.1.2 Polynomials Over Unique Factorization Domains

Now let's move to polynomials over Z[z]. Note that Z[z] is not a principal ideal domain and hence not Eu-
clidean.

Example 4.18. The ideal (2, 2) C Z[z], which consists of the polynomials of even constant term, is not
principal.

However, Z[z] does have unique prime factorization!

Theorem 4.19. The ring Z[x] has unique factorization.

Remark 4.20 (Nir). Those familiar with this proof already are encouraged to think of Z in the following
proof as a general unique factorization domain. | will not write this proof out explicitly in this generality
for psychological reasons, but we will not use anything of Z beyond that it is a unique factorization
domain anyways.

Proof. The idea here is to reduce to Q[z], which we know has unique factorization. What is annoying here
is that

32 +6
isirreducible over Q[z] because 3isaunitin Q, but 3isaprimein Z[z], so 3-(2? + 2) isa nontrivial factorization
in Z[z].
To deal with this, we have the following definition.

Definition 4.21 (Content). Given nonzero f € Z[z], we define the content ¢(f) to be the greatest com-

mon divisor of the coefficients of f. (In general, for R a unique factorization domain, we may set ¢(f) to
be the ideal generated by the greatest common divisor, to avoid unit problems.)

Example 4.22. The content of 3z2 + 6 is 3.

It follows that, for any f € Zx], we have that f/c(f) is a polynomial in Z[z], where the coefficients are
coprime.

We also note that an integer n divides into f if and only if n | ¢(f).! Indeed, setting

deg f

flx) = Z apzh,
k=0

we have that n | ¢(f) implies n | aj, for each k implies that L f(z) = Y08/ a4k € Z[x]. Conversely, if n | f,

then f = gn for some g € Z[z], but writing out the coefficients of g shows that a;, = nby for some by, for
each k. This finishes.

The main result is as follows.

Lemma 4.23 (Gauss's). Fix f, g € Z[z] nonzero. Then ¢(f)c(g) = c(fg).

Proof. Thefactthatc(f)c(g) | ¢(fg)is not hard: it suffices to show that ¢(f)c(g) | fg, but thisis true because
e(f) | fandc(g) | g. So the problem is showing equality. Because the content preserves multiplication by a
constant (n | fifandonlyifn/a | f/a for some a), we see that we are interested in showing

F g\ _ g
C(C(f) c<g>> (frelg) "

1 This is more or less why we care about the content: it is extracting out the “non-field” part of an irreducible.
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Sosetting f <+ f/c(f) and g + g/c(g), we see that it suffices to show ¢(fg) = 1 given that ¢(f) = ¢(g) = 1.
For this we show that each irreducible p € Z does not divide ¢(fg), which will be good enough by, say,
ring theory: this implies that the content is not contained in any maximal ideal and hence must be a unit. For
concreteness, we set
deg f deg g

flx) = Z apa® and g(z) = Z bk
k=0 k=0

Because ¢(f) = 1, we know that there is some m for which p 1 a,,, so there is a least m for which p 1 a,,;
similarly, there is a least n for which p 1 b,,. Multiplying, we find that

deg f+degg
(fo)) = > ( > akbe> z".
r=0 k+0=r
The point is that the coefficient with degree r = m + n looks like
m+n m—1 n—1
Z apby = <Z akbernk:) + amby + <Z am+nebz> .
k+l=m+n k=0 =0

Here, each term for the left sum is divisible by p because each of the a, are. Similarly, each term for the right
sum is divisible by p because each of the b, are. But p { a,,b,,, so we see that the coefficient has

m—+n
Z arb = amby, Z0  (mod p).
k+l=m+n

Thus, there is a coefficient of fg not divisible by p, so we conclude that p t ¢(fg). This finishes the proof, as
described. |

The main use of Gauss’s lemma is to classify the irreducibles over Z[z]. Here is a technical lemma that
will come up a couple of times.

Lemma 4.24. Suppose that f € Z[z] has content ¢(f) = 1,and ¢ € Q gives ¢f € Z[x] while ¢(¢f) = 1.
Then g € Z* isa unitin Z.

Proof. It suffices to show that v, (¢) = 0 for each prime p of Z. For concreteness, we set

deg f

flz) = Z apz®
k=0

so that ¢(f) = ged,(ar) = 1. Taking the greatest common denominator in Z as a unique factorization do-
main, we find that

0= vp(etaf)) = vieed(gar)) = min (v,(0) + vp(ar) = v,(a) +min vy (@) = v,(0)
where we have used that ¢(f) = 1 in the last equality. This is what we wanted. |
And here is our classification of irreducibles.

Lemma 4.25. The irreducibles in Z[z] are either irreducible elements in Z or irreducible in Q[z] with
content a unit.
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Proof. Fix m € Z[x] an irreducible. We remark that 7 is either a unit or irreducible in Q[z]: if 7 is constant,
than it is a unit. Otherwise, suppose that we have a nontrivial factorization 7 = a3 for a, § € Q[z], and we
have to show that one of the factors is a unit.

By clearing denominators, there exists a’ such that a’a € Z[z], and then we define a := a’/c(a’@) so that
aa € Z[z] with content 1. We define b similarly so that b8 € Z[z] with content 1. The point is that

abr = (ac)(bB) € Zlx],

and by Gauss's lemma, ¢(abm) = 1. So by Lemma 4.24, we conclude that ab € Z* is a unit, so abr is irre-
ducible in Z[z]. Thus, ac or bj is a unit in Z[z] and hence a unit in Q[z], which finishes the check that 7 is
irreducible.

We turn directly to our classification. The point is that we can factor

Because 7 is irreducible in Z[z], one of these factors is a unit in Z[z]. We have two cases.

o If ¢(m) is a unit, then we note that 7 must be non-constant, lest it divide into its constant term and
hence divide into ¢(m) = 1 and be a unit. Thus, 7 is not a unit in Q[z], so = is irreducible in Q[x] with
content 1.

« If w/c(m) is a unit, then we note that our equation implies that = is a unit multiplied by ¢(7) € Z, so
m € Z. It remains to show that 7 is irreducible in Z. Well, 7 is not a unit in Z because it is not a unit in
Zlz],and if 7 = ab where a,b € Z, then this factorization lifts to Z[x], so one of a or b is a unit in Z[x]
and hence a unit in Z.

This finishes the classification of irreducibles in Z[x].
It remains to verify that these are all in fact irreducible. We have two cases.

« If risirreducible in Z, then m = abin Z[z] must have a, b € Z by degree arguments, but then one of a, b
is a unit in Z and hence a unitin Z[z].

« If risirreducible in Q[x] with content 1, then take 7 = . By taking this into Q, we see that one of «
or S must be a unit in Q[z], which means that one of « or 3 is constant. But o and 8 must have content
1 by Gauss's lemma, so we conclude one of « or 8 is a unit in Z[x]. [ ]

We now attack unique factorization. Showing that every element has a factorization comes down to Z[z]
being Noetherian, roughly speaking. We proceed along the same outline as when we showed that principal
ideal domains were unique factorization domains.

Lemma 4.26. Fix f € Z[z] not zero and not a unit. Then f is divisible by some irreducible element of
Z[zx].

Proof. If f is constant, then this reduces to the situation in Z. Similarly, if f has content not a unit, then f
has an prime factor in Z, which we know to be irreducible. Otherwise, f is non-constant, so embedding f
into Q[z], it has some irreducible factor & € Q[z] so that f = a5 for some g.

However, we might have o ¢ Z[z], so there is still work to be done. Clear denominators to find some
a' € Zwith '« € Z[z],and then we define a := o’ /c¢(a’a) so that aa € Z[z] with content 1. We can do similar
for Bto getb € Z so that b3 € Z[x] with content 1. Then

abf = (ac)(bp) € Zlz]

while the right-hand side has content 1. We conclude from Lemma 4.24 that ab is a unit in Z[z]. It follows
aa | abf | f, so aa—which is irreducible in Q[x] with content 1—is the irreducible we are looking for. [ |
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Lemma 4.27. Every nonzero f € Z[z] has a factorization into irreducibles.

Proof. The morally correct thing to do here would be to show that Z[x] is Noetherian using the Hilbert basis
theorem, but the correct machinery is annoying to build. So we cheat.

We proceed by induction on deg f. If deg f = 0, then f € Z, so it has a factorization into irreducibles
because all elements of Z do, and Z-irreducibles are Z[z]-irreducibles.

Now take f of positive degree. We proceed by induction on the number of (not necessarily distinct)
irreducible factors of ¢(f). If ¢(7) has no irreducible factors, then we note that f is still nonzero and not a
unit, so it has some irreducible factor 7.

But now m must be of positive degree because 7 being constant would divide into the content. So we see
that f/7 has degree smaller than f, so f/x has a factorization into irreducibles, so f has a factorization into
irreducibles.

So suppose that ¢(f) has a positive number of irreducible factors. Let one such Z-irreducible factor be p.
But then f/p has the same degree as f while having one fewer factor in ¢(f/p) = ¢(f)/p, so we can induct
downwards here. [ |

Remark 4.28 (Nir). | am fairly sure that the above proof still works in general unique factorization do-
mains (namely, not assuming Noetherian), but this requires some care. | think one should do induction
ondeg f + > _ireq. Ux(c(f)), where the sum is finite because R is a unique factorization domain.

We now turn to showing uniqueness of factorizations. The key is the following lemma.

Lemma 4.29. An element = € Z[x] is irreducible if and only if it is a nonzero prime.

Proof. If  is prime, it is not too hard to check that 7 is irreducible. Note 7 is not a unit because = is prime.
For the hard check, write 7 = af for some «, 8 € Z[z] implies that 7 | a8, so 7 | « or | § because 7 is
prime. Without loss of generality take 7 | o, but then 7 = 7(«/7) 8, so S is a unit, finishing.

The other direction is more difficult; fix 7 irreducible, and we simply run through our classification to
check that it is prime.

» Take 7 a prime in Z. The point is that 7 = uc(w) for some unit u € Z. Now, 7 | af in Z[z] implies that
e(m) | e(a)e(B), where we are using Gauss's lemma quite liberally. But ¢(7) is a prime in Z, so 7 divides
c(a) or (), so w divides «w or 3.

» Take 7 anirreducible in Q[z] with content 1. Now take 7 | a8 for some a, 8 € Z[z]. Taking a + a/c(a)
and 8 « B/c(p), it suffices to take « and 3 with content 1.

Now, the trick is to embed this into Q[z] so that 7 | aor 7 | 8 in Q[z]. Without loss of generality, 7 | «,
so take v € Q[z] such that
™=«

in Q[z]. It remains to show that v € Z[x]. Well, as usual, we can clear denominators and then divide
out by the content to get g € Q such that gy € Z[z] with content 1. But now

go =m(gy) € Zlz],

where the right-hand side has content 1. But a has content 1, so Lemma 4.24 shows that g is a unitin
Z and hence in Z[z]. So g7y € Z[x] shows ~y € Z[x]. |

And now we can show uniqueness of factorizations

Lemma 4.30. Factorization into irreducibles in Z[z] is unique.

Proof. This follows from Proposition 2.69. Yes, exactly the same proof works now. |
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This finishes the proof of Theorem 4.19. [ |

As we remarked earlier, the above argument can be pushed further to show the following.

Theorem 4.31. Fix R is a unique factorization domain, then R[z] is also a unique factorization domain.

Proof. Copy the proof of Theorem 4.19, replacing each occurrence of Z with R and each occurrence of Q
with Frac(R). ]

The main point is that Lemma 4.23 used that Z was a unique factorization domain, but that is the only thing
of Z that we need to make this work.

Example 4.32. Inducting on the above theorem, we can say that k[z1, ..., z,] is a unique factorization
domain foranyn € N.

Example 4.33. In fact, k[z1,x2,...] going on infinitely is also a unique factorization domain because
polynomials are finite, so any polynomial here must live in some finite k[x1, ..., z,], which we know
has unique factorization.

Example 4.34. Doing a similar induction shows that Z[z1, . . ., ;] is a unique factorization domain.

4.1.3 Effective Factorization for Z|z]

We might be interested in a real factorization algorithm for Z[x]. Of course, this is hard even for degree zero
polynomials because factoring (large) integers is difficult, but what can we do?
Here is a slow algorithm, due to Kronecker. Fix f € Z[z] of degree n.

1. Choose nintegers ay,...,a, and look at f(a1),..., f(ay,). If any are zero, then we have a linear factor
and can induct downwards.

2. Otherwise, we look at all factorizations of f(ae) downinZ. The pointisthat g(as) | f(ae)alwaysifg| f,
so there are only finitely many possibilities of the g(as), and because we have n points g(a,) here, our
finitely many possibilities can be uniquely interpolated to g. So we can check all of these possibilities.

Of course, factoring the f(a,) is difficult, and doing it n times is somewhat annoying. Additionally, the “finite
check” at the end is potentially very large if the f(a,) have lots of factors; at the very least we will have +1
to check, which gives 2™ possibilities for g.

Speeding up Kronecker's algorithm is hard. We remark that there is the Lenstra—Lenstra—Lovasz algo-
rithm which can factor in Q[z] in polynomial time. So the point is that we can factor after getting rid of the
content, so we have “reduced” fast factorization of polynomials in Z[x] to just factoring the content of the
polynomial, which of course is somewhat hard.

Remark 4.35 (Nir). Get used to seeing the L? algorithm around. It comes up everywhere in computa-
tional number theory.

Remark 4.36. Shor's algorithm can do fast factorization, if we have a large quantum computer (with on
the order of millions of qubits).

Remark 4.37. Professor Borcherds seems somewhat bitter about all the quantum hype.

We also remark that even though we can factorin Z[x1, . . ., 2,,] (for example, iterate Kronecker's algorithm),
there is literally no algorithm to check for Z-roots. This is by the work down in resolving Hilbert's 10th
problem by Matiyasevich and others.
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4.1.4 Irreducibility Testing

If we cannot factor, the next best thing is to test if polynomials in f € Z[x] are irreducible.

The Generic Test
Here is a probabilistic test.
1. Return that the problems is irreducible.

This is not terribly interesting, but generic polynomials in Z[z] do turn out to be irreducible.

Reduce (mod p)
Here is one possible test. Fix f(x) € Z[z].

1. Fix p a prime not dividing the leading coefficient of f(z), and we check if f € F,[z] is irreducible. If
irreducible, return that f is irreducible.

2. If fis notirreducible, then check another prime.
The point is that if f is irreducible in F,[z], then we can lift this to irreducibility in Z[x].

Lemma 4.38. Fix p a prime. Suppose that f(z) € Z[z] has leading coefficient not divisible by p. If f €
F,[z] is irreducible, then f € Z[x] is irreducible.

Proof. We proceed by contraposition. Suppose we have a nontrivial factorization f = gh in Z[z] and write
itinF,[x] as

f=3h
Because p does not divide the leading coefficient of f, it won't divide the leading coefficients of either g or
h,sodegg,degh > 1implies that degg,degh > 1. Thus, f = g - his indeed a nontrivial factorization. |

Anyways, let's see some examples of this algorithm.

Example 4.39. The polynomial 2* 4+ 2 + 1 is irreducible in Fy[z] as we showed earlier: it has constant
term 1, so it is not divisible by z; it's coefficient sum is 1, so it is not divisible by = + 1; lastly, we see

(z+1) (2*+2+1) =21,

sozt+r+1l=z+x+1=1 (mod 22+ x + 1), so we are not divisible by 22 + x + 1 either, which is
enough. The point is that it follows z* + x + 1 is irreducible in Z[z].

Non-Example 4.40. The polynomial 32% + 2% + 3z + 1 reduces to z? + 1 (mod 3), which is irreducible
in F5[z] (it has no roots), but we can still factor

33 + 2?2 +3z+1= @Bz +1) (22 +1).

The issue is that reducing (mod 3) will view 3z + 1 as a unit even though it is not a unit in Z[z].

Remark 4.41 (Nir). This algorithm is not effective: there are irreducible polynomials which factor non-
trivially modulo every prime. For example,

zt4+1
factors modulo every prime even though it is irreducible in Z. We can show the factorization by hand
(do casework on which of (‘71) , (3) , (‘72) is equal to 1).

p
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Eisenstein’s Criterion

Here is Eisenstein’s criterion.

Proposition 4.42 (Eisenstein). Fix f € Z[z] given by
fz) = Zakxk.
k=0
If prime p divides all a, except a,,, and p? { ag, then f is irreducible in Q[x].
Remark 4.43. Apparently everyone remembers this from undergrad.

Remark 4.44 (Nir). Recalling from our previous work, we note that we need ¢(f) = 1 in order to be sure
fis irreducible in Z[z]. As a counterexample, 3z + 6 is not irreducible in Z[z] even though it satisfies
Eisenstein's criterion for p = 2.

Proof. Theideaistotake f(x) = g(z)h(x)and eventuallyreachp | a,.Indeed, we proceed by contraposition,
supposing that f = gh is a nontrivial factorization in Q[x] with p | a; with 0 < k < n and p? { ag. Then we
claimthatp | ay,.

By using the typical content tricks, we can force ¢(f) = 1 so that any nontrivial factorization f = gh can
be forced to have g, h € Z[z] by the typical content tricks. Now set

degg deg h

g(x) = Z bpa® and h(z) = Z coxt.
k=0 =0

By checking the constant term, we see that p | byco, SO p | by or p | co. However, p? | boco = ag, so p cannot
divide both. So without loss of generality Then without loss of generality p | by and p 1 ¢o.

Now we claim that p | b, for each m < deg g by induction, where we have already done our base case.
Indeed, if p | b for k < m, then we see look at

Qm = E bk Ce,

k+l=m

which reduces to b,,,co = 0 (mod p); in particular, p | a,, because m < degg < deg f. But now p { ¢o shows
P | b, as needed.

So to finish, we note that p | g as a polynomial, so it follows p | f, implying that p | a,. This finishes the
proof. |

Here is the standard example of Eisenstein’s criterion.

Example 4.45. We show that ®,(z) = &=l = 1 + ... + 2?~ ! is irreducible. The trick is to plug in

xz—1

x — = + 1, for nontrivial factorizations of ®,(x) an be turned into nontrivial factorizations of ®,(z + 1).
Well, we can evaluate

Dy(x+1) = ((”;Tl);__ll :é((x—&- 1P —1) = kzl (Z)x’f—l

p
by the binomial theorem.

We now check Eisenstein’s criterion using p as our prime. The leading term is 2P~ !, which is indeed
not divisible by p. The middle terms have coefficients of (¥) = ﬁik)! where 0 < k < p, so they are
all divisible by p because the numerator has p while the denominator does not. And lastly, the constant
termis (1) = p, soitis not divisible by p.
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Example 4.46. Fix n a positive integer. We can also check that ®,.(z) = (27" — 1)/ (xpnfl - 1) —

Zi;é 2?" " '* is also irreducible using a similar trick. The idea is that
n n—1 p
P —1= (xp - 1) (mod p)

by the binomial theorem, so it follows

n
P -1

Ipnfl _ 1

o
S
3
—
&
[
I

o p—1
(mp . 1) (mod p).
Again using the binomial theorem, we have
Dyn(x) = (x — 1)”%1(”_1) (mod p).
It follows that @, (z + 1) = 2?" ®=1 (mod p), so all terms except for the leading term of &, (z + 1).

are divisible by p. Further, the constant term of @, (z + 1) is ®,= (1) = p and notably not divisible by p.
So we are done by Eisenstein’s criterion on p.

Remark 4.47. The reason why Eisenstein's criterion works is roughly speaking due to totally ramified
primes of Q. For example, this works for ®,(z) as above because (p) is totally ramified in Q(¢,).

Intermission: Aurifeuillian Factorization

Before continuing, we remark that
z* + 4a*

for some fixed a € Z looks irreducible but isn't. Namely,
a* +4a* = (2 + 4a®2” + 4a*) — (2az)* = (2” + 2za + 2a%) (2* — 22a + 24°)

by using the difference of two squares factorization. This is the Aurifeuillian factorization.

Remark 4.48. In general, sums of monomials are potentially tricky. There is a page on Wikipedia for
other such factorizations.

Example 4.49. The number n* +4" is never prime for n > 1. If nis even, then n* +4" is even. Otherwise,
we take n = 2m + 1 so that we can write

TL4 +4n _ TL4 +4. (2m)4 _ ('I’L2 + 2m+ln + 22m+1) (n2 _ 2m+ln + 22m+1) .
It remains to show that each term is bigger than 1. Well,
n2 i 2m+1n+ 22m+1 — (ni 2m)2 + 22m

after some rearranging, and surely 22 > 1 because m > 1 fromn > 3.

Example 4.50. Factoring the number 258 + 1 was hard, as done by Laundry in 1869. But in 1871, Au-
rifeuille showed that the factorization is trivial because this is

2% 11 =1%+4(2")".
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Rational Root Theorem

Let's continue discussing our polynomial factorization. We can also check for rational roots in hopes of
finding a linear factor; we have the following two statements.

Proposition 4.51. Fix
deg f

flx) = Z apx® € Z[x].
k=0

If (ax +b) | f(z),thena | aqeg  and b | ao.

Proof. Write
deg f—1

f(z) = (ax +b) Z bra®,
k=0

where the deg f — 1 is by degree arguments. Then ag = bby and aqeg f = abdeg r—1, Which is what we wanted.
[ ]

Proposition 4.52. Fix f(x) € Z[z]. Then, given a,b € Z with gcd(a,b) = 1, we have (az + b) | f(x) ifand
only if f(=b/a) = 0.

Proof. In one direction, if (az + b) | f(z), then write f(z) = (az + b)g(z) for g € Z[z]. Then f (-2) =
0-g(—2) =0, which is what we wanted.

The other direction is harder. The point is that c(axz +b) = 1. Without loss of generality, take f of content
1, for this does not change f(—b/a) = 0,and (az+b) | f(z)/c(f)implies (az+b) | f(z). Certainlyz+2 | f(z)
in Q[z] because — % is a root of f in Q[z], so it follows az + b | f(z) in Q[z]. So we get some g(z) € Q[z] such
that

f(@) = (az + b)g ().

As usual, we can find some ¢ € Q such that qg € Z[z] with content 1, but then

(¢f)(x) = (az + b)(qg)(x) € Zx].

1

But now Lemma 4.24 lets us conclude that g € Z*,so g = ¢! - qg € Z[z], which finishes. |

So the combination of these two give us a viable way to check for linear factors: create candidates by using
Proposition 4.51, and then test the candidates using Proposition 4.52.

This can actually be used to test irreducibility of polynomials of degree at most three can be because
degree-three polynomials must factor with some linear term (by degree arguments) if they factor nontriv-
ially at all. However, things become worse with higher degrees because we must take into account quadratic
factors and so on.

Example 4.53. The polynomial #3 — 3z + 1 is irreducible. Namely, if it were to factor, it would have
a linear factor, so it would have a rational root, but the only candidates are +1, which are not roots
because 1 gives —1, and —1 gives 1.
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Remark 4.54. The roots of f(z) := 23 — 3z + 1 arein fact

2 4 8
2 cos (g) , 2 cos (5) , 2 cos (J) .
Indeed, the point is that f(2z)/2 = 42® — 3z + 1, which resembles the triple angle formula: we have
5 1 1
f(2cos0) =4cos® 0 — 3cosb + 3= cos 36 + 3’

so we want § with cos 39 = —1; these exactly give the roots. Anyways, the roots of f(z) come up when
showing that the 60° angle cannot be trisected using ruler and compass, for then we could construct a
root of 23 — 3z + 1.

Remark 4.55. Ruler and compass constructions Professor Borcherds might mention again for at most
two seconds. It is much easier to trisect an angle using a protractor.

Berlekamp's Algorithm

Lastly, let’s outline the ideas for Berlekamp’s algorithm, which works at reasonable speed for factoring in
F,[z]. Fix f € F,[z], and we note that we compute ged(f, g) somewhat efficiently by Euclidean division.

The key point is that
H W:H(x—k)zx”—x,

7 monic, irred. kelF,
deg m=1

so ged (f, zP — x) will quickly check if f has any linear factors. More generally, it is a result from the theory
of finite fields that

7T monic, irred.
deg |d

For example, the factors on the left-hand side are coprime, and each divides into zP" — 2 because the roots

of any polynomial on the left-hand side will be inside of IF,,«, where all elements satisfy ' — 2 =0.
Anyways, the point is that we can check f for having any irreducible factor of degree dividing into d by

computing ged (f, 2P — x) . By looping over the possible d, this is able to quickly check if f is irreducible,
provided we can compute these geds efficiently.

But how do we compute ged (f, - a:) quickly? For example, large primes p might make P quite
large. Well, the idea is to work in Z[z]/(f), and then we are able to evaluate

" (mod f(x))

via modular exponentiation by repeated squaring! So this reduces the computation of ged (f, - x) down

to a gcd where both terms have degree at most deg f, which is about the best we could hope for. From here,
Euclidean division is fast enough for our purposes.

Remark 4.56 (Nir). Berlekamp's algorithm is actually for factoring polynomials in F,[x]. In short, | am
under the impression that careful choice of g is able to not just tell us what degree the irreducibles
dividing into f are but also closer information about the irreducible.

4.2 October21

| want to be a frog because of no schoolwork, no stress, no problems.
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4.2.1 Noetherian Rings

Today we're talking about Noetherian rings. Here is our motivation.

Example4.57. Fix k afield. Then k[z] is a principalideal domain because it is Euclidean. However, k[z, y],

is not principally generated: for example, (z, ) is not generated by one element. Similarly, k[z, y, z] has

(z,y, z) which needs three elements, and so on.

We might hope that k[x1, ..., x,] requires n elements to generate, but this is not true.

Exercise 4.58. Fix k a field. For any n € N, there exist ideals of k[z, y] not generated by n elements.

Proof. We claim that
= (a", 2" Yy, oy ") C Kz,

is not generated by n elements.

This is surprisingly annoying because one could imagine that some kind of massive cancellation among
specially chosen polynomials might be able to do this. Anyways, we modify the proof from here. The trick
is to move everything into a vector space, where we have better control. Set m := (z,y), which consists of
all polynomials with vanishing constant term. As such, we see that

by sending z — 0 and y — 0; indeed, the morphism k[x, y] — k is simply evaluating at (0, 0), giving out the
constant term, so the kernel consists of m. The point is that m is a maximal ideal because it its quotient gives
a field.

Thus, we can assign I/mI a k[x, y]-action as the quotient module, but this action vanishes on m by def-
inition on m1, so in fact we have an action by k[x, y]/m = k, so I/m[ is a k-vector space. The key claim is
that ”

dimg I/mI =n + 1.
Indeed, we see that the residue classes of z¥y"~* certainly span I and hence span I/mI,so dimy, [/J < n+1.
To finish, we claim that the residue classes for ¥y ~* are in fact k-linearly independent. Well, suppose we
have {ax}}_, such that

n
f= Zakxkyn_k eml.
k=0

If f is nonzero, then it has degree n because each monomial has degree n. However, each nonzero element
of mI has degree at least n + 1 because nonzero elements of I have degree at least n, and nonzero elements
of m have degree at least 1. So f # 0 would imply that deg f = n and at least n + 1, which makes no sense.

So we have that f = 0 (as a polynomial in k[, y]) so it follows that the as = 0 identically, giving us our
linear independence. Thus, the residue classes for 2¥3"~* form a basis, so we see that

dimy I/mI =n+1.

To convert the result, we note that if I were generated by m elements, then we can take the residue classes of
these elementsin I/mI tospan I/mI with m elements. But using the dimension here, we see thatm > n+1,
so I cannot be generated by fewer than n 4 1 elements. [ |

The point is that there is no absolute finite bound on ideals for k[x,y], though there is the following re-
sult.

Theorem 4.59 (Hilbert basis). Every ideal in some polynomial ring k[z1, ..., z,] is finitely generated.
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Remark 4.60. Hilbert's proof of this theorem was somewhat complicated. Noether went back and pro-
vided a simpler proof.

The above sorts of rings have a name.

Definition 4.61 (Noetherian). We say that aring R is Noetherian if and only if all ideals are finitely gen-
erated.

This turns out to be a really nice and reasonable smallness property for R. In practice, most rings in number
theory or algebraic geometry are Noetherian, so it's good enough for our purposes.

Non-Example 4.62. The ring k[z1, 22, . . .| with infinitely many transcendental elements, then the ideal
I = (1‘1,.%‘2, .. )

is not finitely generated. Indeed, any finite set of polynomials { f;}}_, must have each f, have only
finitely many monomials and hence only use finally many z,. So any linear combination of the {f;}7_;
will only use finitely many of the x, and hence cannot fully cover I.

As a warning, we note that being finitely generated as an ideal and finitely generated as an algebra without
identity are different.

Example 4.63. In k[z, y], we consider the following objects generated by y.

« The ideal generated by y includes all polynomials which are a multiple of y. To generate this as a
k-algebra without identity, we would need all elements of the form z*y for k > 0. To generate
this as a k-vector space, we would need all elements of the form z*y* for k > 0and ¢ > 1.

« The k-algebra generated by y includes k[y|, notably including 1 even though the ideal does not.
To generate k[y] as a k-vector space, we need all powers y°.

« The k-vector space generated by y includes elements of the form cy for ¢ € k.

4.2.2 Noetherian Grab-Bag

Noether's version of the Hilbert basis theorem is as follows.

Theorem 4.64 (Hibert basis, Il). If R is Noetherian, then R[z] is also Noetherian.

Example 4.65. The ring Z[z] is Noetherian because Z is Noetherian. In particular, Z is Noetherian be-
cause it is a principal ideal domain, so all ideals are generated by a single element.

We note that, inductively, we also have the following.

Corollary 4.66. Fix k a field. Then k[x1, ..., x,] is Noetherian.

Proof. Induct on n using Theorem 4.64. For n = 0, we see that & only has two ideals, (0) and (1). For the

inductive step, we have that k[z1, ..., x,] is Noetherian and note that
Elx1, ..., Tnl[Tnt1]
is Noetherian by Theorem 4.64. This is what we wanted. |

Here are some equivalent conditions for a ring being Noetherian; there are a few important ones to keep
track of.
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Proposition 4.67. The following are equivalent.
(a) Ris Noetherian.
(b) Every ideal of R is finitely generated.
(c) Every nonempty set of ideals has a maximal ideal.
(d) Any increasing chain of ideals notated
LTS C---

of R must stabilize.

We remark that “not (d)" provides a increasing chain of ideals
LCLC--

which does not stabilize. But this may be turned into an infinite strictly ascending chain of ideals: setn; =1,

and for each ny, the lack of stabilization implies there is nj1 > ny such that I,,, C I, ,, so we have the
infinite strictly ascending chain

LGl G .
And of course, we conversely have that an infinite strictly ascending chain violates (d) immediately.
Proof. We have the following implications.
« To start, we note that (a) and (b) are equivalent by definition of Noetherian.
+ The fact that (c) and (d) are equivalent holds because the set of ideals of a ring is partially ordered set.
— We show not (d) implies not (c). If we have an infinite, non-stabilizing chain of ideals
LSl Clz3 &,
then we note that this chain is a nonempty set of ideals with no maximalideal. Indeed, each Iy is
not maximal because Iy C In41.

- We show not (c) implies not (d). Suppose S is a nonempty set of ideals with no maximal ideals.
We start with I; € S, which exists because S is nonempty.

Now, we recursively note that for each k € Z™, we note that I}, is not maximal in S, so there is an
ideal I 11 € Ssuchthat Ix C I;41. So we get a strictly increasing chain

LhGhL Gz

)

successfully violating (d). Technically this argument uses some Axiom of choice to construct all
of these ideals at once.?

« We next show that (b) implies (d). Well, given an a chain of ideals
LCLCIZ3C---,

and because this is a chain, we see that

I = U Ik
keZ+t
is itself anideal, which we can check by hand: we see I contains 0 € I; and so is nonempty; then forany

a,b € Iandr,s € R,thereis N suchthata,b € Iy because ouridealsareinachain,sora+sb e Iy C I.
Thus, I is an R-submodule of R and hence an ideal.

2 There are actually reasons to care about this use of choice: in algebraic geometry, there are structures called topoi we might want
to work in, which don’t have an Axiom of choice.
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Now, I is finitely generated because R is Noetherian (!), so set
I=(ay,...,an).

Each ay, lives in some I, , so setting N := max{ny}, we see that a, € I,, C Iy foreach k. Thus, for
eachn > N, we have
LS| k=I=(a,...,an) C Iy C I,
kezZ+

so I,, = Iy follows. Thus, our chain does stabilize.

« We now show that not (d) implies not (b). Indeed, suppose that I is not finitely generated, and we
construct an infinite strictly ascending chain of ideals.

Start with a; := 0 € I. Now, we recursively note that any finite set {ax}}_, C I cannot generate I, so
we can always forn € Z* find some

apy1 € I\(al,. ..,an).
Continuing in this manner, we get a strictly ascending chain
(a1) € (a1,a2) € (a1,a2,a3) S -+,

which contradicts (d). Indeed, this chain is strictly ascending because, for each n € Z*, we see that
ant1 ¢ (a1,...,a,) impliesthat (a1,...,a,) € (a1,-..,@nt1). [ ]

Let's see an example.
Example 4.68. Fix R = k[x1, x2, .. .] to have infinitely many variables. Then

(x1,22,...)

is not finitely generated as discussed earlier. From the above work, we see that this gives rise to the
infinite strictly ascending chain

(1) € (z1,22) € (z1,22,23) C -~

And of course, there is no maximal element among the above chain using the logic described above.

4.2.3 Artinian Rings

As an aside, we note that we can flip around the condition for Noetherian and ask for decreasing chains to
stabilize.

Definition4.69 (Artinian). Aring Ris called Artinianif and only if all descending chains of ideals stabilize.

Example 4.70. Fields are Artinian because they only have two ideals.
This is a very strong condition; some of our favorite rings are not Artinian.
Non-Example 4.71. The integers Z has the infinite strictly decreasing chain

2)24)20)2--

=

Remark 4.72. The Artinian condition is so strong that it implies the Noetherian condition.

We won't be talking about Artinian rings any more for now, but it might come up in commutative algebra.
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4.2.4 Hilbert Basis Theorem

Let's jump into the Hilbert basis theorem. Recall Noether's statement.

Theorem 4.64 (Hibert basis, I1). If R is Noetherian, then R[x] is also Noetherian.

Proof. Givenanideal I C R[z], our goalis to find a finite set of generators. Well, we set
Iy :== {0} U {leading coefficient of f : f € R[z] and deg f = 0}.
This is simply I N R[z] and might appear silly, but more generally, we define
I, = {0} U {leading coefficient of f : f € R[x] and deg f = k}.
We have the following two observations.

« The I, areidealsforeach k € Z*. By construction, they contain 0. Thenif we havea,b € I andr, s € R,
then we need ar + bs € I. If ar + bs = 0, then we are done. Otherwise, we can find polynomials f and
g of degree k with leading coefficients a and b respectively. Then the polynomial

af +bg
has leading term (ar + bs) 2%, so indeed, ar + bs € I.

» We have that I}, C Ij, foreach k € Z*.Indeed, 0 € I}, 1, and forr € I \ {0}, we can find f(z) of
degree k with leading coefficient r. Then z - f(z) has degree k+ 1 with leading coefficient r, sor € Ij4;.

Thus, we have an ascending chain of ideals
LhchcCl3C -,

and we note that R Noetherian implies that this sequence must stabilize to some Iy.
This use of the chain condition more or less tells us that we only care about {I;}_,. Each I is finitely
generated, so we fix
Iy = (ks Th2s -5 Thony )
and then, for each ¢, we find polynomials f; , with leading coefficient i, , of degree k. (If 7o = 0, just take
fr,e = 0, though this doesn’t matter.) Now we claim that I is generated by

N
S = U {fk,lafk,??"'afnk} g I)

k=0

which will be good enough because S is finite.

Essentially, S generates I by induction. Fixp € I.If p = 0,then of coursep € (S). Otherwise, weinducton
degp; if degp = 0, thenp € Iy, so we can write p as an R-linear combination of the fj ., finishing. Otherwise,
degp > 0, and we have two cases.

« If d := degp < N, then name the leading coefficient € I;. In particular, we have some R-linear
combination
ndq
r=>am,
=1

ng

f=> afrs € (S)
=1

SO

will have leading term rz¢, matching p. Thus, p — f will thus have smaller degree by cancelling out the
leading term, sop — f € (S) by induction, sop € (5).
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» If d .= degp > N, then again name the leading coefficient » € I;. But by the stabilization, we see that
r € Iy, so we have an R-linear combination

nnN
T = E YT N,¢-
(=1

But now

ng
. d—N
f=> afrpx
=1

will have leading term rz?, matching p. So again, p — f has smaller degree by cancelling the leading
term, implying that p — f € (S) and hencep € (5). ]

Remark 4.73 (Nir). The end of this proof is essentially doing Euclidean division with many polynomials.

4.2.5 Analytic Examples

Let's see some more examples.

Example 4.74. We have the following list.
« The ring C[z] of polynomials is Noetherian.
« The ring of holomorphic functions on C is not Noetherian.
« The ring of functions which are holomorphic on the closed unit disk is Noetherian.
« The ring of functions which are holomorphic on the open unit disk is not Noetherian.
« The ring of functions which are holomorphic in some neighborhood are 0 is Noetherian.
» Thering of functions smooth at 0 is not Noetherian.
« Thering of formal power series at 0 is Noetherian.

All but the last item are contained in the previous, but smooth functions at 0 are not all represented by
formal power series.

All of the rings in the above are quite similar, but being Noetherian is switching on and off. Let's do some of
the explanations.

» Thering C[z] is Noetherian because it is principal.

« Similarly, CJ[[z]] is Euclidean and hence principal and hence Noetherian. The trick is to reverse our
definition of degree. Namely, given a nonzero power series

a(z) = apa* € Clla]],
k=0

we define |a| to be the least k such that aj. # 0, which exists because a # 0. Then to divide some power
series a(z) = Y -, axx" by a nonzero power series b(z) = 7, by, we note that |a| > |b] implies
we can write

%al

g Slal=lol g

1]

Here, r has the aj,z!! term vanish while adding no lower-degree terms, so r = 0 or |r| < |al. In this
way, we can inductively push the degree downwards until » = 0 or || < |b|, which is what we need for
Euclidean division.
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Remark 4.75. The ring C[[z]] is an example of a “local” ring.

» Holomorphic functions on C is not Noetherian. For example, define
I,, :== {f holomorphic : f(k) = 0 for each positive integer k > n}
for each n € N. Then we can check that we have an ascending chain
LhCLCLC- .

One way to see that this containment is strict is to note that, foreachn € N,

sin 7z
Fale) = s
" Hk<n(z - k)
vanishes at positive integers at least n but returns 1 for positive integers less than n. Thus, f,, € I, \

L.

More generally, we can replace N with any set of complex numbers with no limit point, though we have
to do some complex analysis to see this.

« Holomorphic functions on the closed unit disk are Noetherian because it is a principal ideal domain.
Indeed, the main point is that a holomorphic function on the closed unit disk must only have finitely
many roots. Given an ideal I, we can define

S:={z¢€C: f(z) =0foreach f € I},

where zeroes of higher order are counted with multiplicity in S. Then we set

Js(z) =[] (z—a)

a€S

again counting with multiplicity. Then J := fisl is still an ideal, and it has no points upon which all

functions in J vanish; it follows by waving our hands a bit® we can construct a function in .J with no
roots,so J = (1),s0 I = (fs).

» Holomorphic functions on the open unit disk is not Noetherian for the same reason that holomorphic
functions on C is not Noetherian. Namely, we have the infinite isolated sequence

1
an:zl—g

forn > 0in the open disk, which can be used to construct the strictly ascending chain
I, == {f holomorphic : f(ax) = 0 for each positive integer k > n}
foreachn > 0.

» Holomorphic functions at 0 can be identified with formal power series

f(z) = Z apz”
k=0

such that limsup,, ., /|an| < co. We can show that these functions are closed under addition and
multiplication, so they inherit the division algorithm of C[[]].

3 | suspect this claim follows from some random complex analytic result, but | do not know what it is.
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« Smooth functions at 0 is quite odd. For example, we can we can set I equal to the functions vanishing
with infinite order at 0. Namely, the function e~/ vanishes with infinite order at 0 along .

There are other ways to see that this ring is not Noetherian. For example, Noetherian rings have that
allelements are the product of irreducibles, which we showed for principalideal domains, whose proof
carries over nicely here. But f := e~1/%" has

2 4
= (V) = (7)) =
so f is not the product of irreducibles.

So being Noetherian can be a kind of fuzzy condition to work with.

4.2.6 Noetherian Philosophy
Let's have some informal ways of thinking about the Noetherian condition before we continue.

« Rings of finite-dimensional algebraic objects tend to be Noetherian. For example, polynomials over
a finite number of variables are more or less actions on a finite-dimensional subspace. However, in-
finitely many variables would act on infinite-dimensional space.

« Rings in analysis tend to be non-Noetherian. This is sad for analysts.

« Noetherian rings are more or less associated with zeroes of functions being nice. For example, on the
closed unit disk, holomorphic functions have a finite number of zeroes. But this is not the case for all
of C or for the open disk.

4.2.7 Hilbert’'s Finiteness Theorem: Set-Up

We will spend the rest of lecture discussing an application of Noetherian rings.

Here is the set-up: suppose tha a group G acts on a finite-dimensional k-vector space V. One way to
study V would be to look at the ring of polynomial functions out of V. Fixing a basis {v1, ..., v, }, thisring is
E[V] = ko7, ..., v8],

where v} : V — kis the coordinate function for v,.*
We are interested in studying the G-invariants of V, and we can do this by studying G-invariants of k[V].
Namely, Now, the G-action on V induces an action on k[V] by

(o F)v) = flo™"v),

where o € G and f € k[V]and v € V. Here, we are inverting in order to make the associative law for the
group action actually behave. So we find that the G-invariants of k[V] are

kV|® = {f€k[V]:o-f=fforeacho € G}.

So what we can say about k[V]%? It's not too hard to see that our G-action preserves addition and multiplica-
tion in k[V], so we have that k[V]¢ is a subring of k[V]. Further, the G-action preserves scalar multiplication
by k, so the most structure we can give to k[V]¢ is in fact as a full k-algebra!

Well, what does k[V]“ look like as a k-algebra? For example, is it finitely generated? This turns out to be
a difficult question; we will show that the answer is yes for G a finite group and k& = C, though the answer is
yes in more general contexts.

Remark 4.76. Hilbert invented the notion of Noetherian in order to talk about the above result.

4Sure, there are other functions V' — C, but from an algebraic perspective, these polynomial ones are more or less the only ones
we can guarantee to exist when working in full generality.
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Exercise 4.77. Fix G = S, actingon V = C" by permuting the coordinates. Then C[V]¢ is finitely
generated as a C-algebra.

Proof. Our coordinate ring is
ClV] =Clxy,...,zn],

where 7, : V — C projects onto the kth coordinate. Then we can see that (o - 2;)(v) = (07 1v) = 254
because the o(k)th coordinate gets moved to the kth coordinate. Because we are working in a polynomial
ring, this extends uniquely to a full G-action on C[V].

Namely, G acts on C[V], by permuting coordinates, so C[V]¢ consists of the symmetric polynomials. For
example, the polynomials

€1 =21 +2x2+ -+ Ty, ey = E TpZp,y ... em ‘= E Ty Thy " * Tk,
k<t k1<ko<...<km

are the “elementary” symmetric polynomials. It turns out that all symmetric polynomials are a polynomial
of the e,, S0
C[V]€ =Cley, ..., en]

is indeed finitely generated as a C-algebra. For example, we can write
2t = (44 x,)? fQZ:vkxg =2 — 2e,.
k<t

Some kind of process like this works for all symmetric polynomials. |

Exercise 4.78. Fix G = (0) = Z/4Z actingon V = C? by ov := i~ *v. Then C[V] is finitely generated as
a C-algebra.

Proof. Our coordinate ring is C|z, y], where x projects onto the first coordinate and y onto the second. Fur-
ther, we can check that our action is by

(0 2)(v) = 2(0™"v) = a(iv) = (iz)(v),

so o -z = iz. Similarly, o - y = iy, and this extends uniquely to a full G-action on C[V] because C[V] is a
polynomial ring.
Looking at more general monomials, we see that

o (akyt) = iF+Hakyl

so the fixed monomials are the ones with i*** = 1, which is equivalent to having degree divisible by 4. Now,

if a polynomial

fla,y) = arex®y’

k,£EN

is fixed by the G-action, then we see that

(0 f)z,y) = Z " ay gk yt

k,(eN

In particular, G preserves the monomials themselves, so we need i*+¢ = 1 for each a; , = 0. Thus, we have
that C[V]% consists of the polynomials all of whose monomials have degree divisible by 4. In other words,

C[V]¢ =C [{zkyz tk+0=0 (mod4)}].
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For example, this is infinite-dimensional as a C-vector space, spanned by the z*y’ with k + £ = 0 (mod 4).
However, for each 2%y’ with k + ¢ = 0 (mod 4), we can write k = k¥’ (mod 4) and ¢ = ¢’ (mod 4) with
0<K,l'<4,500 <k + ¢ < 8. The point is that we can write
k—k')/4 g —0) g
chyt = (x4)( )ALk (y4)( )ye )

But now because &’ + ¢ < 8 while k¥’ + ¢ = 0 (mod 4), we see that 2"y € {200, 2"y, 22y2, 2%y } . It
follows that we can fit all monomials of C[V]¢ into

C[y* 2y®, 2%y, 2%y, 2],

where we have thrown out 2%y = 1 and added the needed z* and y*. It follows that we can write C[V]“ =
C [z*, 2%y, 2%y?, xy3,y] , so C[V]€ is indeed finitely generated as a C-algebra. [ ]

In general, rings of invariants are quite complicated, and even if finitely generated, they might require lots
of generators.

Example 4.79. Let G = SL,(C) act on the binary quantics, which are polynomials of the form

n
E akxkynfk )
k=0

Namely, these are all two-variable polynomials which are homogeneous of degree n, and the G-action
is by multiplication multiplication like

a b||x| |ax+by

c d||y|  |cx+dyl|-

It turns out that the ring of G-invariants are finitely generated, which is due to Gordon.

4.2.8 Hilbert’s Finiteness Theorem: Proof
Proving that these invariants are finitely generated was an incredibly hard problem, but Hilbert presented a

disturbingly simple proof of it.

Theorem 4.80 (Hilbert's finiteness). Fix G a finite group and V' a finite-dimensional C-vector space with
a (linear) G-action. Then C[V]¢ is finitely generated as a C-algebra.

Proof. The key trick is that, when G is a finite group, we have a "Reynolds” operator, which is essentially a
“G-average.” Namely, for some function f € C[V], we define

1
= — g 6 C V .
/1) =44 ;EG (f) e CV]
The division by #G is legal in C but not in all fields because we might end up dividing by the characteris-

tic.

Remark 4.81. This is the same Reynolds who did fluid dynamics, who used the Reynolds operator to
average fluid flow over time operators.

Now, starting with C[V], let I = C[V]% be the ring of invariants, which we grade by degree. Explicitly, we
have

1= L®LDI3D -,
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where I, has terms of degree k. (Indeed, any polynomial in C[V] can be uniquely decomposed into polyno-
mials of various fixed degrees.) Then we set

J = (11,127...) Q (C[V}

to be the ideal generated by the homogeneous polynomials in I of positive degree, where we exclude con-
stants to avoid the full ring.

But C[V] is simply a polynomial ring and hence Noetherian! So J is generated by some finite number of
elements (as an ideal) in C[V]. Further, each of these finitely many generating elements can be written as
some finite C[V]-linear combination of nonconstant homogeneous polynomials in I (by construction of J),
so in fact we may write

J = (.jla"'ajm)a

where the j, are nonconstant homogeneous G-invariant polynomials. We would like to show that these j,
generate [ as a C-algebra; in other words, we claim that

? . .
I= (C[jl?' "aj’m]7

which will indeed finitely generate I as a C-algebra.

Remark 4.82. Generating as an ideal and generating as an algebra are again, quite different, and this is
where the main difficulty is in the proof. For instance, the ideal (y) C C[z, y] is not finitely generated as
a C-algebra.

So we need to use some property that [ is a ring of invariants, and as promised, we will use the Reynolds
operator. Due to the grading, it suffices to show that I,, C Clj,...,jm] for each n € N. We show this by
induction; note that I consists of constants in C, which are in C[jy, . .., j,»] automatically.

Otherwise, pick some b € I,, with n > 0, and we need to show b € C[ji,...,Jm]. Because b € J, and

J = (ji,---,Jm), Wwe may write
m
b= chjk~
k=1

Without loss of generality, we may take deg ¢, = deg b — deg j, because any terms of ¢, which are not of this
degree will have to cancel out somewhere else because b and j, are homogeneous. We repeat again that
the issue here is that the ¢, live in C[V], not in C[V]“ the ring of invariants.

But the key trick is to apply the Reynolds operator! The Reynolds operator has the following magical
properties.

« If f € C[V]%and g € C[V], then p(fg) = fp(g). Indeed,

§9) = g S o0 = 5 3ol Sl

oeG ceG o’EG
« In particular, if f € C[V]9, then p(f) = p(f - 1) = fp(1) = f.
o If f € C[V], then p(f) € C[V]%. Indeed, for any 7 € G, we have that

1
relf) =T g 2ol - 26 2 () = plh).

ToeG

Thus, we can write
b=p(b) =D jrplck
k=

1
which essentially finishes immediately. Indeed, the p(c,) are elements of I of degree smaller than degb, so
they live in C[jy1, . . ., jm], so we finish by induction. [ ]
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Remark 4.83. This proof is quite amazing. It is little more than applying the Reynolds operator, wiping
out hundreds of pages unreadable invariant theory because explicitly writing out the invariants can be
truly terrible.

We close with some more remarks.

Remark 4.84. Hilbert's proof is not constructive: we don’t have an algorithm to actually find the gen-
erators from an ideal in the above proof. He would later provide a more explicit construction, which
comes from making the Hilbert basis theorem more constructive.

Remark 4.85. We don't need the full force of G finite. For example, G compact lets us integrate for our
Reynolds operator using a Haar measure, which is safe. We can also do G = SLy(C) by the “unitarian
trick,” where we observe that SLy(C) (which is not compact) contains the compact group SU3(C), and
then it turns out that the SLo(C)-invariants are the same as the SU;(C)-invariants.

Remark 4.86. Nagata found a group G where the invariants are not finitely generated, so this statement
is not true for all groups G. (This provided a negative answer to Hilbert's 14th problem.) So we do
need some smallness condition on G; the correct property for the above proof turns out to be “linearly
reductive.”

Remark4.87. The fact we are working over Cis also unnecessary as shown by Haboush, though it makes
the proof more difficult.

4.3 October 26

| am okay with being stabbed.

4.3.1 Symmetric Polynomials

We're talking about symmetric polynomials and resultants today. Recall that variables {a4}}_, hasan S,-
action by permuting the indices, and a symmetric function on these variables are the S,,-invariants.

Example 4.88. The function

e1:=ai+ - +ay, and ey = E le7%eY,
k<t

are elementary symmetric polynomials. More generally, we have

€m = § : akl...akrn

k1< <km

We can combine these using Vieta's formulae to get
H(x —ap) =" —epx" 4 e 2 4.
Our goal for today is the following.

Theorem 4.89. Fix k a field. Any symmetric function in k[aq, ..., ay] livesin kfeq, . .., ep].
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Proof. The key idea is to order monomials and kill off the biggest, essentially forcing an induction to exist.
Ordering can essentially be done in any reasonable way; Grobner bases are essentially the standard way to
induce an ordering, but we will use lexicographic ordering: we order two monomials by

Pro P N a9
o abr > af aglr

if and only if the least i for which a; # b; has a; > b;. For example, a? > aja3 and aja3a3 > ajadaz. We can
check that this is a total ordering because the least k for which p; # ¢; exists whenever the monomials are
unequal, and at this point either p; > ¢; or p; < ¢;.

Notation for multivariate polynomials is quite annoying, so we will write, for v := (vy,...,v,) € N",
a’ =at - apr.
In particular, we can notate a particular f € k[ay, ..., a,] by
f: Z C’Uav7
vEN™

which lets us avoid having to drown in indices.

| Warning 4.90 (Nir). This notation is not standard.

Under this notation, we note that the lexicographic ordering of monomials is the same as the lexicographic
ordering of N™.
Before continuing, we note that the leading monomial is multiplicative.

Lemma 4.91. The leading monomial (using the lexicographic ordering) is multiplicative: if f has leading
monomial a? while g has leading monomial a4, then fg has leading monomial the product a?*9.

Proof. This statement comes from the fact the lexicographic is "additive.” In particular, fixp > vand ¢ > w
for v,w € N where we are using the lexicographic ordering on N”. Then we claim that

?

p+aq>v+w,

with equality if and only if p = v and ¢ = w. Note that if v = p or w = ¢, then we can cancel the equal term
from both sides to get the statement we want.

Otherwise, p > v and ¢ > w, and we want to show that p + ¢ > v + w. We know the least index i for
which p; # v; has p; > v;, and the least index j for which ¢; # w; has ¢; > v;. But now we see that each
index before min{%, j} has pe = ve and ge = ws SO that pe + ve = e + ws. But then

Pmin{i,j} T dmin{i,j} > Ymin{i,j} + Wmin{i,j}»
sowedo findthatp +¢ > v+ w.

For concreteness, write
f= E cpa® and qg= E dya™.
veENR weN?

fo=>Y" ( > cvdw> a®.

rxeN? \v+w=zx

Then, distributing, we see that

We claim that the leading monomial of fg is from a?*4. Indeed, we note that if ¢,d,, # 0so that ¢, # 0 and
dw # 0,thenv < pand w < q. So by the above, it follows that

v+w<p+gq

with equality if and only if v = pand w = q.

To finish, we see that this implies the only z with any nonzero term c,d,, with v + w = x will have to be
z < p+ q,andinfact p + ¢ exactly only has v = pand w = ¢ so that the coefficient comes out to ¢,d,, # 0.
So it follows that aP4 is the largest monomial with nonzero coefficient in fg, which finishes. |
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We now attack the proof directly. Suppose that f € k[ay, ..., a,] is a symmetric function, and use the
lexicographic ordering to find its largest monomial of* - - - P~ with nonzero coefficient. We claim that

? ?

? . ?
P12DP22 " 2 Pn.
Indeed, if k < £ has p, < py, then we note that the monomial

(k.0 ot af' St alt ot ol b ol b = of -l abiafy ool el el
will have nonzero coefficient in f because f is symmetric. But the above monomial has exponents equal to
of* -+ aPr up until o*, at which point we see that the above monomial is strictly greater than our hypothe-
sized largest monomial ol - - - a2~ because p; > py.

Now, the main idea in the proof is to repeatedly kill off the leading term of f. Indeed, we note that

5= et TP2ehTPe L Pt TP o
is going to have the desired leading term: note that the leading term of ¢; is «; - - - @; by using the lexico-
graphic ordering, but then multiplicativity of the leading coefficient tells us that the leading term of the s
Oé;in—Pz (0[102)172*?3 . (Oq . an_l)pnq*pn (041 . an)Pn = oP.
Now we see that f —¢,s willkill the leading term of f, so we can more or less induct downwards to eventually
kill all of f.

The details of the induction are actually quite annoying because we did not well-order the monomials:
there are infinitely many monomials smaller than z?, e.g. of the form x;23. But an induction still works:
the process above will give a sequence of strictly decreasing monomials (which are the leading terms of the
polynomial we're trying to inductively kill), and we need to show that this sequence must eventually take f
down to the least monomial o - - - a0, which is immediately in k[ey, . . ., e,].

So we need to show that there are no infinite strictly descending chains in the lexicographic ordering of
N™.

Lemma 4.92. All descending chains in the lexicographic ordering of N must stabilize.

Proof. We proceed by inductiononn. Forn = 1, thisis the assertion that Nis well-ordered. Otherwise, sup-
pose that there are no infinite strictly descending chains in N™ must stabilize and fix an infinite descending
chain

V] 2 Vg 2 U3 2>

in N"*1. Projecting onto the first n coordinates, we see that the first n coordinates must eventually stabilize.
There is an N; for which m > N; has

(Vm)k = (UN)k

for each 1 < k < n. But now the last coordinate past N, is a descending sequence in N because the lexico-
graphic ordering now has v,,, > v,,,11 requires

(Um)n-i-l Z (vm-‘rl)n-i-l-

As this is a descending sequence in N, it must also eventually stabilize and hence must also stabilize past
some Ny, so the full v, stabilize past Ns. [ |

The above lemma finishes the proof. [ |

Remark 4.93. Professor Borcherds is doing a lot of killing in this proof.
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Remark 4.94. We used the fact that f is symmetric when we write down p; > ps > p3 > -+ > pa,
which is necessary to get the symmetric polynomials to kill off the leading monomial. Amazingly, this
is the only place we used the symmetric condition.

Remark 4.95 (Nir). We can avoid the annoyance at the end of the proof about infinite descending chains
by using a better-behaved ordering than the lexicographic one. For example, if p; is the ith prime, then
we can weight by

and it is not too hard to check that this ordering is multiplicative and again has the additive property we
need. But now this ordering is in fact a well-order, so the induction is more free.

4.3.2 Newton’'s Sums

The algorithm suggested in Theorem 4.89 is constructive but somewhat annoying to use because its run-
time is ineffective at the end. Using a better-behaved order as described in Remark 4.95 does make the
run-time effective, but the run-time is still very bad because of the large numbers of symmetric polynomial
computations.

As a specific case we might care about, consider the symmetric polynomial

Pm ="+ -+ alt € klag, ..., ap).

Here are some small examples.

Example 4.96. We see that pg = n and p; = e;. Further,

n n 2
_ 2 _ _ 2
po = a; = a; | —2 oo = e — 2ey.
Bl i=1 i>j

More generally, we have Newton's sums.

Exercise 4.97 (Newton's sums). Fix & a field and work in k[a, ..., o). Fix pp, = o + -+« 4+ afr. We
write p,,, explicitly asin kfe1, ..., e,].

Proof. By Vieta's formulae, we note that we can fully expand

ﬂm:Huﬂmzz( zjljﬂgﬂzzewwaﬂzﬁﬂmww”.

i=1 d=0 SC{1,...n}i€S d=0
#S=n—d

so that we want the mth powers of the roots of f. Here we have taken eq = 1 by convention.
The key trick is to take the logarithmic derivative of both sides of

F(@) = [J@ - -

=1

This might appear unmotivated, but it will greatly simplify things.
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Remark 4.98. Logarithmic derivatives are good tools whenever we have products. Namely, logarithms
turn bad products into awkward sums involving the logarithm, but then the logarithm gets rid of the
logarithm.s.

On one hand, we see that
n
Zd 71 —d, aj_1:77,56”_1—(71—1)@137"—2“""'>
d=1

and this derivative is a purely algebraic operation, definable over any field. In particular, we can check the
following.

Proposition 4.99. Fix R a commutative ring. Given f(z) € R[z] represented by f(z) = > ;_, axz®, we

formally define
fi(z) = 4 = Xn:ka k-t
dz — b ’

Then, for f,g € R[z] and a,b € R, we have the following.
o (af +bg) =af +bg.
< (f9) =f9 + [y
* (fog)(z) = f(9(2)y'(z).

Proof. The first two are doable by direct force. For the chain rule, one should first show this for f(z) = z”
by inducting on the multiplication rule and then extend linearly to all polynomials f. We will not show the

details here because | am lazy. |
Working in the quotient field k(ayq, ..., a,), we can verify by hand that we do have a “formal” logarithmic
differentiation , , , , ,
(o) _fg'+1fg 4
fg fg Iy

by using the product rule in the numerator. So indeed, the product becomes a sum.

Remark 4.100. Importantly this logarithmic derivative rule does not require us to formally define a log-
arithm over arbitrary fields. Professor Borcherds in office hours said that, if we wanted to formally add
a logarithm, one thing we could do was formally adjoin a function with derivative % to k[z]. Apparently
this is is somewhat standard practice in the field of differential Galois theory.

Using our logarithmic differentiation, we see that

n
Dy
f(z) T — oy

=1

But we notice that, now upgrading once more to k((aq, ..., ay,)), we have that

1 § —m—1 a'm
T — o l—x oy

by using the geometric series formula, so

;C Z Z —m—1 m — miiox—m—l (ia;n> _ ipmx—m—l

i=1 m=0 i=1 m=0
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after exchanging the order of summation. Now we can multiply both sides by f(z) and equate coefficients.
Written out in summation notation, this reads as

i:d(—l)n_dedl‘d_l _ (i: edxd> <§: pmm—m—1> ,
d=1 d=0 m=0

but this is a bit easier to read as

nz"t —(n— e a2 4 (n — e P — ... =

($n—€1$n_1+€2$n_2+-~-) (pow_l +p1£E_2 +p2$_3"').

In particular, equating coefficients shows us that

monomial \ coefficients
zn n=po
zn? —(n—1)e; = p1 — e1po
a"? (n—2)ea = pa — e1p1 + poea
a"? —(n —3)es = p3 — e1p2 + eap1 — e3po

This continues down in a recursion style. The general statement is that the coefficient of 2™~ (¢+1) looks like

d
) —1D4n—-de; d<n
Pa — e1pa-1 +espa—2 — -+ (=1)%eapo = Y (~1)espa—i = (1% ) :
p 0 else.

Using the fact that pg = n, we can move things around to get

d—1

Pa = (*Udﬂded + Z(*l)lﬂeipd—i )

i=1

under the strong assumption that | have not made an error moving things around. [ ]

Example 4.101. Let's find the sum of the fifth powers of the roots of 23 + x + 1. We have the following
computations; notee; =0ande; = 1ande3 = —1ande; = 0fori > 3.

« We have that py = 3.

« We have thatp; = e; = 0.

« We have that py = —2e5 + e1p1 = —2.

« We have that p; = 3e3 + (e1p2 — eap1) = —3.

« We have that py = —4ey + (e1p3 —eap2 +e3p1) =04+ (0—1--240) = 2.

« We have that Ps = 565 + (61p4 — €2p3 + e3p2 — €4p1) =0+ (O —-1--3+-1- 72) = .

Remark 4.102. Professor Borcherds is not sure why you would need the sum of the fifth powers.

4.3.3 Adams Operations

Let's talk about Adams operations in representation theory/ K -theory for a little bit. Here we take V to be a
finite-dimensional k-vector space with a linear G-action. Then we see that G also acts on V ® V as well by

g (1 ®v2) = (g-v1) ® (g vu). (%)
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Indeed, we can see that i, : V x V — V ® V defined componentwise is a bilinear map by writing down

g (v, brwy 4 byws) = (gv) @ (by(gw:) + ba(gws))
= b1 ((9v) ® (gw1)) + b2 - ((gv) ® (gw2))
= bipig(v, w1) + bapg (v, wo2)
and similar for the other side. So we do indeed have a linearmap i, : V®V — V ® V defined by extending

(*) linearly.
Anyways, we see that the G-action on V ® V in fact splits into

SAHV) @ A*(V),

where S?(V) is the symmetric part generated by a®@ b+ b®a, and A%(V) is the antisymmetric part generated
bya® b — b ® a. In reality, what is happening is that the G-actionon V' ® V more or less induces a G x S3-
actionon V ® V, where the S5 swaps the two coordinates; this is legal because G acts on one coordinate at
atime.”

Remark 4.103. We could generalize this to tensoring n copies of V to get a G x S, -action. Then the
action on V@ will split into something more complicated depending on some decomposition of S,,.

We now have the following definition.
Definition 4.104 (Adams operation). Fix everything as above. We define the Adams operations in the

ring of G-representations as
PA(V) = S%(V) = A*(V).

Yes, we can subtract by working in the “formal” representation ring. For here, what we need to know about
the representation ring is that the addition is the direct sum &.

We might be interested in how G acts on1/?(V'), which we can talk about via the trace. Of course, the trace
on these formal representations might be poorly defined, but never fear—the trace is additive on the direct
sum @, so we can just subtract formally! Namely, if T € GL(V)and S € GL(W),thenT ® S € GL(V @ W)
has

tr(T@® S) =trT + trS.

For example, we can see this by writing everything out as matrices so that the matrix of representation of
T @ S looks like

T 0
ras=[ 7.
which makes the diagonal sum indeed tr T + tr S.
Now, for concreteness, suppose that each 1, € GL(V) is diagonalizable with eigenvalues a4, . .., o, and
eigenbasis {v1,...,v,}. We now check the eigenvalues of p, for the action on each V ® V and S%(V') and
AZ(V).

« OnV ® V, we have a basis given by v; ® v; for each 4, j, so our eigenvalues on this eigenbasis look like
a; o for each i, j because

tg(vi @ vj) = (gui) ® (gv;) = (iv;) ® (ajv;) = (i) (vi @ v;).

« On S2(V), we have a basis given by v; ® v; + v; ® v; for each i > j. These elements do indeed span
S2(V): forany a,b € V, we can write

n n
a = E a;v; and b= E bﬂ)i
i=1 =1

5| don't really feel like being more explicit about the decomposition of this representation, but one should also check that these
spaces are G-invariant and orthogonal, which is not too hard to do.
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so that .
a®Rb+b®a= Z (a;bj)(v; ® v; + v @ v;),
ij=1
so the basis hits all elements of a ® b + b ® a. Thus, we have dim; S*(V) < (5) +n = "2;'", and we

will check next that dimy, A2%(V) < "22‘", so the fact that dimy, S?(V) +dimy, A?(V) = dim V ® V means
that we must have equalities.

Anyways, we see that our eigenvalue for some v; ® v; + v; ® v; upon applying i, becomes «;a; again.

« Similarly, on A%(V'), we have a basis given by v; ® v; — v; ® v; for each i > j. Again, we can check that
these span: forany a,b € V, we can write

n n
a = E a;v; and b= E bivi
i=1 i=1

so that

n
a®b—-b®a= Z(aibj)(vit@vj —v; @ ;).
i,j=1
Now we can get to the restricted basis by noting that i = j causes the term to collapse, sowe don't care
about those elements; and if i < j, then we can add a sign to make the basis element v; ® v; — v; ® v;

instead. So we get that dim;, A%(V) < (5) = ”2;”, filling in the above argument.

Anyways, we see that our eigenvalue for some v; ® v; — v; ® v; upon applying p, becomes ;o again.

In particular, the eigenvalues on ¢? (V') for u1, sum to give trace

n n n
2
trpg = E ;0 — E Qo = E a; = pa,
i i=1

i,j=1 i,j=1
127 i>7
52(V) AZ(V)

which is sufficiently cute. More generally, we can define 4™ (V) to have trace p,,, more or less using New-
ton’s identities in the sums directly.

4.3.4 Alternating Polynomials

Thus far we have studied invariants of S,, on k[z1, . .., z,]. We might be interested in A,,-invariants.

Example 4.105. On A3 = (o) = Z/37Z, we have the As-action on k[z1, 22, x3] determined by three-cycle
generated by ¢ taking (say) 1 — x2 — x3 — x1 in a cycle. Of course, the symmetric functions are
invariants, but there are more: the function

($1 - 1'2)(132 - 173)($3 - xl)
is As-invariant. It turns out that this is essentially the only other alternating polynomial, however.

Let's see this.

Exercise 4.106. We describe the A,,-invariants of k[z1, ..., z,], where k has characteristic not 2.

Proof. We briefly remark thatif f € k[z1,...,2,]is A,-invariant, then for any two odd permutations o and
02, we have that
o1f = 0202_101f =oof
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because o, 'o; € A,. The point is that the S,,-action on f is completely determined by what a single odd
permutation does.
Now, we note that if some 7 € A4,, swaps z; and z;, and if f is invariant on A3, then we note we can write

ST ]
=t

f

What is happening here is that the first term is S, -invariant, and the second term is “antinvariant,” meaning
that it changes sign on odd permutations. We can check that fJFQ—Tf is actually S, -invariant because any even
permutation keeps the terms in place, and an odd permutation will swap them.

Formally, we have the following.

Definition 4.107 (Antinvariant). We say that f € k[z1,...,z,] is antinvariant if and only if, for each
o € S,,wehavethatof = (sgno)f.

So to check that % is antinvariant, we have the following checks.
« Ifoiseven, thenof = f sothat

mf*ff_df*@ﬂf_f*ff
2 2 2

because 7 and o7 are both odd.
« If ois odd, we see that o7 is even implies that

f=Ti _of=(en)f _1i—f
2 2 2

because o and 7 are both odd.

Soindeed, f;;f is antinvariant.
The point of these computations is that we can write

klxq,. .. ,a:n]A" = kx4, ... ,:177,,]5” + antinvariant polynomials.
In fact, an element f € k[x1,...,z,] can be uniquely written as f = g + h for g symmetric and h antisym-
metric. Indeed, we have that
f=g9+h,
Tf=9g—h.

which we can solveto g = f*—;f and h = % (Here we use char k # 2.)
Now, we have that
[T —=))

1<j

isantinvariant because look at it. We then have the following sequence of observations; fix g any antinvariant
polynomial.

« Foranyz; # z;, we see that g will vanish on setting z; = z;. If we let g be the polynomial after applying
x; = x;, then we see that g = —(4, j)g even though (i, j)g = 7, so it follows that g = 0.

« Now, given g vanishes on z; = z;, then ring theory lets us write g = (x; — ;)h. So each z; — z; divides
g, and we can see that these elements are irreducible (they are degree 1) and not off by a unit, so the
product of these does indeed divide A.
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o Thus, we can write
g=A-h

forsome h € k[z1,...,2,],and in fact h is symmetric: for each o € S,,, we have

_og  (sgno)g o L

oh= oA (sgno)A A
The point is that the antinvariant polynomials are simply A - k[z1, ..., z,]%".
So brining this together, we see that
klzy, ...,z = klzy, ..., 20 @A K2y, 205"
But now if we wanted to generate k[xz1, ..., 7,]"" as a k-algebra, we note that k[x1,...,2,] = kle1, ..., e,)

because the e, are algebraically independent®, and then to add A, we see that

kler, ..., en, Al
(A2 — some polynomialin k[eq, €2, e3])”

Az ~

klx,y, z]" =

where the relation in the denominator comes from that A% € k[ey, . .., e,] is symmetric. It turns out that the
relation for A% is quite annoying to compute; for example forn = 3 itis

A? = 18ejeges — 4efes + efes — des + 27e3,
which is quite bad, but theoretically doable. |

We would like to work out A2 without tears.

Example 4.108. In two variables, our A% here is (a; — ag)? = €2 — 4dey, which is really the discriminant
of a monic quadratic.

So we more or less want the “discriminant” of a cubic.

Definition 4.109 (Discriminant). Fix f(x) a polynomial with roots aq, ..., «a, in algebraic closure, the
discriminant is defined as
H(Oék — ay).

k#0

So how do we compute this? The answer is resultants.

4.3.5 Resultants
Set-Up
As usual, fix a field k£ and a polynomial
flz)=2" —eyx™ ' + ... € k[a]

with roots ay, . .., a,. We would like to compute

A? = H(ak —ag)? €kler,. .., en)
k<t

The main point is that A% = 0 if and only if f has a multiple root.

6 This is present in Lang; roughly speaking, the point is to do an induction on the number of variables so that an algebraic relation
becomes a polynomial in one of the zo. Then the constant term must vanish by inductive hypothesis, but then we can divide out by ze
to force the entire relation to vanish.
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Remark 4.110. Sylvester chose the name “discriminant” for this reason.

Going further, we see that f has a multiple root in the algebraic closure if and only if ged(f, ') # 1. We check
this briefly.

Lemma 4.111. Fix k a field and f € k[z] \ {0}. Then f has a double root in the algebraic closure of f if
and only if ged(f, f’) has positive degree.

Proof. We have the following checks.

« Inone direction, (z — )? | f(z) implies f(z) = (x — a)?g(x) for some g implies f'(z) = 2(z — a)g(z) +
(x — a)?g(x) implies (x — a) | £, f’. We can show the other direction purely formally.

« In the other direction, if ged(f, f’) # 1, then checking for roots of ged(f, f') in the algebraic closure,
we get asuch that f(a) = f/(a) = 0. Then f(a) = 0 lets us write f(z) = (z — a)g(x) for some g so that

fl@) = g(2) + (x - a)g'(x),

and when we plug oo one more time, we see that g(«) = 0 so that we can write g(z) = (x — «)h(x) for
some h. It follows (z — a)? | f. [ ]

Remark4.112. Thereis a tricky thing that f” might vanish with f non-constant. For example, the deriva-
tive of f(x) = #P —ais0inF,. This is okay with multiple roots because, indeed, x” — a has only one root
inIF,: if bis some root with b” = q, then 2? — a = 2P — b” = (x — b)?, so we indeed only have the root b.

The point is that we are interested when f and f’ have a root in common.

The Sylvester Matrix

Of course, there isn't much special about f’, so we can just ask when two polynomials f and g have any root
in common. For concreteness, we fix

deg f degg

flx) = Z apx” and g(x) = Z brpa®.
k=0 k=0

Supposing that these have a common root of a, we write f(z) = (z — a)p(z) and g(z) = (z — a)q(x). The
key equation, now is that

f(@)q(z) = (z — a)q(z)p(z) = g(z)p(x),
where degp < deg f and deg g < deg g. Indeed, the existence of such p and ¢ is equivalent to f and g having
a common root.

Lemma 4.113. Fix k a field and f,g € k[z] \ {0}. Then f and g have a common root in the algebraic
closure if and only if there exist p, g € k[z] \ {0} with degp < deg f and deg ¢ < deg g such that fq = gp.

Proof. The above argument gave the forward direction. In the reverse direction, we note that in fq = gp,
we may assume p and ¢ are coprime, else we could divide out by their greatest common divisor. But then
p | gp = fqimpliesthatp | g,and similarly ¢ | f¢ = gp implies that ¢ | f so that

[y

b q

is a valid equation in k[z]. Now, degp < deg f and deg g < deg g implies that both sides have positive degree,
so both sides have a common root in the algebraic closure of k. It follows that f and g have a common root
in the algebraic closure. |
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But at this point we see that solving
fa=gp

with degp < deg f and degq < degp is essentially some massive set of linear equations in p and g where
the coefficients come from f and g. So we can check for nontrivial solutions for p and ¢ by checking if the
determinant of the corresponding coefficient matrix vanishes.

Let’s see this. For concreteness, fix m := deg f and n := deg g with the coefficients

m—1 n—1

p(z) = Z Yot and q(z) = Z zext.
=0 =0

Then

e () (£) 5 ()

d=0 k+l=d

while

deg g m—1 n+m—1
gp = (Z bkl’k> (Z yﬂé> = Z ( Z bwz) z?,
k=0 £=0

d=0 k+0=d

Comparing coefficients, we have the system

Z aRze — Z brye =0

k4+-l=d k+e=d

foreach0 < d < n+m — 1. Written out in matrix form, we get an (n + m) x (n +m) matrix which looks like

d=0 ao —b() 20
d=1 a1 ag —b —bo 21
d=2 ag ay ap —b2 —bl —bo Z9
d=m Uy Am—1 Am-2 ° (Gm-n+tl —bm ~bm-1 —bm—2 - —bi Zn—1
d=m+1 A Am—1  **° Gm-n42 _bm+1 _bm _bm—l T _b2 Yo ’
d=m+2 Qm o Gm—n+3 _b7n+2 _bm—i-l —bpm <o —bs Y1
d=m+3 o Gmengd —bmas —bpmio —bymgr - by Yo
d=n+m-—1 QA _bn_ LYm—1]

where the blank spaces are zeroes. We are interested in if this matrix has determinant zero, so we note that
it does not matter if we make the b, columns positive and transpose the matrix. Additionally, we can flip the
columns/rows and rearrange them as we please while keeping the status of being zero unchanged, possibly
introducing a sign here or there.

Doing all of this along with some aesthetic choices gives us the Sylvester matrix.
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Definition 4.114 (Sylvester matrix). Fix f, g € k[x] as above. Then the Sylvester matrix of f and g is the
(n+m) x (n + m) matrix

Qm  Am—1 Am-2 - ag
Um am—-1 ai ag
A 000 as aq ag
Ap—1 Ap—2 an—3 Gp—4 Qo
bn bn—l bn—2 e bn—m bn—m—l bn—m—2 bn—m—S ’
bn bnfl e bn7m+1 bnfm bnfmfl bn7m72
bn et bn7m+2 bnferl bnfm bnfmfl
L bnfl bn72 bn73 bn74 e bO_

where the first n rows shift the a, across, and the next m rows shift the b, across.

Definition 4.115 (Resultant). Fix f, g € k[z] as above. Then the resultant of f and g, notated Res(f, g),
is the determinant of their Sylvester matrix.

Now we have that f and g have a common root if and only if the determinant is zero. In particular, we have
the following.

Proposition 4.116. Fix f, g € k[z]. Then f and g have a common root in the algebraic closure of k if and
only if the resultant of f and g is zero.

Proof. This follows from the above discussion. [ ]

Remark4.117. Our choice of m and n to be the degrees guaranteed that a,,, # 0and a,, # 0, which parts
of what make the above argument work. Sometimes by convention we might take a,, = 0and b, = 0
inducing a “common root at co.”

Examples

Now let's work out our original example: take f € k[z] of degree m, and we will require k to have char-
acteristic 0 for psychological reasons. From our work with the resultant, we see that A% = 0 if and only if
Res(f, f) = 0. So with the above notation, we will have

m m—1
fl@)=> apz® and  f(z) =Y (k+Dagia”.
k=0 P T/

The point is that A% and Res(f, f’) share the same roots, so certainly A | Res(f, f/), butin fact Res(f, f’) is
symmetric (it is a function of the coefficients of f, which are symmetric in the roots), so we get that

A? | Res(f, ).
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Looking at the matrix for Res(f, f’), we can look at each column of the (2m — 1) x (2m — 1) Sylvester matrix

and note that their degrees in k[ay, . . ., auy] fillin as follows.
[0 1 2 m—1 m T
o1 -+ m—-2 m-1 m
0 m—-—3 m—2 m—-1 m
0 1 2 3 m
1 2 3 m
1 2 m—1 m
1 m—2 m-—1 m
I 1 2 2 m|

The pointis that when we are choosing a permutation for the determinant, one entry from each row/column,
we will multiply them together and hence add these degrees.

Now, we see that each degree termincreases linearly across a row, so the correct thing to do is toimagine
adding in terms of extraneous degrees in the blank spaces—these terms of extraneous degree will have no
effect on the determinant afterwards because their coefficient is zero and hence will all vanish. Anyways,
we get the following.

0 1 m—1 m m+1 m+2 - 2m—1]
-1 0 1 e m—2 m-—1 m m+1 -+ 2m—2
—2 -1 0 m—-—3 m—2 m-—1 m e 2m—3

-m+1 —-m+2 —-m+3 - 0 1 2 3 m
1 2 3 m m+1 m+2 m+3 - 2m
0 1 2 m—1 m m+1 m+2 -+ 2m+1
-1 0 1 m—2 m-—1 m m+1 - 2m+2
-2 -1 0 : : : : : . :

-m+1 -m+2 -m+2 - 0 1 2 2 m |

The idea behind this is that each row has some specified “shift” from the top row, so if we imagine going
vertically row-by-row to select our permutation, the accumulated degree will simply be the sum of all shifts
plus the sum of the entries of the top row. In particular, the sum of degrees does not depend on our exact
permutation, so Res(f, f) is in fact homogeneous.

We quickly note that we can compute deg Res(f, f’) explicitly by just choosing some random permuta-
tion:itis 1-m+m-m = m(m+ 1) by choosing m of the 1s along the lower diagonal followed by all m of the
ms along the top.

But now A? has the same degree in k[a1, ..., a,]! So we find that A2 = cRes(f, f') for some nonzero
¢ € k*. A more sophisticated argument (say, present in Lang) is able to pin down what the coefficient ¢
should be and can find that it ought be +1, but getting the exact sign is somewhat annoying.

Anyways, let’s get to the examples.
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Example 4.118. We compute the discriminant of 23 + bx + ¢, which makes things easier to look at, and
this is legal in characteristic not 3. We can compute the Sylvester matrix as

0 0

OO W o
w oo oo
(=3NS N IS o)
ST OO0

1
0
3
0

We can compute that this determinant is 4b® + 27¢?. So is our discriminant the positive or negative sign?
Well, we can look at a particular polynomial to pin this down. For example, the discriminant of 23 — z
has [J(ax — ay)? is positive because all the roots are positive, so b = —1 forces us to use the negative

discriminant:| —4b3 — 2752 |.

Example 4.119. We work in Z[a], where a® + o + 1 = 0. The discriminant of the number field is the
discriminant of the polynomialis —4(1)% — 27(1)? = —31, so we see that 31 is our only ramified prime.

Example 4.120. We can ask when y? = 2% + bz +cis an elliptic curve. This requires testing for singulari-
ties, which happens when 23 +bx+chas multiple roots. So we are interested in testing for 463 +27¢2 # 0.

We close with some remarks.

Remark 4.121. There is a geometric meaning for the discriminant: given two homogeneous polynomi-
als f,g € k[z1,...,2n][z,y] (meaning the degrees of 2%y are stable). Then we see that the vanishing
set for f and g are going to define hypersurfaces Hy and H, in k™ x P! respectively. Then the resultant
is the projection of Hy N H, onto k™.

For example, this is a closed set by definition of our Zariski topology, so we can fun things like that
the projection X x P! — X takes closed sets to closed sets. In general, these projections do not have
to be closed sets.

The discriminant is an example of a “syzygy,” which is a word with no vowels. More seriously, a syzygy de-
scribes arelation between invariants. Namely, the discriminant gave the relation between the As-invariants
A and the other symmetric polynomials. More generally the syzygies can be numerous and difficult to keep
track of, so we might have second-order syzygies to keep track of these. This can get quite complex.

Example 4.122. Take (g) = Z/nZ acting on C[z,y] by g - = := {x and g - y := Cy, where ( is a primitive
nth root of unity. We saw last time that we have the invariants

n n—1 n—2
x ) z y’ x )

We can label these ag, a1, . . . by their degree of 3, and we get lots of syzygies like agas = a? and aja3 =

a3.

Remark 4.123. Any word ending in “-ant” is probably an invariant, probably named by Sylvester. For
example, the determinant, discriminant, bezoutiant, catalectiant, and so on.

4.4 October28

| am heartbreak.
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4.4.1 Formal Power Series

By way of example, our elements of the formal power series of C[z]] are of the form

o0
E akxk,
k=0

where we don't care about convergence.
Example 4.124. For example,
Z klz®
k=0
converges nowhere except for z = 0, but this is okay for C][]].
Anyways, we have the following.

Definition 4.125 (Formal power series, I). Fix R a ring. A formal power series in R[[z]] is a sequence of
numbers {ay } e represented by

(o)

Z akxk.

k=0

The operations of addition and multiplication are defined purely formally and work.

We can also construct this as an inverse limit.

Definition 4.126 (Formal power series, Il). We construct R[[z]] as the completion of the ring of polyno-
mials R[z] at the ideal ().

Wait, what is the completion?

Definition 4.127 (Completion). The completion of aring R at an ideal p is the inverse limit of

R = @R/p .

Namely, we are constructing R][z]] as a sequence of compatible elements in the system
R[x]/(z) + Rlx]/ (xQ) + R[z]/ (:1:3) e

where these maps are defined by projectivity. In practice, this looks like a series of polynomials {ay }ren such
that a;, = a; (mod %) for each k > ¢. If we think about the exact monomials we are adding each time, this
is really a formal power series.

Remark 4.128 (Nir). In practice, Definition 4.126 might appear more awkward than the more physi-
cal power series, but in practice, this definition tells us that R[[z]] is a ring effectively for free, which
expedites a lot of our checks.

Remark 4.129 (Nir). We briefly explain why this is called a “completion.” Using R][z]] as an example,
we note that R[x] has a size function given by

|f|( ) = Cforder of vanishing of f at z=0
x) T .

It turns out that d(f, g) := |f — gl(») forms a metric, and R[[z]] is (canonically) isomorphic to this metric
completion, justifying why we are calling R[[z]] a completion—it is actually a metric completion.
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@ Warning 4.130. There is a natural map R — R induced by the natural projections R — R/p® and the
universal property of the inverse limit. However, this need not be injective; it will be injective, for ex-
ample, when R is a commutative, Noetherian integral domain.

To be more explicit, the map R — R is induced by the following diagram.

= -

N

R/pn ¢« R/anrl
Let's see some examples of the map R — R.

Example 4.131. The map R[z] — R[[z]] is in fact injective. With respect to the inverse limit definition,
this comes down to the fact that a nonzero polynomial needs to have a nonzero coefficient c;2* some-
where, and then the map into R/ (2*) will not go to 0.

Non-Example 4.132. Consider the ring R := C°°(R) of smooth functions R — Rand I C R the R-ideal
of smooth functions vanishing at 0; this is an ideal because 0 € I, and, forr, s € Sand f, g € I, we have
rf + sg € I because

(rf+s9)(0) =r- f(0)+s-9(0) =0.

The main problem with the map R — R is that there are nonzero functions which go to 0 under each
map R < R/I*, which roughly corresponds with having a zero of “infinite order” at z = 0. For example,

e~V (n2?) ¢ I foreachn e 77, so
671/932 _ (671/(na:2))n e "

foreachn € Z*. So the function e~1/** goes to 0 under the canonical map R — R.

Non-Example 4.133 (Miles). In the ring Z x Z, completing with respect to the (prime) ideal I := {0} x Z

—

stillhas Z x Z — Z x Z not an injective map. For example, (0,1) € I"™ for each n.

Here is another important example of the completion.

Example 4.134. Fix p a rational prime. The ring Z,, of “p-adic numbers” is the completion of Z at the
ideal (p). Namely, Z, is the inverse limit of

Z/pZ — T)p°Z « L[p°Z + - - -,

where the leftwards maps are the canonical projections. These look quite similar to power series: if we
write out compatible system of elements in “base p," this looks like

ag € Z/pZ, ag+arp € Z/PQZ, aop + azp + azp® € Z/pSZ7

In base p, this looks like an infinite sequence of digits going off to the left, which might look problematic
but is fine as long as our addition and multiplication is purely formal.
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Remark 4.135. Algebraic topologists have a bad habit of using Z, to mean Z/pZ, essentially adding
ambiguity for no good reason.

Remark 4.136. It is not advisable to let infinitely many digits go off to the left and right, then multipli-
cation is no longer well-defined.

Remark 4.137 (Nir). The intuition that Z,, is essentially “power series in p" can be rigorized in the iso-
morphism
Z[=]]

(z —p)
where quotienting by (x — p) is more or less the rigorization of plugging in p.

~
= Zp?

There is an important analogy between Z, and R[[z]] and especially C[[z]] or F,[[z]]. However, there is a
difference in that our “p-digits” can induce strange carries in our arithmetic. For example,

1+(p-1)=0+1-p

is not something that can happen for formal power series. At a high level, the problem as the digits for Z,
arein {1,...,p — 1} which has not been given a ring structure in the same way that the coefficients of R[[z]]
have.

4.4.2 Ideals of Completions

Now fix k a field, and we will ask for the maximal ideals of k[[z]].

Proposition 4.138. Fix k a field. The only maximal ideal of k[[z]] is ().

Proof. Suppose we have a formal power series
flz) = Zaixi.
1=0

The main point is that ag # 0 implies that f has an inverse. Indeed, we may write a; ' f(z) = 1 + zg(z) for
some g(z) € k[[z]]. Then we have

: L S Cayigla)iat
— = = —4)ygx)x,
aO lf(x) 1 + xg(:z;) i=0
which is a well-defined power series. Namely, we can envision ﬁ as the compatible sequence
{Z(—l)ig(x)lfcl}
1=0 ieN
because
Y (=Dig(a)'a’ =) (~1)'g(z)'a’ (mod p").
i=0 i=0

So we have succeeded in inverting a(jlf, which tells us that f is also invertible.
The pointis that k[[z]]/ \ (x) are all units, and any unit will have to live in k[[z]] \ (z). In fact, the following
is true.

217



4.4. OCTOBER 28 250A: GROUPS, RINGS, FIELDS

Lemma 4.139. Fix R a commutative ring with identity with an ideal m. Then m is the unique maximal
idealifand only if R\ m C R*.

Proof. We have two claims.

« Ifmisthe unique maximalideal, then we show that R\ m = R*. On one hand, m # R implies that each
a € mhas (a) # Rsothata ¢ R*,som C R\ R* sothat R\ m C R*.
On the other hand, if a € R*, then (a) # Ris an ideal and must be contained in some maximal ideal,
soit follows a € (a) C m. Soindeed, R* C R\ m.

» Takemanidealwith R\m C R*;noteeacha € R* alsohasa ¢ mbecausem # R,soinfact R\m = R*.
Now, for any other maximal ideal m’, we see thatanya € m’ hasa ¢ R* (elsem’ = R),soa € m. It
follows that

m' CmCR.
By maximality of m’, we see that m = m’ is forced. Note that this argument tells us that m is a maximal
for free because there exists at least one maximal ideal m’. |
So the above tells us that, because k[[z]] \ (z) C k[[z]]*, we have that (z) is the unique maximalideal. N

In fact, stronger is true.

Proposition 4.140. The only ideals of k[[z]] are (0) or (z*) .

Proof. The main point is that, for any nonzero f € k[[z]] \ {0}, there exists some k for which the coefficient
c;x' of f is nonzero, so we may set

v (Z cqxl> =min{i € N:¢; #}.
=0

With this in mind, we see that, for any f € k[[z]], we have f/2"(f) has nonzero constant term, so f/2z*(f) is
a unit. In particular, (f/2z¥(")) = (1) so that (f) = (z/(").
More generally, for any nonzero ideal I, we have that

- J wn= U (IV(f)) - (xmin{l/(f):fef\{(l}}> ’
fen{oy fen{o}
so indeed, all nonzero ideals take the form (z*). |

There is something similar which happens for Z,,.

Proposition 4.141. Fix p a rational prime. The only ideals of Z,, are (0) or (p°®) .

Proof. This was more or less on the homework, and it is giute similar to the case of k[[z]]; we take on faith
that (p) is the unique maximal ideal of Z, because we showed it on the homework. Again, the main point is
that nonzero elements a € Z, can be given a “valuation”

v(a) =min{n e N:a € (p")}.

In particular, a/p*(®) ¢ (p), but Z, \ (p) = Z, because (p) is the unique maximal ideal, as shown on the
homework. From this it follows a/p”(®) will be a unit, so (a) = (p”(*)) . Thus, for any nonzero ideal I, we can

write
= |J w= U (pu(a>):(pmin{aef\w}:u(w})’

aeI\{0} a€I\{0}

which is what we wanted. [ ]
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4.4.3 More Variables

We would like to define k[[x, y]]. There are a couple ways to do this.

Definition 4.142 (Multivariable power series, 1). We can define &[[z, y]] can be defined as the completion
of k[z, y] with respect to the (maximal) ideal (x, y). Here our system of compatible elements more or less

looks like -
Z aivjxiyj.
17,7=0
More generally, we can define k[[z1, . . ., x,]] as the completino of k[z1, . . . , ;] with respect to the (max-
imal) ideal (z1,...,z,).

We can also do the following.

Definition 4.143 (Multivariable power series, Il). We can define k[[x, y]] as k[[z]][[y]], which is essentially
the formal power series in y with coefficients in k[[z, y]]. More generally, we can inductively define

kl[1, ..., zn]] = Ellz1, - -, T1]][[za]l-

| don't really care about proving that these definitions are equivalent, so we won't.
We also get the similar property as before.

Proposition 4.144. The only maximal ideal of k[[x1, ..., z,]] is (z1,...,2p).

Proof. The main claim is that k[[x1,...,z,]] \ (z1,...,2n) C k[[x1,...,2,]]* again, which will be enough by
Lemma 4.139. To see, this we start by noting that f € (z1,...,z,) if and only if its constant term is 0.” So
suppose we have f € k[[z1,...,zy]] with nonzero constant term. This means that we may write

oo'f = 1+Z$igi

i=1
for some g € k[[z1,...,2,]]. As before, we may formally invert this as
— = 7 = - Z;igi | -

Again these partial sums form a valid compatible sequence because, for any N,
N+1 n d N n d n N+1
d=0 i=1 d=0 i=1 i=1
where the second termisin (z1,...,z,)" because each — Yo xigi € (@1,...,x,). This finishes. |

However, the other ideals are more complicated than before, essentially due to the extra dimension.

4.4.4 Getting Noetherian

Given Hilbert's basis theorem showing that R[z] is Noetherian from R Noetherian, we might hope that R[[z]]
is Noetherian. Let's see this.

7If f € (x1,...,Ty), then write out a representation. If f has constant term 0, then each monomial of f with nonzero coefficient
has nonzero degree, so group them in any reasonable way.
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Theorem 4.145. If R is Noetherian, then R[[x]] is Noetherian.

Proof. We can essentially copy the proof for R[z] by using the coefficient of least degree instead of largest
degree. Namely, with R[z] we looked at the leading coefficients, but R[[z]] doesn't have largest coefficients.
To salvage this, we look at the smallest nonzero power in some element of R[[x]]. Fix I an ideal R[[z]] which
we would like to finitely generate. Then we define

Iy := {constant terms for f € I'}.

More generally, we have
I, = {an:Zakxk GI}.
k=n

Roughly the same reasoning gets us the ascending chain of R-ideals.
Ihch .
Indeed, we have the following checks.

» Toseethat I, isan R-ideal, we note that 0 € R[[z]] has 0z™ forits 2™ coefficient, so 0 € I,,. Then forany
Cn,d, € Iandr, s € R, there exist f, g € R[[z]] with their 2™ coefficient equal to ¢,, and d,, respectively,
with no terms of smaller degree. Then

rf 4+ sg
will have leading their 2™ coefficient equal to r¢,, + sc,, € I, again with no terms of smaller degree. So
I is nonempty and closed under R-linear combination.

« Toseethat I, C I,1, we note that if f has ¢, for its 2™ coefficient and no terms of smaller degree,
then zf has ¢, forits z"*! coefficient and no terms of smaller degree, so ¢, € I,,41.

Anyways, the point is that we get our ascending chain of ideals will stabilize to some Iy because Ris Noethe-
rian. Then each of I, for 0 < k < N is finitely generated, so we say that

Ik = (Ck7170k72, .. '7ck7"k)'

Now, for each ¢ ¢ € Iy, there exists a polynomial f, ¢ with that coefficient and no terms of smaller degree,
by definition of I;,. We claim that the f; , for0 < k£ < Nand 1 < ¢ < ny (of which there are finitely many)
generate .

For clarity, define, for f € R[[z]] \ {0},

k=0

deg f = deg (Z akx'“) = min{k € N: a;, # 0},

which is well-defined because f # 0 requires some coefficient to be nonzero. We now show that the fj ,
generate f directly. There are two steps.

1. If d := deg f < N, then we claim that we can find {rq¢},?, € Rsothatdeg f < deg(f —>,raefir)-
Indeed, write

oo

flz) = Z cpr”

k=d

so that ¢4 € I4. This implies that there exists {rq¢},, C R such that

ng
Cq = E TdCd,L
=1
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so that
ng
F=> racta
=1

has no terms of degree smaller than z¢ and also has the z% term vanish. This is what we wanted. (Here
we have used the fact that I is only represented by polynomials which have no term of degree smaller

than z¢.)
Inductively repeating the above process will give us elements r; , for 1 < k¥ < Nand1 < ¢ < ny, such
that
N—1 ng
f- Z Zrk,efk,z
k=1 ¢=1

has degree at least V.

2. So now we may take d := deg f > N. We claim that there exists {rq,};~, C R so that degf <
deg (>, 7ra.efn.e) again. Write

f(z) = Z cpa®
k=d

sothat ¢y € I = In. Thisimplies that there exists {rq},~; C R such that

nN
Cq = E Td,¢CN,¢
=1

so that
nnN
f- Zrd,wd_NfN,e
=1

has no terms of degree smaller than z¢ and also has the 2 term vanish. This is what we wanted.
If we combine the two steps, we see that, for any f € I, we have found coefficients rj ; so that

N—1 nyg oo nyn

f- Z Zm,efk,z - Z Zrk,é$k7NfN,é

k=1 ¢=1 k=N (=1

vanishes completely. (Technically, we ought truncate the second sum and show that the truncated sum
vanishes as we add more terms. We will not do this because | already have a headache.) In other words,

N—1 ng nnN oo
k=N
f= E Tt fr,0 + E T T e
k=1 (=1 k=N

{=1

so indeed, we have represented f as an R][z]]-linear combination of the f ,. Importantly, those are power
series at the end sum, and they do converge. |

Remark 4.146. This proof does not work for polynomials because the induction at the end technically
need not terminate. All that the proof required is that the induction creates a power series linear com-
bination.

4.4.5 Unique Factorization

We would like to have unique factorization. Of course, k[[z]] is safe because it is a principal ideal domain.
Well, what about k[[x, y]]? In theory, we should be able to show that if R is a unique factorization domain,
then R[[z]] is a unique factorization domain. However, we won't do this because it is false; the exact coun-
terexample is relatively uninteresting.
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Remark 4.147. Some early versions of Lang’s Algebra claimed that this was true. Early versions are
notorious for this.

Roughly speaking, the proof for polynomials used the content of a polynomial, which makes sense because
polynomials are nice finite objects. Namely, given a polynomial f € k[z], we could find some ¢(f) € k such
that

f

and have coprime coefficients. However, this is not possible for power series.

Example 4.148. Over Z[[z]], the power series

R
1+-z+- 2%+ € Q[z]]
PP

will have no content to get it into Z][x]].
The correct thing to do here is to use the Weierstrass preparation theorem.

Theorem 4.149 (Weierstrass preparation). An element f € k[[z1,...,x,]] can be made to look like a
polynomial in x;. More precisely, in k[[z,y]], we assert that any f € k[[z,y]] can be written as y*ug
where u € k[[z,y]]*, and g has the form

Z ai:vki,

k=0

where a;, € k[[y]] and a,, = 1. We call g a Weierstrass polynomial in z, and it is unique.

Remark 4.150. According to Professor Borcherds, units are kind of harmless.

Proof. The idea is to turn f into g by repeatedly multiplying by some harmless units of the form 1 + xiy7,
which will let us kill various coefficients of f. Namely, here are the monomials for f € k[z, y].

.Z’B .Z’By x3y2 l‘SyB
(E2 CE2’y x2y2 x2y3
T Ty xy? xy
1 y y? y?

To begin, we write
o0
fle,y) =Y ajaly’ #0,
4,5=0
and we see that dividing out by some power of y will eventually make one of the x* coefficients nonzero, so
without loss of generality take f ¢ (y). If the 1 coefficient is nonzero, then f is already a unit, so we are done.
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So suppose, by way of example, that the 1 and z have coefficients of 0, and we focus on x2. Without loss of
generality, assert that 22 has coefficient 1.

We now note that all of the z'y7 fori < 2 can be thrown into our Weierstrass polynomial g(z, y) € k[[y]][z]
as

%) oo
f(.I‘, y) = 'TO Z CO,ny —|—Jfl ch.ﬁye +1‘2 (1 + - ) )
=0 =0

—_——— ——

ao al

but now the rest of them need to be killed. We are going to kill these in column-by-column, starting with
the y° column, then moving to the y! column, and so on.

We will recursively kill our monomials.® Let’s say that the current smallest nonzero monomial is cz?y7,
where ¢ # 0 is some constant. Explicitly, we have found a unit u such that

[ —ug

has cz’y’ as its least monomial. The point here is that ug also has the small 22 term coming from f because
u will have a nonzero constant coefficient. Then we observe that multiplying

1—2,7
Y

f—gu(l+e' YY) =(f—gu)—gu-cx

Here we see that the cz?~2y/ moves the 122 term in gu term up to the term cziy’ term we need to kill, so
indeed, we have killed this term. Additionally, we see that multiplying all terms by 2'~2y7 means that any
other monomial in gu will get moved to the upper-right of the 'y’ multiplication, meaning we have not
altered any of the previously killed monomials.

There is some care here because we have infinite product for the unit u. These will converge, however,
because our factors are of the form (1 + z'y?) , so our coefficients will converge somewhat rapidly.

Lastly, it remains to check that this g is unique. Well, suppose we have that

m n
you g a;xt = ylv g bz,
i=0 §=0

where u, v are units and a;, b; € k[[y]] with a,,, = b,, = 1. We see that a = bis forced by a,,, = b,, = 1 because
the y® here describes the largest power of y dividing into either side. Then, rearranging, we have that

m n
vt E a;z" = g bja?.
i=0 =0

At this point uniqueness follows for reasons | don't really understand, but we can kind of see this because
the right-hand side has limied degree in z. ]

Remark 4.151. We can do this for any number of variables, but it requires tears.
Now let's show our unique factorization.

Theorem 4.152. We have that k[[z, y]] is a unique factorization domain.

Proof. We know that k[[z, y]] is Noetherian, so any element has an irreducible factorization. The hard part is
getting uniqueness, which requires knowing that irreducibles are prime. Well, fix f irreducible dividing the
product gh, and we want to show that f | g or f | h. By the Weierstrass preparation theorem, we may get
rid of units, and we may also remove powers of y without making our lives easier, so we assume that f, g, h
are Weierstrass polynomials.

8 Technically this will require a Zorn's lemma argument to show that recursively going up any column can move all the way across.
But | don't want to write this out, so let's pretend we don’t have to do this.
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Now, f | gh lets us write
fr=gh.

But now fr must be a Weierstrass polynomial, so the key point is that we may deduce that r is a Weierstrass
polynomial. But now the above equality lives in k[[y]][z] (!), we may reduce to unique factorization here, and
fis irreducible in k[[z, y]] gives f irreducible in k[[y]][x], which implies that f is prime in k[[y]][x], so in the
above we have that f | gor f | hin k[[z, y]]. [ |

At a high level, we have had two main steps.
« Use Weierstrass preparation to make things a polynomial in one variable.

+ Use unique factorization in a polynomial ring to finish.

Remark 4.153. Here are some traps in this proof.
« Again, for Raunique factorization domain, R[[x]] is not necessarily a unique factorization domain.

o If f| gink[[z,y]], then we do not necessarily have f | g in k[[y]][z], evenin f,g € k[[y]][z]. For
example, g = 1adn f = 1 + x are both units in k[[z, y]], but f is not a unitin k[[y]][z].

« Irreducible polynomials in k[z, y] need not be irreducible in k[[x,y]]. For example, f = 1+ 2+ y
is irreducible in k[x,y] but not in the formal power series. Or the elliptic curve y?> — 22 — 23 is
irreducible in k[x, y] but we can write y? — 22(1 + ) as

(y—x\/l—l—x) (:v—l—x\/l—i—x).

At a high level, this is because the curve y? — 23 — 22 looks reducible when we look locally at (0, 0);
namely, it looks like 4% — 22 close to (0, 0), which certainly reduces.

4.4.6 Hensel'slemma

Let's talk about Hensel's lemma. There are lots of variations, but they are essentially just about factorization
of polynomials in R[z], where R is some completion. At a high level, the statement is that factorization in
R/I" can occasionally be lifted directly to a factorization of R|[x].

The most common case, for number theory, is to take R= Z, the p-adic numbers. Here is the simplest
possible case.

Theorem 4.154 (Hensel). Fix f € Z,[z]. Suppose f (mod p) has aroot f(a) =0 (mod p) but f'(a) £ 0
(mod p). Then « lifts to a root in Z,,.

Non-Example 4.155. It is not always possible to lift roots up to Z,,. For example, for 22 — 1 € Zy[z], we
cannot lift the solution 3 (mod 8): no number whichis 3 (mod 4) is a solution to 22 — 1 = 16. The issue
here is that 22 — 1 completely vanishes (mod 2).

Let's see a real example of this.

Exercise 4.156. We lift the root x = 1 (mod 3) of 22 = 7in Z3.

Proof. We start by lifting to Z/9Z. Well, set zy = 1 and then we want to find some a for which z; := 1+ 3a;
has 22 = 7 (mod 9). Expanding we want

14+6a+97 =7 (mod?9),
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which reduces to requiringa =1 (mod 3). So we set z; := 1 + 3 - 1. Continuing, we want some b for which
Ty :=1+3-149ayand 23 =7 (mod 27). Expanding, we want

7T+94+2-9a2 =7 (mod 27).

This rearranges to 2a; = —1 (mod 3), oras = 1 (mod 3), giving zo = 1 + 3 + 9. We can keep doing this
because the coefficient in front of the a. is nonzero, which comes from the fact that the derivative of 22 — 7
at o = 1 is nonzero.

More explicitly, suppose by way of induction that we have z,, for which 22 = 7 (mod 3"*!) so that we
want to lift z,, to z,,41 = 2z, (mod 3"*!) suchthatz? ; =7 (mod 3"*2). Well, we want z,, 1 = z,, + 3" a,
so writting this out means we want

22 +2.3"qg =7 (mod 3"2),
where we can see the derivative of 22 — 7 at 2y = 1 is that 2. Anyways, this rearranges to

o= 7— 22
- 2.3ntl

(mod 3),

which is perfectly valid, finishing our lifting. The point is that this induction gives us a compatible sequence®
(:L‘O’Il, .. ) € Zp,
which is the root we wanted because it squares to 7 in every (mod p*®). ]

The above can be turned into a formal proof by just continuing it by force. We're going to give a different
proof.

Proof of Theorem 4.154. We show that this is essentially a special case of Newton's method for finding
roots. Recall Newton's method of finding aroot of f(xz) by just guessing somewhere z,,, drawing the tangent
line, and finding where it intersects the x-axis, and use that for our new z,,.1. Here is the image.

y — f(xo) = f'(w0)(z — 70)

(zo, f(20))

9 Perhaps | should mutter something about Zorn’s lemma, but | won't.
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Writing this out, we find that our recursion should be

T = T )
n

For concreteness, we have f € Z,[z] and have some z( for which f(z¢) = 0 (mod p). For our induction,
suppose that we have found z,, = z( for which f(z,) = 0 (mod p™), and by way of induction, say that

f'(an) = f'(w0) # 0 (mod p).

Now, we can expand f(z,+1) as a Taylor series about z,,, as shown in the homework. Indeed, we have
oy L) (f@a) N ) ()
f(I7z+1) - f(zn) 1 f/(-'l?n) + 9 f/(l'n) + .

The point here is that the first two terms will cancel, which in fact one reason Newton's method is good. So

we see that . .
f(@ns1) = Z f n(|xn) <JJ:/((Z”))> =0 (mod p*")
k=2 ) n

k
because all later terms have at least 2n many powers of p coming from ({,ﬁ%)
(ZEW)

. (n) . ) .
There is some concern that perhaps fT is not a well-defined element of Z, because of the denomi-
nator. However, we can see that a monomial f(x) = 2% for d > n will have

fW@) _dd-1)d=2) .. [d=nt]) \g_ (d)“”n_d

n

n! n!

so the coefficient is perfectly well-defined as an integer and hence in Z,,. From here we can extend lienarly
out to all polynomials f. |

Remark 4.157. In the exercises above, we get approximately one digit each time. In contrast, as we
showed in the proof, Newton's method will square our accuracy/double the number of digits, and we
don’t have any of the problems of Newton's method for real numbers.

Remark 4.158 (Nir). | am under the impression that the above proof works as long as the largest power
of pdividing f () exceeds the largest power of p dividing f/(a)?. Observe that we are essentially requir-
ing the first remainder term in our Taylor expansion

e (jf({x)>>

to be small.
Itis also true that Newton's method works for power series.
Example 4.159. Consider y? —2% —23. It factorsin k[[z, ]|/ (2, vy)? as (y—2) (y+). Then Hensel's lemma

for power series lets this factorization lift all the way upwards to k[, y]].

Non-Example 4.160. We have the factorization y? — 2% = y-y (mod (x,y)?), but this factorization does
not lift to k[[x, y]]. The reason is that the given factorization induces multiple roots, which will influence
having derivative zero. Intuitively, Hensel's lemma “doesn’t know"” which root we are supposed to lift.

Remark 4.161. The condition f’(a) # 0 (mod p) more or less is telling us that we are only lifting simple
roots.

2

Again geometrically, the point is that y? — 22 — 23 will look like a cross, but 42 — 2 has a cusp at (0, 0), so

geometrically this does not obviously reduce.
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THEME 5

GALOIS GOSSIP

Usually mathematicians have to shoot somebody to get this much
publicity.

—Thomas R. Nicely

5.1 November?2

A few hours grace before the madness begins again.

5.1.1 Algebraic Extensions

So we're talking about fields and Galois theory for the last third of the class. Today we're mostly doing a
field review.

Definition 5.1 (Field extension). A field extension L/ K is a field L containing a field K.
We areinterested in field extensions rather than the field itself because oftentimes we can decompose some
complicated field M into its subfields and be able to study M in this more controlled way.

Here is an important invariant.

Definition 5.2 (Degree). The degree of a field extension L/K, denoted [L : K], is the dimension of L as
a K -vector spaces.

Remark 5.3. Yes, field containments induce vector spaces. This is a good thing to check once.

Example 5.4. The degree of C/Ris [C : R] = 2, where our basis is (say) {1, i}.

We have the following definition from this.
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Definition 5.5 (Algebraic). Anelementa € Lisalgebraicover K ifand only if «is the root of a polynomial
in K [x]. We say that L is an algebraic extension over K if all of its elements are algebraic over K.

Example 5.6. The number i € Cis algebraic over R and Q.

Non-Example 5.7. The number 7 is not algebraic over Q, and the proof is hard.

Non-Example 5.8. Look at the extension Q C Q(z), where Q(«) is the field of rational functions. Then,
by construction essentially, = is not algebraic over Q.

“Not algebraic” elements have a name.

Definition 5.9 (Transcendental). An element a € L which is not algebraic over K is called transcenden-
tal.

In Galois theory, we mostly care about finite, algebraic extensions.

5.1.2 Constructing Algebraic Extensions

To construct an algebraic extension, we have the following proposition.

Proposition 5.10. Start with a field K and some polynomial © € K[z]. Then it happens that

_ Kl
(p)

isaring, and itis afield if and only if p is irreducible.

Proof. We know that K[X]isaring, and (p) C K[X]isanideal, so K[X]/(p) is the quotient ring.

The key point to getting a field is that p is irreducible if and only if all nonzero elements have inverses.
Indeed, fix ¢ nonzero in K[z]/p(x). Then because pis irreducible and p 1 ¢, we have that p and ¢ are coprime,
so (p) + (¢) = (1), where we are using the fact that Kz] is a principal ideal domain. It follows that there are
polynomials a and b such that

ap +bq =1,

sobg =1 (mod p), finishing.
In the reverse direction, We can ask what happens if p is not irreducible. Well, if we can write p = fg
where f and g are coprime nonconstant polynomials, then the Chinese remainder theorem lets us write

Klz] . K[z] y Kx]
® ) (9
In particular, it follows that this has zero-divisors ((1,0) - (0,1) = (0,0)) and hence is not a field. [ ]

Remark 5.11. The above proof is actually effective for finding inverses: we can use the (extended) Eu-
clidean algorithm to find the a and b such that ap + bg = 1, and then we can extract our inverse like
that.
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Example 5.12. We have that C = R[z]/ (% + 1) .

We give some remarks in the case where p is not irreducible in Proposition 5.10. In general, if

p=]]r"

w|p
so that K] K]
o L)

If o = 1, then we get a field, which is nice, and when everything has @ = 1, then we just have a product of
fields. But when «,; > 1, then we get nilpotent elements, which is very not good.
We also have the following statement.

Proposition 5.13. Fix L/ K an extension. Then « € L is algebraic over K if and only if a is contained in
a finite sub-extension.

Proof. In one direction, if « is algebraic, then « is the root of some (without loss of generality) irreducible

p € KJz]. Then we can place
Kla] &2 ——,
=)

which we can place inside of L, and this is our finite extension.
In the reverse direction, if & € M, for [M : K] finite, then the infinitely many elements

1%

1,a,a”,...
cannot all be linearly independent, so there is some linear relation present here. |
To count degrees, we have the following.
Proposition 5.14. Suppose we have a tower of fields M/L/K. Then
[M:K]=[M:L]L:K].
In other words, the degree is multiplicative.

Proof. Inbrief, the ideais to pick a basis {a }}* , for L/K and a basis {b,}}_, for M /L, and we can check that
the {axb,} are a basis for M /K. This gives the result because thereare [M : L] - [L : K] basis elements. W

This gives us the following.

Proposition 5.15. If o, 8 € L are algebraic over a base field K, then a + 8, a8,a — 5, «/f are also all
algebraic, where the last case requires 8 # 0.

Proof. The point is that we have the following tower of fields.

Kla, ]

Ko

K
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The degree of [K o] : K] is finite by hypothesis, and the degree of [K|«, 8] : K[«]] is less than [K[5] : K] by
checking the polynomial, so the entire extension is going to be finite with degree bounded above by
[Kla, ] - K] = [K[a, ] : K[o]] - [K[a] : K] < [K[f] : K] - [K[a] : K].

This gives the result. |

It is actually quite hard to find these polynomials, which is why we are giving these abstract degree argu-
ments.

Example 5.16. We could try to find the irreducible polynomial
V2+ Y2+ V2,

but it is of degree 30.

Here are some open problems.

Example 5.17. We don’t know if either e+ 7 or ew is algebraic, and you'll be very famous if you can solve
either of them. Let’'s solve one of them, but we won't know which. Indeed, e and 7 are roots of the
polynomial

x? — (e + )z + er.

Soif e+ and err were both algebraic, then we could use the following statement to conclude that both
e and m would have to be algebraic, which is false.

Remark 5.18. This argument really annoys intuitionist/constructivist mathematicians because techni-
cally we haven't actually showed either e + 7 or er is algebraic.

Proposition 5.19. Fix p(z) € L|x]. If the coefficients of p are algebraic over K, then the roots of polyno-
mial are also algebraic.

Proof. Fix .
p(z) = Zakx’“.
k=0
Then let a be a root off p, and we see that the chain
K C K[a(ﬂ c K[G’Oaaﬂ c---C K[a’oa"'van] c K[ao,...,ama]

is a finite chain of finite extensions (the last extension is finite because p € KJay,...,a,], so we are only
adjoining the root a here), so the entire extension is finite, so the final root «in the last field is algebraic. W

Remark 5.20. Again, it is difficult to find the polynomial in the above argument. For example, we won't
try to find the explicit polynomial for a root for 23 — v/3z + /5.

5.1.3 Splitting Fields

Here, suppose that m € K[z] is an irreducible polynomial. Then, looking in
K]

(m)

we note that = has a root in L, but does it fully factor?
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Example 5.21. Take K = Q and p(z) = z* + 1. We can check that p is irreducible because p(z + 1) =
x* + 423 + 622 + 4x + 2 satisfies Eisenstein’s criterion. Now, the roots of p are the primitive 8th roots
of 1, roughly graphed as follows.

Soif we let L = Q(¢) = Klx]/(p), then we see that the roots of p are simply ¢, ¢3,¢%, (7, so indeed we
get all of our roots.

Example5.22. Take K = Qand p(z) = 2®—2, whichisirreducible because it has no linear factor. Taking
/2 to be one of its roots, we have that

L:=Q(V2)

IR

does not contain the other roots of z3 — 2. Explicitly, the other roots are w+/2 and w?+/2 where w is a
primitive third root of unity, but Q(¥/2) C R cannot contain those complex roots.

In the above example, we can manifest the problem by writing
3 —2= (xf\”)/ﬁ) (I3+\3f2*\?/i)

as our irreducible factorization in 2% — 2in Q(+/2).
We would like our polynomials to fully factor, so we have the following definition.

Definition 5.23 (Splittin field). A splitting field of a polynomial p € K[z] is an extension L/K such that
p splits into linear factors in L, and L is actually generated by these roots.

Remark 5.24. We should probably call this a splitting extension, but so it goes.

The main theorem here is as follows.

Theorem 5.25. Splitting fields exist and are isomorphic as K-extensions. In other words, given two
splitting fields L; and Lo, there is a field isomorphism L; = L, and this field isomorphism is also a
K-linear map.

Example 5.26. Given z* + 1 € Q[x], we have that Q((s), where (g is our primitive eight root of unity, is
our splitting field.
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Example 5.27. Given 2® — 2 € Qx], we have that Q(+/2) is not out splitting field because we are still
missing the roots w+/2 and w?+/2 in this extension. Namely, we still have to factor the quadratic poly-

nomial in the factorization
22— 2= (J,‘—\B/i) (x2+€/§x—{“/1),

which we do by looking at
Q[V/2][]
(22 + V2z — V4)’

which is now a perfectly fine splitting field.

This last example gives the idea behind the proof of Theorem 5.25.

Proof of existence in Theorem 5.25. We proceed inductively; set Ky := K and p := py. We start with some
polynomial p. If it has no irreducible factors of degree larger than 1, then we are done. Otherwise, fix m; €
Ky[z] anirreducible factor of p of degree larger than 1. Now we look at

Kla]

7r1(a) ’

Kl =

Now we can factor p with at least one root a from 7, so p will at least partially factor in K. So we can factor

p(z) = (z — a1)p1 (),

and because degp; < degpg. Repeating this process (find an irreducible factor 75 of p;, and then look at
Ky = Ki[asg]/(m2), and continue) makes the degree continue to decrease, so we finish by induction. At each
point we are only adding roots to K, so we have that this field we made is also only generated by the roots
of p. |

Remark 5.28. The above proof in fact gives us a bound of n! for the degree of the splitting field. To be
explicit, the extension [K,,,+1 : K,;] will have degree at most n — m because the polynomial p,, at this
step has degree n — m.

And here is our uniqueness.

Proof of uniqueness in Theorem 5.25. Suppose that we have a splitting field L', and we build our own split-
ting field using the above algorithm with the chain

KCK CKyC---CL.

Now the point is that K3 = Ky[ay]/(m) hasarootin L', and we can send this a; to L' to find a subfield of L
isomorphic to K. Continuing this process will eventually give us an embedding L < L.

Building a similar chain for L’ (via the roots generating L’) will induce an embedding L' < L, so [L :
K] =[L’: K] follows, forcing the L — L’ to be bijective and hence an isomorphism. This finishes. ]

Remark 5.29. The above proof of uniqueness is somewhat problematic because the isomorphism be-
tween splitting fields is not unique, which turns out to cause problems. For example, suppose the math
department denotes C by R[¢], and the engineering department denotes this by R[;], and the chemistry
department denotes this by R[k]. The issue is that it is very possible for i = —j, and j = —k, but then
we need to have k = i, even though there is another isomorphism (k — —i) present.

Remark 5.30. The point here is that having a unique isomorphisms are very nice.
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5.1.4 Finite Fields

Now let's do number theory because why else would we study algebra? We start with the following small
step.

Proposition 5.31. Any finite field F' contains some finite field I,,, for a unique prime p.

Proof. Look at the image of the map Z — F. The kernel here must be a prime ideal because it quotients into
an integral domain, so it is either (0) or (p), but (0) would force F to be infinite. So we have an embedding
of Z/(p) — F. [ |

So F contains F,, of finite degree say n, so F will be some n-dimensional vector space, so it will have ¢ := p”
elements.
Now, the main statement is as follows.

Theorem 5.32. For each prime-power g, there is one finite field of order ¢, up to (non-unique) isomor-
phism.

Proof. The point is that F, being an finite field of order p™, is equivalent to being the splitting field of the
polynomial 2" — z. This will make the given statement follow from existence and uniqueness of splitting
fields.

In one direction, fix F a splitting field of f(x) := 2" — 2. We would like to show that F' has order p". For
this, we show that

F:{a:aisarootofx”"—x}.

Surely f(x) = 2P" — x has p” roots because f'(z) = —1, so f has no multiple roots in the algebraic closure.
So the above works at least set-theoretically. However, we do need to show that these roots form a subfield
structure to show the other inclusion, getting that the field ' generated by these roots.

« Given roots o and 3, we see that a3 is a root because (af)?" = a?" " = af.
« For closure under addition, we fix a and 3 roots, and the point is that
=~ (p k gp—k
(a+8)y =3 (k)a BrF =af + 7,

k=0

where the point is that the middle binomial coefficients vanish (mod p). Repeating this map enough
times, we see that

(at+ By =a + 5" =a+,
so we have closure under addition.
« 1and 0 are roots by simply plugging them in.

Soindeed, the roots for a subfield of F with p™ elements, so the roots must make up all of F.
Now, in the reverse direction, we need to show that any field F of p™ elements is a splitting field for this
polynomial. Well, the point is that each « € F either hasz = 0 or x € F* so that

2P Tl —1=0

by Lagrange’s theorem. So in all cases, the elements of F are roots of z?" — z, so indeed F will be generated
by these roots and is apparently a field. This finishes. |
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Example 5.33. We can find a field of order 2* by finding the splitting field of 2'® — z in F5. How do we
factor this polynomial? Well, it factors as

(a*+2+1) (2 +2°+1) (a* +2%+ 2> +a+1) (P +2+1) (z+ 1) 2
We now see that there are three irreducible factors of degree 4, and we notice that the finite field

FQ[.’E]
(zt+2+1)

will have the required dimension.

In general, we see from the above that we are really searching for irreducible polynomials of prescribed
degree (mod p). However, proving the existence of such polynomials is somewhat hard.

As an aside, there does not appear to be a “canonical” choice for the irreducible polynomial to construct
our finite fields. We could just choose according to lexicographic order, but there is no good reason to do
this.

More manifestly, we can see this as the fact that there is no good choice for a square root of —1in F5; do
we choose 2 or 3? So essentially this is made worse by the fact that even if we were to choose anirreducible
polynomial for Fy¢, this might not communicate well with the polynomial generating its IF, subfield.

We remark that we also have the following statement.

Proposition 5.34. In I, [z], we have the irreducible factorization

-z = H m(x).

mirred.
deg w|n

Proof. We have a few things to show here.

« We show that

II =@

mirred.
deg m|n
divides into 2" — . Each of these factors are distinct irreducibles and hence coprime, so it suffices to
show that, if 7 € F,[x] is an irreducible polynomial of degree d | n, then 7(x) | zP" — 2. Indeed, we see
that
Fp[z]
(m)

is a field with [F,,« elements and hence a subfield of our field F,,». More explicitly, elements which are

roots of 7 will be roots of zP" — 2, which turn into roots of zP" — z by taking higher powers.

It follows that all roots of 7 in the algebraic closure are roots of 27" — z. Thus, ged (7(z),2P" — ) €
[, [z] will be a polynomial with nonzero degree dividing 7, so it must be equal to , so it follows 7 |
A

« We can compute the exponent of each irreducible 7 with deg 7 | n dividing into 7" — z. Indeed, we
recall z*" — z has all of its roots of multiplicity 1, so 7 cannot have multiplicity greater than 1 dividing
into 27" — .

« Lastly, we classify theirreducibles dividing into 27" —2. Namely, if 7 is some irreducible dividing 2?" —z,
then we show that the d := deg m must divide into n. Indeed, fixing any root a of 7w, we see that «is a
root of 27" — z, 50 a € Fpn. But also

Fp ]
F,la] = -2
P[ ] (7‘(‘)
is a field of size p?, so it follows from degree arguments that d | n. |
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This lets us answer fun questions.

Example 5.35. We can compute the number of irreducible polynomials N, of degree d in F5[z]. For ex-
ample, summing over the degrees given in the factorization of Proposition 5.34, we have

26 = 6Ng + 3N3 + 2N, + 1N,

which gives Ng = 9. One could imagine doing this recursively to solve for the number of irreducibles of
degree 6.

Remark 5.36 (Nir). More generally, in F,[z], we can let Ny be the umber of irreducible polynomials of
degree d so that the factorization in Proposition 5.34 implies

pn = Z de.
d|n

Applying Mébius inversion to this implies the “prime number theorem in F,[z]" by

1 n n/2
o a2 o (20).

n n n
d|n

We also remark that, if d is the largest squarefree divisor of n (so that all squarefree divisors of n divide
into d), then

nN, = pu(d)p™? £0  (mod p™/4+1)
because all other terms of the sum will vanish. It follows there is indeed an irreducible of degree n in
F,[z]. (One could also see this by directly bounding the sum for NV, by 1 (p” = p”/d) >0.)

We close with a remark.

Remark 5.37. We are able to construct a splitting field of any finite set of polynomials, simply by iterat-
ing. We can extend to a countable set of polynomials using a transfinite induction (read: Zorn's lemma).
For example, if we take the splitting field of all polynomials, we get the algebraic closure of our field.

5.2 November?9

Despite the severity of his injury, the child was conscious, and in terrible pain.

5.2.1 Algebraic Closure

Let's quickly finish this off so that we can talk about Galois extensions. Briefly recall that we have a notion
of “splitting field.”

Definition 5.38 (Splitting field). Given a set of polynomials {p, }nex € K|[z], the splitting field L/ K is a
field in which all the py, split fully into linear factors, and the corresponding roots generate the field L.

We saw last lecture that splitting fields exist and are unique up to (non-canonical/non-unique) isomor-
phism.

Remark 5.39. Technically we showed that splitting fields exist for a single polynomial, but this con-
struction can be extended to any set of polynomials by some kind of transfinite induction.
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Remark 5.40. The lack of uniqueness of the isomorphism here induces major headaches later in life.

Anyways, we have the following definition.

Definition 5.41 (Algebraic closure). Given a field K, the algebraic closure K of K is an algebraic exten-
sion of K such that all polynomials in K [x] will fully factor in K.

Of course, it is not immediately obvious that such a thing should exist, nor that it is unique up to some
isomorphism (which justifies the use of the word “the” in the above definition). Let's see this.

Proposition 5.42. Fix a field K. Then an algebraic closure of K exists and is unique.
We present two proofs of the existence, and we will use the second proof to show uniqueness.

Lazy proof of existence in Proposition 5.42. We start with a lazy proof of existence. Set K, := K and then
define K to be the splitting field of the set of all polynomials in Ky[z] over K. However, we might have
K, # K ifthereis a polynomialin K [z] without roots in K1, so we inductively define K, , ; to be the splitting
field of the set of all polynomials in K, [z] over K,,. This creates the chain

KoCKi CKyC--n

So we claim that we can define
K = U K,,.

n>0

We can check that this is a field (closed under addition, multiplication, and inverses) by hand using the chain
condition; for example, thisis closed under addition because any a, 8 € K have some N forwhicha, 8 € Ky,
soa+pe Ky CK.

Remark 5.43. This is a common idea in mathematics: just inductively build up and do a big union to
finish.

So now we want to check that K is algebraically closed. Well, any polynomial
n . .
Z apz” € K|x]
k=0

will have some N for which a;, € Ky for each k because we constructed K as a chain, and there are only
finitely many of the a,. It follows that

Zakxk € Ky|z],
k=0
so this polynomial fully splits in Ky C K, so indeed, this polynomial fully splits in K. |

An issue with the above proof is that it makes uniqueness a bit difficult to prove uniqueness, and we
haven't even showed that K defined above is actually algebraic over K.. To solve this, we decide to be a
little less lazy.

Proof of Proposition 5.42. To be less lazy, we actually do field theory. The main idea is the following lemma,
which essentially reduces the check of algebraic closure to just polynomials in K[z]. In the vocabulary of the
previous proof, we are essentially saying that K; defined above is in fact algebraically closed, so our chain
stops after one step.
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Lemma 5.44. Fix a field K. A field K is an algebraic closure of K if and only if it is a splitting field of the
set of all polynomials K[z] over K.

Proof. Define K to be the splitting field of all polynomials K[z] over K. The main point is to recall that K,
is algebraically closed: for any polynomial

p(x) = Zakxk € Kqlx],

k=0
the elements a;, are algebraic over K, so the extension K (ay, . . . , a, ) is of finite degree over K. Intuitively, any
root « of the above polynomial will still have K (aq, ..., a,, @) a finite extension, implying that « is algebraic

over K, implying o € K. Rigorously, we may (without loss of generality) take p to be irreducible so that

K1 [Oé]
(p(a))

is still afield. But now « is a root of the above polynomial, so we can use our intuitive argument so show that
«is algebraic over K, so a € K;. But then (z — «) is a factor of p(z), so we must have (p) = (x — «), which
makes p fully factor over K4 [z].

So we see that K is in fact algebraically closed, and by construction is algebraic over K. So indeed, K
is an algebraic closure of K. Now fix K any algebraic closure of K. Certainly K must contain all the roots of
polynomials in K[z] C K|x], so there is a subfield

K, CK

generated by these roots; i.e., K is a splitting field of the set of all polynomials in K[z]. However, K is an
algebraic extension of K, so all elements of K are roots of some polynomialin K[z], sowe alsoget K C K.
So we see

K=K 2K,

where the isomorphism is by uniqueness of the splitting field. This finishes. |

So we see that uniqueness and existence of splitting fields establishes the existence and uniqueness of the
algebraic closure automatically. So we are done. |

Examples of the algebraic closure are somewhat annoying to look directly at, for example because the
splitting field of so many polynomials is a bit annoying to keep track of.

Example 5.45. The complex numbers C are an algebraic closure of R, which we'll prove later in an al-
gebraic way.

Example 5.46. The field Q of algebraic numbers, which are the elements of C algebraic over Q, is the
algebraic closure of Q.

Example 5.47. The field of Laurent power series C((t)) with coefficients in C is not algebraically closed,
but its algebraic closure is
U /).

n>1

This result is more or less due to Newton, who gave an algorithm to solve polynomials in C((¢)) which
implies that the above is algebraically closed.
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Example 5.48. The algebraic closure F,, of F,, is more or less the infinite union

U For,

n>1

which is actually a direct limit with the embeddings IF x < [F,,x.. However, the non-uniqueness of these
embeddings makes this description annoying to work with.

5.2.2 Galois Advertisement

We're going to build towards Galois extensions.

@ Idea 5.49. A Galois extension of fields L/ K is an extension which is “as symmetric as possible.” For an
extension L/ K, we may define Gal(L/K) as the set of automorphisms of L fixing K, and it will happen
that Gal(L/K) “controls” the extension.

As an example, subgroups of the Galois group will correspond with intermediate extensions.

Anyways, let's see a definition.

Definition 5.50 (Galois extension, |). An extension L/ K is Galois if and only if it is normal and separable.

Wait, what do “normal” and “separable” mean?

5.2.3 Normal Extensions

We have the following definition.

Definition 5.51 (Normal extension). An algebraic extension L/ K is normalif and only if every irreducible
polynomial in K[z] which has a root in L will fully split into linear factors in L.

Remark 5.52 (Nir). Here is another way to state this definition: fixing some embedding K — K, any
embedding ¢ : L — K is actually an embedding into L. Indeed, any o € L with irreducible polynomial
7 € K[z] will have

m(oa) = o(n(a)) =0,

so o« is another root of 7 (!). But 7, with one root in L, will fully split in L because L/K is normal, so
oa € L. It follows that o : L — K does indeed restrict to L.

In fact, o is also an automorphism of L: it remains to check that o is surjective. Well, all the roots of
7 live in L as discussed, so 7 restricts to an injective mapping of the set of roots of 7 to itself, which is
bijective because there are only finitely many roots. In particular, there is an element 5 € L mapping to
oura € L.
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Remark 5.53 (Nir). In fact, the converse of the above remark is also true: suppose all embeddings o :
L — K fixing K actually output into L. Now, fix any irreducible polynomial 7 € K|[x] witharoota € L;
we show that all roots of 7 in K (where 7 certainly fully splits) are in fact elements of L.

Well, if 3 € K is aroot of 7, then there is an embedding fixing K given by

By aZorn's lemma argument, we can extend (!) thisupto L — K (even when L is of infinite degree over
K), so we have an embedding L — K fixing K sending « — /3. However, this embedding must output
intoL,so 3 € L.

It is hard to prove that a particular extension is normal from the above definition because checking all the
irreducibles in K[z] is difficult; however, here are some examples.

Example 5.54. Fix L/K an algebraic extension of degree 2. Now suppose f € K|[x] is irreducible and

has a root in L. However, [L : K| = 2 implies that deg f < 2, so f has at most 2 roots, and the sum of
the two roots is an element of K by Vieta's formulae, so the other root will still be in L.

Non-Example 5.55. The extension Q(+/2)/Q is not normal because z* — 2 has one root in Q(+/2) but
not all roots. Namely, the other roots of 2> — 2 are not real and so do not live in Q(+/2).
Luckily, there is an easier classification of normal extensions.

Proposition 5.56. Fix L/ K an algebraic extension. Then L/ K is a normal extension if and only if L is the
splitting field of some set of polynomials.

Proof. We show the directions one at a time.

« Fix L/K a normal extension and K an algebraic closure of K with a chosen embedding L C K. (The
point of doing this is so that we don’t need to worry about uniqueness of isomorphisms of splitting
fields anymore.) The main idea is to look at

S :={m € K[z] : wisirreducible and has arootin L}.

Now set L' C K equalto the splitting field of S over K; we claim that L = L’. Because L/K is an alge-
braic extension, all elements of L are the root of some irreducible polynomial over K, so L is certainly
asubset of L'.

But conversely, any irreducible polynomial = € K[z] with arootin L will fully splitin L and in particular
have all of its roots in L, so L will contain all the generators of the splitting field of S over K. Thus, L
contains L/, finishing.

« Fix L/ K a splitting field of some set of polynomials S. Additionally, fix K some algebraic closure of K
with chosen embedding L C K; the main point is to show that any embedding o : L — K fixing K
actually embeds into L, which is implies L/ K is normal by Remark 5.53.

Well, fixing some polynomial p € S, we note that if a € L is a root of p, then
p(oa) = a(p(a)) =0,

so o takes roots of p to roots of p. However, L has all the roots of p in its list of generators over K, so
oa € L.

Thus, 0 : L — K sends the generators of L into L, so it follows that o just sends L to L because the
fact o is a homomorphism means that any expression involving the generators of L will still go to L.
So indeed, any embedding L — K outputs into L, finishing. |
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The point of the above proposition is that it lets us construct lots and lots of normal extensions: choose your
favorite polynomial and then look at its splitting field.

Non-Example 5.57. The extension Q(+v/2)/Q is not a normal extension, even though we can write down
Q< Q(V2) CQ(V2),

which is a chain of degree-2 and hence normal extensions. Namely, z* — 2 hasiv/2 ¢ Q(v/2) C Ras a
root, which is a problem.

Remark 5.58. The word “normal” in Galois theory will turn into normal subgroups of the Galois group,
which is nice. For example, any degree-2 extension being normal corresponds to the statement that
any subgroup of index 2 is normal. And the above non-example corresponds to the statement that a
chain of normal subgroups

ACBCC

does not necessarily have A C C normal. For example, Z/27Z C (Z/27)? C Ds.

5.2.4 Separable Extensions

Let's talk about separable extensions next. We have the following definition.

Definition 5.59 (Separable). Fix L/K an algebraic extension. Then o € L is separable if and only if
its irreducible polynomial 7 € K|[z] is separable, which means = has no multiple roots. Then L/K is
separable if and only if each element « € L is separable.

The following statements show that most fields we care about will have separable extensions.

Exercise 5.60. If L/ K is algebraic extension of fields with characteristic 0, then L/ K is separable.

Proof. Fix m € K|z] the irreducible polynomial of any a € L. Then we recall that 7 has multiple roots if and
only if 7 and 7’ have a nonconstant common factor g | ged(m, 7’). However, in characteristic zero, we have
that

degn’ = degm — 1,

so in particular any common factor g | ged(m, 7’) has deg g < deg . Thus, g is a factor of 7 of smaller degree
but the irreducibility of 7 forces g to be constant. So indeed, = and 7’ have no nonconstant common factors,
so 7 has no multiple roots. |

Exercise 5.61. If L/ K is an extension of finite fields, then the extension is separable.

Proof. If #L = q, then we see that L consists of the roots of 27 — 2 = 0. In particular, for any a € L with
irreducible polynomial 7 € K[x], we showed last time that 7(z) | 27 —z. So multiple roots of = would induce
multiple roots of 2% — x, but 2% — x has no multiple roots because its derivative is

gt —1=-1
in L[x], so 7 — = has no common factors with its derivative. |

Inthe early days of field theory, the above were our only examples, but inseparable extension do exist!
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Non-Example 5.62. Consider the field L := F,(t) of rational functions over IF,,, and set K := F,, (t”) so
that [L : K] = p; in particular, we have the power basis {1,¢,...,t*} for L/K. Now we see that ¢ is
the root of the polynomial

P —tP € Kz,

which must be our minimal and hence irreducible polynomial because it is has the correct degree of p.
However,
P — P = (x —t)P,

so xP — t? has multiple roots at ¢ up in L.

Remark 5.63. Essentially all problems in positive characteristic come from this example of inseparable
extensions.

Like with normal extensions, we would like a nice classification of separable extensions; here it is.

Proposition 5.64. Fix L/ K a finite algebraic extension. Then the following are equivalent.
(@) Lisgenerated by separable elements of K.
(b) The embedding K — K into the algebraic closure has exactly [L : K] extensions L — K.

(c) Allelements of L/K are separable;i.e., L/K is a separable extension.

Essentially the above shows that we can check separable extensions by only checking if a set of generating
elements are separable, which is nice.

Proof. We show our implications separately.
» That (c) implies (a) is because generators are elements.
» For (a) implies (b), pick up some « € L a separable element. We consider the chain
KCK(a)CL.

Now suppose n := [K(«) : K] and « is the irreducible polynomial of a. We see that there are exactly
n = deg 7 extensions of K — K to K(a) — K: there are at most that many we can have to send « to
some root of 7, of which there are n, and each of these defines at most one mapping K (a) — K. But
each choice of root 8 of m does indeed induce an embedding

) — K,

where the embedding is well-defined because = — £ induces a map K[z] — K with kernel (7). So
indeed, there are n extensions of K — K to K(«) < K, for any separable element o € L.

Kla] =

So we assert, as promised, that
L= K(a17"'7am)7

where {a1, ..., a,} are separable. Now we consider the chain of fields
K C K(al) C K(O&l,OQ) c.--C K(O&l,...,OLHL) =L

and inductively count the number of embeddings into K. Simply extending automorphisms one at a

time gives

[K(a1): K] [K(a1,00) : K]+...-[L: K(aq,...,am-1)] =[L: K]
total embeddings, where we have applied the tower law. (These embeddings are distinct because
distinct extensions of K (a1, ...,ay) < K to K(ay,...,apr1) — K will send a4 different places, so

we can track our automorphisms by where they send the generators.)
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But these inductively constructed embeddings are in fact all of our embeddings: any embedding L —
K willinduce embeddings K (ay, ..., o) < K which extend into each other, so it must come from the
above extending process. So indeed, there are exactly [L : K] total embeddings L — K.

Remark 5.65. The above argument can more generally show that, for a given finite algebraic extension
L/K and another field M, there are at most [L : K] extensions of some K < M to L. Namely, for a fixed
element o € L, removing the condition that « is separable implies that there are at most [K(«) : K]
extensions of K — M to K (a) < M because there are at most [K («) : K] roots for « to go to.

Then the tower law argument still applies, but now it only shows there are at most

[K(aq): K] [K(aq, ) : K]-...-[L: K(ag,...,0m-1)] =[L: K]

extensions of K — M to L — M.

« For (b) implies (c), fix @ € L so that we want to show « is separable. We again focus on the chain
K C K(a) C L.

By hypothesis, there are exactly [L : K] embeddings L — K. Further, we see that there are at most
[L : K(«)] extensions of a chosen embedding K («a) — K to L — K by Remark 5.65. So there are at
least

[L: K]

LK) (K : K(a)]

embeddings K (a) < K if we are to be able to extend these automorphisms to [L : K] total embed-
dings L — K.

However, an embedding K (a) < K must send o to some root of 7, and the embedding is completely
determined by where it sends «, so the fact there are at least degm = [K(«) : K] embeddings im-
plies that there are at least deg 7 distinct roots of w. So there are exactly deg 7 distinct roots of 7 by
Lagrange's theorem on polynomials. |

One of the major headaches with the above proofs is that our finite extensions are often generated by
many elements, which means we are forced to look at chains of fields. Life would be easier if our extensions
were generated by single elements, and it turns out being separable is the correct condition.

Non-Example 5.66. Consider the extension L = [F,,(¢,u) of rational functions of two variables over IF,,.
Then we let K :=F, (t”,u?) . Now, L/K is an extension of degree p?, but forany f € L, we have f? € K
by the Frobenius automorphism, so the degree of [K(x) : K] is at most p. It follows that K (z) # L for
anyx € L.

The issue above is that L/ K is an inseparable extension, as we discussed earlier. We do get the result for
separable extensions.

Theorem 5.67 (Primitive element). If L/K is finite and separable, then there exists « € L with L =
K(a).

Proof. If K is a finite field, then [L : K] < oo implies L is also finite. So L* is a cyclic group (it's a finite
multiplicative subgroup of L*), so choose any generator g of L* to give L = K[g].
So now we may assume that K is infinite.

Remark 5.68. It is very strange that we have to talk about finite fields and infinite fields differently, but
we will really use that K is infinite below.
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Because L/K is a finite extension, we know that L is generated by a finite number of elements. So by in-
duction, it suffices to show that L := K(«, ) is generated by a single element. (In particular, the induction
functions because intermediate extensions of separable extensions are separable.)

The main idea, now, is to study embeddings K (o, 3) < K. For any distinct maps 0,7 : K(a,8) — K,
we claim that there is at most one ¢ € K giving

ola+cf) =1(a+ch).
Indeed, this is because the previous equation implies

(o8 —1B)c =100 — oar.
Now, we have two cases.

« If o8 = 78, then we must have oo # T« if we are to have o # 7, so in this case the given equation will
have no solutions.

« If o8 # 7, then we simply solve
TO —O0Q
=

Cop TP

as our only solution for c.

Because there are only finitely many embeddings K (o, 3) < K (in particular, at most [K(«, 8) : K]), it
follows that we can find ¢ € K such that

o(a+cB) # m(a+cp)

for each pair of distinct embeddings 0,7 € K(a,3) — K. Indeed, each such pair throws out at most one
element of K, but K is infinite (!), so we must have elements c € K left over.

In particular, thisimplies that a+cf has at least [K («a, 3) : K] distinctimages under embeddingsinto K —
here we are using the fact that K («, 5)/K is separable to imply there are [K(«, /3) : K] distinct embeddings
K(a, B) — K. Thus, by tracking the generator there are at least [K(«, ) : K] embeddings

K(a+cp) — K.

By Remark 5.65, we see that [K(a + ¢3) : K] is at least the number of embeddings K (a + ¢f8) — K,
so [K(a + ¢B) : K] > [K(a,B) : K] by chaining inequalities. But of course K(a + ¢8) € K(a, ), so
K(a+ ¢p) = K(a, ) follows. This finishes the proof. |

5.2.5 Galois Extensions
So lastly let’s talk about Galois extensions. We have the following definition.
Definition 5.69 (Galois group). Fix L/ K a finite extension of fields. Then we define the Galois group of

L/K
Gal(L/K) ={oc € Aut(L) : o|g = idx}

to be automorphisms of L fixing K.
Checking that Gal(L/K) is actually a group is as usual: we need to show that Gal(L/K) is a subgroup of
Aut(L), for which it suffices to see that id;, € Gal(L/K) becauseid;, |k = idx and 0,7 € Gal(L/K) implies

that (0771)‘[( = CT|K . (T|K)71 =idg .
Anyways, here are some examples.

Example 5.70. The Galois group Gal(C/R) is simply id¢ and z — Z. Essentially this is why complex
conjugation is so important in analysis.
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Example 5.71. The Galois group Gal(F4/F3) has the nontrivial automorphism = — zP where p = 2
which is an automorphism because (a+b)? = a? +b” and (ab)? = aPb?, and we see that (a?)” = a?” = a,
so we have injectivity and hence surjectivity. It follows we have at least 2 elements.

The above examples technically only exhibit elements of the Galois group without showing that we have
found all of them; the following bound establishes that the above examples do indeed find the entire Galois

group.

Proposition 5.72. Fix L/ K afinite and hence algebraic extension. Then we have that # Gal(L/K) < [L :
K].

Proof. We could apply another chain argument, where we set L = K(a,...,a,) for some {a}}_; C L
and consider the chain

KCK(o) CK(ag,a) C--- C K(ag,...,ap) = L.

Inductively considering the number of extensions, there are at most [L : K] total extensions by the tower
law and using the argument from earlier.

Alternatively, we could optimize out the chain argument: Remark 5.65 implies that there are at most
[L : K] extensionsof K — M upto L — M, sosetting M = Limplies that there are most [L : K] extensions
of K — Lupto L < L. In other words, there are at most [L : K] automorphisms of L fixing K. |

Note that we really can have less than or equal to in this bound.

Example 5.73. We exhibited 2 elements of Gal(C/R), so we have found all of them.

Example 5.74. The size of Gal(Q(+/2)/Q) is 1 < [Q(+/2) : Q] because the root /2 must stay fixed.
Namely, an automorphism o : Q(v/2) — Q(+3/2) must send /2 to a root of X3 — 2, but the other roots

of this polynomial are
V2, 3V2 ¢ R,
which are not real and hence not in Q(+/2). So o must fix /2, so ¢ must be the identity on Q(+/2).

The issue of the previous example is that Q(4/2) cannot see the other roots of X3 — 2; Galois extensions are
defined to nullify this problem. Here is our definition.

Definition 5.75 (Galois extension, II). A finite extension of fields L/ K is a Galois extension if and only if
# Gal(L/K) = [L : K|. Namely, there are as many symmetries as possible.

This definition makes it difficult to tell if a particular extension is Galois. For this, we bring in our machinery.

Proposition 5.76. Fix L/ K a finite extension of fields. Then the following are equivalent.
(@) L/K is the splitting field of some separable polynomials.
(b) L/K is normaland separable.
(c) L/K is a Galois extension: # Gal(L/K) = [L : K].

(d) K is the fixed field of some subgroup G C Aut(L).

All of these criteria are giving us nice ways of generating Galois extensions.
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Remark 5.77. Many books define Galois as being normal and separable, though this is somewhat un-
intuitive because the two definitions seems somewhat orthogonal. We have defined as above so that
Galois means “the most symmetric possible,” which is a bit more motivated according to Professor
Borcherds.

Proof of Proposition 5.76. We take these one at a time.

« For (a) implies (b), we showed that splitting fields are normal, and roots of separable polynomials will
generate separable extensions, so this follows.

« For (b) implies (c), we start by seeing # Gal(L/K) < [L : K] from the above, so we merely need to
exhibit [L : K] different elements of Gal(L/K).

Again, we could do a chain argument, but we've done enough theory to be able to optimize it out:
because L/K is separable, there are exactly [L : K] extensions of K — K upto L — K. Because L/K
is normal, Remark 5.52 implies that each embedding L < K is in fact an automorphism of L fixing K.
So we have found [L : K] elements of Gal(L/K).

« For(c)implies (d), we set L& C L to be the elements fixed by G := Gal(L/K). The pointis that K C L%
by definition, and we see that we can bound

[L: K] =#G < #Gal (L/L®) < [L: L°],

where we have used the fact that L/ K is Galois in the first equality. However, K C L€ gives [L : L] <
[L:LC]|[LC: K| =[L:K],soinfact [L: L% =[L: K], giving K = L¢.

« Lastly, we will show (d) implies (a) at the start of next lecture. [ |
Remark 5.78 (Nir). Technically the “natural” definition Definition 5.75 only works for finite extensions

L/K,if [L : K] is to make sense. However, we see from Proposition 5.76 above that we can extend this
to all extensions by way of Definition 5.50.

5.3 November 16

I'm gonna die to the sound of that noise.

5.3.1 Galois Loose Ends

Last lecture we were in the middle of proving the following statement.

Proposition 5.76. Fix L/ K a finite extension of fields. Then the following are equivalent.
(@) L/K is the splitting field of some separable polynomials.
(b) L/K is normal and separable.
(c) L/K is a Galois extension: # Gal(L/K) = [L : K].
(d) K is the fixed field of some subgroup G C Aut(L).

Proof. To finish off, we have to show that (d) implies (a). For this, pick some element o € L and look at the
G-conjugates of @, namely Ga = {ga : g € G}. To find a polynomial with « as a root, we take

falz) = ] (@—-8).

BeEGa
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This polynomial is separable because we took the product over the set of roots in Ga, so there will be no
repetition. Further, notice that the coefficients are fixed by G because we can induce a G-action on L[z] by
fixing z, upon which we see

g-fa(@)= ] (9x—98)= [ @-98)= [] @-5)

BEGa BEGa BEGa

because the G-action induces a bijection on Ga. Thus, f.(z) € LY 2] = K|[z].
Generating the polynomial f,, for each element a € L gives the set

{fa(x) € K[z] : @ € L}

of separable polynoials, whose splitting field is K({a}acr) = L. ]

Remark 5.79. In the original statement, it is not at all obvious that any of the above are equivalent, but
they are, which is nice.

Anyways, Proposition 5.76 gives us lots of examples of Galois extensions.

Example 5.80. The splitting field of any separable polynomial, asin (a), will form a Galois extension. For
example, the splitting field of 7 — 32* + 2 over Q makes a Galois extension, but actually finding what
this splitting field is not easy; e.g., what is the degree? This probably has Galois group S7, but this is
hard to prove.

Example 5.81. We use (d): for example, set L = Q(z1,...,z,) to be rational functions in n variables.
This has an G = S, -action of permuting the coordinates, so we find that L/L¢ is a Galois extension.
Recall that, by the Fundamental theorem of symmetric polynomials, we have

L = Qler, ... en),

where the e, are the symmetric polynomials. (Explicitly, we see that any element p/q € LS can have
p,q S Q[elv .. 7en]7 SOP/(I S @(617 .. 7671)')

Example 5.82. In general, take G a finite group, and we see that we can embed G C S,, withn = #G
(say). So now if we take L = Q(xy, ..., x,), we find that L/L% will have Galois group G. Indeed, G C
Gal(L/L%) because each element o € G does act on L in a way fixing L. And conversely, any element
7 € Gal(L/L%) will have to fix

o= Z Tyl € LG,

ceG
which we can see implies that 7 € G. To be explicit, a is fixed by G because the G-action merely per-

mutesthe z,1. And Tae = ) - 7,1 is the sum over a coset, so Ta = aimplies that 7 € G. The point is
that any finite group comes from some finite field extension.

As an aside, actually writing down what L% in Example 5.82 is somewhat difficult (say) in terms of gen-
erators. This is more or less the same difficulty we were feeling in Example 5.80: actually describing our
extension is hard, though we know it exists.

Remark 5.83. It is an open problem in Galois theory that, given a finite group G, if there exists an ex-
tension K /Q with the prescribed Galois group. If we let the base field vary, the answer yes; if we fix the
base field to be C(t) or Q,(t), the answer is still yes.
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5.3.2 Advertisement for the Galois Correspondence

Here is the main theorem in Galois theory.

Theorem 5.84. Fix M /K a finite Galois extension of fields with Galois group G := Gal(M/K). Then
we get a one-to-one correspondence between intermediate extensions K C L C M and subgroups
H C G. To be explicit, our maps are as follows.
M H
L +~— Gal(M/L)
Additionally, we have [M : M| = #H and [M : L] = # Gal(M/L). In fact, this mapping is inclusion

reversing: if we have subgroups H, C H, C G, then M2 C M™1;and K C L, C Ly, C M implies that
Gal(M/Ly) C Gal(M/L,) C G.

Remark 5.85. Intuitively, inclusion-reversing means that small extensions become big subgroups, and
big extensions becomes smalls subgroups. This is quite confusing.

Remark 5.86. The extension L corresponds to Gal(M/L), not Gal(L/K). As an example of a reason this
is bad, L/K might not be a Galois extension, so this automorphism group need not be “good.”

Let's give some examples before proving Theorem 5.84.

Exercise 5.87. We work out the Galois correspondence for the splitting field of 2> — 2 over Q.

Proof. Theroots of 23 —2are {V/2,w/2, w?+/2}, where w is a primitive third root of unity. Thus, our splitting
field is K = Q(V/2,w+/2,w?¥/2), and it is not hard to see that thisis K = Q(¥/2,w).
Now, we see that [K : Q] = 6 because we have the chain

Q CQ(V2) CQ(V2,w).

Namely, [Q(¥/2) : Q] = 3 because the irreducible polynomial for v/2 is % — 2, and [Q(V/2,w) : Q(¥/2)] = 2
because the irreducible polynomial for wis 22 + 2 + 1, which is irreducible over Q(+/2) because it is quadratic
and has no roots in Q(v/2) C R.

Thus, # Gal(K/Q) = [K : Q] = 6and so must be S3, acting on the three roots { /2, w /2, w?/2} of 23 —2.
(Amusingly, these fit on an equilateral triangle in the complex plane, though this is not a necessary picture.)
Let's write out the lattice diagram of subgroups for Ss.

()

]
((12)) ((23)) ((

31))
((123))
: /
And we can write down the tower of fields. To be explicit, we number off {V/2, w+/2, w?+¥/2} by {1,2,3}.
The point is that (for example) ((23)) will only fix /2 because it swaps the other two roots, so Q(+/2) is

an example of such a field fixed by these automorphisms, and it is not fixed by the other automorphisms, so
this fixed field must be Q(+/2).
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Similarly, ((12)) corresponds to Q(w?+/2), and ((31)) corresponds to Q(w+/2). Lastly, we need to find the
field corresponding to ((123)). Well, this subgroup has index 2, so we need to find a quadratic subfield of
Q(+¥/2,w), which we see must be Q(w). This gives us the following lattice.

Q(V2,w)

//@

Qw?V2) Q(V2) (wV/2)
Q

We remark that the Galois correspondence now tell us, automatically, that these are all of the intermediate
fields. [ |

Exercise 5.88. We work out the Galois correspondence for Fg, /Fs.

Proof. We see that o : 2 — 2 is our Frobenius automorphism, and this automorphism o has order 6: the
order k of this automorphism is the smallest k such that

2 = ot (x) = z.

Because we are working in Fg, = Fos, certainly k = 6 suffices, and k > 6 because all of Fg4 must be the root
of 22" — 2.
Additionally, we can see that [Fg4 : F2] = 6, so in fact the Galois group must be generated by o, giving

Remark 5.89 (Nir). For any prime-power g and positive integer r, the above argument can be used to
show that Gal(FF,- /IF,) is cyclic of order r generated by the Frobenius automorphism z — 9.

Now, because Z/67Z is cyclic, all of its subgroups are cyclic genreated by o for various d | 6. Then we can
see that the fixed field of (¢9) = dZ/6Z consists of the elements such that

22 = ol(z) =z,

which is exactly Fys. Running this correspondence through gives the following lattices.

()
/

Fys
e \
Fys (0%)
\ Foe \ (52)
]F / y /

This finishes. [ |

In the above examples, we more or less knew what the subfields and the subgroups were in advance, and it
was nice to see the lattice diagrams correspond. In the next example, the subfields are less obvious.
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Exercise 5.90. We work out the Galois correspondence for Q({7)/Q where (7 is a primitive seventh root
of unity.

Proof. The minimal polynomialfor (7 is ®(z) = 1+a+---+2° = ”;7:11,Which has degree 6andisirreducible

because ®;(z + 1) satisfies Eisenstein’s criterion with the prime 7.1 Visually, we can see all of the roots of
®- as follows.

In particular, any root of ®;(z) = ”;7:11 must be a seventh root of unity which is not 1, so it must be a a
primitive seventh root of unity. Conversely, we can see that all the primitive seventh roots of unity are indeed
roots because they satisfy 2" — 1 = 0butz — 1 # 0.

Now, any automorphism in the Galois group must send (; to some other root of ®;, say ¢¥ for k €

(Z/7Z)*. We can check that each of these maps does indeed induce a unique automorphism

~ Q[z] ~ k
because the minimal polynomial of ¢¥ is still ®;. So each of the constraints (7 — (¥ induces a unique auto-
morphism, so in fact we get that

Gal(Q(¢r)/Q) = (Z/72)*

by taking the automorphism oy, : {7 — (¥ to k. Technically, we shuold check that this is well-defined (it is
because {7 exponents only matter (mod 7)) and that o o 0y = oy to be a homomorphism (it is because ).
So we get our isomorphism.

Remark 5.91 (Nir). The above argument can be carried out essentially verbatim by replacing 7 with any
prime. It is fact that, for any positive integer n, we have

Gal(Q(¢n)/Q) = (Z/nZ)*,

which we can see using the last half of the argument above, but some amount of care is required to
show that ®,, is in fact irreducible.

Noting that 3 is a generator of (Z/7Z)* = 7Z/6Z, we can write down our subgroup lattice as follows.

{1

/

{1,6}

{1,2,4}

—

(z/72)*
1 More generally, we showed that ®,(z) is irreducible whenwe first introduced Eisenstein's criterion.
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So now let's try and find our fixed fields. Of course {1} corresponds to Q({7), and (Z/7Z)* corresponds to
Q. We now do the harder ones.

« For {1,6}, we note that the automorphism o¢ : {7 — (¢ = (7 is simply the conjugation automorphism:
forany element a = 22:1 arCk, we see that oo = @ by direct expansion.

Anyways, the point is that the fixed field of conjugation is R, so restricting our view to Q({7), we are
interested in Q(¢7)NR. Itis not too hard to see that this field is Q(¢7 +¢; 1) (e.g., [Q(¢r) = Q(Gr+¢ 1)) = 2
and then use the Galois correspondence), but this observation does not matter very much.

« For {1,2,4}, this subgroup has index 2, so we are looking for a field of degree 2 over Q. Namely, we
want a quadratic subextension of Q((7); with all the 7s floating around, it is reasonable to hope that

we get Q(C7) or Q(v/=7).

Anyways, to find a generator, we pick up some random element fixed by {01, 02,04}, say
a = 01(C7) + 09(Cr) + 0a(Gr) = G+ GG + (7
We hope that this “generic” element will generate our subextension. Well, we can square « to get
o =GF+G+G+2(F+G+EF)
=G (T2 4G+ 27+ 267

o + o= 207 + 20 + 2G + 207 + 2G7 + 27
=2.-1,

so we find that o? +a + 2 = 0. Thus,
—1+v-7
o= —"
2 b

so our corresponding field here is Q(v/—T7).

In total, we see that we have the following lattices.

Q(¢r) {1}

/ /

Q(¢7) NR {1,6}

\ Q(vV=T7) {1,2,4}
/ /
Q

(z/72)*
This finishes. [ |
Remark 5.92. In the above, one might object that « is set to a specific number, but we only showed that

o€ {% . However, this was good enough for our purposes, so we don't need to figure out which
one is «, and thankfully so—actually figuring out which one is a requires much more effort.

Remark 5.93. If we used 5 instead of 7 in the above exampe, our quadratic subextension would have
been Q(v/+5). Whether or not the minus sign is added has to do with quadratic reciprocity.
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5.3.3 Proof of the Galois Correspondence

Anyways, let’s prove our theorem.

Theorem 5.84. Fix M /K a finite Galois extension of fields with Galois group G := Gal(M/K). Then
we get a one-to-one correspondence between intermediate extensions K C L C M and subgroups
H C G.To be explicit, our maps are as follows.

M7 H
L +— Gal(M/L)
Additionally, we have [M : M| = #H and [M : L] = # Gal(M/L). In fact, this mapping is inclusion

reversing: if we have subgroups H; C H, C G, then M2 C M*™1;and K C L, C Ly C M implies that
Gal(M/Ls) C Gal(M/L,) C G.

Proof. For concreteness, we label our maps by f : L — Gal(M/L) and g : H — M*.To show that f and g
are inverses and bijective, it suffices to just show that they are inverses.
We show that g o f = id . Indeed, we start with some subgroup H C G and take

H % M7 L Gal(M/MH).

Certainly H C Gal(M/M*") because any o € H will fix M by definition of M. We would like to get the
equality.

Remark 5.94. This is trivial, but it is easy to get it wrong.
It suffices to show that these have the same size, so we claim that
#H L 4 Gal(M/MH).

But we've done this: M/M* is a Galois extension by Proposition 5.76 part (d), so #H = # Gal(M /M) by
Proposition 5.76 part (c).
We now show that g o f = id . Indeed, we start with some intermediate field L and take

L1 Gal(M/L) 2 MGAM/L),

We hope to show that I = MS2(M/L) Certainly I, C M©2/(M/L) because each o € Gal(M/L) will fix L by
definition of Gal(M/L). We would like to show the equality.
Well, again by size arguments, it suffices to show that both of these fields have the same "size.” Explicitly,
we claim that
L K] < [MCIM/D) [,

Indeed, dividing both sides from [M : K], it suffices to show that [M : L] = [M : MSal(M/D)]. But here we
see that M/MS(M/L) is Galois by Proposition 5.76, so [M : MG (M/L)] = 4 Gal(M/L). So it suffices to

show that [M : L] = # Gal(M/L).

Warning 5.95. It is not true that the size of # Gal(M /L) equals [L : K] directly. However, we do have
[M : L] = #Gal(M/L).

At this point, the claim that [M : L] < # Gal(M /L) is more internal to just the extension M/L, so we hope
that it is more tractable. Observe that, by Proposition 5.76, we are essentially showing that M/L is a Galois
extension.

Of course, the only reason we have to believe that M/L is Galois is that M /K is Galois, so we will have
to use this fact. Certainly we do get [M : L] > # Gal(M/L). To get the other inequality, we see that we can
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count elements o € Gal(M/K) by counting embeddings L — M fixing K and multiplying by the number of
ways to extend these maps L < M up to M < M. Bounding both of these quantities,? we see that

#Gal(M/K)<[L:K]-[M: L],

but equality must hold because both sides here are [M : K] because M/K is Galois. In particular, there are
[M : L] maps extending the embedding L — L C M, which is the same as saying there are [M : L] elements
in Gal(M/L). ]

Remark5.96. If M/ K is not Galois, we do get something: there is a correspondence between subgroups
G C Gal(M/K) and subextensions containing M“ D K. One way to see this is to throw out K and just
work with the Galois extension M/M¢ instead.

Remark 5.97 (Nir). Technically we have not shown the inclusion-reversing in the above argument. We
do this quickly.

« If H, C H, C G, then we know that each o € M2 will be fixed by each element of H; C Hy, so
MH2 C MHx,

e If K C Ly C Ly C M, theneacho € Gal(M/L,y) will fix each element of L; C Ly, so Gal(M/Ls) C
Gal(M/Ly).

5.3.4 Applications of the Galois Correspondence

Let's do some more applications.

Exercise 5.98. We construct the heptadecagon, the regular 17-gon.

Remark 5.99. Gauss did this when he was a teenager. The Greeks had known about 2"-gons and 2" - 3-
gons and 2" - 5-gons and 2" - 3 - 5-gons. But the 17-gon made Gauss somewhat famous.

Proof. Fix ;7 a primitive seventeenth root of unity in C; here is the picture, to establish that this will in fact
give us a 17-gon on the unit circle.

By taking powers, we essentially have to construct one of these because the ruler-and-compass construc-
tions correspond to algebraic constructions with +, — x, +,/-. Well, if we can take square roots, then we
essentially need to find a sequence of quadratic extensions

QC Fy C Fy, C F5 CQ(¢r7)-

2 We are using the fact, given an extension L/ K, the number of embeddings L — X fixing K is bounded above by [ : K]. One way
to see this is to use a chain argument as we did in the case of X = K.
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Well, this is not that bad: we know that

Gal(Q(Ci17)/Q) = (Z/17Z)* = Z/16Z

as we discussed earlier with Q(¢7). So in the Galois correspondence, we can use the sequence of index-2
subgroups
Z.J16Z 2 2Z/16Z D AZ/167Z D 8Z,/16Z D 16Z/16Z.

Thus, at least abstractly, we see that it is possible to construct (17 and hence the 17-gon.
Let's actually find some of these fields explicitly. Well, note that (Z/17Z)* = Z/16Z is cyclic generated
by 3 (again), but | won't write out the log table here. Now let's find our subgroups and so the subextensions.

» The entire set (Z/17Z)* correponds to Q.

» The squares of index 2 becomes {1, 9, ...} of order 8.

» The fourth-powers are the next index-2 subgroup, which are {1, 13,16, 4}.
» The next index-2 subgroup is {1, 16}.

« Lastly, we are left with {1}.

Building our tower of fields as follows by taking the powrs of (;7, as we did earlier. For example, set
a=Cp G+

and
B=Cr+Gr+-
to be the the two cosets of the subgroup of order 8, namely the squares. Well, we see that (z — o) (z — 5) will

be fixed by the (Z/17Z)* -action, so it will be in Q[z]. We can check by hand that a + = —1 and af = —4,
which we leave as an exercise; then we find that  and 3 are the roots of

224+ —4=0,

which gives
—-1++17
o, B = 9

So we have that F;, = Q(/17).
So next let’s look at the cosets of the subgroup of order 4 in the subgroup of order 8. Namely, we set

v =G+ G+ G+ G
and
§ = (i + (7 + Gy + G
Again, we can find that (z —v)(z—d) is fixed by the right Galois group to get that this will live in F; = Q(v/17).

We can check that by hand that y 4+ § = ‘1%@ and yd = —1, which means that we can write down v and §
using the quadratic formula. In theory, we could do everything explicitly, but it is somewhat tedious. |

Remark 5.100. Gauss wanted the 17-gon on his tombstone. This did not occur.

Remark 5.101. In general, any prime of the form 1 + 2" will work using the above construction. For
example, we can do 257 and 65537. Folklore says that somewhat worked out an explicit construction of
65537, but this is a somewhat useless exercise.

Let's do some more examples.
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Exercise 5.102. We work out the Galois correspondence for the splitting field of 2* 4 1 over Q.

Proof. We find that 24 + 1 = Z3=L  so graphically its roots look as follows.

i—1

So we find that the roots are primitive 8th roots of unity, so our splitting field is Q({s), which will have Galois
group Gal(Q((s)/Q) = (Z/8Z)* . As a warning, this is not cyclic because all of the elements of (Z/8Z)* have
expoent 2. In particular, here is our lattice of subgroups.

{1,3,5,7}

RN

{1,3} {1,5} {1,7}

~ 7

We could work out the corresponding lattice of subfields, but it is difficult to do live, so we leave it as an
exercise. |

{1}

Exercise 5.103. We work out the Galois correspondnece for the splitting field of z* — 2 over Q.

Proof. We note that v/2 is certainly a root, but Q(+/2) is not the splitting field because we are missing the
roots iv/2 and i3¥/2. So to get the full splitting field, we want Q(+/2, 7). Here is our picture.

V2

It turns out that the Galois group must preserve the above square, which we can check algebraically, so our
Galois group is Ds. If we take Dg generated by 90° rotation o and a reflection T we get the following lattice,
which | won't write out because it is complicated.
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However, we can see that we get three quadratic extensions of Q(+/2,4), which correspond to Q(1/2) and
Q(i) and Q(v/—2). then our extensions of degree 4 are Q(i, v/2) and Q(+/2) and Q(i+/2) and Q((1 +1i)+/2) and
Q((1 - i)v/2). u

Remark 5.104. Again, some of these subfields are not obvious: namely, Q((1+i)v/2) is somewhat sub-
tle. But we can find it from the Galois correspondence.

5.3.5 Intermediate Normal Extensions

As an aside, we can see from the above lattices that it appears normal subgroups correspond to normal
extensions.

Example5.105. Inthe above examples, we see that any of ourindex-2 subgroups correspond to quadratic
subextensions, and both of these objects are normal for the corresponding definitions of normal.

To be explicit, we have the following statement.

Proposition 5.106. Fix M /K a Galois extension with Galois group G = Gal(M/K). Then we have the
following.

« If K C L C M is an intermediate extension such that L/K is normal, Gal(M/L) C G is a normal
subgroup, andL /K is a Galois extension such that

Gal(M/K)

Gal(L/K) = Cal(M/L)

» Take M/K finite. If H C G is a normal subgroup, then the corresponding fixed field M# has
M* /K anormal extension. In fact, M ¥ /K is a Galois extension with Galois group G/ H.

Proof. We show the claims one at a time.

« We are given that L/K is normal, and we see that L/ K is separable because L C M, so all elements
of L are separable over K because all elements of M are separable over K.

So L/K is a Galois extension. To compute its Galois group, we construct ¢ : Gal(M/K) — Gal(L/K)
by restriction, taking
p:o—o|L.

Indeed, it is not hard to see that 0|, is in fact an automorphism: it is at least an embedding L — M,
and because L is normal, this embedding L — M < K must be an automorphism. Note that here is
the only place in this argument where we use the fact that L is normal: it makes ¢ well-defined.

Now, ¢ is surjective because any L — L fixing K becomes an embedding L — L — M fixing K, which
can then be lifted up to an automoprhism M < M fixing K by using a chain argument. And lastly, we
see that the kernel of p is

{0 € Gal(M/K) : 0|, =id},

which is simply the automorphisms of M fixing K which also fix L. But K C L, so ker p = Gal(M/L).
Thus, Gal(M/L) is indeed a normal subgroup of G because it is the kernel of ¢, and we find that

_ imy  Gal(M/K)
Gal(L/K) = S = Gal(M /L)

This is what we wanted.
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« Now take H C G a normal subgroup, and we want to show that M /K is a Galois extension. Surely
this extension is separable because element of M O M* is separable over K.

So the hard part is showing that M /K is normal. Well, assign an embedding MH" C K, and suppose
that we have some other embedding o : M# — K so that it suffices to show o(MH) C M which
will imply that o is an automorphism.

Well, to show o(MH) C M* we need to show that o(M*) is fixed by H. So pick up somem € M,
and then we note, for any h € H, we have 0~ 'ho € H (here we use the fact that H is normal), so
(67 ho) (m) = m, so

h(om) = om.
Thus, each h € H fixes each om € oo(M*™). Soindeed, o(M*) C M so each embedding M# — K

is an automorphism, so M* /K is normal.
To finish, we see that
Gal (M/K) G
H ~ -
Gal (M7 /K) = Gal (M/MH) ~— &

where we have used the previous part for = and the Galois correspondence for = . This finishes. H

Remark 5.107. This is where the term “normal subgroup” came from: first normal was used for field
extensions, and then second it was pushed into group theory from this correspondence.

5.4 November 18

This is a roadkill song about a kid who followed the bouncing ball in a singalong.

5.4.1 NormalLoose Ends

Last time we were cut off discussing normal extensions. We will give an alternate proof of the fact that
normal extensions correspond to normal subgroups. Here is the key lemma.

Lemma 5.108. Fix M /K a Galois extension with Galois group G = Gal(M/K) and L an intermedi-
ate extension with corresponding subgroup H := Gal(M/L) C G fixing L. Then, for any o € G, the
subgroup fixing oL is Gal(M /o L) = c Ho 1.

Proof. Fix o € G. We start by noting that o L is a field because ¢ is an automorphism, so the field structure
of L will carry overto o L.

We are interested in computing Gal(M /o L). Well, certainly Gal(M /o L) C Gal(M/K) because K C oL,
so it suffices to check which 7 € G fix o L. But now any element of o L takes the form ca for some o € L, so
7 € G fixes each o € L if and only if

TOO = O0Q

ifand only if (67 *7¢) (o) = awif and only if 0 ' 70 fixes L. But the subgroup fixing L is H, so this is equivalent
tor € cHo~ !, soindeed the subgroup of G fixing Lis c Ho L. [ ]
Remark 5.109 (Nir). Mnemonically, we have
(cHo ') (oL) =0 (H 07 'oL) =0(H-L)=0L,

where we have commited heavy abuse of notation mutliplying the subgroup H by a field L.

3 For example, o L has inverses: for any oo € (oL) \ {0}, we have o # 0,50 (ca) ™! = o (™) provides an inverse.
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Another way to phrase the above lemma is that the set of intermediate extensions of M /K and subgroups
of G are isomorphic as G-sets, where the bijection is by the Galois correspondence by

¢:L— Gal(M/L).

To be explicit, the G-action, for some o € G, on the intermediate extensions is by o - L = oL and on the
subgroups by conjugation.

Indeed, we only need to show that this mapping is a G-set homomorphism because we already know it
is bijective. Well, fixing some o € G, we see that

o(o-L)=p(cl) = Gal(M/oL) = 0 Gal(M/L)o ™' = o - Gal(M/L) = o - o(L),

which is what we wanted.

In particular, to show that normal subgroups correspond to normal extensions, we note that normal
subgroups are exactly the subgroups fixed by the G-action (by conjugation), so by the above isomorphism
as G-sets, it suffices to talk about the intermediate extensions fixed by the G-action.

Lemma 5.110. Fix M/K a (finite) Galois extension with Galois group G' = Gal(M/K). Then an inter-
mediate extension L is normal if and only if oL = L for each o € G.

Proof. Thisis somewhat techincal; we more or less showed this last time. Fix an algebraic closure K. In one
direction, if L is normal, then we note that each o € G restricts to a map

L3 ocLCMCK.

But any embedding L < K must output into L because L is normal, so the composite of the above maps
into L,so oL C L. A similar argument shows c~!L C L,so L C oLaswell,so L = L.

For the other direction, suppose oL = L for each o € G. Fix any embedding o : L — K so that we want
to show oL C L. Well, by using some chain argument, we can extend o : L — K to

c: M<K,

but now we know that M is normal, so o must outputinto M. In particular, o : M — M fixing K, so we claim
o € Gal(M/K). The only concern is for surjectivity, but we notice that cM C M while [M : K] = [oM : K]
by tracking a basis, so M = o M.* So ¢ € Gal(M/K),so oL = L, so L is indeed normal. |

So we get the following result.

Proposition 5.111. Fix M/ K a (finite) Galois extension with Galois group G := Gal(M/K). Then normal
extensions correspond to normal subgroups. Explicitly, we have the following.

« Fix L/K anormal intermediate extension. Then Gal(M/L) C G is normal.

« Flx H C G anormal subgroup. Then M /K is a normal extension.

Proof. These more or less follow directly from the above discussion.

« The extension L/ K is normalifand only if L is a fixed point of the G-action on intermediate extensions
if and only if Gal(M /L) C G is a fixed point of the G-action on subgroups if and only if Gal(M/L) C G
is normal.

« The subgroup H C G'is the subgroup fixing M* with Gal(M/M*) = H by the Galois correspondence,
so the previous part promises that M* /K is normal because Gal(M /M) C G is a normal subgroup.
|

4We have used the fact that M/ K is finite (or at lease profinite) here.
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To close off, we note that
Gal(M/K)

Gal(L/K) = G

as we claimed last time. Indeed, as we said last time, we have a map Gal(M/K) — Gal(L/K) by restriction,

and it has kernel Gal(M/L).
Anyways, here is an example.

Exercise 5.112. We find the intermediate normal extensions of Q(V/2,w)/Q.

Proof. Here is our lattice of subgroups.

()

]
((23)) ((31))

)
\\ ((123))
Ss /

And here is our lattice of fields, where we have numbered the roots {V/2, w+/2, w?+/2 off by {1,2, 3} respec-
tively. We provided the details to this last time.

QV2,w)

/ \

So, for example, we see that conjugation by (12) takes (23) to (12)(23)(12) = (13) and so the subgroup ((12))
o ((13)). Isomorphcially, the action by (12) will permute the corresponding fields Q(+v/2) and Q(w+/2). In
particular, the extensions Q(w*+/2)/Q are not normal.
However, the subgroup ((123)) is normal (it is index 2 in S3), so the extension Q(w)/Q is a normal exten-
sion (it is quadratic), and the Galois group here is

Gal(Q(v/2,w)/Q) ~ Ss

Gal(Q(w)/Q) = Gal(Q(V2,w))  ((123))

>~ 7./27.
This is what we wanted. ]

5.4.2 Inverse Galois Problem: Cyclic Extensions

Before jumping into the proof, we pick up the following technical lemma.
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Lemma 5.113 (Nir). Fix p a prime, and fix K := Q((,) so that G := Gal(K/Q) = (Z/pZ)*. Then, for any

subgroup H C G, we have
K =Q (Z an> .

oc€EH

Proof. This is surprisingly technical. Fix a := }___;; 0(,. We show that H = Gal(Q({,)/Q(«)), which will
be enough by the Galois correspondence. Well, 7 € G fixes Q(«) if and only if 7 fixes a ( already fixes Q) if

and only if
Z(TU)CPZT~ Zacpzra:a: ZGCP.

oc€EH occH oc€eH

Now, if 7 € H, then the map o — 70 is a bijection H — H, so 7 certainly fixes H.
The converse requires a little more care. The main point is that, because p is prime, we see {¢(, },cc is
a basis for Q(¢,,)/Q. Indeed, by our classification of Gal(Q(¢,)/Q), we have

{OCp}UEG = {C}I; :;1 .

There are p — 1 of these elements, which is indeed the degree [Q({,) : Q], and these elements are Q-linearly
independent because the minimal polynomial of ¢, has degree p — 1.
Thus, we see that both sides of the equality

Z (tro)¢p = Z (p-

ocH oc€H

feature decompositions of the same element under a basis, so they must be permutations of each other. In
particular, 7¢, appears somewhere on the right, so 7 € H. This finishes. |

Remark 5.114. In office hours, Professor Borcherds pointed out that this need not be true if we remove
the prime condition: for (g, the elements {03 } rccai((cs)/0) = {Cs> (3,¢2, (&) are not linearly indepen-
dent (e.g., they sum to 0). We can manifest this into a problem as

(s+ G =0=¢ +,
and, in particular, the fixed field of H = {1,5} is not Q (¢s + ¢3) = Q.

With that annoyance out of the way, let's move into examples.

Exercise 5.115. We find a Q-extension with Galois group Z/5Z.

Proof. By our discussion of normal subgroups and quotients it suffices to find some extension L/Q such
that Gal(L/Q) has Z/5Z as a quotient. Well, we have that

Gal(Q(¢11)/Q) = (Z/112)* = Z/10Z,

where the first isomorphism is by associating the automorphism oy, : (11 = ¢F, to k € (Z/11Z)*.
Now, Z/10Z does surject onto Z/5Z, so tracking things backwards, we are looking at the quotient

Z/10Z  _, Gal(Q(¢11)/Q)
BZ/10Z ~ (i~ ()

Z7./5Z =

In other words, we want the elements of Q(¢;;) which are fixed by the action ¢1; + ¢;;', so Lemma 5.113

tells us that this field is )
Qe+ 6i) =0 eos(37)).
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Gal (@ <Cos GD) /Q) ~ 7./5Z.|.

This is what we wanted. [ |

Namely,

Here is the general statement.

Proposition 5.116. We find a Q-extension with Galois group Z/nZ.

Proof. We again start with Q((,) for some prime p to be chosen later. Then we find that

Gal(Q(¢p)/Q) = (Z/pZ)* = Z/(p — 1)Z.

To get this to surject onto Z/nZ, so that means we want p = 1 (mod n), of which there are infinitely many
by Dirichlet’s theorem on arithmetic progressions.

To finish, we can do the algorithm suggested above. Fix g a generator of (Z/pZ)* so that g™ has order
(p—1)/nand so generates a subgroup of order %. This subgroup will be normal because the group (Z/pZ)*
is abelian, so accordingly we set

o= Z C}’;
ke(g™)

so that
L GalQG)/D) o ) g

Gal(Q(a)/Q)

Gal(Q(a)/Q) (g™

This is what we wanted. |

Let's see this in practice again.

Example 5.117. We find a Q-extension with Galois group Z/7Z. We fix p := 29 = 1 (mod 7). So we
would need to find the subgroup of (Z/29Z)* fixed by (v/—1) = (12), so we can find that our subfield is

Q (Gao + Gog® + C22 + (1Y) -

This is what we wanted.

As an aside, we note that our application of Dirichlet’'s theorem was a bit unnecessary because there are
easier ways to go about this.

Lemma 5.118. Fix n a prime. Then there are infinietly many primes p = 1 (mod n).

Proof. The main ideais to look at the prime factors of

m" —1
P, =
(m) = ——
as m varies. Indeed, if p divides %, thenp | m™ — 1, som (mod p) will have multiplicative order dividing

n. Because n is prime, the multiplicative order will thus either be 1 or n. We deal with these cases one at a
time.

« If the multiplicative orderis 1, thenm =1 (mod p), so

m" —1

=14+m+--4+m" '=14+14+---4+1=n (mod p).
—_——

n

m—1
So because p divides the left-hand side, p | n as well.
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« Ifthe multiplicative orderisn,thenn | #(Z/pZ)* = p—1byLagrange’s theorem on groups, son | p—1.

Sop | ®,(m)impliesthatp | norp =1 (mod n). We would like to focus on the second kind of prime, so we
note that p | ®,,(nm) has ®,,(nm) =1 (mod n),soptn,andp =1 (mod n) is forced.

Now we finish the proof in a Euclidean way. We show that no finite set S contains all 1 (mod n) primes.
Indeed, let the product of the primes in S be P, and we study

o, (knP)

as k — oo. In particular, for sufficiently large k, we can promise® ®,,(knP) > 1 so that it must have a prime
factor p. By the argument above, p =1 (mod p), but we can also see that p{ P,sop ¢ S. This finishes. R

Remark 5.119 (Nir). Something like his can be done for more general n, using cyclotomic polynomials
in a similar way.

5.4.3 Inverse Galois Problem: Symmetric Groups

We have the following exercise.

Exercise 5.120. We find an extension of Q with Galois group S5.

Proof. We take L to be the splitting field of f(x) := x° — 42 + 2, which is irreducible by Eisenstein’s criterion
at the prime 2. Now we have the following observations.

» Surely Gal(L/Q) C S5 because Gal(L/Q) acts on the roots of f, and this action determines the rest of
the automorphism because L is generated by the roots of f.

» Thefactthatdeg f = 5is quinticimpliesthat thereisasubfield of degree5,s05 | [L : Q] = # Gal(L/Q).
Thus, Gal(L/Q) contains a 5-cycle by Cauchy’s theorem.

» The polynomial f(z) has exactly thee real roots, which we can check graphically (we won't do this here).
In particular, the action of complex conjugation restricted to L induces an automorphism of L/Q, and
this automorphism must permute two roots. So Gal(L/Q) has a transposition.

But now the point is that any 5-cycle and 2-cycle in S5 will generate all of S5. Indeed, we have the following
lemma.

Lemma5.121. Fixpa prime. Then the p-cycle (0,1,...,p—1) € S, and any transposition (a, b) € S, will
fully generate S,,.
Proof. Without loss of generality, take a < b. Seto = (0,1,...,p — 1). We see that
0P~ (a,b)o" P~ = (0,b— a),
so we have some transposition of the form (0, ¢) where ¢ # 0. Then we see that
a"(0,c)o7* = (ke, (k + 1)c),
so we may chain

(¢,2¢)(0,¢)(e,2¢) = (0,2¢), (2¢,3¢)(0,2¢)(2¢,3¢c) = (0,3c¢),

> The only reason to introduce this k variable is this end behavior argument. It is surprisingly annoying.
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The point is that we can get (0, ck) for any nonnegative integer k, so taking k = ¢! (mod p) (here we use
the fact that p is prime!), we see that we can get (0, 1). Repeating the above chain, we see that we can get
(0,1) and (0,2) and (0, 3) and so on. Further, we then see we can get

(0,k)(0,€)(0, k) = (k, )

forany k and ¢, so we can get any transposition. So it follows that we can indeed get all of .S,,. |

Finishing up, we number the roots so that the 5-cycle in Gal(L/Q) is (12345), and noting that conjugation
gives us our transposition as above, we see that these fully generate an S5. So we do find

Gal(L/Q) = S,

which is what we wanted. ]

A similar approach will work for any prime p, not just 5. We are restricted to primes to make the final argu-
ment about the transposition and 5-cycle to work.

Proposition 5.122. For any prime p, there exists a Galois extension K/Q with Galois group S,,.

Proof. Rigorizing this is a bit annoying, but here is one sketch: by the argument above provided in the ex-
ample, we need to find an irreducible polynomial f € Q[z] with degree p and exactly 2 complex roots. Well,
we can start with

p—2
glx) = (:U2 + 1) . H(J: — k),
k=1

which does indeed have exactly 2 complex roots (in particular intersecting the z-axis p — 2 times). Because
g has no repeated roots and is locally linear, it follows there is an interval (—«, «) such that any ¢ € (—a, @)
will still have g(x) + € with exactly p — 2 real roots.

Because the generic polynomial is irreducible, such an ¢ € Q should exist to make g(z) + ¢ irreducible;
for example, for sufficiently large primes ¢, we have e = qdeg% < a will make

f(z) = g9 (9 (Z) + qd;gl) = %9y (2) +q € Z[z]

Eisenstein at the prime ¢ while still having exactly p — 2 real roots. |
Here is a nice consequence.

Proposition 5.123. Fix G any finite group. Then we can find an extension AM/L of Q such that Gal(M /L) =
G.

Proof. The pointis that, by Proposition 5.122, we may take M/Q to have Galois group S, such that G C S,;
for example, if p > #G, then we can embed G — Syx¢ (by having G act on itself by left multiplication) and
then embed Sy — S, (by fixing the last p — #G coordinates). Then we take L = M€ so that

Gal(M/L) = Gal (M/M%) = G

by the Galois correspondence. |
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5.4.4 CubicPolynomials

Finding the Galois group of specific polynomials is somewhat hard; let's see what we can do with cubic
polynomials.

Fix f € K[z] a cubic irreducible polynomial with L/K its splitting field. As with last time, we start with
the following two facts.

» The Galois group Gal(L/K) is contained in S5 because S5 will act on the roots of f, and the action on
the roots will uniquely determine an automorphism because L is genreated by these roots.

» Because f is of degree 3, adjoining one root creates a cubic subextension of the splitting field, so 3 |
[L: K] =+#Gal(L/K).

So we find that must be a subgroup of S5 with at least 3 elements, of which our options are
We would like to determine between the two. Quickly we verify that both are possible.

Example 5.124. The splitting field of 23 — 2 over Q has Galois group Gal(Q(v/2,w)/Q) = S3, as we
discussed in an earlier example.

Example 5.125. In the case of 23 +z +1 over Iy, we are looking at Gal(Fg /Fy) = Z/3Z, where the Galois
group is generated by the Frobenius automorphism.

To describe our algorithm, we fix «, 3, v the roots of f in L. The main idea is to fix

A= (a=B)B-7)(y—a).

Indeed, we see that A? is fully fixed by any permutation of the roots given by Gal(L/K), so A? € K. So the
questionisif A € K or A ¢ K. We have the following cases.

» Take A € K. Thenanyo € Gal(L/K) will fix A, so in particular, Gal(L/K) does not contain the trans-
position («, ). So Gal(L/K) is striclty contained in S5, so Gal(L/K) = As.

» Take A ¢ K. Butwe do know A% € K and A € L, so the chain
KCK(A)CL

provides a quadratic subextension of L. In particular, 2 | [L : K| = # [Gal](L/K), so # Gal(L/K) > 6,
so Gal(L/K) = S3.°

So we see that A € K can detect the Galois group.

But now we notice that A? was just the discriminant all along, so we know how to compute this. In
particular, if our cubic polynomial is 23 + bx + ¢, then we are asking if —4b3 — 27¢? is a square in K. This gives
the following result.

Proposition 5.126. Fix K a field and f € K[z] a cubic polynomial in the form f(z) = 23 + bz + c. Set
A? = —4b3 — 27¢?, and we have two cases.

« If A%is asquarein K, then the Galois group of f is isomorphic to A3 = Z/3Z.

« If A%is not a square in K, then the Galois group of f is isomorphic so Ss.

Proof. This essentially follows from the above discussion. The point is that A2 is a square in K if and only if
+A € K, so we get to reduce to the casework from earlier. [ |

Let's finish with some examples.

6 We could also argue as we did before: the fact that A ¢ K implies that there must be an elementin Gal(L/K)\ A3, so Gal(L/K) =
S3.
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Example 5.127. Fix 23 — 3z — 1 € Q[z]. We can see this is irreducible because it has no roots in Q. Now,
we can compute the discriminant as

A = —4(-3)® - 27(-1)*> =81,

which is a square in Q, so the Galois group of 23 — 3z — 1is As.

Example 5.128. Fix 2% — 2 — 1 € Q[z]. We can see this is irreducible because it has no roots in Q. Now,
we can compute the discriminant as

A = —4(-1)% — 27(-1)% = —23,
which is not a square in Q, so the Galois group of 2% — z — 1is S3.

We close this subsection with a remark.

Remark 5.129. There is an analogous process for degree-4 polynomial, but it gets very annoying. It can
be done by hand, but it requires a lot of invariant computations. In general, degree 2 is easy, 3 is fine, 4
is really annoying, and 5 and up need a computer.

5.4.5 Fundamental Theorem of Algebra

Let's give some proofs of the Fundamental theorem of algebra.

Theorem 5.130 (Fundamental theorem of algebra). We have that C is algebraically closed.

Proof by complex analysis. We sketch a proof using Louiville’s theorem. Given any nonconstant polynomial
p € Clz], we show that it has a root somewhere.

Suppose that p has no roots in C, and we show that p is constant. Well, because |p(z)| — oo as |z| — oo
(e.g., by the triangle inequality), so it follows that |p(z)| has a well-defined and achieved minimum on C (by
compactness). Set the minimum to be m so that

foreach z € C. Note that the left-hand side is always well-defined because p has no roots in C. But this makes
z — 1/p(z) a bounded holomorphic function on C, so Louiville's theorem implies that 1/p(2) is constant, so
p(z) is constant. [ |

Proof by Galois theory. We pick up the following facts.
(@) Any polynomial of odd degree has a root somewhere. This is by the Intermediate value theorem be-
cause the end behavior of any odd-degree polynomial will be different going to +oc and —oc.
Note that this where we are using topology in our proof; for example, this step does not work for Q,
say.
(b) All elements of C have a square root in C. For example, if we write our complex number as re'?, then
Vre?/? is a square root.

In fact, this can be extended by the quadratic formula (here we are using that the characteristic of R is
not 2) to show that any quadratic has roots.
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Now, to show that C is algebraically closed, we pick any element element « a root of a polynomial in C[z],
and it will generate a splitting field L/C. We would like to show that « € C, for which we show L = C.
Less specifically, we show that any finite Galois extension L/C will collapse to L = C. We note that we
have the tower
RCCCIL,
so L/R is also Galois. Now, fix G := Gal(L/R), and we use Galois theory to turn our theorem into a group
theory problem. Then we note the following.

(@) We claim that that G has no proper subgroups of odd index; this follows from (a) earlier.
Indeed, a subgroup H C G of odd index would induce a field L with

L:R] #G

LR = = =[G : H].

[ ] [L:LH] ~ #Gal(L/LH) (&= H]

But there are no nontrivial extensions of R of odd degree because all polynomials of odd degree over
R have a root and are not irreducible. So we must have [L? : R] = 1 sothat [G : H] = 1, making H not
a proper subgroup.

In particular, fixing S to be a Sylow 2-subgroup, we find that S has odd index by construction, so S = G.
So Gis a 2-group, so Gal(L/C) C G is a 2-group.

(b) It remains to show that Gal(L/C) must be trivial. This follows from (b) earlier.
Indeed, supposing for contradiction that # Gal(L/C) > 1, we see that, being a 2-group and hence
nilpotent, Gal(L/C) will contain an index-2 subgroup. But this corresponds to a nontrivial quadratic
extension of C, which does not exist by (b) above.

So from the above reasoning we have that Gal(L/C) must trivial, forcing L/C to collapse into L = C. |

Remark 5.131. Essentially what happened in the above proof is that we turned a result into fields into
some logic about groups. Namely, the Intermediate value theorem turned into no subgroups of odd
index larger than 1; and every element having a square root turned into no quadratic subextensions.
The Galois theory bridges these.

Remark 5.132. We used a lot of group theory in the above proof: we used the Sylow theorems and some
theory of p-groups/nilpotent groups.

Anyways let's see another proof.

Proof by winding numbers. Let's make the Fundamental theorem of algebra intuitively obvious. Fix f €
C[z] some polynomial, and we would like to give it a root. Imagine we have our parameter z run around a
large circle of radius R.
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Now, we watch what happens with f. For R large enough, then f(z) ~ 298/ so f(z) will loop around the
origin deg f times. But if we contract R to 0, then we will go around the origin 0 times. So by the “continuity”
the contraction as R — 0 must send the image of f of this circle to intersect the origin, which is the root we
were looking for. |

Remark 5.133. The hard part of this proof is to verify that the number of times we go around the origin
is a well-defined integer, namely deg f. To rigorize this, take an algebraic topology class.

Remark 5.134. This proof actually works for f(z) = 2" + g(z), where g(z) is any continuous function
for which |g(z)] < R™ when |z| = R, for some given R. So perhaps this proof has little to do with
polynomials.

Remark5.135. One reason this proofis subtle and undiscovered for a while is that thinking topologically
is hard.

5.4.6 Separable Extensions

And we continue with our applications.

Proposition 5.136. Fix L/ K a finite separable extension. Then there are only finitely many extensions
between L/K.

Proof. We extend L to some finite Galois extension M/ K, say by taking a splitting field of the polynomials
for some finite generating set for L/ K.

But now the number of extensions between M/K is finite because they correspond to subgroups of
Gal(M/K), which is finite because its size is [M : K] < oo. Because each intermediate extension between
L/K willalso be between M/ K, we conclude that there are finitely many intermediate extensions between
L/K. (]

Importantly, inseparable extensions cannot be embedded into Galois extensions, so this proof does not work
for free. Explicitly, if L/K is inseparable, then any extension M /K with L as an intermediate field will still
be inseparable. Here is the standard example.

Example 5.137. Fix k an infinite field of characteristic p, and we consider the extension
k(tP,uP) C k(t,u).

This is an extension of degree p?, which we can check by hand. But if z is any element of k(t,u), then
aP € k (t?,uP) by the Frobenius automorphism, so [k(x) : k] = p. This gives us an infinite number of
extensions of degree p; in particular no finite number of them can cover all of L because no finite number
of proper K -subspaces can fully cover L.

Technically in the above example, we do need to check that proper subspaces cannot fully cover a space
(over an infinite field), which requires the following lemma.

Lemma 5.138. If L is a vector space over an infinite field K. Then L is not the union of a finite number
of proper subspaces.
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Proof. This is surprisingly technical; we take our proof from here. Suppose for the sake of contradiction we
can write .
L:ULk
k=1

for some proper subspaces L;, C L. We show that V; is contained in | J;_, L, from which an induction will
collapse the entire union to L. = L,,, which will be a contradiction.

Well, fixany £ € L, so that we want to show ¢ € |J;'_, Ly. We should use the fact that L, is proper, so
we note that we can also find ¢/ € L\ L;. Now, because K is infinite (!), we can look at the family of vectors
inthe form

(+ 0k

as k € K \ {0} varies. None of these vectors can go into Ly, for this would imply ¢ € Ly, but as they must
go into one of the L,s of our union. In particular, because there are infinitely many of these vectors, two of
them must fit into some particular L. But then

/ —‘rf’k‘l,g—Fka € Ly
implies that ¢ € L. This finishes. |

In particular, this tells us that there cannot be finitely many fields k(x), for these fields must generate the
full L.
We remark that this gives us another proof of the Primitive element theorem, more or less by “set the-

n

ory.

Theorem 5.139 (Primitive element). Fix L/K a finite extension with only finitely many intermediate
subfields; for example, we can take L/K finite and separable. Then there exists & € L such that
L =K(a).

Proof. For finite fields, proceed as we did before: fix a generator g € L*, and we see that L = K(g). (This s
technically the only place that we use the fact that L./ K is a finite extension.)
For K infinite, we let {L;}}_, a list of the proper intermediate extensions between L/K. Then we see

that .
U
k=1

isafinite union of proper K -subspaces of L, so because K isinfinite, this cannot coverall of L by Lemma5.138.
In particular, fix ain L but not in the above union so that K («a) contains a and hence cannot be a proper in-
termediate extension. So L = K(a), finishing. [ |

Remark 5.140 (Nir). Technically we may remove the condition that L/K is a finite extension, for this
follows from only having finitely many intermediate subfields. Fix L/K an infinite extension, and we
show that there are infinitely many intermediate subfields.

« If L/K can be generated by a single element L = K(«), then a must be transcendental, so the
various K («*®) provide our intermediate subfields.

« If L/K cannot be generated by a single element, then fix K(a, 8) a subextension which cannot
be generated by a single element. If K is finite, then o and 3 cannot be algeraic, for then K («, )
would be finite and generated by a single element; so one of « or 3 is transcendental, reducing
the previous case.

Otherwise K is infinite. Then we can show that K (« + k() for various k& € K will each give distinct
subspaces, for K(a + k18) = K(a + kof) for ki # ko would imply that K (o, 8) = K(a + k18) =
K (a + k23) is generated by a single element.
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5.4.7 Kummer Theory Advertisement
We will focus on the following question.

Question 5.141. Suppose a Galois extension L/K has Galois group G. Then what can we say about the
extension?

Here are some examples.

Exercise 5.142. Fix G = Z/2Z, and we discuss the Galois extensions L/K with Gal(L/K) = G.

Proof. Our extension is Galois and in particular separable, so L/K will have L = K («), and a must now be
a degree-2 element because [L : K] = 2. Namely, we will have

> +ba+e=0

for some b, ¢ € K. Assuming our characterisitc is not 2, we can solve for a as in —bivbi-de V;’L“C, soL =K (\/B)
for some 8 € K. Then here, setting g € G to be the nontrivial element, we see that we must have

gv/B=-/B

because gv/B € {£+/B} as these are the roots of 22 — 3 = 0, but g cannot fix v/ because this would make G
fix all of K ().

In particular, we remark that G is acting as not just field automorphisms, but viewing L as a K-vector
space, we are getting a lienar representation of G as G — Aut(L) by viewing the automorphisms as linear
transformation. Under this view, /3 is an eigenvector with eigenvalue —1. Of course, we have another
eigenvector as 1 € L with eigenvalue 1. The point is that

by diagonalizing with our eigenbasis {1, /3}.

However, if the characteristic of K is 2, we need to worry a bit more. Here we cannot even hope to get
L = K(v/B) because K(/B)/K is not separable because the minimal polynomial 22 — 3 = (z — \/3)? is not
a separable polynomial. So we return to our polynomial

22+ bx+c=0.

Now here we should have b # 0 to make L/K separable, as just described, so we scale z — bz and divide
out by b? to get

2 4+r+d =0,
for ¢ := ¢/b%. The point is that we have somewhat controlled our linear term, which gives us an "“Artin-
Shreier polynomial.” Because 1 = —1, we may rewrite this as

22—z—d =0.

Now, «is a root implies that o + 1 is a root because (a + 1)? — (a + 1) = o — «, so do indeed have distinct
roots. So Z/27Z-extensions in characteristic 2 are controlled by polynomials in the form 22 — 2 — ¢ = 0.
Here we have that our nontrivial element g € G must send o — « + 1 to the other root, so expanding

g € G with the basis {1, o}, we find that
/11
e=(lo 1))

This is not diagonalizable, but it does at least have all eigenvalues equalto 1, which is called “unipotent.” N
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Example 5.143. The extension F,/F, will have F; = Fy(w), where w is a root of 22 + = + 1. Here the
Galois group takes 1 + 1 and w + w? = w + 1, so it behaves as described.

Let’s push harder.

Exercise 5.144. Fix G = Z/pZ, and we discuss the extensions L/K with Gal(L/K) = G.

Proof. As before, we have to quarantine out characteristic p, so let's start with the case where K has char-
acteristic not equal to p. To make our lives easier, we will assume that K contains all pth roots of 1; we did
not have to do this for p = 2 because +1 are always in our field.

Now, the point is that

K(1/a)

is the splitting field of 27 — a because the roots are (5 ¢/a € K(<{/a). We will continue this discussion next
lecture. ]

5.5 November23

The billboard said “The End is Near.”

5.5.1 Kummer Theory in Characteristic Not Dividing n
Last lecture we were trying to describe Galois extensions L/ K where Gal(L/K) = Z/nZ. Quickly, we recall
that for n = 2, we found the following.
Proposition 5.145. Fix L/ K a Galois extension with Gal(L/K) = Z /2Z.
o If char K # 2, then L = K(y/a) forsomea € K.

« Ifchar K = 2, then L = K[z]/ (2> — x — a) for some a € K.

Remark 5.146. In particular, in the former case, \/a was an eigenvector of the generator of Gal(L/K).
“Eigenvector” will be today’s magic word.

We would like to extend this to all positive integers n.

Warning 5.147. In class, Professor Borcherds focused on the case where n is prime, for psychological
reasons. For my personal benefit, | have generalized below.

To start, work with char K { n. Well, fix o a generator of Gal(L/K) so that Gal(L/K) = (¢}, and our end goal
will (roughly speaking) be to diagonalize 0. Namely, we view L as a K -vector space upon which Gal(L/K)
acts.

Well, the eigenvalues of o are going to be the nth roots of unity because o = o# Gal(L/K) — id: indeed,
if v is an eigenvector with eigenvalue A, then

so A is indeed an nth root of unity. So we will just add the assumption that K contains the pth roots of
unity.
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Warning 5.148. The problem becomes substantially harder in the case where K does not contain all
the pth roots of unity. Namely, over a global field, it is roughly class field theory.

Note that, by the derivative trick, X™ — 1 is separable over K (the only root of its derivative is 0), so there are
in fact n roots of unity. Because the roots of X™ — 1 form a finite multiplicative subgroup of K *, it is cyclic,’
so (for convenience) fix { some primitive (generating) nth root of unity.

In order to claim an eigenbasis, let’s go find our eigenvectors for each eigenvalue. Namely, we fix some
eigenvalue ¢*, and we want to find vectors v € L such that

ov = (k.

In other words, we want to find vectors fixed by o¢*. (Here 6(~* = (%o because o fixes K; namely, we
are using the assumption that { € K.) For this, we do something clever: we apply G-averages to get the
eigenvectors, taking some fixed v € L and setting

n—1

v = Z (JC*’C)ZU.

£=0

Indeed, we see that applying ¢ ~* will simply cycle the terms in the sum, so v, does indeed have ov;, = ¢*vy.
So (x) gives us access to lots of eigenvectors (one from each v € L), but it is technically possible that any
choice v € L will give v, = 0 so that we are not actually generating a dimension-1 eigenspace.

There are a few ways to finish from here. Here is one finish in the case where n is prime.

Theorem 5.149. Fix n a prime, and fix a field K with char K { n such that K contains all nth roots of
unity. Now, if L/ K is a Galois extension such that Gal(L/K) = Z/nZ, then L = K({/a) forsomea € K
such that ({/a)™ ¢ K forany 0 < m < n.

Proof. We continue from the above discussion, trying to show that the claimed eigenspaces do promise an
eigenbasis. The trick for this is to add our eigenvectors vy, together. We see that

Sl - (e (&)

Now, for ¢ # 0, the inner sum will vanish as %

¢ 1
which tells us
n—1
Z VL = Nv.
k=0

So because char K t n (1), we see that v is a sum of elements in each individual eigenspace. To be explicit, if
we let L, C L be the eigenspace for the eigenvalue (¥, we have found that

n—1
LC @ Ly,
k=0

= 0, so we only have to worry about the £ = 0 term,

so the equality follows.

In particular, at least one of the eigenspaces is nonzero, and we cannot just have the eigenspace Ly = K
be nonempty because this would imply L. = Ly = K. So there is some nonzero eigenvector v with eigenvalue
¢* # 1, but because n is prime (here we use that n is prime), ¢* is still a primitive nth root of unity. Now, for
anym € Z,

7™ = (o0)™ = (CFo)™ = (T,
sov™ € K ifand only if v™ is fixed by Gal(L/K) ifand only if (*™ = 1ifand only if n | km if and only if n | m.
Sov™ € K, and n is the least such positive integer. So K ({/v") is indeed a degree-n extension and will be
equal to L, finishing. [ |

71don't see an easy way to avoid invoking this machinery, so | have invoked it.
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And here is one way to finish in the general case.

Theorem 5.150. Fix n a positive integer, and fix a field K with char K 1 n such that K contains all nth
roots of unity. Now, if L/K is a Galois extension such that Gal(L/K) = Z/nZ, then L = K({/a) for
some a € K such that (/a)™ ¢ K forany 0 < m < n.

Proof. We continue where we left off before the previous theorem, attempting to show that the claimed
eigenspaces do promise an eigenbasis. That is, we would like to show that, for fixed k,

|
—

(0¢*)

0

~
Il

is not identically 0 for each v € L. Squinting a bit harder at this, we see that we are basically trying to prove
that

n—1
Z ¢Regt £ 0.
=0

For this, we pick up the following somewhat technical lemma.

Lemma5.151. Fix L afield. Then afinite set of automorphisms of L are L-linearly independent. In other
words, given a finite set of distinct automorphisms {o}}7_; C Aut(L), we have that

n
E apoL — 0
k=1

for {ax}}_, € Limplies that a; = 0for each k.

Proof. We proceed by contradiction. Suppose for the sake of contradiction that such a linearly dependent
set {0y }7_, exists, and find a set with the smallest such n, and we will find a smaller counterexample.
Well, o,, # o1, so there exists some y € L such that o,,(y) # o1(y). Then, forany z € L, we see

aror(zy) + -+ apon(xy) =0 and on(y)(aro1(z) + -+ + anon(x)) = 0.
Subtracting these two equations, we find that the a,,0,, ()0, (y) term will cancel out, leaving us with
a1(o1(y) — on(y))o1(@) + -+ + an—1(on-1(y) — on(y))on(z) =0

for each 2 € L. Namely, this a nontrivial relation between the {0}, }7Z] and so is a smaller counterexample.
This finishes. ]

In particular, we find that
n—1
Z ¢t £
£=0

is forced, so the given eigenspace must be nonempty.
We now finish as before. We see that there exists a vector v € L with eigenvalue {, which satisfies, for
anym € Z,
oo™ = (O”U)m _ (Ckv)m _ Ckmvm7

sov™ € K ifand only if v™ is fixed by Gal(L/K) if and only if (*™ = 1ifand only if n | km if and only if n | m.
Sov™ € K, and n is the least such positive integer. So K ({/v") is indeed a degree-n extension and will be
equal to L, finishing. [ |
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Remark 5.152 (Nir). This second finish for the general case was not done in class. Some reader is likely
to complain that | am essentially proving Hilbert's Theorem 90 without ever saying that | am proving
Hilbert's Theorem 90. My response to such readers is to try to salvage the general case without doing
something like this and please tell me how so that | can adjust the above accordingly.

While we're here, we note that the converse of Theorem 5.150 is also true; the argument is in Theorem
VI1.6.2(ii) of Lang.

Proposition 5.153. Fix n a positive integer, and fix a field K with char K t n such that K contains all nth
roots of unity. Now, if L = K({/a) for some a € K such that ({/a)"™ ¢ K forany 0 < m < n, then L/K
is a Galois extension such that Gal(L/K) & Z/nZ.

Proof. Note L is the splitting field of the separable polynomial X™ — a, so L/ K is Galois. In particular, fixing

o€ Gal(L/K), Ve ua
o¥a=C("Va

for some root ¢* of X" — 1. The map o — (* is an injective group homomorphism Gal(L/K) — Z/nZ; we
would like this map to be an isomorphism.
Well, fixing o a generator of Gal(L/K) (which is cyclic because it is a subgroup of Z/nZ), we see that

n/# Gal(L/K " a —# Gal(L/K
o g/at G _ o (o/qy# GalL/K) — ofg# GaIL/K)

so (76# GallL/K) ¢ K, so# Gal(L/K) > n. It follows Gal(L/K) = Z/nZ, as needed. |

5.5.2 Kummer Theory in Characteristic p

Here we aresstillinterested in Galois extensions L/ K wth Gal(L/K) = Z/nZ, but now we discuss char K | n.
However, because it matters this time, we will focus on the case where n is prime so that n = p.
Again, we fix o a generator of Gal(L/K). We would still like to find eigenvectors, but we find that

XP—1=(X-1)P,
so our only eigenvalue is 1. Explicitly, if v is an eigenvector of o with eigenvalue A, then
v = oPv = NP,

so Aisaroot of X? — 1,s0 A = 1. So our only eigenvectors have ov = v, which is equivalent to v € K. Thus,
the entire process we did for characteristic not equal to p (namely, trying to diagonalize o) isimpossible here.

Well, if we cannot get eigenvectors, we for generalized eigenvectors. Explicitly, we see that the ring
Endg (L) isa K-module, so pp = 0p = 0 forany ¢ € Endg (L). It follows o — 1 is nilpotent, for

(c—1)P=0P—-1=0,
so we can be interested in generalized eigenvectors v such that
(c—1)"v=0
for some fixed n. Namely, we see that we have the increasing sequence of spaces
K =ker(oc — 1) C ker(o — 1)*> Cker(oc — 1) C --- Cker(o — 1)? = L.

Anyways, ker(o — 1) is boring, so let's look at ker(o — 1)?. We want (g — 1)?v2 = 0, and in fact, we claim we
can find such a vector v € L with (g — 1)vs # 0 as well. Indeed, fix n the smallest positive integer such that
(0 —1)™ = 0, which means that we can find w € L such that (¢ — 1)" 1w # 0. So we see that

)nfl

vy = (0 —1 v

is the vector we want.
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Remark 5.154 (Nir). In fact, p is the smallest positive integer n such that (¢ — 1) = 0. One way to see
this is by direct expansion: if we are to have

0=(0c—1)"= zn: (Z) (1" *ok,

k=0

then we see that n < p would imply that the above equation is a nontrivial relation of automorphisms,
which cannot exist. But of course (o — 1)? = 0 works.

The main point of saying this is that, choosing v such that (¢ — 1)?~!v # 0, we can put ¢ in Jordan
canonical form by using the basis {(c — 1)®v} . So these generalized eigenvectors are almost diagonal-
izing. Regardless, we will not need this much power for the argument.

So why does this generalized eigenvector help us? Well, we fix a :== (6 — 1)vg sothat (c —1)a = 0,s0a € K.
So we may take the equation

OV = Vg + a

and divide through by a (note a # 0 because v, ¢ ker(o — 1)), giving an element v := vy /a € L such that
ov=wv-+1.

This is our analogue to finding an element v € L such that ov = (v, as we had in the characteristic not equal
to p case. Namely, v seems to have the simplest possible behavior with respect to the Galois action.

Continuing with the analogy, we hope that v generates L/ K, so we would like to find the minimum poly-
nomial for our v. Well, we find that

o(WP)=(ov)P = (v+1)P =P + 1.

In particular, o (v —v) =vP 4+ 1 — (v+ 1) = v — v, so vP — v is fixed by o and hence in K, so we find some
b:=vP — v € K such that v satisfies

XP— X —be K[X].

This equation has a name.

Definition 5.155 (Artin—Shreier). Equations of the form X? — X — b are called Artin—Schreier polyno-
mials.

Anyways, we get the following.

Theorem 5.156. Fix p a prime, and fix a field K with char K = p. Now, if L/K a Galois extension with
Gal(L/K) = Z/pZ, then there exists b € K such that

K[X]

L= —x -y

1%

Proof. This mostly follows from the above discussion. Namely, we have been promised an elementv € K
such that v is the root of some X? — X — b. Further, we see that

K(w)CL
is strictly larger than K because v ¢ K (else v € ker(c — 1) which was hypothesized false), so K(v) = Lis

forced because [L : K]is prime, and [K(v) : K]isanontrivial factor. Here is where we used that # Gal(L/K)
is prime. ]
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Remark 5.157 (Nir). Note that the above argument did not require K to have the pth roots of unity. This

is because 1 is the only pth root of unity in characteristic p, so K already had them.

The converse is almost true.

Proposition 5.158. Fix p a prime, and fix a field K with char K = p. Then, givenb € K, either X? — X —b

will fully split in K or, fixing any root a of X? — X — b, we have that L := K(«) makes L/K a Galois
extension such that Gal(L/K) = Z/pZ.

Proof. Note that, if ais a root of X? — X — b (say, in K), then a + 1 is also a root by the Frobenius automor-
phism, so continuing this process gives p roots

a, a+l, a+2, ..., a+((p-1),

and all these roots must be distinct, so they must all of them by Lagrange’s theorem on polynomials. In
particular, if an extension L/ K contains any roots of X? — X — b, then L will contain all of them.

We now look closerat L := K (a), which forcibly contains one root and hence all of them. Now, L contains
all of the roots of X? — X — 1 while being generated by such a root, so L/K is normal. Further, X? — X — 1
has all distinct roots, so L/ K is also separable and hence Galois.

So now we may study Gal(L/K) more closely. Any automorphism o € Gal(L/K) must send « to one of
the other roots a + k,, for some k, € Z/pZ. Because the action of an automorphism is fully defined by the
action on «, we see that

o ks

gives an injective group homomorphism Gal(L/K) — Z/pZ. We have two cases.

+ If L = K sothat Gal(L/K) is trivial, then X? — X — b fully splits because L = K contains all the roots
of XP — X —b.

+ Otherwise, Gal(L/K) is nontrivial, so because Z/pZ has no nontrivial proper subgroups, we must have
Gal(L/K) = Z/pZ. ]

5.5.3 Applications of Kummer Theory

Let's do an application, for fun.

Exercise 5.159. We construct F,» as an extension of F),.

Proof. By previous work with finite fields, we know that Gal(F,» /F,) is cyclic of order p (generated by z
xP). So by our work with Z/pZ-extensions in characteristic p, it suffices to note that

XP—-X -1
is irreducible over F,: namely, X? — X — 1 has no roots over F, because X? — X fully vanishes on F,,, so
instead we must have X? — X — 1 irreducible of degree p. |
Remark5.160. Professor Borcherds said that this can be extended to explicitly construct F,. /F,, though

| am not sure how to do this. Lang roughly asserts that the correct machinery comes from Witt vectors.

Our work above also gives the following statement.
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Theorem 5.161. A polynomial f € K[X] can be solved via radicals or Artin—Schreier equations (of de-
gree char K) if and only if the Galois group over K is solvable.

Proof. We show the directions one at a time. Set L the splitting field of f over K.

» Suppose that the polynomial is solvable, and we want to show that the Galois group is solvable. We
start by taking

Ky = K(((deg 1)!)

and work over K so that it suffices to show that the Galois group of f over Kj is solvable because
K7 /K is an abelian extension. The main point of introducing K7 is to get the mth roots of unity for any
intermediate extension between K and the splitting field L’ of f (over K1) because this intermediate
extension will have degree less than or equal to deg f.

Now, if our equation is solvable by radicals and Artin—Schreier equations of degree char K, then we
can build it up by one such extension at a time, so there is a chain of fields

KC K, C Kl(al) - KZ(QQ) c.--C Kn(an) = Lly
\?,_/ \?,_/
o= 3=

where each K, (a,)/ K, is defined so that a, is either a radical or the root of an Artin—Schreier equation
of degree char K. For convenience, set ne = [Ko(e) : Ko] < deg f.
Because K, (. )/ Ko has K, 2 K; containing all the n,th roots of unity because n, < deg f. So by the
converse to our Kummer theory work above, we see
Gal(Ke(e)/Ke) = Z/neZ,

so taking G, := Gal(L'/K,), we get the sequence of subgroups

Gal(L'/K) 2 G1 2G2 2+ D {e)
where Gal(L/K')/Gy = Gal(K;/K) is abelian, and G41/Gr = Gal(Ky4+1/Ky) = Z/niZ is cyclic. So
indeed this sequence witnesses that Gal(L/K) is solvable.
Technically, we are actually interested in Gal(L/K') and not Gal(L’/K), but we do know

Gal(L'/K) - Gal(L/K)
by restriction, so the solvability of Gal(L’/K) implies the solvability of Gal(L/K).8

« Conversely, suppose that Gal(L/K) is a solvable group. Lifting up to L'/K’ where K’ := K ({(qeg f)!)
and L' := LKj. Itis still true that L'/K is a solvable extension because Gal(L'/K)/ Gal(L/K) =
Gal(L'/K) is a cyclotomic extension and hence abelian. So taking subgroups, we get that GaL(L'/K")
is solvable as well.

So it suffices to show that f is solvable by radicals and Artin—Schreier equations over K’, where we
assume Gal(L’/K') is solvable. (In particular, the roots of unity we added to K are legal because they
are "radicals” of a sort.) Well, because Gal(L'/K) is solvable, we may build a chain of subgroups

Go=Gal(L'/K') DG, 2G32 -2 (e) = Gy,

sothat Gy 1 /G = Z/piZ for some prime py,. Looking at the corresponding fields, we set K, := (L')*
so that
K =KyCKiCKyC---CK,=1L'

has Gal(K11/Kk) = Gr41/Gr = Z/piZ. But each of these field extensions contains the pyth roots of
unity (pr < [L' : K'] < deg f), so our classification of these extensions promises that

Kit1 = Ki(ag),

81 should probably say something about solvability in short exact sequences, but | can’t be bothered.
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where ay, is the root of some element of K, or the root of an Artin—Schreier equation of degree char K.
In particular, any element of L’'—namely, the roots of f—can be built from radicals and solutions to
Artin—Schreier equations. ]

Remark 5.162. This is where the term "“solvable” comes from.

Example 5.163. Any polynomial of degree at most 4 can be solved by radicals or Artin—Schreier equa-
tions. Indeed, the groups S1, S2, S3, Sy are all solvable, and the Galois group of any polynomial of degree
at most 4 is a subgroup of Sj.

Example 5.164. The polynomial z° —42+2 has Galois group S5 as we showed earlier, so it is not solvable
by radicals.

Example 5.165. Of course, 2° — 2 is solvable by radicals.

In general, it is difficult to tell if an equation is solvable by radicals because finding the Galois group is diffi-
cult.

5.5.4 Cyclotomic Polynomials: Examples

We saw that roots of unity were somewhat important for our discussion, so let’s study them.

Remark5.166. “Cyclotomic” means cutting up the circle, which comes from their picture in the complex
plane. For example, here are the 7th roots of unity cutting up the circle.

Cyclotomic extension are essentially the only higher-degree extensions we can control. The next easiest
are Artin—Schreier extensions or adjoining nth roots, but aside from these, it is difficult to control other
extensions.

In particular, we study cyclotomic extensions of Q. To start, we need to find the minimal polynomial for
some primitive nth root of unity, which we name ¢,,. We don't know it yet, but the following definition will
become the minimal polynomial of (,.

Definition 5.167 (Cyclotomic polynomial). Given a positive integer n, we define nth cyclotomic polyno-

mial as
e.X)= J[ xX-¢).

1<k<n
ged(k,n)=1

In other words, ®,,(X) is constructed to have roots which are the primitive nth roots of unity.
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Note that, because all roots of ®,,(X) are nth roots of unity, we will have

[I x-¢h=x"-1.

1<k<n

o,(xX)= J[ x-¢)

1<k<n
ged(k,n)=1

However, X™ — 1 will typically reduce (e.g., it is divisible by X — 1), and it will turn out that our minimal
polynomial for ¢, will be ®,,(X).

Example 5.168. If n = pis prime, then f(X) = &=

R

=1

is irreducible because

Ei: (1;) xk-1

k=1

is Eisenstein at the prime p. So f is the minimal polynomial for ¢,.

Example 5.169. If n = p* is a prime power, then
p—1

f(X) = & _Zan

isirreducible again by taking X — X +1 and applying Eisenstein’s criterion at p. To be explicit, reducing
toF,(X), we have

X+ -1 X411 oy

X — P —p
fE+1) = (X+1)p' -1 XP T 41-1

Then to evaluate the constant term, we evaluate f(0 + 1) = f(1) = p, which is indeed not divisible by
p*. So f is the minimal polynomial for (.

However, for numbers which are not prime powers, this becomes harder. In fact, we see that if m | n, then
mth roots of unity are nth roots of unity, so these need to be thrown out by hand if we want to focus on
primitive nth roots of unity. For prime-powers, this is not so bad because we have relative control over
divisors of prime-powers.

Exercise 5.170. We compute lots of cyclotomic polynomials.

Proof. We have the following list. We remark some properties as we go down the list, which we will rigorize

in the next subsection.
« Forn =1, our minimal polynomialis ®;(X) = X —

X

« Forn = 2, our minimal polynomial is &, X + 1 by dividing X? —1by X — 1.

« Forn = 3, our minimal polynomial is @3

(
(
(
(

= X2 + 1 bydividing X* — 1 by X2 — 1.

) =
)
X)= X2+ X +1bydividing X3 —1by X — 1.
» Forn =4, our minimal polynomialis ®4(X)
)=

« Forn =5, our minimal polynomial is ®5(X) = X% + X3 4+ X2 + X + 1 by dividing X — 1 by X — 1.

« Forn = 6, we are looking at the roots of X% — 1, but we need to kill the third roots of unity as well as
the square roots roots of unity. So we get

X-1=X-D(X*+X+1)(X+1)(X*-X -1),

so the one that we want is ®4(X) = X2 — X — 1.
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« Forn =7 weget X¢+ X°+ X%+ X3+ X2 + X + 1 by primality.
« Forn = 8, we need to divide X® — 1 by the first, second, and fourth roots of unity, so we get X* 4 1.

« Forn = 9, we need to divide X° — 1 by the cube roots of unity, so we get X% 4+ X3 + 1. (Visually, we
can write down the ninth roots of unity and kill the third roots of unity by hand.)

« Forn = 10, we need to divide X% — 1 out by the square roots of unity and the fifth roots of unity, so
we get

X0 1=(X-DX4+D) (X" + X3+ X2+ X +1) (X' - X+ X* - X +1).

In particular, ®10(X) = ®5(—X), which makes sense because any negative fifth root of unity will arti-
ficially gain a factor of 2 in its order, so the roots are negatives.

« Forn = 15, we need to divide X® — 1 out by the third roots of unity and fifth roots of unity, so we find
that we want
(X -1)(X -1

) 8 7 5 4 3
D15(X) = D 005D =X X"+ X - X'+ X3 - X +1.

We remark that all of the above coefficients were in {—1,0,1}. This is not true in general, and the smallest
counterexample is 105. We will discuss this more shortly. |

5.5.5 Cyclotomic Polynomials: Theory

Let's list some basic properties of ®,,.

Proposition 5.171. We have the following.

(a) We have that

X" —1= HcI)d(X).
d|n

(b) We have that

®,(x) = [T (x¢ - 1),
d|n

where p is the Mobius function.

Proof. We take these one at atime.

(a) This is saying that all nth roots of unity are a primitive dth root of unity for some d | n. Rigorously, we
write

E@d(X)=H< H (X_e27rik/d))

d|n 1<k<d
ged(k,d)=1
-1 < [ (x - e )
d|n 1<kn/d<n

ged(kn/d,n)=n/d

- y ( [T (x - )

1<k<n
ged(k,n)=n/d
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Now, every k between 1 and n will have exactly one greatest common divisor with n, and this greatest
common divisor will be a divisor n/d of n for some d | n. So in fact the above product is over all the &

with 1 < k < n, so we find
[Tea) = ] (x-em) = xm -1,
d|n 1<k<n

which is what we wanted.

(b) This comesfrom applying Mébius inversion to (a), in a multiplicative form. Doing this formally is some-
what annoying (we essentially have to reprove Mébius inversion), but one can see what we are sup-
posed to do by noting we want to prove something like

log @, (X) = Zlog (Xd —1)p (g)

d|n

log (X Z log ®,,

which looks more immediately like Mobius inversion. (Formalizing this would require a rigorously de-
fined log function, but it is easier to just show the inversion by hand.) |

given that

The above two formulae give us a recursive way to compute cyclotomic polynomials, which will focus more
on in the next subsection.

Remark 5.172 (Nir). The recursion is probably the most direct way to show that ®,,(X) € Z[X]. For
example, we see that

_ d_ q\An/d) _ i p(nyay=1 (X4 —1) (X
q)n(X) ; g (X 1) B Hd|n,y(n/d):71 (Xd - 1) o g(X) © Q(X)

But by definition, ®,,(X) € C[X],so ®,,(X) € Q(X) N C[X] = Q[X].
To get @, ( ) € Z[X], finer study is required. We see that f(X), g(X) € Z[X] with ¢(f) = ¢(g) =1,
and f(X ) D, (X)g(X), for some @,,(X) € Q[X]. It follows from Gauss's lemma that ¢(®,,) = 1, so
n)

);
0, (X) = @ (X)/c(Pn) € Z[X].

While we're here, we should probably show that ®,, is actually an irreducible polynomial, completing
the proof that ®,, is the monic irreducible polynomial for ¢,, over Q. Namely, we have just remarked that

o, € Q[X].

Proposition 5.173. We have that @, (z) is irreducible (in characteristic 0).

Proof. We have done this in the case where n is prime or a prime-power using Eisenstein’s criterion (see
Example 5.169). Technically we did not know that those polynomials were ®,-(X) at the time, but we an
see it via the recursion now, for

XP —1
z forr>1

@1(X):X—1 and (bpr(X) W

satisfies
- X —1 .
[To)=[]on)=x-D]] Frr—=%" -1,
d|pr k=0 k=1

so get the equality by an induction.
To get that @, is irreducible in general, we lift from the prime case. We have the following technical
lemma.
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Lemma 5.174. Fix n a positive integer and p a prime with p { n. Further, suppose that f(X) € Z[X]
divides ®,,(X) and has ¢, as a root. Then the roots ¢ of f are preserved under the mapping ¢ — (.

Proof. The trick is to reduce (mod p) and carry the roots of f with us. We start by fixing the root ¢, of f.
Now, we set f,, | f tobe ’ge minimal polynomial for {, in Z[X], and we reduce f, to f,, € F,[X]. Picking up
anirreducible factor g of f,,, we see that we can induce a map

ZIX]  FX] Lo
) @

lifting Z — F,[¢,] by sending ¢, = (,. In particular, all the work we did above was to guarantee that f,, isin
the kernel of this induced map so that we may safely mod it out as we did above.

We now attempt to map the roots of f from Z[(,,] to F,,[(,]. We understand the roots of f in Z[¢,] will be
a subset of the roots of X™ — 1, which is (¢,,), so we need to understand the roots of X" — 1in F,[(,].

Well, each ¢,,” will be a root because ¢, isaroot of g | f | ®,,(X) | X™ — 1. We claim that these are all of
the roots of X™ — 1, for which it suffices to show that there are n distinct powers of (,. This is surprisingly
technical because we need to use the condition that p t n here.

Let m be the least positive integer such that(, " = 1,and we need to show that m = n; because ¢, © = 1,

we know m | n. Observe that (,, will also be a root of

®,,(X) = [ (x* 1)

dlm

Z(() =

because the X™ — 1 factor will vanish while none of the smaller factors will. Thus, supposing for the sake of
contradiction that m < n, we see

X" —1=]]®axX)

d|n

has at least a double root at (,,—one root coming from ®,,, and one root coming from g(X) | ®,(X). But
this is impossible because X™ — 1 has no double roots by the derivative trick (here we use the fact p  n)!
From all of our hard work, we see that the map

e G
is injective and in fact a group isomorphism (¢,,) — (C,). In particular, we may restrict this to an injective
map B -
{CEZ[C]: f(¢) =0} = {C € FylGal : F(C) =0},

which is well-defined because f(¢) = 0 implies f(¢) = 0. In fact, the set on the left has deg f elements, and
the set on the right has at most deg f = deg f elements, so they both have deg f elements, so this injection
is a bijection.

To finish, we see that, by the Frobenius automorphism, the roots on the right-hand side are fixed by the
map ¢ — (', so the roots on the left-hand side are fixed by ¢ — ¢? as well. To be explicit, if ¢¥ is a root on
the left-hand side, then ak is a root on the right-hand side, then C:pk is a root on the right-hand side, so ¢2*
is a root on the left-hand side. This finishes. [ |

The point of the lemma is to show that the Galois group of ®,,(X) (which is Q(¢,)) is equal to (Z/nZ)™ .
Certainly it is a subgroup because any o € Gal(Q(¢,)/Q) must map ¢, to some (k- for k, € (Z/nZ)” and is
uniquely determined by this action. So

o+ ks

gives an injective homomorphism Gal(Q({,)/Q) — (Z/nZ)*.
But now, by Lemma 5.174, the Galois group of ®,,(X) contains

Cﬂ, = C’ﬁ
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for each p coprime to n, but these elements actually generate (Z/nZ)™ by simply prime-factoring a number
in each of the various equivalence classes of (Z/nZ)*
So to finish, we see that

deg @y, = @(n) = #(2/nZ)" = [Q(¢n) : QJ,

so in fact ®,, must be the minimal irreducible polynomial of ¢,,. |

5.5.6 Cyclotomic Polynomials: Computation

Warning 5.175. This subsection covers more explicit computation of cyclotomic polynomials, which
was not covered in class. The main point here is to find the smallest n for which ®,,(X) has a coefficient
outside of {—1,0,1}.

As a quick example before doing any theory, we evaluate cyclotomic polynomials for semiprimes.

Exercise 5.176. Fix p and ¢ distinct primes. Then ®,,(X) only has coefficients in {—1,0, 1}.

Proof. Because p and q are distinct, we see that

. pipa/d)  (XPT—1) (X — pn
(I)pq(X)—;[L(Xd_l) _(Xp_l)(Xq_1 Xq_lzX

Expanding this out, we see that

(I)pq(X) = Z

n=0

Xpn Xpn+1 g—1 Xxpn
Z vt Xa—-1"

Now, we see that, by polynomial division, we get

Xp7z+1

[n/a) m
XV 3 XN_qk+XN (mod q)
Xi—-1 &~ Xa—-1 "~

where N (mod q) is referring specifically to the smallest nonnegative integer in the residue class. Summing
over all of our N, we get

q—1 [(pn+1)/q] q—1|pn/ql g—1 q-1
xpn (mod g) xPpn+l  (mod q)
_ n+1—qgk n—qk
o= (£ 3 S e (AT AT
n=0 k=1 n=0 k=1 n=0 n=0

We note that the last two sums on the right-hand side will cancel out because pn (mod ¢) and pn+1 (mod q)
will both loop over all possible residue classes (mod ¢) because p and g are coprime. Thus,

q—1 [(pn+1)/q] q—1 [pn/q]
D,e(X) = Z Z xpntl-ak _ Z Z xPn—ak (%)
n=0 k=1 n=0 k=1

By the Chinese remainder theorem, we see that (n, k) — pn — gk from Z/qZ x Z/pZ — 7. /pqZ is a bijection,
so (n, k) — pn — gk + 1is also bijection. So because the inner sums have k range over at most [1, ¢], we see
that each outer sum above will have no repeated X* terms.

So when we collect ®,,(X), we see that any coefficient X*® gets at most +1 from the left sum of () and
gets at most —1 from the right sum. So each X*® will have coefficient contained in {—1,0, 1}. ]

Now let's see some small things we can do with our recursion.
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Lemma 5.177. Fix n a positive integer and p a prime.
(@) Ifp{n,then @,,(X) = @, (X?) /P, (X).
(b) If p | n,then ®,,(X) = o, (XP).

Proof. The main idea is to use the Mobius inversion formula, from which we find

q)np(X) - H (Xd - 1)M(np/d) .
d|np

We now split into cases.

(a) Take p t n. Here we see that d | np has two cases: either p | d or p f d, but either way, d/p*»(?) divides
n. In particular, divisors d | np such that p | d will only have one power of p, so we can parameterize
these by the divisor d/p of n. Namely,

(I),LP(X) = H (Xd - 1)#(np/d) H (Xdp _ 1)u(np/(dp)) .
d|n dln

ptd pldp

The first factor is

u(np/d) —p(n/d)
E(Xd—l) ZH(Xd—l) = 3.0%)

where the Mé&bius function got a sign because of the extra prime p  n. The second factor is

T (x - /) _ 11 ((X;D)d B 1)“("/‘” — ®, (X7).

dln d|n
Soindeed, ®,,(X) = ®,, (X?) /P, (X).

(b) Take p | n. Then we see that each d | np giving u(np/d) # 0 had better have p | d, for otherwise np is
divisible by p? so that u(np/d) = 0. So we only care about divisors d | np such that p | np, which again
we can parameterize by the underlying divisor d/p | n. So we see that

n n (n/d)
@, () = [ (37 = )" =TT (vt = 1)) ] (' =1)" " = @, (x00),
d|np d|n d|n
which is what we wanted. [ |

Example 5.178. If n is odd, then we claim @5, (X) = ®,(—X). We could see this directly by studying
the primitive 2nth roots of unity and finding they are all —¢?. Alternatively, we see that any divisor d | n
will be odd, so

B, (X)®,(—X) = H (Xd . 1)#(n/d) ((*X)d . 1)#(n/d) _ H(fl)”(n/d) (X2d B 1),u(n/d) '
d|n d|n

Because deg ®,(X) = ¢(n) is even, we know in advance that ¢, (X)®  — X) is the product of monic
polynomials, so the above becomes an equality. So ®,,,(X) = @, (X?) /®,(X) = ®,,(—X), finishing.

The point of these results above is that it implies that many @,,(X) will have coefficientsin {—1,0, 1}.
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Exercise 5.179. Fix p and ¢ distinct odd primes and suppose n := 2%p°¢° for nonnegative integers a, b, ¢;
in other words, n has at most two distinct odd prime divisors. Then ®,,(X) only has coefficients in
{-1,0,1}.

Proof. We have the following cases.
 If {a,b,c} = {0}, then we are lookingat ¢, (X) = X — 1.

« If two of {a, b, ¢} are zero while the third is nonzero, then we are evaluating

k

for some prime-power r*, so indeed, our coefficients are {—1,0,1}.

« If one of {a, b, c} is zero while the other two are nonzero, then we are rename p and ¢ so that n = p?¢®
for primes p, ¢ where a,b > 0. Now, by inductively applying Lemma 5.177 part (b), we see that

a—1_b—1
Do (X) = By (X747

So because ®,,(X) has coefficients in {—1,0,1}, we see that ®,..,(X) will also have coefficients in
{-1,0,1}.

» Lastly, take all of {a, b, ¢} nonzero. Again inductively applying Lemma 5.177, we see that
q)2“pbqﬂ (X) — @217(1 (X2a—1pb—1qc—1) .

Now, pq is 0dd, 50 @apeye(X) = @pq (sza'_lpb_lqc_l) will still have all coefficientsin {—1,0, 1} again
from @, (X). |

In particular, if we are to have coefficients outside of {—1,0, 1}, we must have at least three distinct odd
prime divisors, for which ®3.5.7(X) = ®15(X) is the first candidate. This polynomial has degree 48, so
actually computing it by hand would be quite annoying, but indeed it does have a

_2X41

term. So| ®195(X) |is the first cyclotomic polynomial with a coefficient outside of {—1,0,1}.

5.5.7 Cyclotomic Polynomials: Application

As an application, we show a special case of Dirichlet’s theorem on arithmetic progressions.

Exercise 5.180. We show that there are infinitely many primes 1 (mod n) for each positive integer n.

Proof. The main point is to take primes p | ®,(b) for some b. We have the following lemma.

Lemma 5.181. Fix n a positive integer and p { n a prime factor of ®,(b) for some integer b. Then the
order of b (mod p) is n.
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Proof. Now, we see that
b*=1 (mod p)

because ®,(b) | b™ — 1, so the order of b (mod p) divides into n. Because the roots of ®,(X) | X" — 1 are
distinct (mod p) whenp{ b, we can be surethatb (mod p) has exactly the order n. To be explicit, we proceed
asin Lemma 5.174: if the order is m | n, with m < n, then b will be a root of

®,,(X) = ] (x* - 1),

d|m

which forces

X" —1=]]euX)

d|n
to have a double root, which is a contradiction. [ ]
In particular, given p | ®,,(b) where p { n, we see that applying Lagrange’s theorem to (Z/pZ)™ , we find that
our element of order n witnesses p =1 (mod n).

So to finish, we suppose for the sake of contraction that there are finitely many primes which are 1
(mod n). Then let their (finite) product be P, and we look at the polynomial

o, (PnX).

Any prime p dividing into this will be coprime to n and P (because ®,,(PnX) = ®,(0) = £1 (mod nP)),
forcingp =1 (mod n) by the argument above.

But now, sending X — oo will make ®,,(PnX) number large enough to be at least 1 and hence have a
prime factor, so we have a prime p = 1 (mod n) not dividing P, which is our contradiction. |

Remark 5.182. This is not a good way to find 1 (mod n) primes because ®,,(PnX) will get quite large
quite quickly. For example, to find 1 (mod 10) primes, we want divisors of

Pp(X) =X+ - X3+ X2 - X +1,

but as soon as we have one prime 11, we want to compute ®;4(110x), which is huge.

Example 5.183. In the case of ®4(X) = X2 + 1, we see that all prime factors of X2 + 1 for X even will
bel (mod 4).

Next lecture will be on the coming Tuesday because there is some sort of holiday or something.

5.6 November 30

A dying man can do nothing easy.

5.6.1 Inverse Galois Problem: Abelian Groups

Let's continue or discussion of cyclotomic fields. For example, last time we showed that there are infinitely
many primes 1 (mod n) for any positive integer n, and we will use this fact to solve the inverse Galois prob-
lem in the abelian case.

Proposition 5.184. Fix GG a finite abelian group. Then we can find a Galois extension K/Q such that
Gal(K/Q) =2 G.
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Proof. As usual, our approach is to find some extension L/Q with a homomorphism Gal(L/Q) — G and
take quotients to finish. The main idea is to see that G, being finite, can be written as

G ﬁ Z/me
k=1

for some positive integers {my}}_,, not necessarily coprime. Setting N = m; - ms - ... - m,, so that we see

10 Z/NZ
¢= 1;[1 myZ/NZ’

so there is a surjection (Z/NZ)™ — G given above, so we focus on creating an extension L/Q with Galois
group such that Gal(L/Q) — (Z/NZ)™. For this, we select n primes {g; }}_, such that g, =1 (mod N) and
set

M=q-q-.. G

so that . .
Gal(Q(¢n)/Q) = (Z/MZ)* %HZ/qkz %H (qu — 1)Z

which has a surjection

k];[lm k—mﬁHNZ/qk_lZ (Z/NZ)" — G.

So, to finish, set H to be the kernel of this surjection Gal(L/Q) — G and define K := LY. Then we see that
H is the kernel, so it is a normal subgroup of Gal(L/Q), and we compute

Gal(L/Q)  Gal(L/Q)
Gal(L/K)  H

Gal(K/Q) = ~ @,

where we are using our discussion of normal subgroups to work this out. This finishes. |

The above statement even has a partial converse.

Theorem 5.185 (Kronecker—Weber). Any abelian extension K /Q is contained in a cyclotomic extension.

Proof. This is a pretty difficult theorem in number theory, more or less a primer on class field theory. For
example, it would make a good capstone for a first course on algebraic number theory. Anyways, we will
not prove this here. |

Verifying Kronecker—Weber is not even easy for quadratic extensions, but it is not out of reach. We will do
this, for fun.

Exercise 5.186 (Nir). Fix an integer m. Then there exists an integer n such that Q(v/m) C Q(¢,).

Proof. The approach will be to focus on the case where m is prime and build up from there, so fixp = m
a prime. As a first guess, we check the quadratic subextension of Q(¢,), which will almost work. The main
idea, now, is to use “Gauss sums” as we did Exercise 5.98. As motivation, we fix

p—1
k’2
= ZCP
k=1

which by Lemma 5.113 will generate the subfield of Q((,) fixed by the squares of (Z/pZ)*, which is the
index-2 subgroup of (Z/pZ)*, so a will generate the quadratic subfield of Q((,).
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To make a better-behaved, we fix

G = ;a—(_1>:;a_§g§: 3 (k)

Ck

P’
p

kE]P;,(

where (%) is 1 when k (mod p) is a nonzero square, —1 when k (mod p) is not a square, and 0 when k = 0.

(This last equality above is checked by casework on the various k.) Now, G will still generate the quadratic
subfield of Q(¢,), and G is better-behaved because

(£ 0)s) (£ 0)4)- 2 s

Setting x so that £ = kz, we see

o 5 (S-S0 Eer]

k,xE]F;f z=1 k=1

When z # p — 1, the inner sum will cycle as the sum of all the primitive pth roots of unity and produce —1.
When x = p — 1, we simply accumulate p — 1, which in total gives

g 1
=% (2) v+ (S e-v,
; , )5 D)
Adding back in the - = p — 1 term to the sum, we see __! (%) = 0 because (;) : F; — Cis anontrivial

character. So this term will cancel, leaving us with G? = (’71) D.

It's not too hard to show that G2 = (—1)~1)/2p in fact, but we will not do this. The point is that G =
+/%p, for some particular choice of signs. So we see that, the quadratic subfield of Q(¢,) is either Q(,/p)

or Q(v/—p) = Q(i/p), so in either case, Q(i, ) will surely contain ,/p.
So to finish, fix m a generalinteger. Then, m has a prime factorization, and let py, po, . . . , p, be the prime
factors of m. Then, adding in asigne € {£1} for m, we see

vim = e [[(vor) ™ € QUi, Gy s Gpas -+ $Pn) € QCprpa-pn )
k=1
finishing. [ |
5.6.2 Inverse Galois Problem: Solvable Groups

Here is an extension.

Theorem 5.187 (Shafarevich). Any finite, solvable group is the Galois group of some Galois extension

K/Q.
This theorem is hard to prove, and let's give some reasoning why.
Not a proof. Here is one attempt: suppose that we are given a short exact sequence
1-A—-B—-C—1

such that A and C are Galois groups, and we want to show it for B as well. For this, we might want to take
an extension K/Q with Galois group C and then try to extend this up to an extension L 2 K with Galois
group Gal(L/Q) = B. [ |
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However, this approach might not even be possible. Namely, if we have a short exact sequence
1-A—-B—->C—1

such that C is the Galois group of L/Q, there need not exist an extension M 2 L with M /Q having group B.
For example, consider the short exact sequence

0—Z/2Z — 7/AZ — Z)2Z — 0.

Here, Z/2Z is a quadratic extension, say Q(v/n), and we would like to find L such that Gal(L/Q) = Z/4Z.
The following lemma provides a physical obstruction for this.

Lemma 5.188. Fixn a squarefree integer. Then, if there exists a Galois extension L/Q containing Q(y/n)
such that Gal(L/Q) = Z/4Z, then there exist rationals b, c € Q such that b — nc? = —1.

Proof. Well, suppose that we can do this so that Gal(L/Q) = (o) = Z/4Z. Then Q(y/n) is going to be the
field fixed by (o?) because (o?) is the only index-2 subgroup of (7).

The main idea, now, is that L/Q is a cyclic extension, and even though Q does not contain all fourth roots
of unity, we can try to imitate our Kummer theory.

Much of Kummer theory was concerned with verifying the existence of the correct generating element,
but ours will be somewhat easy to find: the extension L/Q(y/n) must have some a € Q(y/n) such that
a = +/ahas L =Q(v/n)(«a).

Now, our magic word continues to be “eigenvalue.” We do still have o*a = «, but this no longer helps
us because, when we write A := oo/ so that

oca = A\,

we might not have A € Q. However, looking at L/Q(/n), we see that
0'20é = -«
because « was chosen an element with eigenvalue —1, and —1 will certainly be fixed by o. So to salvage our
approach, we notice
9 (Ua) —oa oo
oc|l—)=—=—
«

—Q (e%

i

so A € Q(y/n), which is the next best thing.
Continuing to salvage our Kummer theory, instead of using oo = Ao to pin down A, we notice that o2a =
—a will give
—a=c*a=0(a)=0c)\-oca= (oA Na.
Thus, A - ol = —1.
To finish, we set A := b+ c¢y/n with b,c € Q. Then o/ # /n (because o ¢ Gal(L/Q(y/n)) = (0?)), so
oy/n = —y/ninstead, implying

Ao = (b+cvn) (b—cyn) =b* —nc®.
Thus, b2 — nc? = —1. This finishes. [ ]

Remark 5.189 (Nir). The condition b? — nc? = —1 is actually effective: take o := /b — cy/n, which has
minimal polynomial f(X) = (X2 — b)2 — nc?. We can see that (b + cy/n) /b — cy/n = £v/—b+ cy/n,
which is another root of f(X), so there is indeed an isomorphism o defined as the composite

L=Q(vb—cyn)= % > Q(+/—b+cyvn) =Q ((b+c\/ﬁ)\/b— c\/ﬁ> =1L,

sending ca = (b+ cy/n)a. We can check by hand o has order four, which finishes verifying that L/Q has
# Aut(L/Q) > 4, so L/Q is Galois with Gal(L/Q) = (o) = Z/4Z.

And let's see this in action.
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Example 5.190.If n < 0, then > — cn? > b2 > 0 > —1, so there exists no Galois extension L/Q
containing Q(y/n) such that Gal(L/Q) = Z/4Z. To be explicit, Q(i) cannot be embedded into a Z/4Z-
extension.

Example 5.191. Our work with Gauss sums in Exercise 5.186 shows that v/5 = £G € Q((5), so we can
embed Q(v/5) € Q(¢5). And indeed, we see that 22 — 5. 12 = —1 is a solution, as needed.

Example 5.192. Taking n = 3, we are trying to solve b> — 3¢? = —1 for b, ¢ € Q, which becomes
22+ 22 = 3y2 (%)

for some z,y, z € Z and z # 0 after setting z to be the least common multiple of the denominators of
b and c. However, by checking (mod 3), we can see 22 = —2? forces z and z to be divisible by 3, which
forces y to be divisible by 3, meaning that solutions to (x) can be transformed under

(x,y,2) = (2/3,y/3,2/3).

However, this implies that z is divisible by infinitely many powers of 3, which does not make sense.

Remark 5.193. The actual proof of Shafarevich’s theorem involves a lot of back-tracking to attempt to
find bigger extensions, finding that sometimes we cannot do this, and then going backwards.

5.6.3 Division Rings

Let’s continue with our applications of cyclotomic polynomials. Here is the object we will focus on.

Definition 5.194 (Division ring). A division ring K is a ring K with identity (but not necessarily commu-
tative) such that every element has a left and right multiplicative inverse.

Example 5.195. Any field is a division ring.

Example 5.196. The quaternions H make a noncommutative division ring.
Here is our theorem.

Theorem 5.197 (Wedderburn). Any finite division ring is a field.

Proof. The proof is in two steps: write down the conjugacy class equation and then apply some theory of
cyclotomic polynomials. We set

F, ={a€ K :ab=baforeachb c K}.

It is not too hard to see that F, contains 1 and 0, is closed under addition ((a1 + a2)b = a1b + a2b = ba; +
baz = b(a1 + a2)), and closed is closed under multiplication (a1a2b = bajaz), so in fact F is a subring of K
where multiplication commutes and hence is a field. To finish our set-up, we note that K is an abelian group
containing F,; and hence will behave like an F,-vector space. In particular, #K = q%Fal is a power of ¢; set
n = [K :F,].
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Our end goal is to show that K = F,. We now apply our first trick, writing down the conjugacy class
equation of K* as

#EK* = E #C =#F; + E #[z],
CCKX [z]CK*
#[z]>1

where our sums are over distinct conjugacy classes. Now, by the Orbit-stabilizer theorem, the size of [z] for
somea € K is equal to #K* / Stab(x), where

Stab(z) = {a € K* : ax = za} .

Essentially the same checks as before verify that C'(z) := {a € K : ax = xza} contains 1 and 0 and is closed
under addition and multiplication, so we won't write them out. So C(x) is a subring of K and in particular

also a F,-vector space, so it will have size ¢l®(®)¥1]. So, throwing out 0 as appropriate,
X _ qn -1
#K - (q 1) + Z q[c(x):]}rq] o 1 . (*)
[]CK
#[z]>1

Now, #[z] > 1 becomes [C(a) : F,| < [K : F,] = n.

We now apply our second trick, bringing in cyclotomic polynomials. Namely, look at ®,,(g). This will
certainly divide ¢™ — 1, and it will certainly divide g:_i foreach k = [C(x) : Fy] < n from the conjugacy
classes, so () implies that

Pn(g) [g - L.

But this will force n = 1 because |®,,(¢)| > |¢ — 1| for n # 1. Namely,

()l =| JI @-¢Hl= TI le—<¢=lg—1°" >]g-1]

ke(Z/nZ)* ke(Z/nZ)*

Here, the bound ]q — Cf§| > |q — 1] comes essentially because ¢ > 1, coming from the following picture.

Ck

Getting this bound rigorously would be annoying, but the main point is that |¢ — e“’|2 = (g —cos 6)?+ (sin 0)?
achieves its minimum when we simultaneously minimize (¢ — cos #)? to (¢ — 1)? and (sin )% to 0.

Anyways, if we are to have |®,(¢)| < |¢ — 1|, then we must be hitting all of our equality cases, so in
particular ¢* = 1for each k € (Z/nZ)* so that n = 1is forced. Thus, K is one-dimensional over F,, so
K =TF,. This finishes. u

As an application of Wedderburn's theorem to projective geometry, we state Pappus'’s theorem.

Theorem 5.198 (Pappus). Fix X := P"*(F) some n-dimensional projective space over a field F. Then
given three collinear points Py, P>, P; € X and three more collinear points Q1, Q2, Q3 € X, define the
point Ry, as being the intersection of Pyy1Qk+2 and Pr12Qk11, Where the indices are taken (mod 3).
Then R1, Ry, R3 are collinear.
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Proof. As a bad proof, one can give coordinates to everything and solve for Ry, R, R3 explicitly in terms
of the coordinates of everything else and then find the line explicitly containing all three points. Roughly
speaking, because the statement is true, this approach must work. |

Here is the mandatory image for this theorem.

To see the importance of Pappus's theorem, we note that the following is true (without proof).

Theorem 5.199. Fix X := P"(R) some n-dimensional projective space over a division ring R. Then Pap-
pus'’s theorem holds if and only if R is a field.

Proof. The backwards direction was given above. As for the forwards direction, one can imagine choosing
our six points in a particular convenient way and then writing out Ry, Rs, R3 so that being collinear depends
on a particular application of the commutativity of multiplication. I'm not sure how to write this out, but |
also don't care very much. |

The point of bringing in Wedderburn's theorem is that it tells us Pappus's theorem will hold whenever X is
finite because this forces R to be finite, hence forcing R to be a field.

Remark 5.200. It feels as if there ought to be a geometric/combinatorial proof that Pappus’s theorem
holds whenever X is finite, but | think Professor Borcherds said that no such easy proof is known.

As an aside, we note that the set of finite-dimensional division algebras over a field forms a group.

Definition 5.201 (Brauer). Roughly speaking, the Brauer group of a field k consists of equivalence classes
of finite-dimensional division algebras [D] over k, where the group law is given by

where D ® E = Fnx",

This group law is strange, but it works.

5.6.4 Determinants

We are going to quickly talk about the determinant and trace of a linear transformation to later talk about
the norm and trace of an element.

Definition 5.202 (Determinants for R). Fix V" a finite-dimensional R-vector space with a linear transfor-
mation T : V — V. The amount that 7' “multiplies volumes" is det V, up to sign.
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Observe that the map taking 7' to the amount T scales volumes by induces a map
d:Hom(V, V) — Rxo.

As some examples of what this can do, we see that applying one transformation 7} and then another T3 will
cause the scaling to compound, so
d(T\To) = d(T1)d(T>).

Additionally, it is not too hard to show that

1

1 e
1

by more or less using “base times height”-type arguments. (Here blank spaces are 0, and e are generic
elements.) Additionally, we can see that

A1
Ao n
d . =11 Il
N k=1

An

because the linear transformation sends the unit cube to a |A\;| x - - - x |A,| box. However, we know that the

actual determinant has
A1
Ao n
det , =T M (2)
: k=1

An

So the difference between d and det is a possible sign in our volume. We might want to consider signed
volumes or something to fix this, but oftentimes we do actually want to consider volume changes, in which
case we do need to keep track of the absolute value.

Remark 5.203. The sign of det T" is whether T preserves “parity.” Intuitively, det T = 1 means that the
action of T requires some kind of reflection. Rigorously, it is not a bad idea to define “rotations” as
linear transformations T' with det T' = 1, especially in more esoteric spaces.

We would like to extend this definition to general fields. Here are a few ways we can do this.

Definition 5.204 (Determinants, I). Fix k a field. Then we simply define the determinant of a matrix in
k’n,XTL by
aiy o Qg
det | @ . = Z (sgno)at o1 2,62 - - - An,on-
Gni -+ Gnn oESn
Then from this definition we can show that det is multiplicative and that det satisfies (1) and (2).

Warning 5.205. The above sum is a really terrible way to evaluate determinants because the number of
terms is n!. In practice, one should use Gaussian elimination, which requires merely n? operations.

Here is another definition, which is more coordinate-free.
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Definition 5.206 (Determinants, Il). Fix k a field and V an n-dimensional vector space. Then, given T :
V — V a linear transformation, det T is the amount T multiplies the one-dimensional vector space
A (V).

What is A™(V')? As a start, we define the symmetric algebra S(V).

Definition 5.207 (Symmetric algebra). Fix V' a k-vector space. Given a positive integer n, we define the
nth symmetric algebra S™ (V') as V®" modded out by the relation

e RARIR = QDR AR -

Formally, V®" has an S,,-action S,, — Aut V®" by permuting the coordinates, so we define S*(V) as
V®" modded out by this action. Then the symmetric algebra is defined as

S(V)=Eps(v).

We will not actually check that S™(V) is a k-algebra, but it is. The main point is that “modding out by the
Sp-action” is really modding out by the subspace generated by the elements

{UU—TU:J,TGSnandv€V®”}.

Anyways, this definition/intuition can be moved to the slightly more complicated A™ (V).

Definition 5.208 (Exterior algebra). Fix V a k-vector space. Given a positive integer n, we define the nth
symmetric algebra A"(V') as V®" modded out by the relation

S RaRb®-=—(-RbRa® ).
Formally, V®" has an S,,-action S,, — Aut V®" by
o1 ®--Qup) = (sgno) (Vo1 @ -+ ® Vg )M

so we define S" (V) as V®™ modded out by this action. Then the exterior algebra is defined as

A(V) = EPAmV).

Elements of A™(V') are usually denoted by v; A --- v, for {v;}7_; C V. Again, we won't actually check that
A™(V)is a k-algebra, mostly because | don't see a way to do this which avoids pain.
To talk about A™ (V') more concretely, let's give it a basis. Well, give V a basis {b; }}_;, and we claim that
the set of elements
by A+ Abyg,
suchthatk; < --- < k,. To see that these elements span, we see that fully expanding some generic element
vy A - A, along the basis and fully distributing along the tensor product, we see that at least the elements

bkl/\'“/\bkn7

with no extra constraint on the k,, will span. However, some permutation ¢ € S, will be able to force
o(k1) <--- <o(ky),and we see
b, N+ Nbg, = (sgna)bgkl A Nbok

n?

so we are allowed to force our basis elements to have k; < --- < k,,. Further, we note that, if k; = k;f for
i # j, then applying the transposition (¢, j) will preserve by, A --- A b, while adding a sign, forcing

b, A+ Aby, = 0.
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Well, we can throw these elements out too, so we find that we can also force k; # k; fori # j.

Remark 5.209 (Nir). | am not recording here a proof that this basis set is actually linearly independent
because | don’t think one was given in class, and it seems somewhat removed from the class. The
sufficiently inclined can read the check in this MathExchange post.

Anyways, we see that if V' is also n-dimensional, then A" (V') has basis consisting of the single element
by A Aby,

and surely we can track how much a linear transformation scales a one-dimensional subspace. Explicitly,
we are defining det T by
(Tby A+~ ATby,) = (det T)(by A+ -+ Aby).

It is somewhat believable that this is indeed equal to the symmetric sum definition: if we have

all ce . aln n
T=|: . so that Tb; = Zaijbi.
ap1  *°* Qnn =t

In particular, fully expanding Tb; A - - - A T, gives terms of the form

aiy1biy Ao N aignbi, = (i @ign) (b A Ab),
where the i, range over any function {1,...,n} — {1,...,n}. Note that we can still force the i, to a permu-
tation of {1,...,n} because i, = i, would cause the entire term to vanish. But then rearranging the i, into

b1 A -+ A b, adds a sign corresponding to the permutation ¢,, which gives exactly the sum we want.

5.6.5 Trace

Let’s quickly review the trace. This is defined as follows.

Definition 5.210 (Trace). Fix k a field. Then we define the trace of a matrix in k»*" by

air -0 Qin

n
tr | 5 = E Qi
i=1

anl ctt Qpn

Remark 5.211 (Nir). As an example of some results we get immediately from the definition are that
tr(eM) = ctr M and tr(My + Ms) = tr My + tr M,

forc € kand matrices M, M;, M € k™*"( or linear transformations in End(V") for some k-vector space

V). Indeed, the left result comes from writing out c¢M, and the right result comes from writing out

M + M.

Idea 5.212. The trace is, more or less, the derivative of the determinant.

More precisely, we can show the following.

Exercise 5.213. Fix k a field and A € k"*™. Then we have that, for ¢ > 0 small,

det(I +eA)=1+etrA+ 0 (¢%).
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Proof. In practice, we set ¢ to be a transcendental element so that det(I + £A) is a polynomial in €. Set

a1l v Qi
A=

anl ctt Gpn

sothat (I +A);; = 1i—; + ca;;. Namely, we find that

det(I +eA) = Z (sgno) H i=oi + €04 ,01) € klg].
oES, =1

The constant term of this polynomialin e will come from setting e = 0, which we can see gives det(I +0A4) =
1.
So it remains to study the linear term. Fixing some o for now, we see that the term

n

H(]-i:oi + €0i.0i)

i=1

will be able to give us a linear term if we pick (n — 1) of the 1,—,; terms and one of the ca; ;.
But we see now that if i = oi is triggered for (n — 1) values of i, then we must have o = id, so this occurs
only once, and our linear term is
n
Z EQj i =€ tr A,
=1

which gives us what we wanted. n

We also have the following almost “almost homomorphic” law.

Proposition 5.214. Fix k a field and A, B € k"*". Then tr(AB) = tr(BA).

Proof. We do this by direct computation. Namely, set
aip 0 Qi b1 -+ bin
A= . and B=

an1  *° Gpnp bpi o bpn

Then we see that, for indices z, z we have
(AB),. Zaw y. and  (BA),. wa%z

so that
(AB)zo =Y @zybye  and  (BA)yw = Y buylys.

y=1 y=1
Namely, we find that

tr(AB) = i(AB)m = i Qgybyz = i byaay = i(BA)yy = tr(BA),

z,y=1 z,y=1 y=1

which is what we wanted. ]
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Remark 5.215 (Nir). The above two results give a coordinate-free way to define the trace. On one hand,
Proposition 5.214 implies that, under a coordinate change matrix .S, we have

tr (SAS™!) = tr (AS™'S) = tr(A),

so the trace is invariant under change of basis. To fully remove the coordinates, Exercise 5.213 implies
that, given any finite-dimensional k-vector space V, we can define tr A for A € Hom(V, V) as the linear
term of the polynomial det(I + cA) € kle].

Another more coordinate-free view of the trace and determinant is by eigenvalues.

Proposition 5.216. Fix V' a finite-dimensional k-vector space and A € Hom(V, V') a diagonalizable ma-
trix with eigenvalues {\;}}_,. Then

det(A) = [[ M and  tr(4)=> A
k=1 k=1

Proof. Using an eigenbasis for A, we may write

A1
A2

An

From here we can directly compute tr(A) and det(A) to get the result. [ |

Remark 5.217. One might imagine that we could look at other elementary symmetric polynomials of
the eigenvalues, but they are not homomorphisms in general.

Let’s give a quick application of the trace.

Theorem 5.218 (Heisenberg commutation relations). Fix V' a finite-dimensional k-vector space, where
k is a field of characteristic 0. Then if there are linear transformations A, B € Hom(V, V') such that

AB - BA=1,

then V' = {0}.

Proof. Taking the trace of both sides of our equation, we find that
0=tr(AB) —tr(BA) =trl =dimV.
We have to be somewhat careful because dim V' € N, but the above equation takes place in k, sodimV =0

will really only assert that char & | dim V. But in the case where char k = 0, this does force dimV = 0,so0 V' is
the zero space. |
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Example 5.219. The requirement that V' be finite-dimensional is necessary: if we take V- = C[X] as a
C-vector space, then we can consider the linear transformations D : f %f and ux : f — X/f.
There are infinite-dimensional vector spaces; e.g., take V' = C[z] and A to be the derivative and B to be
multiplication by z. Then, for any f(X) € V, we have

d

d / / _
= ox (Xf(X)) = X =5 f(X) = f(X) + X f/(X) - XF1(X) = f(X),

(Dpx — pxD)(f(X))

soindeed, Dux — uxD =id.

Example 5.220 (Nir). The requirement that char k = 0 is also necessary. Otherwise, the trace condition
merely gives char k | dim V, for which there are examples of A and B. For example, in k = Fo,

e R e R R

where we have used the factthat 1 = —1in [Fs.

Remark 5.221. Apparently p-adic string theory exists.

5.6.6 Normand Trace

We have the following definition.

Definition 5.222 (Norm and trace). Fix L/ K a finite extension of fields. Fix « € L and view p,, :  — ax
as a linear transformation L — L, where we view L as a K -vector space.

(a) The norm of a is N%(a) := det(x — ax).
(b) The trace of ais T% (a) := tr(z — ax).

When the extension L/K is clear, we will abbreviate N% to Nand T to T.
Warning 5.223. Professor Borcherds would like you to ignore Lang's definition of the norm and trace
because it is somewhat complicated, for example doing different cases based on separability.

And of course, here is a good example to keep track of.

Example 5.224. Fix C/R or extension with o :== 2 4+ yi € C. Using {1, ¢} as our basis of C/R, we see that
our multiplication by a sends (1,0) — (z,y) and (0,1) — (—y,x), so we get the matrix

r -y

y x|
In particular, we can compute T(a) = 22 and N(a) = 2% +y2. To connect this to more familiar functions,
we see T(a) = 2Rea and N(a) = |al?.
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Remark 5.225 (Nir). This doesn’t show up anywhere below, so we state it now: N is multiplicative, and
T is additive. Indeed, fixing our finite extension L/K and oy, as € L, we find that

T(a1 + az) = tr(z — (a1 + a2)z) = tr ((x = @) + (z = aex)) = tr(z = ayz) + tr(z — agz),
which is T(a) + T(az). Similarly,
N(apaz) = det(z — ayazz) = det ((z — a1z) o (z — apz)) = det(z — aiz) det(z — asx),

which is again the needed N(a;) N(ag).

Here is a useful way to compute the trace and norm, and it will be a precursor to the rest of our discus-
sion.

Proposition 5.226. Suppose that L = K(«) is a finite extension of degree n := [L : K] such that « has
minimal polynomial

Then .
T(a) = Z o and N(«a) = H Q.
k=1

In other words, T(«) is the sum of the conjugates of a, and N(«) is the product of the conjugates.

Proof. The main idea here is that L = K(«) lets us write our linear transformation z — ax in our power
basis
{1,04,042, . .,a”fl} .

Letting our minimal polynomial f(X) € K[X] be

F(X) = aX* e K[X],
k=0

k

where we force a,, = 1, we see that 2 — ax can be defined by sending the basis vectors o* + o**! for

0<k<n-2and

n—1
"ot = Z(—ak)ak
k=0
Namely, z — «ax looks like the matrix
0 —agp
1 0 —ai
1 0 —as
1 —0an-1

We immediately see that the trace is —a,_1, which is

T(a) = —ap—1 = Zak
k=1

by Vieta's formulae. Similarly, for the norm, we see that we can bubble-sort the top row of this matrix to
the bottom with (n — 1) swaps and thus introducing (n — 1) signs, meaning we want the determinant of the
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matrix

(71)n71
1 —Qp—1
—ap.

But now this matrix is upper-triangular and hence the determinant we want is (—1)""!(—ag) = (—1)"ay,
which is

N(O‘) = (_l)nan = H L,
k=1

again using Vieta's formulae. [ |

Remark5.227 (Nir). Amore coordinate-free to get this result is to actually go compute the characteristic
polynomial of u, : 2 — az and find that it is actually f(X). We outline this. Note f(X) is irreducible
over K[X] and has the right degree, so it suffices to check f(u,) = 0 by the Cayley—Hamilton theorem.
But pe : K — Endg (K («)) is actually a ring homomorphism, so we see f(ja) = pia) = po = 0.

5.6.7 Normsand Traces in Towers

More generally, we have the following.

Proposition 5.228. Fix L/ K a finite extension with o € L. Then fix a with minimal polynomial

= [J(X - ) e K[X],

k=1

wheren = [K(«) : K]. Then

n n [L:K ()]
T () = [L: K(a)] Zak and NE (o) = (H ak> .
k=1 k=1

Proof. Once we note that we have the chain K C K(a) C L, it suffices to note the previous proposition

gives
K(Oé) Zak and K(U) H

and then finish by applying the tower law in the next proposition. |

Remark 5.229 (Nir). We have had to be quite careful above, both in statement and proof because we
are not assuming that the «, are distinct, as might not be the case in inseparable extensions.
Here is the aforementioned tower law.

Proposition 5.230. Give a chain of fields K C L C M and « € L, we have the tower law

NY(@)= (N2 o)™ and  T(a) = [M: L) TE ().
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Proof. We essentially work with the following tower of fields.

M

K

Essentially what is going on, now, is that p,, :  — «ax is rather controlled on L because p,, is a multiplication
by a constant in the ground field. To be explicit, fix {v/}}",' a basis of M as a L-vector space. Then we can
write

—

M = L’Ug.
L

3

I
o

Now, the linear transformation p,, : © — «ax preserves each of these subspaces Luv, because o € L, so we
can decompose i, : x — ax as a direct sum of its action on each of these subspaces Lu;.

To finish, we note that Lv, = L by division by v,, and the action of u,, on Lv, commutes with this isomor-
phism; in other words, the following diagram commutes because multiplication commutes.’

Lvy, = L
Ha ‘Lukl l#a Iz
L’Ug = L

So we can compute the determinant and trace of 1, as it behaves on L instead of Lv,, which we have already
studied in the previous proposition. Indeed, we find

TV (0) = trjta = 3 tr(talie) = 3 tr(uale) = [M : L) T (a),
{=0 £=0

where we used the previous proposition in the last inequality. Similarly,

m—1 m—1
[M:L]
N} () = det o = [] det(palze) = [] det(ials) = (N )™,
=0 £=0
which is what we wanted. ]

This more or less lets us define an “absolute” trace and norm.

Definition 5.231 (Reduced trace and norm). Fix L/ K a finite extension with a € L. Then we define the

reduced trace as iz T% (a) and the reduced normis N% (o) /(LK1

Both of these definitions have problems: if K has characteristic dividing [L : K], then the reduced trace
doesn’t exist. If K does not have enough roots of unity, we might not be able to take the 1/[L : K] powers.

But given that the reduced trace and norm always actually exist and are well-defined, we can show that
there are independent of the field L. Indeed, suppose that & € Ly, Lo where L, Lo are finite extensions of
K. Then we know that

1
[Ll K]

Tli{l (Oé) - [Ll : K] [22[41 : Ll] T%(lLQ (Ol) -

1
[Lng : K]

T ()

9 More rigorously, what is going on is that we are expanding our p,, along the basis {vyws }, where {we} is some fixed basis of L,
and we find that the matrix is the same as if we had just acted on {w. } to begin with.
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where we have applied the tower law. But now m ngLQ (a) is symmetric in Ly and Lo, so the above

must also be equal to T%(a), as needed.

1
[LQ:K]
Similarly,*°
(Nf(l (a))l/[leK] — N%1L2 (a)l/([leK][Lngle]) _ Néle (a)l/[Lng:K]
where we again have applied the tower law. But now N&%2(a)!/[L1L2:K] is symmetric in L, and Lo, so the

above must also be equal to N&2(a)/[L2:K] as needed.
Anyways, for Galois extensions, much of our story with the minimal polynomial collapses nicely.

Proposition 5.232. Fix L/K a separable extension and let G be the set of embeddings L — K. Then,
for o € L, we have that

T(a)=>» o(@) and N(a) =[] o(e).

ceG ceG

In particular, when L/K is Galois, G = Gal(L/K).

Proof. Let f(X) be the monic minimal polynomial & € K[X] so that
FX) =TT —aw)
k=1

forsomeelementsay,...,a, € Kandn = [K(a) : K]. But L/K is separable, so these elements are distinct,
and L/K is normal, so all of these elements live in L because « is one root of f(X).

The main point is to understand the multiset {oca},ec in order to compute the sum and product in the
statement. To start, we notice that the embedding K'(a) < K by
K[X]

f(X)

can be extended to a full embedding in G with the property that @ — a,. In particular, for each ¢ € G, the
fact o is an embedding forces oo € {ay}}_,, and we can indeed hit every o, as described above, so the orbit
of a under G is the entire {a }7_;.

We now directly focus on the multiset

1%
1%

K(a) K(oe) CK

{UO‘}UEG-

Using the bijection G/ Stab(a) to the set {va},cq, we see that each oo in the above multiset will be hit
# Stab(«) times, which by the Orbit-stabilizer theorem is #G/n. Namely, when we write

E oa,

ceG

this sum is hitting each «, exactly #G/n = [L : K]/[K(«) : K] = [L : K(«)] times (note #G = [L : K]
because L/K is separable!), soitis

Similarly, we find that

which is what we wanted. [ |

10 The roots do not necessarily make sense, but as long as they are defined in some way which is compatible with all of the other
roots, we should be safe. | am not going to write this out.
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5.6.8 Algebraiclntegers

Here is something algebraic number theorists care about.

Definition 5.233 (Algebraic integers). Given a finite extension K /Q, the algebraic integers O C K are
those which are the roots of some monic polynomial.

We will take on faith that the sum and product of two algebraicintegersis anotheralgebraicinteger; showing
this is approximately the same as showing that the sum and product of two algebraic numbers is an alge-
braic number while keeping track of the integral condition. But this is surprisingly technical and somewhat
removed from the course, so we will not say more.

Anyways, the point of is that the set of algebraic integers in K forms a ring, once we add in the fact that
0 and 1 are algebraic integers. Here are some examples.

Example 5.234. The algebraic integers of Q(1/—3) is not Z[v/—3]. The main point is that

1++v/-3
2
is an algebraic integer because it is the root of the polynomial 22 + 2 + 1 = 0.
Example 5.235. The algebraic integers of Q(1/—2) are Z[v/—2]. We will show this shortly.

The following example justifies the name “integer.”

Exercise 5.236. The set of algebraic integers in Q is exactly Og = Z.

Proof. Certainly each n € Z is an algebraic integer because n is the root of the monic polynomial X —n €
Z[X]. So in one direction, Z C Og.

Conversely, we show % € Q with ged(p,q) = 1is an algebraic integer forces ¢ = +1 and thus % € Z.
Indeed, if p/q is an algebraic integer, then find our monic polynomial

n—1
FX)=X"+Y X" € Z[X]
k=0

such that f(p/q) = 0 so that
n—1
0=q"f(p/g) =p" + Y arp"q" "
k=0

Now, we see ¢ divides the left-hand side as well as big sum, so ¢ divides p™ as well. But then ¢ divides
ged (p™, q) = 1, forcing ¢ = +1. -

As promised, let's compute the algebraic integers of a quadratic extension.

Exercise 5.237. Fix m a squarefree integer not equal to 1, and set K := Q(y/m). Then

2,3 (mod 4),
1 (mod 4).

m =

Note m = 0 (mod 4) never occurs because m is squarefree.
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Proof. Note that all integers will be algebraic integers because n € Z is the root of the monic polynomial
X —n € Z[X]. Additionally, we see that \/m will be a root of X? — m € Z[X],s0 /m € Ox. Whenm =1

1+vm

5 isaroot of

(mod 4), we also have that

X2_x4iz™

EZ[XL

so % is also an algebraic integer. All this is to say that Z[/m] C Ok always, and whenm =1 (mod 4),
we also have Z {1%%} C Ok.

It remains to show the equalities. Suppose a+by/m € Q(y/m) is an algebraicinteger. Well, note that the
Galois conjugate a — by/m will be a root of the same polynomial as a + by/m, so in particular it will be monic
with integer coefficients, so a — by/m will be an algebraic integer.

So the key trick is that we know

T(a+by/m)=2a  and N(a + by/m) = a* — bm?.

will also be algebraicintegers. But then 2a € Qs an algebraic integer, so 2a, a®> —mb? € Zis forced. Further,
we notice that
4 (a® = mb*) — (2a)® = —m(2b)*

must also be an integer, so the same logic in the previous case forces 2b € Z. So, setting a = 2cand b = 2d,
we see that M is our algebraic integer, and checking its norm now, we see that

c? — md?

— ez,

4

so ¢ = md? (mod 4). We now have two cases.

« If m =1 (mod 4), then we notice that ¢ = d? (mod 4). Reducing to (mod 2) somewhat brazenly, we
see that
c=c*=d*>=d (mod?2),

so ¢ =d (mod 2) is forced. However, this means that we can write

c+<2i\/ﬁzc;d+d_ 1+2ﬁez[1+2‘/ﬂ,

which is what we wanted.

« Otherwise, m = 2,3 (mod 4), and here ¢ = md? (mod 4) forces ¢,d = 0 (mod 2). Explicitly, if d is
even, then ¢? = 0 (mod 2) forces c even. And if d is odd, then we have ¢*> = m (mod 4), which has no

solutions.
Thus,
crivm ez,
which is again what we wanted. [ ]

5.6.9 Trace Form
To close off, we note that the trace of an extension L/ K induces a symmetric bilinear form
(. B) = T(ap).

To be explicit, we see that («, 8) = (53, a) because multiplication commutes; the additivity of the trace gives
(a1 + az, B) = (o1, B) + (az, B); and the fact

T(ca) =tr (c- (x — az) = ctr(z — az) = cT(a),
forany c € K, gives (ca, 8) = ¢(a, ).

Here is our favorite example.
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Example 5.238. Fix C/R to be our finite extension. Then
(a + bi,c+ di) = tr((a + bi)(c+ di)) = 2(ab — cd),

where the minus sign is somewhat important.

We hope that this bilinear form is non-degenerate. We will talk about this next lecture.

5.7 December?2

Overhead, without any fuss, the stars were going out.

5.7.1 Trace Form

Last lecture we had brought up the symmetric bilinear form

(o, ) =T(aP)

for any finite field extension L/ K. In particular, last time we quickly checked that (-, -) is in fact a symmetric
bilinear form.
While we're here, we bring up the following warning.

Warning 5.239. If L/K has degree 2, then we have the two natural quadratic forms o — N(«) and
a—T (a2) .

We have not defined what a quadratic form,** but for those who do know, it might be somewhat concerning
that there need not be an obviously “best” quadratic form for a field extension.
Anyways, we are interested in when our trace form is non-degenerate.

Definition 5.240 (Nondegenerate). A bilinear form (-, -) is nondegenerate if and only if (x,y) = 0 for all
y implies z = 0. In other words, for each z # 0, there exists y # 0 such that (z, y) # 0.

We note that our trace form (-, -) will be nondegenerate if and only if there exists a € L such that T(«) # 0.
Certainly if such an (-, -) is nondegenerate, then 1 # 0 promises there is some « such that

T(a) = (1,a) # 0.
Conversely, if there is some a with T(«) # 0, then for any = # 0, we see that
(x,a/z) =T(x-a/z) =T(a) #0.

So this verifies that (-, -) is nondegenerate.
It is tempting to believe that (-, ) is always nondegenerate because

TE(1)=[L:K]-1=[L: K]

by Proposition 5.228 because 1 € K. However, T% outputs into K, so we still need to check if [L : K] is
nonzero in K, so 1 will work to prove that (-, -) is nondegenerate only when char K { [L : K].
Regardless, it looks like (-, -) is nondegenerate most of the time. However, it is not always.

1 One possible definition is that a function ¢ : V' — k is a quadratic form if and only if ¢(cv) = c2q(v) forc € kandv € V and
(v,w) = q(v + w) — q(v) — g(w) is a symmetric bilinear form.

303



5.7. DECEMBER 2 250A: GROUPS, RINGS, FIELDS

Example 5.241. Fix p a prime and L = F,(t?) with K = F,(t) so that L/K is not a separable exten-
sion. Then the trace is 0 on L. The reasoning for this example will generalize to arbitrary inseparable
extensions, so we will just show the general case below.

As alluded to above, we do have the following criteria for being nondegenerate.

Theorem 5.242. Fix L/ K a finite field extension. Then there exists « € L such that T(«) # 0if and only
if L/K is separable. In particular, (-, ) is nondegenerate if and only if L/K is separable.

We divide this proof into two pieces.

Proof of the backwards direction in Theorem 5.242. Fix L/ K separable. Most of the work in the proof will
be done assuming that L/K is Galois, and we will go back at the end and do this for general separable
extensions. So for now fix G :== Gal(L/K).

Namely, we want to find some « € L such that T(«) # 0. But by Proposition 5.232, we know that

T(a) = Z oa.

oelG

Having T(«) = 0 always would imply that o = 0, which would violate Lemma 5.151 because this pro-
vides a nontrivial relation among distinct automorphisms, finishing immediately. However, while we're
here, we note that we can generalize Lemma 5.151 in the following way.

Lemma 5.243 (Artin). Fix L a field and M a monoid. Further, pick up some finite set of homomorphisms
S C Hom(M, L*). Then the set S is L-linearly independent.

Proof. We essentially redo the proof from Lemma 5.151. Suppose for the sake of contradiction that there
is a nontrivial relation involving the elements of S. This means we can find a nontrivial relation

Z aroy =0, (*)
k=1

where m is chosen to be minimal and {o; }77; C S. For example, this implies that aj, # 0 for each k because
then we could remove the term a0y to get a smaller relation.

By dividing out () by a1, we may assume that a; = 1. Now, 01 # 09, so there exists some h such that
o1(h) # o2(h), so plugging in gh into (x) gives

m

o1(h) - o1(9) + Y aror(h) - ok(g) =0
k=2

for each g € M. But multiplying (*) through by o1 (k) gives

m

o1(h) - o1(9) + Y aro1(h) - ox(g) = 0
k=2

for each g € M. Subtracting our two equations, we see that

m

> ar(ok(h) — o1(h))or = 0,

k=2

which is a nontrivial relation because az(o2(h) — o1(h)) # 0. But this is a strictly smaller nontrivial relation
than our supposed smallest one, so we have our contradiction. |
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We now apply the lemma to our case. Here we find that the automorphisms of G are homomorphisms
L* — L*, sothey are L-linearly independent, so we must have

T=) o#0.

ceG

In particular, there must exist some « such that T'(«) # 0, which is what we wanted.
We now turn to the general case. To reduce to the Galois case, we have the following lemma.

Lemma 5.244. Fix L/ K a separable field extension. Then there exists a field M O L such that M/K isa
Galois extension. If L/K is finite, then we may assume M/ K is finite.

Proof. Fix L/K generated by some separable elements .S C L. Then, foreach a € S, define f, € K[X]tobe
the monic irreducible polynomial for a.. Then we define M to be the splitting field of all these polynomials

{fa €S}

We see that M is the splitting field of some set of polynomials, so M/K is normal. Additionally, M will be
generated by the roots of these f,, which will all be separable elements because f, is separable. So M/K
is a separable extension, so M/ K is Galois.

Now, when L/K is a finite extension, we may assume that S is finite (for example, take a basis for L as a
K -vector space), so there are only finitely many polynomials, so M/ K will be finite because each polynomial
can only add finitely many degrees. |

So we may extend L/K to a Galois extension M /K, reducing to the Galois case. Namely, our work above
promisessome o € M suchthat T («) # 0. Tofinish, we pick up the following tower law, which generalizes
Proposition 5.230.

Lemma 5.245 (Trace tower law). Fix K € L C M a chain of finite separable field extensions. Then
™ =1L oT¥.

Proof. Extend M/K to afinite Galois extension N/K. Further, let {04}, be the embeddings L — K fixing
Land {r;}?_, be the embeddings M < L fixing L. Notem = [L : K]andn = [M : L].

Note that we can extend each embedding o, : L < K to some fixed embedding o, : N — K, but
now because N/K is normal, we see that o, € Gal(IN/K). In the same way we can extend each embedding
Te : M < L to an automorphism 7, € Gal(N/L).

Now, the main technical claim is that

(kj,ﬁ) — UkT(‘M

is an injection; here the restriction to M makes o7, an embedding M — K fixing K. (The composition here
is legal because we lifted these to elements of Gal(N/K), which is the only reason we need N at all.) Indeed,
suppose that ok, 7o, |p = 0k, 7e, | p- Then we see that

ot ow v =Te,7 M
Now, the right-hand side fixes L, so crkf;okl |ar will also have to fix L. So it follows that

Ok |1 = Oky |,

so because we lifted the o, from embeddings L — K, it follows that o, = o%,. From this we get that
T, = Tp, as well because we lifted these from embeddings M — L.
So because (k,¢) — o7 is an injection, the fact that there are [L : K] of the o, and [M : L] of the 7,
implies that we have found [M : K] distinct embeddings M — K fixing K, so this must be all of them.
Thus, we find, forany o € M,

T (@) =YY (owm)(a).
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But this summation is also equal to
e (o) = Yoo (Yot

after distributing. So indeed, T} = T% o T} . [ |

Remark 5.246 (Nir). The tower law holds for the norm by using the same argument but replacing the
sums at the end with products. There is also an analogous statement for inseparable extensions, but |
would rather avoid inseparable extensions as much as possible.

The point of the tower law is that we see T¥ () € L satisfies
Tic (T (@) = T (@) £ 0,

so we have indeed found an element of L with nonzero trace. This finishes the proof of the backwards
direction. |

Proof of the forwards direction in Theorem 5.242. We show the other direction by contraposition: take L/ K
inseparable, and we show that T(a) = 0 for each @ € L. We need to know something about inseparable
extensions, so we show the following.

Lemma5.247. Fix K afield and f(X) € K[X]aninseparable, irreducible polynomial. Then there exists
g(X) € K[X] such that f(X) = g(X)P, where p := char K.

We remark that we do have p > 0 above because all extensions are separable in characteristic 0 by the
derivative trick.

Proof. We see that f(X) is irreducible and has a double root at some o € K. This means that f(a) = 0 and
f'(a) =0, s0
(X — a) | ged(f(X), f'(X)).

If f/(X) # 0, then we see that 1 = deg(X — o) < deg ged(f(X), /(X)) < deg f(X) while ged(f(X), f/(X)) |
f(X), which violates f being irreducible. So we must have f/(X) = 0.

But this implies that each nonzero monomial a; X* of f(X) must have kap X* = 0in K, so kay is 0 in K,
so kis0in K, so char K | k. In other words, the only nonzero monomials of f(X) will have degree divisible
by p, so we may write

f(X) = zn: apX*r
k=0

for some coefficients a;, € K. Finding some root a,lv/p € K, we see that

n

f(X)= Z (a,lc/pXk)p = (iai/pXk>p,
k=0

k=0

which gives what we wanted. |
We now attack the result directly. Fix some « € L. Then we are interested in studying
Ti(@) = [L: K(a)] - Ti'(a).
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Namely, we are working with the following tower of fields.

L
|
K(a)
.

Note that if both L/K(a) and K(a)/K are separable extensions, then it follows that L/K is separable,*?
which cannot be. So we can do casework on which extension in inseparable.

« If L/K(«) isinseparable, then fix 5 some inseparable element with f(X) € K(«)[X] its minimal poly-
nomial. We note that [K(a)(5) : K(«)] = deg f, but by Lemma 5.247, we see p | deg f, so p divides
[K(a)(B) : K(a)] and hence [L : K(a)]. So it follows

[L: K(a)]- TE®(a) =0.

« If K(a)/K isinseparable, then we note a must be inseparable. So fix f(X) its minimal polynomial and
actually find g(X) € K[X] such that f = g? by Lemma 5.247. Factoring g in K[X], we can write

9(X) = [[(X —ax)
k=1
for some elements a, € K, so it follows that
FX) = T](X = an).
k=1

Thus, Proposition 5.226 implies

TR (q) = Zpak =0,
k=1

so we still have T% (a) = 0.

Combining the above two cases finishes. |

5.7.2 Discriminant: Theory
The trace form gives rise the following invariant.

Definition 5.248 (Discriminant). The discriminant of a bilinear form (-, -) on afinite-dimensional k-vector
space V is defined by taking a basis {v;}}_; for V and computing

(vi,v1) -+ (v1,vn)

det

<Umvl> T <Un7 Un>

Of course, changing the basis by some change-of-basis matrix A will change the discriminant, but only by a
controlled factor of (det A)2. Rigorously, we have the following.

12 The main point is that separability is equivalent to any embedding K < K having [L : K] extensionsto L < K. So L/K and
M/ L separable lets us extend each of the [L : K] embeddings L < K = Lto [M : L][L : K] = [M : K] embeddings M — L = K.
So M/K is separable.
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Lemma 5.249. The discriminant of a bilinear form (-, ) on a finite-dimensional k-vector space V is a
well-defined element of k/k*2.

Note that we are allowing the discriminant to be zero, but zero belongs to its own coset.

Proof. Fixtwo bases {v;};; and {w;}7_,. We need to show that

<U1,U1> <Ulavn> <w17w1> <w17wn>
det ; : and det

<Un; ’U1> tee <'Un7 vn> <wn;w1> T <wn7 wn>

belong to the same coset of k/k*?. Well, expanding the basis w; along the basis v;, we are promised con-
stants a,;; € k such that
n
wj; = Zaijvi.
i=1

Accordingly, we define the matrix
ail - Qin

an1 ot Opp

This lets us expand

n n n n
<wj17wj2> = <Z iy 51 Viys Z ai2j2vi2> = Z iy gy <vi17vi2>ai2j2 = Z(AT)jlil <vi17vi2>Ai2j2'

=1 ia=1 i1,60=1 i1,io
It follows that
<w13w1> <w1awn> <’L)1,1}1> <’L)1,’U7,,>
<wnaw1> <wnawn> <Un,1]1> <'Unavn>
so
(wi,wi) oo (Wi, wp) (v,v1) -+ (v1,vp)
det : . : = (det A)* det : . :
<wn»w1> <wn;wn> <vn7U1> <Unavn>
Noting that det A # 0 because it is a change of basis matrix (the columns are linearly independent because
the w, are linearly independent), we are done. |

We also note that all of our work showing that the trace form is nondegenerate is not in vain.

Lemma 5.250. A bilinear form (-, -) on a finite-dimensional k-vector space V is nondegenerate if and
only if its discriminant is nonzero.

Proof. Fix a basis {v;}_; of V. Then we see that

<U1,U1> </U17U’n>
det : : =0
<U’n7’U1> <Unavn>

if and only if there is a linear relation among the columns. Namely, the discriminant is zero if and only if
there are constants not all zero {a;}?; such that

iai<’l)i,’l]j> =0
=1
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for each v;. This is equivalent to having constants not all zero {a;}}-; such that

<zn: aivi,uj> =0
i=1

for each v;. But because the v, form a basis, this is equivalent to having some vector v # 0 such that
(v,v;) =0

for each v;. (Having the constants a, not all zero of course gives some v # 0, and conversely, some v # 0
can be expanded along the basis v, to give the constants a, which cannot be all zero.) Continuing, having v
such that (v, v;) = 0 for each v; implies that any vectorw = Y_" | b;v; € V has

(v,w) = Z bi(v,v;) = 0.

And conversely, if (v, w) = 0 for each w € V, then (v,v;) = 0 for each v,.
Thus, the discriminant vanishes if and only if there is some v # 0 such that (v,w) = 0 for eachw € V,
which is exactly the condition for (-, -) being degenerate. |

In particular, we showed that the trace form on L/K is nondegenerate as long as L/ K is inseparable, so in
these cases, we can compute the discriminant of the trace form and know that is is nonzero.

5.7.3 Discriminant: Computation

In practice, here is one way to compute the discriminant of a field extension.

Proposition 5.251. Fix L/K a finite extension where L = K (o) for some a € L. Then the discriminant
of the trace form of L/ K is the discriminant of the monic minimal polynomial f(X) € K[X] for a.

Proof. This won't actually matter for the proof, but for psychological reasons, we note that L/ K is insepa-
rable if and only if the trace form is degenerate if and only if the discriminant of L/K is 0. And on the other
side, L/K is inseparable if and only if « is inseparable if and only if f has a double root if and only if the
discriminant of f vanishes.

So now take L/K separable, which will make the notation a bit easier later. Fix

n—1
FX)=X"+) " aX* € K[X]
k=0
our monic irreducible polynomial for « over K. The key to compute the discriminant will be to use the power
basis

{l,a,...,a"_l}.
Namely, we want to compute the determinant of
T(a®) T(a') -+ T(a"?)
T(at) T(a?) --- T (a™)
T (an—l) T (an) .. T (a2n—2)

For this, we set {0} }?_, our embeddings L — K fixing K. Because L/K is separable, we are reassured
n = [L : K]. In particular, fixing indices i and k,

T (@) =) oj(a)'o;(a).
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But we can view this expansion as the matrix multiplication

o100 cee onal oc1a® o g™t
. . . . N 9
U.lan—l .. o.nan—l o.naO . O.nan—l
MT M
so we are interested in
T(a®) T(a') -+ T(a"?)
T(a') T(a?) - T(a")

) =det MT - det M = (det M)?.
T (an,—l) T (an) . T (042”_2)
But now we see that M is a “Vandermonde determinant,” for which we have the following theory.

Lemma 5.252. Working in the polynomial ring Z[ Xy, . .., X,,—1], we have that

Xy .- ngl
det| oo = J] (X-Xo)
X271 . X’:LL:ll 0<t<k<n

Proof. For brevity, let the determinantbe D € Z[ Xy, ..., X, —1].

Choosing distinct indices Xy, X;, we note that there is an evaluation sending X to X,. But this makes
the X} row equal to X, so properties of the determinant implies that the entire determinant must vanish
after doing this.

So viewing the determinant a some giant polynomial where the variable X}, evaluating at X}, = X, for
each k # (¢ gives the polynomial a root. It follows that*?

(X —Xo) | D

foreach k # ¢. But now we see that (X} — X,) generates a prime ideal because these are the elements which
vanish on setting X = X, which is prime because polynomial rings over Z are integral domains.
In particular, X}, — X, isirreducible, and because each of these are distinct irreducibles, we see that

II &x—x0|D.

0<tl<k<n

We now compare the total degrees and leading coefficients of both sides.
« By direct expansion, we see that
n—1
D= Z (sgno) HX,‘CT’“.
oce€Sym(Z/nZ) k=0
In particular, by nature of the sum on permutation, only ¢ = id will add to the
XXy - X0

term, so this term will have coefficient +1. Additionally, we note that the degree of any term in D will

be n—1 n—1 n—1 n(n 1)
ok __ _ — — A
degHXk —Zo(k)—Zk— 5
k=0 k=0 k=0

foranyo € S,,.

13 Formally, it is true that f € R[X] has f(a) = Oifand only if X —a | £(X).
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« On the other hand, we note that the massive polynomial

I &xe-x0)

0<t<k<n
isaproductof () = @ terms of degree 1, so the entire polynomial has degree @ Additionally,
we claim that the coefficient of
XoXq - X0
is +1. Indeed, the leading coefficient (under the lexicographic ordering) of the product
I &x-x0
0<t<k<n

can be found by taking the leading coefficient of each of the factors Lemma 4.91. So we see that our
leading coefficient is
I X

0<tl<k<n
Here, each X, will appear k times, so our leading coefficient is precisely +1XJ X} --- X"~}

So to finish, we note that D and the product have the same degree of @ and have the same nonzero co-

efficient for X0 X1 --- X"~ so they must be the same polynomial because we already know that the product
divides D. m
Thus, we see that
(det M)* = H (oro — opa)?.
1<k<t<n

We now note that the o,a will all be roots of f, and they must all be distinct because o, = o, implies that
o = oy. So the n values oa will have to loop through all deg f distinct roots of f. So the above product is
indeed the discriminant of f. [ ]

Noting that the discriminant L/ K only depends on datainternalto the field extension, we see that it provides
a fairly useful invariant, arguably the second most important after the degree.

Example 5.253. Set L; = Q[X]/ (X® — X 4+ 1) and L, = Q[X]/ (X3 + X + 1) . We can compute
disc Ly = disc (X® — X + 1) = —4(-1)* — 27 = —23,

and
disc Ly = disc (X® + X +1) = —4-1° — 27 = —31.

Now we see that disc L/ disc L is not a square in Q, so these fields are not isomorphic.

Inthe case of algebraic number theory, the discriminant is even more important. We have been working with
the discriminant up to a square in K, but one can do better than this in the case of number fields.

Definition 5.254 (Discriminant, number fields). Fix K /Q a number field. Then the discriminant of K/Q
is the least possible (in terms of magnitude) discriminant of the trace form when we specifically choose
a basis of algebraic integers.

In particular, we note that the determinant computation for a basis {v,}}_; of K/Q will be
T(vivy) -+ T(vivg)
det : : €Q,
T(U;Lvl) e T(’U;L’Un>
and when the v, are algebraic integers, we will have that the discriminant is an integer as well, so the dis-

criminant is a rational integer and hence an integer. So it makes sense to define the discriminant as the least
possible.
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Remark 5.255. There's a theorem due to Hermite which says that there are only finitely many algebraic
number fields with a given discriminant, so the discriminant is a pretty good invariant.

5.7.4 Image of the Norm

Fix L/K a finite extension. Number theorists are interested in the image of the norm map N : L* —
K*.

Example 5.256. Theimage of N : C* — R* is R, and in particular, R* /im N = 7 /27. It is somewhat
surprising that we are getting a finite quotient.

Example 5.257. The image of N : Q(i) — Q consists of all rationals which are the sum of two squares,
which is a bit hard to classify. A little bit of elementary number theory is able to show that this image
consists of all positive rationals = such that v, (z) is even for each prime p = 3 (mod 4).

However, we can at least gain some control in the easiest cases.

Exercise 5.258. The map N : L* — K * isonto when L and K are finite.

Proof. Because K is finite, define K = F,, where ¢ is some prime-power, and then we see that L = Fy»
for some positive integer n. Now, Gal(L/K) is cyclic of order n generated by the Frobenius automorphism
o : a+— af. So we find that

n—1 n—1
Nay= [] oa=]]c"@=]]a =al"D/eD,
c€Gal(L/K) k=0 k=0
We now finish with a size argument. Notice that ker N has at most q;:f elements because each element of

the kernel will be a root of the polynomial
x @ =1/(e-1) _1 _q.

But now we notice that L has ¢" — 1 elements, and K* has g — 1 elements, so we can simply size bound by

#L* = #imN - #ker N < #K%  #kerN < (q—1)- L=
q

1
1 ::qngfl;:;#LX’

so equalities are forced. Namely, #im N = #K*,soim N = K* finishing. |

5.7.5 Solving a Cubic

Let's solve a cubic by radicals, for fun, though this is somewhat useless because we can well-approximate it
other ways.

Exercise 5.259. We solve the cubic equation f(X) :== X® +bX +c= X? + X + 1 by radicals.

Proof. We can check that the Galois group of f is S5 because we just showed that the discriminant of f is
A? = —4p® — 27¢% = —31 ¢ Q*? above, where here we are using Proposition 5.126. Regardless, we will
most of the solution agnostic to b and c.

Instead of solving f over Q, we start by throwing in all the roots of unity we could want. Because we will
be making a chain from a group of order 6, the only possible quotients in the chain will have order 2 or 3, so
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it suffices to include the square and cube roots of unity. So we set w to be a primitive third root of unity and
solve f over Q(w).
As in our discussion of solving polynomials by radicals, we need a chain witnessing that S; is solvable,
SO we use
S3 2 Az 2 (id).

By Galois theory, this will correspond to the chain of normal extensions
Q) C K C L,

where
Gal(K/Q(w)) = S3/A3 2 7Z/2Z and Gal(L/K) = Ay /(id) 2 Z/37Z.

In particular, these are all cyclic extensions, by our Kummer theory work, they will be generated by radicals,
and in fact we can find these radicals by finding eigenvectors of the Galois groups.
We work these out one at a time.

(i) Tostart, we needto talkabout K, so we need to find an element fixed by A5 = ((123)) but not S5. Well,
suppose that the roots of f(X) are a, 3, v, and we would like an expression fixed by A3 but not S5. For
this, we use

A= (a—B)(B =)y — ).

We see that the action of A3 on A will consist of an even number of transpositions and hence an even
number of signs, so A will be fixed by A3. But on the other hand, the transposition («, 8) sends A
—A, so Ais not fixed by S3.

Now, we see that A? is the discriminant of f, which we worked out as A2 = —31 above. So we find
that K has the nontrivial element /—31, and this must fully generate because K/Q(w) is quadratic. So
K = Q(w,v-31).

(i) Nextwe needtofindageneratorof L, where we know that L/ K is a cyclic extension of order 3. Namely,
we want eigenvectors of our Az-action of L. Back in our work in Kummer theory, we found the eigen-
vectors

v+ w tov + OJ_20'2U,

for some v € Land o € As. These will work for our purposes provided that we get out a nonzero
eigenvector. With this in mind, we choose v = « and hope we get lucky. So we set

r=a+pf+7,
y=a+tw ' f+w?y,
z=a+w 2B +wly,

which are eigenvectors of the given type because A3 cycles «, 3, v, meaning that there is 0 € A3 with
2

o = («, B,7). Namely, we can see that oo = x and oy = wy and oz = w?z.
We now have enough tools to finish. We know that z = 0 (by Vieta's formulae) and would like to find y
and z explicitly. Because y and z are eigenvectors with eigenvalue a power of w (by construction), we know
y3, 2% € LA = K, so we will find 3? and 2°.

Now, we see that (3,7) sends y to z and so will send 3 to z3. So the orbit of y® under S3 is at least
{y? 2*}, but because y? is fixed by As, the orbit has size at most 2. So we see that {y?, 2%} is an orbit in
K/Q(w), so

y3 4 ZS, y3z3 c Q(w)
because these will both be fixed by all of S5. Using the fact that « + 8 + v = 0 and the help of SageMath, we
can compute
v+ 2% =27aBy = —27c and yz = —3(af + By + vya) = —3b.
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Thus, 1223 = —27b3, so y> and 23 are the roots of T2 4 27¢T — 273 = 0, which are

BB = —27c+/(=27c)? —4(-270%) _ —2Tc+3AiV/3
) 2 2 .

As a sanity-check, we do see that 32, 22 € K = Q(w, A), as predicted. Anyways, we can set (up to ordering
Of a? B? 'Y)r

5| —27c + 3A/—3 5| —27c — 3A/—3
y=\—, and 2= —
2 2
There are three possible cube roots for y and z, but we can choose compatible y and z by ensuring yz = —3b.

Being off by a factor of w induces the transformation y — yw” and z — zw ™", which will merely permute the
roots {a, 8,~} in the definition of y and z, which is safe.
Anyways, we see that a linear-algebra inspired computation shows

am XU

x+wy+w2z :r—i—oﬂy—&—wz
3 ’Yzfv

which upon seeing x = 0 gives

1
3

1 3 —270 + 3A 2 3 270 — 3A\/
B = g
53] —27c+ 3Ay/=3 .\3/270 - 3A\/3>
YN eV T )

Choosing the right cube roots for y and z does let us recover o &~ —0.682327 and § =~ 0.341163 + 1.1615413
and y ~ 0.341163 — 1.1615414. So we are done. ]

\/ 27c+3Ar \/ 2703Ar)

Wl

"}/:

5.7.6 Solving a Quartic

We can also do this for degree-4. The solution in Wolfram Alpha took about a page, so we won't bother
doing this fully explicitly, but we will sketch.

Exercise 5.260. We sketch how to solve the quartic
X' +bX?*+cX +d=0.
Proof. Our Galois group is at worst S, and certainly a subgroup of it, so we don't lose anything by forcing
the Galois group to actually be S,. Well, we know that S, is solvable, for which we use the chain
Sy D Ay D (Z/27)? D (id).

Namely, if the Galois group is actually G C Sy, then we merely have to intersect each of the above subgroups
with G to still have a chain witnessing the solvability of G. To be explicit,

(Z/22)* = {id, (12)(34), (13)(24), (14)(23)}

is our subgroup of A4 with index 3.
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But we note that S/ (Z/27)* = S5, s0 we should be able to reduce to the cubic case.* Using our Kummer
theory, we start by adding in all the roots of unity we could ever want—which are the roots of unity dividing
the order of our quotient groups, namely {1, 2, 3,4}. So we are looking at a chain of extensions

Q(i,w) CKCLCM,

where Gal(L/Q(i,w)) = Ss and Gal(M/L) = (Z/27)?. So we see that, indeed, L/Q(i,w) should be the
splitting field of a cubic by, say, finding a normal basis element. This is possible but quite painful.

Remark 5.261. One can try to do a similar thing to solve quintics, but the finest chain we can make is
S5 2 45 2 (id),
and undoing A5 essentially requires a quintic.

To find L, we want to find expressions involving our roots oy, as, a3, ay which are fixed by (Z/2Z)? C S,.
Here, we let Sy act on the roots by acting on the indices.

Well, motivated by our Kummer theory, we look for eigenvectors of our elements in (Z/27)?, so we see
that

Zi=01] 0 — a3 — 0y

is fixed by (12)(34) and is an eigenvector with the correct eigenvalue (of —1) by the (13)(24) and (14)(23),
so this element will generate one of the quadratic subfields M /L, and in particular its square will be in L.
Looking at the orbit of 22 under S3, we find the elements

y1 = (1 + a2 — az — ay)?,
y2 = (0 —ag+ag — 044)za

ys = (a1 — ag — az + ay)?,

which are all permuted by the Galois group Sy, but they are fixed by (Z/27)2. So y1,v2,y3 € L will be the
roots of some cubic (with coefficients in Q(i,w)), presumably with Galois group as large as possible inside
Ss3, and so they will generate our L for degree reasons. We can find which cubic by writing down

>+ By’ +Cy*+ D=0

and solving for the coefficients B, C, D by plugging in y1,y2,y3 and treating this as a massive system of
equations. We will not write this out, but we should get

y372by2+(b27d)y+c2:0.

This lets us solve for our y, by reducing to the cubic case. By choosing our square roots correctly, we can
extract \/y1 = a1 + as — a3 — a4 and its friends.

Remark 5.262 (Nir). It is the fact that we need to solve a cubic in the middle of solving a quartic that
makes the quartic formula so painful. In contrast, solving the cubic did need to solve a quadratic, but
solving quadratics is significantly more automatic than cubics.

Lastly, we need to convert our y, to ae. So we set | /yg := a1 + as + ag + a4 = 0 and notice that

VT 1 1 1 17w
V778 B R NS T O
N 1 -1 1 -1 |as
NI 1 =1 -1 1] |ou

14 We have S3 2 S4/ (Z/27)? because it has six elements and is not abelian because (12)(13) = (132) and (13)(12) = (123) are not
in the same coset of (Z/27)2.
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So we can solve for the a, by inverting the middle matrix (it is invertible). Alternatively, we can solve by hand

a1 =1 (Vo + VI + V2 V)
az =1 (VY0 + VY1 — VY2 — /Y1),
az = 1 (VYo — VU1 + VY2 — \/Ya) »
as =3 (Vyo — VI — ¥z + V) -
This finishes the outline. [ |

5.7.7 Infinite Galois Extensions: Advertisement

Let's talk a little about infinite Galois extensions M /K.

Example 5.263. Consider Q C Q. This is an infinite Galois extension: Q is the splitting field of the set
of polynomials Q[X] over Q, and because all polynomials in characteristic 0 are separable, this makes
Q/Q both normal and separable.

Remark 5.264 (Nir). Because of our careful phrasing, most of our normality and separability conditions
(Remark 5.53, Proposition 5.56, and Proposition 5.64) will go through, with the exception of Proposi-
tion 5.64 (b).

The proof of Proposition 5.64 does need to show (a) implies (c): if L is generated by separable ele-
ments {«; };c1, then fixing any « € L, we can express « in terms of finitely many as,, so « is in a finite
extension generated by separable elements, so « is separable by Proposition 5.64.

Remark 5.265 (Nir). Similarly, not all of Proposition 5.76 will go through. We show (a) and (b) are equiv-
alent. For this, we need (b) implies (a): normal is equivalent to being a splitting field of some S C K[X];
separable implies that each polynomialin S is separable. Combining these observations finishes.

However, not all of our Galois theory will go through so smoothly.

Warning 5.266. When M/ K is an infinite extension, then subgroups of Gal(M/K') do not correspond
to intermediate extensions by taking fixed fields.

5.7.8 Krull Topology: Galois Edition

We continue to work with M/ K an infinite Galois extension. The way to fix the Galois correspondence is to
give Gal(M/K) a topology, and intermediate extensions will correspond to open subgroups.
Here is the idea for the topology we are about to create, the “Krull topology.”

Idea 5.267. The Krull topology on Gal(M /L) is the coarsest topology making restriction maps continu-
ous.

To be explicit, fix some intermediate extension K C L C M such that L/K is finite and Galois. Then we
have the restriction map
¢: Gal(M/K) — Gal(L/K).

This map is sufficiently natural, so we hope to make it continuous. Here, finite sets like Gal(L/K) should
get the discrete topology, so we see that, given o € Gal(L/K), we would like the pre-image

o (o)
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to be an open set. Because ker ¢ = Gal(M/L), we see that we are asking for @ Gal(M/L) to be an open set,
where here we are fixing @ € Gal(M/L) to be any extension of o € Gal(L/K).

In other words, for any o € G and finite intermediate Galois extension K C L C M, we are declaring
that o Gal(M/L) should be an open set. And these are all of the open sets we ask for.

Definition 5.268 (Krull topology, ). Fix M /K a Galois extension. Then we define the Krull topology on
Gal(M/K) as having basis given by the subsets o Gal(M/L), where o € Gal(M/K) and L is some finite
Galois subextension of K.

We quickly check that these subsets do actually form a basis, and not just a sub-basis.

Lemma 5.269. Fix M/K a Galois extension. Then the subsets ¢ Gal(M /L) C Gal(M/K), where o €
Gal(M/K) and L is some finite Galois extension of K, do in fact form a basis of a topology.

Proof. We have already declared Gal(M/K) an open set, so we don’t have to worry about covering. So fix
01,09 € Gal(M/K) and Ly, L finite Galois subextensions of M /K. We would like to study

01 Gal(M/Ll) Nosy Gal(M/Lz)

Note that any o in the above intersection will have o|1,~r, = 01|r,nL, @and o|r,AL, = 02|L,nL,, SO for the
above intersection to be nonempty, we must have

O’l‘leLQ = 02|L1ﬂL2'

So we will suppose that the above condition holds, for otherwise the empty union of basis elements will
equal to the empty set that we need. Let o := 01|11, € Gal((L; N Ly)/K).
So we are now looking for o € Gal(M/K) and L/K a finite Galois subextension of M /K such that

o Gal(M/K) C 04 Gal(M/L4)

for each index. At this point we recall that, as noted in our work earlier, o, Gal(M/L,) consists of the ele-
ments which restrict to o, |1, on L. So now we set L := Ly N Ly and L := L L, so that

Gal(L/Lo) — Gal(L1/Lo) x Gal(L2/Ly),

isanisomorphism, essentially for size reasons.'® Now, o1, -0y ' € Gal(L1/Lo)and 11,05 " € Gal(La/ L)
(namely, fixing Ly by construction of o), so we can be promised some 7 € Gal(L/Ly) such that

T|Lo = U.lL. : 00_1'

We extend 7 and o up to Gal(M/K) without further remark, and we see that
(too)|L Gal(M/L)
will restrict to (70¢)|L, = 0|z, On Le. This is what we needed. [ |
While we're here, we might as well check that our restriction maps are actually continuous.
Proposition 5.270. Fix M /K a Galois extension. Then, given a Galois subextension L/K of M (not nec-

essarily finite!) the map
‘| : Gal(M/K) — Gal(L/K)

is continuous, where the Galois groups have been given the Krull topology.

13 Injectivity is because L = L1 La. Surjectivity is by size because [L : Lo] = [L1 : Lo][L2 : Lo], which we show by showing
Gal(L/L2) — Gal(L1/Lo) is anisomorphism, which is not easy but not too hard.
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Proof. It is sufficient that the pre-image of basis elements of Gal(L/K) are open in Gal(M/K). Well, fix
o € Gal(L/K) and F some finite Galois subextension of L/K so that we want to show that the pre-image
of o Gal(L/F) is openin Gal(M/K).
Well, we note that o Gal(L/F) consists exactly of the 7 € Gal(L/K) which restrict as 7|r = o|r. Now,
T € Gal(M/K) is in the pre-image of o Gal(L/F) if and only if 7|1 is in ¢ Gal(L/F) if and only if 7|p = o|p.
Thus, the pre-image is
o Gal(M/F),

where we have extended o to some & € Gal(M/K). This finishes. [ |

As an aside, we note that we may technically remove the Galois condition from our basis elements.

Lemma 5.271. Fix M /K a Galois extension. Then the subsets ¢ Gal(M /L) C Gal(M/K), where o €
Gal(M/K) and L is some finite extension of K (not necessarily Galois!), form a basis for the Krull topol-
ogy as well.

Proof. Set B to be the basis for the Krull topology and B’ to be the set of elements defined in the lemma. It
is enough to show that the elements of 15 are open in the topology induced by B’ and conversely.

» The elements of B are indeed open in B’ because elements of B can be written as o Gal(M/L) where
o € Gal(M/K), and L is some finite (Galois) subextension of M /K.

+ Fix some element o Gal(M/L) € B, where L is some finite subextension of M /K. We may embed L
into some finite Galois subextension L’/ K, and we note that

Gal(M/L') C Gal(M/L).

In particular, we notice that, for each 7 € Gal(M/L), we have 7 Gal(M /L") C Gal(M/L), so we see

that
oGal(M/L) = U {o7} C U or Gal(M/L") C U or Gal(M/L),
reGal(M/L) rEGal(M/L) P reGal(M/L)
is 0 Gal(M/L). So we get equalities, so o Gal(M/L) is indeed open under the basis B. [ |

So here is our second version of the Krull topology.

Definition 5.272 (Krull topology, II). Fix M /K a Galois extension. Then we define the Krull topology on
Gal(M/K) as having basis given by the subsets o Gal(M/L), where o € Gal(M/K) and L is some finite
subextension of K.

Remark 5.273. We remark here that the Krull topology on G := Gal(M/K) satisfies the following two
properties, which we won't bother checking.

(@) The composition map G x G — G is continuous.
(b) The inversion map G — G is continuous.

These two properties makes G into a “topological group,” a notion which we won't use directly but
worth knowing about.
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5.7.9 Krull Topology: Profinite Edition

As before, we work with M/ K a Galois extension. We will build the Krull topology in a more group-centric
way. The main idea hereis that some o € Gal(M/K) can be tracked by its various restrictions to finite Galois
subextensions of M /K. That is, we have a map (a homomorphism, in fact)

Gal(M/K)— [[ Gal(L/K)
KCLCM
L/K fin., Gal.

induced by gluing all of our restrictions together. Here the product is over finite Galois subextensions of
M/K,and we will abbreviate it to K C L C M in the discussion that follows.

In fact, we can be more precise about the image. Namely, if we have a chain of finite Galois subextensions
K C Ly C Ly C M, thenagiven o € Gal(N/K) has

0|L2|L1 = U|L1

by the nature of restriction. So we really have a map

Gal(M/K) — {(O’L)L € H Gal(L/K) : o1,|r, = o1, foreach L; C Lg} ,

KCLCM

where it is not too hard to check that the image on the right is in fact a group by the subgroup test. Alterna-
tively, we can turn the finite Galois subextensions L of M /K into a category by inclusion and note that the
right-hand side above is

limGal(L/K) = { (or)r € [[ Gal(L/K):o1,|1, = ou, foreach L, C Ly
L KCLCM

by Lemma 3.150. Here we are using the fact that the map L — Gal(L/K) is functorial, where L; C Ly
induces the restriction map Gal(Ly/K) — Gal(L/K).
However, the map we've constructed is actually quite nice.

Proposition 5.274. Fix everything as above. Then the map

Gal(M/K)— lim Gal(L/K)
KCLCM

defined above is an isomorphism of groups.

Proof. For concreteness, we immediately unravel Jm Gal(L/K) into the given map

p:Gal(M/K)— < (o)L € H Gal(L/K) : op,|r, = or, foreach L; C Ly
KCLCM

by Lemma 3.150. We note that ¢ is a homomorphism because restriction gives
(o7)lL =0lLoTlL

forany o, 7 € Gal(M/K) and finite Galois subextension L/ K.

We now define the inverse map ¢~ !. Given tuple (o), of the product, we define o € Gal(M/K) as fol-
lows: for some o € M, find any finite Galois extension L containing « (one exists by embedding K («) into a
finite Galois extension) and set

o(a) = or(a).

We now have the following checks.
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» We check o(«) is well-defined: suppose L; and L, are both finite Galois subextensions of M /K con-
taining a, then L; N Ly will also be a finite Galois subextension of M/K.'® And now we see that

oL (@) = oL, |0, (@) = 0,0z, (@)
for either L,, so we are done here.

» We check that 0 € Gal(M/K). Note that ¢ fixes K because any a € K has o(a) = ok (a) = a, where
ok = idg because this is the only element of Gal(K/K).

And o is an automorphism because, for any «, 8 € M, we can embed K («, 8) into a finite Galois ex-
tension L, and then o|;, = o, is an automorphism, so

ola+f)=ca+c8 and o(ab) = (ca)(cp),

by computing with the restriction o .
« Themap ¢~ ! : (o) — o is ahomomorphism. Well, fix (¢1)r, and (7). Then, forany o € M, fix L’

a finite Galois subextension of M /K so that
¢ ((on)p) e (o)) (@) = ¢~ ((or)2) (Tra) = (opTr)(a) = ¢~ ((or7)r) (@),
which finishes.
To finish, we need to check that ¢ and ¢! are in fact inverses.

» Fixo € Gal(M/K). Then, forany @ € M, place « into some finite Galois subextension L’ of M/K so
that
v~ (po)(a) = o7 ((0lL)) (@) = ol (a) = o(a),

1

soindeed, = o =id.

 Fix (o) inthe inverse limit. Then, fix some finite Galois subextension L’ of M /K so that the L' com-
ponent of (¢ o ¢™!) ((o1)L) is o1 because this is the restriction of o =* ((01).) to L', by construction.

Now that we have homomorphisms going in both directions, we have finished verifying the group isomor-
phism. |
Remark 5.275. At a high level, we could also imagine showing the above by writing

Hompg (M, K) ~ Homg (@L,K) ~ @HomK(L,F),
L L

where the limits are taken over finite Galois subextensions L of M/K. Now, Hom (L, K) consists of
the embeddings L — K fixing K, so because L is normal, we are describing Gal(L/K), so the above
really shows Gal(M/K) ~ lim  Gal(L/K).

The reason we did not follow the above remark is because we are going to need to know what the map and
its inverse are somewhat shorty.
At this point we note that we have the usual embedding

Gal(L/K)C [] Gal(L/K).

M KCLCM

g

K

If we want to add a topology to everything, then we could give the finite groups Gal(L/K) the discrete
topology that they deserve and then give the huge product the product topology. Lastly, the limit could be
given the induced topology as a subset.

And now: a miracle occurs.

16 We see (L1 N L2)/K is separable because each element is in L1 and hence separable. The extension is normal because any
polynomial f € K[X]witharootin L; N La fully splits in both L1 and L2 and hencein L1 N Lo.
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Theorem 5.276. Fix everything as above, with the described topologies. Then the map

Gal(M/K) — lim Gal(L/K)
KCLCM

is in fact a homeomorphism.

Proof. Label the given map ¢ : Gal(M/K) — Hm Gal(L/K). We already know that ¢ is a bijection, so we
need to check that ¢ and ¢! are continuous.

« We show that ¢ is continuous. It suffices to show that any sub-basis element of Jim Gal(L/K) has
open pre-image. Well, the product topology will have sub-basis given by

Il scc I Galr/K),

KCLCM KCLCM

where all but one of the Sy, have S;, = Gal(L/K). In fact, we can restrict the Sy, to only be basis ele-
ments of Gal(L/K) and still generate the full topology (as a sub-basis), which we means we can force
Sy, to beaasingleton o, € Gal(L/K). Namely, we may define {S.} 1, by

g _ {o} L = Ly,
P Gal(L/K) L # Lo,

for some chosen o € Gal(Ly/K).
But now, checking the induced topology on the the inverse limit, we are looking at the open set

[T scn lm Gal(L/K)

KCLCM KCLCM

{(O—L)L e JI Gal(L/K):op,l, =01, foreach L C Lyand oy, = a} .

KCLCM

Now, pushing this through ¢!, we see that 7 € Gal(M/K) has o(7) in the above set if and only
if 7|, = o. However, from our earlier discussion, this pre-image is simply o Gal(M/Ly) (where we
choose any extension of o to Gal(M/K)) which is a basis element and therefore open.

« We show that ¢! is continuous. It suffices to show that any basis element of Gal(M/K) has open
pre-image. Well, picking up a basis element o Gal(M/Ly), these are the elements 7 € Gal(M/K)
suchthat 7|;, = o|L,, S0 image under ¢ is

(O'L)LE H Gal(L/K):aL2|L1:aLlforeachLlngandaL:a\LU R
KCLCM
which is

I Sen lm Gal(L/K),
KCLCM KCLCM

where

g _flol}  L=Lo
P Gal(L/K) L # L.

But this is a sub-basis element of the induced topology on the inverse limit, so we are done now. B
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Remark5.277. Remark 5.275 is essentially why we would expect this in advance. Alternatively, we have
more or less endowed @L Gal(L/K) with the coarsest topology such that the projection maps to each
Gal(L/K) are continuous, which is precisely the Krull topology.

Namely, we seethat U C Gal(M/L) ifand onlyifitsimagein Jim Gal(L/K) is open, so we get the following
third definition of the Krull topology.

Definition 5.278 (Krull topology, I11). Fix M /K a Galois extension. Then we define the Krull topology on
Gal(M/K) as being induced by the product topology under the embedding

Gal(M/L)~ 1
K

=

Gal(L/K)C [] Gal(L/K).

M KCLCM

S

5.7.10 Fun with Topology

Let's actually do some fun things with our topology.

Proposition 5.279. Fix M/ K a Galois extension. Then Gal(M/K) is Hausdorff under the Krull topology.

Proof. This is a matter of unwinding the definitions. Fix distinct automorphisms 01,02 € Gal(M/K). We
need to find disjoint open sets Uy, Us such that o; € U7 and o5 € Us.

Well, 01 # o3 implies that there exists « € M such that oy« # o2a. In particular, 01|k () # 02|K(a), SO
sets Uy and U defined by

Us = {0 € Gal(M/L) : 0|k (a) = Te|K(a) } = 7o Gal(M/K (cx))

are open (in fact, basis elements in our second basis of the Krull topology), disjoint by the nature of restric-
tion, and o, € U,. This finishes. [ ]

It is also true that Gal(M/K) will be compact. The easiest way to show this is by embedding into a prod-
uct.

Proposition 5.280. Fix M/ K a Galois extension. The inverse limit Jim Gal(L/K)isclosedinthe product
[, Gal(L/K).

Proof. We show that the complement of lim Gal(L/K) is open. For this, it suffices to choose any (o)1, ¢
lim Gal(L/K) and find an open set of [ [, Gal(L/K) disjoint from Jim Gal(L/K).
Well, (o) ¢ Hm Gal(L/K) must have subfields L; C Ls such that oy,|n, # or,. In particular, we
define {S}1 by
{or,} L=1,,
St =1 {oL,} L = Ly,
Gal(L/K) else,
so that [, S¢ contains (o)r, but any (7z)r € [[; St has 71,|r, # 71, so that [, Sp is disjoint from
lim Gal(L/K). This finishes. |

Theorem 5.281. Fix M /K a Galois extension. The group Gal(M/K) is compact under the Krull topol-
ogy.
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Proof. We note that the image of Gal(M/K) under the continuous embedding

Gal(M/K)= lim Gal(L/K)C [[ Gal(L/K)
KCLCM KCLCM

is closed by the previous proposition. But the space [[, Gal(L/K) is the product of the compact (finite dis-
crete) spaces Gal(L/K) and hence compact by Tychonoff’s theorem. So it suffices that a closed subset of a
compact subset is compact,'’ so we are done. [ ]

Remark 5.282. In fact, it is in general true that any profinite group (i.e., inverse limit of finite groups)
will be compact under some induced topology, roughly using a proof similar to the one above.

Here is some other magic that our topology can do.

Proposition 5.283. Fix M /K a Galois extension. Then, given 7 € Gal(M/K), the maps x — 7z and
x — xT are both continuous.

Proof. It suffices to show that the pre-images of a basis element o Gal(M/L) will be open, where o €
Gal(M/K) and L is some finite Galois subextension of M /K. Well, the pre-image under z — 7z is

77 0 Gal(M/L),
which is a basis element and hence open. Similarly, the pre-image under z — z7 is
oGal(M/L)r™ ' =077 - 7Gal(M/L)r ! = o~ ! Gal(M/7L),

where we are using Lemma 5.108. Again, we see that we have hit a basis element and so are done. |

Proposition 5.284. Fix M /K a Galois extension, and set G := Gal(M/L). Then a subgroup U C G is
open if and only if it is closed and has finite index.

Proof. We check the directions one at a time.
(@) FixU C G an open subgroup. We show that U is closed and has finite index separately.

» We show that U is closed. We see that, given o € Gal(M/K), oU is the pre-image of U under
the map = +— o~ !z, so each oU will also be open. Namely, all cosets in G/U are open, so the
complement of U is

G\U=|Jot,
ocdU

which is also open, so U is closed.

« We show that U has finite index; this is by compactness. Namely, as above, we note that G/U
will provide a cover for G, and each cU € G/U will be open. So G/U is an open cover of G and
hence has a finite subcover {o,U}}_, by compactness (!).

We finish by claiming G/U = {oxU}}_,, which will imply that G/U is finite. Indeed, certainly
{oxU}7_; C G/U. Conversely, forany cU € G/U, we see that o belongs to some open set in our
finite subcover, so say

o € o,U.

ThenoU = 0,,U € {0, U}}_,, finishing.

7 1f V is closed in the compact space X, then any open cover of V can be extended to an open cover of X by adding X \ V, which can
then be refined to a finite subcover and restricted to be a finite subcover of V.
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(b)

Fix U C G a closed subgroup of finite index. As before, given o € Gal(M/K), G \ oU is the pre-image
of G\ U under the map = — o~ 1z,s0 G \ oU will also be open.

Now, choosing coset representatives {1, ...,0,} for G/U such that ;U = U, we see that

U:G\OUkU:ﬁG\UkU

k=2 k=2

is the finite intersection of open sets and therefore is open. This finishes. |

Remark 5.285. The above also holds, in a weaker form, for general topological groups (i.e., not nec-
essarily compact). Explicitly, in the absence of compactness, the above proof shows that open implies
closed and that closed and finite index implies open.

To finish our discussion of the Krull topology, we should actually show that it does salvage the Galois cor-
respondence.

Theorem 5.286 (Galois correspondence). Fix M/ K a Galois extension.
(a) Given an intermediate extension F' of M/ K, the subgroup Gal(M/F) is closed in Gal(M/K).
(b) Fixasubgroup H C Gal(M/K). Then Gal (M/M*) is the topological closure of H.

(c) In particular, if H is a closed subgroup, then H = Gal (M /M) .

Proof. We take these one at a time.

(a)

There is a way to do this by mostly doing topological group theory, imitating Proposition 5.280. In-
stead, we claim that
Gal(M/F) = (] Gal(M/L),
LCF
where the intersection is taken over finite Galois subextensions L of M/K contained in F. Indeed,
certainly o € Gal(M/F) implies that o fixes L and hence each L.

And conversely, for any ¢ in the intersection and o € F, we note that we can place K(«) in a finite
Galois extension L of M /K so that o must fix L and hence fix «. So the equality follows.

But now we see that each Gal(M/L) is an open subgroup of Gal(M/K), so it follows that each of these
are closed as well. So Gal(M/F) is some large intersection of closed sets, so Gal(M/F) is also a closed
set.

Let V be the topological closure of H, and we claim V' = Gal (M/M*) . Note that Gal (M/M*) is a
closed set by (a), so it follows that V' C Gal (M/M*H) .

In the other direction, we note that V consists of H and its limit points, so it suffices to show that each
point in Gal (M/M*) is either in H or a limit point. Well, pick up 7 € Gal (M/M*"); if r € H, we are
done, and otherwise we may take 7 ¢ L.

We need to show that 7 is a limit point of H. It suffices to look at basis elements. Namely, for each
basis element o Gal(M/L) containing 7 (where ¢ € Gal(M/K') and L is a finite Galois subextension of
M/K) sothat o Gal(M/L) = 7 Gal(M/L) (by group theory), we claim

TGal(M/L)N (H\ 7) # @.
Because 7 ¢ H, it really suffices to show that 7 Gal(M /L) N H # @.
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We are now ready to do Galois theory; the main idea is to reduce to the finite Galois case, where we
already have control. Note that 7 fixes M* implies that 7 fixes

MPNL={aeL:ha=hforeachhe H ={a e L:h|a=aforeachh e H} = LAl

where H|;, C Gal(L/K) is H restricted to L. In particular, 7 fixing L1z implies that L#Ix C L{72) so
by the Galois correspondence, we see
(le) € H|L.

In particular, there exists h € H such that h|;, = 7|r. But this is exactly what we need to witness
h € 7 Gal(M/L). So we are done.

(c) Because H is a subgroup, Gal (M/M*") will be the topological closure of H. But H is closed, so this
topological closure is simply H. [ ]

5.7.11 Infinite Galois Extensions: Examples

Anyways, let’s do some examples. We start with finite fields.

Exercise 5.287. Fix F, a finite field. We show that F, C F, is an infinite extension with Galois group
isomorphicto Z = [, Z,.

Proof. We already know that finite extensions of I, are the spitting field of X" — X € F,[X]forsomen € N,
which is a separable polynomial, so each finite extension of F, is a Galois extension. So each a € F, lives in
a finite extension I, («), which is separable, so « is separable over F,. Further, each f(X) € F,[X] will split
inF,, so any f with a root in F, will fully split.

SoF,/F, is normal and separable and hence Galois, and we see that

Gal (F,/F,) 2 lim Gal (F,n /F,) = lim Z/nZ,

where Gal (Fy» /IF,) is cyclic generated by the Frobenius  — x9. Technically we have to track what the
maps Z/nZ — Z/mZ in the above inverse limit are, so we do so quickly. Indeed, lim Gal (Fgn /Fq) only has
the restriction maps

Gal (Fgn /F,) — Gal (Fym /F,)

which only exist when F,m C Fyn, which is equivalent to m | n. And when m | n, the restriction map above
will have to take the generator z — x7 of Gal (F,» /F,) to its restriction z — z? on Gal (F;m /F,) . Namely,
tracking generators shows that the following diagram commutes, for each m | n.

Gal (]Fpn /]Fp) Emd Gal (]Fpm /]Fp)

| |

Z/nl —— T)mZ

So we do get that
lim Gal (Fyn /F,) = @Z/nZ = 7.

Lastly, we note that Z = [1, Z, was shown on Exercise 3.154, finishing. [ |

We can also get reasonable control of abelian extensions of Q using the Kronecker—Weber theorem.

Exercise 5.288. Let Q*" be the maximal abelian extension of Q. Assuming the Kronecker—Weber theo-
rem, we show that Q*"/Q is a Galois extension with Galois group Z* = Hp Zy.
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Proof. Note that
Gal(Q*/Q= |J K

Gal(K/Q) abel.

which is well-defined as a field essentially because the composite of two abelian extensions is another
abelian extension®® so that any a, 8 € Gal (Q*"/Q) can be placed in some abelian extension K'L/Q where
a € K and 3 € L, giving closure Q* under addition and multiplication.

To show that Q*"/Q is a Galois extension, we note that it is separable because every element of Q"
comes from a separable extension and hence is separable. Further, each polynomial with a root in Q*" has
a root in a abelian extension K/Q and hence will fully split in K and therefore in Q*". So Q**/Q is indeed
Galois.

It remains to compute the Galois group. Well, by the Kronecker—Weber theorem, each abelian extension
K/Q can be contained in a cyclotomic extension Q(¢)/Q, and each cyclotomic extension is abelian, so it
suffices to only focus on cyclotomic extensions. Rigorously, we can start with

Gal (Qab/Q) ~ {(O’K)K € H Gal(K/Q) : o0k, |k, = 0K, foreach K; C Kg} ,

K/Q abel.

but placing each K inside of a cyclotomic extension means that we can fully determine (o )k by the action
on on various cyclotomic fields. So we see that

Gal (Q*/Q) = { Tn)n € H Gal(Q(¢n)/Q) = onlm = om foreach Q(¢m) < Q(Cn)} = lim Gal (Q(¢n)/Q) -

Quickly, we note that the maps in the inverse limit are restrictions

Ga(Q(n)/Q) = Gal(Q(m)/Q),

which exist if and only if Q(¢,,) € Q(¢,) ifand only if m | n. Further, we note that Gal(Q(¢,)/Q) = (Z/nZ)*,
and this isomorphism makes the following diagram of isomorphisms commute.

Gal (Q(CTL)/Q) — Gal (Q(CHL)/Q)

l l

(Z/nZ)* —— (Z/mZ)*
Indeed, we can track o}, € Gal(Q(¢,,)/Q) defined by oy, : ¢, — (¥ through the diagram as follows.

! !

k (mod n) —— k (mod m)

Anyways, the point is that

~

Gal (Q*/Q) = lim(Z/nZ)* = (@ Z/nz) t_gx
by tracking the isomorphisms through. Technically we should check that R — R* preserves limits for rings

R, but this is because R — R* is right adjoint to the group ring functor G — Z|G] and hence preserves
limits. Anyways, we again see that this is
z* =]z,
p

where taking the multiplicative group is still safe because it preserves limits (and in particular, products). W

181f K/Qand L/Q are Galois, then Gal(KL/Q) — Gal(K/Q) x Gal(L/Q) is injective, so if K/Q and L/Q are abelian, K L/Q will
also be abelian.
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It might not be immediately obvious, but having control over the absolute abelian Galois group of Q is quite
useful. To make our presentation more malleable, we will assert but not prove that

X v {il}XZ2 p=2,
» T \(@/(p—1)Z) xZ, podd.

Essentially these are true because we can build an exponential map exp : pZ, — 1+pZ, (here, 1+pZ, C Z, )

by
exp(z) = Z o
k=0
and show by hand that exp is an injective homomorphism. Anyways, we see

Gal (Q*/Q) = {£1} x Zy x [] (Z/(p — 1)Z x Z,).

p odd

At this point, we understand the group on the right pretty well, and this can translate into some cute re-
sults.

Exercise 5.289. We sketch why that there is exactly one chain of Galois extensions Q C Lo C L; C - --
such that Gal(L,,/Q) = Z/p"Z for each n.

Proof. Essentially, the infinite chain is equivalent to asking for an infinite extension L/Q such that L =
Unen Ln = ligL such that

Gal(L/Q) 2 lim Gal(L, /Q) 2 lim Z/p"Z = 7,

Noting that L/Q is now an abelian extension, we see that we are looking for a surjective, continuous group
(restriction) homomorphism

{£1} x Zo x [] (2/(p - 1)Z x Z,) = Gal (Q*°/Q) — Gal(L/Q) = Z,,.
podd

(Certainly L/Q will induce this map. Conversely, for any continuous group homomorphism, we see that the
kernel will be a closed subgroup and hence will induce the desired infinite extension.) But it is not too hard
to believe that there is exactly one such continuous surjection.*? |

Exercise 5.290. We sketch why there is no extension L/Q with Galois group Zy x Z.

Proof. As before, such an extension L/Q will induce a surjective, continuous group (restriction) homomor-
phism
{£1} x Zo x [ (z/(p = 1)Z x Z,,) = Gal (Q**/Q) — Gal(L/Q) = Zy x Zs.
podd

However, it is again not too hard to believe that no such thing exists because the left-hand side only has one
copy of Z. [ |

This last result is quite strange because we have just shown that the inverse Galois problem fails if we push to
infinite extensions and ask about all profinite extensions. The point here is to show how delicate the inverse
Galois problemis.

191n particular, one can show that, when p # ¢ are primes, the only continuous group homomorphism Z, — Zg is the trivial one,
essentially by tracking where the dense set Z C Z,;, goes.
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