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THEME 1

QUADRATIC FORMS

I guess I’ll start with math.

—Martin Olsson

1.1 January 18
Here we go.

1.1.1 House-Keeping
This is a second semester of algebraic number theory, but we are not really learning algebraic number the-
ory. Instead, we will focus on rational points on varieties. Some notes.

• There is a bCourses, which has the syllabus.

• Ideally, we will require a graduate-level first course in algebraic number theory. Notably, we will not
assume class field theory. We will also require algebraic geometry, at the level of chapter II of [Har77].
Roughly speaking, the first half of the course will focus on algebraic number theory, and the second
half will certainly use scheme theory.
It might be helpful to know about cohomology in advance. We will need group cohomology to begin
and more general derived functors later.

• Homework will be assigned about every two weeks. Don’t stress too much about it. However, there
will be no homework drops.

• There will be a term paper, about 10 pages. The idea is to pick a topic you like and then talk about it.

• Grades will be fine as long as you don’t completely vanish.

• If you are sick, do not come to class.

1.1.2 Course Overview
Here are the topics for the class.

5

https://bcourses.berkeley.edu/courses/1521007


1.1. JANUARY 18 254B: RATIONAL POINTS

Quadratic Forms

We will begin with quadratic forms, which are essentially genus-0 curves. Explicitly, we are asking the fol-
lowing question.

Question 1.1. Fix a field K and a quadratic form Q ∈ K[x0, . . . , xn], which is a homogeneous polyno-
mial of degree 2; we are interested if Q has nontrivial zeroes. In other words, we want to know if the
projective variety V (Q) ⊆ PnK has a K-point.

Example 1.2. Set K = Q and Q = x2
0 + x2

1 + x2
2. Then Q has no nontrivial zeroes. Indeed, it has no

nontrivial zeroes over R, and Q ⊆ R.

Remark 1.3. We are describing these quadratic forms as “genus-0 curves” because the variety V (Q) is
isomorphic to P1

K
over K.

We will approach Question 1.1 from the perspective of the local-to-global principle. Indeed, we will show
the following.

Theorem 1.4. Let Q be a quadratic form over a number field K. Then V (Q) has a K-point if and only if
V (Q) has a Kv point for all places v of K.

The above result Theorem 1.4 is very special to quadratic forms, and the analogous statement fails for, say,
elliptic curves.

The reason we are interested in quadratic forms is that these computations lead naturally to class field
theory.

Example 1.5. Fix a number field K, and let Q = x2
0 − ax2

1 be a quadratic form, where a ∈ K×. Roughly
speaking, Theorem 1.4 now asserts that a ∈ K is a square if and only if a is a square in each localization
Kv, which is tied to the Hasse norm theorem.

Here are some references.

• Serre’s [Ser12] is good, though Serre avoids class field theory by focusing onK = Q. We will not want
to avoid these ideas, however, because we want to see a need for cohomology.

• Milne’s [Mil20] is good, though we will of course not do all of it.

• Lam also has a book [Lam05] on quadratic forms.

References for this portion of the course include

Elliptic Curves

After discussing genus-0 curves, we will say something about elliptic curves. The goal is to prove the fol-
lowing result, which is the Mordell–Weil theorem.

Theorem 1.6. LetE be an elliptic curve over a number fieldK. ThenE(K) is a finitely generated abelian
group.

Here are some references.

• Silverman’s [Sil09] is the standard resource, but it avoids algebraic geometry.

We might also spend a lecture saying words about higher-dimensional abelian varieties, but it is a lot harder.
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1.1. JANUARY 18 254B: RATIONAL POINTS

Brauer–Manin Obstructions

These refer to special obstructions to the local-to-global principle, as seen in Theorem 1.4. Poonen has a
reasonable text on this. All of this is already potentially too much, so we will stop here.

1.1.3 Quadratic Forms
Let’s do some math. For most of our discussion here, we fix K to be a field with charK 6= 2.

Definition 1.7 (quadratic form). Fix a field K with charK 6= 2. Then a quadratic form Q on a finite-
dimensional K-vector space V is a map Q : V → K satisfying the following conditions.

• Quadratic: Q(av) = a2Q(v) for all a ∈ K and v ∈ V .

• Bilinear: the functionB : V 2 → K defined byB(v, w) := 1
2 (Q(v+w)−Q(v)−Q(w)) isK-bilinear.

Note B is symmetric automatically.

Remark 1.8. One can view the quadratic form Q as cutting out a projective variety in PV .

Remark 1.9. Given a quadratic form Q on V giving the bilinear form B, we note

B(v, v) =
1

2
(Q(2v)− 2Q(v)) = Q(v),

so we can recover the quadratic form from the bilinear form. This establishes a bijection between
quadratic forms and bilinear forms.

We now associate a special symmetric matrixB∗ to a bilinear formB : V ×V → K. A bilinear formB : V 2 →
K gives a mapB : V ⊗K V → K, which gives a mapB∗ : V → V ∨ by the tensor–hom adjunction. (Explicitly,
B∗ : v 7→ B(v, ·).) Giving V a basis {ei}ni=1 and V ∨ the dual basis {e∨i }ni=1, we may representB∗ as the matrix
A = (aij)1≤i,j≤n. Explicitly, we see

B(ei, ·) = B∗(ei) =

n∑
j=1

aije
∨
j ,

so B(ei, ej) = aij = eᵀiB
∗ej . As such, we see that aij = aji because B is symmetric, so B∗ is symmetric.

More generally, for vectors v =
∑
i xiei and w =

∑
j yjej , we see

B(v, w) =

n∑
i=1

n∑
j=1

xiyjB(ei, ej) =

n∑
i=1

n∑
j=1

(xie
ᵀ
i )B∗(yjej) = vᵀB∗w,

and so

Q(v) = B(v, v) = vᵀB∗v =

n∑
i=1

n∑
j=1

aijxixj .

This justifies us viewing Q as being a homogeneous polynomial of degree 2.

Definition 1.10 (non-degenerate). A quadratic formQon a finite-dimensionalK-vector spaceV is non-
degenerate if and only if the induced bilinear formB : V ⊗K V → K induces an isomorphismB∗ : V →
V ∨.

Remark 1.11. Because dimV = dimV ∨, we see Q is non-degenerate if and only if B∗ : V → V ∨ is
injective, which is equivalent to asserting B(v, ·) : V → K is the zero map if and only if v = 0.
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1.2. JANUARY 20 254B: RATIONAL POINTS

Given our quadratic form Q on K, we note there is a map

n∧
V

detB∗−−−−→
n∧
V ∨ =

(
n∧
V

)∨
of 1-dimensional K-vector spaces, where n = dimV . Equivalently, we get a map(

n∧
V

)⊗2

→ K,

which is still of 1-dimensional vector spaces and is essentially given by B∗. This morphism produces an
element of K, but we can visually see that adjusting the basis of V adjusts this constant by a square in K.

More directly, letting {e′i}ni=1 be a new basis ofV , we can compute the new matrix by computingB(e′i, e
′
j).

Let e′i =
∑n
k=1 sikek so that S = (sij)1≤i,j≤n is the change-of-basis matrix. Then

B(e′i, e
′
j) =

n∑
k=1

n∑
`=1

siksj`B(ei, ej) =

n∑
k=1

n∑
`=1

sikaijsj` = (SᵀAS)ij ,

so SᵀAS is our new matrix, meaning we have adjusted or determinant by the square (detS)2.
So here is our definition.

Definition 1.12 (discriminant). Fix a quadratic formQ on a finite-dimensionalK-vector space. Then the
discriminant is detB∗ ∈ K/

(
K×2

)
, where B∗ : V → V ∨ is the associated linear transformation. Note

that Q is non-degenerate if and only if discQ 6= {0}.

The goal of this part of the course is the following result, which we will write down more precisely.

Theorem 1.13 (Hasse–Minkowski). Let K be a number field, and let Q be a quadratic form on the K-
vector space V . ThenQ has a nontrivial zero in V if and only ifQ has a nontrivial zero in V ⊗K Kv for all
places v of K.

We are going to black-box a few cohomological tools in the course of proving Theorem 1.13. Later we will
go back and prove them.

1.2 January 20
We continue. Today we move towards a proof of Theorem 1.13.

1.2.1 Orthogonal Basis
We established a lot of notation last class, so we pick up the following notation.

Definition 1.14 (quadratic space). Fix a field K of characteristic not 2. Then a quadratic space is a triple
(V,Q,B), whereQ is a quadratic form on the finite-dimensionalK-vector space V , andB is the corre-
sponding bilinear form. We say that the space (V,Q,B) is non-degenerate if Q is.

Bilinear forms tend to behave with special bases.

Definition 1.15 (orthogonal). Fix a fieldK and a quadratic space (V,Q,B). Then v andw are orthogonal
if and only if B(v, w) = 0.

Here’s why we care.

8
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Lemma 1.16. Fix a field K of characteristic not 2. Then a quadratic space (V,Q,B) admits a basis of
orthogonal vectors.

Proof. We induct on dimV . IfQ = 0 (for example, if dimV = 0), thenB(v, w) = 1
2 (Q(v+w)−Q(v)−Q(w)) =

0 for all v, w ∈ V , so any basis will work.
Otherwise, Q 6= 0. It follows that Q(e1) 6= 0 for some fixed e1 ∈ V . To induct downwards, we let H

denote the kernel of the map B(e1, ·) : V → K, which is surjective because B(e1, e1) 6= 0. As such, we can
decompose

V
?
= Ke1 ⊕H,

which is a direct sum as vector spaces. Indeed, for any v ∈ V , we can write v = 〈e1, v〉e1 + (v − 〈e1, v〉e1) so
that 〈e1, v〉e1 ∈ Ke1 while (v−〈e1, v〉e1) ∈ H. Because dimH = dimV −dimK = dimV −1 and dimKe1 = 1,
we conclude that this must in fact be a direct sum.

We now apply the inductive hypothesis to H to finish. Indeed, dimH < dimV grants us an orthogonal
basis {e2, . . . , en} spanning H, where n := dimV . Thus, {e1, . . . , en} spans V and is a basis, and we see
〈ei, ej〉 = 0 for any i < j because either i = 1 and ej ∈ H or by construction of the ei if i, j ≥ 2. �

Remark 1.17. Note that when Q is given an orthogonal basis {ei}ni=1, we get to compute that v =∑
i xiei yields

Q(v) = B(v, v) =

n∑
i=1

n∑
j=1

xixjB(xi, xj) =

n∑
i=1

aix
2
i ,

where ai := B(ei, ei). The point is that we only need to look at quadratic forms lacking cross terms.

1.2.2 Small Dimensions
We are going to induct on dimension to show Theorem 1.13, so we pick up a few lemmas.

Definition 1.18 (represents). Fix a quadratic space (V,Q,B) over a field K not of characteristic 2. Then
we say Q represents c ∈ K if and only if there is a nonzero v ∈ V such that Q(v) = c.

The following lemma explains why we’ve been focusing on representing 0 thus far (e.g., in the statement of
Theorem 1.13).

Lemma 1.19. Fix a non-degenerate quadratic space (V,Q,B) over a field K not of characteristic 2. If Q
represents 0, then Q represents c for all c ∈ K.

Proof. To begin, for any t ∈ K and v, w ∈ V , we compute

Q(tv + w)− t2Q(v)−Q(w) = Q(tv + w)−Q(tv)−Q(w) = 2B(tv, w) = 2tB(v, w),

so
Q(tv + w) = t2Q(v) + 2tB(v, w) +Q(v).

Now, becauseQ represents 0, we may find v 6= 0 such thatQ(v) = 0. Further, becauseQ is non-degenerate,
we see that v 6= 0 requiresw ∈ V such thatB(v, w) 6= 0 by Remark 1.11. Settingα := 2B(v, w) andβ = Q(w),
we see

Q(tv + w) = αt+ β,

where α 6= 0, so letting t vary completes the proof. Indeed, for any c ∈ K, set t := (c− β)/α. �

The following lemma will be useful in our induction on variables.

9
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Lemma 1.20. Fix a non-degenerate quadratic space (V,Q,B) over a fieldK not of characteristic 2. Then
Q represents c ∈ K if and only if R := Q− cy2 represents 0, where R is on a vector space of dimension
one larger.

Proof. In one direction, ifQ(x1, . . . , xn) = c for some (x1, . . . , xn) 6= 0, thenR(x1, . . . , xn, 1) = c−c = 0 with
(x1, . . . , xn, 1) 6= 0.

In the other direction, suppose R(x1, . . . , xn, y) = 0 for (x1, . . . , xn, y) 6= 0. Note Q(x1, . . . , xn) = cy2, so
we have two cases.

• If y 6= 0, then we see Q(x1/y, . . . , xn/y) = c.

• If y = 0, then we see Q(x1, . . . , xn) = 0, but (x1, . . . , xn) 6= 0, so Lemma 1.19 finishes. �

Here is a more basic lemma to deal with small dimensions.

Lemma 1.21. Fix a field K not of characteristic 2. Fix nonzero a, b, c ∈ K.

(a) Q = x2 does not represent 0.

(b) Q = x2 − ay2 represents 0 if and only if a is a square.

(c) Q = x2 − ay2 − bz2 represents 0 if and only if b is in the image of the norm map N: K(
√
a)→ K.

(d) Q = x2−by2−cz2+acw2 represents 0 if and only if c is in the image of the norm mapK(
√
a,
√
b)→

K(
√
ab).

Note that part (d) really requires expanding our field K in a nontrivial way. In particular, even if one only
cared about Q, phrasing part (d) without extending from Q would require some obfuscation.

Proof. Here we go.

(a) Note x2 = 0 implies x = 0.

(b) Applying Lemma 1.20 to (a), we see that Q represents 0 if and only if Q1 := x2 represents a. (Note Q1

is non-degenerate: it has discriminant 1.)

(c) If a is a square, thenQ represents 0 (take (x, y, z) = (
√
a, 1, 0)), and b is indeed in the image of the norm

map K → K.
Otherwise, a 6= 0 is not a square, so x2 − ay2 is a non-degenerate quadratic form. By Lemma 1.20 we
see Q represents 0 if and only if x2 − ay2 represents b, or

b = (x− y
√
a)(x+ y

√
a) = N

K(
√
a)

K (x+ y
√
a)

for some x, y ∈ K, which is equivalent to b ∈ im N
K(
√
a)

K .

(d) This is a bit complicated. We will work towards having the following tower of fields.

K(
√
a,
√
b)

K(
√
a) K(

√
ab) K(

√
b)

K

(1.1)

We quickly deal with degenerate cases.

10
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• If a is a square, recall a 6= 0, so Q represents 0 by (x, y, z, w) = (0, 0, 1, 1/
√
a). Further, we see

K(
√
a,
√
b) = K(

√
ab) because a 6= 0, so c is of course in the image of the norm map.

• If b is a square, Q represents 0 by (x, y, z, w) = (
√
b, 1, 0, 0). Further, K(

√
a,
√
b) = K(

√
ab) be-

cause b 6= 0, so c is again in the image of the norm map.
• If ab is a square but neither nor a nor b are squares, then we see that

√
a =
√
ab/
√
b, so K(

√
a) =

K(
√
b). Thus, c is in the image of the norm map K(

√
a,
√
b) → K(

√
ab) if and only if c is in the

image of the norm map K(
√
b)→ K.

If c is in the image of the norm map, then 0 = x2 − by2 − c · 12 + ac · 02 for some x, y ∈ K, so Q
represents 0. Conversely, if Q represents 0 by (x, y, z, w) 6= 0, then we note z2 − aw2 = 0 forces
z = w = 0 by (b) and so x2 − by2 = 0, which forces x = y = 0 by (b) again. Thus, z2 − aw2 6= 0, so
we can solve

c =
x2 − by2

z2 − aw2
=

N
K(
√
b)

K (x+ b
√
y)

N
K(
√
a)

K (z + w
√
a)
,

so c is in the image of the map N
K(
√
a)

K = N
K(
√
b)

K because this function is multiplicative.

Lastly, we must deal with the case where all the quadratic fields in (1.1) are not K. Quickly, we note
that K(

√
a) 6= K(

√
b) in this situation. Indeed, if

√
a ∈ K(

√
b), then we can write

√
a = x + y

√
b for

some x, y ∈ K. Applying the Galois action of K(
√
a) = K(

√
b), we then see

−
√
a = x− y

√
b,

so x = 0, and we get
√
a = y

√
b for some y ∈ K. Thus,

√
ab = yb, implying K(

√
ab) = K, which

degenerates this case.
It follows K(

√
a) ∩ K(

√
b) = K in our case, so K(

√
a,
√
b)/K is in fact a biquadratic extension in our

case. Arguing exactly as in the last degenerate case above, we note thatQ represents 0 by (x, y, z, w) 6=
0 if and only if

c =
x2 − by2

z2 − aw2
=

N
K(
√
b)

K (x+ y
√
b)

N
K(
√
a)

K (z + w
√
a)
,

which is equivalent to c = N
K(
√
a)

K (α) · NK(
√
b)

K (β) for some α ∈ K(
√
a) and β ∈ K(

√
b). We would

like this last condition to be equivalent to c ∈ N
K(
√
a,
√
b)

K . Thus, to finish the proof, we outsource to a
lemma (Lemma 1.23) we will prove next class. �

Remark 1.22. Lemma 1.21 provides the connection to norms, which have a connection to cohomology.
So we can see that, indeed, we will be able to use cohomological tools shortly.

1.3 January 20
Last time we were in the middle of showing Lemma 1.21, so we continue where we left o�.

1.3.1 Hilbert’s Theorem 90
Here is the desired lemma.

Lemma 1.23. Fix a fieldK not of characteristic not 2. Find a, b ∈ K such that [K(
√
a,
√
b) : K] = 4. Then

c ∈ K× is in the image of the norm map N: K(
√
a,
√
b) → K(

√
ab) if and only if there exist x ∈ K(

√
a)

and y ∈ K(
√
b) such that

c = N
K(
√
a)

K (x) ·NK(
√
b)

K (y).

11
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Proof of backward direction. Observe that we are still dealing with the tower of fields in (1.1). Now, note

Gal(K(
√
a,
√
b)/K) = {1, σ, τ, στ},

where σ :
√
a 7→

√
a and σ :

√
b 7→ −

√
b and τ :

√
a 7→ −

√
a and τ :

√
b 7→
√
b. (Notably, Gal(K(

√
a)/K) = 〈τ〉

and Gal(K(
√
b)/K) = 〈σ〉.) We now want the following to be equivalent.

(a) There are x, y ∈ K(
√
a,
√
b) such that (σ − 1)x = (τ − 1)y = 0 and xy · στ(xy) = c.

Indeed, (σ − 1)x = 0 means x ∈ K(
√
a), and similarly for y ∈ K(

√
b), so this statement is equivalent

to c = N
K(
√
a)

K (x) ·NK(
√
b)

K (y) for x ∈ K(
√
a) and y ∈ K(

√
b).

(b) There is z ∈ K(
√
a,
√
b) such that z · στ(z) = c.

Indeed, note στ(
√
ab) =

√
ab, so Gal(K(

√
ab)/K) = {1, στ}. Thus, this is equivalent to c being in the

image of the norm map N: K(
√
a,
√
b)→ K(

√
ab).

By setting z := xy, we thus see that (a) implies (b), so the hard part is showing the reverse direction.
Showing (b) implies (a) is somewhat harder. Assume (b), and observe that z ·σ(z) = N

K(
√
a,
√
b)

K(
√
a)

(z) is fixed
by σ and hence in K(

√
a). Further, we may compute

N
K(
√
a)

K (z · σ(z)) = N
K(
√
a,
√
b)

K (z) = z · σ(z) · τ(z) · στ(z)

is an element of K. Now, we see z · στ(z) = c is an element of K, so σ(z) · τ(z) ∈ K as well. Thus, hitting
this with σ, we see

σ(z) · τ(z) = σ(σ(z) · τ(z)) = z · στ(z) = c

also, so we conclude σ(z) · τ(z) = c, so in fact z · σ(z)/c ∈ K(
√
a) is an element of norm 1. We now appeal

to Hilbert’s theorem 90.

Theorem 1.24 (Hilbert 90). Fix a cyclic extension of fields L/K with Galois group Gal(L/K) = 〈σ〉. If
t ∈ L has NL

K(t) = 1, then there exists α ∈ L such that t = σ(α)/α.

Remark 1.25. Of course, any element of the form σ(α)/α will have norm 1 by some telescoping.

We will show Theorem 1.24 via group cohomology later, but we will use it freely for now. Pick up the
promised x ∈ K(

√
a) such that

z · σ(z)

c
=
τ(x)

x
.

Further, set y := στ(z)/x, and we compute

τ(y) =
σ(z)

τ(x)

∗
=

c

z · x
=
στ(z)

x
= y.

Note we have used the definition of x at ∗=. Thus, y ∈ K(
√
b), so to finish the proof, we check

xy · στ(xy) = στ(z) · (στ)2(z) = z · στ(z) = c,

so we are done. �

Roughly speaking, the hard direction of the above proof uses Theorem 1.24 to construct our α and β, and
then everything else is more or less a computation.

12
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1.3.2 Hasse–Minkowski
We are now ready to prove Theorem 1.13, modulo some more appeals to group cohomology. Here is the
statement.

Theorem 1.13 (Hasse–Minkowski). Let K be a number field, and let Q be a quadratic form on the K-
vector space V . ThenQ has a nontrivial zero in V if and only ifQ has a nontrivial zero in V ⊗K Kv for all
places v of K.

Proof. By adjusting the basis of V as in Remark 1.17, we may assume that Q = a1x
2
1 + · · · + anx

2
n. Addi-

tionally, if any of the variables are 0, say a1 = 0, then (1, 0, 0, . . . , 0) is a nontrivial zero for both V and each
V ⊗K Kv, so there is nothing to say. As such, we normalize Q so that a1 = 1.

We now induct on n. Here are our small cases. If n = 1, then there are never any zeroes at all by
Lemma 1.21. For n = 2, we are studying Q = x2

1 + a2x
2
2, so we are done by Lemma 1.21 by appealing

to the following result, which we will prove later.

Theorem 1.26. Fix a number field K. Then α ∈ K× is a square if and only if α is a square in each Kv for
all places v.

For n = 3 and n = 4, we are again done by Lemma 1.21 upon appealing to the following result.

Theorem 1.27 (Hasse norm). Fix a cyclic extensionL/K of number fields. Given a ∈ K×, then a is in the
image of the norm L→ K if and only if a is in a norm in Kv for all places v.

Roughly speaking, Lemma 1.21 turns statements about quadratic forms into statements about norms, so
we get a local-to-global principle via Theorem 1.27’s local-to-global principle.

We are now almost ready for the inductive step. We make a few starting comments.

• A quadratic form of the formQ1(x1, . . . , xm)−Q2(y1, . . . , yn) will represent 0 if and only if there exists
some c represented by both Q1 and Q2. There isn’t really anything to say here.

• IfQ represents some c ∈ K×, thenQ represents the entire equivalence class of c inK×/K×2. Indeed,
this is because Q is a quadratic form and thus homogeneous of degree 2.

• For each place v, we haveK×2
v is an open subgroup ofK×v . Indeed, for archimedean v, this reduces to

saying R>0 ⊆ R× is open, and C× = C× is open.
We can argue for nonarchimedean places v explicitly, but we can give a more abstract argument via
Hensel’s lemma. Indeed, it su�ces to provide a neighborhood of 1 inK×v (becauseK×v is a topological
group), so we choose

U :=
{
a :
∣∣12 − a

∣∣
v
< |2 · 1|2v

}
.

Notably, for each a ∈ U , we see 1 witnesses the ability to solving x2 − a = 0 inKv by Hensel’s lemma.

We now proceed with our induction. Assume n ≥ 5. We may write

Q(x1, . . . , xn) = ax2
1 + bx2

2 −R(x3, . . . , xn),

for some quadratic formR in n−2 variables. To continue, we give another statement which comes from the
Hasse norm theorem.

Theorem 1.28 (Hasse norm). Fix a cyclic extensionL/K of number fields, and letQ be a quadratic form
in n ≥ 3 variables. For each a ∈ K×, then there is a finite set of places S such thatQ represents 0 inKv

for each v /∈ S.

13
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Proof. We give a proof from algebraic geometry. Take K = Q for simplicity. For simplicity, take Q =
ax2 + by2 + cz2, and note V (Q) ⊆ P2

Q is a genus-0 curve. For all but finitely many primes p, we see νp(a) =
νp(b) = νp(c) = 0, so we can base-change V (Q) to Zp and then Fp, where V (Q) remains a genus-0 curve.
However, a genus-0 curve always has a point over a finite field, and then smoothness of V (Q) allows us to
lift the Fp-point back to a Zp-point by Hensel’s lemma. �

So by Theorem 1.28, there are finitely many places S for which R does not represent 0.
Now, suppose that Q has a nontrivial 0 in each V ⊗K Kv, and we must show that Q has a nontrivial 0 in

V . We can deal with each v /∈ S because R represents everything by Lemma 1.19. Thus, focusing on some
v /∈ S, we seeQ having a nontrivial zero in V ⊗K Kv implies that there is some cv ∈ Kv represented by both
ax2

1 + bx2
2, so write

aα2
1,v + bα2

2,v = cv = R(α3,v, . . . , αn,v).

By approximating, we choose αi ∈ K arbitrarily close to each αi,v inKv so that c = aα2
1 + bα2

2 di�ers from cv
only be a square in v ∈ S. This is possible because K×2

v is open in K×v . Note that R still represents c in each
Kv for v ∈ S because c is only a square away from cv.

Thus, we see that the form
cY 2 −R(x3, . . . , xn)

will represent 0 in each Kv for all v. But this form has n− 1 variables, so our induction kicks in and tells usu
that cY 2−R represents 0 inK, soR represents c inK, soQ represents 0 inK. This completes the proof. �

Remark 1.29. Professor Olsson thinks that the last part of this argument is a little too clever.

1.4 January 25
Last class, we were in the middle of proving Theorem 1.13. I have edited directly into that proof for continuity
reasons.

1.4.1 Introducing G-modules
We would like to fill in the boxes in the proof of Theorem 1.13, so we introduce a little group cohomology.
Fix a group G.

Definition 1.30 (G-module). A G-module is an abelian group M equipped with a G-action. In other
words, a G-module is a (left) Z[G]-module. We will write the category of G-modules by ModG.

Warning 1.31. If G is not abelian, then Z[G] is not abelian, so we are not doing commutative algebra.

Recall that Z[G] is the free abelian group on G as letters, where multiplication is given by(∑
g∈G

agg

)(∑
h∈G

bhh

)
=
∑
g∈G

∑
h∈G

agbh(gh).

In other words, we extend the multiplication g · h = gh linearly.

Example 1.32. Let G = 〈σ〉 be a finite group of order n. Then we see Z[x]/ (xn − 1) ∼= Z[G] by sending
x 7→ σ. Indeed, this certainly defines a homomorphism between these rings because σn − 1 = 0, and it
is certainly surjective. Lastly, it is injective: p(x) ∈ Z[x] vanishes under this map if and only if p(σ) = 0.
By taking p (mod xn−1), we may assume that p = 0 or deg p < n, but then p(σ) will only vanish if p = 0.

14
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Note that the following are equivalent to M being a G-module.

• M is a Z[G]-module.

• There is a homomorphism Z[G]→ End(M).

• By hitting this with the free-forgetful adjunction, this is equivalent to having a morphismG→ Aut(M).
We are going to automorphisms because elements ofG are invertible, so their image in End(M) needs
to also be invertible.

• There is an action · : G×M →M satisfying the following conditions for g, g′ ∈ G and m,m′ ∈M .

– e ·m = m.
– (g + g′)(m+m′) = gm+ gm′ + g′m+ g′m′.
– (gh) ·m = g(h ·m).

Here are some examples.

Example 1.33. Let G = 〈σ〉 be a finite group of order n. By Example 1.32, a G-module is a module over
Z[x]/ (xn − 1).

Example 1.34. For any groupG, the abelian group Z can be given a “trivial”G-action by g · k := k for all
g ∈ G and k ∈ Z.

In the future, when we write down Z, we mean Z with the trivial G-action.

1.4.2 Some Functors
Cohomology is interested in deriving the invariant functor (−)G : ModG → Ab which sends a G-module M
to

MG := {m ∈M : g ·m = m for all g ∈ G}.
Alternatively, MG ' HomZ[G](Z,M). Indeed, a map ϕ : HomZ[G](Z,M) means that we are choosing an
element ϕ(1) ∈M , and making this a G-module morphism requires

g ·m = g · ϕ(1) = ϕ(g · 1) = ϕ(1) = m

for all g ∈ G. Thus, we see that (−)G is functorial automatically because HomZ[G](Z,−) is.
There is also a notion of co-invariants, denoted (−)G : ModG → Ab by

MG := M/IGM,

where IG ⊆ Z[G] is the submodule of elements of degree 0. Equivalently, MG = Z⊗Z[G] M , so we see that
this construction is functorial.

Here are some preliminary observations.

• The functor (−)G is left-exact. This holds because (−)G ' HomZ[G](Z,−), and the Hom functor is
left-exact.

• The functor (−)G is right-exact. This holds because (−)G ' Z⊗Z[G]−, and the⊗ functor is right-exact.

• For any element x ∈ Z[G], multiplication by x defines a morphism of abelian groups x : M → M for
any G-module M . For example, if G is a finite group, define NG :=

∑
g∈G g. We note NG : M → M

actually defines a map M →MG: indeed, for any m ∈M and g ∈ G, we see

g ·NG(m) = g ·
∑
h∈G

hm =
∑
h∈G

ghm =
∑
h∈G

hm

by re-indexing our sum. In fact, we note that IGM is in the kernel of this map becauseNG((g−1)m) = 0
for all g ∈ G, and the elements (g − 1)m generate IGM .

15
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In light of the last observation, we note that we have a natural transformation

NG : (−)G → (−)G.

One can check naturality by hand, but we won’t bother. Using the first two observations, we see we want
to derive our left-exact functor to the right (which will give group cohomology), and we want to derive our
right-exact functor to the left (which will give group homology). In particular, we will take

Hi(G,−) := ExtiZ[G](Z,−) and Hi(G,−) := Tor
Z[G]
i (Z,−),

which defines group cohomology and group homology. It turns out that the norm map will connect these
together to create Tate cohomology.

Remark 1.35. In practice, one can compute H•(G,M) and H•(G,M) by taking some Z[G]-projective
resolution

· · · → P2 → P1 → P0 → Z→ 0

of Z. Then Hi(G,M) = Hi(Hom•(P•,M)) and Hi(G,M) = Hi(P• ⊗Z[G] M).

1.5 January 27
Today, we continue talking around group cohomology.

1.5.1 Tate Cohomology
It will be convenient to connect group cohomology and group cohomology. Take G to be a finite group. Fix
some projective resolution P• of Z. Then we have exact sequences

· · ·P2 ⊗M → P1 ⊗M → P0 ⊗M →MG → 0

and
0→MG → Hom(P0,M)→ Hom(P1,M)→ Hom(P2,M)→ · · · .

But with G finite, we have a norm map NG : MG → MG, so we can splice these together to give one long
sequence

· · ·P2 ⊗M → P1 ⊗M → P0 ⊗M → HomZ(P0,M)→ HomZ(P1,M)→ HomZ(P2,M)→ · · · ,

where the map P0⊗M → HomZ(P0,M) is given by P0⊗M →MG →MG → HomZ(P0,M). We now define
Tate cohomology is the cohomology of this complex, where degree-0 is at HomZ(P0,M). Explicitly, we have
the following.

Definition 1.36 (Tate cohomology). Fix a finite group G. Given a G-module M , we define the Tate co-
homology as follows, for some i ∈ Z.

Ĥi(G,M) :=


Hi(G,M) if i ≥ 1,

H−i−1(G,M) if i ≤ −2,

kerNG if i = −1,

MG/NG(MG) if i = 0,

where NG is the norm map NG : MG →MG.

Let’s see the computations at i = −1 and i = 0 more explicitly.

16
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• At i = −1, we are computing
ker(P0 ⊗M →MG →MG)

im(P1 ⊗M → P0 ⊗M)
.

However, the image P1⊗M → P0⊗M is exactly the kernel of the surjection P0⊗M �MG, so we are
just computing the kernel alongMG →MG. Indeed, letting I denote the image of P1⊗M → P0⊗M ,
we get a morphism of exact sequences as follows.

0 I P0 ⊗M MG 0

0 0 MG MG 0

NG

Taking kernels, the snake lemma grants us an exact sequence

0→ I → ker(P0 ⊗M →MG)→ ker(MG →MG)→ 0,

so the claim follows.

• At i = 0, the computation is similar.

Remark 1.37. We can now see how norms might be important in the future.

1.5.2 Cohomology of Cyclic Groups
In this subsection, let G = 〈σ〉 be a cyclic group of order n. We saw in Example 1.32 that

Z[G] =
Z[x]

(xn − 1)
,

so for example Z[G] is commutative. In our case, we can right down a particularly nice (augmented) free
resolution of Z as

· · · → Z[G]
T→ Z[G]

N→ Z[G]
T→ Z[G]→ Z→ 0,

where Z[G]→ Z is the usual augmentation map and T := (σ − 1) andN := NG. Indeed, let’s see that this is
exact.

• Note Z[G]→ Z is of course surjective, so we are exact at Z.

• Next, we see that the kernel of the map Z[G] → Z consists of the terms of degree 0, which are Z-
generated by elements of the form

(
σi − σj

)
for indices i and j, but this means that we are Z[G]-

generated by (σ − 1).

• Continuing, the kernel of the map T : Z[G] → Z[G] is given by the elements of the form
∑n−1
i=0 aiσ

i

which when multiplied by T vanish. Explicitly, we see

T

(
n−1∑
i=0

aiσ
i

)
=

n−1∑
i=0

(ai−1 − ai)σi,

where indices are taken (mod n). Thus, this vanishes if and only if ai is constant, so we see that we
are in the kernel if and only if we take the form

n−1∑
i=0

aσi = aNG

for some a ∈ Z[G]. So the kernel here is indeed the image of the map N : Z[G]→ Z[G].

17
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• Lastly, we can compute the kernel of the map N : Z[G] → Z[G] as the image of the map T : Z[G] →
Z[G]. We omit this computation.

The point is that we can compute group homology via the sequence

· · · →M
T→M

N→M
T→M,

and we can compute the group cohomology via the sequence

M
T→M

N→M → · · · .

Splicing these together gives us Tate cohomology, which works properly because the map MG → MG is
precisely the norm. In particular, we get the following nice result.

Proposition 1.38. LetG = 〈σ〉 be a cyclic group of order n. For anyG-moduleM , the groups Ĥi(G,M)
are 2-periodic in i ∈ Z.

Remark 1.39. Let’s take a moment to figure out where we want to go. Fix a cyclic extension L/K of
number fields, where G is the Galois group. For example, we wanted a statement like “if a ∈ K× is a
norm in Kv for each v, then a is a norm in K.” This conclusion on a means we want a to vanish in

K×

NL
K (L×)

=
(L×)

G

NG (L×)
= Ĥ0

(
G,L×

)
.

Combining with our place data, we wanted some sort of statement like

Ĥ0
(
G,L×

)
→
∏
v

Ĥ0
(
Gv, L

×
v

)
to be true. Roughly speaking, this will reduce to some kind of cohomology on the idéles.

1.6 January 30
We continue discussing group cohomology.

1.6.1 Cocycles
We discuss cocycles, which will be an explicit way to discuss group cohomology.

Remark 1.40. These notions come from algebraic topology, where a group G gives rise to a space EG,
which is constructed as functions Mor([n+ 1], G) at degree n satisfying certain conditions. One can use
this to build a space which is contractible and has a free G-action; then BG := EG/G is the classifying
space, the point of which is that π1(BG) = G and no other nontrivial homotopy groups. If you write
everything out, you can get cocycles from this construction.

So let’s write things out. Forn ≥ 0, define theG-modulePn := Z
[
Gn+1

]
, and define the di�erential d : Pn →

Pn−1 by

d(g0, . . . , gn) :=

n∑
i=0

(−1)i(g0, . . . , gi−1, gi+1, . . . , gn).

One can check by hand that d2 = 0, so we get a complex

· · · → P3 → P2 → P1 → P0 → 0.

Here are some checks.

18
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• Note that eachPn is a freeZ[G]-module, generated by the elements of the form (1, g1, . . . , gn). Indeed,
we can write

Z[G] · (1, g1, . . . , gn) =
⊕
g∈G

Z[(g, gg1, . . . , ggn)],

so looping over all basis elements completes this. As such, Pn ∼= Z[G]n for each n ≥ 0.

• We would like to turn this into a resolution of Z. Well, there is the usual augmentation map ε : P0 → Z
given by g 7→ 1. Additionally, the composite P1 → P0 → Z is the zero map: for each basis element
(g0, g1), we see

εd(g0, g1) = ε(g1 − g0) = 0.

• We now claim that ε : P• → Z is an (augmented) free resolution. We know that it’s free, so it remains
to check our exactness. Note we already have surjectivityP0 → Z, so we need to show thatHn(P•) = 0
for n ≥ 1.
Now, we want an isomorphism of some cohomology groups, so we would like to find a chain homotopy
between id and zero. Explicitly, we would like to find group homomorphisms hn : Pn → Pn+1 fitting
into the diagram

· · · P2 P1 P0 Z

· · · P2 P1 P0 Z

d d ε

d d d ε

d

h−1h1h2

so that dhn + hn−1d = id. The point here is that, for n ≥ 1, we see z ∈ ker(Pn → Pn−1) implies that
dhn(z) +hn−1(dz) = z, but then dhn(z) = z, so z is in the image of the map Pn+1 → Pn. The exactness
will then follow.
For n ≥ −1, we define hn : Pn → Pn+1 by

hn(g0, . . . , gn) := (1, g0, . . . , gn).

To check this works, we compute

dhn(g0, . . . , gn) + hn−1d(g0, . . . , gn) = d(1, g0, . . . , gn) + hn−1

(
n∑
i=0

(−1)i(g0, . . . , gi−1, gi+1, . . . , gn)

)

=

(
(g0, . . . , gn)−

n∑
i=0

(−1)i(1, g0, . . . , gi−1, gi+1, . . . , gn)

)

+

(
n∑
i=0

(−1)i(1, g0, . . . , gi−1, gi+1, . . . , gn)

)
= (g0, . . . , gn),

which completes the computation.

Thus, we see we have a free resolution of Z, so we can compute group cohomology as previously discussed
in Remark 1.35. Explicitly, for a G-module M , we define

C̃n(G,M) := HomZ[G](Pn,M) ⊆ MorG
(
Gn+1,M

)
,

and the di�erential sends f ∈ C̃n(G,M) to f ◦ d, which is

(df)(g0, . . . , gn, gn+1) =

n∑
i=0

(−1)if(g0, . . . , gi−1, gi+1, . . . , gn).

Indeed, we can see visually that this has constructed a G-module morphism.
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TheG-module C̃(G,M) has defined what are called “homogeneous cocycles.” However, recall thatPn is
a freeZ[G]-module generated by the elements of the form (1, g1, . . . , gn), so we can think of HomZ[G] (Pn,M)
as functions Gn → M , with no G-equivariance. However, our isomorphism Pn ∼= Z[G]n was moderately
non-canonical, so our di�erential has changed somewhat. It is standard convention to define Pn as instead
generated by

(1, g1, g1g2, g1g2g3, . . . , g1 · · · gn),

which makes our di�erential

(df)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1) +

n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn) + (−1)n+1f(g1, . . . , gn).

This defines “inhomogeneous cocycles,” which we define as Cn(G,M).

Example 1.41. We discuss H1. The di�erential d : C0(G,M) → C1(G,M) sends an element m to the
function g 7→ (g − 1)m. Further, the di�erential d : C1(G,M)→ C2(G,M) is given by

(df)(g1, g2) = g1f(g2)− f(g1g2) + f(g1).

In total, H1(G,M) is isomorphic to

{f : f(g1g2) = f(g1) + g1f(g2)}
{f : f(g) = (g − 1)m for some m ∈M}

.

For example, if theG-action is trivial, the kernel of this di�erential is just the homomorphismsG→M ,
so H1(G,M) = Hom(G,M).

1.7 February 1
Today we’re going to talk about H1.

Remark 1.42. There are many interpretations of H1. For example, in algebraic geometry, we have
H1(X,O×X) = PicX. We won’t discuss this, but we will see other things.

Remark 1.43. In this lecture, we will be more or less discussing faithfully flat descent.

1.7.1 Yoneda Extensions
We’re going to walk through quite a few interpretations ofH1. To begin, recallH1(G,M) = Ext1

Z[G](Z,M),
essentially by definition. This in some sense classifies certain exact sequences. Namely, Ext1

Z[G](Z,M) clas-
sifies short exact sequences of G-modules

0→M → E → Z→ 0

up to isomorphism of short exact sequences. (As an aside, note that all short exact sequences are Z-split
because Z is projective, so E ∼= M⊕Z as abelian groups. Thus, the interesting part is theG-action.) Namely,
an isomorphism of short exact sequences given by E and E ′ is a morphism ϕ : E → E′ making the diagram

0 M E Z 0

0 M E ′ Z 0

ϕ
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commute. Note ϕ is an isomorphism by the Snake lemma.
Let’s see how this relates to cocycles. Namely, given a 1-cocycle f : G → M , we can define Ef as the

abelian group Ef := M ⊕ Z with action defined by

g · (m,n) := (gm+ nf(g), n).

Notably, f(g) = g · (0, 1), so the map sending cocycles to extensions here is injective. We can now check by
hand that this defines an action as

g1(g2 · (m,n)) = g1 · (g2m+ nf(g2), n)

= (g1g2m+ ng1f(g2) + nf(g1), n)
∗
= (g1g2m+ nf(g1g2), n)

= (g1g2) · (m,n)

where we have used the cocycle condition at ∗=. Notably, we can read this argument backward to tell us that
Z1(G,M) contains the data of a short exact of G-modules

0→M → E → Z→ 0

equipped with a section s : Z → E; explicitly, the choice of a section s grants a decomposition E ∼= M ⊕ Z,
from which we can read the cocycle in and out of the G-action as described above.

To see how we mod out by coboundaries, we choose two sections s, s′ : Z→ E , which can only di�er by
an element of m ∈ M . Tracking this through shows that the corresponding cocycle adjusts by exactly the
coboundary given by m ∈M .

Remark 1.44. On the homework, we will check that an exact sequence

0→M → E → Z→ 0

grants an exact sequence
0→MG → EG → Z→ H1(G,M),

and one can check that the image of 1 under Z → H1(G,M) exactly corresponds to the short exact
sequence we started with.

1.7.2 Hilbert’s Theorem 90
Let’s talk around Hilbert’s theorem 90. Roughly speaking, a 1-cocycle u• : G → M is a function satisfying
the relation

ug1g2 = ug1 · g1ug2 .

Note that the group law on L× has been written multiplicatively.
For the proof, consider the category Mod(L/K) of G-linear L-modules. Explicitly, we want L-vector

spaces V equipped with an L-semilinear action ρ : G→ AutK(V ) such that

ρg(`v) = g` · ρg(v).

For example, given a K-vector space V0, we set V := V0 ⊗K L so that we have a natural G-action on L. We
can see visually that

ρg(`
′ · (v ⊗ `)) = ρg(v ⊗ `′`) = v ⊗ g(`′`) = g`′ · (v ⊗ `) = v`′ · ρg(v ⊗ `).

The main result is as follows.

Theorem 1.45 (Faithfully flat descent). The functor ModK → Mod(L/K) given by V0 7→ V0 ⊗K L is an
equivalence of categories.
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Remark 1.46. Using the theorem, we can recover the inverse functor as V 7→ V G because

(V0 ⊗K L)G ' V0 ⊗K LG = V0 ⊗K K ' V0.

To see our 1-cocycles, let’s discuss Theorem 1.45 for one-dimensional L-vector spaces (V, ρ). Here, we
write V = Le for some basis {e}, and we define

uge := ϕg(e)

so that the ug ∈ L× define our group action. Namely, we see ϕg(`e) = g` · uge. Unsurprisingly, the group
action condition given by ρ will give rise to the cocycle condition (and conversely): in one direction, we note
u• : G→M is a cocycle because

ug1g2e = ρg1g2(e) = ρg1(ρg2e) = ρg1(ug2e) = (g1ug2 · ug1) · e.

Lastly we note that adjusting V by isomorphism is equivalent to adjusting the basis, and we can check that
the e�ect of adjusting the basis to e′ = ae merely adjusts the cocycle by g 7→ (g − 1)a. In total, H1(G,L×)
consists of the 1-dimensional objects of Mod(L/K). (Notably, the tensor product provides the group struc-
ture on these objects.)

We now use Theorem 1.45. Each (V, ρ) ∈ Mod(L/K) should actually arise as the form V0 ⊗K L, and this
corresponds to the identity element in Mod(L/K). Indeed, fixing some basis element e ⊗ 1 ∈ V0 ⊗K L, we
can compute our cocycle u• as

ug(e⊗ 1) = ρg(e⊗ 1) = e⊗ g1 = e⊗ 1,

so ug = 1 everywhere. Thus, Theorem 1.45 will imply the following.

Theorem 1.47 (Hilbert 90). Fix a finite Galois field extension L/K with Galois group G = Gal(L/K).
Then H1(G,L×) = 0.

Thus, it remains to show Theorem 1.45.

Proof of Theorem 1.45. We mentioned that the inverse functor is given by (V, ρ) 7→ V G. Thus, we divide
the proof into checks.

1. We need an isomorphism (V0 ⊗K L)G = V0. This is clear.

2. We need an isomorphism V G ⊗K L ' V in Mod(L/K). Well, the morphism is given by v ⊗ ` 7→ `v.
Now, the trick is to that it su�ces to find a field extension Ω over K such that

(VΩ)G ⊗Ω (Ω⊗K L)→ V ⊗K Ω

is an isomorphism in the category Mod(L ⊗K Ω/Ω). Namely, being an isomorphism will be reflected
back down because we are working with vector spaces (namely, determinant does not change when
we base-change to a larger field). Explicitly, we note V G is the kernel of the map

V →
∏
g∈G

V

sending v 7→ (gv)g∈G, so (VΩ)G = V G ⊗K Ω. The point is that we are indeed allowed to base-change
to the larger field, and we get to keep looking at G-invariants.
Anyway, we now set Ω := L. We thus can compute

V ⊗K Ω = V ⊗L (L⊗K Ω) = V ⊗L
∏
g∈G

L =
∏
g∈G

V,

where the G-action on
∏
g∈G V is by permutation. Thus, the G-invariants do indeed become V . �

Remark 1.48. Our equivalence of categories is also compatible with a structure of tensor product over
ModK and Mod(L/K).
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1.8 February 3
Today we continue talking about H1.

Remark 1.49. Roughly speaking, cohomology is “obstructions to something.” The most bare-bones
version of this is that cohomology measures the failure of some left exact-functors being fully exact.

1.8.1 Classification of Algebras
When G is cyclic, we have a canonical isomorphism

Ĥ0(G,L×) ∼= Ĥ2(G,L×).

We understand Ĥ0(G,L×) as K×/NL
K(L×), and it turns out that Ĥ2(G,L×) is understood as the “Brauer

group” Br(L/K). Later in life, we might want to use stranger algebraic groups than (−)×, such as GLn or
PGLn.

There is a notion of “non-abelian” cohomology, where a group G has an action on a group M (where M
is not necessarily abelian!). In particular, we can simply define H1 by cocycles as

H1(G,M) =
{f : g1f(g2) · f(g2) = f(g1g2) for g1, g2 ∈M}
{f : f(g) = (gm)m−1 for some fixed m ∈M}

.

Notably, H1(G,M) is just a set, pointed by the trivial equivalence class.
As an application of this H1, we pick up the following definition. Fix a Galois extension L/K with G =

Gal(L/K). Given a K-algebra A, where the center of A contains K. Given that A ⊗K L ∼= Mn(L), we are
interested if A ∼= Mn(K).

Example 1.50. Take the field extensionC/R, and letHbe the quaternion algebra. We can see somewhat
directly that H ⊗R C ∼= M2(C), but we cannot have an isomorphism H ∼= M2(R). Indeed, just tracking
where i and j and k go from H to M2(R), one can more or less write down lots of equations and see if
they have a solution over R, for which the answer turns out to be no.

To study this question, we (morally) expect that theG-invariants ofA⊗K L to go toG-invariants ofMn(L).
Well, suppose we have an isomorphismσ : A⊗KL→Mn(L), so given g ∈ G, we ask if the following diagram
commutes.

A⊗K L Mn(L)

A⊗K L Mn(L)

σ

1⊗g Mn(g)

σ

(1.2)

Indeed, if this diagram commutes for all g ∈ G, then σ will restrict to an isomorphism

(A⊗K L)1⊗G σ∼= Mn(L)G = Mn(K).

Conversely, an isomorphismA ∼= Mn(K) makes our diagram commute essentially for free because we sim-
ply do not care about the G-action.

Remark 1.51. Comparing with Example 1.50, one notes that the isomorphism H⊗RC ∼= M2(C) cannot
be compatible with the Galois action; indeed, any such isomorphism sends (say) i to a matrix whose
entries are not purely real.

To check the commutativity of the diagram, we start fromMn(L) and go clockwise. Namely, we are sending
g ∈ G to

f(g) := gσ(1⊗ g)−1σ−1 ∈ AutK(Mn(L)).
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Explicitly, we want f(g) = 1 for all g ∈ G. Now, by the Skolem–Noether theorem, we have AutL(Mn(L)) ∼=
PGLn(L). We now claim that the f(g) = 1 condition reduces to a cocycle condition. Indeed,

f(g1g2) = g1g2σ
(
1⊗ g−1

2 g−1
1

)
σ−1

= g1g2σ
(
1⊗ g−1

2

)
σ−1

(
1⊗ g−1

1

)
σσ−1

= g1f(g2)f(g1).

As an aside, we note that our choice of isomorphism σ is only defined up to an automorphism in PGLn(L),
which one can check will only adjust f by a coboundary. In total, we see that the isomorphism class of A
produces a cocycle class in H1(G,PGLn(L)).

We can also go from the cocycle straight to the algebra. Indeed, the data of a K-algebra can be written
down as some commutative diagrams dealing with A and⊗K . For example, associativity of our multiplica-
tion is the following diagram.

A⊗K A⊗K A A⊗K A

A⊗K A A

1⊗µ

µ⊗1

µ

µ

In this way, we can upgrade our equivalence ModK ' Mod(L/K) to an equivalence Alg(K) ∼= Alg(L/K).
As such, given our cocycle f ∈ H1(G,PGLn(L)), we build our algebra as Mn(L) equipped with a special
G-action by

ga = g−1f(g)a,

where this action is constructed by basically reading the diagram (1.2) backwards. One can check that this
action is G-semilinear and so on, so we are safe.

Remark 1.52. In fact, we have a bijection fromZ1(G,PGLn(L)) with (classes of)K-algebrasAequipped
with an isomorphism σ : A⊗K L→Mn(L).

Let’s take a step to H2 for a moment. There is an exact sequence of G-modules

1→ L× → GLn(L)→ PGLn(L)→ 1.

Thus, even though we are studyingH1(G,PGLn(L)), we see that we might hope we can understand what’s
going on in H2 (G,L×).

Well, we can just try to compute this like the Snake lemma. Given a cocycle f : G → PGLn(L), we can
choose some lifted map f̃ : G→ GLn(L). Roughly speaking, our element in H2 will be the obstruction to f̃
producing a cocycle. As such, we want to compute

(g1, g2) 7→ g1f̃(g2)f̃(g1)f̃(g1g2)−1.

Notably, we can see that this element is trivial in PGLn(L) because f is a cocycle, so this must be an ele-
ment of L×, meaning that we have described a 2-cocycle inH2(G,L×). One can check that adjusting f by a
coboundary or changing the choice of lift does not adjust the class in H2.

Remark 1.53. It turns out that this describes an isomorphism Br(L/K) ∼= H2(G,L×). Here, Br(L/K) is
a further quotient of algebras where for example A is equivalent to Mn(A).

1.9 February 6

Last class we discussed H1(G,PGLn(L)). We continue talking about H1.
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1.9.1 Automorphisms of Projective Space

Roughly speaking, the key point in our discussion of H1(G,PGLn(L)) was our application of the Skolem–
Noether theorem to show AutL(Mn(L)) ∼= PGLn(L). In general, one can play a similar game whenever you
have some object with the correct automorphisms.

Thus, we also note AutPn−1
L = PGLn(L). Indeed, for any automorphism α, we can draw the following

square.

Pn−1
L Pn−1

L

SpecL SpecL
α

α

Notably, we can see from this square thatα∗OPn−1
L

(1) is ample1 and needs to generate PicPn−1
L becauseα∗ is

an isomorphism, so we conclude that there is an isomorphismα[ : α∗OPn−1
L

(1)→ OPn−1
L

. (This isomorphism
is not canonical!) Thus, taking global sections, we are getting a map

Γ(Pn−1
L ,OPn−1

L
(1)) ∼= Γ(Pn−1

L ,OPn−1
L

(1)).

However, both of these are isomorphic to Lx0 ⊕ · · ·Lxn−1
, so the data of (α, α[) precisely describes an au-

tomorphism Ln → Ln. If you mod out by the information of α[, it turns out that you exactly describe an
element of PGLn(L) instead of GLn(L).

It turns out that one can do approximately the same story we gave last class to show that there is a
bijection between K-schemes P such that P ×SpecK SpecL ∼= Pn−1

L and H1(G,PGLn(L)). Proving this is a
little harder than last time because it is less obvious that a cocycle will come from K-scheme.

Nonetheless, we note that we now have two identifications ofH1(G,PGLn(L)), so we should be able to
take a central K-algebra A such that A ⊗K L ∼= Mn(L) and produce a K-scheme P . These are called the
Brauer–Severi schemes.

Example 1.54. Fix the field extension C/R and let H denote the quaternions, which is the nontrivial
element of our H1. Then it turns out that the corresponding K-scheme P is V

(
x2 + y2 + z2

)
⊆ P2

k.
Notably, the line bundle OP2

k
(1) will pull back to OP1

k
(2) because it needs to pull back something with

global sections, and then we can also check the dimension of these global sections to complete.

Remark 1.55. One can show that the Brauer–Severi schemes are always projective and embed into PnK .
In fact, they have a K-point if and only if they are projective!

1.9.2 Moving to H2

As usual, letL/K be a Galois extension with Galois groupG. Recall from last class that we had a short exact
sequence

1→ L× → GLn(L)→ PGLn(L)→ 1,

which gave rise (via cocycles!) to a map δn : H1(G,PGLn(L))→ H2(G,L×). It turns out that this fits into an
exact sequence (of pointed sets)

H1(G,GLn(L))→ H1(G,PGLn(L))
δn→ H2

(
G,L×

)
,

which is a check that we omit.
1 The ample line bundles in PicPn−1

L are precisely the ones with global sections, and α∗ : PicPn−1
L → PicPn−1

L must send a line
bundle with global sections to a line bundle with global sections.
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Lemma 1.56. Fix everything as above.

(a) H1(G,GLn(L)) = 1.

(b) If n = [L : K], then δn is surjective.Does
H2(GLn)
vanish? Proof. Here we go.

(a) We know from our discussion of Hilbert’s theorem 90 that H1(G,GLn(L)) is in natural bijection to
isomorphism classes n-dimensional L-vector spaces with a given semilinearG-action. However, this
category Mod(L/K) we showed (in Theorem 1.45) is just theK-vector spaces of dimensionn, so there
is only one up to isomorphism, completing the proof.

(b) This requires a trick. Fix a 2-cocycle f : G2 → L×. Working explicitly, we want ρ : G → GLn(L) such
that

f(g, g′) = ρg · gρg′ · ρ−1
gg′ ,

where we have identifiedL×with its image in GLn(L). Note that such a ρ grants us a 1-cocycle ρ : G→
PGLn(L) by modding out by L× everywhere.
Well, we use an induced module: setV := Mor(G,L), which we note has basis given by es(g) := 1s=g(g)
becauseG is finite. We may thus define ρg : V → V given by ρg : es 7→ f(g, s)es. To finish, one can show
that this ρ• satisfies the needed equality. �

Corollary 1.57. If n = [L : K], then there is a natural identification with centralK-algebrasA such that
A⊗K ∼= Mn(L) and elements of H2(G,L×).

Proof. It su�ces to show that our δn is an isomorphism. This follows directly from Lemma 1.56. �

Remark 1.58. In fact, we note that we can fully go backward from a 2-cocycle to its constructed 1-
cocycle in H1(G,PGLn(L)), and then we know how to turn that data into a central K-algebra A with
A⊗K L ∼= Mn(L).

We are now ready to define the Brauer group.

Definition 1.59 (Brauer group). Fix a Galois extensionL/K, we define the Brauer group Br(L/K) as the
set of isomorphism classes of central K-algebras A such that A⊗K L ∼= Mn(L).

We can extend this construction as follows: Corollary 1.57 grants us a natural isomorphism

H2(G,L×)→ Br(L/K).

Now, define
H2
(
Gal(Ksep/K), (Ksep)×

)
:= lim−→

K⊆L⊆Kset

H2(Gal(L/K), L×).

On the other side, define BrK as the central K-algebras A such that A ⊗K Ksep ∼= Mn(Ksep) for some n,
but we mod out by the equivalence A ∼ B if and only if Mn(A) ∼= Mm(B) for some n and m. Then one can
show that the δns induce an isomorphism

BrK ∼= H2
(
Gal(Ksep/K), (Ksep)×

)
,

which allows us to stop paying attention to the field L.

Remark 1.60. One can show that division rings are also in natural bijection with our algebras, giving us
yet another identification.
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1.10 February 8
We quickly remark on some sources. Our discussion of cohomology roughly follows [GS13] and [Mil20].
For a discussion of the Brauer group, we are roughly following Poonen.

1.10.1 Cohomology of Unramified Extensions
Today we will be discussing the following result; throughout, L/K is a Galois extension of local fields with
Galois group G.

Theorem 1.61. Fix a local field K.

(a) For any finite Galois extension L/K with G := Gal(L/K), we have H2(G,L×) ∼= 1
#GZ/Z.

(b) Taking the direct limit, we have H2(GK , (K
sep)×) ∼= Q/Z.

Let’s do the archimedean case first.

Lemma 1.62. We compute H2(Gal(C/R),C×) ∼= Z/2Z.

Proof. Write G := Gal(C/R) = {1, σ}, where σ is complex conjugation. Now, recall from Proposition 1.38
that we may compute

H2(G,C×) ∼= Ĥ0(G,C×) =
(C×)

G

NG C×
=

R×

{|z|2 : z ∈ C×}
=

R×

R+
,

and this last group is indeed Z/2Z. �

Remark 1.63. Using Proposition 1.38 and Theorem 1.47, we see that

Ĥi(Gal(C/R),C×) ∼=

{
0 if i is odd,
Z/2Z if i is even.

We now move towards Theorem 1.61. Here is our first case.

Remark 1.64. For any extension L/K of local fields with residue field extension λ/κ, the subextension
fixed by Frobenius isLunr/K whose residue field extension remains λ/κ. But nowLunr/K is an unram-
ified extension, and L/Lunr is totally ramified.

With the above remark in mind, our approach will be the following.

1. We will begin with L/K unramified and show H2(G,L×) = 1
#GZ/Z. The intuition here is that our

cohomological contribution will come from these unramified extensions.

2. Next, we will show that L/K being totally ramified yields H2(G,L×) = 0.

3. Lastly, we will combine the above two cases accordingly.

Let’s go at it. Let’s set some notation. Quickly, recall the structure of K×: let πK ∈ pK be a uniformizer for
K so that K× ∼= πZ

K ×O
×
K . However, we can expressO×K by

O×K = lim←− (OK/pnK)
×
.
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Now, we can think aboutO×K as decomposed as

1→
1 + pn−1

K

1 + pnK
→ (A/pnK)

× →
(
A/pn−1

K

)× → 1.

But now we see that the group on the left here is isomorphic to (OK/pK ,+) by a 7→ 1 + apn−1
K ; one should

check this works. There is a similar description for L.

Lemma 1.65. Let L/K be a finite unramified Galois extension of local fields with Galois group G. Then
Ĥi(G,O×L ) = 0.

Proof. We compute with Tate cohomology. Because G is generated by the Frobenius, it is cyclic, so there
are two computations.

1. We showH1(G,O×L ) = 0. This is easier: indeed, Theorem 1.47 tells us thatH1(G,L×) = 0, andO×L is
a direct summand of L×, so we are done.

2. We show Ĥ0(G,O×L ) = 0. By definition of Tate cohomology, it’s enough to show that the norm map

NL
K : O×L → O

×
K

is surjective. Because NL
K is continuous, so it su�ces to show that it has dense image, so we show

NL
K :

(
OL
pnL

)×
→
(
OK
pnK

)×
is surjective for all n. (This is well-defined because pL = pKOL because L/K is unramified!) We show
this by induction. Well, for n = 1, we are showing that the norm map in an extension of finite fields is
surjective. We can do this by hand: for an extension of finite fields Fqr/Fq, let g ∈ F×q′ generate so that

N(g) =

r−1∏
i=0

gp
i

= g(qr−1)/(q−1)

has order q − 1 and is in F×q and is thus a generator.
Then for the inductive step, we draw the following morphism of short exact sequences.

1
1 + pnL

1 + pn+1
L

(
OL
pn+1
L

)× (
OL
pnL

)×
1

1
1 + pnK

1 + pn+1
K

(
OK
pn+1
K

)× (
OK
pnK

)×
1

Here, the vertical maps are all NL
K . By induction, the right map is surjective, so by the Snake lemma, it

su�ces to show that the left map is surjective. Well, computing this map, we use the fact that πK is a
uniformizer for L to write

NL
K (1 + aπnK) =

∏
σ∈G

(1 + σ(a)πnK) ≡ 1 + TLK(a)πnK (mod 1 + pnL).

Thus, it su�ces to show that the trace map is surjective in an extension of finite fields Fqr/Fq. Equiv-
alently, we want to show that Ĥ0 (Gal(Fqr/Fq),Fqr ) vanishes, which is true because Fqr is an induced
module. �
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Lemma 1.66. Let L/K be a finite unramified Galois extension of local fields with Galois group G. Then
H2(G,L×) ∼= 1

#GZ/Z.

Proof. Because L× ∼= πZ
K ×O

×
L , we use Lemma 1.65 to yield

H2(G,L×) ∼= H2(G, πZ
K)×H2(G,O×L ) ∼= H2(G,Z),

where we are using the fact that πK is fixed by G. Thus, we want to compute

H2(G,Z) ∼= Ĥ0(G,Z) =
Z

NGZ
=

Z
#GZ

,

which is what we wanted. �

Corollary 1.67. Fix a local field K. Then H2(Gal(Kunr/K), (Kunr)×) = Q/Z.

Proof. Take direct limits of the above lemma. It is not too hard to check that everything works out here in
our transition maps. �

1.11 February 10

Today we finish proving that H2(Gal(Ksep/K),Ksep×) ∼= Q/Z.

1.11.1 Cohomology of Ramified Extensions
Quickly, we pick up the following cohomological tool.

Proposition 1.68 (Restriction–inflation). Fix a normal subgroup H of a group G. Given a G-module M
such that H1(H,M) = H2(H,M) = 0, we have

H2
(
G/H,MH

) ∼= H2(G,M).

Proof. We make a few remarks.

• The functor (−)H : ModG → ModG/H preserves injectives. Indeed, this functor has an exact left ad-
joint: namely, we want an exact functor L : ModG/H → ModG such that any M ∈ ModG and S ∈
ModG/H has

HomG(LS,M) ' HomG/H

(
S,MH

)
.

Well, we simply define LS to be S viewed as a G-module via G → G/H. Namely, a G-module mor-
phism from S → M must be fixed by H because S is a trivial H-module, so we have really defined a
morphismS →MH asG/H-modules. Also, observe thatL is exact because exactness can be checked
in Ab, and we have done nothing to the underlying abelian groups.
We now show thatL tells us we preserve injectives. Well, let I be an injectiveG-module, and fix some
embedding of S ⊆ S′ of H-modules. Given some morphism S → IH , we want to fill in the following
arrow.

0 S S′

IH
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Hitting this with our exact adjunction, it is equivalent to fill in the following arrow.

0 LS LS′

I

However, I is injective, so such an arrow exists.

• We now compute cohomology. We are granted a left-exact sequence as follows.

0→M → I0 → I1 → I2 → · · · .

These injective G-modules are also injective H-modules (just write down the diagram), so we can
compute group cohomology in G or H by taking cohomology of the above resolution. Namely,

H•(H,M) = H•
(
I0H → I1H → · · ·

)
,

H•(G,M) = H•
(
I0G → I1G → · · ·

)
.

Now, because H1(H,M) = H2(H,M), we know that

0→MH → I0H → I1H → I2H → I3H

is exact, and the previous point tells us that this is the beginning of an injective resolution in ModG/H .
Now computing G/H-invariants, we see that

H2
(
G/H,MH

)
=

ker
(
(I2H)G/H → (I3H)G/H

)
im
(
(I1H)G/H → (I2H)G/H

) = H2(G,M),

which is what we wanted. �

Remark 1.69. In the background, this result really comes from a spectral sequence.

We now turn to totally ramified extensionsL/K. Speaking philosophically,H2(Gal(L/K), L×) is a class field
theory question, a question about Brauer groups (one can simply translate everything into central simple
algebras), or a geometry question via our Brauer–Severi varieties. Let’s do geometry.

Lemma 1.70. Fix a totally ramified extension of local fields L/K. Given an OK-scheme POK such that
POL

∼= PnOL , we also have POK ∼= PnOK .

Proof. We provide a sketch.

1. To begin, one can show there is a closed embedding P ↪→ PMK for some M > 0. Roughly speaking,
one can pick up a line bundleLPL inducing the isomorphismPL ∼= PnL, but the cocycle condition allows
us to know it takes values in the roots of unity, so taking a large enough power means we induce an
embedding to projective K-space. (To work with infinite extensions, we note that specifying such a
morphism only needs a finite amount of polynomial data, so it’s okay to pass to the colimit.) By abuse
of notation, we say LPK is the line bundle yielding our embedding.

2. We claim that it is enough to show PK(K) is nonempty. Indeed, we want to show that there is a line
bundleMonPK such thatM⊗ degLPK ∼= LPK , which is enough becauseMwill induce an isomorphism
PK → PMk , which is good enough.
Well, we would like to chose ML coming from PnL such that ε : M⊗ degLPK ∼= LPL and want it to
be compatible with the Galois action, but this need not be the case. Namely, we would like for this
morphism to be unique in some sense and therefore compatible with the Galois action. To get rid
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of the extraneous automorphisms, we fix x ∈ PK(K) and consider pairs of line bundles (U , ρ) where
ρ : kU (x) ∼= K.
Notably, isomorphisms between such pairs are unique when they exist, but this category of pairs up
to isomorphism is still just PicPK , even with the tensor product. Reformulating our problem, we are
trying to find a line bundle M⊗ degLPK ∼= LPL with the ρ, and this data will now be automatically
compatible with the Galois action.

3. Note that having some POK ⊆ PNOK with POL ∼= PnOL also grants us a B-point SpecOL → POL by the
valuative criterion. This story of our B-point with residue field k will give us a k-point coming from A
as well because A and B have the same residue field.
As such, unwrapping the algebraic geometry, we have a morphismA→ k and a morphism ÔPA,x → k,
and we would like to lift this to ÔPA,x → A, which will give us the desiredA-point to finish. Well, map
ÔPA,x to ÔPk,x and then left elements of m/m2 to lift back to ÔPA,x. This will define a map A Jx•K to
ÔPA,x, which will finish the proof. �

1.12 February 13

We hopefully finish discussing H2(Gal(L/K), L×) for local fields L today.

1.12.1 Finishing H2

To finish up the computation of H2, we make a final remark.

Proposition 1.71. Fix a local field K, and let I ⊆ Gal(Ksep/K) be the kernel of the restriction map
Gal(Ksep/K)→ Gal(Kunr/K). Then H2(I,Ksep×) = 0.

Proof. We claim that the image of H2(I,O×Ksep) → H2(I,Ksep×) vanishes. Indeed, fix some class [f ] in
there, and because we have defined our cohomology as a colimit, it can be exhibited as from some finite
extension as

[fL] ∈ H2(Gal(L/Kunr),O×L ).

We can now show that [fL] is in the image of the mapH1(Gal(L/Kunr),PGLn(OL))→ H2(Gal(L/Kunr), L×)
for somen, which will be enough by the usual exact sequence. Indeed, we have a formula: setn := [L : Kunr]
andG := Gal(L/Kunr), and letfL be the desired cocycle. Then our proof of the vanishing ofH2(Gal(L/Kunr),O×L )
tells us that we are in fact in the image of H1(Gal(L/Kunr),PGLn(OL)); explicitly, we have

M :=
⊕
s∈G
OLes,

where theG-action is given byρg : es 7→ fL(g, s). ThisM is providing an element ofH1(Gal(L/Kunr),PGLn(OL)),
which produces2 an OKunr-scheme P which is isomorphic to Pn−1

OL over OL. But then last class we showed
that this scheme must have vanishing class, so we are done.

Continuing, we actually claim that the map H2(I,O×Ksep) → H2(I,Ksep×) is surjective. Indeed, we have
some exact sequence

0→ OKsep → Ksep× v→ Q→ 0,

where v is our valuation. Now, H2(I,Q) vanishes because Q is a divisible group (indeed, take any cocycle,
using the colimit forces it into a finite extension, and then divisibility causes the cocycle to have vanishing
class there). As such, our exact sequence will do the trick here. This finishes the proof. �

2 It turns out that we can just take this as POLM .
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Remark 1.72. Let us explain further where Hi(G,Q) = 0 for any finite group G and i > 0. Indeed, the
point is that the forgetful functor

(−)G : ModQ[G] → VecQ

is exact, which is enough because it causes our cohomology to vanish. Well, we note that we have two
additive functors

MG ↪→M
1

#G

∑
g∈G g−−−−−−−−→MG

whose composite is the identity. In particular, using our lift, we get a canonical decomposition M ∼=
M ′ ⊗MG, which tells us that (−)G should be an exact functor.

1.12.2 Back to Global Things
Fix an extension of global fields L/K with Galois group G. Given a place v of K, we note that we have a
decomposition

L⊗K Kv
∼=
∏
w|v

Lw,

where Lw is the completion of L at some place w over v.

Proposition 1.73. Fix everything as above. For fixed L-place w0 | v, we have a G-module isomorphism

L⊗K Kv
∼= IndGGw0

Lw0 .

Proof. Recall IndGGw0
Lw0 = MorGw0

(G,Lw0). As such, we choose representatives g1, . . . , gr for G/Gw0 to
see that

IndGGw0
Lw0
∼=

r∏
i=1

Lw0
gi,

where the ith component dictates where gi goes. But now the point is that the right-hand side remains r
di�erent copies of the completion Lw0 , which is in fact the same as L⊗K Kv above. One should check that
this commutes with the G-action, but indeed it does. �

Remark 1.74. One can replace everything with units as L×w .

Corollary 1.75. Fix everything as above. For fixed L-place w0 | v, we have a canonical isomorphism

H•

(
G,
∏
w|v

L×w

)
∼= H•(Gw0 , L

×
w0

).

Proof. More generally, given a subgroup H ⊆ G, we have the sequence of functors

ModH
Ind−−→ ModG

(−)G−−−→ Ab.

Now, the functor Ind is exact and takes injectives to injectives (it has an exact left adjoint given by the re-
striction functor), so we can compute cohomology for given H-module either directly or by inducing first.
The result follows. �
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1.13 February 15
We continue moving towards the Hasse norm theorem.

1.13.1 Reducing to Cohomology
Recall for a moment that we are interested in proving the Hasse norm theorem, which is roughly the state-
ment that

K×

NL
K(L×)

→
∏
v

K×v
NLw
Kv

(L×w)

is injective for cyclic extensions of global fields L/K, where w is some fixed place over v. Well, using our
Tate cohomology, we see that it is enough to show that the map

H2(Gal(L/K), L×)→
∏
v∈VK

H2(Gal(Lw/Kv), L
×
w)

is injective. The point here is to write down the short exact sequence

1→ L× → A×L → A×L/L
× → 1,

where A×L are the idéles. This grants us the exact sequence in cohomology given by

H1(G,A×L/L
×)→ H2(G,L×)→ H2(G,A×L ).

But now we note
A×L = colim

S⊆VK
A×L,SL ,

where SL refers to the pre-image of S under the restriction map VL → VK . Notably, this is also an isomor-
phism of G-modules because we are looking at SL-idéles. In particular, we have the following.

Proposition 1.76. Fix a finite Galois extension of global fields L/K. Then any i ≥ 0 has

Hi(G,A×L ) ∼=
⊕
v∈VK

Hi(Gw, L
×
w),

where w is some fixed place over v.

Proof. The point here is that we can write

Hi(G,A×L ) = Hi

(
G, colim

S⊆VK
A×L,SL

)
= colim

S⊆VK
H2(G,A×L,SL),

where this last equality holds by just checking by hand: indeed, there is of course a map from the left to
the right by taking the given cocycle and pretending it is a colimit of cocycles; the inverse map simply says
that any colimit of cocycles on the right can only have some bounded denominators because we’re merely
looking at a map G2 → A×L,SL to write down our cocycles.

Expanding this out, we get to write

Hi(G,A×L ) = colim
S⊆VK

(∏
v∈S

Hi

(
G,
∏
w|v

L×w

)
×
∏
v/∈S

Hi

(
G,
∏
w|v

O×w

))
.

Now, the arguments of Corollary 1.75, we see
∏
w|v O×w = IndGGw O

×
w and similar for L×w , so this becomes

Hi(G,A×L ) = colim
S⊆VK

(∏
v∈S

Hi(G,L×w)×
∏
v/∈S

Hi(Gw,O×w )

)
.
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Now, for unramified places v, we see thatHi(Gw,O×w ) vanishes by Lemma 1.65, so by throwing those places
in S, we may ignore them. Thus, we get

Hi(G,A×L ) = Hi(G,A×L ) = colim
S⊆VK

∏
v∈S

∏
v∈S

H2(Gw, L
×
w) =

⊕
w∈VL

H2(Gv, L
×
v ),

which is what we wanted. �

Remark 1.77. Passing to the separable closure, we see

colim
K⊆L⊆Ksep

H2(Gal(L/K),A×L )

is
⊕

v<∞Q/Z plus some finite number of 1
2Z/Z factors coming from infinite places.

Remark 1.78. Tracking through the above proof shows that the map H2(G,L×) → H2(G,A×L ) factors
into the map

H2(G,L×)→
⊕
v

H2(Gw, L
×
w)→

∏
v∈VK

H2(Gw, L
×
w).

In particular, we are getting that an element ofH2(G,L×) vanishes in all but finitely manyH2(Gw, L
×
w)

for free! Relating this back to our geometry, we are essentially saying that a K-quadratic form has a
Kv-point for all but finitely many places v. But this is exactly Theorem 1.28, which we were able to
show more directly.

Thus, we see that we want the map H2(G,L×) → H2(G,A×L ) to be injective, so we see that what we really
want to show is thatH1(G,A×L/L×) vanishes from our exact sequence, which we will do eventually.

Remark 1.79. Note that the term before H1(G,A×L/L×) in our long exact sequence is

H1(G,A×L ) =
⊕
v∈VK

H1(Gw, L
×
w) = 0

from Proposition 1.76, so the kernel of H2(G,L×)→ H2(G,A×L ) is indeed exactly H1(G,A×L/L×).

Unfortunately, showing H1(G,A×L/L×) vanishes is genuinely di�cult. Let’s do it.

1.13.2 Cohomology of Cyclic Groups
We are going to want the following definition.

Definition 1.80 (Herbrand quotient). Fix a finite cyclic group G and a G-module M . Because Ĥ•(G,M)
is 2-periodic, it is helpful to define the Herbrand quotient

h(G,M) :=
#H2(G,M)

#H1(G,M)

when these cohomology groups are finite.

Remark 1.81. In some sense, this is a “multiplicative” variant of the topological Euler characteristic.
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Lemma 1.82. Fix a finite cyclic group G and a finite G-module M . Then h(G,M) = 1.

Proof. Set G = 〈σ〉 ∼= Z/nZ. We are interested in computing the cohomology of the complex

M
T−→M

N−→M
T−→M → · · · ,

where T = (σ − 1) and N = NG.

• If MG = 0, then the map T has kerT = MG = 0, so T is an isomorphism because M is finite. Further,
imNG ⊆MG = 0, soN = 0. As such, we may compute our cohomology as Ĥ−1(G,M) = Ĥ0(G,M) =
0 via Tate cohomology.

• If MG = M , then here T is the zero map, and N is the multiplication-by-n map, so we may compute

Ĥ−1(G,M) = ker(n : M →M) and Ĥ0(G,M) =
M

nM
.

Using the classification of finite abelian groups, these both have the same size.

• To finish the proof, we use induction on M . In particular, we have an exact sequence

0→MG →M →M ′ → 0.

IfMG = 0 orMG = M , then the above cases finish. Otherwise, bothMG andM ′ have strictly smaller
cardinality, so the multiplicativity of the Herbrand quotient tells us thath(G,M) = h(G,MG)h(G,M ′) =
1, which is what we wanted. �

Remark 1.83. In particular, if you have an exact sequence like

0→M ′ →M →M ′′ → 0,

then you geth(G,M ′)h(G,M ′′) = h(G,M). This basically comes straight from the long exact sequence.

1.14 February 17
The homework is killing me.

1.14.1 Applications of Herbrand Quotients
Fix a finite cyclic group G. We continue discussing Herbrand quotients.

Corollary 1.84. Fix a finite extension of finite fields `/κ with Galois group G. Then H2(G, `×) = 0.

Proof. NoteG is cyclic because these are finite fields, and `× is finite, soh(G, `×) = 1. However,H1(G, `×) =
0 by Hilbert’s theorem 90, so it follows that H2(G, `×) = 0 for free. �

Remark 1.85. This implies that the Brauer group over k vanishes, by taking the colimit over all `/k.
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Corollary 1.86. Fix a cyclic group G. Then let V be finite-dimensional G-representation over a field Q.
Given G-stable lattices M1,M2 ⊆ V , we have h(G,M1) = h(G,M2).

Here, a lattice is a free Z-submodule with Z-rank equal to the dimension of V .

Proof. Let Mi have basis {vij}nj=1, where n = dimV . Notably, we can write

v2i =

n∑
j=1

cijv1j

for some cij . LettingN be the product of the denominators of the cij , we see that multiplication byN grants
an inclusion N : M1 →M2. Thus, we get an exact sequence

0→M1
N→M2 →M2/NM1 → 0.

Notably, tensoring this with Q makes the left an isomorphism, soM2/NM1 must be a torsion abelian group
which is finitely generated, implying that it must be finite. Thus, h(G,M2/NM1) = 1, so h(G,M1) =
h(G,M2) follows. �

Remark 1.87. One can actually describe G-representations for cyclic groups G somewhat concretely;
letG = 〈σ〉 have order n. Namely, given a ringR, we would like to discussR[G]-modules, where we see

R[G] =
R[σ]

(σn − 1)
.

For example, if R contains a primitive nth root of unity ζ (and R has characteristic not dividing p), then

R[G] ∼=
n∏
i=1

R[σ]

(σ − ζ)
∼= Rn.

Thus, an R[G]-module is essentially just a direct sum of n di�erent R-modules M1, . . . ,Mn, and then
the G-action on Mi is given by σ 7→ ζi.

Remark 1.88. One can use the previous remark to show thatM1⊗KΩ ∼= M2⊗KΩ implies thatM1
∼= M2,

when K ⊆ Ω is an inclusion of fields. Roughly speaking, the point is that we can decompose M1 into
a direct sum as described above, if we have enough roots of unity, then we are basically prescribing
dimension at each graded component.

1.14.2 Herbrand Quotient Computation
We are going to show that h(G,A×L/L×) = n, when L/K is a cyclic extension of global fields of degree
n.

Lemma 1.89. Fix an extension of global fields L/K. Then there exists a finite set of places T such that
A×L = L× · A×L,T so that A×L/L× = A×L,T /L×.

Proof. The point is to hit all the ideal classes. Fix a set of places S ⊆ VK satisfying the following conditions.

• S contains the archimedean places.

• The finite part of SL, made of primes {P1, . . . ,Pn}, generates the ideal class group of L.
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In particular, the class group ofL is finite, so we can find a finite set S ⊆ VK satisfying the above conditions.
We now set T := SL. Let’s show this works. Fix an idéle (αw)w∈VL ∈ A×L . Then∏

w<∞
Pvalw(αw)
w

is an ideal equivalent to some product

I :=

r∏
i=1

Pvr
r .

In other words, there is β ∈ L× such that valw(β) = valw(αw)−valw(I). Choosing uniformizers πw ∈ pw, we
note

β ·
(
πvalw(I)
w

)
w

has the same valuation asα at every placew. In particular, the quotient lives inA×L,∅, so we are now safe. �

Remark 1.90. Note that making T larger does not hurt us, so we may assume that T is G-stable.

At the end of the day, we have a diagram which looks like the following.

0 O×L,T A×L,T A×L,T /O
×
L,T 0

0 L× A×L A×L/L× 0

The induced morphism on the right is injective by the Snake lemma, and we note that the map A×L,T →
A×L/L× is surjective by the lemma, so in fact the induced morphism on the right is also surjective. Thus,
A×L/L× = A×L,T /O

×
L,T . (Here, O×L,T are the T -units, which are the elements of L× with vanishing valuation

outside T .)

Remark 1.91. The arguments of Proposition 1.76 also tell us that

H•(G,A×L,SL) =
∏
v∈S

H•(Gw, L
×
w)×

∏
w/∈S

H•(Gw,O×w ),

and the right product vanishes if, for example, S contains the places of K which ramify over L.

1.15 February 22
Let’s try to show global class field theory in a week.

1.15.1 The First Inequality
Fix a finite cyclic extension of global fields L/K with Galois group G. Last time we showed A×L/L× =
A×L,T /O

×
L,T , where T is some su�ciently large G-equivariant subset of VL. In particular, we want T to con-

tain the archimedean places and to generate the class group. Thus, we have an exact sequence

1→ O×L,T → A×L,T → A×L/L
× → 1,

so

h(G,A×L/L
×) =

h(G,A×L,T )

h(G,O×L,T )
, (1.3)
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provided that these Herbrand quotients are finite. In fact, we can see that these are finite from the following
proof: indeed, we have a long exact sequence as follows.

H1(G,O×L,T ) H1(G,A×L,T ) H1(G,A×L/L×)

H2(G,A×L/L×) H2(G,A×L,T ) H2(G,O×L,T )

In particular, we are going to compute h(G,A×L,T ) and h(G,O×L,T ) on the nose, from which finiteness of
h(G,A×L/L×) also will follow. Let’s see this.

Theorem 1.92. Fix a finite cyclic extension of global fieldsL/K with Galois groupG, and choose a subset
S ⊆ VK containing the archimedean and ramified places with T := SL.

(a) We have
h
(
G,A×L,T

)
=
∏
v∈S

nv,

where nv = [Lw : Kv] for a chosen place w ∈ VL over v ∈ VK .

(b) We have
h
(
G,O×L,T

)
=
∏
v∈S

nv.

Proof. Quickly, note that the extension being Galois implies that nv = e(w/v)f(w/v) does not depend on
the choice of w, so our products are well-defined. We show these one at a time.

(a) Observe that

A×L,T =
∏
v∈S

(∏
w|v

L×w

)
×
∏
v/∈S

(∏
w|v

O×w

)
.

In particular, this is
A×L,T =

∏
v∈S

IndGGw L
×
w ×

∏
v/∈S

IndGGw O
×
w ,

where w is a chosen place over v. Taking cohomology and using Corollary 1.75, this is

H•(G,A×L,T ) =
∏
v∈S

H•(Gw, L
×
w)×

∏
v/∈S

H•(Gw,O×w ).

Because S contains all ramified places, we see that H•(Gw,O×w ) = 0 always by Lemma 1.65, so we
have left to compute the left product. Taking Herbrand quotients now, we see

H•(G,A×L,T ) =
∏
v∈S

h(Gw, L
×
w),

so we appropriately claim that h(Gw, L
×
w) = nv, so we need a little more local class field theory.

By the usual exact sequence
1→ O×w → L×w → Z→ 0,

we see h(Gw, L
×
w) = h(Gw,Z)h(Gw,O×w ) = nvh(Gw,O×w ), so we want h(Gw,O×w ) = 1. Our argument

that H1(Gw,O×w ) = 0 for free, so we want to show H2(Gw,O×w ) = 0, which one can again check by
going to residue fields. Roughly speaking, the Brauer–Severi variety argument from Lemma 1.70 still
works, where we are now inputting the fact that the Brauer group of our extension of finite fields is
trivial, which is certainly true from our computation of its Herbrand quotient in Lemma 1.82.
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(b) Roughly speaking, the point is that O×L,T will embed as a lattice into VR, where V = Mor(T,Z). (The
G-action on V is given by (gf)(t) = f

(
g−1t

)
.) Namely, our embedding ι : O×L,T → VR is given by

ι : x 7→ (log |x|w)w∈T .

This is of course a homomorphism, and Dirichlet’s unit theorem tells us that the ker ι is finite and that
the image Λ is a lattice of the hyperplane ∑

w∈T
xw = 0,

which comes from the product formula and recognizing that ι(x) is trivial on places outsideT . Notably,
we have a decomposition

VR = ΛR ⊕ R(1, . . . , 1)

in fact of G-modules. (Indeed, both modules on the right are G-submodules of VR.) Setting Λ′ :=
Λ⊕ Z(1, . . . , 1), we see Λ′R = VR.
We now compute. Note h(G,O×L,T ) = h(G,Λ) because their quotient is finite and contributes nothing
by Lemma 1.82. On the other hand, we see h(G,Λ′) = h(G,Λ)h(G,Z) = nh(G,Λ), so

nh(G,O×L,T ) = h(G,Λ′)

by rearranging. On the other hand, we note

V =
∏
v∈S

(∏
w|v

Z

)
,

so
H•(G,V ) =

∏
v∈S

H•(Gw,Z)

by Corollary 1.75 as usual. Thus,

h(G,V ) =
∏
v∈S

h(Gw,Z) =
∏
v∈S

nv.

Combining, we see we want to show h(G,Λ′) = h(G,V ). However, these are both lattices of this real
vector space, so with this in mind, it will be enough to give aG-module isomorphism Λ′⊗ZQ ∼= V ⊗ZQ
by Corollary 1.86. Well, using the fact our vector spaces are finite-dimensional, we compute

HomQ[G](Λ
′
Q, VQ) ∼= ((Λ′Q)∨ ⊗Q VQ)G = ker

(
(1− σ) : (Λ′Q)∨ ⊗Q VQ → (Λ′Q)∨ ⊗Q VQ

)
,

where σ ∈ G is the generator. However, taking the kernel commutes with taking the tensor product
with a field because these kernel computations can just look at bases, so we might as well be comput-
ing the kernel of

(1− σ) : (Λ′R)∨ ⊗R VR → (Λ′R)∨ ⊗R VR,

which we do know is isomorphic to HomR[G](Λ
′
R, VR). However, we do now know that there is an iso-

morphism α in this last group, so we produce an element
n∑
i=1

βi ⊗ vi ∈ (Λ′Q)∨ ⊗Q VR

which corresponds to an R-isomorphism. Selecting the vi to be rational vectors su�ciently close to
vi, we may assume that the determinant of the corresponding linear map remains nonzero (as it is in
the above case), so we get to pull back to the desired Q-isomorphism Λ′Q

∼= VQ. �

Corollary 1.93. Fix a finite cyclic extension of global fieldsL/K with Galois groupG, and choose a subset
S ⊆ VK containing the archimedean places withT := SL and generating the ideal class group ofL. Then
h
(
G,A×L/L×

)
= n. In particular, it is finite.

Proof. This follows from the above theorem, combined with (1.3). �
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1.16 February 24
We finish showing global class field theory. Fix a cyclic extension of global fields L/K with Galois group
G. We want to show that Ĥ1(G,A×L/L×) vanishes, so because h(G,A×L/L×) = n, it su�ces to show that
Ĥ0(G,A×L/L×) ≤ n. This is the second inequality.

Remark 1.94. The remainder of the proof will be quite technical. Roughly speaking Herbrand quotients
play well in short exact sequences (like Euler characteristics), but getting an individual cohomology
group is harder.

1.16.1 Remark on Restriction
We are going to want a little more group cohomology to continue. Fix a finite group G and a subgroup
H ⊆ G. We have the following result.

Proposition 1.95. Fix a finite groupG and a subgroupH ⊆ G. Then IndGH is both a left and right adjoint
for ResGH .

Proof. This proof is somewhat technical, but it’s fairly direct. We have to provide the following natural
transformations.

• There is a map N → ResGH IndGH N for any H-module N . Well, this map is just given by f 7→ f(1).

• There is a map ResGH IndGH N → N for any G-module N . Well, this map is just given by f 7→ f(1).

• There is a mapM → IndGH ResGHM for anyG-moduleM . Well, this map is just given bym 7→ (g 7→ gm).

• There is a map IndGH ResGHM →M for any G-module M . Well, this map is just given by∑
gH∈G/H

gfg−1.

In particular, theH-invariance of f implies that the choice of coset representative gH does not matter.
We omit the adjunction checks. �

Remark 1.96. Note that the composition

M → IndGH ResGHM →M

is simply multiplication by [G : H]. In particular, if H is the trivial subgroup, then the middle term
vanishes, so we see that H•(G,M) should be n-torsion.

Corollary 1.97. Fix a finite group G and a Sylow p-subgroup H. Then the map

H•(G,M)[p∞]
Res−−→ H•(H,M)[p∞]

is injective.

Proof. Note the composite

H•(G,M)[p∞]
Res−−→ H•(H,M)[p∞]→ H•(G,M)[p∞]

is multiplication by [G : H], which is coprime to p, so this composite is an isomorphism. Thus, the left map
is injective. �
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Remark 1.98. Roughly speaking, it will be beneficial to go down to Sylow p-subgroups because these
are solvable, so one can imagine we can then reduce to cyclic subgroups with some e�ort.

1.16.2 The Second Inequality
We are now ready for our main theorem.

Theorem 1.99. Fix a Galois extension of number fields L/K with Galois group G.

(a)
[
A×K : K×NL

K(A×L )
]

is finite and divides [L : K].

(b) H1(G,A×L/L×) = 0.

(c) H2(G,A×L/L×) is finite with order dividing [L : K].

Remark 1.100. Note that A×K/K×NL
K(A×L ) = Ĥ0(G,A×L/L×). To see this, we stare at the usual short

exact sequence
1→ L× → A×L → A×L/L

× → 1.

Because H1(G,L×) = 0, this gives rise to the exact sequence

K×

NL
K L

×
→

A×K
NL
K A×L

→ Ĥ0(G,A×L/L
×)→ 0,

so the claim follows.

Reductions. Let’s provide some reductions.

• If G is cyclic then the above are all equivalent. Indeed, (a) and (c) are equivalent by periodicity of
cohomology. Further, we see (c) is equivalent to #Ĥ0(G,A×L/L×) ≤ n. But this is equivalent to
#Ĥ1(G,A×L/L×) ≤ 1 because h(G,A×L/L×) = n here. However, this last inequality is equivalent
to Ĥ1(G,A×L/L×) = 0, which is (b).

• We reduce to the case where G is a p-group. Indeed, let H ⊆ G be a Sylow p-subgroup. If we are
given the theorem in the case L/LH (where here the Galois group is a p-group), then we conclude by
restricting via Corollary 1.97 that

#Ĥi(G,A×L/L
×) [p∞] ≤ #Ĥi(H,A×L/L

×) ≤
[
L : LH

]
= #H,

so the order of p dividing Ĥi(G,A×L/L×) is less than or equal to the order of p dividing [L : K]. Because
the cohomology is [L : K]-torsion, we conclude that these are the only primes we have to worry about,
so the theorem for p-groups (each of (a), (b), and (c)) implies the theorem in general by taking i ∈
{0, 1, 2} by these injections.

• We reduce to the case where G ∼= Z/pZ. Indeed, if not, by the proof of the Sylow theorems, we may
assumeG is a p-group, and there is a nontrivial proper normal subgroupH ⊆ G such that we have the
theorem for the extensions L/LH and LH/K.
Let’s start with (b). By Restriction–Inflation, we know that H1(G,A×L/L×) = 0 will imply that

H1(G,A×L/L
×) ∼= H1

(
G/H, (A×L/L

×)H
)

= H1
(
G/H,A×

LH
/(LH)×

)
,

which vanishes because we know the theorem on the extensionLH/K. To see the last equality above,
we can take H-invariants of the exact sequence

1→ L× → A×L → A×L/L
× → 1
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to see A×
LH
/(LH)× ∼= (A×L/L×)H because H1(H,L×) = 0.

For (a), we see
A×L ⊇ K

×NLH

K (A×
LH

) ⊇ K×NL
K(A×L ),

and the left index is appropriately bounded by [LH : K], so it su�ces to show that the right index is
bounded by [L : LH ]. Well, for our bound, we know that the index

A×
LH
⊇ LH×NL

LH (A×L )

divides [L : LH ]. Well, taking NLH

K of this inclusion, we see that the index of

NLH

K (A×
LH

) ⊇ NLH

K (LH×) NLH

K (A×L )

will still divide [L : LH ] because there is a surjection from the previous quotient to this quotient. Thus,
the index of

K×NLH

K (A×
LH

) ⊇ K×NLH

K (A×L )

still divides [LH : K] because again there is a surjection from this above quotient to this one. This
finishes.
Lastly, for (c), one looks at the long exact sequence and does some tricky thing.

• We can even reduce to the case whereµp ∈ K. We omit the details of this reduction. Roughly speaking,
adjoining µp replacesK with an extension coprime to p, so because we are interested in showing that[
A×K : K×NL

K(A×L )
]

divides some smallish power of p, so adding in these factors coprime to p do not
a�ect the argument. �

1.17 February 27
Today we hope to finish global class field theory but very fast.

1.17.1 Tate’s Theorem
We are going to want the following result.

Theorem 1.101 (Tate). Fix a finite group G and a G-module M . Suppose that each subgroup H ⊆ G
satisfies the following conditions.

• H1(H,M) = 0.

• H2(H,M) is cyclic of order #H.

Then, for each r, there is an isomorphism Ĥr(G,Z) ∼= Ĥr+2(G,M).

Proof. We provide a sketch. Roughly speaking, we are going to want to combine two di�erent boundary
maps. In particular, the short exact sequence

0→ IG → Z[G]→ Z→ 0

tells us that Ĥr(G,Z) ∼= Ĥr+1(G, IG). We are now a single index away. Thus, we want to construct a short
exact sequence

0→M → E → IG → 0,

where E the boundary maps Ĥr+1(G, IG) ∼= Ĥr+2(G,M) are isomorphisms.
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Fix a 2-cocycle ϕ : G2 →M representing a generator of H2(G,M).Yoneda
ext?

Now, as an abelian group, we set

E := M ⊕ IG = M ⊕
⊕

g∈G\{e}

Zxg.

We need to give E a G action. For this, we define

h · xg := xhg − xh + ϕ(h, g),

where x1 := ϕ(1, 1). One can check that this does in fact define a G-action. In particular, one can compute
that the map G→ IG given by g 7→ xg goes to the generator of H2(G,M) under the correct boundary map.
One can finish by checking that our boundary maps are isomorphisms, which is good enough. �

Example 1.102. Given a Galois extension of local fields L/K, then we see that theG-module L× satis-
fies the above conditions by our discussion of local class field theory. In particular, H1(H,M) vanishes
by Hilbert’s theorem 90, and being cyclic followed from our rather lengthy and di�cult computation.
Then Theorem 1.101 promises us an isomorphism

Gab ∼=
IG
I2
G

= H1(G, IG) = Ĥ−2(G,Z) ∼= Ĥ0(G,L×) =
K×

NL
K(L×)

.

In particular, ifG ∼= Z/pZ, then we see that taking pth powers kills our equivalence classes, so they must
be norms.Gaussian

rationals?

1.17.2 Finishing the Second Inequality
We are now in the case where L/K has Galois group 〈γ〉 ∼= Z/pZ, and K contains µp. We thus claim that
L = K(α1/p) for some α ∈ K×. This is Kummer theory. Well, for some homomorphism χ : 〈γ〉 → µp, and
set

Wχ := {α ∈ L : gα = χ(g)α}.
We claim that each of these Wχ is one-dimensional and have direct sum equal to L. For this, it’s enough to
check over an Ω := K. Namely, we are looking for an isomorphism∏

σ : L↪→Ω

Ω ∼=
⊕
χ

Wχ ⊗K Ω,

and we can check this directly. In particular, we see Hom(〈γ〉, µp) ∼= Z/pZ, so we can decompose everything
appropriately. Namely, pulling back elements of Z/pZ allows us to recover elements of Wχ to make these
one-dimensional and so on.

We are now interested in showing [
A×K : K×NL

K(A×L )
]
| #G = p.

Thus, we want to show that we have “lots” of norms in A×K . As usual, choose a (large) finite subset S ⊆ VK
satisfying the following constraints.

• S contains the infinite places.

• S contains the places lying over (p) ∈ VQ.

• S contains the places where α is not a unit.

Now, we consider the (large) fieldM := K( p

√
O×K,S), which is finite overK becauseO×K,S is finitely generated

by Dirichlet’s unit theorem. In fact, carefully tracking the unit theorem allows us to see [M : K] = p#S .
Additionally, M/K is unramified outside S by checking at each place.

We are going to want the following result, quickly.

43



1.17. FEBRUARY 27 254B: RATIONAL POINTS

Lemma 1.103. Fix an abelian extension of number fields L/K. Suppose we have a subgroup D ⊆ A×K
contained in NL

K(A×L ) such that K×D is dense in A×K . Then L = K.

Proof. We sketch. Roughly speaking, D ⊆ NL
K(A×K) and our density result forces the groups

Kv

NLw
Kv

(L×w)

to be small, for any place v lying under a place w. However, we do have a lower bound on this size from the
first inequality (or alternatively, from local class field theory), so we will force L = K. �

As an application, one can use Example 1.102 and the above lemma to show that Gal(M/L) is generated
by Frobenius elements Frobv for various v /∈ S. Notably, these Frobenius elements exist because M/K is
unramified.

As such, we may find T ⊆ VK disjoint from S such that the Frobenius elements Frobv for v ∈ T generate
Gal(M/L). We are now equipped to write down

E :=
∏
v∈S

K×pv ×
∏
v∈T

K×v ×
∏

v/∈S∪T

O×v .

The main claim, now, is that E ⊆ NL
K(A×L ). We go factor-by-factor.

• Given v ∈ S, we know that pth powers are norms by Example 1.102.

• For v ∈ T , our choice of T enforces Lw = Kv. In particular, the local Frobenius element of M/L
is going to be the same as the local Frobenius element of M/K, so the extensions at L and K must
coincide.

• For v /∈ S ∪ T , our extension is unramified, so we see that all units are norms.

In particular, we see that
[
A×K : K×NL

K(A×L )
]

is divisible by
[
A×K : K×E

]
, so we might as well work with E.

We can now compute [
A×K : K×E

]
=

[
A×K,S∪T : E

]
[
O×K,S∪T : K× ∩ E

] ,
roughly speaking by examining howE interacts with the idéles. One can now compute that

[
A×K,S∪T : E

]
=

p2#S and
[
O×K,S∪T : K× ∩ E

]
= p#S+(#S−1), so the quotient is in fact size p. This completes the proof.

Remark 1.104. Combining with the first inequality, we must actually have K×E = K×NL
K(A×L ), which

roughly tells us what our norms are.
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THEME 2

ELLIPTIC CURVES

2.1 March 1
Let’s talk about curves. Our language will follow [Har77, Chapter II, IV]. One can in theory just follow the
classical language of [Sil09].

2.1.1 Introducing Curves
The definition of a curve in [Har77] is as follows.

Definition 2.1 (curve). Fix an algebraically closed field k. Then a k-curveX is a 1-dimensional, integral,
smooth, projective k-scheme.

Example 2.2. Fix an algebraically closed field k and a homogeneous polynomial f ∈ k[x, y, z]. Given
that ∂F/∂x and ∂F/∂y and ∂F/∂z and F do not all simultaneously vanish, then V (F ) ⊆ P2

k is a field.

We would like to relax the requirement that k is algebraically closed.

Definition 2.3 (geometrically integral). An S-schemeX is geometrically integral if and only ifX ×S T is
integral for any S-scheme T .

Definition 2.4 (curve). Fix a field k. Then a k-curve is a 1-dimensional, geometrically integral, smooth,
projective k-scheme.

Remark 2.5. Equivalently, we can require our curves to just be curves over an algebraically closed field
over base-change to an algebraic closure. Roughly speaking, these properties are preserved by base-
change and also local on the target with respect to flat base-change, so one can go back and forth.

Remark 2.6. As an aside, note that smoothness implies “locally integral,” meaning that there is an open
cover of integral domains. (One can check this locally.) Thus, connectedness here is equivalent to irre-
ducible because we are already integral.

Many of the proofs we do will work by first taking a base-change to an algebraic closure and appealing to
[Har77].
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2.1.2 Divisors
Throughout, we fix a regular k-scheme X.

Definition 2.7 (divisor). The divisor group on a regular k-schemeX, denoted Div(X), is the free abelian
group on the closed points of X.

Note that being one-dimensional and integral implies that X has only closed points and a single generic
point. We would like to define degree, but one must be a little careful because we are trying to relax alge-
braically closed hypotheses.

Example 2.8. Note
(
x2 + 1

)
is a closed point of A1

R = SpecR[x]. However, after base-changing by C, we
get the following diagram.

Spec
C[x]

(x2 + 1)
SpecC[x] SpecC

Spec
R[x]

(x2 + 1)
SpecR[x] SpecR

The point here is that SpecC[x]/
(
x2 + 1

)
is two copies ofC! As such, we morally should count the divisor(

x2 + 1
)

as “containing” two closed points. Of course, the issue here is that the residue field of
(
x2 + 1

)
is a degree-2 extension of R.

Definition 2.9 (degree). Fix a finite type, regular k-scheme X. The degree of a divisor∑
p∈X

[k(p) : k]npp

is
∑
p∈X np. Note this defines a homomorphism Div(X)→ Z.

Remark 2.10. We are assuming that, for a closed point p, the extension k(p)/k is finite. Roughly speak-
ing, one can see this a�ne-locally: k(p) is the quotient of some finitely generatedk-algebrak[x1, . . . , xn]
by a maximal ideal, which by some kind of Hilbert’s Nullstellensatz will be a finite extension of k.

Remark 2.11. The point is that, for a field k, we have a homomorphism Div(X)→ Div(Xk) by sending
a point p ∈ X to the points in the pre-image of the base-change mapXk → X as a subscheme, and our
definition shows that the following diagram commutes.

Div(X)

Div(Xk) Z

deg

deg

Indeed, the claim is that, for a closed point p ∈ X, the number of points q ∈ Xk (counted with multi-
plicity) which map down to p ∈ X is the degree of the extension k(p)/k. I think one can just check this
a�ne-locally.
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Example 2.12. Let’s try a purely inseparable extension. Take X = A1
k = Spec k[x] where k = Fp(t) for

some prime p. Then we have the closed point given by (xp − t), and it has degree p. Here, our base-
change diagram is as follows.

Spec
Fp(t)[x](
x− t1/p

)p SpecFp(t)[x] SpecFp(t)

Spec
Fp(t)[x]

(xp − t)
SpecFp(t)[x] SpecFp(t)

π

In particular, π−1 of our divisor (xp − t) goes to p copies of
(
x− t1/p

)
. (Namely, one can look at the

corresponding quasicoherent ideal sheaf of our closed embedding.)

2.1.3 Divisor Classes
We note that elements of K(X) produce divisors as well.

Definition 2.13 (principal). Fix a k-curve X. Given f ∈ K(X)×, we define the principal divisor by

div f :=
∑
p∈X

ordp(f),

where ordp(f) is the valuation of f in the discrete valuation ringOX,p.

Note that the locations where f vanishes is some closed subscheme of X not equal to X and therefore
dimension 0 and therefore finite. Arguing similarly to the locations f of negative valuation, we see that div f
does in fact have finite support and will provide us with a divisor.

Lemma 2.14. Fix a k-curve C. Given any f ∈ K(C), we have deg div f = 0.

Proof. We simply base-change to k and then appeal to [Har77]. Indeed, observe that the following diagram
commutes.

K(X)× DivX Z

K(Xk)× DivXk Z

div

deg

deg

div

However, the bottom composite is the zero map by [Har77], so the top composite is also the zero map. �

As such, we have a class group.

Definition 2.15 (divisor class). Fix a k-curve X. The quotient

ClX :=
DivX

{div f : f ∈ K(X)×}

is called the divisor class group ofX. Note that Lemma 2.14 implies that we have a well-defined degree
map.
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Remark 2.16. We quickly recall that ClX ∼= PicX by sending a divisor D to the line bundle

OX(D)(U) :=
{
f ∈ K(X)× : f |U +D ≥ 0

}
.

As such, one can roughly tell this entire story in terms of line bundles, which is perhaps more intuitive
in some aspects.

2.2 March 3
Let’s get started.

2.2.1 The Riemann–Roch Theorem
We are now ready to state the Riemann–Roch theorem.

Theorem 2.17 (Riemann–Roch). Fix a k-curve X. There exists an integer g ∈ Z such that, for each line
bundle L/X, we have

h0(X,L)− h0(X,L∨ ⊗ Ω1
X) = degL+ 1− g.

Here, hi(X,L) = dimkH
i(X,L).

Remark 2.18. One definition of our “genus” g is g := h0
(
X,Ω1

X

)
.

Example 2.19. TakingL = Ω1
X givesh0(X,Ω1

X)−h0(X,OX) = deg Ω1
X+1−g, so we see deg Ω1

X = 2g−2.

Example 2.20. In all applications, we are going to ensure that h1(X,L) vanishes. By Serre duality, we
see that h1(X,L) = h0

(
X,L∨ ⊗ Ω1

X

)
= dimk(L∨ ⊗ Ω1

X)(X), which will vanish if

deg
(
L∨ ⊗ Ω1

X

)
= deg Ω1

X − degL
?
< 0.

In other words, if degL > deg Ω1
X = 2g − 2, then h0(X,L) = degL+ 1− g.

To continue our discussion, we will want to talk about complete linear systems.

Proposition 2.21. Fix a line bundleL on a k-curveX. Then (Γ(X,L)\{0})/k× is in natural bijection with
e�ective divisors D such thatOX(D) ∼= L.

Proof. Given some s ∈ Γ(X,L) \ {0}, we note that s produces a map s : OX → L, and because s is nonzero,
this map is injective by checking at stalks: for eachx ∈ X, then we have the commutative diagram as follows.

OX,x Lx

K(X) Lη
sη

sx

Here, η is the generic point of X. Now, s being nonzero implies that sη is nonzero in K(X), so the bottom
map is injective, so the top map should also be injective.
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Now, for any closed point x ∈ X, our map at stalks sx : OX,x → Lx has Lx equal to some free module
of rank 1, so by pulling back a uniformizer makes this map multiplication by some uniformizer πnxx . We now
set

divL(s) :=
∑
x∈X

nxx,

and we note that s|x is trivial at only finitely many points, so this divisor’s coe�cients vanish for all but finitely
many points. We now see that s : OX → L tells us that this map is identified with the inclusion

L ⊗
⊕
x∈X
Inxx → L

by just checking at stalks everywhere (indeed, on the left, we are trivial at every point), so we conclude that
L ∼= OX(divL(s)).

To finish the bijection, we note that adjusting our s by an element of k× will not change divL(s), and we
can check that our map is both injective and surjective as such. We omit the rest of these checks. �

Example 2.22. If degL < 0, then there are no e�ective divisors D with L ∼= OX(D) because degD ≥ 0
for all e�ective divisors D. Thus, we must have Γ(X,L) = 0.

Example 2.23. If degL = 0, then we see that the only e�ective divisor of degree 0 isD = 0, so we either
have L ∼= OX and so Γ(X,L) = 1, or we have Γ(X,L) = 0.

Example 2.24. In the case of g = 1, one sees that deg Ω1
X = 0 and so degL = 1 implies dimk L(X) = 1.

Roughly speaking, it follows that L ∼= OX(p) for some closed point p ∈ X with residue field k. Thus,
there is a unique e�ective divisor D (of degree 1) such that L ∼= OX(D), so we see that D = p for some
point p of residue field k. As such, L ∼= OX(p).

The following special case will be important for us.

Theorem 2.25. Fix a k-curve X of genus 1. Then the map X(k) → Pic1(X) sending a point x ∈ X to
OX(x) is a bijection. Here, Pic1 refers to the degree-1 line bundles.

Proof. We show this in pieces.

• We show surjectivity. Fix a line bundle L ∈ Pic1(X) of degree 1. Then Example 2.24 tells us that L ∼=
OX(x) for some x ∈ X with residue field k. We note that having residue field k is equivalent to being a
k-point: on one hand, a k-point is a morphism x : Spec k → X must induce the identity on Spec k with
the structure morphism Spec k → X → Spec k, so we see that the residue field at x must be k. And
conversely, if x has residue field k, then we immediately induce our morphism x : Spec k(x)→ X.

• We show injectivity: suppose that x, y ∈ X(k) grant OX(x) = OX(y). Well, suppose x 6= y. This
implies that we have an isomorphism OX ∼= OX(x − y). In particular, 1 ∈ Γ(X,OX) is mapped to
some f ∈ K(X) such that f has a pole at x and a zero at y. In particular, this gives a nonconstant
map of degree 1 given by f : X → P1

k by taking the corresponding map X \ {y} → A1
k and extending

it to P1
k. However, this requires that f is an isomorphism of curves, which is a contradiction because

g(X) 6= g(P1
k). �

Remark 2.26. In fact, we see that the injectivity argument holds for any k-curve X of nonzero genus.
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2.2.2 Elliptic Curves
We are now ready to define elliptic curves.

Definition 2.27 (elliptic curve). Fix a field k. An elliptic curve is a pair (E, e) whereE is a k-curve of genus
1 and e ∈ E(k).

Remark 2.28. Fix an elliptic curve (E, e) over a fieldk. The idea here is that we have a bijection Pic1(E)→
Pic0(E) given by L 7→ L ⊗ OE(−e), so combining with Theorem 2.25 tells us that E(k) is in bijection
with the abelian group Pic0(E). In particular, E(k) has the structure of an abelian group with identity
element given by e!

Remark 2.29. Even when g(X) > 1, we note that the previous remark grants an inclusion X(k) ↪→
Pic0(X). Now,X(k) does not inherit a group law, so we are perhaps motivated to simply work with the
group Pic0(X). Indeed, it turns out that there is a notion of the “Jacobian” which is an abelian variety
with k-points given by Pic0(X).

Remark 2.30. When g(X) = 1, even with no k-point in X(k), then there is some scheme-theoretic
isomorphism X ∼= Pic1(X), where now we see Pic1(X) has some action by Pic0(X). We will return to
this later in the course.

The group law on Remark 2.28 can be made explicit via the “chord and tangent” method. For concreteness,
write our elliptic curve as

E : y2 = x3 +Ax+B,

where E really refers to the projective variety in P2
k of the corresponding homogenized polynomial. One

ought to check smoothness and genus and so on, but we won’t bother for the time being. Notably, our
marked point e ∈ E(k) is given by [0 : 1 : 0] ∈ E.

Now, fixing some p, q ∈ E(k), we letLdenote the line connecting them. One can explicitly do the algebra
to see thatX ∩Lwill have three intersection points—writing L as y = mx+ b, we seem, b ∈ k, so plugging
in for

x3 +Ax+B − (mx+ b)2 = 0

with roots given by px and qx will have a third root rx ∈ k. One can check that the corresponding point
(rx, ry) ∈ X(k) has p + q = (rx,−ry), which describes our group law rather explicitly. The point is that
adding together the three points coming from X ∩ L ought to vanish in the group law because all divisors
of the form X ∩ L are linearly equivalent.

2.3 March 6
Good morning everyone.

2.3.1 Elliptic Curves as Cubics
Fix an elliptic k-curve (E, e). We want to view (E, e) as a planar curve of degree 3. Here is our claim.

Proposition 2.31. Fix an elliptic k-curve (E, e). Then the line bundle OE(3e) determines a closed em-
bedding E ↪→ P2

k of degree 3. In particular, we factor through V (F ) for some homogeneous cubic
polynomial F .

Proof. We show our checks in sequence.
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• Note that h0(E,OE(3e)) = 3 by Example 2.20, so we will induce a projective morphism E → P2
k by

choosing our three basis vectors. Equivalently, we can choose these three basis vectors as a surjective
map O3

E � OE . In some sense, it is more natural to think about our projective morphism as E →
PΓ(E,OE(3e)) sending p ∈ E to the quotient map Γ(E,OE(3e)) → OE(3e)p/mp. In particular, this
quotient map uniquely determines an element of PΓ(E,OE(3e)) due to the choice of basis of the one-
dimensional k-vector spaceOE(3e)p/mp.
The quick way to show that we are very ample is to note that any two points p, q ∈ E grant

h0(E,OE(3e− p− q)) = 1 = h0(E,OE(3e))− 2,

so the corresponding projective morphism separates points and tangent vectors and therefore induces
a closed embedding.
Technically we ought to show that OE(3e) is very ample. To show that we are generated by global
sections, we need surjectivity of the corresponding map on points given by

Γ(E,OE(3e))⊗k k(p)→ OE(3e)p/mp.

Really, we need the map to be nonzero because the target is one-dimensional. Note that by base-
changing E to Ek(p), we can assume that p is a k-point. As such, we note that we have the exact se-
quence

0→ OE(3e− p)→ OE(3e)→ OE(3e)p/mp → 0

by tensoring up the exact sequence 0 → Ip → OE → k(p) → 0 with the locally free and hence flat
sheafOE . Taking global sections produces the exact sequence

0→ Γ(E,OE(3e− p))→ Γ(E,OE(3e))→ OE(3e)p/mp,

but Example 2.20 tells us that dimk Γ(E,OE(3e − p)) = 2 < 3 = dimk Γ(E,OE(3e)), so the kernel is
not full, so our map is nonzero, which is what we wanted.

• We now check that our projective morphism is a closed embedding. For this, we must check that we
separate points and tangent vectors. BecauseE is a proper scheme (it’s projective), to separate points,
it is enough to check that two points go to di�erent places in our projective space. Well, checking
where two points p, q ∈ E land, we are claiming that we are producing the same quotient map

Γ(E,OE(3e)) � OE(3e)p/mp and Γ(E,OE(3e)) � OE(3e)q/mq.

By a base-change ofE, we may again assume that our points are k-rational. Now, above we computed
the kernel of this map, so we would be requiring

Γ(E,OE(3e− p)) ∩ Γ(E,OE(3e− q)) = Γ(E,OE(3e− p− q))

to be 2-dimensional, but in fact this is 1-dimensional by Example 2.20, so there is nothing to say here.
Now, to separate tangent vectors, we want to see that the map

Γ(E,OE(3e))→ Γ(E,OE(3e)/(IpIq))

is surjective, but again our dimensions jump appropriately by Example 2.20, so we must be surjective.

• Choose a basis for V := Γ(E,OE(3e)) named {u, v, w}, so PΓ(E,OE(3e)) ∼= P2
k with basis given by

{u, v, w}. We now note that we have the inclusions

Γ(E,OE) = Γ(E,OE(e)) ( Γ(E,OE(2e)) ( Γ(E,OE(3e))

by Example 2.20. As such, we let {z} denote a basis of Γ(E,OE), and then we extend it to a basis {z, x}
of Γ(E,OE(2e)), and again we extend it to a basis {z, x, y} of Γ(E,OE(3e)). Going up further require
some more care.
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– We see Γ(E,OE(4e)) has basis {z, x, y, x2}, which are linearly independent because they have
di�erent valuations at e.

– Similarly, we see Γ(E,OE(5e)) has basis
{
z, x, y, x2, xy

}
.

– However, Γ(E,OE(6e)) has basis
{
z, x, y, x2, xy, y2, x3

}
, but we have dimension 6, so there must

be a relation now.

Thus, we get to write down a relation between
{
z, x, y, x2, xy, y2, x3

}
, which after multiplying through

by the “scalar” z enough times grants us a homogeneous polynomialF ∈ k[x, y, z] of degree 3 dictating
this relation.
As such, for each p ∈ X, we see that F ∈ Γ(E,OE(6e)) will vanish in OE(6e)p/mp, so it follows from
the construction of the map E → PV that the image lands in V (F ). �

2.4 March 8
Today we talk about algebraic geometry.

2.4.1 Group Schemes
Fix an elliptic k-curve (E, e). We are going to want to upgrade our group structure on E(k) to a group
scheme.

Definition 2.32 (group scheme). Fix an S-scheme X. Then X, equipped with multiplication µ : X ×S
X → X and identity e : S → X and inverse ι : X → X morphisms, is a group scheme if and only if the
following squares commute.

• Associativity.
X ×S X ×S X X ×S X

X ×S X X

µ×idX

idX×X
µ

µ

• Identity.
S ×S X X X ×S S

X ×S X X X ×S X

idX×ee×idX

µ µ

• Inverse.
X

X ×X S X ×X

X

e

ι×id

µ

id×ι

µ

We are not going to check these directly. Instead, we will adopt a functor-of-points point of view.
Roughly speaking, for an S-scheme X to take on a group scheme structure, it is enough for hX :=

MorS(−, X) to lift to a contravariant functor hab
X : Schop

S → Ab. This comes from the Yoneda lemma.

Theorem 2.33 (Yoneda). Fix a categoryAand an objectA ∈ A. Then the functor takingA 7→ MorA(−, A)
defined onA → Fun(Schop

S ,Set is fully faithful.
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Proof. Omitted. �

We will also want the fact that Hom(−, X ×S Y ) = Hom(−, X)×Hom(−,S) Hom(−, Y ), which is more or less
the definition of the fiber product.

For example, let’s construct our multiplication map. In particular, there is an addition map µab : hab
X ×

hab
X ⇒ hab

X because we are in the category of abelian groups. In particular, this map is given by the addition
map

µab
T : hab

X (T )× hab
X (T )→ hab

X (T ).

Now, µ will produce a unique scheme morphism µ : X ×S X → X by the Yoneda lemma. A similar recipe
gives us the inversion morphism ι : X → X and the identity element, and the faithfulness of the Yoneda
lemma allows us to lift diagrams satisfied by the natural transformations to diagrams satisfied by our scheme
morphisms.

Remark 2.34. In fact, because we are outputting hab
X to Ab, we are in fact producing an abelian group

structure on E.

So with our elliptic k-curve (E, e), we would like to upgrade our isomorphism

E(k) ∼= Pic0(E)

to some isomorphism of schemes. The issue here is that we need to upgrade Pic to a functor.

Notation 2.35. Given S-schemes X and T , we define XT := X ×S T .

Lemma 2.36. Fix an elliptic k-curve (E, e). Given a k-scheme S and a line bundle L on ES , the function
s 7→ deg(L|Es) is locally constant on S.

Proof. We refer to [Har77, Theorem III.9.9]. �

As such, to upgrade Pic to a scheme, we may try to define the functor S 7→ Pic0(ES). This doesn’t work:
letting πS : ES → S denote the projection, it turns out to be problematic that line bundles L on S produce
locally trivial line bundles π∗SL ∈ Pic0(ES). Roughly speaking, there now too many objects which look like
the identity.

To fix this, we have the following definition.

Definition 2.37 (rigidified line bundle). Fix an elliptic k-curve (E, e). Given a k-scheme S, a rigidified
line bundle is a pair (L, σ) where L is a line bundle on ES , and σ : e∗SL ∼= OS is an isomorphism. Here,
eS : S → E ×k S is the section of πS given by the structure map S → Spec k → E and the identity map
idS : S → S.

Quickly, we say that two such objects (L, σ) and (L′, σ′) are isomorphic if and only if there is an isomorphism
ϕ : L → L′ making the following diagram commute.

e∗SL e∗SL′

OS

e∗Sϕ

σ σ′

Additionally, note that rigidified line bundles form a group under the tensor product.

Remark 2.38. We compute rigidified line bundles (L, σ) over S = Spec k. Certainly we have all line
bundles, but note that two rigidified line bundles (L, σ) and (L′, σ′) will have a unique isomorphism
because an isomorphism L ∼= L′ is only defined up to a scalar in k×.

Now here is the punchline.
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Proposition 2.39. We have a functor Pic0
E : Schop

k → Ab given by sending a k-scheme S to the group of
rigidified line bundles (L, σ) over ES such that degL = 0.

Proof. That we produce an abelian group was discussed above. Functoriality comes because a k-morphism
f : S → S′ will make the sections commute as follows.

ES ES′

S S′

eS eS′

f

f

Now one can check that a rigidified line bundle on S′ appropriately pull back to rigidified line bundles on
S. �

We now claim that we have a natural isomorphism hE ⇒ Pic0
E(S). Quickly, we note that hE(S) = E(S)

is in natural bijection with sections x : S → ES such that πS ◦ x = idS because we can simply set x to be
determined by a map S → E and then apply the identity for S → S. As such, we take a section x : S → ES
to the rigidified line bundle given by our section.

Lemma 2.40. Fix everything as above. Given a section x : S → ES , then x is a closed immersion and has
image given by an e�ective Cartier divisor in ES .

Proof. We refer to [SP, 062Y]. �

As such, given a section x : S → ES to the line bundle given by

OES ((eS)− (x))⊗OES π
∗e∗S

(
(OES ((eS)− (x)))−1

)
.

This makes a rigidified line bundle, where our isomorphism σ arises from noting that hitting the above line
bundle e∗S makes this line bundle look like L ⊗ L−1 ∼= OS for some line bundle L = e∗SOES ((eS) − (x)).
Additionally, one can check that this construction is functorial in x, so we have indeed defined a natural
transformation.

It remains to check that we have an isomorphism of functors. Roughly speaking, this is a special case
of cohomology and base-change. Fix a rigidified line bundle (L, σ); then we need a section x : S → ES
producing this rigidified line bundle. Well, we setM := L(−e)−1. In the case where S = Spec k, we observe
thatH0(E,M) is one-dimensional, andHi(E,M) = 0 for i > 0 becauseE is one-dimensional. As such, for
general S, we see that π∗M is a line bundle with

(π∗M)(s) = Γ(Es,M|Es)

for each s ∈ S. (This is by our cohomology and base change.) We now want to recover x. Well, one can
check that the map π∗π∗M → M is injective with flat cokernel (see [SP, 00MF]). Taking the support of Q
completes the proof.

Remark 2.41. Roughly speaking, in the S = Spec k case, we can recover OE((e) − (x)) as L by setting
M := L(−e)−1 (which should hopefully byOE((x))), and then we can recover (x) from the line bundle
M. In particular, H0(E,OE((x))) has one-dimensional global sections, from which we can recover (x)
by taking a cokernel as

OE → OE(x)→ k(x)→ 0

because k(x) is our skyscraper sheaf which produces (x). This is the motivation for the given proof.
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2.5 March 10
Today we talk about morphisms of elliptic curves.

2.5.1 Morphisms Are Homomorphisms
Fix an elliptic k-curve (E, e). Last class we showed that we can extend the group law on E(k) to pro-
duce an abelian group scheme E(k). As such, we might be interested in homomorphisms between elliptic
curves.

Definition 2.42 (isogeny). Fix elliptic k-curves (E, e) and (E′, e′). An isogeny is a nonconstant morphism
f : E → E′ such that f(e) = e′.

Theorem 2.43. Fix elliptic k-curves (E, e) and (E′, e′). Given a morphism of curves f : E → E′, actually
f is a homomorphism. In particular, f(S) : E(S)→ E(S′) is a homomorphism for any k-scheme S.

Remark 2.44. Equivalently, if we give E the multiplication map m and E′ the multiplication map m′,
then f being a homomorphism is requiring the following diagram to commute.

E × E E

E′ × E′ E′

m

m′

f×f f

Proof. If f is constant (sending everything to e′), there is nothing to say. Otherwise, f is some finite mor-
phism of curves.

Roughly speaking, this will fall out of some rigidity. We build the following diagram. Build the fiber
product Z in the following diagram.

Z E′

E × E E′ × E′

y

Here, the bottom map sends (x, y) ∈ E × E → (f(x+ y), f(x) + f(y)). Notably, f being a homomorphism
is equivalent to having Z → E × E to be an isomorphism.

However, everything is a variety, so it su�ces to show thatZ(k)→ E(k)×E(k) is surjective: this will tell
us that the closed embedding Z → E ×E is surjective on closed points.1 However,E is a variety, so closed
points are dense, so this implies that Z is topologically the same as E × E. But E × E is also reduced, so it
has only one closed subvariety with the same topological space, so we get to conclude that Z = E × E.

Now, a closed point ofZ is a pair (x, y, z) ∈ E×E×E′ such that f(x+y) = z = f(x)+f(y), so we see that
it su�ces to just show that f : E(k) → E′(k) is a homomorphism. Base-changing to an algebraic closure,
we just want to show that f : E(k)→ E′(k) is a homomorphism when k is algebraically closed. Namely, we
have reduced to checking the result on closed points.

We now have to examine our group law. Set λE : E(k) → Pic0(E) to be our bijection giving the group
law on E. As such, we want the induced bottom arrow of the following diagram to be a homomorphism.

E(k) E′(k)

Pic0E Pic0E′

λE λE′

f

1 In particular, we note that closed points p of a k-scheme X of finite type have residue field k(p) which is finite over k, meaning
that p is a k-point. Indeed, k(p) has residue field of the form k[x1, . . . , xm]/m for some maximal ideal m, which must be finite over k
by Hilbert’s Nullstellensatz.
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Roughly speaking, this is the norm map on ideals. We define f∗ : Div0E → Div0E′ by sending

f∗ : x→ f(x).

Now, one can show that the following diagram commutes.

k(E)× Div0E

k(E′)× Div0E′

div

f∗

div

This is a standard result in algebraic geometry about divisors, but we can also see it from number theory:
it su�ces to check this for a set of finite points on its multiplicity around the diagram, for which we may
reduce to a�ne subschemes. Namely, fix an a�ne open subscheme SpecA ⊆ E. Because f is proper and
quasifinite (it has finite fibers because the fibers must have dimension 0 for nonconstant maps f ), so f is
finite and in particular a�ne. Thus, the pre-image of SpecA is SpecB ⊆ E′, so we are looking at a ring map
B → A. In fact, this is an embedding of rings (because f is dominant), and these are Dedekind domains
because A and B are regular (and hence normal) integral domains of dimension 1. Then the above map can
be purely checked on prime ideals, for which we refer to [GS13, Proposition 14, p. 17].

Anyway, the point is that we can check the commutativity of the diagram as follows.

E(k) E′(k) x f(x)

Pic0E Pic0E′ OE((x)− (e)) OE((f(x))− (e))

λE λE′

f

f∗

Now, f∗ is a homomorphism, so we are done. �

Remark 2.45. The complex analytic situation roughly convinced us that this result ought to be true at
the outset.

In particular, the above theorem tells us that isogenies are homomorphisms.

2.5.2 The Dual Isogeny
Given a morphism of elliptic k-curves f : (E, e) → (E′, e′), we note that we actually have a pullback map
f∗ : Pic0E → Pic0E′, so we expect to have a scheme map f t : E′ → E in the other direction. Notably, if
we look on the level of rigidified line bundles, there is actually a natural transformation f∗ : Pic0

E′ ⇒ Pic0
E :

explicitly, for a test k-scheme S, we send the rigidified line bundle (L′, σ) to f∗L′ with the canonical isomor-
phism

e∗f∗L′ ∼= (e′)∗L′
σ∼= OS .

One can check naturality and so on, but we won’t bother. The point is that E represents the functor Pic0
E ,

so we have induced a morphism f t : E′ → E following the above natural transformation.

2.5.3 Translations
Fix a morphism f : (E, e) → (E′, e′) of elliptic k-curves. As an aside, we note that not all morphisms are
homomorphisms because of the condition f(e) = e′. For example, given a section x : S → ES , we can
induce a translation map tx : S → ES by moving around the following diagram.

ES ES

{x} ×S ES ES ×S ES

tx

m

In particular, if we imagine everything on closed points, we are basically mapping y 7→ x+ y.
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2.6 March 13
Today we continue talking about the dual isogeny.

2.6.1 The Theorem of the Square
We begin with a remark.

Remark 2.46. Fix an elliptic curve (E, e). Then for closed points x, y ∈ E(k), the definition of the group
law has

(x)− (e) + (y)− (e) ∼ (x+ y)− (e)

by definition of the addition as coming from PicE. Thus, (x) + (y) ∼ (x + y) + (e) after cancelling out
the redundant (e).

Now, to compute some dual isogenies, we want the following lemma.

Lemma 2.47. Fix an elliptic k-curve (E, e) and a reduced k-scheme S with projection πS : ES → S. For
any line bundle L of degree 0 on ES . Then for any section x : S → ES of πS , we have

t∗xL ⊗OES π
∗
Sx
∗L−1 ∼= L ⊗OES π

∗
Se
∗
SL

as line bundles on ES .

Intuitively, we are saying that degree-0 line bundles are translation-invariant.

Proof. As perhaps to be expected, we will build up to the result from S = Spec k and then reduce to there.
1. Suppose S = Spec k where k is algebraically closed. Now, we can write L as a line bundle, so we

can write it as a degree-0 divisor, which by Theorem 2.25 we know must look like (e) − (y) for some
y ∈ E(k).
Now, we calculate t∗−x(OE((e) − (y))) where x ∈ E(S) = E(k). We may do this computation on the
level of divisors, where we see t−x will pull back the divisor (e)−(y) along tx to the divisor (x)−(x+y);
as such, t∗−x(OE((e)− (y))) = OE((x)− (x+ y)). But then

(x)− (x+ y) = (e)− (y)

by definition of the group law, so we conclude that t∗−xL = L. This is what we wanted, upon noting the
terms π∗Sx∗L−1 are pullbacks of line bundles on Spec k and therefore simply one-dimensional vector
spaces, so these terms do not matter in the tensor produce.

2. We now reduce toS = Spec k. The point is that both sides of the desired equality are actually rigidified
line bundles. Namely, we compute

e∗S
(
t∗xL ⊗ π∗Sx∗L−1

)
= x∗L ⊗ x∗L−1 = OS

canonically; in particular, we have noted that e∗St∗x = (tx◦eS)∗ = x∗. Similar holds for the other side, so
we do indeed have rigidified line bundles. The moral of the story is that a rigidified line bundle is equiv-
alent by the Yoneda lemma to providing a morphism of natural transformations fromS to the category
of its rigidified line bundles, so these two rigidified line bundles provide two scheme morphisms

S ⇒ Pic0
E .

Call the two maps R and L. However, our two maps agree on fibers by the field case: for any point
s ∈ S, we have the pullback square

Ek(s) ES

Spec k(s) S

y
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which by the previous step must have R = L as maps on the left-hand arrow. Thus, R and L agree on
all points. We now finish the proof in the usual way, using the hypothesis that S is a k-scheme with
finite type. Namely, consider the following fiber product.

Z Pic0
E

S Pic0
E ×Pic0

E

R

L

y

Because R and L agree on all points, we see that Z becomes a closed subscheme of S containing all
points (it’s closed because the right map is the closed embedding ∆: E → E × E), but then we must
have Z = S because this is a closed embedding and S is reduced. �

Corollary 2.48 (Square). As schemes on S := E × E, we let p1, p2 : S → E be the projections. Then,
where m is the multiplication, we have

m∗L ⊗ p1L−1 ⊗ p2L−1 ∼= OS

for any degree-0 line bundle L on E.

Proof. Set S = E. Let p1, p2 : E × E → E be our projections, and let p1 : EE → E be the projection of our
base-change. The point is that ∆: E×E → E provides a section for p1, which gives tx : E×E → E×E can
be tracked around to give the closed point (x, y) 7→ (x, x+ y). Now, for any line bundleM of degree 0 onE,
we see that

m∗M⊗ p∗1M−1 ∼= p∗2M

by tracking everything around and plugging into the previous theorem.What? This is called the theorem of the
square. �

Remark 2.49. Let’s describe how to show Lemma 2.47 without the reduced hypothesis. The point is
that Corollary 2.48 is almost the most general version of having a section s : S → ES . In particular, the
mapE×Pic0

E → Pic0
E has a canonical section given by idPic0E

by the Yoneda lemma produces a rigidified
line bundle P called the “Poincaré line bundle.” This provides a “universal rigidified line bundle.” We
now make two remarks.

• The above proof merely wants to show that R = L for some maps R,L : S → Pic0
E . But this is a

question local on S, so we may choose a trivializing open cover to assume that all line bundles are
trivial (but rigidified).

• Then one can check thatP is in fact the universal line bundle, obtaining the result by base-change
in the following diagram.

E × E × Pic0
E p∗23P

S E × Pic0
E P

(x,L)

p13

Chasing our universal line bundle around using Corollary 2.48 is able to finish.
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Remark 2.50. Translation-invariance characterizes degree-0 line bundles, so Lemma 2.47 does not
hold in higher degrees. For example,

t∗−xOE((e)) = OE((x)) 6= OE((e)),

soOE((e)) is not translation-invariant!

The point of talking about the theorem of the square is that we get the following result.

Notation 2.51. Fix an integer n. For an abelian group scheme G, we let [n]G : G → G denote the
multiplication-by-n map. We omit the G on the notation whenever possible.

Proposition 2.52. Fix an isogeny of elliptic k-curves f : (E, e)→ (E′, e′). Then f t ◦ f = [deg f ]E .

Proof. We track through our definitions. Because we are asking for two morphisms on varieties to be equal,
it is enough to base-change to the algebraic closure and check that our morphisms agree on closed points.
Namely, tracking through the definition of f t, we know it makes the following diagram commute.

E′ E

Pic0
E′ Pic0

E

f∗

ft

Thus, f∗OE((e)−f t(x′)) = f∗OE′((e)− (x′)) for any x′ ∈ E′(k). Now here is our computation. We compute
f t ◦ f . Set x′ := f(x) for some x ∈ E(k). Then

f∗OE′((e′)− (f(x))) = OE′
(
(ker f)− (f−1f(x))

)
by computing f∗ as pre-images on the level of divisors. However, because we are dealing with an abelian
group scheme, we see that the pre-image f−1f(x) = x+ ker f ; here, x+ ker f refers to ker f base-changed
under t−x. However, our degree-0 line bundles are translation-invariant, so

(ker f)− (x+ ker f) =
∑

y∈ker f

((y)− (x+ y)) ∼ (deg f)((e)− (x)).

Thus,
OE

(
(e)− f t(f(x))

)
= OE((deg f)((e)− (x))),

but by the uniqueness of e�ective divisors representing degree-1 line bundles, we conclude that f t(f(x)) =
deg f . �

Remark 2.53. It will turn out that g := f◦f t is also multiplication by f . This roughly follows by computing
g ◦ f = f ◦ (deg f) = (deg f) ◦ f and then cancelling the fs by Lemma 2.54, which is legal because f is
an isogeny.

2.7 March 15

Ok, let me continue then.
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2.7.1 More on Dual Isogenies
We have the following results on dual isogenies.

Lemma 2.54. Fix smooth, proper, projective, geometrically connected k-curvesC andC ′ andD andD′.
Given non-constant morphisms f, g : C → D and more non-constant morphisms p : C ′ → C such that

f ◦ p = g ◦ p.

Then f = g.

Proof. To begin, note that p is dominant because it is non-constant onto a one-dimensional scheme, but it
is also proper, so it is both a continuous and closed map; in other words, the topology on C is merely given
by the quotient topology fromC ′, so we conclude that f = g on topological spaces. For clarity, call this map
h.

It remains to check equality on the level of sheaves. Here, we are looking at the composite

h−1OD ⇒ OC ↪→ p∗OC′ ,

where the map on the right is injective because p is dominant, and our scheme is reduced. �

Remark 2.55. We can also cancel on the other side, in a special case. Fix isogenies of elliptic curves
f, g : (E, e) → (E′, e′) such that there is an isogeny q : (E′, e′) → (E′′, e′′) with q ◦ f = q ◦ g. Then we
see that q ◦ (f − g) maps everything to e′′, so (f − g) maps to ker q ⊆ E′. However, ker q is a closed
subscheme of E′ not equal to E′, so it is zero-dimensional. But if f − g is non-constant, then it is
dominant and cannot land in such a closed subscheme, so we conclude that f − g must be constantly
e′, finishing.

Proposition 2.56. Fix isogenies f, g : (E, e)→ (E′, e′). Then f t + gt = (f + g)t.

Proof. Here, the addition of the morphisms f + g is defined as the composite of

E
(f,g)−−−→ E′ × E′ m−→ E′.

By taking the base-change to the algebraic closure, we may check our equality of morphisms on closed
points. So one hand, for some x′ ∈ E′(k), we see that

OE
(
(e)− (f + g)t(x′)

)
= (f + g)∗OE′((e′)− (x′)) = (f, g)∗m∗OE′((e′)− (x′)),

by definition of (f + g)t. On the other hand, f t(x′) + gt(x′) corresponds to the line bundle

f∗OE′((e′)− (x′))⊗ g∗OE′((e′)− (x′)).

We would like to use Corollary 2.48, so we rewrite the above line bundle as

(f, g)∗p∗1OE′((e′)− (x′))⊗ (f, g)∗p∗2OE′((e′)− (x′)),

so by comparing our two line bundles, it is enough to show that

m∗OE′((e′)− (x′)) ∼= p∗1OE′((e′)− (x′))⊗ p∗2OE′((e′)− (x′)),

which holds by Corollary 2.48. �
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Proposition 2.57. Fix isogenies f : (E, e)→ (E′, e′) and g : (E′, e′)→ (E′′, e′′). Then (g ◦ f)t = f t ◦ gt.

Proof. Tracking through the definition of the dual isogeny, we see we are looking at the following large
diagram.

E′′ E′ E

Pic0
E′′ Pic0

E′ Pic0
E

g∗ f∗

gt ft

(g◦f)t

(g◦f)∗

Here, the bottom triangle commutes by properties of the pullback (we might only know this for the non-
scheme-theoretic Pic0, but then we can just check the equality on closed points), so by definition of (g ◦ f)t,
the above triangle also commutes, which is what we wanted. �

Let’s now build towards (f t)t = f .

Lemma 2.58. Fix an elliptic k-curve (E, e). Then [m]t = [m] for any m ∈ Z.

Proof. We induct. Form = 1, we can track around the usual diagram to see that idE
t = idE , which finishes.

For the inductive step, we use Proposition 2.56 to see

[m± 1]t = ([m]± [1])t = [m]t ± [1]t = [m]± [1] = [m± 1].

As such, we see that we may induct up and down from the base case of m = 1 to get any m ∈ Z. �

Lemma 2.59. Fix an elliptic k-curve (E, e). For any m > 0, the map [m] : E → E is non-constant.

Proof. We begin by showing that it’s enough to show that deg[2] > 1. Indeed, for any m, if [m] is constant,
then

[n] = [m] + [n−m] = [n−m],

so the maps are periodic (mod m), so the degree of the maps is bounded. However, if deg[2] > 1, then
deg

[
2k
]
→∞ as k →∞.

We now work in characteristic not equal to 2 or 3, for concreteness. Then one can write E : y2 = x(x −
1)(x − λ) over the algebraic closure, so we have a map π : E → P1

k given by (x, y) 7→ x. Notably, there is an
involution ι : E → E given by (x, y) 7→ (x,−y) such that π ◦ ι = π, so we note

E[2] = {p ∈ E(k) : 2P = e} = {p ∈ E(k) : ι(P ) = P}.

However, the orbit of P under ι is exactly the pre-image of π(P ) ∈ P1
k, so above we are asking for p ∈ E[2]

if and only if π−1({πp}) is a single point.
To continue, we note that the orbit ofπ has degree 2 because it corresponds to the field extension k(x) ↪→

k(x)[y]/
(
y2 − x(x− 1)(x− λ)

)
. As such, we can use the Riemann–Hurwitz formula to compute

2g(E)− 2 = (deg π)(2g(P1
k)− 2) +

∑
p∈P1

k

(ep − 1),

where ep is the ramification index. (Notably, the above formula doesn’t quite work in characteristic 2.) This
will complete the proof upon rearranging: we see that only four points will live in E[2]. �

61



2.8. MARCH 17 254B: RATIONAL POINTS

Corollary 2.60. Fix an elliptic k-curve (E, e). Then deg[m] = m2 for any m ∈ Z.

Proof. By Proposition 2.52 and Lemma 2.58, we see that

[deg[m]] = [m] ◦ [m]t = [m] ◦ [m] =
[
m2
]
,

so we finish. It follows from Lemma 2.59 that we may saym2 = deg[m] because multiplication by
∣∣deg[m]−m2

∣∣ ≥
0 is constant and thus must just have

∣∣deg[m]−m2
∣∣ = 0. �

Lemma 2.61. Fix an isogeny f : (E, e)→ (E′, e′) of elliptic k-curves. Then deg f t = deg f .

Proof. We use Proposition 2.52. On one hand, we see

deg
(
f ◦ f t

)
= deg f · deg f t

(one can see that degree is multiplicative like this by comparing the field extensions K(E′) ⊆ K(E) ⊆
K(E′)), but on the other hand, we see

deg ([deg f ]) = [deg f ]2

by Corollary 2.60. Comparing our degrees finishes. �

Proposition 2.62. Fix an isogeny f : (E, e)→ (E′, e′) of elliptic k-curves. Then (f t)
t

= f .

Proof. By combining Lemma 2.61 and Proposition 2.52, we see that

f ◦ f t = [deg f ] =
[
deg f t

]
=
(
f t
)t ◦ f t.

Cancelling on the right with Lemma 2.54 completes the proof. �

2.8 March 17

We now move more directly towards the Mordell–Weil theorem.

2.8.1 The Mordell–Weil Theorem
Here is our statement.

Theorem 2.63 (Mordell–Weil). Fix a number field K. Given an elliptic K-curve (E, e), then the group
E(K) is finitely generated.

Our proof will take two steps. We will first show the following result.

Theorem 2.64 (Weak Mordell–Weil). Fix a number field K. Given an elliptic K-curve (E, e), then the
group E(K)/rE(K) is finite for any r ≥ 1.
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Then our second step will use some theory of heights to recover Theorem 2.63.
So let’s go at Theorem 2.64. It will be no surprise that our approach is cohomological. Let’s describe the

idea. Note [m] : E → E is a non-constant map by Lemma 2.59, so it is surjective (as a scheme map, so on
geometric points for example), so one has an exact sequence

0→ E[m](K)→ E(K)
m→ E(K)→ 0.

Formally,E[m] is the kernel of [m], which we can view as the pre-image of e under [m], which is the following
fiber product.

E[m] e

E E
[m]

y

Thus, viewing everything as a module over G := Gal(K/K), we get an inclusion

E(K)

mE(K)
→ H1

(
G,E[m](K)

)
.

As such, the game is to control the image in this map.
Let’s spend a moment discussing our H1. Roughly speaking, some algebra is able to show that, as long

as m is not divisible by charK (which is true because K is a number field), then E[m](K) ∼= (Z/mZ)2 after
some base-change of K to pick up all the m-torsion point. Then

H1
(
G, (Z/mZ)2

)
= Hom

(
G, (Z/mZ)2

)
= Hom

(
Gab,Z/mZ

)2
,

so elements here are in bijection with pairs (L,L′) of cyclic extensions of degreem overK. In particular, we
expect this H1 to be quite infinite.

Being more explicit now, suppose we have some P ∈ E(K). Then we lift it to someQ ∈ E(K) such that
P = mQ, and the corresponding element in H1(G,E[m](K)) is σ 7→ (σ − 1)Q for any σ. However, we can
do a little better by thinking about the pre-image of P along [m] : E → E as fitting in the fiber product as
follows.

[m]−1P P

E E
[m]

y

And notably, the class of P in H1(G,E[m](K)) vanishes if and only if TP := [m]−1(P ) has K-points.
Now, taking the equation for our elliptic curve E, one can clear denominators to make E actually into a

scheme over OK [1/(mN)] for N large enough. In fact, one can extend the addition, identity, smoothness,
properness toE now as a curve over SpecOK [1/(mN)]. In fact, by the valuative criterion for properness will
still extend to a point over SpecOK [1/(mN)].

SpecK E

SpecOK [1/(mN)] SpecOK [1/(mN)]

Notably, one hopes that we can now control E[m] via this sort of spreading out.
To finish up for today, suppose we have a scheme S and a line bundleL over S equipped with an isomor-

phism σ : Lm → OS . By base-changing a little, we assume that S is a scheme over Z[1/m, ζm]. Then we can
consider

SpecS
(
OS ⊕ L⊕ L2 ⊕ · · · ⊕ Lm−1

)
,

which is intended to look like OS [x]/ (xp − L). The point is that the above scheme comes equipped with a
Z/mZ-action by having a fixed generator γ ∈ Z/mZ act by

γ · (`0, . . . , `m−1) =
(
`0, ζm`1, . . . , ζ

m−1
m `m−1

)
.
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It turns out that we can go backward: given a pair (L, σ) as above, we can take this to L to produce an ele-
ment in Pic(S)[m], and one can ask for the kernel of this map, but it’s just given by the set of ways to assign
isomorphismsOmS ∼= OS , but it is just the setO×S /O

×m
S .

2.9 March 20
Today we discuss the weak Mordell–Weil theorem.

2.9.1 The Weak Mordell–Weil Theorem
In order to avoid algebraic geometry for a little, we give intuition via the following argument.

Proposition 2.65. Fix a number field K containing the rth roots of unity. Then OK [1/N ]×/OK [1/n]×r

has finite image in H1(Gal(K/K), µr) for any N divisible by r.

Proof. Note that this is roughly automatic by Dirichlet’s unit theorem, which tells us that OK [1/N ] is a
finitely generated abelian group already. However, let’s give a more geometric argument.

The group scheme Gm := SpecZ[x, 1/x] represents the functor Schop → Ab given by S 7→ Γ(S,OS)×.
One can see this by gluing together the story on a�ne pieces; alternatively, we directly note that a mor-
phism SpecZ[x, 1/x] amounts to choosing a global section x ∈ Γ(S,OS) which is a unit, which gives what
we wanted.

We now claim that OK [1/N ]×/OK [1/N ]r× has finite image in H1(Gal(K/K), µr). To understand this,
consider the short exact sequence

0→ µr → K
× (−)r→ K

× → 0

of modules over G := Gal(K/K). Then the long exact sequence yields

K×
(−)r→ K×

∂→ H1(G,µr)→ 0,

where the rightmost zero is by Hilbert’s theorem 90. As such, we see that there is a map

OK [1/N ]×

OK [1/N ]×r
→ K×

K×r
∂∼= H1(G,µr).

Now, for the statement, we note there is a morphism [r] : Gm → Gm given by the ring map Z[x, 1/x] →
Z[x, 1/x] by x 7→ xr. We now bound ramification. The point is that some a ∈ OK [1/N ]× induces a morphism
SpecOK [1/N ] → Gm,OK [1/N ], where we have implicitly base-changed Gm here. As such, providing an rth
root of a is equivalent to looking at the following fiber product.

Spec
OK [1/N ][x]

(xr − a)
SpecOK [1/N ]

Gm,OK [1/N ] Gm,OK [1/N ]
[r]

a

Namely, an rth root asserts asking for an OOK [1/N ]-point of this fiber product; for brevity, set Aa :=
OK [1/N ][x]/ (xr − a). Now, we can factor xr−a into a product of irreduciblesFi and setLi := K[x]/(Fi(x)),
and we see that

Aa ⊗K =
∏
i

Li.

Note that there is a µr-action on SpecAa by permuting the rth roots of A (here we use µr ⊆ K), and this
action permutes the factors Li in the above product decomposition because xr − a is simply going to de-
compose itself into linear factors over the algebraic closure, and the µr-action permutes the factors of this
decomposition.
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Now, to see our finite image, we claim that ∂(a) ∈ H1(G,µr) actually comes fromH1(Gal(Li/K), µr) for
any fixed i. Indeed, to track our boundary map, we begin by choosing some b ∈ K× with br = a. However,
by adjusting our b (by our transitive µr-action!), we may assume that the chosen b comes from Li. Now, the
corresponding cocycle in H1(G,µr) when passed through boundary is

∂a : σ 7→ σb

b
,

which we see will actually be defined inLi. Passing this “restricted” cocycle through inflation provides what
we want.

We now claim that
A =

∏
i

OLi [1/N ],

and each Li is unramified (over K) outside (N). We leave this claim as an exercise.
This will provide the desired finiteness: H1(Gal(Li/K), µr) is finite (it’s a finite group and a finite mod-

ule), and there are only finitely many extensions over K of bounded degree and unramified outside some
constant set. (To see this second claim, we note that being unramified outside some fix set of primes en-
forces some boundedness of the discriminant, and we can use the Minkowski bound to finish.) Now to finish
the argument, we note that even as we vary a ∈ OK [1/N ]×, there are only finitely many possibilities of the
Li, so we only have to check the image of finitely many maps

Inf : H1(Gal(L/K), µr)→ H1(Gal(K/K), µr),

so the image remains finite. �

Let’s now do the same thing but for elliptic curves.

Theorem 2.64 (Weak Mordell–Weil). Fix a number field K. Given an elliptic K-curve (E, e), then the
group E(K)/rE(K) is finite for any r ≥ 1.

Proof. To be concrete, we writeE as y2 = x3 +ax+ b. (Namely, our number fieldK has characteristic zero,
so this factoring is safe.) Smoothness, then, amounts to requiring 4a3 − 27b2 6= 0. We now choose N both
divisible by 6 and by r, where a, b ∈ OK [1/N ] (after clearing denominators!), and 4a3 − 27b2 is actually a unit
inOK [1/N ].

We now define E to be defined by y2 = x3 + ax + b (lying in projective space) to be a scheme over
S := SpecOK [1/N ]. In fact, E remains a group scheme, isomorphic to Pic0

E/S by running the exact same
argument through. (In particular, the key ingredient to defining our rigidified line bundles is having a field-
valued point for any field, but this is clear because we have the point [0 : 1 : 0] ∈ E(SpecA) for any ring
A.) Notably, E is proper over S (because it’s projective), and E is also smooth by computing the Jacobian
(namely, 4a3 − 27b2 is still a unit!).

We now apply the valuative criterion for properness. This tells us that a map SpecK → E → E will
extend to a map SpecOK [1/N ]→ E factoring in the following diagram.

SpecK E

SpecOK [1/N ] SpecOK [1/N ]

!

Now, for our result, we fix some a ∈ E(K) and study the same fiber product Pa := S ×E E arising in the
following pullback square.

Pa S

E E
[r]

a

65



2.9. MARCH 20 254B: RATIONAL POINTS

Let’s now start the proof. We have a short exact sequence as follows.

0→ E[r](K)→ E(K)
r→ E(K)→ 0.

As before, the long exact sequence here induces an inclusion

∂ :
E(K)

rE(K)
↪→ H1(G,E[r](K)),

where G := Gal(K/K). We will show that the image of this inclusion is finite, which will finish the proof.
For psychological reasons, we would like to assume that E[r](K) = E[r](K). Well, find some field L such
that E[r](K) = E[r](L), and suppose we have the claim for L. Then we can draw the following diagram.

H1(Gal(L/K), E[r](K))

E(K)/rE(K) H1(Gal(L/L), E[r](K))

E(L)/rE(L) H1(Gal(L/L), E[r](K))

∂K

∂L

One can check by hand that the vertical right sequence is exact (this is on the homework), so if the bottom
image is finite, then exactness says that the image of the middle map has size bounded by the product of
the size of H1(Gal(L/K), E[r](K)) and the image of ∂L.

Now, similar to before, this will come down to bounding ramification and degree. Namely, for all a ∈
E(K), we claim that there is an extension La/K unramified outside (N) and of degree bounded by r2 such
that ∂(a) lies in the image of the map

Inf : H1(Gal(L/K), E[r](K))→ H1(G,E[r](K)).

This will complete the proof of our finiteness because there are only finitely many extensions L of bounded
degree and unramified outside (N), so we are really only checking the image of finitely many inflation maps
from the finite groups H1(Gal(L/K), E[r](K)), so the total image of ∂ will be contained in this finite union
of finite sets and hence be finite.

Roughly speaking,

∂(a) ∈ im
(
H1(Gal(La/K), E[r](K))→ H1(Gal(K/K), E[r](K))

)
,

where La/K is an extension where Pa(La) 6= ∅. Indeed, this is essentially how ∂ is defined: if we have
Pa(La) 6= ∅, then we find anmth root in E for our point a (over La!), and then we can find our ∂(a) as arising
from over Gal(La/K) by tracking through the boundary morphism, where the point is that our choice of lift
along [r] : E → E of a may live over this specified La.

We now attempt to find such anLa. In words, assumingm - N , the point is that [m] : E → E is finite étale
of degree r2, so

Pa = Spec
∏
i

OLi [1/N ],

where theLi/K is finite and unramified outsideN . In fact, because the degree of our map is at most r2, each
of the Li has degree at most r2, so we may choose the La appropriately.Maybe?

Let’s see this directly. We proceed in steps.

1. Note thatPa → S is a finite map of schemes because it is the base-change of the finite map [r] : E → E ;
namely, we can check that [r] : E → E is proper becauseE is proper and separated overS, and it is quasi-
finite because the number of points in a fiber of a point in E can be checked after the base-change to
a field, and then we are looking at an elliptic curve and may appeal to Corollary 2.60. In particular,
finite maps are a�ne, so we conclude thatPa can be written as SpecAa whereAa is a finiteOK [1/N ]-
algebra.
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2. Now, we note that the multiplication map [r] : E → E has degree r2, so we can see that [r]∗OE is
locally free of rank r2 (checking on stalks, it’s enough to see that [r]∗OE is torsion-free on stalks—
over the local ring—but there is no torsion because E is an integral scheme). Continuing, as a closed
subscheme, we see

E[r] = Spec([r]∗OE)(e)

by tracking through what this means: on divisors, we are asking for the points which go to e when
multiplied by r. Here, we see that ([m]∗OE)(e) is a finite-dimensional K-algebra A, so it is Artinian
and therefore a product of Artinian local rings

A =
∏
i

Ai,

These Ai have a residue field κi := Ai/mi, and each κi is separable over K because [r] is separable.
Now, when r is coprime with the characteristic (as it is in our case), we have m2 points in this fiber
(because our map is separable), so

∑
i dimk κi = r2 by this point-counting. But A needs to also have

dimension r2 over K, so we conclude that Ai = κi is forced, so we can write

E[m] = Spec
∏
i

L′i,

where the L′i are finite and separable over K with degrees summing to r2.

3. We now claim that the map Pa → S is flat. Indeed, we may check this stalk-locally: fix some prime
p ∈ S, and let P be the pre-image in Aa. As such, we are asking for the extensionOS,p → Aa,P is flat.
Well, looking at residue fields, we see that the residue fieldsAa(P) has dimensionm2 as a vector space
overOS(p), so we can choose elements x1, . . . , xm2 ∈ Aa,P which grant a basis over Aa(P). But then
Nakayama’s lemma tells us that we have a surjection

O⊕r
2

S,p � Aa,P

given by this basis. In fact, this is injective: we can check injectivity after localizing at the generic point,
but then we are looking at an algebra of dimension r2 over K (because we have lifted from a map of
degree r2), so the surjectivity of our map of vector spaces over dimension r2.

4. Next up, we claim that Aa is the integral closure ofOK [1/N ] sitting inside Aa ⊗K =
∏
i Li where the

Li are finite separable extensions over K, and each Li is unramified over K outside (N).
Well, let B be the integral closure ofOK [1/N ] insideAa ⊗K. Certainly each element of Aa is integral
over OK [1/N ] because Aa is actually finite over OK [1/N ]. Thus, we have an embedding Aa ↪→ B,
giving us the following diagram.

SpecB SpecAa

S

Here, the map SpecB → SpecAa is dominant. Now, letting Ω be an algebraic closure of K, we base-
change, yielding the following diagram.

SpecB ⊗ Ω SpecAa ⊗ Ω

SpecB SpecAa Spec Ω

S
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Now, SpecAa ⊗ Ω has r2 distinct points, so B must have at least r2 distinct primes as well. It then
follows that the map Aa → B is surjective by making an argument similar to above, arguing that B
should be some product of fields and counting points/dimensions.What?
In total, we may write

Aa =
∏
i

OLi [1/N ]

by taking our integral closures appropriately. Notably, looking over each point, we see that the group
E[r] acts on the product of the fields

∏
i Li (which is the fiber over our point a). Thus, each extension

Li/K is Galois, so choosing a particular prime p ∈ SpecOK [1/N ], we may factor it up inOLi [1/N ] and
find that all the ramification and inertial data must be the same due to our Galois action. As such, we
compute these degrees locally to see

r2 =
∑
i

fieigi,

where fi is the inertial data, ei is the ramification data, and gi is the number of primes, where this ith
index is the data at Li/K.

On the other hand, we may count points to see that the number of points lying over p in Aa amounts
to the number of separable extensions κ(p) lying in the various residue fields, so

r2 = # SpecAa(κ(p)) =
∑
i

figi.

In total, we see that each ei must be 1, being unramified follows. �

2.10 March 22

We finished the proof of the weak Mordell–Weil theorem. I just edited into those notes for continuity rea-
sons.

2.11 March 24

Last class we finished proving the weak Mordell–Weil theorem (Theorem 2.64). Today we begin developing
the theory of heights to prove the Mordell–Weil theorem (Theorem 2.63).

Remark 2.66. We do not expect E(K) to be finitely generated when K is merely a local field. Roughly
speaking, ifK = C, then we can describe our elliptic curve as C/(Z+Zτ) ∼= C×/ exp(2πiτ)Z, which has
infinitely many points. If K = Qp, some similar story is possible; namely, sometimes one can parame-
terize the points as K×/qZ where q ∈ mKOK .

2.11.1 Heights

Roughly speaking, we want to be generated by the “smallest” points on our elliptic curve, but this requires
building a notion of “smallest.” This is the purpose of heights.
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Definition 2.67 (height). Fix an abelian group A. Then a function h : A → R is a height function if and
only if it satisfies the following properties.

(a) Additivity: for fixed Q ∈ A, there exists a constant cQ such that

h(P +Q) ≤ 2h(P ) + cQ

for any P ∈ A.

(b) Quadratic: there is m ≥ 2 and a constant cA such that

h(mP ) ≥ m2h(P )− cA

for any P ∈ A.

(c) Bounded: the set {P ∈ A : h(P ) ≤ c} is finite for each c.

Here is our result.

Proposition 2.68. Fix an abelian group A equipped with a height function h : A → R. If A/mA is finite
for all m ≥ 2, then A is finitely generated.

Proof. Because our height function is quadratic, we can find representatives for A/mA for the m satisfy-
ing our quadratic condition; let the representatives be Q1, . . . , Qr, and to help us later, we let cQ to be the
maximum of cQi over all Qi. Now, for any P0 ∈ A, we may write

P0 = mP1 +Qi1

for some P1; repeating this process inductively, we see that we get

Pk = mPk+1 +Qik+1

for each k. This is an issue because it looks like the height of P is getting smaller and smaller unless this
vanishes. In particular, for each k ≥ 1, we see

h(Pk) ≤ 1

m2
(h(mPk) + cA)

≤ 1

m2
(h(Pk−1 −Qk−1) + cA)

≤ 1

m2
(2h(Pk−1) + cQ + cA) .

Working inductively, we see that

h(Pn) ≤
(

2

m2

)n
h(P0) +

(
1

m2
+

2

m4
+ · · ·+ 2n−1

m2n

)
(cQ + cA)

for any n. We now bound the geometric sum as

h(Pn) <

(
2

m2

)n
h(P0) +

cA + cQ
m2 − 2

≤ 2−nh(P ) +
cA + cQ

2
.

Thus, for n, large enough, we see that each Pn has height bounded by 1 +
cA+cQ

2 , so we may go ahead and
claim that {

P ∈ A : h(P ) ≤ 1 +
cA + cQ

2

}
∪ {Q1, . . . , Qr}
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will generate A. Indeed, for any P0 ∈ A, we run the above process, we see that Pn has height bounded by
1 +

cA+cQ
2 for n large enough, so then we have

P0 = Qi1 +mQi2 +m2Qi3 + · · ·+mnQin +mnPn,

which completes the proof. �

Remark 2.69. The rationals Q× has a height function given by a
b 7→ log(|b|) + log(|a|) (where b is chosen

to be minimal), but Q× is not finitely generated because Q×/Q×m isn’t finite for any m ≥ 2!

2.11.2 Heights for Elliptic Curves
So to prove Theorem 2.63, it su�ces to build a height function.

Definition 2.70. Fix a number field K. Define the function HK : PnK → R>0 by

HK([x0 : . . . : xn]) =
∏

v∈MK

max {|x0|v, . . . , |xn|v}nv

whereMK is the set of places ofK defined to extend the standard absolute values, and nv := [Kv : Qp]
where v lies over p. Then we define H := H

1/[K:Q]
K and h := logHK to be a function PnK → R.

Remark 2.71. Let’s take a moment to explain this definition. Suppose we have a K-point in PnK . This
amounts to a morphism K → PnZ, which is equivalent data to a line bundle L on K with generating
sections (x0, . . . , xn). By clearing denominators in the x•, this provides a surjection O⊕(n+1)

K → L. In
total, we are being given two di�erent projective modules L andOK sitting in L ⊗OK K, and then our
height h is essentially measuring the di�erence between these.

Lemma 2.72. Fix a number field K. The function HK is well-defined.

Proof. To begin, we remark that the product defining H is a finite product because any x• ∈ K is going to
be a unit in all but finitely many v, so only finitely many factors of the product are not equal to 1. So we can
at least evaluate H on a vector (x0, . . . , xn).

Now, given λ ∈ K×, we must check that H(x0, . . . , xn) = H(λx0, . . . , λxn). Well,

H(λx0, . . . , λxn) =
∏

v∈MK

max {|λx0|v, . . . , |λxn|v}nv

=
∏

v∈MK

|λ|nv/[K:Q]
v ·

∏
v∈MK

max {|λx0|v, . . . , |λxn|v}nv .

The product formula tells us that the λ term vanishes, so we are done. �

Lemma 2.73. Fix an extension of number fields L/K. Then the diagram commutes, where the map
Pnk ⊆ PnL is induced by K ⊆ L.

Proof. Track around the definitions and the definitions of our absolute values. �
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Lemma 2.74. Fix a number field K. Then imHK ⊆ [1,∞).

Proof. Any vector [x0 : . . . : xn] ∈ PnK can be scaled so that one of the xi is equal to 1 (by placing it in a
distinguished a�ne open subscheme), but then

max{|x0|v, . . . , |xn|v} ≥ 1

for each v ∈MK , so the entire produce must be bounded below by 1, soHK([x0 : . . . : xn]) ≥ 1 follows. �

2.12 April 3
There will be no class or o�ce hours on April 5 or April 12. Professor Olsson will post details about the term
paper later today.

2.12.1 Finiteness of Heights
Last class we constructed a candidate height function HK on PnK where K is a number field. To define our
height function h on (E, e) over the field K, we use the composite

E(K)→ P1
K(K)

logH→ R,

where E → P1
K is the hyperelliptic projection. Our next goal is to show that this function satisfies the con-

ditions of being a height function given in Definition 2.67. Today we will focus on showing (c).

Lemma 2.75. Define H : Pn(Q) → R by H(P ) := HK(P )1/[K:Q] where P is defined over K. Then
H(σP ) = H(P ) for any σ ∈ Gal(Q/Q).

Proof. Note thatH does not depend onK by Lemma 2.73, so we might as well show thatHK(P ) = HσK(σP ).
By expanding K to be Galois, we might as well assume that K = σK. Then for any place p ∈MQ, we claim∏

v|p

max{|x0|v, . . . , |xn|v}
?
=
∏
v|p

max{|σx0|v, . . . , |σxn|v},

where P = [x0 : . . . : xn]. But σ will only permute these places v dividing p by uniqueness of extending a
place from Q to K, so we finish. �

Lemma 2.76. Fix a constant C. Then the set {P ∈ PnQ(Q) : H(P ) ≤ C} is finite.

Proof. By scaling P appropriately, we may assume that P = [x0 : . . . : xn] where the xi are integers with
gcd(x0, . . . , xn) = 1. Essentially, one just needs to clear denominators.2 We can now just compute directly.
Indeed, for each prime p, we note that |xi|p ≤ 1 for each i, and gcd(x0, . . . , xn) = 1 enforces that p does not
divide at least one xi, so

max{|x0|p, . . . , |xn|p} = 1.

Thus, all finite places disappear from our computation, and we are left with

H(P ) = max{|x0|∞, . . . , |xn|∞},

and there are indeed only finitely many points (x0, . . . , xn) with |xi|∞ ≤ C for each i; in fact, there are at
most (2C + 1)n+1 of them. �

To continue, we use the following notation.
2 Alternatively, one can use the valuative criterion: the map P : SpecQ → Pn extends (uniquely) to a map SpecZ →→ Pn. To

see that gcd(x0, . . . , xn) = 1 with this map, it is enough to note that the relevant map Zn → Z is surjective, which comes from the
injectivity of the map SpecZ → Pn.
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Lemma 2.77. Fix a polynomial f(t) ∈ Q[t] of degree d, and write

f(t) = a0t
0 + a1t

1 + · · ·+ adt
d = ad(t− α1) · · · (t− αd).

Then

H([a0 : . . . : ad]) ≤ 2d−1
d∏
i=1

H(αi),

where H(αi) := H([αi : 1]).

Proof. Scaling the coe�cients ai will not a�ect either side of the inequality, so we may assume that ad = 1.
Now, by Vieta’s formulae, we make work everywhere in K := Q(α1, . . . , αd). For notional reasons, we set
ε(v) := 1 + 1v|∞ so that

|x+ y|v ≤ ε(v) max{|x|v, |y|v}

for each place v. For any fixed place v, our goal is to show

max{|α0|v, . . . , |αd|v} ≤ ε(v)d−1
n∏
i=1

H(αi),

which will finish after taking an infinite product over all factors. (Notably, there are [K : Q] infinite places
counted with multiplicity, so H = H

1/[K:Q]
K will perfectly cancel these places.) Well, for d = 1, we have

a1 = −α1, so there is nothing to say here. Then for our induction, we reorder our roots so that |α1|v is the
largest absolute value. We now set

g(t) :=
f(t)

t− α1
= (t− α2) · · · (t− αd) = bd−1t

d−1 + bd−2t
d−2 + · · ·+ b1t+ b0,

where (for example) bd−1 = 1. By expanding, we see that f(t) = (t − α1)g(t) implies ai = bi−1 − α1bi for
each i. In total, we see

max
0≤i≤d

{|ai|v} = max
0≤i≤d

{|bi−1 − α1bi|v}

≤ max
0≤i≤d

ε(v) max{|bi−1|v, |α1bi|v}

≤ ε(v) max
i
{|bi|v}max{|α1|v, 1}

≤ ε(v)

(
ε(v)d−2

n∏
j=2

max{|αj |v, 1}

)
max{|α1|v, 1}

≤ ε(v)d−1
n∏
j=1

max{|αj |v, 1},

which is what we wanted. �

Remark 2.78. There is also a lower bound to the above result, but we don’t need it.

And now here is our main bounding result.

Theorem 2.79. Fix a constants C and d > 0. Then

#{P ∈ Pn(Q) : H(P ) ≤ C, [Q(P ) : Q] ≤ d} <∞.
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Proof. For any P = [x0 : . . . : xn], we see

HQ(P )(P ) =
∏
v

max
i
{|xi|v} ≥ max

i

∏
v

max{|xi|v, 1} = max
i
HQ(P )(xi),

where the second inequality holds because the left factor takes the largest factor for each place v, and the
second factor includes fewer large factors. Notably, H(P ) ≤ C and [Q(P ) : Q] ≤ d implies that H(xi) ≤ C
and [Q(xi) : Q] ≤ d for each i, so by taking the union over all possible coordinates appropriately, it is enough
to show that

#{x ∈ Q : H(x) ≤ C, [Q(x) : Q] ≤ d} <∞
for any C and d. Well, for any x in the above set, we let its set of Galois conjugates be {x1, . . . , xe} so that
the previous lemma yields

fx(t) := (t− x1) · · · (t− xe) = aet
e + ae−1t

e−1 + · · ·+ a1t+ a0

has
H([a0 : . . . : ae]) ≤ 2e−1

∏
i

H(xi) = 2e−1H(x)e ≤ (2C)d.

However, each element x ∈ Q yields a unique point [a0 : . . . : ae] on the other side, but there are only finitely
many of these such points by Lemma 2.76. �

It follows that our height function h has the desired finiteness because the hyperelliptic projection E → P1
k

is a 2-to-1 map, and we have the finiteness of P1
k.

2.13 April 7
Please send Professor Olsson a short email of about 1 paragraph to propose a term-paper topic.

2.13.1 Heights as Quadratic Forms
We are going to want the following result.

Theorem 2.80 ([Sil09, p. VIII.5.6]). Fix a map f : PNk → PMk of degree d. Then there are constants c1 and
c2 such that

c1H(P )d ≤ H(f(P )) ≤ c2H(P )d.

In other words, logH(f(P )) = d logH(P ) +O(1).

Proof. Omitted for now. �

Now, recall that we defined our height function hE on E(K) by

E(K)
π→ P1

k(K)
logH−−−→ R,

where π : E → P1
k is the usual double-cover, and logHP1 is defined as we’ve been working. Last class, we

showed that this height function hE satisfies condition (c) for being a height function. It remains to show (a)
and (b).

To warm us up, consider the map ϕ : P1
k × P1 → P2

k by

ρ([α1 : β1], [α2 : β2]) := [β1β2 : α1β2 + α2β1 : α1α2].

One can check by hand that this is base-point-free. The corresponding line bundle here is O(1) � O(1) =
p∗1O(1)⊗p∗2O(1). Global sections of this line bundle after looking a�ne-locally and appropriately gluing turn
out to be

Γ
(
P1
k,O(1)

)
⊗k Γ

(
P1
k,O(1)

)
.

Now, the three global sections are v1 ⊗ v2 and u1 ⊗ v2 + v2 ⊗ u1 and u1 ⊗ u2, where P1 = Proj k[u1, v1] and
P1 = Proj k[u2, v2], respectively. We now have the following computation.
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Proposition 2.81. Given R1, R2 ∈ P1(K), we have

hP2(ρ(R1, R2)) = hP1(R1) + hP1(R2) +O(1).

Proof. If R1 = [1 : 0], then the formulae directly give hP1(ρ(R1)) = 0 and

ρ(R1, R2) = [0 : β2 : α2] where R2 = [α2 : β2].

So we see that hP2(ρ(R1, R2)) = hP1(ρ(R2)) in this case. A symmetric argument works for R2 = [1 : 0] as
well.

Otherwise, we may writeR1 = [α1 : 1] andR2 = [α2 : 1], and we find thatϕ(R1, R2) = [1 : α1+α2 : α1α2].
However, this means that hP2(ρ(R1, R2)) is computing the height of the coe�cients of (T +α1)(T +α2). On
the other hand, hP1(R1) + hP1(R2) computes the height of those roots; thus, we are done by Lemma 2.77
combined with the lower bound which we didn’t quite prove in full. �

We now return to discuss elliptic curves. DefineG : E ×E → E ×E by (P,Q) 7→ (P +Q,P −Q). Explicitly,
on schemes, this map is given by (µ, µ ◦ (1,−1)). We now have the following result.

Proposition 2.82. There is a map g : P2
k → P2

k of degree 2 such that the following diagram commutes.

E × E P1 × P1 P2

E × E P1 × P1 P2

(π,π) ρ

(π,π) ρ

g

Let’s explain why this will finish our height computation. Define σ : E × E → P2 by ρ ◦ (π, π). Note that

hP2(σ(P +Q,P −Q)) = hP2(σ ◦G(P,Q)) = hP2(g ◦ σ(P,Q)) = 2hP2(σ(P,Q)) +O(1),

where we have used Theorem 2.80 in the last equality. Continuing, Proposition 2.81 tells us that

2hP2(σ(P,Q)) +O(1) = 2(hP1(πP ) + hP1(πQ)) +O(1).

On the other hand, hP2(σ(P + Q,P − Q)) = hP1(π(P + Q)) + hP1(π(P − Q)) by Proposition 2.81 again, so
combining yields

hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1). (2.1)
This is more or less a fuzzy parallelogram law.

Corollary 2.83. Fix an elliptic curve E over a number field K.

(a) Given Q ∈ E(K), we have hE(P +Q) ≤ 2hE(P ) +OQ(1) for any P ∈ E(K).

(b) For any m ≥ 0, we have hE(mP ) = m2hE(P ) +O(m).

Proof. For (a), we see that (2.1) tells us that

hE(P +Q) ≤ hE(P +Q) + hE(P −Q) = 2hE(P ) + 2hE(Q) +O(1) = 2hE(P ) +OQ(1).

Lastly, for (b), we induct on m. For m = 0 and m = 1, there is nothing to say. To induct, we suppose m and
m+ 1, so we compute

hE((m+ 2)P ) = −hE(mP ) + 2hE((m+ 1)P ) + 2hE(P ) +O(m)

from (2.1). By the inductive hypothesis, we achieve

hE((m+ 2)P ) =
(
−m2 + 2(m+ 1)2 + 2

)
hE(P ) +Om(1) = (m+ 2)2hE(P ) +O(m),

which completes the proof. �
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Remark 2.84. The Néron–Tate “canonical” height takes (2.1) and fixes this into a bona fide quadratic
form. Explicitly, one expects that

hE(P ) =
1

4r
hE (2rP ) +O

(
2−r
)

should not really have a big-O term, so we define

ĥE(P ) := lim
r→∞

1

4r
hE (2rP ) ,

which does indeed converge.

Thus, Corollary 2.83 will complete showing that hE is a height function.

2.14 April 10
Today we finish up with the Mordell–Weil theorem.

2.14.1 Finishing Mordell–Weil
It remains to show Proposition 2.82.

Proof of Proposition 2.82. For brevity, setM := OE(e). We have the following steps, though we will skip
some justifications.

1. By our computation of ρ previously, the map E × E → P2 is given by the line bundleM⊗2 �M⊗2.
Explicitly, the map ρ : P1 × P1 → P2 is given by the line bundleO(1) �O(1) on P1 × P1, and noting the
canonical isomorphism

Γ(P1 × P1,O(1) �O(1)) ∼= Γ(P1,O(1))⊗ Γ(P1,O(1)),

the map ρ is given by the sections v1 ⊗ v2, u1 ⊗ v2 + v1 ⊗ u2, u1 ⊗ u2.

2. There is an automorphism γ : P1 × P1 → P1 × P1 by switching the factors, which has order 2 and thus
induces an action of Z/2Z on P1 × P2. Notably, γ also fixes the line bundle O(1) � O(1) and fixes the
sections used to define ρ, so we can track that

P1 × P1 P1 × P1

P2

γ

ρ ρ

commutes. Roughly speaking, we expect γ as an automorphism to detect invariants under switching
the factors.

3. In fact, for any line bundle L on P2, we claim

Γ(P2,L)→ Γ(P1 × P1, ρ∗L)γ=1

is an isomorphism, where the superscript denotes γ-invariants.
Well, there is a classification of line bundles on P2, so we can write L = O(d) for some d. If d < 0,
then neither side will have any global sections (one can compute this directly or note that the inverse
of an ample line bundle has no global sections); if d = 0, then we are just looking at structure sheaves
everywhere, and both will be k. It remains to check d > 0.
Note that ρ being surjective implies that our map on sections is injective because it is essentially given
by some restriction of ρ]. As such, it remains to compute some dimensions. Note Γ(P2,O(d)) has
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dimension
(
d+2

2

)
= (d+2)(d+1)

2 . On the other side, let α0, . . . , αd denote a basis for Γ(P1,O(1)), and we
note that we can give a basis of Γ(P1 × P1,O(1) �O(1)) by the elements

αi ⊗ αi 0 ≤ i ≤ d,
αi ⊗ αj + αj ⊗ αi 0 ≤ i < j ≤ d,
αi ⊗ αj − αj ⊗ αi 0 ≤ i < j ≤ d.

The first two cases provide basis elements with γ = 1, and the last case has γ = −1, so our subspace
is spanned by the first two cases. Thus, our dimension is

d+ 1 +

(
d+ 1

2

)
= d+ 1 +

(d+ 1)d

2
=

2d+ 2 + d2 + 2

2
=
d2 + 3d+ 2

2
=

(d+ 1)(d+ 2)

2
,

which indeed matches.

4. Recall that we have the hyperelliptic projection x : E → P1 given by the line bundle M⊗2 and the
sections 1, x. We also have the hyperelliptic involution ι : E → E, and we expect x to project down
invariants of ι. Explicitly, for any line bundle L on P1, we claim that

Γ(P1,L)→ Γ(E, x∗L)ι=1

is an isomorphism. This proof is similar to the above.

5. Now, the composite σ = ρ ◦ (x, x) is going to accumulate a number of invariants. Explicitly, we have
a subgroup A ⊆ Aut(E × E) generated by (the lift of) τ given by switching the factors and 1 × ι and
ι× 1. Then we claim that for any line bundle L on P2, we have that

Γ(P2,L)→ Γ(E × E, σ∗L)A

is an isomorphism. This comes from combining the previous two steps.

6. It remains to discussG intelligently. Then we claim there exists an automorphism h : A→ A such that
the following commutes for any g ∈ A.

E × E E × E

E × E E × E

G

G

g h(g)

Well, we can compute this explicitly. For ι× 1, we track around the following diagram.

E × E E × E (P,Q) (P +Q,P −Q)

E × E E × E (−P,Q) (−P +Q,−P −Q)

G

G

g h(g) (1,ι)◦τ◦(1,ι)

Similar works for 1× ι, and for τ we have the following.

E × E E × E (P,Q) (P +Q,P −Q)

E × E E × E (Q,P ) (P +Q,Q− P )

G

G

g h(g) (1,ι)

The point is that we can construct this automorphism by hand.
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7. Next up, we claim thatG∗ (M�M) ∼=M⊗2 �M⊗2. Define ∆±E to be the kernel of 1×±1. Explicitly,
∆−E = {(P,−P ) : P ∈ E}, and ∆+

E = {(P, P ) : P ∈ E}. As such, by computing on divisors, we see that

G∗(M�M) = OE×E(∆+
E + ∆−E).

Let’s examine what happens on points. For x ∈ E, we see

G∗(M�M)|{x}×E = OE([−x] + [x]) = OE(2e) =M⊗2.

The point is that G∗(M �M) ⊗ p∗2M−2 is locally trivial, which implies that it is the pullback of a line
bundle along p∗1. To see what this line bundle is, we can switch factors, and the claim follows.

8. Combining the above steps, we calculate

Γ(P2,O(1)) ∼= Γ(E × E,M⊗2 �M⊗2)A

G∗→ Γ(E × E,M�M)A

∼= Γ(P2,O(2)).

Notably, theG∗ step is noting that we take invariants to invariants, provided we acknowledge that the
invariants are preserved becauseG∗ commutes withA through h. Thus, we can pull back our sections,
which does indeed give us enough sections of OP2(2), so we get our map g : P2 → P2 of degree 2
making everything commute. It remains to check that these sections are base-point-free, but they
were base-point-free over E × E, and the map E × E → P2 is surjective, so they will continue to be
base-point-free on P2. �
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THEME 3

BRAUER–MANIN OBSTRUCTIONS

3.1 April 14
Let’s quickly take stock on what we’ve done.

• We studied degree-2 polynomials, which is essentially studying genus-0 algebraic curves.

• We studied elliptic curves over number fields, which is essentially studying genus-1 algebraic curves.

• It is a result of Faltings that smooth projective curves with genus larger than 2 have finitely many points.

Remark 3.1. Faltings’s theorem is quite hard, though it would be approachable after this class. The
standard reference is Silverman’s Arithmetic Geometry.

Away from curves, not much is known. For the rest of the class, we are going to discuss local-to-global
principles for varieties of dimension at least 2. Curves just turn out to be much simpler than everything else.

3.1.1 Local-to-Global via Adéles
Fix a smooth projective variety X over a number field K. Roughly speaking, local-to-global principles are
interested in the following question.

Question 3.2. Suppose thatX(Kv) is nonempty for every place v ∈ VK . Then mustX(K) be nonempty?

This was true for quadratics, but the answer is no in general.
To ask better questions, we will use the adéles AK as the restricted product. Because there is a natural

embeddingK ↪→ AK , we know that aK-point ofX will imply an AK-point ofX. So we can ask our question
again.

Question 3.3. Suppose that X(AK) 6= ∅. Then must X(K) be nonempty?

The answer here is still no, but it will turn out to be interesting why.
To see what’s going on, suppose for a moment that we are looking with X = SpecA a�ne. Note A is a

finitely generated K-algebra (in fact finitely presented), so we see

A =
K[x1, . . . , xr]

(f1, . . . , fs)
.
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LettingN be the product of our denominators, we see that we can “thicken”A into a finite scheme overOK
as

A′ :=
OK [1/N ][x1, . . . , xr]

(f1, . . . , fs)
.

Working over each of our a�ne patches, we see that we have produced X ′ living in PrOK . Equivalently, we
could consider the scheme-theoretic image of the map X ⊆ PrK ⊆ PrOK .

Now, in one direction, if there is a K-point SpecK → SpecA, then we get a Kv-point via

SpecKv → SpecK → SpecA.

Taking the product, we actually get a map

Spec
∏
v∈VK

Kv → SpecK → SpecA.

Anyway, the point is that we get a diagram as follows. ∏
v∈VK

′
X(Kv)

X(K)
∏
v∈VK

X(Kv)

Indeed, given any particular K-point of X(K), there are only finitely many coordinates, and each of these
finitely many coordinates has only finitely many primes dividing the denominator, so we are actually pro-
ducing a point in the restricted product. We now undo some of our products. For example, we see

X

( ∏
v∈VK

Kv

)
=
∏
v∈VK

X(Kv)

by checking a�ne-locally, where we are asserting that a map
∏
v∈VK Kv → A can be built be a product of

maps Kv → A over each v ∈ VK , which is simply true. Furthermore, we claim∏
v∈VK

′
X(Kv) = X(AK).

Again working a�ne-locally, we compute

X(K) = HomOK (A′,K)→ HomOK

(
A′,

∏
v∈VK

Kv

)
=
∏
v∈VK

HomOK (A′,Kv).

But we cannot introduce too many denominators as discussed before, so we see that everything does factor
through the restricted product. The point is that if we are hunting for rational points, we should do more
than look for Kv-points but to make sure that they cohere to an AK-point.

3.1.2 The Brauer Invariant
Let’s be a little loose for a little in order to give a feeling for what we’re going to do. Earlier in the course, we
took a field L and defined the Brauer group BrL as H2 (Gal(Lsep/L), Lsep×). More generally, we can take a
scheme X and define

BrX := H2
ét(X,Gm).

Now, given a point y ∈ X(AK), we produce a map

BrX
y∗→ BrAK =

⊕
v∈VK

H2
(
Gal(Ksep/K),Ksep×) ∑

→ Q/Z,
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where the last map is by summing coordinate-wise. We now recall from class field theory that

0→ BrK →
⊕
v∈VK

BrKv

∑
→ Q/Z→ 0

is a short exact sequence—certainly BrK lives in the kernel of
∑

by the product formula. Thus, givenA ∈
BrX, we can compute

BrA(y) :=
∑
v∈VK

y∗A

as an element of Q/Z, and we know this must be nonzero if we are producing aK-point. Indeed, if we start
with a point x ∈ X(K), we put everything together to produce the following diagram.

BrX

0 BrK BrAK Q/Z 0

x∗
y∗

The point now is that we can check if y ∈ X(AK) might come from a rational point by checking BrA(y) to be
zero for everyA ∈ BrK. This turns out to be not be a perfect definition, but it at least gives us some check.

3.1.3 Brauer Groups
To make sense of the previous subsection, we need an actual definition of BrX. Quickly, let’s review how
we currently think of BrK for two fields K.

• We have H2 (Gal(Ksep/K),Ksep×).

• We can define the set of finite-dimensional central simple K-algebras. (It turns out to be equivalent
to ask for A ⊗K Ksep = Mn(Ksep).) Then this has a group operation by ⊗K , but then we mod out by
the equivalence A ∼ A′ if and only if Mn(A) ∼= Mn′(A

′) for some n and n′.

We also discussed a little how to between these definitions. The key point was the Skolem–Noether theo-
rem that

AutKsep(Mn(Ksep)) = PGLn(Ksep).

Thus, for example, we can take a central simple algebra A, fix an isomorphism ϕ : A ⊗K Ksep ∼= Mn(Ksep),
and then we note that an automorphism σ ∈ Gal(Ksep/K) yields an element of PGLn(Ksep) by following
around the following square.

A⊗K Ksep Mn(Ksep)

A⊗K Ksep Mn(Ksep)

1⊗σ Mn(σ)

ϕ

ϕ

This produces a 1-cocycle, and then we use a map

H1(Gal(Ksep/K),PGLn(Ksep))→ H2(Gal(Ksep/K),Ksep×),

which is what we wanted.

3.2 April 17

To take about Brauer groups, we take the excuse to talk about sheaves over a site.
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3.2.1 Sheaves on a Site
Fix a category C.

Definition 3.4 (presheaf). Fix a category C. Then a presheaf is a contravariant functor F : Cop → Set.

Example 3.5. Let C be the discrete category of open sets of some topological space X. Namely, the
objects are open subsets U, V ⊆ X, and the morphisms are given by containment U ⊆ V . As such, a
presheaf on this category is some collections of objectsF (U) for openU ⊆ X equipped with restriction
maps res : F (U)→ F (V ) for any open sets V ⊆ U , satisfying some functoriality properties.

To make sheaves work, we need to add a few conditions on our category.

Definition 3.6 (site). A site is a category C equipped with a collection of “covering” maps

CovU =
{
{ϕα : Uλ → U : α ∈ λ}

}
for each U ∈ C, satisfying the following coherence conditions.

• Isomorphism: if ϕ : U → U ′ is an isomorphism, then {ϕ : U → U ′} is in Cov(U ′).

• Refinement: suppose {ϕα : Uλ → U}α∈λ ∈ CovU and {ϕαβ : Uαβ → Uα}β∈λα ∈ Cov(Uα), then

{ϕα ◦ ϕαβ : Uαβ → U}α∈λ,β∈λα ∈ CovU.

• Pullback: if {ϕα : Uα → U}α∈λ ∈ CovU and V → U is some morphism, then the fiber products
V ×U Uα all exist, and

{V ×U Uα → V }α∈λ ∈ Cov V.

Example 3.7. Let C be the discrete category of open sets of some topological space. Then our coverings
are exactly collections of open sets which cover U . One can verify the axioms make sense.

• Isomorphism: if we have an isomorphismU ∼= U ′, then we must haveU = U ′, and {U} is certainly
a cover of U .

• Refinement: we are simply describing an open cover for each of theUα for a cover {Uα}α∈λ, which
will build to an open cover of U by taking the union over all of them.

• Pullback: the fiber product along V → U is V ×U Uα = V ∩ Uα, so we are simply describing an
intersection of the open cover {Uα}α∈λ with V ⊆ U to build an open cover of V .

Now, here is our definition of a sheaf.

Definition 3.8 (sheaf). Fix a site C. Then a sheafF is a presheaf such that all covers {ϕα : Uα → U}α∈λ ∈
CovU make the sequence

F (U)→
∏
α∈λ

F (Uα)→
∏
α,β∈λ

F (Uα ×U Uβ)

an equalizer exact sequence; here, the right-hand map is induced because there are two mapsF (Uα)→
F (Uα ×U Uβ) and F (Uβ)→ F (Uα ×U Uβ).

This is exactly the usual definition for a sheaf: we are asserting that for any cover {ϕα : Uα → U} of U ,
providing an element of F (U) is equivalent to providing an element of each F (Uα) which agree on the “in-
tersections” F (Uα × Fβ). (The uniqueness is the identity axiom, and the existence is the gluability axiom.)

Let’s see some more examples.
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Example 3.9. Fix a groupG. Then we let C be the corresponding one-object category. Here, a presheaf
is a functor F : Cop → Set, so we are asking for a single set S := F (∗) ∈ Set such that each g ∈ G =
Mor(∗, ∗) produces a morphism Fg : S → S such that

F (e) = idS and F (g ◦ h) = F (h) ◦ F (g).

Thus, presheaves are sets equipped with a right G-action.

Example 3.10. Fix a topological space X, and let C be the category of local homeomorphism Y → X.
Then we let our coverings be given by collections of maps CovU = {{ϕα : Uα → U}α∈λ} such that the
disjoint union map ⊔

α∈λ

Uα → U

is surjective. One can somewhat quickly check the axioms. Even though presheaves might be di�erent
on C than on the category of open sets on X, it turns out that the sheaves are the same.

Example 3.11. Let C be the category of topological spaces, and let our coverings CovX be given by the
set of coverings in the category of open sets inX. A presheaf is asking us to specify a set for every topo-
logical space (satisfying some functoriality conditions). Further, it turns out that the category of sheaves
consists of collections (FU , θf ) where FU is a sheaf onU (as a topological space), and for any f : U → V
there is an inverse image transition map θ−1

f FU → FV ; these satisfy some coherence conditions that
one can write down.

For our next example, we want the following definition.

Definition 3.12 (étale algebra). Fix a field k. Then an étale algebra is a k-algebra which is a finite product
of finite separable extensions of k.

Geometrically, étale algebras as finite k-schemes X which are separable over k.

Example 3.13. Fix a field K. Then the category EtK is the category of étale algebras X → Spec k, and
coverings CovX consist of collections {Uα → X}α∈λ such that the disjoint union map⊔

α∈λ

Uα → X

is surjective. For our sheaf condition, suppose thatL/K is a finite Galois condition withG := Gal(L/K).
Then our presheafF : Cop → Set would like to send the map SpecL→ SpecK to a set SL equipped with
a G-action. Further, by pullback, we see that

SpecL×SpecK SpecL = Spec(L×K L) =
⊔
g∈G

SpecL,

where the G-action now lands coordinate-wise. The point is that the sheaf condition on the covering
L → K is requiring F (K) = SGL . In total, one can show that sheaves on EtK are sets with a condition
action by Gal(Ksep/K).

Namely, we see that our Galois cohomology can arise from the above example.
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3.3 April 19
The reading for today is Chapter 6 of Poonen’s Rational Points on Varieties and Chapters 1 and 2 of Olsson’s
Algebraic Spaces and Stacks.

3.3.1 Étale Morphisms
We would like to mimic singular cohomology on a scheme. The correct notion turns out to be the étale site
of a scheme, defined as follows.

Definition 3.14 (étale site). Fix a scheme X. Then the étale site is the category Ét(X) which is the cat-
egory of schemes over X with étale maps. We turn this into a site by defining a covering of the map
U → X as a collection of maps {Uα → U}α∈λ which are pointwise surjective.

Wait, what does “étale” mean? Roughly speaking, étale morphisms are intended to be the algebraic geom-
etry version of a “local homeomorphism” between two spaces. Here are some examples.

• The map C× → C× given by squaring is some kind of local homeomorphism, which we can turn into
the scheme map

SpecC
[
x, x−1

]
→ SpecC

[
x, x−1

]
given by x 7→ x2.

• Unramified maps of (smooth, proper) curves (over an algebraically closed field) feel like they should
be local homeomorphisms in the topological sense, so this will also be étale.

• Given a field extension L/K, then the map SpecOL[1/N ] → SpecOK [1/N ] is étale if and only if un-
ramified.

• Given a finite field extension L/K, then the map SpecL → SpecK is étale if and only if L/K is sepa-
rable.

• Fix an elliptic curve (E, e) over a ring R. Then the map [n] : E → E is étale if and only if n ∈ R×.

Anyway, here is our definition.

Definition 3.15 (étale). A morphism of schemes f : X → Y is étale if and only if the following conditions
hold.

• f is locally of finite presentation.

• Hensel’s lemma: for any map of rings R′ → R so that the kernel J := ker(R′ → R) has J2 = 0,
then a commutative square as below has a unique lift as shown.

SpecR X

SpecR′ Y

f!

The topological picture is thatR′ essentially only adds a tangent direction to the point given by SpecR→ X,
so f being a local homeomorphism basically means that we should be able to lift this tangent vector back
up to X uniquely.

Remark 3.16. One can define smoothness in basically the same way, not requiring uniqueness.
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Exercise 3.17. Fix Y := SpecA and X := A[x]/ (xn − a) where n ≥ 1 is an integer and a ∈ A×. We
would like to know that the structure map X → Y is étale when n ∈ A×.

Proof. Certainly this is locally of finite presentation. Well, suppose we have a commuting diagram as fol-
lows.

R A[x]/ (xn − a) α β x

R′ A α′ a

The commutativity of the diagram is enforcing βn = α. We would like a unique lift of a mapA[x]/ (xn − a)→
R′, which means that we want a unique solution (β′)n = α′. Well, choosing any lift β′0 of β up inR′, we know
that at least

(β′0)n = α′ + e

for e ∈ ker(R′ → R). We now need to adjust β′0 by some γ ∈ J , so we expand

(β′0 + γ)n = (β′0)n + n(β′0)n−1γ = α′ + e+ n(β′0)n−1γ.

We would like this to equal α′ on the nose, for which we see we must have

γ = − e

n(β′0)n−1
.

Thus, we have shown that there is a unique lift β′ of β which solves (β′)n = α′. �

Remark 3.18. If n /∈ A×, then the above map need not be étale. For concreteness, take a = 1 and
suppose that n = p is prime and vanishes inA. Here, we see xn− 1 = (x− 1)p. To show that we are not
étale, we use the following diagram.

A[x]/(x− 1)p A[x]/(x− 1)p x x

A[x]/(x− 1)p+1 A

Here, we would like to lift x to some pth root of 1 in A[x]/(x − 1)p+1. Indeed, we can write any lift as
x + a(x − 1)p for some a ∈ A, but none of these elements to the pth power is going to equal 1 in our
ring.

Let’s prove some properties of étale morphisms.

Lemma 3.19. Any étale morphism f : X → Y is flat.

Proof. Omitted. �

Lemma 3.20. We have cancellation: if morphisms f : U → X and g : V → X are étale, then any map
h : U → V such that h = g ◦ h is étale.

Proof. Omitted. �
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Lemma 3.21. We can check étale on fibers: a flat morphism f : X → Y such that the fibers f : Xy → y
are étale for all y ∈ Y will have f étale.

Proof. Omitted. �

There’s a lot more to say here, but we’ll stop here.

3.3.2 Sheaves on the Étale Site
While we’re here, let’s give some motivation of étale morphisms for number theorists. Fix a schemeX and
integer n invertible in X; i.e., X is a scheme over Z[1/n]. Now, in the étale topology, the sequence

0→ µn → Gm
(−)n→ Gm → 0

is exact.1 To make sense of this, we need to remember what a sheaf is. For example, Gm is defined as the
sheaf on the étale site by

Gm(U) := Γ
(
U,O×U

)
for any étale map U → X. It is not obvious, but it is true that Gm is a sheaf on our étale site. Similarly, µn is
defined by

µn(U) := {u ∈ Γ(U,OU ) : un = 1} .

Notably, µn is the kernel of a sheaf map, so µn remains a sheaf.
The main content of our exactness is the check that (−)n : Gm → Gm is surjective. Roughly speaking,

here is the check we have to do: given some section u ∈ Gm(U), we would like a covering {Uα}α∈λ of U and
sections vα ∈ Gm(Uα) such that

vnα = u|Uα

for all α ∈ λ. Quickly, by restricting U , we may assume that U = SpecA is a�ne, but then our étale cover is
given by

Spec
A[x]

(xn − u)
→ SpecA,

so we are done.
Anyway, now that we have an exact sequence, one can check that our abelian category of sheaves of

abelian groups on the étale site has enough injectives, so we can take cohomology as

0→ µn(X)→ Gm(X)→ Gm(X)→ H1
ét(X,µn)→ H1

ét(X,Gm)→ H1
ét(X,Gm)→ · · · .

One can show that H1
ét(X,Gm) = H1(X,Gm).

Remark 3.22. Similarly, if (E, e) is an elliptic curve over a fieldK, and we have an integer n ∈ K×, then
we produce an exact sequence

0→ E[n]→ E
[n]→ E → 0,

so we can again take cohomology. Again, we do not have such an exact sequence in the Zariski topology.

The point is that we are in some sense recovering Galois cohomology from étale cohomology.

1 This exactness is false in the Zariski topology: takeX = SpecQ and n = 2.
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3.4 April 21
We continue discussing the étale topology.

Remark 3.23. Fix a scheme X. Then Ét(X) has a final object given by idX : X → X. However, one
should not worry about this too much: the site is not so important but rather the category of sheaves
on the site. For example, one could replace Ét(X) with the site Ét

aff
(X) of a�ne étaleX-schemes, but

the corresponding categories of sheaves are the same.

Remark 3.24. A category equivalent to sheaves on a site is called a “topos.” But then there is a natural
way to turn into any such topos into a site.

3.4.1 Some Sheaves on the Étale Site
Let’s give some examples of sheaves on the étale site.

Example 3.25 (structure sheaf). There is a sheaf OXet
sending the object U → X to Γ(U,OU ). Given a

morphism f : V → U of étale open sets, we produce the pullback map f∗ : Γ(U,OU ) → Γ(V,OV ). This
forms a presheaf, which one can check directly, and a descent argument shows that this a sheaf.

Because we have a notion of structure sheaf OXet , we have OXet-modules and quasicoherent sheaves and
so on.

Example 3.26. Fix a quasicoherent sheafMonXzar. Then we can produce an “upgraded” quasicoherent
sheafMet by sending the étale open set g : U → X to Γ (U, g∗M). Again, a descent argument shows
that this is a sheaf.

Remark 3.27. One can show that, for a suitable definition of quasicoherent over the étale site (namely,
being a module a�ne-locally for the étale notion of “locally”), Example 3.26 produces an equivalence
of categories

QCoh(Xzar)→ QCoh(Xet).

So we have not lost any of our good theory of quasicoherent sheaves. However, we have gained some good
theory of sheaves like Z/mZ.

Example 3.28. Let’s think about H2(Gal(C/R), µ2). Let i ∈ Gal(C/R) be complex conjugation, so we
note that the quaternions H are supposed to produce a class in there; this is essentially an étale sheaf
of algebras over SpecR. As such, fixing an isomorphism σ : H ⊗R C → M2(C), one can go around the
square

H⊗R C M2(C)

H⊗R C M2(C)

1⊗i M2(i)

σ

σ

to produce a cocycle in H1(Gal(C/R),PGL2(C)), from which a boundary map along

0→ µ2 → SL2(C)→ PGL2(C)→ 0

produces a class in H2(Gal(C/R), µ2). However, realize that we are basically doing étale cohomology
here over SpecR.

We take a moment to acknowledge that one can now upgrade Hilbert’s theorem 90 to the following.
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Theorem 3.29. Fix a scheme X. For any quasicoherent sheafM, there is a natural isomorphism

H•(Xzar,Mzar)→ H•(Xet,Met).

Roughly speaking, H1(Gal(Ksep/K),GLn(Ksep)) is trying to classify vector bundles over SpecK, which are
at a point and should be trivial. We upgraded this to the previous result to talk about quasicoherent sheaves
in more generality.

Example 3.30. There is an étale sheaf GLn on X by sending the a�ne open SpecA → X to GLn(A).
Similarly, one has an étale sheaf PGLn by taking the sheafification of the presheaf given by sending
SpecA→ X to GLn(A)/GL1(A).

The point is that the étale topology allows us to make sense of short exact sequences like

0→ µn → GL1 → GL1 → 0

which is the scheme-theoretic version of the short exact sequence

0→ µn(Ksep)→ Ksep× → Ksep× → 0

in Galois cohomology.

3.4.2 Azumaya Algebras
To continue our story, we would like to generalize our notion of the Brauer group.

Definition 3.31 (Azumaya algebra). Fix a scheme X. An Azumaya algebra is a sheaf of OX-algebras
which is étale locally isomorphic to Mn(OX) for some n.

Quickly, recall the following result.

Theorem 3.32 (Skolem–Noether). Fix a ring R. Then AutR(Mn(R)) = PGLn(R).

Corollary 3.33. Fix an Azumaya algebra A on X. Then the étale sheaf sending U to the set of isomor-
phismsA|U →Mn(OU ) has a simply transitive action by PGLn.

This is referred to as a “torsor,” and we will be able to classify them by calculating H1(Xet,PGLn).

Definition 3.34 (torsor). Fix a sheaf G of groups onX. Then a G-torsor is a sheaf of sets S with G-action
such that each étale open set U has a covering {Ui} such that S(Ui) 6= ∅ for each i, and further, our
action is simply transitive. In other words, being simply transitive means that we have an isomorphism
G × S → S × S by (g, s) 7→ (gs, s) is an isomorphism of sheaves of sets.

Here is how this relates to our corollary.

Proposition 3.35. Fix an étale sheafA of abelian groups. ThenH1(Xet,A) is naturally isomorphic to the
set ofA-torsors up to isomorphism.

Proof. Working from the definition, we recall that computing cohomology ofA amounts to constructing an
injective resolution

0→ A→ I0 → I1 → I2 → · · ·
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and then computing

H1(Xet,A) =
ker(Γ(I1)→ Γ(I2))

im(Γ(I0)→ Γ(I1))
.

Now, given an element of the kernel s ∈ ker(Γ(I1)→ Γ(I2)), we produce theA-torsor

S : U 7→
{
α ∈ I0(U) : d0α = s|U

}
.

Then one can check that s being adjusted by an element of im(Γ(I0) → Γ(I1)) corresponds to our A(U)-
action, which turns S into anA-torsor. Lastly, one should show that every torsor arises in this way, which is
hard. �

3.5 April 24

We provide an example today.

3.5.1 Writing Down the Brauer Group

The goal for today is to construct a smooth projective Q-surfaceX such thatX(AQ) 6= ∅ butX(AQ)Br = ∅.
In other words, the local-to-global principle fails and is detected by the Brauer–Manin obstruction.

Quickly, we recall our definition of the Brauer group. Precisely, we are looking at the isomorphism classes
of Azumaya algebras over X, where we mod out by the equivalence relation trivializing End(E) for locally
free sheaves E overX of finite rank. In other words, we say thatA ∼ A′ if and only if there are vector bundles
E and E ′ such that

A⊗ End(E) ∼= A′ ⊗ End(E ′).

Notably, an Azumaya algebraA of rank n2 has a simple transitive PGLn-action on the étale sheaf

IA(U) := {isomorphismsA|U ∼= Mn(OU )},

so we are producing an element of H1(Xet,PGLn). However, we have an exact sequence

1→ Gm → GLn → PGLn → 1,

of étale sheaves, so we get a mapH1(X,PGLn)→ H2(X,Gm), so there is an inclusion Br(X)→ H2(X,Gm).
Indeed, we have the exact sequence

H1(X,GLn)→ H1(X,PGLn)→ H2(X,Gm),

and one can check that the previously defined equivalence relation is exactly dictated by the “locally free”
objects coming from H1(X,GLn).

Theorem 3.36. For reasonableX (for example, it has an ample line bundle), then the inclusion Br(X)→
H2(X,Gm) is an isomorphism.

There are counterexamples, though we do not have a good understanding in general. For example, we do
not know if we may merely assume that X is a smooth variety.

Let’s talk a bit about “reducing to fields.” Here is the motivation.

Remark 3.37. Suppose that X is a smooth, integral, projective k-scheme, where k is a field of charac-
teristic 0. It is then a fact that there is an injection Br(X) → Br(K(X)) with image we can explicitly
describe; namely, we can describe them using residue maps.

88



3.5. APRIL 24 254B: RATIONAL POINTS

As such, for our purposes, we will be interested in R being a complete discrete valuation ring (in character-
istic 0) with residue field k, and we define K := FracR. We now recall that

BrK = H2(Gal(Ksep/K),Ksep×)

= H2(Gal(Kunr/K),Kunr×)
v→ H2(Gal(Kunr/K),Z)

← H1(Gal(Kunr/K),Q/Z)

∼= H1(Gal(ksep/k),Q/Z)

from class field theory that these are all isomorphisms. For example, the leftward arrow← is an isomor-
phism by staring at the exact sequence

0→ Z→ Q→ Q/Z→ 0,

where the point is that the divisible group Q is not going to have any cohomology. Now, in our set-up, it is
a theorem of Grothendieck that

0→ BrX → Br(K(X))→
⊕

x∈X(1)

H1(Gal(k(x)sep/k(x)),Q/Z), (3.1)

where X(1) means codimension 1. (In other words, we are summing over divisors.) To understand where
the right map is coming from, we note that any class in BrK(X) can restrict to the corresponding discrete
valuation ring in some small neighborhood, complete it, and run through the above set-up.2 Here are some
corollaries of this.

• We can more or less smooth over the Brauer group. Explicitly, for an open subschemeU ⊆ X such that
X \U has codimension at least 2, we have that the restriction map Br(X)→ Br(U) is an isomorphism.
Namely, our codimension-1 points do not change upon restriction to such a U .

• Azumaya algebras more or less glue together: if we have an element of BrK(X) which merely vanishes
locally in codimension 1, we know that it must arise from BrX.

3.5.2 Iskorskih’s Examples
We are now ready for our example. Define the Q-scheme U in P2 as cut out by the equation

y2 + z2 =
(
3− x2

) (
x2 − 2

)
,

and let j : U → X be a smooth projective model for this surface. (Namely, anyU is birational to a smooth pro-
jective surface, which is our desiredX.) For brevity, we setK := K(X), and we chooseA := H

(
3− x2,−1

)
to be the generalized quaternion algebra.

There are now many things to check. To begin, note that X is a conic bundle over P1. Namely, note that
there is a mapU → A1

x by projecting onto the x coordinate, and alsoU embeds into A1
x×A2

y,z in the obvious
way. To make X a conic bundle, we would like to write X ⊆ P2 as cut out by a degree-2 homogeneous
polynomial. As a bundle over P1, we are actually asking for an embedding X ↪→ PE where E is a vector
bundle over P1, and we want to “cut out” X by a section s ∈ Γ

(
P1,Sym2 E

)
. Now, we take

E := OP1︸︷︷︸
L0

⊕OP1︸︷︷︸
L1

⊕OP1(2)︸ ︷︷ ︸
L2

.

We now define s0 = 1 ∈ Γ
(
P1,L⊗2

0

)
and s1 = 1 ∈ Γ

(
P1,L⊗2

1

)
and s2 = −

(
3w2 − x2

) (
x2 − 2w2

)
∈

Γ
(
P1,OP1(4)

)
. In total, our section s will be given by s := s0 + s1 + s2. The point is that if we restrict to

the a�ne open chart given by z = 1, then X collapses down to U .
2 One should check that a given algebra A ∈ BrK(X) will have residue 0 at only finitely many codimension-1 points. This is a

little involved to check; the point is that anyA ∈ BrK(X) will extend in definition to a nonempty open set U , and any codimension-1
scheme intersecting U will have vanishing residue. Thus, we only need to be worried about the finitely many codimension-1 points
living inX \ U .
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3.6 April 26
We continue with Iskovskikh’s examples.

3.6.1 Iskovskikh’s Examples
For brevity, we today set F (x,w) :=

(
3w2 − x2

) (
x2 − 2w2

)
. Let’s be more explicit about our construction

from last class. Namely, to define s ∈ Γ
(
P1
x,w,Sym2 E

)
, it su�ces to define our section on the a�ne lines A1

x

and A1
w. Over A1

x×P2
y,z,v, we see that s becomes y2 + z2−F (x, 1)v2, where we are choosing global sections

y, z, and v to trivialize
E = OP1 ⊕OP1 ⊕OP1(2).

We note that U will thus embed into X|A1
x

. On the other side, we see that s = y2 + z2 − F (1, w)(v′)2 on
A1
w × P2

y,z,v′ by a similar argument.
We now run some checks.

• We must check that X is a smooth surface. This is a matter of writing everything out on the standard
a�ne open subschemes.

• The map π : X → P1
x,w has exactly four singular fibers. Indeed, fix some [α : β] ∈ P1

x,w. Then the fiber
we are looking at is cut out by

y2 + z2 − F (α, β)v2

in P2
y,z,v. If F (α, β) 6= 0, then we are defining a degree-2 curve rational curve in P2 given by y2 +

z2 − F (α, β)v2; we see that this is nonsingular (for example by checking a�ne-locally). However, if
F (α, β) = 0, then we are looking at y2 + z2 = 0 in P2

y,z,v, which we can see is not smooth because it is
the union of two lines intersecting at the origin.

• We have X (AQ) 6= ∅. Running the above construction with Z as our base scheme will produce a
scheme X over P1

Z. We claim that XFp has an R-point and a smooth point for each prime p, which by
Hensel’s lemma will produce a Zp-point for each p, thus giving an AQ-point.
Well, for p /∈ {2, 3}, we see that XFp → P1

Fp has a smooth fiber geometrically isomorphic to P1
Fp by the

above computation. However, the Brauer group of Fp vanishes, so because this fiber is geometrically
isomorphic to P1

Fp means that this fiber must be isomorphic to P1
Fp on the nose; namely, any Brauer–

Severi scheme over Fp must be P1
Fp .3

Continuing, for R, we note that our equation

y2 + z2 =
(
3− x2

) (
x2 − 2

)
,

so it su�ces to choose x for which 2 < x2 < 3.
For p = 2 and p = 3, one can find the necessary points by hand and check that they are smooth. For
p = 3, essentially the same argument as above will hold, but p = 2 needs some care.

• We would like to showX (AQ)
Br

= ∅, so we must construct some Azumaya algebras. SetK := K(X),
and let A be the quaternion algebra H

(
3− x2,−1

)
. In particular, as shown on the homework, taking

quaternion algebras produces a Z-bilinear antisymmetric map

K×

K×2
× K×

K×2

H→ H2
(
Gal(Ksep/K),Ksep×) .

As an aside, we pick up the following fact: if K(i)/K is a degree-2 extension, then we have isomor-
phisms

K×

N(K(i)×)
= Ĥ0(Gal(K(i)/K),K(i)×) ∼= H2(Gal(K(i)/K),K(i)×) ⊆ H2

(
Gal(Ksep/K),Ksep×) .

3 One could in theory write down the point explicitly, but it would probably require some casework.
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One can check, as done on the homework that the class a on the left goes to the quaternion algebra
H(a, 1) on the right.
With this in mind, we also write down

B := H
(
x2 − 2,−1

)
and C :=

(
3/x2 − 1,−1

)
.

Using bilinearity ofH, one can computeA+B =
(
y2 + z2,−1

)
, but y2 + z2 is a norm of y+ zi ∈ K(i),

so A+B = 0, so A = −B. Analogously, we note that C di�ers from A only by a square, so A = C.
Now, A will define an Azumaya algebra over all points VA in X except where 3− x2 has a zero or pole
in P1

x,w. Similarly, B defines an Azumaya algebra over all points VB except where x2 − 2 has zeroes or
poles, and C defines an Azumaya algebra over all points VC where 3/x2 − 1 has zeroes or poles. But
one can see that VA ∩VB ∩VC = ∅, soA suitably extends to all codimension-1 points (as either−B or
C), meaning that A will produce a bona fide algebra Azumaya algebra on X by (3.1).

3.7 April 28
Today we finish up with Iskovskikh’s examples. There will be make-up lectures on Wednesday and Friday
next week, at the same time and place.

3.7.1 Finishing Iskovskikh’s Examples
We want to show thatX(AQ)Br = ∅. We don’t have many tools for this: we have to just pick up some point
(xv)v ∈ X(AQ), for which we claim ∑

v∈VQ

invv x
∗
v[A] =

1

2

always, which produces our Brauer–Manin obstruction. Here, note that x∗v[A] sometimes might require
passing to a di�erent presentation ofA shouldA not actually be defined at this point. In particular, we must
deal with v on cases.

• We take p /∈ {2,∞}. Here, let α denote the x-coordinate of our point xp ∈ X(Qp). We have the
following cases on vp(α).

– If vp(α) < 0, then 3/α2 − 1 ∈ Z×p , so we work with [C] so that x∗p[A] = x∗p[C] can be represented
by H

(
3/α2 − 1,−1

)
, which lives in BrZp. However, one can show that the map

BrZp → BrFp

going down to the residue field is a bijection (we technically showed something like this over the
course of our discussion of class field theory), so we conclude that x∗p[A] = 0 because BrFp = 0.

– If vp(α) ≥ 0, then one of 3−α2 or α2−2 lives in Z×p . Indeed, certainly it each be in Zp, but the sum
of these two elements produces 1, so one must be a unit. As such, we still get to run the above
argument using either A or−B as necessary.

• We take p = ∞. Letting π : X → P1
x,w be our projection, we claim that π(x∞) 6= [1 : 0]. Indeed, this

would imply that we have

y2 + z2 =
(
3 · 02 − 12

) (
12 − 2 · 02

)
= −1 < 0,

which is impossible over Qp = R. In particular, we see 2 ≤ α2 ≤ 3 in order for the above equation to
have a solution. Thus, we see 3 − α2 > 0 or α2 − 2 > 0, so we can work with the class x∗∞A or x∞v B,
respectively, from which it follows that we again have the zero class because positive real numbers are
norms from C.

• Lastly, we take p = 2. As before, we have three cases.
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– If v2(α) > 0, then 3 − α2 ≡ −1 (mod 4), so 3 − α2 fails to be a norm from Q2(i) → Q2, so we
conclude that the quaternion class of x∗2A = H2

(
3− α2,−1

)
that fails to vanish in BrQ2.

– If v2(α) = 0, then α2 − 2 ≡ −1 (mod 4), so we can run the above argument with B.
– Lastly, if v2(α) < 0, then 3/x2 − 1 ≡ −1 (mod 4), so we can run the above argument with C.

In total, we conclude that ∑
v∈VQ

invv x
∗
v[A] 6= 0.

Namely, we can see that it should be 1/2 because it does double to 0, as we can see from the p = 2 case
(which is the only nonzero contribution).

Remark 3.38. The above example appears quite ad-hoc. Professor Olsson does not have a conceptual
explanation for what is going on.

3.7.2 Descent Obstructions
In general, fix a (say) proper K-variety X. What is going on with the Brauer–Manin obstruction is that a
point x ∈ X(Ω) for a field Ω produces pullback maps

H2(X,Gm)
x∗→ H2(Ω,Gm),

where the point is that we can say something more concrete aboutH2(Ω,Gm). The Brauer–Manin obstruc-
tion then tries to put some compatibility conditions on these pullbacks.

More generally, we may fix an algebraic K-group G. This becomes an étale sheaf on X by taking the
étale open set U → X to MorK(U,G).

Example 3.39. Taking G = GLn and U = SpecR, we see

MorK(U,G) = GLn(R).

Now, for our descent obstruction, we work with H1(X,G) and tell the above story.4 Let’s see an explicit
example: take G = Z/2Z, and let X be a curve. Here, H1(X,Z/2Z) corresponds to unramified 2-to-1 maps
of curvesD → X, and these have aZ/2Z-action by our double-cover. Now, given a point x ∈ X(Ω) for some
field Ω, we produce a pullback map

H1(X,Z/2Z)→ H1(Ω,Z/2Z) = Hom(Gal(Ωsep/Ω),Z/2Z),

where we now see hope because the target is nonzero. In particular, we can partition points inX(K) based
on what class they hit in the target, which is better because we can lift suchK-points up a point in the curve
D which is doing our covering.

3.8 May 3
Let’s discuss the descent obstruction.

3.8.1 The Descent Obstruction
As motivation, recall that the Brauer–Manin obstruction essentially took local points in X(AK), sent them
to
∏
v∈VK BrKv, and asked if they were in the image of BrK. The points that did in fact come from BrK are

4 We did not work withH1(X,Gm) earlier because theH2(Ω,Gm) all vanish.
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now points which might come from global points. Translating everything into cohomology, we are basically
computing the fiber product of the following square in set.

X(AK)α=0 X(AK)

H2(Gal(Ksep/K),Ksep×)
∏
v∈VK

H2(Gal(Ksep
v /Kv),K

sep×
v )

Most of this discussion works for general algebraic groups. Before continuing, let’s talk a little about alge-
braic groups.

Example 3.40. The group G = GLn is an algebraic group over a field k. Namely, it is an étale sheaf
because it is a scheme

GLn = Spec k[{xij}1≤i,j≤n]δ,

where δ ∈ k[{xij}1≤i,j≤n] is the determinant.

Example 3.41. The groupG = PGLn should be thought of as the quotient GLn/Gm, where the quotient
happens on the étale set. This turns out to be an a�ne scheme, given by

PGLn = (Spec k[{xij}1≤i,j≤n]δ)
Gm ,

where Gm acts by scalar multiplication.

Remark 3.42. It turns out that defining PGLnR by GLnR/GmR is not even an étale sheaf! Well, our
definition of PGLn is the sheafification of this presheaf, so looking at the exact sequence

1→ Gm → GLn → PGLn → 1,

it is enough to check if GLnR → PGLnR is always surjective. Well, it fails to be surjective at, for
example, R = OPGLn , which one can check directly.

Quickly, we recall that BrX = H2(Xet,Gm), which we discussed earlier. In particular, we can recover
H2(Xet,Gm) as the union of the images from H1(Xet,PGLn), so we might as well just look at PGLn and
examine the following pullback square

X(AK)α X(AK)

H1(K,PGLn)
∏
v∈VK

H1(Kv,PGLn)

where α is now some class in H1(X,PGLn). Taking intersections, we can now see an obstruction

X(AK)PGLn =
⋂
n≥0

⋂
α∈H1(X,PGLn)

X(AK)α.

It is a theorem that actuallyX(AK)PGLn = X(AK)Br, but the point of this discussion is that we could actually
swap PGLn with any reductive group G one pleases. So we define

X(AK)descent =
⋂
G

⋂
α∈H1(X,G)

X(AK)α,
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where the intersection of G is working over a�ne finite type group k-schemes. Notably, because we re-
marked X(AK)PGLn = X(AK)Br, we certainly have X(AK)descent ⊆ X(AK)Br, so we hope to have a better
invariant. Sadly, we are not out of the woods.

Theorem 3.43 (Poonen). There exist X such that

X(K) ( X(AK)descent ( X(AK)Br.

Remark 3.44. There is a conjectural program which provides an infinite sequence of obstructions to
characterize X(K).

3.8.2 Torsors

Let’s quickly recall our discussion of G-torsors. Here, X is a k-scheme, and G is an algebraic group over k.
Now, H1(X,G) was defined using étale cohomology, but one can also view this as isomorphism classes of
G-torsors, where we mod out by principal homogeneous spaces. Here is the definition of a torsor.

Definition 3.45 (torsor). Fix a k-scheme X and algebraic group G over k. Then a G-torsor is an étale
sheaf P on X with a G-action satisfying the following conditions.

• For any étale open set U of X and covering {Ui} of U , one has P (Ui) 6= ∅ for some Ui.

• If P (U) 6= ∅, then the action of G(U) on P (U) is simply transitive.

Example 3.46. Fix an exact sequence

1→ G→ G̃
π→ H → 1

of algebraic groups. Now, for fixed α ∈ Γ(X,H), the étale sheaf given by U 7→ {g ∈ G̃(U) : π(g) =
α|U} is a G-torsor. Indeed, one can adjust any element in here by some element in G(U) to satisfy the
condition.

Remark 3.47. Faithfully flat descent shows that any G-torsor is representable by a scheme.

And here is the definition of a principal homogeneous space.

Definition 3.48 (principal homogeneous space). A principal homogeneous space is anX-schemeS with
a G-action GX ×X S → S which is isomorphic to GX locally on the étale site.

Now, for α ∈ H1(X,G), we observe that we can decompose

X(K) =
⊔

γ∈H1(K,G)

{x ∈ X(K) : x∗α = γ}.

In some sense, we have “stratified” H1(X,G).
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Example 3.49. Suppose that α ∈ H1(X,G) arises from theX-scheme S with structure map q : S → X.
Then we see

{x ∈ X(K) : x∗α = ∗} = q(S(K)),

where ∗ is the trivial class in H1(X,G). Indeed, for x ∈ X(K), we draw the following square.

Sx S

x X

Now, α = ∗ is trivial if and only if we can trivialize Sx, which amounts to finding a K-point in Sx, so
these are equivalent data to finding an element in q(S(K)).

3.9 May 3
We continue with the descent obstruction.

3.9.1 Twisting a Torsor
Throughout, K is a field, and X is a smooth projective K-variety. Fix a G-torsor P ; explicitly, P is an X-
scheme equipped with a G-action which étale locally looks like PU ∼= G×k U for étale open sets U → X.

We want to twist one torsor by another. Namely, consider AutG(P ), which is the étale sheaf onX send-
ing the étale open set U → X to the automorphisms PU → U compatible with the G-action.

Example 3.50. One has AutG(GX) ∼= GX by sending g ∈ GX to the right-multiplication mapGX → GX
given by h 7→ hg.

However, this isomorphism depends on a choice of isomorphism σ : P → GX . If we letϕσ : AutG(P )→ GX
be the corresponding isomorphism given by the above example, then we note that a di�erent choice of
isomorphism σ′ : P → GX will have

σ′ = rg0 ◦ σ

because σ′ ◦ σ−1 is an automorphism of GX . From here, one can compute ϕσ′ = g0 ◦ ϕσ ◦ g−1
0 .

This problem propagates with torsors. Namely, with anyG-torsorP , it will étale locally look like a bunch
of P |Ui ∼= GUi , but the choices of these isomorphisms being non-canonical (as above) means that we want
AutG P to be a twisted form GP of GX on the étale open sets. In fact, tracking everything through, we are
essentially describing a 1-cocycle in the inner automorphisms of G.

From last time, we recall that a given G-torsor P corresponding to a class α ∈ H1(X,G) can be decom-
posed into

X(K) =
⊔

γ∈H1(K,G)

{x ∈ X(K) : x∗α = γ}.

For our construction, we take our G-torsor P and some ζ ∈ H1(K,G) corresponding to the G-torsor Q on
SpecK and then define

Q ∧G P := (Q×k P )/G

where our G-action is defined by g ∗ (q, p) =
(
g−1q, gp

)
. Notably, this locally looks like G × G modded out

by the relation (gh, h′) = (h, gh′), which is just G, so we in fact have a GP -torsor.

Remark 3.51. One can check that P ∧G P is trivial if and only if QX ∼= P .
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The point of this discussion is that we may define P ζ := Q ∧G P with canonical map πζ : P ζ → X. As such,
we now note that x ∈ X(K) has xP = ζ if and only if x∗P ζ is trivial, which we can see is equivalent to x∗P ζ
having a K-point, which is lastly equivalent to x ∈ πζ(P ζ(K)). So we have achieved

X(K) =
⊔

γ∈H1(K,G)

πγ(P γ(K)).

The game, now, is to try to understand K-points of X by trying to understand the Ps instead.

3.9.2 An Example
We will try to find rational solutions to y2 =

(
x2 + 1

) (
x4 + 1

)
. To make this compact, we set

X := Proj
K[x, y, z]

(y2 − (x2 + z2) (x4 + z4))
,

where we are living inside weighted projective space.
The goal is to tile ourselves by elliptic curves. Set G = Z/2Z, and we will look for G-torsors. For this,

we note there is a map P → X given as P ⊆ A3
x,y,w cut out by the equations y2 =

(
x2 + 1

) (
x4 + 1

)
and

w2 = x4 + 1, which we note is a G-torsor via the action of w 7→ −w. To understand the twists, we note that
we are looking at

H1(Q,Z/2Z) = Hom(Gal(Q/Q),Z/2Z),

and such a homomorphism will correspond to a quadratic extension Q(
√
c) of Q. As such, we can compute

our twist as P c cut out by the equations y2 =
(
x2 + 1

) (
x4 + 1

)
and cw2 = x4 + 1.

It turns out that some c will produce elliptic curves. For example, P 1 is isomorphic to the elliptic curve
y2 = x3 − x, and P 2 is isomorphic to the elliptic curve y2 = x3 − 4x. It turns out that π1 : P 1 → X and
π2 : P 2 → X will cover X(Q), so we can solve the elliptic curves to finish. In total, each elliptic curve gives 4
points, so we achieve

U(Q) = {(0, 1), (0,−1), (1, 2), (1,−2), (−1,−2), (−1, 2)},

as achieved. (We lost a few points due to points at infinity.)

3.9.3 The State of the Art
Fix a number field K. Then we set

X(AK)ét,Br :=
⊔

twisted finite groups G/K

⊔
P∈H1(X,G)

P (AK)Br

as a subset ofX(AK); namely, for each of the P ∈ H1(X,G) from the descent obstruction, we can apply the
Brauer–Manin obstruction.

Theorem 3.52 (Poonen). Fix a number field K. Then X(AK)ét,Br is not equal to X(K) in general.
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étale algebra, 82
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Azumaya algebra, 87
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