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THEME 1
QUADRATIC FORMS

1.1

| guess I'll start with math.

—Martin Olsson

January 18

Here we go.

1.1.1 House-Keeping

This is a second semester of algebraic number theory, but we are not really learning algebraic number the-
ory. Instead, we will focus on rational points on varieties. Some notes.

There is a bCourses, which has the syllabus.

Ideally, we will require a graduate-level first course in algebraic number theory. Notably, we will not
assume class field theory. We will also require algebraic geometry, at the level of chapter Il of [Har77].
Roughly speaking, the first half of the course will focus on algebraic number theory, and the second
half will certainly use scheme theory.

It might be helpful to know about cohomology in advance. We will need group cohomology to begin
and more general derived functors later.

Homework will be assigned about every two weeks. Don't stress too much about it. However, there
will be no homework drops.

There will be a term paper, about 10 pages. The idea is to pick a topic you like and then talk about it.
Grades will be fine as long as you don’t completely vanish.

If you are sick, do not come to class.

1.1.2 Course Overview

Here are the topics for the class.


https://bcourses.berkeley.edu/courses/1521007
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Quadratic Forms

We will begin with quadratic forms, which are essentially genus-0 curves. Explicitly, we are asking the fol-
lowing question.

Question 1.1. Fix a field K and a quadratic form Q € K]z, ...,z,], which is a homogeneous polyno-
mial of degree 2; we are interested if @ has nontrivial zeroes. In other words, we want to know if the
projective variety V(@) C P} has a K-point.

Example 1.2.Set K = Qand Q = 2% + 27 + 23. Then Q has no nontrivial zeroes. Indeed, it has no
nontrivial zeroes over R, and Q C R.

Remark 1.3. We are describing these quadratic forms as “genus-0 curves” because the variety V(Q) is
isomorphic to P over K.

We will approach Question 1.1 from the perspective of the local-to-global principle. Indeed, we will show
the following.

Theorem 1.4. Let @ be a quadratic form over a number field K. Then V(Q) has a K-point if and only if
V(Q) has a K, point for all places v of K.

The above result Theorem 1.4 is very special to quadratic forms, and the analogous statement fails for, say,
elliptic curves.

The reason we are interested in quadratic forms is that these computations lead naturally to class field
theory.

Example 1.5. Fix a number field K, and let Q = 22 — ax? be a quadratic form, where a € K*. Roughly
speaking, Theorem 1.4 now asserts that a € K is a square if and only if a is a square in each localization
K, which is tied to the Hasse norm theorem.

Here are some references.

» Serre’'s [Ser12]is good, though Serre avoids class field theory by focusing on K = Q. We will not want
to avoid these ideas, however, because we want to see a need for cohomology.

« Milne's [Mil20] is good, though we will of course not do all of it.
» Lam also has a book [LamO05] on quadratic forms.

References for this portion of the course include

Elliptic Curves

After discussing genus-0 curves, we will say something about elliptic curves. The goal is to prove the fol-
lowing result, which is the Mordell-Weil theorem.

Theorem 1.6. Let E be an elliptic curve over a number field K. Then E(K) is a finitely generated abelian
group.

Here are some references.

« Silverman'’s [Sil09] is the standard resource, but it avoids algebraic geometry.

We might also spend a lecture saying words about higher-dimensional abelian varieties, but it is a lot harder.

6
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Brauer—Manin Obstructions

These refer to special obstructions to the local-to-global principle, as seen in Theorem 1.4. Poonen has a
reasonable text on this. All of this is already potentially too much, so we will stop here.

1.1.3 Quadratic Forms
Let's do some math. For most of our discussion here, we fix K to be a field with char K # 2.

Definition 1.7 (quadratic form). Fix a field K with char K # 2. Then a quadratic form @ on a finite-
dimensional K -vector space Visamap Q: V — K satisfying the following conditions.

« Quadratic: Q(av) = a?Q(v) foralla € K andv € V.

« Bilinear: the function B: V? — K defined by B(v, w) = $(Q(v+w) — Q(v) — Q(w)) is K-bilinear.
Note B is symmetric automatically.

Remark 1.8. One can view the quadratic form @ as cutting out a projective variety in PV.

Remark 1.9. Given a quadratic form @ on V giving the bilinear form B, we note

B(v,v) = 5(Q(20) ~ 20(v)) = Qv),

so we can recover the quadratic form from the bilinear form. This establishes a bijection between
quadratic forms and bilinear forms.

We now associate a special symmetric matrix B* to a bilinear form B: V x V — K. Abilinear form B: V2 —
K givesamap B: V®g V — K, which givesa map B*: V — V" by the tensor—hom adjunction. (Explicitly,
B*: v+ B(v,-).) Giving V abasis {¢;}_, and V'V the dual basis {e; }!_,, we may represent B* as the matrix
A = (a;;)1<i,j<n. Explicitly, we see

Bei,-) = B*(e:) = Y ayey,

so B(e;,ej) = a;; = e] B*ej. As such, we see that a;; = a;; because B is symmetric, so B* is symmetric.
More generally, for vectorsv = 3, z;e; and w = 3 yje;, we see

B(v,w) = Z inij(ei, ej) = Z Z(mieiT)B*(yjej) =0T B*w,
i=1 j=1

i=1 j=1
and so
n n
Q) = B(v,v) =vTB*v = Z Zaijxixj.
i=1 j=1
This justifies us viewing @) as being a homogeneous polynomial of degree 2.
Definition 1.10 (non-degenerate). A quadratic form @ on a finite-dimensional K -vector space V' is non-

degenerate if and only if the induced bilinear form B: V ® x V' — K induces an isomorphism B*: V —
VY.

Remark 1.11. Because dimV = dim V'V, we see @ is non-degenerate if and only if B*: V. — V'V is
injective, which is equivalent to asserting B(v,-): V' — K is the zero map if and only if v = 0.
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Given our quadratic form @ on K, we note there is a map

/n\V det B* /n\v\/ _ (/n\v>v

of 1-dimensional K -vector spaces, where n = dim V. Equivalently, we get a map
n ®2
(/\ V) —- K,

which is still of 1-dimensional vector spaces and is essentially given by B*. This morphism produces an
element of K, but we can visually see that adjusting the basis of V" adjusts this constant by a square in K.

More directly, letting {e;}}_; be a new basis of V/, we can compute the new matrix by computing B(e;, €’).
Lete, = Zk:l sik€) SO that S (8i5)1<i,j<n is the change-of-basis matrix. Then

n o n n o n
1; j § § SszJZB ezaej § E Sikaijsjf— S AS)1]7

k=1+¢=1 k=1 /=1

so STAS is our new matrix, meaning we have adjusted or determinant by the square (det S)2.
So here is our definition.

Definition 1.12 (discriminant). Fix a quadratic form @Q on a finite-dimensional K -vector space. Then the
discriminant is det B* € K/ (K*?), where B*: V' — V" is the associated linear transformation. Note
that Q is non-degenerate if and only if disc @ # {0}.

The goal of this part of the course is the following result, which we will write down more precisely.

Theorem 1.13 (Hasse—Minkowski). Let K be a number field, and let @ be a quadratic form on the K-
vector space V. Then @ has a nontrivial zero in V' if and only if @ has a nontrivial zero in V @ ¢ K,, for all
places v of K.

We are going to black-box a few cohomological tools in the course of proving Theorem 1.13. Later we will
go back and prove them.

1.2 January 20

We continue. Today we move towards a proof of Theorem 1.13.

1.2.1 Orthogonal Basis

We established a lot of notation last class, so we pick up the following notation.

Definition 1.14 (quadratic space). Fix a field K of characteristic not 2. Then a quadratic space s a triple
(V,Q, B), where Q) is a quadratic form on the finite-dimensional K -vector space V, and B is the corre-
sponding bilinear form. We say that the space (V, Q, B) is non-degenerate if Q is.

Bilinear forms tend to behave with special bases.

Definition 1.15 (orthogonal). Fix a field K and a quadratic space (V, @, B). Then v and w are orthogonal
if and only if B(v,w) = 0.

Here's why we care.
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Lemma 1.16. Fix a field K of characteristic not 2. Then a quadratic space (V, @, B) admits a basis of
orthogonal vectors.

Proof. Weinductondim V. If @ = 0 (for example, if diim V = 0), then B(v,w) = (Q(v+w)—Q(v)—Q(w)) =
0 forallv,w € V, so any basis will work.

Otherwise, @ # 0. It follows that Q(e;) # 0 for some fixed e; € V. To induct downwards, we let H
denote the kernel of the map B(ey,-): V — K, which is surjective because B(ey,e1) # 0. As such, we can
decompose

V<L Ke oH,
which is a direct sum as vector spaces. Indeed, forany v € V, we can write v = {e1,v)e; + (v — (e1,v)e1) so
that (e1,v)e; € Key while (v—(ey,v)e;) € H. Becausedim H = dim V—dim K = dim V —1and dim Ke; = 1,
we conclude that this must in fact be a direct sum.

We now apply the inductive hypothesis to H to finish. Indeed, dim H < dim V' grants us an orthogonal
basis {eq,...,e,} spanning H, where n := dimV. Thus, {e1,...,e,} spans V and is a basis, and we see
(ei,ej) = 0foranyi < j because eitheri = 1 and e; € H or by construction of the e; if 7, j > 2. [ ]

Remark 1.17. Note that when @ is given an orthogonal basis {e;}?_;, we get to compute that v =
Zi Tie; yIEldS

Q) = B(v,v) = ZZziij(:ci,:cj) = Zaimf,
i=1

i=1 j=1

where a; := B(e;, ¢;). The point is that we only need to look at quadratic forms lacking cross terms.

1.2.2 Small Dimensions

We are going to induct on dimension to show Theorem 1.13, so we pick up a few lemmas.

Definition 1.18 (represents). Fix a quadratic space (V, Q, B) over a field K not of characteristic 2. Then
we say Q) represents ¢ € K if and only if there is a nonzero v € V such that Q(v) = c.

The following lemma explains why we've been focusing on representing 0 thus far (e.g., in the statement of
Theorem 1.13).

Lemma 1.19. Fix a non-degenerate quadratic space (V, Q, B) over a field K not of characteristic 2. If Q
represents 0, then @ represents cforallc € K.

Proof. To begin, foranyt € K andv,w € V, we compute
Q(tv +w) — 2Q(v) — Q(w) = Q(tv + w) — Q(tv) — Q(w) = 2B(tv, w) = 2tB(v, w),

SO
Q(tv +w) = *Q(v) + 2t B(v,w) + Q(v).

Now, because @ represents 0, we may find v # 0 such that Q(v) = 0. Further, because @ is non-degenerate,
we see thatv # Orequiresw € V suchthat B(v,w) # 0by Remark 1.11. Settinga := 2B(v,w) and § = Q(w),
we see

Qtv +w) = at + B,

where « # 0, so letting t vary completes the proof. Indeed, forany ¢ € K, sett = (¢ — ) /a. |

The following lemma will be useful in our induction on variables.

9
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Lemma 1.20. Fix a non-degenerate quadratic space (V, Q, B) over afield K not of characteristic 2. Then
Q represents ¢ € K ifand only if R := ) — cy? represents 0, where R is on a vector space of dimension
one larger.

Proof. Inonedirection, if Q(z1,...,2,) = cforsome (z1,...,z,) # 0,then R(x1,...,2,,1) = c—c = 0with

(.131,...,.’1}7“1) 7&0'
In the other direction, suppose R(z1,...,2n,y) = 0for (z1,...,2,,y) # 0. Note Q(z1, ..., 7,) = cy?, so
we have two cases.

o Ify #0,thenwesee Q(z1/y,...,z,/y) = c.
» Ify =0, then we see Q(z1,...,z,) =0, but (z1,...,2,) # 0, so Lemma 1.19 finishes. [ |

Here is a more basic lemma to deal with small dimensions.

Lemma 1.21. Fix a field K not of characteristic 2. Fix nonzero a,b,c € K.
(@) @ = 2?2 does not represent 0.
(b) @ = 22 — ay?® represents 0 if and only if a is a square.
() Q@ = 2% — ay® — bz% represents 0 if and only if b is in the image of the norm map N: K(y/a) — K.

(d) Q = x®—by? —cz®+acw? represents 0 if and only if ¢is in the image of the norm map K ( /a, vb) —
K(Vab).

Note that part (d) really requires expanding our field K in a nontrivial way. In particular, even if one only
cared about Q, phrasing part (d) without extending from Q would require some obfuscation.

Proof. Here we go.
(a) Notez? = 0impliesz = 0.

(b) Applying Lemma 1.20 to (a), we see that Q represents 0 if and only if Q, := z? represents a. (Note Q,
is non-degenerate: it has discriminant 1.)

(c) Ifaisasquare, then @ represents 0 (take (z,y, 2) = (1/a, 1,0)), and bis indeed in the image of the norm
map K — K.

Otherwise, a # 0 is not a square, so 22 — ay? is a non-degenerate quadratic form. By Lemma 1.20 we
see () represents 0 if and only if 22 — ay? represents b, or

b= (z - yya)(x + yv/a) = NV (z 4+ y/a)

for some z,y € K, which is equivalentto b € im Nﬁ(‘/&).

(d) Thisis a bit complicated. We will work towards having the following tower of fields.

K(Va, vb)

T

K(v/a) K (v/ab) K(V)

K

We quickly deal with degenerate cases.

10
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« If ais a square, recall a # 0, so Q represents 0 by (z,y, z,w) = (0,0,1,1/y/a). Further, we see
K (v/a,Vb) = K(vab) because a # 0, so cis of course in the image of the norm map.

« If bis a square, Q represents 0 by (z,y, z,w) = (v/b,1,0,0). Further, K(y/a,vb) = K(v/ab) be-
cause b # 0, so cis again in the image of the norm map.

« If abis a square but neither nor a nor b are squares, then we see that \/a = vVab/v/b, so K (\/a) =

K(vb). Thus, cis in the image of the norm map K (v/a,vb) — K(V/ab) if and only if c is in the
image of the norm map K (vb) — K.
If cis in the image of the norm map, then 0 = 22 — by? — ¢ - 12 + ac - 0> for some z,y € K, s0 Q
represents 0. Conversely, if Q represents 0 by (z,y, z,w) # 0, then we note 22 — aw? = 0 forces
2z =w = 0 by (b) and so z? — by? = 0, which forces = y = 0 by (b) again. Thus, 22 — aw? # 0, so
we can solve

22 — by? B Ng(\/g)(x—i-b\/gj)

et NEYOe twva)

so cis in the image of the map Ng(‘/&) = Ng(\/g

z

) because this function is multiplicative.

Lastly, we must deal with the case where all the quadratic fields in (1.1) are not K. Quickly, we note
that K (\/a) # K(/b) in this situation. Indeed, if y/a € K(v/b), then we can write \/a = = 4 y/b for
some z,y € K. Applying the Galois action of K(y/a) = K (v/b), we then see

—\/Zl:l'—y\/g,

soz = 0, and we get /a = yv/b for somey € K. Thus, vab = yb, implying K(vab) = K, which
degenerates this case.
It follows K (v/a) N K(v/b) = K in our case, so K(v/a,vb)/K is in fact a biquadratic extension in our

case. Arguing exactly as in the last degenerate case above, we note that @ represents 0 by (z, y, 2z, w) #
0if and only if

{EQ—byQ _ Ng(\/g)(ac—&-y\/g)
ST CoTe)

z

which is equivalent to ¢ = Ng(‘/&) (o) - Nf(ﬁ)(ﬂ) for some a € K(y/a) and 8 € K(vb). We would

like this last condition to be equivalentto ¢ € Ng(\/a,\/a). Thus, to finish the proof, we outsource to a
lemma (Lemma 1.23) we will prove next class. [ ]

Remark 1.22. Lemma 1.21 provides the connection to norms, which have a connection to cohomology.
So we can see that, indeed, we will be able to use cohomological tools shortly.

1.3 January 20

Last time we were in the middle of showing Lemma 1.21, so we continue where we left off.
1.3.1 Hilbert’'s Theorem 90
Here is the desired lemma.
Lemma 1.23. Fix a field K not of characteristic not 2. Find a,b € K such that [K( /a,v/b) : K| = 4. Then

¢ € K* isin the image of the norm map N: K (v/a,vb) — K (v/ab) if and only if there exist = € K(y/a)
and y € K(v/b) such that

11
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Proof of backward direction. Observe that we are still dealing with the tower of fields in (1.1). Now, note
Gal(K (va,Vb)/K) = {1,0,7,07},

whereo: \/a— aando: vb— —vband 7: va s —/aand 7: Vb — Vb. (Notably, Gal(K (v/a)/K) = (1)
and Gal(K (vb)/K) = (¢).) We now want the following to be equivalent.
(a) Therearez,y € K(y/a,Vb) suchthat (¢ — 1)z = (1 — 1)y = 0and zy - o7(xy) = c.

Indeed, (0 — 1)z = 0 means = € K(+/a), and similarly for y € K(v/b), so this statement is equivalent
toc = NEVD () . NEVD () for 2 € K (/) and y € K (V).

(b) Thereis z € K(v/a,Vb) suchthat z - o7(2) = c.

Indeed, note o7 (v/ab) = Vab, so Gal(K (v/ab)/K) = {1,07}. Thus, this is equivalent to ¢ being in the
image of the norm map N: K (v/a, vb) — K (v ab).

By setting z := xy, we thus see that (a) implies (b), so the hard part is showing the reverse direction.
Showing (b) implies (a) is somewhat harder. Assume (b), and observe that z-o(2) = Nﬁéﬁ;ﬁ)(z) is fixed
by o and hence in K (/a). Further, we may compute

Ng(ﬁ)(z co(2)) = Ng(ﬁ’ﬁ)(z) =z-0(2) -7(2) 0o7(2)

is an element of K. Now, we see z - 07(z) = cis an element of K, so o(z) - 7(z) € K as well. Thus, hitting
this with o, we see

o(z) 1(z) =0(0(2) - 7(2)) =2 -07(2) = ¢

also, so we conclude o(2) - 7(z) = ¢, soinfact z - 0(z)/c € K(y/a) is an element of norm 1. We now appeal
to Hilbert's theorem 90.

Theorem 1.24 (Hilbert 90). Fix a cyclic extension of fields L/ K with Galois group Gal(L/K) = (o). If
t € L has N% (t) = 1, then there exists o € L such that t = ¢(a)/cv.

Remark 1.25. Of course, any element of the form o(«)/a will have norm 1 by some telescoping.

We will show Theorem 1.24 via group cohomology later, but we will use it freely for now. Pick up the
promised z € K(/a) such that

Note we have used the definition of z at =. Thus, y € K(1/b), so to finish the proof, we check
xy - ot(xy) = o7(2) - (07)%(2) = 2 07(2) = ¢,
so we are done. [ |

Roughly speaking, the hard direction of the above proof uses Theorem 1.24 to construct our « and 3, and
then everything else is more or less a computation.

12
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1.3.2 Hasse—-Minkowski

We are now ready to prove Theorem 1.13, modulo some more appeals to group cohomology. Here is the
statement.

Theorem 1.13 (Hasse—Minkowski). Let K be a number field, and let ) be a quadratic form on the K-
vector space V. Then @ has a nontrivial zero in V if and only if Q has a nontrivial zero in V ® x K, for all
places v of K.

Proof. By adjusting the basis of V as in Remark 1.17, we may assume that Q = a12% + --- + a,22. Addi-
tionally, if any of the variables are 0, say a; = 0, then (1,0,0,...,0) is a nontrivial zero for both V" and each
V @k K,, so there is nothing to say. As such, we normalize @ so that a; = 1.

We now induct on n. Here are our small cases. If n = 1, then there are never any zeroes at all by
Lemma 1.21. For n = 2, we are studying Q = z? + a2, so we are done by Lemma 1.21 by appealing
to the following result, which we will prove later.

Theorem 1.26. Fix a number field K. Then oo € K* is a square if and only if « is a square in each K, for
all places v.

Forn = 3 and n = 4, we are again done by Lemma 1.21 upon appealing to the following result.

Theorem 1.27 (Hasse norm). Fix a cyclic extension L/ K of number fields. Givena € K*, thenaisinthe
image of the norm L — K ifand only if a isin a norm in K, for all places v.

Roughly speaking, Lemma 1.21 turns statements about quadratic forms into statements about norms, so
we get a local-to-global principle via Theorem 1.27’s local-to-global principle.
We are now almost ready for the inductive step. We make a few starting comments.

» A quadratic form of the form Q1 (z1, ..., 2m) — Q2(y1, - - . , yn) Will represent 0 if and only if there exists
some c represented by both @, and Q». There isn’t really anything to say here.

« If Q represents some c € K*, then Q represents the entire equivalence class of cin K* /K *2. Indeed,
this is because Q) is a quadratic form and thus homogeneous of degree 2.

« For each place v, we have K *? is an open subgroup of K. Indeed, for archimedean v, this reduces to
saying R-g € R* isopen, and C* = C* is open.

We can argue for nonarchimedean places v explicitly, but we can give a more abstract argument via
Hensel's lemma. Indeed, it suffices to provide a neighborhood of 1 in K¢ (because K¢ is a topological
group), so we choose

U:={a: |127a|v <|2-12}.
Notably, for each a € U, we see 1 witnesses the ability to solving 22 — a = 0 in K, by Hensel's lemma.
We now proceed with our induction. Assume n > 5. We may write
Q(x1,...,7,) = ax? +bas — R(xs,...,Tn),

for some quadratic form Rinn — 2 variables. To continue, we give another statement which comes from the
Hasse norm theorem.

Theorem 1.28 (Hasse norm). Fix a cyclic extension L/K of number fields, and let @ be a quadratic form

inn > 3 variables. For each a € K*, then there is a finite set of places S such that @ represents 0 in K,
foreachv ¢ S.

13
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Proof. We give a proof from algebraic geometry. Take K = Q for simplicity. For simplicity, take Q =
ax® 4+ by + cz°, and note V(Q) C P is a genus-0 curve. For all but finitely many primes p, we see v, (a) =
vp(b) = v,(c) = 0, so we can base-change V(Q) to Z, and then F,, where V(Q) remains a genus-0 curve.
However, a genus-0 curve always has a point over a finite field, and then smoothness of V(@) allows us to
lift the IF,,-point back to a Z,-point by Hensel’s lemma. |

So by Theorem 1.28, there are finitely many places S for which R does not represent 0.
Now, suppose that @ has a nontrivial 0 in each V ®x K, and we must show that @ has a nontrivial 0 in
V. We can deal with each v ¢ S because R represents everything by Lemma 1.19. Thus, focusing on some
v ¢ S, we see @ having a nontrivial zero in V @ ¢ K,, implies that there is some ¢, € K, represented by both
az? + bx3, so write
aaiv + ba%ﬂv =y, = R(agp, .- sanw).

By approximating, we choose «; € K arbitrarily close to each a; ,, in K, so that ¢ = aa? + ba3 differs from ¢,
only be a squareinv € S. This is possible because K *? is open in K. Note that R still represents cin each
K, forv € S because cis only a square away from c,,.
Thus, we see that the form
cY? — R(zs,...,7,)

will represent 0 in each K, for all v. But this form has n — 1 variables, so our induction kicks in and tells usu
that cY? — Rrepresents 0 in K, so Rrepresents cin K, so Q represents 0in K. This completes the proof. W

Remark 1.29. Professor Olsson thinks that the last part of this argument is a little too clever.

1.4 January25

Last class, we were in the middle of proving Theorem 1.13. | have edited directly into that proof for continuity
reasons.

1.4.1 Introducing G-modules

We would like to fill in the boxes in the proof of Theorem 1.13, so we introduce a little group cohomology.
Fix a group G.

Definition 1.30 (G-module). A G-module is an abelian group M equipped with a G-action. In other
words, a G-module is a (left) Z|G]-module. We will write the category of G-modules by Mod.

Warning 1.31. If G is not abelian, then Z[G] is not abelian, so we are not doing commutative algebra.

Recall that Z[G] is the free abelian group on G as letters, where multiplication is given by
( Z agQ) ( Z bhh> = Z Z agbn(gh).
9eq hed@ 9€G heG

In other words, we extend the multiplication g - h = gh linearly.

Example 1.32. Let G = (o) be a finite group of order n. Then we see Z[z]/ (2™ — 1) = Z|G] by sending
x +— o. Indeed, this certainly defines a homomorphism between these rings because ¢™ — 1 = 0, and it
is certainly surjective. Lastly, it is injective: p(z) € Z[z] vanishes under this map if and only if p(o) = 0.
By takingp (mod z™—1), we may assume that p = 0 ordegp < n, but then p(c) will only vanishif p = 0.

14
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Note that the following are equivalent to M being a G-module.
» M is a Z|G]-module.
+ There is a homomorphism Z[G] — End(M).

» By hitting this with the free-forgetful adjunction, this is equivalent to having a morphism G — Aut(M).
We are going to automorphisms because elements of G are invertible, so theirimage in End(M) needs
to also be invertible.

« Thereisanaction-: G x M — M satisfying the following conditions for g, ¢’ € G and m,m’ € M.
- €e-m=m.
- (g+g)m+m')=gm+gm' +g'm+g'm'.
= (gh) -m = g(h-m).
Here are some examples.

Example 1.33. Let G = (o) be a finite group of order n. By Example 1.32, a G-module is a module over
Zlx])/ (2™ —1).

Example 1.34. For any group G, the abelian group Z can be given a “trivial” G-action by g - k := k for all
g€ Gandk e Z.

In the future, when we write down Z, we mean Z with the trivial G-action.

1.4.2 Some Functors

Cohomology is interested in deriving the invariant functor (—)%: Modg — Ab which sends a G-module M
to
MY :={meM:g-m=mforallg € G}.

Alternatively, M¢ ~ Homgq|(Z, M). Indeed, a map ¢: Homyg)(Z, M) means that we are choosing an
element ¢(1) € M, and making this a G-module morphism requires
g-m=g-0(1)=¢(g-1) =¢1) =m

forallg € G. Thus, we see that (—)“ is functorial automatically because Homg(Z, —) is.
There is also a notion of co-invariants, denoted (—)s: Modg — Ab by

Mg == M/IgM,

where I C Z[G] is the submodule of elements of degree 0. Equivalently, Mg = Z ®zj) M, so we see that
this construction is functorial.
Here are some preliminary observations.

« The functor (—)¢ is left-exact. This holds because (—)¢ ~ Homgq(Z, —), and the Hom functor is
left-exact.

« The functor (—)¢ is right-exact. This holds because (—)c ~ Z®z;s) —, and the ® functor is right-exact.

« For any element 2 € Z[G], multiplication by x defines a morphism of abelian groups «: M — M for
any G-module M. For example, if G is a finite group, define N == > 9. Wenote Ng: M — M

actually defines a map M — M©: indeed, forany m € M and g € G, we see
g-Ng(m):g~th: Zghm: th
hea hea heG

by re-indexing our sum. In fact, we note that I M is in the kernel of this map because Ng((9—1)m) = 0
forall g € G, and the elements (g — 1)m generate I M.

15
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In light of the last observation, we note that we have a natural transformation
Na: (5)a = (-)°.

One can check naturality by hand, but we won't bother. Using the first two observations, we see we want
to derive our left-exact functor to the right (which will give group cohomology), and we want to derive our
right-exact functor to the left (which will give group homology). In particular, we will take

H'(G,~) =Exth(Z,~) and  Hy(G,—)=Tor;(z,-),

which defines group cohomology and group homology. It turns out that the norm map will connect these

together to create Tate cohomology.

Remark 1.35. In practice, one can compute H*(G, M) and H,(G, M) by taking some Z[G]-projective
resolution
o= PP P —7Z—0

of Z. Then Hi(G, M) = Hi(Hom®(P,, M)) and H;(G, M) = Hi(P\ @yzc) M).

1.5 January 27

Today, we continue talking around group cohomology.

1.5.1 Tate Cohomology

It will be convenient to connect group cohomology and group cohomology. Take G to be a finite group. Fix
some projective resolution P, of Z. Then we have exact sequences

P M—>P M —FPM— Mg—0

and
0 — MY — Hom(Py, M) — Hom(P;, M) — Hom(Py, M) — --- .

But with G finite, we have a norm map Ng: Mg — MY, so we can splice these together to give one long
sequence

"'PQ@M*)Pl®M‘)P0®M*>HOH12(P0,M)*)Homz(Pl,M)%Homz(PQ,M)*)"’,

where the map Py ® M — Homg (P, M) is givenby Py® M — Mg — MY — Homg (P, M). We now define
Tate cohomology is the cohomology of this complex, where degree-0is at Homy (P, M). Explicitly, we have
the following.

Definition 1.36 (Tate cohomology). Fix a finite group G. Given a G-module M, we define the Tate co-
homology as follows, for some i € Z.

HY(G,M) ifi>1,
ﬁZ(G M) . H,ifl(G7M) if1 < =2,
’ " ) ker Ng ifi = —1,

MG /Ng(Mg) ifi=0,

where Ng is the norm map Ng: Mg — MC.

Let's see the computations at i = —1 and i = 0 more explicitly.

16
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e Ati = —1, we are computing
ker(Py ® M — Mg — M%)
im(P, @ M — Py® M)
However, theimage P, @ M — Py ® M is exactly the kernel of the surjection Py ® M — Mg, so we are
just computing the kernel along Mg — M. Indeed, letting I denote theimageof P, ® M — Py ®@ M,
we get a morphism of exact sequences as follows.

0—— 1 — PBhbOM —— Mg —— 0

[ L e

0 —— 0 — M€ MG —— 0

Taking kernels, the snake lemma grants us an exact sequence
0— I —ker(Po®@M — M%) — ker(Mg — M%) — 0,
so the claim follows.

» Ati =0, the computation is similar.

Remark 1.37. We can now see how norms might be important in the future.

1.5.2 Cohomology of Cyclic Groups

In this subsection, let G = (o) be a cyclic group of order n. We saw in Example 1.32 that

so for example Z[G] is commutative. In our case, we can right down a particularly nice (augmented) free
resolution of Z as
o zl6) Szl D zla) S Z[6) - Z — o,

where Z[G] — Z is the usual augmentation map and 7' := (¢ — 1) and N := Ng. Indeed, let's see that this is
exact.

» Note Z|G] — Zis of course surjective, so we are exact at Z.

» Next, we see that the kernel of the map Z[G] — Z consists of the terms of degree 0, which are Z-
generated by elements of the form (¢ — ¢7) for indices i and j, but this means that we are Z[G]-
generated by (o — 1).

+ Continuing, the kernel of the map T': Z|G] — Z|G] is given by the elements of the form Z?:_Ol a;o’
which when multiplied by T" vanish. Explicitly, we see

n—1 n—1
T(Z aioi) = Z (ai—1 — a;) Jia
=0

=0

where indices are taken (mod n). Thus, this vanishes if and only if a; is constant, so we see that we
are in the kernel if and only if we take the form

n—1
Z ac® = aNg
i=0
for some a € Z[G]. So the kernel here is indeed the image of the map N: Z[G] — Z[G].

17
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» Lastly, we can compute the kernel of the map N: Z[G] — Z|G] as the image of the map T': Z[|G] —
Z|G]. We omit this computation.

The point is that we can compute group homology via the sequence
N VS VS VY
and we can compute the group cohomology via the sequence
MEME M. ...
Splicing these together gives us Tate cohomology, which works properly because the map Mg — M is

precisely the norm. In particular, we get the following nice result.

Proposition 1.38. Let G = (o) be a cyclic group of order n. For any G-module M, the groups ﬁi(G, M)
are 2-periodicini € Z.

Remark 1.39. Let’s take a moment to figure out where we want to go. Fix a cyclic extension L/K of
number fields, where G is the Galois group. For example, we wanted a statement like "if a € K* is a
norm in K, for each v, then aisa normin K."” This conclusion on a means we want a to vanish in

K*  (@)°
NL (LX) Ng (LX)

= H°(G,L).

Combining with our place data, we wanted some sort of statement like

H (G, L) = [[H® (G., LY)

to be true. Roughly speaking, this will reduce to some kind of cohomology on the idéles.

1.6 January30

We continue discussing group cohomology.

1.6.1 Cocycles

We discuss cocycles, which will be an explicit way to discuss group cohomology.

Remark 1.40. These notions come from algebraic topology, where a group G gives rise to a space EG,
which is constructed as functions Mor([n + 1], G) at degree n satisfying certain conditions. One can use
this to build a space which is contractible and has a free G-action; then BG := EG/G is the classifying
space, the point of which is that 71 (BG) = G and no other nontrivial homotopy groups. If you write
everything out, you can get cocycles from this construction.

So let’s write things out. Forn > 0, define the G-module P, := Z [G”“],and define the differentiald: P, —
Pn—l by

n

d(go, - gn) = > (=1)'(gos -+ Gi-1:Gi41, - > Gn)-
i=0

One can check by hand that d? = 0, so we get a complex
o> P3P, — P — Py — 0.

Here are some checks.

18
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» Notethat each P, is a free Z[G]-module, generated by the elements of the form (1, g1, ..., g»). Indeed,
we can write

ZIG)- (Lg1, -, 92) = D ZI(9, 991, - -, 99n));
geG

so looping over all basis elements completes this. As such, P, = Z[G]™ for each n > 0.

« We would like to turn this into a resolution of Z. Well, there is the usual augmentation mape: Py — Z
given by ¢ — 1. Additionally, the composite P, — Py — Z is the zero map: for each basis element
(90,91), we see

ed(g0,91) = (g1 — go) = 0.

+ We now claim thate: P, — Z is an (augmented) free resolution. We know that it’s free, so it remains
to check our exactness. Note we already have surjectivity Py — Z, so we need to show that H*(P,) = 0
forn > 1.

Now, we want an isomorphism of some cohomology groups, so we would like to find a chain homotopy
between id and zero. Explicitly, we would like to find group homomorphisms h,,: P, — P, fitting
into the diagram

d d d
Py P P ——7Z
s s I
hao h1 h_1
¥ K v
P. P P, Z
d 27y 1y 0 7=

so that dh,, + h,,—1d = id. The point here is that, forn > 1, we see z € ker(P, — P,_1) implies that
dhn(2) + hn—1(dz) = z, butthen dh,(z) = z, so zis in the image of the map P,,;1 — P,. The exactness
will then follow.

Forn > —1, we define h,,: P, — P11 by

hn(gOa v agn) = (1,90, cee 7gn)-

To check this works, we compute

n

dhn(gOv ce- agn) + hn—ld(QOa cee 7gn) = d(17907 cee 7gn) + hpo1 ( (_1)i(907 s 9i—1, i1 - - 79%))

i=0

n
= <(907 e ?g’ﬂ) - Z(_l)l(lmg(h L agi71»9i+1> LY )971,))
=0

7

+ (Z(_l)l(lnga ey 9i—1,9i41, - - - >gn))

=0
= (907 s 7gn)7

which completes the computation.

Thus, we see we have a free resolution of Z, so we can compute group cohomology as previously discussed
in Remark 1.35. Explicitly, for a G-module M, we define

C"(G, M) = Homyq)(Pn, M) C Morg (G"*, M),

and the differential sends f € C™(G, M) to f o d, which is

n

(df)(g()a ‘e ;gn7gn+1) = Z(_l)lf(907 e 9i—1,9i41y - - - agn)
=0

Indeed, we can see visually that this has constructed a G-module morphism.
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The G-module C(G, M) has defined what are called “homogeneous cocycles.” However, recall that P, is
afree Z[G]-module generated by the elements of the form (1, g1, . . ., g ), so we can think of Homgg (P, M)
as functions G — M, with no G-equivariance. However, our isomorphism P,, = Z[G]™ was moderately
non-canonical, so our differential has changed somewhat. It is standard convention to define P, as instead
generated by

(1,91,9192, 919293, - - - 91" ** gn),
which makes our differential

n

()91, gni1) = 91f (g2, Gn1) + D (1) F(G1s -3 Giists -5 9n) + (=) F(g1,- -, gn).
=1

This defines “inhomogeneous cocycles,” which we define as C" (G, M).

Example 1.41. We discuss H'. The differential d: C°(G, M) — C*(G, M) sends an element m to the
function g — (g — 1)m. Further, the differential d: C'(G, M) — C*(G, M) is given by

(df)(91,92) = g1.f(92) — f(9192) + f(g1)-
In total, H! (G, M) is isomorphic to

{f : fl9192) = Fg1) + 91/ (g2)}
{f:f(9)=(9—1)mforsomeme M}

For example, if the G-action is trivial, the kernel of this differential is just the homomorphisms G — M,
so H'(G, M) = Hom(G, M).

1.7 February1l

Today we're going to talk about H*.

Remark 1.42. There are many interpretations of H'. For example, in algebraic geometry, we have
H'(X,0%) = Pic X. We won't discuss this, but we will see other things.

Remark 1.43. In this lecture, we will be more or less discussing faithfully flat descent.

1.7.1 Yoneda Extensions

We're going to walk through quite a few interpretations of H'. To begin, recall H*(G, M) = Exté[c] (Z, M),
essentially by definition. This in some sense classifies certain exact sequences. Namely, Ext%[g] (Z, M) clas-
sifies short exact sequences of G-modules

0—-M—-E—-7Z—0

up to isomorphism of short exact sequences. (As an aside, note that all short exact sequences are Z-split
because Z is projective, so £ = M &7 as abelian groups. Thus, the interesting part is the G-action.) Namely,
an isomorphism of short exact sequences given by £ and £’ is a morphism ¢: E — E’ making the diagram

0 M 3 Z 0
I
0 M g ) 0
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commute. Note ¢ is an isomorphism by the Snake lemma.
Let’s see how this relates to cocycles. Namely, given a 1-cocycle f: G — M, we can define &; as the
abelian group & := M @ Z with action defined by
g+ (m,n) = (gm+nf(g),n).
Notably, f(g) = ¢ - (0,1), so the map sending cocycles to extensions here is injective. We can now check by
hand that this defines an action as
91(g2 - (m,n)) = g1 - (gam + nf(g2),n)
= (9192m + ng1 f(g2) + nf(g1),n)
= (g192m + nf(g192),n)
= (9192) - (m,n)

where we have used the cocycle condition at =. Notably, we can read this argument backward to tell us that
ZY(G, M) contains the data of a short exact of G-modules

0—-M—-E—-7Z—0

equipped with a section s: Z — FE; explicitly, the choice of a section s grants a decomposition £ = M & Z,
from which we can read the cocycle in and out of the G-action as described above.

To see how we mod out by coboundaries, we choose two sections s, s": Z — £, which can only differ by
an element of m € M. Tracking this through shows that the corresponding cocycle adjusts by exactly the
coboundary given by m € M.

Remark 1.44. On the homework, we will check that an exact sequence
0-M—>E—-Z—0

grants an exact sequence
0— M® - &¢ -7 HY(G,M),

and one can check that the image of 1 under Z — H'(G, M) exactly corresponds to the short exact
sequence we started with.

1.7.2 Hilbert’'s Theorem 90

Let's talk around Hilbert's theorem 90. Roughly speaking, a 1-cocycle us: G — M is a function satisfying
the relation

Ugygy = Ugy " G1Ug,-

Note that the group law on L* has been written multiplicatively.
For the proof, consider the category Mod(L/K) of G-linear L-modules. Explicitly, we want L-vector
spaces V equipped with an L-semilinear action p: G — Autx (V') such that

pg(tv) = gl pg(v).

For example, given a K -vector space Vy, we set V := V) @ L so that we have a natural G-action on L. We
can see visually that

pg(l' - (v @L)) = pyv@l'l) =v@g(l'l) = gl' - (v@€) = vl py(v&L).
The main result is as follows.

Theorem 1.45 (Faithfully flat descent). The functor Modx — Mod(L/K) given by Vi — Vh ®k L is an
equivalence of categories.
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Remark 1.46. Using the theorem, we can recover the inverse functoras V ~ V¢ because
(Vo ®r L)® ~ Vo @ LC =V @k K ~ V.

To see our 1-cocycles, let's discuss Theorem 1.45 for one-dimensional L-vector spaces (V, p). Here, we
write V' = Le for some basis {e}, and we define
uge = pg(e)
so that the u, € L* define our group action. Namely, we see ¢, (le) = g¢ - uge. Unsurprisingly, the group
action condition given by p will give rise to the cocycle condition (and conversely): in one direction, we note
ue: G — M is a cocycle because
Ug, g,€ = Pgygs(€) = Pg, (Pga€) = Py, (Ug,€) = (g1ug, - ug, ) - €.

Lastly we note that adjusting V' by isomorphism is equivalent to adjusting the basis, and we can check that
the effect of adjusting the basis to ¢/ = ae merely adjusts the cocycle by g — (g — 1)a. In total, H*(G, L)
consists of the 1-dimensional objects of Mod(L/K). (Notably, the tensor product provides the group struc-
ture on these objects.)

We now use Theorem 1.45. Each (V, p) € Mod(L/K) should actually arise as the form Vp ® x L, and this

corresponds to the identity element in Mod(L/K). Indeed, fixing some basis elemente ® 1 € V) @ L, we
can compute our cocycle u, as

ugle®1) =pgle®@1) =e®@gl=e®1,

so u, = 1 everywhere. Thus, Theorem 1.45 will imply the following.

Theorem 1.47 (Hilbert 90). Fix a finite Galois field extension L/K with Galois group G = Gal(L/K).
Then HY(G, L*) = 0.

Thus, it remains to show Theorem 1.45.

Proof of Theorem 1.45. We mentioned that the inverse functor is given by (V, p) + V. Thus, we divide
the proof into checks.
1. We need an isomorphism (Vo ®x L)% = V;. This is clear.
2. We need an isomorphism V¢ @ L ~ V in Mod(L/K). Well, the morphism is given by v ® ¢ + (.
Now, the trick is to that it suffices to find a field extension € over K such that
(Vo) @a (Q®K L) = V @k Q

is an isomorphism in the category Mod(L @ x ©2/€?). Namely, being an isomorphism will be reflected
back down because we are working with vector spaces (namely, determinant does not change when
we base-change to a larger field). Explicitly, we note V¢ is the kernel of the map

V—>HV
geG

sending v — (gv)gea, 50 (Vo) = V& @k Q. The point is that we are indeed allowed to base-change
to the larger field, and we get to keep looking at G-invariants.

Anyway, we now set ) := L. We thus can compute

V®KQ=V®L(L®KQ)=V®LHL=HV,
geG geG

where the G-action on [[ . V' is by permutation. Thus, the G-invariants do indeed become V. |

Remark 1.48. Our equivalence of categories is also compatible with a structure of tensor product over
Modg and Mod(L/K).

22



1.8. FEBRUARY 3 254B: RATIONAL POINTS

1.8 February3

Today we continue talking about H*.

Remark 1.49. Roughly speaking, cohomology is “obstructions to something.” The most bare-bones
version of this is that cohomology measures the failure of some left exact-functors being fully exact.

1.8.1 Classification of Algebras

When G is cyclic, we have a canonical isomorphism
HY(G, LX) = H*(G,L®).

We understand H%(G, L*) as K*/N%(L*), and it turns out that H2(G, L*) is understood as the “Brauer
group” Br(L/K). Later in life, we might want to use stranger algebraic groups than (—)*, such as GL,, or
PGL,.

There is a notion of “non-abelian” cohomology, where a group G has an action on a group M (where M
is not necessarily abelian!). In particular, we can simply define H' by cocycles as

Afr91f(92) - f(g2) = f(g192) forgi,g2 € M}
~ {f: f(g9) = (gm)m~* for some fixedm € M}’

HY (G, M)

Notably, H(G, M) is just a set, pointed by the trivial equivalence class.

As an application of this H*, we pick up the following definition. Fix a Galois extension L/K with G =
Gal(L/K). Given a K-algebra A, where the center of A contains K. Given that A ® x L = M, (L), we are
interested if A = M, (K).

Example 1.50. Take the field extension C/R, and let H be the quaternion algebra. We can see somewhat
directly that H @ C = M,(C), but we cannot have an isomorphism H = M5(R). Indeed, just tracking
where i and j and k go from H to M»(RR), one can more or less write down lots of equations and see if
they have a solution over R, for which the answer turns out to be no.

To study this question, we (morally) expect that the G-invariants of A ® k¢ L to go to G-invariants of M, (L).
Well, suppose we have anisomorphismo: AQx L — M, (L), sogiveng € G, we askif the following diagram
commutes.

Ak L —2 My(L)

1@% lMug) (1.2)
A®x L —2 M (L)

Indeed, if this diagram commutes for all g € G, then o will restrict to an isomorphism
(A@x L)'C £ M, (L)° = My (K).

Conversely, anisomorphism A 2 M, (K) makes our diagram commute essentially for free because we sim-
ply do not care about the G-action.

Remark 1.51. Comparing with Example 1.50, one notes that the isomorphism H®g C = M5(C) cannot
be compatible with the Galois action; indeed, any such isomorphism sends (say) ¢ to a matrix whose
entries are not purely real.

To check the commutativity of the diagram, we start from M,, (L) and go clockwise. Namely, we are sending
g € Gto
flg)=go(l®g)" o™ € Autx (M, (L)).
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Il

Explicitly, we want f(g) = 1 forall g € G. Now, by the Skolem—Noether theorem, we have Auty (M, (L))
PGL,(L). We now claim that the f(g) = 1 condition reduces to a cocycle condition. Indeed,

f(9192) = q1g20 (1@ g5 g7 ) o™t

=gig0(1®g " )o  (1eg ) oo™
= 91f(92)f(g1)-

As an aside, we note that our choice of isomorphism ¢ is only defined up to an automorphism in PGL,,(L),
which one can check will only adjust f by a coboundary. In total, we see that the isomorphism class of A
produces a cocycle class in H(G,PGL,(L)).

We can also go from the cocycle straight to the algebra. Indeed, the data of a K-algebra can be written
down as some commutative diagrams dealing with A and ® . For example, associativity of our multiplica-
tion is the following diagram.

AQr ARk A & ARk A

u®ll l“

Ao A —2 5 4

In this way, we can upgrade our equivalence Modx ~ Mod(L/K) to an equivalence Alg(K) = Alg(L/K).
As such, given our cocycle f € H'(G,PGL, (L)), we build our algebra as M, (L) equipped with a special
G-action by

ga=g"f(9)a,

where this action is constructed by basically reading the diagram (1.2) backwards. One can check that this
action is G-semilinear and so on, so we are safe.

Remark 1.52. In fact, we have a bijection from Z!(G, PGL,, (L)) with (classes of) K -algebras A equipped
with an isomorphismo: A®k L — M, (L).

Let's take a step to H? for a moment. There is an exact sequence of G-modules
1— L* = GL,(L) —» PGL,(L) — 1.

Thus, even though we are studying H' (G, PGL,, (L)), we see that we might hope we can understand what's
goingonin H? (G, L*).

Well, we can just try to compute this like the Snake lemma. Given a cocycle f: G — PGL, (L), we can
choose some lifted map f: G — GL,(L). Roughly speaking, our element in H? will be the obstruction to f
producing a cocycle. As such, we want to compute

(91,92) = 91 (g2) f(91) f(g9192) "

Notably, we can see that this element is trivial in PGL,, (L) because f is a cocycle, so this must be an ele-
ment of L*, meaning that we have described a 2-cocycle in H?(G, L*). One can check that adjusting f by a
coboundary or changing the choice of lift does not adjust the class in H2.

Remark 1.53. It turns out that this describes an isomorphism Br(L/K) = H?(G, L*). Here, Br(L/K) is
a further quotient of algebras where for example A is equivalent to M,,(A).

1.9 February6

Last class we discussed H'(G,PGL,(L)). We continue talking about H*.
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1.9.1 Automorphisms of Projective Space

Roughly speaking, the key point in our discussion of H!(G,PGL, (L)) was our application of the Skolem—
Noether theorem to show Autr, (M, (L)) = PGL,(L). In general, one can play a similar game whenever you
have some object with the correct automorphisms.

Thus, we also note Aut P! = PGL,(L). Indeed, for any automorphism «, we can draw the following
square.

n—1 (o] n—1
]P)L ]P)L

l l

Spec L —*— Spec L

Notably, we can see from this square that Q*O]P,z—l (1)isample’ and needs to generate Pic P! because a* is

an isomorphism, so we conclude that there is an isomorphism o’ : a*Opn-1(1) = Opn-1. (This isomorphism
L L

is not canonicall) Thus, taking global sections, we are getting a map

DBy, Opo1 (1) = (P}, Opnos (1)),

However, both of these are isomorphicto Lzg @ - -- L,,_,, so the data of (o, a’) precisely describes an au-
tomorphism L™ — L™. If you mod out by the information of o, it turns out that you exactly describe an
element of PGL,, (L) instead of GL,,(L).

It turns out that one can do approximately the same story we gave last class to show that there is a
bijection between K -schemes P such that P xgpec ¢ Spec L = P?~ ! and H'(G, PGL,(L)). Proving this is a
little harder than last time because it is less obvious that a cocycle will come from K -scheme.

Nonetheless, we note that we now have two identifications of H' (G, PGL, (L)), so we should be able to
take a central K-algebra A such that A ® ¢ L = M, (L) and produce a K-scheme P. These are called the
Brauer—Severi schemes.

Example 1.54. Fix the field extension C/R and let H denote the quaternions, which is the nontrivial
element of our H'. Then it turns out that the corresponding K-scheme P is V (22 + y? + 2%) C P2.
Notably, the line bundle Op2 (1) will pull back to Op: (2) because it needs to pull back something with
global sections, and then we can also check the dimension of these global sections to complete.

Remark 1.55. One can show that the Brauer—Severi schemes are always projective and embed into P7..
In fact, they have a K -point if and only if they are projective!

1.9.2 Movingto H*

Asusual, let L/ K be a Galois extension with Galois group G. Recall from last class that we had a short exact
sequence

1— L* = GL,(L) —» PGL,(L) — 1,

which gave rise (via cocycles!) to amap §,,: H'(G,PGL, (L)) — H?(G, L*). It turns out that this fits into an
exact sequence (of pointed sets)

HY(G,GL,(L)) = H(G,PGL,(L)) 2 H? (G,L*),

which is a check that we omit.

1 The ample line bundles in Pic ]P’TL“l are precisely the ones with global sections, and a*: Pic ]P’z*1 — Pic]P”L“1 must send a line
bundle with global sections to a line bundle with global sections.
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Lemma 1.56. Fix everything as above.
(a) HY(G,GL,(L)) = 1.

Does (b) If n =[L : K], then 4, is surjective.
HXGL,) ||
vanish?

Proof. Here we go.

(@) We know from our discussion of Hilbert's theorem 90 that H'(G, GL,, (L)) is in natural bijection to
isomorphism classes n-dimensional L-vector spaces with a given semilinear G-action. However, this
category Mod(L/K) we showed (in Theorem 1.45) is just the K -vector spaces of dimension n, so there
is only one up to isomorphism, completing the proof.

(b) This requires a trick. Fix a 2-cocycle f: G*> — L*. Working explicitly, we want p: G — GL, (L) such
that
£(9:9) = pg - 9pg - Pyys
where we have identified L* with itsimage in GL,,(L). Note that such a p grants usa 1-cocyclep: G —
PGL, (L) by modding out by L* everywhere.

Well, we use aninduced module: set V := Mor(G, L), which we note has basis given by e5(g) := 15=4(g)
because Gisfinite. We may thus define p,: V' — V givenby p,: e5 — f(g, s)es. Tofinish, one can show
that this p, satisfies the needed equality. |

Corollary 1.57. If n = [L : K], then there is a natural identification with central K -algebras A such that
A®k = M, (L) and elements of H?(G, L*).

Proof. It suffices to show that our ¢, is an isomorphism. This follows directly from Lemma 1.56. [ |

Remark 1.58. In fact, we note that we can fully go backward from a 2-cocycle to its constructed 1-
cocycle in HY(G,PGL,(L)), and then we know how to turn that data into a central K-algebra A with
A®x L= M,(L).

We are now ready to define the Brauer group.

Definition 1.59 (Brauer group). Fix a Galois extension L/ K, we define the Brauer group Br(L/K) as the
set of isomorphism classes of central K-algebras A such that A ® x L = M,,(L).

We can extend this construction as follows: Corollary 1.57 grants us a natural isomorphism
H*(G,L*) = Br(L/K).

Now, define
H? (Gal(K>P/K), (K*P)) = lim  H?(Gal(L/K),L").
KCLCKset
On the other side, define Br K as the central K-algebras A such that A @ x K% = M,, (K*°P) for some n,
but we mod out by the equivalence A ~ B if and only if M,,(A4) = M,,(B) for some n and m. Then one can
show that the ¢,,s induce an isomorphism

BrK = H? (Gal(K*P/K), (K*)*),

which allows us to stop paying attention to the field L.

Remark 1.60. One can show that division rings are also in natural bijection with our algebras, giving us
yet another identification.
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We quickly remark on some sources. Our discussion of cohomology roughly follows [GS13] and [Mil20].
For a discussion of the Brauer group, we are roughly following Poonen.

1.10.1 Cohomology of Unramified Extensions

Today we will be discussing the following result; throughout, L/ K is a Galois extension of local fields with
Galois group G.

Theorem 1.61. Fix a local field K.

(a) Forany finite Galois extension L/K with G := Gal(L/K), we have H?(G, L*) = J-7/Z.

1
#C
(b) Taking the direct limit, we have H?(G g, (K5°P)*) = Q/Z.

Let's do the archimedean case first.

Lemma 1.62. We compute H?(Gal(C/R),C*) = Z/2Z.

Proof. Write G := Gal(C/R) = {1,0}, where o is complex conjugation. Now, recall from Proposition 1.38
that we may compute

(©*)¢ RX RX

2 x gﬁo XY\ — — -
(G,C ) (G,C ) NGCX {‘Z|2ZZ€(C><} R+7

and this last group is indeed Z/2Z. |

Remark 1.63. Using Proposition 1.38 and Theorem 1.47, we see that

N 0 if i is odd,
Hz(Gal((C/]R), (CX) = {Z/QZ if i is even

We now move towards Theorem 1.61. Here is our first case.

Remark 1.64. For any extension L/K of local fields with residue field extension \/x, the subextension
fixed by Frobenius is L"™* / K whose residue field extension remains A/x. But now L""" /K is an unram-
ified extension, and L/L"™ is totally ramified.

With the above remark in mind, our approach will be the following.

1. We will begin with L/K unramified and show H?(G, LX) = ﬁZ/Z. The intuition here is that our
cohomological contribution will come from these unramified extensions.

2. Next, we will show that L/K being totally ramified yields H?(G, L*) = 0.
3. Lastly, we will combine the above two cases accordingly.

Let's go at it. Let’s set some notation. Quickly, recall the structure of K*: let 7 € px be a uniformizer for
K sothat K* = 7% x O. However, we can express O} by

Of = lim Ok /pi)” .
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Now, we can think about O}; as decomposed as
1+pTIL(_1 n \ X n—1\X
1= ——"— = (A/rk) = (A =1
+ Pk

But now we see that the group on the left here is isomorphic to (O /px, +) by a = 1 + ap’=*; one should
check this works. There is a similar description for L.

Lemma 1.65. Let L/ K be a finite unramified Galois extension of local fields with Galois group G. Then
HY(G,05)=0.

Proof. We compute with Tate cohomology. Because G is generated by the Frobenius, it is cyclic, so there
are two computations.

1. We show H'(G, Of) = 0. This is easier: indeed, Theorem 1.47 tells us that H*(G, L*) = 0,and OF is
a direct summand of L, so we are done.

2. We show I;TO(G7 O}) = 0. By definition of Tate cohomology, it's enough to show that the norm map
NE: OFf — OF

is surjective. Because N% is continuous, so it suffices to show that it has dense image, so we show

(5 (5
Pr Pk
is surjective for all n. (This is well-defined because p;, = px Oy, because L/ K is unramified!) We show

this by induction. Well, for n = 1, we are showing that the norm map in an extension of finite fields is
surjective. We can do this by hand: for an extension of finite fields F - /F, let g € IFqX, generate so that

r—1

N(g) = H gp" — g(q"*l)/(qfl)
i=0

has order ¢ — 1andisin I and is thus a generator.
Then for the inductive step, we draw the following morphism of short exact sequences.

14 p% O x O x
1 nil ( n+1> n 1
+ 97 pr PL
l n X X
14+ p% ( Ok ) ((’)K) )
L+ pi P Plc

Here, the vertical maps are all N%.. By induction, the right map is surjective, so by the Snake lemma, it
suffices to show that the left map is surjective. Well, computing this map, we use the fact that 7 is a
uniformizer for L to write

Nk (1 +arfe) = [ A+ o(a)rk) =1+ Ti(a)w  (mod 1+ p}).
ceG

Thus, it suffices to show that the trace map is surjective in an extension of finite fields Fy- /F,. Equiv-

alently, we want to show that H° (Gal(Fgr /Fy),Fqr) vanishes, which is true because Fy- is an induced
module. ]
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Lemma 1.66. Let L/ K be a finite unramified Galois extension of local fields with Galois group G. Then

H*(G,L¥) = AL/

Proof. Because L* 2 7% x O, we use Lemma 1.65 to yield
H*(G,L*) = H*(G,7%) x H*(G,0}) = H*(G,Z),
where we are using the fact that 7k is fixed by G. Thus, we want to compute

Z Z

H*(G,2) = H(G,2) = —= = ——
(G,Z) (©.2)= N7~ %z

which is what we wanted. [ ]
Corollary 1.67. Fix a local field K. Then H?(Gal(K" /K), (K"")*) = Q/Z.

Proof. Take direct limits of the above lemma. It is not too hard to check that everything works out here in
our transition maps. |

1.11 February 10

Today we finish proving that H?(Gal(K*°P/K), K5°P*) = Q/Z.

1.11.1 Cohomology of Ramified Extensions

Quickly, we pick up the following cohomological tool.

Proposition 1.68 (Restriction—inflation). Fix a normal subgroup H of a group G. Given a G-module M
such that H*(H, M) = H*(H, M) = 0, we have

H? (G/H,M") = H*(G,M).

Proof. We make a few remarks.

« The functor (—)#: Modg — Modg, i preserves injectives. Indeed, this functor has an exact left ad-
joint: namely, we want an exact functor L: Modg,z — Modg such that any M € Modg and S €
Modg g has

Homg (LS, M) ~ Homg s (S, M").

Well, we simply define LS to be S viewed as a G-module via G — G/H. Namely, a G-module mor-
phism from S — M must be fixed by H because S is a trivial H-module, so we have really defined a
morphism S — M* as G/H-modules. Also, observe that L is exact because exactness can be checked
in Ab, and we have done nothing to the underlying abelian groups.

We now show that L tells us we preserve injectives. Well, let I be an injective G-module, and fix some
embedding of S C S’ of H-modules. Given some morphism S — I'7, we want to fill in the following
arrow.

0O—— S —— 9

N

Iy
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Hitting this with our exact adjunction, it is equivalent to fill in the following arrow.

0 —— LS —— LY

.

I
However, I is injective, so such an arrow exists.
+ We now compute cohomology. We are granted a left-exact sequence as follows.
0—-M—=1°>T" 51— ...

These injective G-modules are also injective H-modules (just write down the diagram), so we can
compute group cohomology in G or H by taking cohomology of the above resolution. Namely,

H*(H, M) = H* (I 5 ' 5 ..
H*(G,M)=H* (I - 1'“ - ...).
Now, because H(H, M) = H?(H, M), we know that

0— MH — [OH _ [1H _, [2H _, [3H

is exact, and the previous point tells us that this is the beginning of an injective resolution in Mod¢ /.
Now computing G/ H -invariants, we see that

) ker (I2H)G/H_>(I3H)G/H )
H (G/H’MH) ~im (((pH)G/H N (I2H)G/H)) = H*(G, M),

which is what we wanted. ]

Remark 1.69. In the background, this result really comes from a spectral sequence.

We now turn to totally ramified extensions L/ K. Speaking philosophically, H?(Gal(L/K), L*)isa class field
theory question, a question about Brauer groups (one can simply translate everything into central simple
algebras), or a geometry question via our Brauer—Severi varieties. Let's do geometry.

Lemma 1.70. Fix a totally ramified extension of local fields L/ K. Given an Ok -scheme Pp,. such that
Po, =P ,wealso have Po, = PP, .

Proof. We provide a sketch.

1. To begin, one can show there is a closed embedding P — P¥ for some M > 0. Roughly speaking,
one can pick up aline bundle £Lp, inducing the isomorphism P, = P}, but the cocycle condition allows
us to know it takes values in the roots of unity, so taking a large enough power means we induce an
embedding to projective K -space. (To work with infinite extensions, we note that specifying such a
morphism only needs a finite amount of polynomial data, so it's okay to pass to the colimit.) By abuse
of notation, we say Lp,. is the line bundle yielding our embedding.

2. We claim that it is enough to show Px (K) is nonempty. Indeed, we want to show that there is a line
bundle M on Py suchthat M®de8 £r > £, whichis enough because M willinduce anisomorphism
Px — PM which is good enough.

Well, we would like to chose My coming from P} such that ¢: M®degLpg o~ Lp, and want it to
be compatible with the Galois action, but this need not be the case. Namely, we would like for this
morphism to be unique in some sense and therefore compatible with the Galois action. To get rid
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of the extraneous automorphisms, we fix ¢ € Px(K) and consider pairs of line bundles (i, p) where
p: ky(z) 2 K.

Notably, isomorphisms between such pairs are unique when they exist, but this category of pairs up
to isomorphism is still just Pic Pk, even with the tensor product. Reformulating our problem, we are

trying to find a line bundle M®de£rk =~ £, with the p, and this data will now be automatically
compatible with the Galois action.

3. Note that having some Py, C P with Po, = Pg also grants us a B-point Spec O, — Po, by the
valuative criterion. This story of our B-point with residue field k will give us a k-point coming from A
as well because A and B have the same residue field.

As such, unwrapping the algebraic geometry, we have a morphism A — kand a morphism @pA,w — k,
and we would like to lift this to (5PA’;L, — A, which will give us the desired A-point to finish. Well, map
Op, 2 to Op, , and then left elements of m/m? to lift back to Op, ... This will define a map A [z.] to
@PA@, which will finish the proof. [ ]

1.12 February13

We hopefully finish discussing H?(Gal(L/K), L*) for local fields L today.

1.12.1 Finishing H*>

To finish up the computation of H2, we make a final remark.

Proposition 1.71. Fix a local field K, and let I C Gal(K*?/K) be the kernel of the restriction map
Gal(K®?/K) — Gal(K"™ /K). Then H?(I, K**) = (.

Proof. We claim that the image of H%(I,0}..,) — H?(I, K*°**) vanishes. Indeed, fix some class [f] in
there, and because we have defined our cohomology as a colimit, it can be exhibited as from some finite
extension as

[fr] € H*(Gal(L/K"™),0;F).

We can now show that [f1]isin theimage of the map H!(Gal(L/K"), PGL,,(0L)) — H?*(Gal(L/K"™r), L*)

for some n, which will be enough by the usual exact sequence. Indeed, we have a formula: setn := [L : K""]

and G := Gal(L/K""r),and let f, bethe desired cocycle. Then our proof of the vanishing of H2(Gal(L/K"™), Of)
tells us that we are in fact in the image of H!(Gal(L/K"), PGL,(0Or)); explicitly, we have

M = @(’)Les,

seG

where the G-actionis givenby p,: es — f1(g, s). This M is providing an element of H!(Gal(L/K"), PGL,,(0Oy)),
which produces? an Oxur-scheme P which is isomorphic to ]P’?Qzl over Or,. But then last class we showed
that this scheme must have vanishing class, so we are done.

Continuing, we actually claim that the map H?(I,0}%..,) — H?*(I, K**?*) is surjective. Indeed, we have
some exact sequence

0 — Oser — K5P* 5 Q — 0,

where v is our valuation. Now, H2(I, Q) vanishes because Q is a divisible group (indeed, take any cocycle,
using the colimit forces it into a finite extension, and then divisibility causes the cocycle to have vanishing
class there). As such, our exact sequence will do the trick here. This finishes the proof. |

2 It turns out that we can just take this as Po, M.
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Remark 1.72. Let us explain further where H!(G, Q) = 0 for any finite group G'and i > 0. Indeed, the
point is that the forgetful functor
(—)G: MOdQ[G] — VecQ

is exact, which is enough because it causes our cohomology to vanish. Well, we note that we have two

additive functors
1
#G deG g
%

MC <5 M M€

whose composite is the identity. In particular, using our lift, we get a canonical decomposition M =
M' ® M€, which tells us that (—)¢ should be an exact functor.

1.12.2 Backto Global Things

Fix an extension of global fields L/K with Galois group G. Given a place v of K, we note that we have a
decomposition

L QK K'U = HL’UH

wlv

where L,, is the completion of L at some place w over v.

Proposition 1.73. Fix everything as above. For fixed L-place wy | v, we have a G-module isomorphism

Lok K, = Indgwn L, -

Proof. Recall Indgw0 Ly, = Morg,, (G, Lu,). As such, we choose representatives g1, ..., g, for G/Gy, to
see that

dg, Ly = [ [ Luogs:

i=1

where the ith component dictates where g; goes. But now the point is that the right-hand side remains r
different copies of the completion L,,,, which is in fact the same as L @ K,, above. One should check that
this commutes with the G-action, but indeed it does. [ ]

Remark 1.74. One can replace everything with units as L.

Corollary 1.75. Fix everything as above. For fixed L-place wq | v, we have a canonical isomorphism

H* (G, HL;,) >~ H*(Guwy, L)

wlv

Proof. More generally, given a subgroup H C G, we have the sequence of functors

NG
Mody 29 Modg =5 Ab.

Now, the functor Ind is exact and takes injectives to injectives (it has an exact left adjoint given by the re-
striction functor), so we can compute cohomology for given H-module either directly or by inducing first.

The result follows. [ ]
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1.13 February 15

We continue moving towards the Hasse norm theorem.

1.13.1 Reducing to Cohomology

Recall for a moment that we are interested in proving the Hasse norm theorem, which is roughly the state-
ment that y 5
K K
B N (el
NE (L) 11 Nz (L)

v

is injective for cyclic extensions of global fields L/ K, where w is some fixed place over v. Well, using our
Tate cohomology, we see that it is enough to show that the map

H*(Gal(L/K),L*) —» [] H*(Gal(Lw/K.),L})

veVK
is injective. The point here is to write down the short exact sequence
1L = A - A7 /L* — 1,
where A} are the idéles. This grants us the exact sequence in cohomology given by
HY(G,AY/L*) — H*(G,L*) — H*(G,A}).

But now we note
A% = colim A%
L SC Vi L,Sr>

where Sy, refers to the pre-image of S under the restriction map V. — Vi. Notably, this is also an isomor-
phism of G-modules because we are looking at Sy, -idéles. In particular, we have the following.

Proposition 1.76. Fix a finite Galois extension of global fields L/ K. Then any ¢ > 0 has

H'(G,A}) = € H'(Gw, L)),

vEVK

where w is some fixed place over v.

Proof. The point here is that we can write
(] i . . 2
H'(G,A})=H <G’%OC1%}EAE,SL) :%%lggH (G,AT 5,)

where this last equality holds by just checking by hand: indeed, there is of course a map from the left to
the right by taking the given cocycle and pretending it is a colimit of cocycles; the inverse map simply says
that any colimit of cocycles on the right can only have some bounded denominators because we're merely
looking at a map G? — A} 5, towrite down our cocycles.

Expanding this out, we get to write

HY(G,AY) = colim ( 1= <GHLX> <[] & (GHOX)>
="% \ves wlv vgS wlv

Now, the arguments of Corollary 1.75, we see [ [, O = Indgw O and similar for L, so this becomes

wlv
7 X\ __ : 7 X 7 X
H@Aﬁ%%(@ﬂﬁiwxgH@m%0~
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Now, for unramified places v, we see that H'(G,, O.) vanishes by Lemma 1.65, so by throwing those places
in S, we may ignore them. Thus, we get

1 X\ i X\ : 2 X\ __ 2 X
H'(G. A7) = H'(G.AT) = colim [] [ #2(Gu. L) = @ H* (G L),

- veSvES weVry

which is what we wanted. [ |

Remark 1.77. Passing to the separable closure, we see

. 2 X
b BGalL ) Ay )

is @, - . Q/Z plus some finite number of 1Z/Z factors coming from infinite places.

Remark 1.78. Tracking through the above proof shows that the map H?(G, L*) — H?*(G,A}) factors
into the map
H*(G,L*) = @ H*(Gw, L) = [ H*(Guw, L)
v veEVK

In particular, we are getting that an element of H?(G, L*) vanishes in all but finitely many H%(G,,, L)
for free! Relating this back to our geometry, we are essentially saying that a K-quadratic form has a
K, -point for all but finitely many places v. But this is exactly Theorem 1.28, which we were able to
show more directly.

Thus, we see that we want the map H?(G, L*) — H?*(G, A7) to be injective, so we see that what we really
want to show is that H' (G, A} /L*) vanishes from our exact sequence, which we will do eventually.

Remark 1.79. Note that the term before H'(G, A} /L) in our long exact sequence is

HY(G,AY) = € H'(Guw,L}) =0

veEVK

from Proposition 1.76, so the kernel of H*(G,L*) — H?(G,A7) is indeed exactly H* (G, A} /L*).

Unfortunately, showing H' (G, A} /L*) vanishes is genuinely difficult. Let's do it.

1.13.2 Cohomology of Cyclic Groups

We are going to want the following definition.

Definition 1.80 (Herbrand quotient). Fix a finite cyclic group G and a G-module M. Because fI'(G, M)
is 2-periodic, it is helpful to define the Herbrand quotient

_ #H?(G, M)

MG M) = (G, )

when these cohomology groups are finite.

Remark 1.81. In some sense, this is a “multiplicative” variant of the topological Euler characteristic.
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Lemma 1.82. Fix a finite cyclic group G and a finite G-module M. Then h(G, M) = 1.

Proof. Set G = (¢) = Z/nZ. We are interested in computing the cohomology of the complex
MEvES S m—. .
whereT = (0 —1)and N = Ng.
« If MY =0, then the map T has ker T' = M“ = 0, so T'is an isomorphism because M is finite. Further,
im Ng € M = 0,s0 N = 0. As such, we may compute our cohomology as H (G, M) = H*(G, M) =
0 via Tate cohomology.
« If MG = M, then here T is the zero map, and N is the multiplication-by-n map, so we may compute

H™YG,M)=ker(n: M - M) and  H°(G,M)= %
Using the classification of finite abelian groups, these both have the same size.
 To finish the proof, we use induction on M. In particular, we have an exact sequence
0—M%— M- M —0.
If ME = 0or MY = M, then the above cases finish. Otherwise, both M and M’ have strictly smaller

cardinality, so the multiplicativity of the Herbrand quotient tells us that h(G, M) = h(G, ME)h(G, M') =
1, which is what we wanted. [ |

Remark 1.83. In particular, if you have an exact sequence like
0—->M —-M-—M"—0,

thenyouget h(G, M")h(G, M") = h(G, M). This basically comes straight from the long exact sequence.

1.14 February17

The homework is killing me.

1.14.1 Applications of Herbrand Quotients

Fix a finite cyclic group G. We continue discussing Herbrand quotients.

Corollary 1.84. Fix a finite extension of finite fields ¢/ with Galois group G. Then H?(G, £*) = 0.

Proof. Note G'is cyclic because these are finite fields, and £* isfinite, so h(G, £X) = 1. However, H!(G, (*)
0 by Hilbert's theorem 90, so it follows that H?(G, £*) = 0 for free.

Remark 1.85. This implies that the Brauer group over k vanishes, by taking the colimit over all £/k.
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Corollary 1.86. Fix a cyclic group G. Then let V' be finite-dimensional G-representation over a field Q.
Given G-stable lattices My, My C V, we have h(G, M;) = h(G, My).

Here, a lattice is a free Z-submodule with Z-rank equal to the dimension of V.

Proof. Let M; have basis {v;;}"_,, where n = dim V. Notably, we can write

J
n
Vi = E CijV1;
j=1

for some ¢;;. Letting NV be the product of the denominators of the ¢;;, we see that multiplication by N grants
aninclusion N: M; — Ms. Thus, we get an exact sequence

0— My 2 My — My/NM,;, — 0.

Notably, tensoring this with @ makes the left an isomorphism, so M, /N M; must be a torsion abelian group
which is finitely generated, implying that it must be finite. Thus, h(G, Ma2/NM;) = 1, so h(G,M;) =
h(G, My) follows. [ |

Remark 1.87. One can actually describe G-representations for cyclic groups G somewhat concretely;
let G = (o) have order n. Namely, given aring R, we would like to discuss R[G]-modules, where we see
Rlo]

RlG) = us gy

For example, if R contains a primitive nth root of unity ¢ (and R has characteristic not dividing p), then

G =] (UR[_U}C) ~ R",

Thus, an R[G]-module is essentially just a direct sum of n different R-modules M, ..., M, and then
the G-action on M; is given by o + (.

Remark 1.88. One can use the previous remark to show that M; @ x Q2 = My Q@ Q implies that My = My,
when K C Qs an inclusion of fields. Roughly speaking, the point is that we can decompose M into
a direct sum as described above, if we have enough roots of unity, then we are basically prescribing
dimension at each graded component.

1.14.2 Herbrand Quotient Computation

We are going to show that h(G,Af/L*) = n, when L/K is a cyclic extension of global fields of degree
n.

Lemma 1.89. Fix an extension of global fields L/ K. Then there exists a finite set of places T such that

AY = L* A} psothat AY /L* = A /L.

Proof. The pointis to hit all the ideal classes. Fix a set of places S C Vi satisfying the following conditions.
« S contains the archimedean places.

+ The finite part of S;, made of primes {31, ..., }, generates the ideal class group of L.
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In particular, the class group of L is finite, so we can find a finite set S C Vi satisfying the above conditions.
We now set T" := S;.. Let’s show this works. Fix anidéle (aw,)wev, € Af. Then

H X}alw (o)

w< oo

is an ideal equivalent to some product
T

I=]]®

i=1

In other words, thereis 5 € L* such that val,, (8) = val,, (o) — val, (I). Choosing uniformizers 7, € p,,, we

note
6 . (ﬂ_valw(l))
w w

has the same valuation as aat every place w. In particular, the quotient livesin A7 _, soweare now safe. W

Remark 1.90. Note that making 7" larger does not hurt us, so we may assume that 7" is G-stable.

At the end of the day, we have a diagram which looks like the following.

0 — O[r AL r AL /O — 0
0 L AX AXJLX —— 0

The induced morphism on the right is injective by the Snake lemma, and we note that the map A ;. —

A7 /L* is surjective by the lemma, so in fact the induced morphism on the right is also surjective. Thus,
A7 /L* = A 1/OF . (Here, OF 1 are the T-units, which are the elements of L* with vanishing valuation
outside T'.)

Remark 1.91. The arguments of Proposition 1.76 also tell us that

H*(G, A} g,) =[] H(Guw, LY) x [] H*(Gw, 0y),
veS wégS

and the right product vanishes if, for example, S contains the places of K which ramify over L.

1.15 February 22

Let’s try to show global class field theory in a week.

1.15.1 The First Inequality

Fix a finite cyclic extension of global fields L/K with Galois group G. Last time we showed A} /L* =
A7 1/OF . where T is some sufficiently large G-equivariant subset of V7. In particular, we want T to con-
tain the archimedean places and to generate the class group. Thus, we have an exact sequence

1— OZT — AE’T =AY /L =1,

SO
(G, AL r)

MG AL =G 05 )
YL
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provided that these Herbrand quotients are finite. In fact, we can see that these are finite from the following
proof: indeed, we have a long exact sequence as follows.

HY(G,0} ;) — HG.A} ;) — HY(G,A} /LX)

I J

H*(G,A} /L) — HQ(G,AZ’T) —— H*(G, Or 1)

In particular, we are going to compute h(G, A} ;) and h(G, OF ;) on the nose, from which finiteness of
h(G, A} /L*) also will follow. Let's see this.

Theorem 1.92. Fix a finite cyclic extension of global fields L/ K with Galois group G, and choose a subset
S C Vi containing the archimedean and ramified places with T := S7..

(a) We have

h (G, A;T) - I .

veS

where n, = [L,, : K,] for a chosen place w € V, over v € Vk.

h (6,05 0) = ne

veS

(b) We have

Proof. Quickly, note that the extension being Galois implies that n, = e(w/v)f(w/v) does not depend on
the choice of w, so our products are well-defined. We show these one at a time.

(a) Observe that
Afr=1] (HL;) < I1 <H05>
’ veS \wlv vgS \wl|v

In particular, this is
Af p =[] mdg, L} x [[ mdg, O,
veES vgS

where w is a chosen place over v. Taking cohomology and using Corollary 1.75, this is

HY G, A7) = [[ H*(Guw. L) x [] H*(Gu. O).
vES vgS

Because S contains all ramified places, we see that H*(G,,, O)%) = 0 always by Lemma 1.65, so we
have left to compute the left product. Taking Herbrand quotients now, we see

H*(G, A} ) =[] MGuw, L),

veS

so we appropriately claim that (G, L) = n,, so we need a little more local class field theory.

By the usual exact sequence
1-0;5 =Ly —7Z—0,

we see h(Gy, L)) = M Guw, Z)h (G, OF) = nyh(Gy, OF), so we want h(G,,, O) = 1. Our argument
that H'(G.,, 0)) = 0 for free, so we want to show H?(G,,, 0%) = 0, which one can again check by
going to residue fields. Roughly speaking, the Brauer—Severi variety argument from Lemma 1.70 still
works, where we are now inputting the fact that the Brauer group of our extension of finite fields is
trivial, which is certainly true from our computation of its Herbrand quotient in Lemma 1.82.
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(b) Roughly speaking, the point is that OZ’T will embed as a lattice into Vg, where V- = Mor(T,Z). (The
G-action on V is given by (gf)(t) = f (¢7't).) Namely, our embedding ¢: Of r — Vkis given by

t: x— (log |x|w)wer-

This is of course a homomorphism, and Dirichlet’s unit theorem tells us that the ker . is finite and that
the image A is a lattice of the hyperplane
Z Ty =0,

which comes from the product formula and recognizing that .(z) is trivial on places outside T'. Notably,
we have a decomposition

VR :AR@R(L...,l)
in fact of G-modules. (Indeed, both modules on the right are G-submodules of V&.) Setting A’ =
ADZ(,...,1), wesee Ay = Vg.
We now compute. Note h(G, Oy ) = h(G, A) because their quotient is finite and contributes nothing
by Lemma 1.82. On the other hand, we see h(G, A’") = h(G, A)h(G,Z) = nh(G, A), so

nh(G,Of ;) = h(G,\)

by rearranging. On the other hand, we note

v=]] (H Z) :
veES \wlv
so
H(G, V) =[] H*(Gw, Z)
veS
by Corollary 1.75 as usual. Thus,

WG, V) =[] MGuw, Z) = ] no.
veS veS

Combining, we see we want to show h(G, A’) = h(G, V). However, these are both lattices of this real
vector space, so with this in mind, it will be enough to give a G-module isomorphism A’ ®7,Q = V ®7zQ
by Corollary 1.86. Well, using the fact our vector spaces are finite-dimensional, we compute

Homgg) (A, Vo) = ((Ah)Y ®qg V)¢ =ker (1 —0): (Af)Y ®g Vo — (Ap)Y @q Vo) »

where o € G is the generator. However, taking the kernel commutes with taking the tensor product
with a field because these kernel computations can just look at bases, so we might as well be comput-
ing the kernel of

(1-0): (AR)Y ®r Vr — (AR)" ®r VR,
which we do know is isomorphic to Homgg)(Ag, Vr). However, we do now know that there is an iso-
morphism « in this last group, so we produce an element

Zﬂi ®v; € (A(/@)v ®q Vr
i=1
which corresponds to an R-isomorphism. Selecting the v; to be rational vectors sufficiently close to

v;, we may assume that the determinant of the corresponding linear map remains nonzero (as it is in
the above case), so we get to pull back to the desired Q-isomorphism Ag = V. |

Corollary 1.93. Fix afinite cyclic extension of global fields L/ K with Galois group GG, and choose a subset
S C Vi containing the archimedean places with T := Sy, and generating the ideal class group of L. Then
h(G,A}/L*) = n. In particular, it is finite.

Proof. This follows from the above theorem, combined with (1.3). [ |
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1.16 February24

We finish showing global class field theory. Fix a cyclic extension of global fields L/K with Galois group
G. We want to show that H'(G, A} /L*) vanishes, so because h(G,A} /L*) = n, it suffices to show that
HY(G,A} /L*) < n.This is the second inequality.

Remark 1.94. The remainder of the proof will be quite technical. Roughly speaking Herbrand quotients
play well in short exact sequences (like Euler characteristics), but getting an individual cohomology
group is harder.

1.16.1 Remarkon Restriction
We are going to want a little more group cohomology to continue. Fix a finite group G and a subgroup

H C G. We have the following result.

Proposition 1.95. Fix a finite group G and a subgroup H C G. Then Ind$ is both a left and right adjoint
for Res$.

Proof. This proof is somewhat technical, but it's fairly direct. We have to provide the following natural
transformations.

« Thereisamap N — Res$ Ind$; N for any H-module N. Well, this map is just given by f — f(1).

« Thereis a map Res$ Ind$ N — N for any G-module N. Well, this map is just given by f — f(1).

« Thereisamap M — Ind$ Res M forany G-module M. Well, this map is just given by m — (g — gm).
» Thereisamap Indg Res$ M — M for any G-module M. Well, this map is just given by

> gfg

gHeG/H
In particular, the H-invariance of f implies that the choice of coset representative g H does not matter.

We omit the adjunction checks. n

Remark 1.96. Note that the composition
M — Ind$ Res$ M — M

is simply multiplication by [G : H]. In particular, if H is the trivial subgroup, then the middle term
vanishes, so we see that H*(G, M) should be n-torsion.

Corollary 1.97. Fix a finite group G and a Sylow p-subgroup H. Then the map

H*(G, M)[p™] == H*(H, M)[p™)]

is injective.

Proof. Note the composite

H* (G, M)[p™] “=5 H*(H, M)[p™] — H*(G, M)[p™]

is multiplication by [G : H], which is coprime to p, so this composite is an isomorphism. Thus, the left map
is injective. |
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Remark 1.98. Roughly speaking, it will be beneficial to go down to Sylow p-subgroups because these
are solvable, so one can imagine we can then reduce to cyclic subgroups with some effort.

1.16.2 The Second Inequality

We are now ready for our main theorem.

Theorem 1.99. Fix a Galois extension of number fields L/ K with Galois group G.
(@) [AX : KX Ng(AY)] isfinite and divides [L : K].
(b) HY(G,AF/L*) =0.
(c) H*(G,A} /L*)is finite with order dividing [L : K].

Remark 1.100. Note that A% /KX NL(AX) = H°(G, A} /L). To see this, we stare at the usual short
exact sequence
1L - A - A7 /L* — 1.

Because H'(G, L*) = 0, this gives rise to the exact sequence

K A%

770 X /T X
NL I~ — NE A% — H°(G,A7/L™) — 0,

so the claim follows.

Reductions. Let's provide some reductions.

« If G is cyclic then the above are all equivalent. Indeed, (a) and (c) are equivalent by periodicity of
cohomology. Further, we see (c) is equivalent to #H%(G,A; /L*) < n. But this is equivalent to
#H'(G,Af/L*) < 1 because h(G,A}/L*) = n here. However, this last inequality is equivalent
to H'(G,Ay /L*) = 0, which is (b).

« We reduce to the case where G is a p-group. Indeed, let H C G be a Sylow p-subgroup. If we are

given the theorem in the case L/L (where here the Galois group is a p-group), then we conclude by
restricting via Corollary 1.97 that

#H (G, A} /L) [p>®] < #H (H, A} /L*) < [L: L7] = #H,

so the order of p dividing fIi(G, A} /L*)is less than or equalto the order of p dividing [L : K]. Because
the cohomologyis [L : K]-torsion, we conclude that these are the only primes we have to worry about,
so the theorem for p-groups (each of (a), (b), and (c)) implies the theorem in general by taking i €
{0, 1,2} by these injections.

« We reduce to the case where G = Z/pZ. Indeed, if not, by the proof of the Sylow theorems, we may
assume G is a p-group, and there is a nontrivial proper normal subgroup H C G such that we have the
theorem for the extensions L/L and LY /K.

Let's start with (b). By Restriction—Inflation, we know that H*(G, A /L*) = 0 willimply that
HYG,A7 /L) = H' (G/H, (A} /L)) = H' (G/H, A%, /(L7)*),

which vanishes because we know the theorem on the extension L /K. To see the last equality above,
we can take H -invariants of the exact sequence

1L =5 Af 5 A /L —> 1
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tosee AY, /(L*)* = (A} /L*)" because H'(H,L*) = 0.
For (a), we see
AY D KX NE (Af) 2 KX NE(A]),

and the left index is appropriately bounded by [L# : K], so it suffices to show that the right index is
bounded by [L : L#]. Well, for our bound, we know that the index

Afu 2 L NLu(AL)
divides [L : L]. Well, taking Nf(H of this inclusion, we see that the index of
H H H
Nk (Afuw) 2N (LT)NE (AF)

will still divide [L : L] because there is a surjection from the previous quotient to this quotient. Thus,
the index of
H H
KN (Afy) D KX N (Af)

still divides [L¥ : K] because again there is a surjection from this above quotient to this one. This
finishes.

Lastly, for (c), one looks at the long exact sequence and does some tricky thing.

» Wecanevenreducetothe case where i, € K. We omit the details of this reduction. Roughly speaking,
adjoining p, replaces K with an extension coprime to p, so because we are interested in showing that
[Aj : K~ Nf((Af)] divides some smallish power of p, so adding in these factors coprime to p do not
affect the argument. |

1.17 February 27

Today we hope to finish global class field theory but very fast.

1.17.1 Tate's Theorem

We are going to want the following result.

Theorem 1.101 (Tate). Fix a finite group G and a G-module M. Suppose that each subgroup H C G
satisfies the following conditions.

« HY(H, M) =0.
« H?(H, M) is cyclic of order #H.

Then, for each r, there is an isomorphism H" (G, Z) = H™+2(G, M).

Proof. We provide a sketch. Roughly speaking, we are going to want to combine two different boundary
maps. In particular, the short exact sequence

0—I¢—ZIGl>Z—0

tells us that H"(G,Z) = H™+(G, I¢). We are now a single index away. Thus, we want to construct a short
exact sequence
0—>M—>E—Ig—0,

where & the boundary maps H™ (G, 1) = H™+2(G, M) are isomorphisms.
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Fix a 2-cocycle p: G? — M representing a generator of H?(G, M). Now, as an abelian group, we set

E=Molg=Mae B 2z,
geG\{e}

We need to give £ a G action. For this, we define
h : x!] = $hg —Th + @(h’ag)a

where 1 := p(1,1). One can check that this does in fact define a G-action. In particular, one can compute
that the map G — I given by g — z, goes to the generator of H%(G, M) under the correct boundary map.
One can finish by checking that our boundary maps are isomorphisms, which is good enough. |

Example 1.102. Given a Galois extension of local fields L/ K, then we see that the G-module L* satis-
fies the above conditions by our discussion of local class field theory. In particular, H'(H, M) vanishes
by Hilbert's theorem 90, and being cyclic followed from our rather lengthy and difficult computation.
Then Theorem 1.101 promises us an isomorphism

b 7—2 770 X K*

G~ % = H,(G,Ig) = H%(G,Z) 2 HY G, L") = ——.

(G lo) = A(G.2) 2 (G L) = 1

In particular, if G = Z/pZ, then we see that taking pth powers kills our equivalence classes, so they must
be norms.

1.17.2 Finishing the Second Inequality

We are now in the case where L/K has Galois group () = Z/pZ, and K contains p,. We thus claim that
L = K(a'/?) for some a € K*. This is Kummer theory. Well, for some homomorphism x: (7) — p,, and
set

W, ={a € L:ga=x(g)a}.

We claim that each of these W,, is one-dimensional and have direct sum equal to L. For this, it's enough to

check over an Q := K. Namely, we are looking for an isomorphism
H Q0= @WX QK Q,
o: L—Q b%

and we can check this directly. In particular, we see Hom((7), u,) = Z/pZ, so we can decompose everything
appropriately. Namely, pulling back elements of Z/pZ allows us to recover elements of W, to make these
one-dimensional and so on.

We are now interested in showing

[Aj : KX NE(AD)] | #G =p.

Thus, we want to show that we have “lots” of norms in A .. As usual, choose a (large) finite subset S C Vi
satisfying the following constraints.

« S contains the infinite places.
« S contains the places lying over (p) € Vp.

+ S contains the places where « is not a unit.

Now, we consider the (large) field M := K( {/(’)IXQS), which s finite over K because (’);(75 isfinitely generated

by Dirichlet’s unit theorem. In fact, carefully tracking the unit theorem allows us to see [M : K| = p#*.
Additionally, M/K is unramified outside S by checking at each place.
We are going to want the following result, quickly.
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Lemma 1.103. Fix an abelian extension of number fields L/ K. Suppose we have a subgroup D C A}
contained in N% (AY) such that K* D isdensein A%. Then L = K.

Proof. We sketch. Roughly speaking, D C N (A %) and our density result forces the groups
_ K
Nig (L)

to be small, for any place v lying under a place w. However, we do have a lower bound on this size from the
first inequality (or alternatively, from local class field theory), so we will force L = K. |

As an application, one can use Example 1.102 and the above lemma to show that Gal(M /L) is generated
by Frobenius elements Frob, for various v ¢ S. Notably, these Frobenius elements exist because M/K is
unramified.

As such, we may find T' C Vi disjoint from S such that the Frobenius elements Frob,, forv € T generate
Gal(M/L). We are now equipped to write down

E=]]K>x [ &= [] or

veS veT vg SUT

The main claim, now, is that E C N%(AY). We go factor-by-factor.
+ Givenwv € S, we know that pth powers are norms by Example 1.102.

« Forv € T, our choice of T enforces L, = K,. In particular, the local Frobenius element of M/L
is going to be the same as the local Frobenius element of M /K, so the extensions at L and K must
coincide.

« Forv ¢ SUT, our extension is unramified, so we see that all units are norms.

In particular, we see that [A% : K* N (A))] is divisible by [A} : K* E], so we might as well work with E.
We can now compute

[A;(,SUT : E}
0% sur : KX NE]

(A% : KXE] =

roughly speaking by examining how F interacts with the idéles. One can now compute that [A%SUT : E} =

p*#%and |0k g s KX N E] = p#ST(#5=1 5o the quotient is in fact size p. This completes the proof.

Remark 1.104. Combining with the first inequality, we must actually have KX E = K* N (A¥), which
roughly tells us what our norms are.
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THEME 2
ELLIPTIC CURVES

2.1 March1l

Let's talk about curves. Our language will follow [Har77, Chapter Il, IV]. One can in theory just follow the
classical language of [Sil09].
2.1.1 Introducing Curves

The definition of a curve in [Har77] is as follows.

Definition 2.1 (curve). Fix an algebraically closed field k. Then a k-curve X is a 1-dimensional, integral,
smooth, projective k-scheme.

Example 2.2. Fix an algebraically closed field ¥ and a homogeneous polynomial f € k[z,y, z]. Given
that 0F /0x and 0F /9y and OF /9= and F do not all simultaneously vanish, then V(F) C P? is a field.

We would like to relax the requirement that k& is algebraically closed.

Definition 2.3 (geometrically integral). An S-scheme X is geometrically integralif and only if X x g T is
integral for any S-scheme T'.

Definition 2.4 (curve). Fix a field k. Then a k-curve is a 1-dimensional, geometrically integral, smooth,
projective k-scheme.

Remark 2.5. Equivalently, we can require our curves to just be curves over an algebraically closed field
over base-change to an algebraic closure. Roughly speaking, these properties are preserved by base-
change and also local on the target with respect to flat base-change, so one can go back and forth.

Remark 2.6. As an aside, note that smoothness implies “locally integral,” meaning that there is an open
cover of integral domains. (One can check this locally.) Thus, connectedness here is equivalent to irre-
ducible because we are already integral.

Many of the proofs we do will work by first taking a base-change to an algebraic closure and appealing to
[Har77].
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2.1.2 Divisors

Throughout, we fix a regular k-scheme X.

Definition 2.7 (divisor). The divisor group on a regular k-scheme X, denoted Div(X), is the free abelian
group on the closed points of X.

Note that being one-dimensional and integral implies that X has only closed points and a single generic
point. We would like to define degree, but one must be a little careful because we are trying to relax alge-
braically closed hypotheses.

Example 2.8. Note (22 + 1) is a closed point of A} = Spec R[z]. However, after base-changing by C, we
get the following diagram.

C[z]

@2+ 1) —— SpecC[z] —— SpecC

L

(;;&[_f]l) —— SpecR[z] —— SpecR

Spec

Spec

The point hereis that Spec C[z]/ (2 + 1) is two copies of C! As such, we morally should count the divisor

(z® + 1) as "containing” two closed points. Of course, the issue here is that the residue field of (22 + 1)
is a degree-2 extension of R.

Definition 2.9 (degree). Fix a finite type, regular k-scheme X. The degree of a divisor

S k() < Klnpp

peX

is >, x np- Note this defines a homomorphism Div(X) — Z.

Remark 2.10. We are assuming that, for a closed point p, the extension k(p)/k is finite. Roughly speak-
ing, one can see this affine-locally: k(p) is the quotient of some finitely generated k-algebra k[z1, . . . , ;)
by a maximal ideal, which by some kind of Hilbert's Nullstellensatz will be a finite extension of k.

Remark 2.11. The point is that, for a field k£, we have a homomorphism Div(X) — Div(X3) by sending
apoint p € X to the points in the pre-image of the base-change map X; — X as a subscheme, and our
definition shows that the following diagram commutes.

G

DIV(XE) Teg> Z

Div(X

Indeed, the claim is that, for a closed point p € X, the number of points ¢ € X;- (counted with multi-
plicity) which map down to p € X is the degree of the extension k(p)/k. | think one can just check this
affine-locally.
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Example 2.12. Let's try a purely inseparable extension. Take X = A} = Spec k[z] where k = F,(t) for
some prime p. Then we have the closed point given by (zP — t), and it has degree p. Here, our base-
change diagram is as follows.

SpecF,(t)[z] —— SpecF,(t)

(z— tl/p)p
l P

Specw — SpecFp(t)[z] —— SpecF,(t)

(@~ 1)

Fp (1) [2]

Spec

In particular, 7! of our divisor (zP — t) goes to p copies of (z —t/?). (Namely, one can look at the
corresponding quasicoherent ideal sheaf of our closed embedding.)

2.1.3 Divisor Classes

We note that elements of K (X) produce divisors as well.

Definition 2.13 (principal). Fix a k-curve X. Given f € K(X)*, we define the principal divisor by

div f == Z ord,(f),

peX

where ord,(f) is the valuation of f in the discrete valuation ring Ox ,,.

Note that the locations where f vanishes is some closed subscheme of X not equal to X and therefore
dimension 0 and therefore finite. Arguing similarly to the locations f of negative valuation, we see that div f
does in fact have finite support and will provide us with a divisor.

Lemma 2.14. Fix a k-curve C. Given any f € K(C), we have degdiv f = 0.

Proof. We simply base-change to k and then appeal to [Har77]. Indeed, observe that the following diagram
commutes.

K(X)* —9, piyx 2%, 7

LT

K(X7)* —2% Divxy —25 7

However, the bottom composite is the zero map by [Har77], so the top composite is also the zero map. B

As such, we have a class group.

Definition 2.15 (divisor class). Fix a k-curve X. The quotient
Div X
{divf: fe K(X)*}

is called the divisor class group of X. Note that Lemma 2.14 implies that we have a well-defined degree
map.

ClX =
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Remark 2.16. We quickly recall that C1 X = Pic X by sending a divisor D to the line bundle
Ox(D)U) ={fe KX)*: flu+D=>0}.

As such, one can roughly tell this entire story in terms of line bundles, which is perhaps more intuitive
in some aspects.

2.2 March3

Let's get started.
2.2.1 The Riemann-Roch Theorem
We are now ready to state the Riemann—Roch theorem.

Theorem 2.17 (Riemann—Roch). Fix a k-curve X. There exists an integer g € Z such that, for each line
bundle £/X, we have
RO(X, L) —h(X, LY @ Q%) =deg L+ 1—g.

Here, h'(X, £) = dimy H'(X, L).
Remark 2.18. One definition of our "genus” g is g := h? (X, Q% ).
Example 2.19. Taking £ = QY gives h%(X, QL) —h%(X, Ox) = deg Q% +1—g, sowe see deg Q% = 2g—2.

Example 2.20. In all applications, we are going to ensure that h'(X, £) vanishes. By Serre duality, we
seethat h' (X, £) = h° (X, LY @ Q%) = dim (LY @ Q%)(X), which will vanish if

deg (LY ® Q%) = deg Q% — deg £ < 0.
In other words, if deg £ > deg Q% = 2g — 2, then h%(X,£) =deg L + 1 — g.

To continue our discussion, we will want to talk about complete linear systems.

Proposition 2.21. Fixa line bundle £ on a k-curve X. Then (I'(X, £)\ {0})/k* is in natural bijection with
effective divisors D such that Ox (D) = L.

Proof. Givensome s € I'(X, £) \ {0}, we note that s produces a map s: Ox — £, and because s is nonzero,
this map isinjective by checking at stalks: for each 2z € X, then we have the commutative diagram as follows.

Sz
OX,z — Em

[

K(X) 5 L,

Here, 1 is the generic point of X. Now, s being nonzero implies that s,, is nonzero in K (X), so the bottom
map is injective, so the top map should also be injective.
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Now, for any closed point z € X, our map at stalks s,: Ox , — £, has £, equal to some free module
of rank 1, so by pulling back a uniformizer makes this map multiplication by some uniformizer #2=. We now

set
divg(s) = Z Ny,

zeX

and we note that s|,; is trivial at only finitely many points, so this divisor’s coefficients vanish for all but finitely
many points. We now see that s: Ox — L tells us that this map is identified with the inclusion

Lo@PT—L

rzeX

by just checking at stalks everywhere (indeed, on the left, we are trivial at every point), so we conclude that
L= Ox(divlj(s)).

To finish the bijection, we note that adjusting our s by an element of £* will not change div.(s), and we
can check that our map is both injective and surjective as such. We omit the rest of these checks. |

Example 2.22. If deg £ < 0, then there are no effective divisors D with £ = Ox (D) because deg D > 0
for all effective divisors D. Thus, we must have I'( X, £) = 0.

Example 2.23. If deg £ = 0, then we see that the only effective divisor of degree 0 is D = 0, so we either
have £L 2 Ox andsoI'(X, £) = 1, orwe have I'(X, £) = 0.

Example 2.24. In the case of g = 1, one sees that deg 2% = 0 and so deg £ = 1 implies dimy, £(X) = 1.
Roughly speaking, it follows that £ = Ox (p) for some closed point p € X with residue field k. Thus,
there is a unique effective divisor D (of degree 1) such that £ = Ox (D), so we see that D = p for some
point p of residue field k. As such, £ = Ox(p).

The following special case will be important for us.

Theorem 2.25. Fix a k-curve X of genus 1. Then the map X (k) — Pic'(X) sending a point z € X to
Ox (z) is a bijection. Here, Pic' refers to the degree-1 line bundles.

Proof. We show this in pieces.

« We show surjectivity. Fix a line bundle £ € Pic'(X) of degree 1. Then Example 2.24 tells us that £ =
Ox (z) forsome z € X with residue field k. We note that having residue field & is equivalent to being a
k-point: on one hand, a k-point is a morphism z: Speck — X must induce the identity on Spec k with
the structure morphism Speck — X — Speck, so we see that the residue field at + must be k. And
conversely, if z has residue field &, then we immediately induce our morphism z: Speck(z) — X.

+ We show injectivity: suppose that z,y € X (k) grant Ox(z) = Ox(y). Well, suppose = # y. This
implies that we have an isomorphism Ox = Ox(z — y). In particular, 1 € T'(X, Ox) is mapped to
some f € K(X) such that f has a pole at z and a zero at y. In particular, this gives a nonconstant
map of degree 1 given by f: X — P} by taking the corresponding map X \ {y} — A} and extending
it to P;. However, this requires that f is an isomorphism of curves, which is a contradiction because

9(X) # g(Py}). m

Remark 2.26. In fact, we see that the injectivity argument holds for any k-curve X of nonzero genus.
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2.2.2 Elliptic Curves

We are now ready to define elliptic curves.

Definition 2.27 (elliptic curve). Fixa field k. An elliptic curveis a pair (E, e) where E is a k-curve of genus
land e € E(k).

Remark 2.28. Fixan elliptic curve (E, e) over afield k. Theidea here is that we have a bijection Pic' (E) —
Pic’(E) given by £ — £ ® Og(—e¢), so combining with Theorem 2.25 tells us that E(k) is in bijection
with the abelian group Pic’(E). In particular, E(k) has the structure of an abelian group with identity
element given by e!

Remark 2.29. Even when ¢g(X) > 1, we note that the previous remark grants an inclusion X (k) —
Pic’(X). Now, X (k) does not inherit a group law, so we are perhaps motivated to simply work with the
group Pic’(X). Indeed, it turns out that there is a notion of the “Jacobian” which is an abelian variety
with k-points given by Pic’(X).

Remark 2.30. When ¢(X) = 1, even with no k-point in X (k), then there is some scheme-theoretic
isomorphism X 2 Pic'(X), where now we see Pic'(X) has some action by Pic’(X). We will return to
this later in the course.

The group law on Remark 2.28 can be made explicit via the “chord and tangent” method. For concreteness,
write our elliptic curve as
E:y? =2+ Az + B,

where E really refers to the projective variety in PZ of the corresponding homogenized polynomial. One
ought to check smoothness and genus and so on, but we won't bother for the time being. Notably, our
marked pointe € E(k)isgivenby[0:1:0] € E.

Now, fixing some p, ¢ € E(k), we let L denote the line connecting them. One can explicitly do the algebra
to see that X N L will have three intersection points—writing L as y = mx + b, we see m, b € k, so plugging
in for

2+ Az 4+ B — (mx+b)?2=0

with roots given by p, and ¢, will have a third root r, € k. One can check that the corresponding point
(rg,ry) € X(k) hasp+ q = (rz,—ry), which describes our group law rather explicitly. The point is that
adding together the three points coming from X N L ought to vanish in the group law because all divisors
of the form X N L are linearly equivalent.

2.3 March6

Good morning everyone.

2.3.1 Eliptic Curves as Cubics

Fix an elliptic k-curve (E, e). We want to view (E, e) as a planar curve of degree 3. Here is our claim.

Proposition 2.31. Fix an elliptic k-curve (E, e). Then the line bundle Og(3e) determines a closed em-
bedding E — P% of degree 3. In particular, we factor through V(F) for some homogeneous cubic
polynomial F'.

Proof. We show our checks in sequence.
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+ Note that h°(E, Og(3e)) = 3 by Example 2.20, so we will induce a projective morphism E — P% by
choosing our three basis vectors. Equivalently, we can choose these three basis vectors as a surjective
map O3 — Og. In some sense, it is more natural to think about our projective morphism as £ —
PI'(E, Og(3e)) sending p € E to the quotient map I'(E, Og(3e)) — Og(3e),/m,. In particular, this
quotient map uniquely determines an element of PT'(E, Og(3e)) due to the choice of basis of the one-
dimensional k-vector space Og(3e),/m,.

The quick way to show that we are very ample is to note that any two points p, ¢ € E grant
h(E,Op(3e —p—q)) =1 =1"(E,0x(3e)) - 2,

so the corresponding projective morphism separates points and tangent vectors and therefore induces
a closed embedding.

Technically we ought to show that Og(3e) is very ample. To show that we are generated by global
sections, we need surjectivity of the corresponding map on points given by

T(E,0p(3¢) ® k(p) — Op(3e),/m,.

Really, we need the map to be nonzero because the target is one-dimensional. Note that by base-
changing E to Ej,,), we can assume that p is a k-point. As such, we note that we have the exact se-
quence

0— Op(Be —p) = Ogr(3e) = Op(3e),/m, — 0

by tensoring up the exact sequence 0 — Z, — O — k(p) — 0 with the locally free and hence flat
sheaf Og. Taking global sections produces the exact sequence

0—T(E,Op(3e—p)) = T'(E,O(3e)) = Or(3e),/m,,

but Example 2.20 tells us that dim; I'(E, Og(3e — p)) = 2 < 3 = dimy, I'(E, Og(3e)), so the kernel is
not full, so our map is nonzero, which is what we wanted.

+ We now check that our projective morphism is a closed embedding. For this, we must check that we
separate points and tangent vectors. Because F is a proper scheme (it's projective), to separate points,
it is enough to check that two points go to different places in our projective space. Well, checking
where two points p, ¢ € E land, we are claiming that we are producing the same quotient map

[(B,0p(3¢) - Op(3¢),/m, and  T(E,0p(3e)) — Op(3e),/my.

By a base-change of E, we may again assume that our points are k-rational. Now, above we computed
the kernel of this map, so we would be requiring

I'(E,Op(3e —p)) NT(E,0g(3e — q)) =T(E,0p(3¢ —p — q))

to be 2-dimensional, but in fact this is 1-dimensional by Example 2.20, so there is nothing to say here.

Now, to separate tangent vectors, we want to see that the map
I'(E,0fr(3e)) = T'(E, O (3e)/(Z,1,))
is surjective, but again our dimensions jump appropriately by Example 2.20, so we must be surjective.

+ Choose a basis for V := T'(E, Og(3e)) named {u,v,w}, so PI'(E,Og(3e)) = P? with basis given by
{u,v,w}. We now note that we have the inclusions

I'(E, OE) = F(E7 OE(e)) CI(E,0gr(2¢) € F(E, OE(36)>
by Example 2.20. As such, we let {z} denote a basis of I'( E, O ), and then we extend it to a basis {z, x }

of I'(E, Og(2e¢)), and again we extend it to a basis {z, z, y} of I'(E, Og(3e)). Going up further require
some more care.
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- We see I'(E, Og(4e)) has basis {z,x,y, 22}, which are linearly independent because they have
different valuations at e.

- Similarly, we see I'(E, Og(5¢)) has basis {z, z,y, 2%, zy}.
- However, I'(E, O(6€)) has basis {z, z,y, 22, zy, y*, 23 }, but we have dimension 6, so there must
be arelation now.

Thus, we get to write down a relation between {z, z,y, 22, zy, y?, 3}, which after multiplying through
by the “scalar” z enough times grants us a homogeneous polynomial F' € k[x, y, z] of degree 3 dictating
this relation.

As such, for each p € X, we see that F' € T'(E, Og(6e)) will vanish in Og(6e), /m,, so it follows from
the construction of the map E — PV that the image lands in V(F). [ |

2.4 March8

Today we talk about algebraic geometry.

2.4.1 Group Schemes

Fix an elliptic k-curve (E,e). We are going to want to upgrade our group structure on E(k) to a group
scheme.

Definition 2.32 (group scheme). Fix an S-scheme X. Then X, equipped with multiplication u: X xg
X — X andidentitye: S — X andinverse .: X — X morphisms, is a group scheme if and only if the
following squares commute.

» Associativity.

X xgX xg X M9 v o x

« |dentity.

Sxg X —— X —— X x5 8

eXidxl H lidxxe

XxgX 25 X+ XxgX

e Inverse.
X
LV l wb
X x X S X x X

oA

We are not going to check these directly. Instead, we will adopt a functor-of-points point of view.
Roughly speaking, for an S-scheme X to take on a group scheme structure, it is enough for hx :=
Morg(—, X) to lift to a contravariant functor h3: Sch¢” — Ab. This comes from the Yoneda lemma.

Theorem 2.33(Yoneda). Fixa category .Aand an object A € A. Then the functortaking A — Mor 4(—, A)
defined on A — Fun(Sch’, Set is fully faithful.
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Proof. Omitted. [ ]

We will also want the fact that Hom(—, X x5 Y) = Hom(—, X) Xpom(—,s) Hom(—,Y"), which is more or less
the definition of the fiber product.

For example, let’s construct our multiplication map. In particular, there is an addition map p: h3P x
h3> = h3P because we are in the category of abelian groups. In particular, this map is given by the addition
map

15 B (T) x hR(T) — h2(T).
Now, p will produce a unique scheme morphism p: X xg X — X by the Yoneda lemma. A similar recipe
gives us the inversion morphism ¢: X — X and the identity element, and the faithfulness of the Yoneda
lemmaallows usto lift diagrams satisfied by the natural transformations to diagrams satisfied by our scheme
morphisms.

Remark 2.34. In fact, because we are outputting h%” to Ab, we are in fact producing an abelian group
structure on E.

So with our elliptic k-curve (E, e), we would like to upgrade our isomorphism
E(k) = Pic’(E)

to some isomorphism of schemes. The issue here is that we need to upgrade Pic to a functor.

Notation 2.35. Given S-schemes X and T, we define X7 := X xg T.

Lemma 2.36. Fix an elliptic k-curve (E, e). Given a k-scheme S and a line bundle £ on Ej, the function
s +— deg(L|g,) is locally constant on S.

Proof. We refer to [Har77, Theorem 111.9.9]. [ |

As such, to upgrade Pic to a scheme, we may try to define the functor S +— Pic’(Eg). This doesn’t work:
letting ms: Es — S denote the projection, it turns out to be problematic that line bundles £ on S produce
locally trivial line bundles 75£ € Pic’(Es). Roughly speaking, there now too many objects which look like
the identity.

To fix this, we have the following definition.

Definition 2.37 (rigidified line bundle). Fix an elliptic k-curve (E,e). Given a k-scheme S, a rigidified
line bundle is a pair (£, o) where L is a line bundle on Eg, and o: e5L = Og is an isomorphism. Here,
es: S — E X S'is the section of g given by the structure map S — Spec k — F and the identity map
idg: S — S.

Quickly, we say that two such objects (£, o) and (£’, ¢’) are isomorphic if and only if there is an isomorphism
p: L — L' making the following diagram commute.

ecp

* S *
_—

GS,C esﬁ

T

Additionally, note that rigidified line bundles form a group under the tensor product.
Remark 2.38. We compute rigidified line bundles (£, o) over S = Speck. Certainly we have all line
bundles, but note that two rigidified line bundles (£, o) and (£’,¢’) will have a unique isomorphism
because an isomorphism £ = £’ is only defined up to a scalarin k*.

Now here is the punchline.
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Proposition 2.39. We have a functor Pic};: Sch{” — Ab given by sending a k-scheme S to the group of
rigidified line bundles (£, o) over Eg such that deg £ = 0.

Proof. That we produce an abelian group was discussed above. Functoriality comes because a k-morphism
/S — S will make the sections commute as follows.

ES *f> ES’

s g

Now one can check that a rigidified line bundle on S’ appropriately pull back to rigidified line bundles on
S. [ ]

We now claim that we have a natural isomorphism hy = Pic%(S). Quickly, we note that hx(S) = E(S)
is in natural bijection with sections z: S — Fg such that 7g o z = idg because we can simply set = to be
determined by a map S — FE and then apply the identity for S — S. As such, we take a sectionz: S — Es
to the rigidified line bundle given by our section.

Lemma 2.40. Fix everything as above. Givenasectionz: S — Eg, then z is a closed immersion and has
image given by an effective Cartier divisor in Eg.

Proof. We referto [SP, 062Y]. [ ]

As such, given a section z: S — E to the line bundle given by

Op;((es) = (2)) ®op, €5 ((Ops((es) — (2))) 7).

This makes a rigidified line bundle, where our isomorphism ¢ arises from noting that hitting the above line
bundle e} makes this line bundle look like £ ® £=! = Og for some line bundle £ = e;0p,((es) — (2)).
Additionally, one can check that this construction is functorial in x, so we have indeed defined a natural
transformation.

It remains to check that we have an isomorphism of functors. Roughly speaking, this is a special case
of cohomology and base-change. Fix a rigidified line bundle (£, c); then we need a section z: S — Eg
producing this rigidified line bundle. Well, we set M = £(—e¢)~!. In the case where S = Spec k, we observe
that H(E, M) is one-dimensional, and H*(E, M) = 0 fori > 0 because E is one-dimensional. As such, for
general S, we see that 7, M is a line bundle with

(meM)(s) =T(Es, M

EB.)

for each s € S. (This is by our cohomology and base change.) We now want to recover z. Well, one can
check that the map 7*m,. M — M is injective with flat cokernel (see [SP, 00MF]). Taking the support of Q
completes the proof.

Remark 2.41. Roughly speaking, in the S = Spec k case, we can recover Og((e) — (x)) as L by setting
M = L(—e)~! (which should hopefully by O ((x))), and then we can recover (z) from the line bundle
M. In particular, H*(E, Og((x))) has one-dimensional global sections, from which we can recover (z)
by taking a cokernel as

O = Og(z) = k(z) =0

because k(x) is our skyscraper sheaf which produces (z). This is the motivation for the given proof.

54



2.5. MARCH 10 254B: RATIONAL POINTS

2.5 March10

Today we talk about morphisms of elliptic curves.

2.5.1 Morphisms Are Homomorphisms

Fix an elliptic k-curve (E,e). Last class we showed that we can extend the group law on E(k) to pro-
duce an abelian group scheme E(k). As such, we might be interested in homomorphisms between elliptic
curves.

Definition 2.42 (isogeny). Fix elliptic k-curves (E, e) and (E’, ¢’). An isogenyis a nonconstant morphism
f: E — E’suchthat f(e) =¢.

Theorem 2.43. Fix elliptic k-curves (E, e¢) and (E’, ¢’). Given a morphism of curves f: E — E’, actually
fisa homomorphism. In particular, f(S): E(S) — E(S’) isa homomorphism for any k-scheme S.

Remark 2.44. Equivalently, if we give E the multiplication map m and E’ the multiplication map m/,
then f being a homomorphism is requiring the following diagram to commute.

ExE —— E

fxfl / lf

E'xE 2, F

Proof. If f is constant (sending everything to ¢’), there is nothing to say. Otherwise, f is some finite mor-
phism of curves.

Roughly speaking, this will fall out of some rigidity. We build the following diagram. Build the fiber
product Z in the following diagram.

Z — F'
ExE —— E'xXFE
Here, the bottom map sends (z,y) € E x E — (f(z + ), f(z) + f(y)). Notably, f being a homomorphism
is equivalent to having Z — F x F to be an isomorphism.

However, everything is a variety, so it suffices to show that Z(k) — E(k) x E(k) is surjective: this will tell
us that the closed embedding Z — E x FE is surjective on closed points.® However, E is a variety, so closed
points are dense, so this implies that Z is topologically the same as F x E. But E x E is also reduced, so it
has only one closed subvariety with the same topological space, so we get to conclude that Z = E x E.

Now, a closed point of Z isa pair (z,y, 2) € Ex Ex E’suchthat f(z+y) = z = f(z)+ f(y), so we see that
it suffices to just show that f: E(k) — E’(k) is a homomorphism. Base-changing to an algebraic closure,
we just want to show that f: E(k) — E’(k) is a homomorphism when k is algebraically closed. Namely, we
have reduced to checking the result on closed points.

We now have to examine our group law. Set Ag: E(k) — Pic’(E) to be our bijection giving the group
law on E. As such, we want the induced bottom arrow of the following diagram to be a homomorphism.

Elk) —L— E'k)

e e

Pic B ———-- s Pic® B

Iin particular, we note that closed points p of a k-scheme X of finite type have residue field k(p) which is finite over k, meaning
that p is a k-point. Indeed, k(p) has residue field of the form k[z1, ..., zm]|/m for some maximal ideal m, which must be finite over &
by Hilbert's Nullstellensatz.
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Roughly speaking, this is the norm map on ideals. We define f,: Div’ E — Div® E by sending
ferxz— f(z).

Now, one can show that the following diagram commutes.

k(E)* — DivP E

L

k(E')* — Div0 B/

This is a standard result in algebraic geometry about divisors, but we can also see it from number theory:
it suffices to check this for a set of finite points on its multiplicity around the diagram, for which we may
reduce to affine subschemes. Namely, fix an affine open subscheme Spec A C E. Because f is proper and
quasifinite (it has finite fibers because the fibers must have dimension 0 for nonconstant maps f), so f is
finite and in particular affine. Thus, the pre-image of Spec A is Spec B C E’, so we are looking at a ring map
B — A. In fact, this is an embedding of rings (because f is dominant), and these are Dedekind domains
because A and B are regular (and hence normal) integral domains of dimension 1. Then the above map can
be purely checked on prime ideals, for which we refer to [GS13, Proposition 14, p. 171.
Anyway, the point is that we can check the commutativity of the diagram as follows.

f

E(k) ——— E'(k) T f(z)
o e ] ]
Pic” E — Pic’ B Op((z) — (e)) —— Or((f(z)) — (e))
Now, f, isa homomorphism, so we are done. [ |

Remark 2.45. The complex analytic situation roughly convinced us that this result ought to be true at
the outset.

In particular, the above theorem tells us that isogenies are homomorphisms.

2.5.2 TheDuallsogeny

Given a morphism of elliptic k-curves f: (E,e) — (E’,¢’), we note that we actually have a pullback map

*: Pic E — Pic® E’, so we expect to have a scheme map f*: E/ — E in the other direction. Notably, if
we look on the level of rigidified line bundles, there is actually a natural transformation f*: Pic%, = Pic%:
explicitly, for a test k-scheme S, we send the rigidified line bundle (£’, o) to f*£’ with the canonicalisomor-
phism

e*f*ﬁl o~ (e/)*£/ o~ OS

One can check naturality and so on, but we won't bother. The point is that E represents the functor PicY,,
so we have induced a morphism ft: E’ — E following the above natural transformation.

2.5.3 Translations

Fix a morphism f: (E,e) — (FE’,¢’) of elliptic k-curves. As an aside, we note that not all morphisms are
homomorphisms because of the condition f(e) = ¢’. For example, given a section z: S — FEg, we can
induce a translation map ¢, : S — Eg by moving around the following diagram.

EséEs

H [

{m} XSES e ES XsEs

In particular, if we imagine everything on closed points, we are basically mapping y — x + v.
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2.6 March13

Today we continue talking about the dual isogeny.

2.6.1 The Theorem of the Square

We begin with a remark.
Remark 2.46. Fix an elliptic curve (E, e). Then for closed points z,y € E(k), the definition of the group

law has
() —(e)+(y) —(e) ~ (z+y)—(e)

by definition of the addition as coming from Pic E. Thus, (x) + (y) ~ (x + y) + (e) after cancelling out
the redundant (e).

Now, to compute some dual isogenies, we want the following lemma.

Lemma 2.47. Fix an elliptic k-curve (E, e) and a reduced k-scheme S with projection 7g: Es — S. For
any line bundle £ of degree 0 on Es. Then for any section z: S — Eg of mg, we have

(A ®(9ES ng*ﬁ_l = ‘C®0Es mgesl

as line bundles on Eg.

Intuitively, we are saying that degree-0 line bundles are translation-invariant.

Proof. As perhaps to be expected, we will build up to the result from S = Spec k and then reduce to there.

1. Suppose S = Speck where k is algebraically closed. Now, we can write £ as a line bundle, so we
can write it as a degree-0 divisor, which by Theorem 2.25 we know must look like (e) — (y) for some
y € E(k).

Now, we calculate t* . (Og((e) — (y))) where x € E(S) = E(k). We may do this computation on the
level of divisors, where we see t_,, will pull back the divisor (e) — (y) along ¢,, to the divisor (x) — (z 4+ y);
assuch, t* (Og((e) — (v))) = Op((z) — (x + y)). But then

(z) = (z+y) = (e) — (y)

by definition of the group law, so we conclude that¢* £ = L. This is what we wanted, upon noting the
terms w5z* L~ are pullbacks of line bundles on Spec k and therefore simply one-dimensional vector
spaces, so these terms do not matter in the tensor produce.

2. Wenow reduce to S = Spec k. The point is that both sides of the desired equality are actually rigidified
line bundles. Namely, we compute
ey (tiLonia L)) =a*L@a" L7 = Og

canonically; in particular, we have noted that et} = (¢, 0eg)* = z*. Similar holds for the other side, so
we do indeed have rigidified line bundles. The moral of the story is that a rigidified line bundle is equiv-
alent by the Yoneda lemma to providing a morphism of natural transformations from S to the category
of its rigidified line bundles, so these two rigidified line bundles provide two scheme morphisms

S = PicY, .

Call the two maps R and L. However, our two maps agree on fibers by the field case: for any point
s € S, we have the pullback square

Ek(s) e ES
Speck(s) —— S
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which by the previous step must have R = L as maps on the left-hand arrow. Thus, R and L agree on
all points. We now finish the proof in the usual way, using the hypothesis that S is a k-scheme with
finite type. Namely, consider the following fiber product.

7 —— PicY,
l RS0 . 0
S ¢ Picp x Picy,
L
Because R and L agree on all points, we see that Z becomes a closed subscheme of S containing all

points (it's closed because the right map is the closed embedding A: E — E x E), but then we must
have Z = S because this is a closed embedding and S'is reduced. |

Corollary 2.48 (Square). As schemeson S := E x E, we let p;,p2: S — FE be the projections. Then,
where m is the multiplication, we have

mLRp Lt @p L7 20Oy

for any degree-0 line bundle £ on E.

Proof. Set S = E. Letpy,p2: E x E — E be our projections, and let p;: Eg — E be the projection of our
base-change. The pointisthat A: £ x E — E provides a section for p;, which givest,: Ex E — E x E can
be tracked around to give the closed point (z, y) — (x,z +y). Now, for any line bundle M of degree O on E,
we see that

m*M @ piMTt = ps M

by tracking everything around and plugging into the previous theorem. This is called the theorem of the
square. |

Remark 2.49. Let's describe how to show Lemma 2.47 without the reduced hypothesis. The point is
that Corollary 2.48 is almost the most general version of having a section s: S — FEg. In particular, the
map F x Pic), — Pic}, has a canonical section given by idp;co by the Yoneda lemma produces arigidified
line bundle P called the “Poincaré line bundle.” This provides a “universal rigidified line bundle.” We
now make two remarks.

« The above proof merely wants to show that R = L for some maps R, L: S — Pic%. But thisis a
question local on S, so we may choose a trivializing open cover to assume that all line bundles are
trivial (but rigidified).

« Then one can check that P is in fact the universal line bundle, obtaining the result by base-change
in the following diagram.

E x E x Pic% D33P
lplz T
§ &8, By pict, P

Chasing our universal line bundle around using Corollary 2.48 is able to finish.
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Remark 2.50. Translation-invariance characterizes degree-0 line bundles, so Lemma 2.47 does not
hold in higher degrees. For example,

t2,0m((e)) = Or((2)) # Or((e)),

so Og((e)) is not translation-invariant!

The point of talking about the theorem of the square is that we get the following result.

Notation 2.51. Fix an integer n. For an abelian group scheme G, we let [n]g: G — G denote the
multiplication-by-n map. We omit the G on the notation whenever possible.

Proposition 2.52. Fix an isogeny of elliptic k-curves f: (E,e) — (E’,€’). Then f' o f = [deg f]E.

Proof. We track through our definitions. Because we are asking for two morphisms on varieties to be equal,
it is enough to base-change to the algebraic closure and check that our morphisms agree on closed points.
Namely, tracking through the definition of f¢, we know it makes the following diagram commute.

g
—_—

l l

. I~ .
Pic, —— Pic}

Thus, f*Or((e) — fi(z')) = f*Ogr/((e) — (2')) forany 2’ € E’(k). Now here is our computation. We compute
ftof.Seta’ == f(z)for some z € E(k). Then

[*0p((¢) = (f(2)) = Op ((ker f) — (7" f(x)))

by computing f* as pre-images on the level of divisors. However, because we are dealing with an abelian
group scheme, we see that the pre-image f~! f(z) = x + ker f; here, x + ker f refers to ker f base-changed
under ¢t_,. However, our degree-0 line bundles are translation-invariant, so

(ker f) = (w+ker f) = Y ((y) = (@ +y)) ~ (deg f)((e) — (x)).

y€Eker f

Thus,
Or ((e) — f1(f(2))) = Op((deg f)((e) — (2))),

but by the uniqueness of effective divisors representing degree-1 line bundles, we conclude that f*(f(z))
deg f.

Remark2.53. It willturn out that g := fof*isalso multiplication by f. This roughly follows by computing
go f = fo(degf) = (deg f) o f and then cancelling the fs by Lemma 2.54, which is legal because f is
an isogeny.

2.7 March 15

Ok, let me continue then.
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2.7.1 Moreon Duallsogenies

We have the following results on dual isogenies.

Lemma 2.54. Fix smooth, proper, projective, geometrically connected k-curves C and C’ and D and D'.
Given non-constant morphisms f, g: C'— D and more non-constant morphisms p: C/ — C such that

fop=gop.

Then f = g.

Proof. To begin, note that p is dominant because it is non-constant onto a one-dimensional scheme, but it
is also proper, so it is both a continuous and closed map; in other words, the topology on C'is merely given
by the quotient topology from C’, so we conclude that f = g on topological spaces. For clarity, call this map
h.

It remains to check equality on the level of sheaves. Here, we are looking at the composite

h™'Op = Oc = p.Ocr,

where the map on the right is injective because p is dominant, and our scheme is reduced. |

Remark 2.55. We can also cancel on the other side, in a special case. Fix isogenies of elliptic curves
f,9: (E,e) — (E',€') such that there is an isogeny ¢: (E',¢’) — (E”,e”) withgo f = go g. Then we
see that g o (f — g) maps everything to ¢”, so (f — g) maps to kerq C E’. However, ker ¢ is a closed
subscheme of E’ not equal to F’, so it is zero-dimensional. But if f — g is non-constant, then it is
dominant and cannot land in such a closed subscheme, so we conclude that f — g must be constantly
e/, finishing.

Proposition 2.56. Fix isogenies f,g: (E,e) — (E',¢'). Then ft + gt = (f + g)*.

Proof. Here, the addition of the morphisms f + g is defined as the composite of
JoRCAING N Ny 5

By taking the base-change to the algebraic closure, we may check our equality of morphisms on closed
points. So one hand, for some ' € E’(k), we see that

O ((e) = (f +9)'(2") = (f +9)"Op((¢') — (")) = (f,9)"m* O ((¢') — (2")),
by definition of (f + g)!. On the other hand, f*(z) 4+ g*(2’) corresponds to the line bundle
frOp((e) = (&) @ g7 O ((¢) = (2")).
We would like to use Corollary 2.48, so we rewrite the above line bundle as
(£,9)PiOE((¢') — () @ (f.9) P50 ((¢/) = (27)),
so by comparing our two line bundles, it is enough to show that
m.Op((¢') = (2')) = piOp:((¢') — () @ p30p((¢) — (27)),

which holds by Corollary 2.48. |
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Proposition 2.57. Fix isogenies f: (E,e) — (E’,¢’)and g: (E’,¢') — (E”,e"”). Then (go f)! = ft o g".

Proof. Tracking through the definition of the dual isogeny, we see we are looking at the following large
diagram.
(go)*

m
Pic%, AN Pic, SEARR PicY,
s

(gof)"

Here, the bottom triangle commutes by properties of the pullback (we might only know this for the non-
scheme-theoretic Pic’, but then we can just check the equality on closed points), so by definition of (g o f)?,
the above triangle also commutes, which is what we wanted. [ |

Let's now build towards (f*)! = f.

Lemma 2.58. Fix an elliptic k-curve (E, e). Then [m]* = [m] forany m € Z.

Proof. We induct. For m = 1, we can track around the usual diagram to see that id " = idz, which finishes.
For the inductive step, we use Proposition 2.56 to see

[m £ 1]" = ([m] £ [1))" = [m]" £ [1) = [m] £ [1] = [m £ 1].

As such, we see that we may induct up and down from the base case of m = 1 to getany m € Z. |
Lemma 2.59. Fix an elliptic k-curve (E, e). Forany m > 0, the map [m]: E — E is non-constant.

Proof. We begin by showing that it's enough to show that deg[2] > 1. Indeed, for any m, if [m] is constant,
then
[n] = [m] + [n —m] = [n —m],

so the maps are periodic (mod m), so the degree of the maps is bounded. However, if deg[2] > 1, then
deg [2’“] — 00 as k — oo.

We now work in characteristic not equal to 2 or 3, for concreteness. Then one can write E: y? = z(z —
1)(z — X) over the algebraic closure, so we have a map 7: E — P}, given by (z,y) — z. Notably, there is an
involution :: E — E given by (x,y) — (z, —y) such that 7w o . = 7, so we note

E2l={pe E(k):2P=¢e} ={pe E(k):(P) = P}.

However, the orbit of P under ¢ is exactly the pre-image of 7(P) € Pi, so above we are asking for p € E[2]
if and only if 7= ({np}) is a single point.

To continue, we note that the orbit of m has degree 2 because it corresponds to the field extension k(z) —
k(z)[y]/ (y* — x(xz — 1)(z — X)). As such, we can use the Riemann—Hurwitz formula to compute

29(E) — 2 = (degm)(29(P}) — 2) + Y _ (ep — 1),

1
p€EP;

where ¢, is the ramification index. (Notably, the above formula doesn’t quite work in characteristic 2.) This
will complete the proof upon rearranging: we see that only four points will live in E[2]. |
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Corollary 2.60. Fix an elliptic k-curve (E, e). Then deg[m] = m? for any m € Z.

Proof. By Proposition 2.52 and Lemma 2.58, we see that
[deg[m]] = [m] o [m]" = [m] o [m] = [m?],

sowe finish. It follows from Lemma 2.59 that we may say m? = deg[m] because multiplication by |deg[m] — m2] >
0 is constant and thus must just have |deg[m] — m?| = 0. [ |

Lemma 2.61. Fix anisogeny f: (E,e) — (E’,¢’) of elliptic k-curves. Then deg f¢ = deg f.

Proof. We use Proposition 2.52. On one hand, we see

deg (fo f') = deg f - deg f*

(one can see that degree is multiplicative like this by comparing the field extensions K(E’) C K(F) C
K(E")), but on the other hand, we see

deg ([deg f]) = [deg f]?

by Corollary 2.60. Comparing our degrees finishes. |

Proposition 2.62. Fix an isogeny f: (E,e) — (E’,¢') of elliptic k-curves. Then (f*)" = f.

Proof. By combining Lemma 2.61 and Proposition 2.52, we see that

foft=l[degf] = [deg f'] = (f*) o f.

Cancelling on the right with Lemma 2.54 completes the proof. [ |

2.8 March17

We now move more directly towards the Mordell-Weil theorem.
2.8.1 The Mordell-Weil Theorem
Here is our statement.

Theorem 2.63 (Mordell-Weil). Fix a number field K. Given an elliptic K-curve (E,e), then the group
E(K) is finitely generated.

Our proof will take two steps. We will first show the following result.

Theorem 2.64 (Weak Mordell-Weil). Fix a number field K. Given an elliptic K-curve (E,e), then the
group E(K)/rE(K) is finite for any r > 1.
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Then our second step will use some theory of heights to recover Theorem 2.63.

So let’'s go at Theorem 2.64. It will be no surprise that our approach is cohomological. Let’s describe the
idea. Note [m]: E — E is a non-constant map by Lemma 2.59, so it is surjective (as a scheme map, so on
geometric points for example), so one has an exact sequence

0— Em|(K) — E(K) ™ BE(K) — 0.

Formally, E[m] is the kernel of [m], which we can view as the pre-image of e under [m], which is the following
fiber product.

E[m] —— e
1]
E-™,E

Thus, viewing everything as a module over G := Gal(K/K), we get an inclusion

mE(K)

— H' (G, Em)(K)).

As such, the game is to control the image in this map.

Let's spend a moment discussing our H'. Roughly speaking, some algebra is able to show that, as long
as m is not divisible by char K (which is true because K is a number field), then E[m|(K) = (Z/mZ)?* after
some base-change of K to pick up all the m-torsion point. Then

H' (G, (Z/mZ)*) = Hom (G, (Z/mZ)*) = Hom (G**,Z/mZ)”,

so elements here are in bijection with pairs (L, ') of cyclic extensions of degree m over K. In particular, we
expect this H! to be quite infinite.

Being more explicit now, suppose we have some P € E(K). Then we lift it to some Q € E(K) such that
P = mQ), and the corresponding element in H(G, E[m|(K)) is o — (¢ — 1)Q for any 0. However, we can
do a little better by thinking about the pre-image of P along [m]: E — F as fitting in the fiber product as
follows.

[m]7'P —— P
E—" ,E
And notably, the class of Pin H(G, E[m](K)) vanishes if and only if Tp := [m]~*(P) has K-points.

Now, taking the equation for our elliptic curve E, one can clear denominators to make F actually into a
scheme over Ok [1/(mN)] for N large enough. In fact, one can extend the addition, identity, smoothness,
properness to E now as a curve over Spec Ok [1/(mN)]. In fact, by the valuative criterion for properness will
still extend to a point over Spec Ok [1/(mN)].

Spec K — E

L]

SpecOK[l/(mN)} —— Spec Ok [1/(mN)]

Notably, one hopes that we can now control E[m] via this sort of spreading out.

To finish up for today, suppose we have a scheme S and a line bundle £ over S equipped with an isomor-
phismo: L™ — Og. By base-changing a little, we assume that S is a scheme over Z[1/m, (,,]. Then we can
consider

Specg (Os @ LBL> @B L™,

which is intended to look like Og[z]/ (P — £). The point is that the above scheme comes equipped with a
Z/mZ-action by having a fixed generator v € Z/mZ act by

v Woy-o s lme1) = (EO,Cmﬂl, .. .,Cfnnflém_l) .
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It turns out that we can go backward: given a pair (£, o) as above, we can take this to £ to produce an ele-
ment in Pic(S)[m], and one can ask for the kernel of this map, but it’s just given by the set of ways to assign
isomorphisms O = Og, but it is just the set O5 /O™,

2.9 March 20

Today we discuss the weak Mordell-Weil theorem.

2.9.1 The Weak Mordell-Weil Theorem

In order to avoid algebraic geometry for a little, we give intuition via the following argument.

Proposition 2.65. Fix a number field K containing the rth roots of unity. Then O [1/N]*/Ok[1/n]*"
has finite image in H'(Gal(K /K), u,.) for any N divisible by r.

Proof. Note that this is roughly automatic by Dirichlet’s unit theorem, which tells us that Ox[1/N] is a
finitely generated abelian group already. However, let's give a more geometric argument.

The group scheme G,,, := SpecZ[x,1/x] represents the functor Sch®® — Ab given by S — T'(S,O0g)*.
One can see this by gluing together the story on affine pieces; alternatively, we directly note that a mor-
phism Spec Z[z,1/x] amounts to choosing a global section z € T'(S, Og) which is a unit, which gives what
we wanted.

We now claim that O [1/N]*/Ok[1/N]"* has finite image in H'(Gal(K/K), j1,;). To understand this,
consider the short exact sequence

0— pr > K S N
of modules over G := Gal(K /K). Then the long exact sequence yields

Tk 2 g a ) = o,
where the rightmost zero is by Hilbert's theorem 90. As such, we see that there is a map

Ok[I/N)* | KX 2
ox/N o S G

Now, for the statement, we note there is a morphism [r]: G,, — G,, given by the ring map Z[z,1/z] —
Zlz,1/x] by x — x". We now bound ramification. The point is that some a € Ox[1/N]* induces a morphism
Spec Ok [1/N] = Gy,,0,11/n87, Where we have implicitly base-changed G,,, here. As such, providing an rth
root of a is equivalent to looking at the following fiber product.

ec Ox[l/N]lz] Spec Ok [1/N]
(o —a)

| L

(7]
Gm,OK[l/N] — Gm-,OK[l/N]

Namely, an rth root asserts asking for an OOg[1/N]-point of this fiber product; for brevity, set A, =
Okl[1/N][z]/ (" — a). Now, we can factor 2" —a into a product of irreducibles F; and set L, .= K|[z]/(F;(z)),
and we see that

A, @ K = H L;.

Note that there is a u,.-action on Spec A, by permuting the rth roots of A (here we use p,, C K), and this
action permutes the factors L; in the above product decomposition because " — a is simply going to de-
compose itself into linear factors over the algebraic closure, and the u,.-action permutes the factors of this
decomposition.
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Now, to see our finite image, we claim that d(a) € H'(G, ) actually comes from H'(Gal(L;/K), ) for

any fixed 4. Indeed, to track our boundary map, we begin by choosing some b € K™ with b" = a. However,
by adjusting our b (by our transitive u,.-action!), we may assume that the chosen b comes from L;. Now, the
corresponding cocycle in H(G, ) when passed through boundary is

ob
da: o — —
a: o =
which we see will actually be defined in ;. Passing this “restricted” cocycle through inflation provides what
we want.
We now claim that

and each L; is unramified (over K) outside (V). We leave this claim as an exercise.

This will provide the desired finiteness: H'(Gal(L;/K), i) is finite (it's a finite group and a finite mod-
ule), and there are only finitely many extensions over K of bounded degree and unramified outside some
constant set. (To see this second claim, we note that being unramified outside some fix set of primes en-
forces some boundedness of the discriminant, and we can use the Minkowski bound to finish.) Now to finish
the argument, we note that even as we vary a € Ok|[1/N]*, there are only finitely many possibilities of the
L;, so we only have to check the image of finitely many maps

Inf: HY(Gal(L/K), u,) — H'(Gal(K/K), ji,.),
so the image remains finite. |

Let's now do the same thing but for elliptic curves.

Theorem 2.64 (Weak Mordell-Weil). Fix a number field K. Given an elliptic K-curve (E, e), then the
group E(K)/rE(K) is finite forany r > 1.

Proof. To be concrete, we write E as 32 = 3 + ax +b. (Namely, our number field K has characteristic zero,
so this factoring is safe.) Smoothness, then, amounts to requiring 4a® — 27b% # 0. We now choose N both
divisible by 6 and by r, where a,b € Ok [1/N] (after clearing denominators!), and 4a® — 27b% is actually a unit
in Ok [1/N].

We now define £ to be defined by y?> = 3 + ax + b (lying in projective space) to be a scheme over
S = Spec Og[1/N]. In fact, £ remains a group scheme, isomorphic to Picg/s by running the exact same
argument through. (In particular, the key ingredient to defining our rigidified line bundles is having a field-
valued point for any field, but this is clear because we have the point [0 : 1 : 0] € E(Spec A) for any ring
A.) Notably, £ is proper over S (because it's projective), and £ is also smooth by computing the Jacobian
(namely, 4a3 — 27b? is still a unit!).

We now apply the valuative criterion for properness. This tells us that a map Spec K — E — & will
extend to a map Spec Ok [1/N] — £ factoring in the following diagram.

Spec K ———————— €

Spec O [1/N] —— Spec O [1/N]

Now, for our result, we fix some ¢ € E(K) and study the same fiber product P, := S x¢ & arising in the
following pullback square.
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Let's now start the proof. We have a short exact sequence as follows.
0— E[r)(K)— E(K) > E(K) — 0.
As before, the long exact sequence here induces an inclusion

. B(K)

B G E()),

where G := Gal(K/K). We will show that the image of this inclusion is finite, which will finish the proof.

For psychological reasons, we would like to assume that E[r|(K) = E[r](K). Well, find some field L such

that E[r](K) = E[r](L), and suppose we have the claim for L. Then we can draw the following diagram.

HY(Gal(L/K), E[r](K))

|

E(K)/rE(K) o, HY(Gal(L/L), E[r](K))

| |

E(L)/rE(L) —— H'(Gal(L/L), B[r](K))

One can check by hand that the vertical right sequence is exact (this is on the homework), so if the bottom
image is finite, then exactness says that the image of the middle map has size bounded by the product of
the size of H!(Gal(L/K), E[r](K)) and the image of ...

Now, similar to before, this will come down to bounding ramification and degree. Namely, for alla €
E(K), we claim that there is an extension L, /K unramified outside (V) and of degree bounded by r? such
that 9(a) lies in the image of the map

Inf: H'(Gal(L/K), E[r|(K)) — H' (G, E[r](K)).

This will complete the proof of our finiteness because there are only finitely many extensions L of bounded
degree and unramified outside (), so we are really only checking the image of finitely many inflation maps
from the finite groups H'(Gal(L/K), E[r](K)), so the total image of d will be contained in this finite union
of finite sets and hence be finite.

Roughly speaking,

0(a) € im (H' (Gal(La/K), Elr|(K)) — H' (Gal(K/K), E[r](K))) ,

where L, /K is an extension where P,(L,) # @. Indeed, this is essentially how 9 is defined: if we have
P,(L,) # @, then we find an mth root in £ for our point a (over L,!), and then we can find our d(a) as arising
from over Gal(L,/K) by tracking through the boundary morphism, where the point is that our choice of lift
along [r]: E — E of a may live over this specified L,.

We now attempt to find such an L,. In words, assuming m { N, the pointis that [m]: £ — £ isfinite étale
of degree 2, so

P, = SpecHOLi[l/N],

where the L; /K is finite and unramified outside N. In fact, because the degree of our map is at most 72, each
of the L; has degree at most 2, so we may choose the L, appropriately.
Let's see this directly. We proceed in steps.

1. NotethatP, — Sisafinite map of schemes because it is the base-change of the finite map [r]: £ — &;
namely, we can checkthat [r]: £ — Eisproperbecause £ is properand separated over S, anditis quasi-
finite because the number of points in a fiber of a point in £ can be checked after the base-change to
a field, and then we are looking at an elliptic curve and may appeal to Corollary 2.60. In particular,
finite maps are affine, so we conclude that P, can be written as Spec A, where A, is a finite Ok [1/N]-
algebra.
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2. Now, we note that the multiplication map [r]: E — FE has degree 2, so we can see that [r].OFg is
locally free of rank 72 (checking on stalks, it's enough to see that [r],Of is torsion-free on stalks—
over the local ring—but there is no torsion because F is an integral scheme). Continuing, as a closed
subscheme, we see

Elr] = Spec(r].Ox) ()

by tracking through what this means: on divisors, we are asking for the points which go to e when
multiplied by r. Here, we see that ([m].Og)(e) is a finite-dimensional K -algebra A, so it is Artinian
and therefore a product of Artinian local rings

A=]JA4,

These A; have a residue field x; = A;/m;, and each «; is separable over K because [r] is separable.
Now, when r is coprime with the characteristic (as it is in our case), we have m? points in this fiber
(because our map is separable), so 3", dimy, x; = r? by this point-counting. But A needs to also have
dimension r2 over K, so we conclude that A; = k; is forced, so we can write

E[m] = Spec H L,

where the L/ are finite and separable over K with degrees summing to 2.
3. We now claim that the map P, — S is flat. Indeed, we may check this stalk-locally: fix some prime
p € S, and let P be the pre-image in A,. As such, we are asking for the extension Og, — A,y is flat.

Well, looking at residue fields, we see that the residue fields A4, () has dimension m? as a vector space
over Og(p), so we can choose elements z1,...,2,,2 € A, g Which grant a basis over 4,(). But then
Nakayama's lemma tells us that we have a surjection

@ 2
Os,; — Aoy

given by this basis. In fact, this is injective: we can check injectivity after localizing at the generic point,
but then we are looking at an algebra of dimension 2 over K (because we have lifted from a map of
degree r?), so the surjectivity of our map of vector spaces over dimension 2.

4. Next up, we claim that A, is the integral closure of O [1/N] sitting inside A, ® K =[], L; where the
L; are finite separable extensions over K, and each L; is unramified over K outside (V).

Well, let B be the integral closure of Ok [1/N] inside A, ® K. Certainly each element of A, is integral
over Ok[1/N] because A, is actually finite over Ox[1/N]. Thus, we have an embedding 4, — B,
giving us the following diagram.

Spec B ——— Spec 4,
S
Here, the map Spec B — Spec A, is dominant. Now, letting 2 be an algebraic closure of K, we base-
change, yielding the following diagram.

Spec B® 0 —— Spec A, ®

— — |

Spec B ——— Spec A, Spec )
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Now, Spec 4, ® € has r? distinct points, so B must have at least r? distinct primes as well. It then
follows that the map A, — B is surjective by making an argument similar to above, arguing that B
should be some product of fields and counting points/dimensions.

In total, we may write

Ao =[] OL.[1/N]

by taking our integral closures appropriately. Notably, looking over each point, we see that the group
Elr] acts on the product of the fields [ ], L; (which is the fiber over our point a). Thus, each extension
L;/K is Galois, so choosing a particular prime p € Spec Ok [1/N], we may factor it up in Or,[1/N] and
find that all the ramification and inertial data must be the same due to our Galois action. As such, we
compute these degrees locally to see

r? = Z fieigs,

where f; is the inertial data, ¢; is the ramification data, and g; is the number of primes, where this ith
index is the data at L; /K.

On the other hand, we may count points to see that the number of points lying over p in A, amounts
to the number of separable extensions (p) lying in the various residue fields, so

72 = # Spec Ay (k(p)) = Zfigi~

In total, we see that each e; must be 1, being unramified follows. [ ]

2.10 March 22

We finished the proof of the weak Mordell-Weil theorem. | just edited into those notes for continuity rea-
sons.

2.11 March 24

Last class we finished proving the weak Mordell-Weil theorem (Theorem 2.64). Today we begin developing
the theory of heights to prove the Mordell-Weil theorem (Theorem 2.63).

Remark 2.66. We do not expect E(K) to be finitely generated when K is merely a local field. Roughly
speaking, if K = C, then we can describe our elliptic curve as C/(Z + Z7) = C* / exp(2mi7)%, which has
infinitely many points. If K = Q,, some similar story is possible; namely, sometimes one can parame-
terize the points as K * /¢* where g € mx Ok.

2.11.1 Heights

Roughly speaking, we want to be generated by the “smallest” points on our elliptic curve, but this requires
building a notion of “smallest.” This is the purpose of heights.
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Definition 2.67 (height). Fix an abelian group A. Then a function h: A — R is a height function if and
only if it satisfies the following properties.

(a) Additivity: for fixed Q € A, there exists a constant cg such that
WP + Q) < 2h(P) + cq
forany P € A.
(b) Quadratic: thereis m > 2 and a constant c4 such that
h(mP) > mh(P) - ca
forany P € A.
(c) Bounded: the set {P € A : h(P) < ¢} is finite for each c.

Here is our result.

Proposition 2.68. Fix an abelian group A equipped with a height function h: A — R. If A/mA is finite
forallm > 2, then A is finitely generated.

Proof. Because our height function is quadratic, we can find representatives for A/mA for the m satisfy-
ing our quadratic condition; let the representatives be @1, ..., Q,, and to help us later, we let ¢ to be the
maximum of ¢g, over all Q;. Now, for any P, € A, we may write

Po=mP +Q;,
for some P;; repeating this process inductively, we see that we get
Py =mPg1 + Qik+1

for each k. This is an issue because it looks like the height of P is getting smaller and smaller unless this
vanishes. In particular, for each k£ > 1, we see

h(Pk) < 3 (h(mpk) + CA)

1
m

1
m2

1
m2

IN

- (h(Pr—1 — Qr—1) +ca)

IN

o= (Qh(Pk_l) +cq + CA) .

Working inductively, we see that

2\" 1 2 gn—1
h(P,) < 2 h(Py) + W—Fm+"'+m2n (CQ+CA)

for any n. We now bound the geometric sum as

2\" ca+cq _ ca+cg
P, — P, < 27"h(P .
h( )<(m2) h(Po) + —5—5 < 27"W(P) + —

Thus, for n, large enough, we see that each P, has height bounded by 1 + %, so we may go ahead and

claim that

ca +cq
2

{PeA:h(P)§1+ }U{Qh...,QT}
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will generate A. Indeed, for any Py € A, we run the above process, we see that P, has height bounded by
1 + 43<e for n large enough, so then we have

Py =Qi, +mQiy + M*Qiy + -+ +m"Q;, +m" Py,

which completes the proof. |

Remark 2.69. The rationals Q* has a height function given by ¢ + log(|b|) + log(|a|) (where bis chosen
to be minimal), but Q* is not finitely generated because Q* /Q*™ isn't finite for any m > 2!

2.11.2 Heights for Elliptic Curves

So to prove Theorem 2.63, it suffices to build a height function.
Definition 2.70. Fix a number field K. Define the function Hg : Pj — R by

Hg([zo: ... :an)) = [ max{lzolv,...,|eals}"™
vEMEK

where Mk is the set of places of K defined to extend the standard absolute values, and n,, = [K, : Q]
where v lies over p. Then we define H = H}(/[K:Q] and h := log Hg to be a function P}, — R.

Remark 2.71. Let's take a moment to explain this definition. Suppose we have a K-point in P%. This
amounts to a morphism K — P7, which is equivalent data to a line bundle £ on K with generating
sections (zo,...,2,). By clearing denominators in the z,, this provides a surjection C’);‘?(”H) — L. In
total, we are being given two different projective modules L and Ok sitting in L ®¢,. K, and then our
height h is essentially measuring the difference between these.

Lemma 2.72. Fix a number field K. The function Hg is well-defined.

Proof. To begin, we remark that the product defining H is a finite product because any z, € K is going to
be a unitin all but finitely many v, so only finitely many factors of the product are not equal to 1. So we can
at least evaluate H on a vector (zo, ..., Zy).

Now, given A € K*, we must check that H(zo,...,2,) = H(Axq, ..., A\x,). Well,

H(\zo,..., \x,) = H max {|AZoly, -y [ATpu}"™"

vEMK
= H | A2/ 1K H max {[Azolv, -y [ATnlo " .
vEMK vEMK
The product formula tells us that the A term vanishes, so we are done. |

Lemma 2.73. Fix an extension of number fields L/K. Then the diagram commutes, where the map
Py C P} isinduced by K C L.

Proof. Track around the definitions and the definitions of our absolute values. [ |
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Lemma 2.74. Fix a number field K. Then im Hx C [1, c0).

Proof. Any vector [zg : ... : z,] € P} can be scaled so that one of the z; is equal to 1 (by placing it in a
distinguished affine open subscheme), but then

max{|Zoly, ... |[Tnlo} =1
for each v € Mk, so the entire produce must be bounded below by 1, so Hx ([z¢ : ... : z,]) > 1follows. W

2.12 April3

There will be no class or office hours on April 5 or April 12. Professor Olsson will post details about the term
paper later today.

2.12.1 Finiteness of Heights

Last class we constructed a candidate height function Hx on P} where K is a number field. To define our
height function h on (E, e¢) over the field K, we use the composite

log H

E(K) = PL(K) = R,

where E — P1 is the hyperelliptic projection. Our next goal is to show that this function satisfies the con-
ditions of being a height function given in Definition 2.67. Today we will focus on showing (c).

Lemma 2.75. Define H: P*(Q) — R by H(P) = Hg(P)Y/I5% where P is defined over K. Then
H(ocP) = H(P)foranyo € Gal(Q/Q).

Proof. Notethat H does not depend on K by Lemma 2.73, so we might as well show that Hx (P) = H, k(o P).
By expanding K to be Galois, we might as well assume that K’ = ¢ K. Then for any place p € Mg, we claim

?
Hmax{|x0|v, oo lxnlet = Hmax{\amo\v, oo loxnlyt

v|p vlp
where P = [zg : ... : x,]. But o will only permute these places v dividing p by uniqueness of extending a
place from Q to K, so we finish. [ ]

Lemma 2.76. Fix a constant C. Then the set { P € PG (Q) : H(P) < C} isfinite.

Proof. By scaling P appropriately, we may assume that P = [z : ... : x,] where the z; are integers with
ged(zo, - .., x,) = 1. Essentially, one just needs to clear denominators.? We can now just compute directly.
Indeed, for each prime p, we note that |z;|, < 1 for each ¢, and ged(xo, . .., x,) = 1 enforces that p does not

divide at least one z;, so
max{|zolp, ..., |Tnlp} = 1.
Thus, all finite places disappear from our computation, and we are left with
H(P) = HlaX{|170|OO, ey |=’En‘oo}7

and there are indeed only finitely many points (zo, ..., x,) with |2;|cc < C for each i; in fact, there are at
most (2C + 1)"*1 of them. [ ]

To continue, we use the following notation.

2 Alternatively, one can use the valuative criterion: the map P: SpecQ — P" extends (uniquely) to a map SpecZ —— P". To
see that ged(zo, . .., zn) = 1 with this map, it is enough to note that the relevant map Z™ — Z is surjective, which comes from the
injectivity of the map SpecZ — P™.

71



2.12. APRIL 3 254B: RATIONAL POINTS

Lemma 2.77. Fix a polynomial f(t) € Q[t] of degree d, and write
f) =aopt® + art* + -+ + agt? = ag(t — 1) -+ (t — o).
Then

d
H(lag : ... aq]) <2471 HH(Oéi)7
i=1

where H(a,) = H([o; : 1)).

Proof. Scaling the coefficients a; will not affect either side of the inequality, so we may assume that ay = 1.
Now, by Vieta's formulae, we make work everywhere in K := Q(«4,...,aq4). For notional reasons, we set
£(v) == 1+ 1, so that

|z 4+ ylo < e(v) max{|zlo, [ylo}

for each place v. For any fixed place v, our goal is to show
max{|agly, ..., aalu} < () ] Hew),
i=1

which will finish after taking an infinite product over all factors. (Notably, there are [K : Q) infinite places
counted with multiplicity, so H = H%[K:@] will perfectly cancel these places.) Well, for d = 1, we have

a1 = —ayq, so there is nothing to say here. Then for our induction, we reorder our roots so that |ay], is the
largest absolute value. We now set
_ _ _ _ d—1 d—2
g(t) == (t a2)~-(t Oéd) = bg_1t + bg_ot 4+ -+ byt + b,

_thzl

where (for example) b;_1 = 1. By expanding, we see that f(t) = (¢t — a1)g(¢) implies a; = b;_1 — a1b; for
each i. In total, we see

Olgfgdﬂaﬂv} = Olgggdﬂbifl — azbify}

< Orggécde(v) max{|b; 1|, [a1bi], }

< e(v) max{|b; |, } max{|ai],, 1}

< e(v) (5(v)d_2 H max{|a;|y, 1}) max{|ai|y, 1}

Jj=2

n
< e(v) [ max{|asl, 1},

Jj=1

which is what we wanted. [ |

Remark 2.78. There is also a lower bound to the above result, but we don’t need it.

And now here is our main bounding result.

Theorem 2.79. Fix a constants C'and d > 0. Then

#{P e P"@): H(P) < C,[Q(P) : Q] < d} < oo.
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Proof. Forany P = [zg : ... : x,], we see
Hypy(P) = Hm?x{|xi|v} > mlameax{\xi\v, 1} = mZaXHQ(p)(xi),

where the second inequality holds because the left factor takes the largest factor for each place v, and the
second factor includes fewer large factors. Notably, H(P) < C and [Q(P) : Q] < dimplies that H(x;) < C
and [Q(z;) : Q] < dfor each i, so by taking the union over all possible coordinates appropriately, it is enough
to show that

#{reQ:H(x) <C,Q(z):Q <d} <0
forany C and d. Well, for any z in the above set, we let its set of Galois conjugates be {z1,...,z.} so that
the previous lemma yields

fo@) =t —21) - (t — xe) = aet® F o1tV art+a

has

H(lag : ... ac]) <27 ' [[ H(z:) = 27" H(2)* < (2C)“.
However, each element x € Q yields a unique point [ag : ... : a.] on the other side, but there are only finitely
many of these such points by Lemma 2.76. [ |

It follows that our height function % has the desired finiteness because the hyperelliptic projection £ — P},
is a 2-to-1 map, and we have the finiteness of P}..

2.13 April7

Please send Professor Olsson a short email of about 1 paragraph to propose a term-paper topic.

2.13.1 Heights as Quadratic Forms

We are going to want the following result.

Theorem 2.80 ([Sil09, p. VIII.5.6]). Fixamap f: PY — P of degree d. Then there are constants ¢; and
¢y such that
ctH(P)? < H(f(P)) < coH(P)".

In other words, log H(f(P)) = dlog H(P) + O(1).

Proof. Omitted for now. [ |

Now, recall that we defined our height function hr on E(K) by

E(R) 5 PL(K) 254 R,
where 7: E — P} is the usual double-cover, and log Hp: is defined as we've been working. Last class, we
showed that this height function h g satisfies condition (c) for being a height function. It remains to show (a)
and (b).
To warm us up, consider the map ¢: P} x P! — P2 by

plag = Bi], [ag = Ba]) = [B1B2 : cufa + 2B : .

One can check by hand that this is base-point-free. The corresponding line bundle here is O(1) X O(1) =
piO(1)@p;0O(1). Global sections of this line bundle after looking affine-locally and appropriately gluing turn
out to be

I (P, 0(1)) @ T (Pg, O(1)) .
Now, the three global sections are v; ® v, and u; ® va + v ® uy and u; ® ug, where P! = Proj k[uy,v1] and
P! = Proj k[usg, v2], respectively. We now have the following computation.
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Proposition 2.81. Given Ry, Ry € P1(K), we have

hp2(p(Ry, R2)) = hp1 (R1) + hp (R2) + O(1).

Proof. If Ry = [1 : 0], then the formulae directly give hp1 (p(R1)) = 0 and
p(Rl,Rg) = [0 : ﬁg : 042} where R2 = [OZQ : ﬁg}

So we see that hp2(p(R1, R2)) = hpi(p(R2)) in this case. A symmetric argument works for Ry = [1 : 0] as
well.

Otherwise, we may write Ry = [ay : 1]and Ry = [az : 1],andwefindthat p(R1, Re) = [1 : oy +az : agaz].
However, this means that hp: (p(R1, R2)) is computing the height of the coefficients of (T'+ a4 )(T + a2). On
the other hand, hp: (R1) + hpi (R2) computes the height of those roots; thus, we are done by Lemma 2.77
combined with the lower bound which we didn’t quite prove in full. |

We now return to discuss elliptic curves. Define G: Ex E — E x Eby (P,Q) — (P+ Q, P — Q). Explicitly,
on schemes, this map is given by (u, o (1, —1)). We now have the following result.

Proposition 2.82. There is a map g: P2 — P? of degree 2 such that the following diagram commutes.

()

ExE 25 plxpl 2, p2

! I

()

ExE 25 plxpl 2, p2

Let’s explain why this will finish our height computation. Define o: E x E — P? by p o (7, 7). Note that
hp2(0(P + Q, P = Q)) = hp2(0 0 G(P,Q)) = hp2(g 0 0(P, Q)) = 2hp2(0(P, Q)) + O(1),
where we have used Theorem 2.80 in the last equality. Continuing, Proposition 2.81 tells us that
2hpa(0(P,Q)) + O(1) = 2(hes (xP) + hox (Q)) + O(1).

On the other hand, hp2(c0(P + Q, P — Q)) = hp1 (7(P + Q)) + hpr (7(P — Q)) by Proposition 2.81 again, so
combining yields
he(P+ Q)+ hp(P — Q) = 2hg(P) + 2hg(Q) + O(1). (2.1)

This is more or less a fuzzy parallelogram law.
Corollary 2.83. Fix an elliptic curve F over a number field K.
(a) GivenQ € E(K), wehave hg(P + Q) < 2hg(P) 4+ Og(1) forany P € E(K).
(b) Foranym > 0, we have hg(mP) = m?hg(P) + O(m).

Proof. For (a), we see that (2.1) tells us that
he(P+Q) < hp(P+ Q)+ hp(P — Q) = 2hp(P) + 2hp(Q) + O(1) = 2hp(P) + Oq(1).

Lastly, for (b), we induct on m. For m = 0 and m = 1, there is nothing to say. To induct, we suppose m and
m + 1, so we compute

he((m+2)P) = —hg(mP) + 2hg((m + 1)P) + 2hg(P) + O(m)
from (2.1). By the inductive hypothesis, we achieve
he((m+2)P) = (—m*+2(m + 1)> 4+ 2) hg(P) + O, (1) = (m + 2)*hp(P) + O(m),

which completes the proof. |
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Remark 2.84. The Néron-Tate “canonical” height takes (2.1) and fixes this into a bona fide quadratic
form. Explicitly, one expects that

1
hp(P) = ZThE 2" P)+0(277)
should not really have a big-O term, so we define

r—00

which does indeed converge.

Thus, Corollary 2.83 will complete showing that g is a height function.

2.14 April10

Today we finish up with the Mordell-Weil theorem.

2.14.1 Finishing Mordell-Weil
It remains to show Proposition 2.82.

Proof of Proposition 2.82. For brevity, set M := Og(e). We have the following steps, though we will skip
some justifications.

1. By our computation of p previously, the map E x E — P2 is given by the line bundle M®? X M®2,
Explicitly, the map p: P! x P! — P2 is given by the line bundle O(1) K O(1) on P! x P!, and noting the
canonical isomorphism

L(P' x PL,O(1) K O(1)) = T(P,O(1) @ T(PL, O(1)),
the map p is given by the sections v; ® va, u1 ® v + v1 ® usg, U1 ® us.

2. Thereis an automorphism v: P! x P! — P! x P! by switching the factors, which has order 2 and thus
induces an action of Z/2Z on P* x P2, Notably, v also fixes the line bundle O(1) K O(1) and fixes the
sections used to define p, so we can track that

PLxpPl — 5 Pl x P!

commutes. Roughly speaking, we expect « as an automorphism to detect invariants under switching
the factors.

3. Infact, for any line bundle £ on P2, we claim
I(P%, L) — T (P x P!, p*£)7=!

is an isomorphism, where the superscript denotes ~y-invariants.

Well, there is a classification of line bundles on P?, so we can write £ = O(d) for some d. If d < 0,
then neither side will have any global sections (one can compute this directly or note that the inverse
of an ample line bundle has no global sections); if d = 0, then we are just looking at structure sheaves
everywhere, and both will be . It remains to check d > 0.

Note that p being surjective implies that our map on sections is injective because it is essentially given
by some restriction of pf. As such, it remains to compute some dimensions. Note I'(P2, O(d)) has
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dimension (%) = @204t On the other side, let ay, . .., ay denote a basis for [(P!, O(1)), and we

note that we can give a basis of I'(P! x P!, O(1) K O(1)) by the elements

a; @ oy 0<1<d,
o R@a;j+a;®@a 0<i<)<d,
Qo —a;®@a; 0<4i<j<d.

The first two cases provide basis elements with v = 1, and the last case has v = —1, so our subspace
is spanned by the first two cases. Thus, our dimension is

d+1
2

(d+1)d 2d+2+4d*+2 d®+3d+2 (d+1)(d+2)
2 2 B 2 B 2 ’

d+1+( )d+1+

which indeed matches.

4. Recall that we have the hyperelliptic projection z: E — P! given by the line bundle M®2 and the
sections 1, z. We also have the hyperelliptic involution .: E — FE, and we expect x to project down
invariants of ¢. Explicitly, for any line bundle £ on P!, we claim that

(P L) = T(E,z* L)t
is an isomorphism. This proof is similar to the above.

5. Now, the composite o = p o (x, ) is going to accumulate a number of invariants. Explicitly, we have
a subgroup A C Aut(E x E) generated by (the lift of) 7 given by switching the factors and 1 x ¢ and
¢ x 1. Then we claim that for any line bundle £ on P2, we have that

[(P?, L) = T(E x E,o*£)*
is an isomorphism. This comes from combining the previous two steps.

6. It remains to discuss G intelligently. Then we claim there exists an automorphism h: A — A such that
the following commutes for any g € A.

ExE %3 ExE

ql lh(y)

ExE Y. ExFE

Well, we can compute this explicitly. For ¢ x 1, we track around the following diagram.

ExE Y, ExE (P,Q) ——— (P+Q,P—-Q)
gi Jh(.q) I [ aere(i)
ExE -S43 ExE (-=P,Q) — (—P+Q,—P - Q)

Similar works for 1 x ¢, and for 7 we have the following.

ExE -3, ExE (P,Q) —— (P+Q,P—-Q)
gi Jh(g) I l(l,L)
ExE -3, ExE (Q,P) —— (P+Q,Q—P)

The point is that we can construct this automorphism by hand.
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7. Next up, we claim that G* (M X M) = M®2 K M®2. Define A% to be the kernel of 1 x +1. Explicitly,
Ay ={(P,—P): P € E},and A}, = {(P,P) : P € E}. As such, by computing on divisors, we see that

G*(M X ./\/l) = OEXE(AE + AE‘)
Let's examine what happens on points. For z € F, we see
GHMBIM)|(zyxp = Op([~2] + [z]) = Op(2e) = M®2.

The point is that G*(M X M) ® p5 M2 is locally trivial, which implies that it is the pullback of a line
bundle along pj. To see what this line bundle is, we can switch factors, and the claim follows.

8. Combining the above steps, we calculate
[(P%,0(1)) 2 T(E x E, M®2 [ M®2)4

% T(E x B, MR M)4

= T(P*,0(2)).
Notably, the G* step is noting that we take invariants to invariants, provided we acknowledge that the
invariants are preserved because G* commutes with A through h. Thus, we can pull back our sections,
which does indeed give us enough sections of Op:(2), so we get our map g: P? — P? of degree 2
making everything commute. It remains to check that these sections are base-point-free, but they

were base-point-free over E x E, and the map E x E — P? is surjective, so they will continue to be
base-point-free on P2, [ |
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THEME 3
BRAUER—MANIN OBSTRUCTIONS

3.1 April14

Let's quickly take stock on what we've done.
» We studied degree-2 polynomials, which is essentially studying genus-0 algebraic curves.
« We studied elliptic curves over number fields, which is essentially studying genus-1 algebraic curves.

« Itisaresult of Faltings that smooth projective curves with genus larger than 2 have finitely many points.

Remark 3.1. Faltings's theorem is quite hard, though it would be approachable after this class. The
standard reference is Silverman's Arithmetic Geometry.

Away from curves, not much is known. For the rest of the class, we are going to discuss local-to-global
principles for varieties of dimension at least 2. Curves just turn out to be much simpler than everything else.

3.1.1 Local-to-Global via Adéles
Fix a smooth projective variety X over a number field K. Roughly speaking, local-to-global principles are

interested in the following question.

| Question 3.2. Suppose that X (K, ) is nonempty for every place v € V. Then must X (K) be nonempty?

This was true for quadratics, but the answer is no in general.

To ask better questions, we will use the adéles A as the restricted product. Because there is a natural
embedding K < Ak, we know that a K -point of X willimply an A i -point of X. So we can ask our question
again.

| Question 3.3. Suppose that X (Ax) # @. Then must X (K) be nonempty?

The answer here is still no, but it will turn out to be interesting why.
To see what's going on, suppose for a moment that we are looking with X = Spec A affine. Note A is a
finitely generated K-algebra (in fact finitely presented), so we see

K[xla"'vl'r]
(f17"'7fs) '
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Letting N be the product of our denominators, we see that we can “thicken” A into a finite scheme over Ok

as
A= Ok[1/N][z1,. .., 2]

(fla sy fs)
Working over each of our affine patches, we see that we have produced X' living in Pf, . Equivalently, we

could consider the scheme-theoretic image of the map X C P} C Po,. -
Now, in one direction, if there is a K-point Spec K — Spec A, then we get a K,-point via

Spec K, — Spec K — Spec A.

Taking the product, we actually get a map
Spec H K, — Spec K — Spec A.
vEVEK

Anyway, the point is that we get a diagram as follows.

veVi

Indeed, given any particular K-point of X (K), there are only finitely many coordinates, and each of these
finitely many coordinates has only finitely many primes dividing the denominator, so we are actually pro-
ducing a point in the restricted product. We now undo some of our products. For example, we see

X ( 11 KU> =[] x(x)

vEVK vEVK
by checking affine-locally, where we are asserting that a map [[, ., K. — A can be built be a product of
maps K, — A over each v € Vi, which is simply true. Furthermore, we claim
!/
I x(K,) = X(Ax).
veVK

Again working affine-locally, we compute

X(K) = HOmoK(AI,K) — HOIIIOK <A/, H Kv) = H HOIDOK(A/,KU).

veVK veViK

But we cannot introduce too many denominators as discussed before, so we see that everything does factor
through the restricted product. The point is that if we are hunting for rational points, we should do more
than look for K, -points but to make sure that they cohere to an A i -point.

3.1.2 The Brauer Invariant

Let's be a little loose for a little in order to give a feeling for what we're going to do. Earlier in the course, we
took a field L and defined the Brauer group Br L as H? (Gal(L*°? /L), L*P*). More generally, we can take a
scheme X and define

Br X := H%(X,G,,).

Now, given a point y € X (Ag), we produce a map

BrX % Brag = @ H? (Gal(K*?/K), K*%%) % Q/2,

vEVK
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where the last map is by summing coordinate-wise. We now recall from class field theory that

0 BrK —» @ Brk, 3Q/Z—0

veVK

is a short exact sequence—certainly Br K lives in the kernel of _ by the product formula. Thus, given A €
Br X, we can compute

Bra(y) = Z y*A

veVk

as an element of Q/Z, and we know this must be nonzero if we are producing a K -point. Indeed, if we start
with a point z € X (K), we put everything together to produce the following diagram.

Br X

R

0 —— BrK —— BrAg Q/z 0

The point now is that we can check if y € X (A ) might come from a rational point by checking Br 4(y) to be
zero for every A € Br K. This turns out to be not be a perfect definition, but it at least gives us some check.

3.1.3 Brauer Groups

To make sense of the previous subsection, we need an actual definition of Br X. Quickly, let's review how
we currently think of Br K for two fields K.

« We have H? (Ga](KSEP/K)’ Ksep><)‘

+ We can define the set of finite-dimensional central simple K-algebras. (It turns out to be equivalent
to ask for A @ x K%°P = M, (K*®°P).) Then this has a group operation by ® k-, but then we mod out by
the equivalence A ~ A’ if and only if M,,(A) = M, (A") forsomenand n'.

We also discussed a little how to between these definitions. The key point was the Skolem—Noether theo-
rem that

At gsen (M, (K5P)) = PGL,, (K*P).

Thus, for example, we can take a central simple algebra A, fix an isomorphism ¢: A ® x K®P = M, (K5P),
and then we note that an automorphism o € Gal(K*®*?/K) yields an element of PGL,, (X°) by following
around the following square.

A®@g K5 —— M, (K*P)

1@% |pn(@)
)

A QK Ksep L Mn(Kscp
This produces a 1-cocycle, and then we use a map
HY(Gal(K*P /K),PGL,,(K*P)) — H*(Gal(K*P/K), K5P*),

which is what we wanted.

3.2 Aprill17

To take about Brauer groups, we take the excuse to talk about sheaves over a site.
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3.2.1 Sheaveson aSite

Fix a category C.

Definition 3.4 (presheaf). Fix a category C. Then a presheaf is a contravariant functor F': C°P — Set.

Example 3.5. Let C be the discrete category of open sets of some topological space X. Namely, the
objects are open subsets U,V C X, and the morphisms are given by containment U C V. As such, a
presheaf on this category is some collections of objects F(U) for open U C X equipped with restriction
mapsres: F(U) — F(V) for any open sets V C U, satisfying some functoriality properties.

To make sheaves work, we need to add a few conditions on our category.
Definition 3.6 (site). A site is a category C equipped with a collection of “covering” maps
CovU = {{pa: Ur > U:a € A}}
foreach U € C, satisfying the following coherence conditions.
« Isomorphism: if ¢: U — U’ is an isomorphism, then {¢: U — U’} isin Cov(U").
» Refinement: suppose {¢n: Uy = Ulaer € CovU and {pas: Uag — Unl}penr, € Cov(U,), then

{Pa © Pap: Uap = Ulaer,per, € CovU.

o Pullback: if {¢n: Uy — Ulaer € CovU and V' — U is some morphism, then the fiber products
V xy U, all exist, and
{V Xy Uy = V}iger € Cov V.

Example 3.7. Let C be the discrete category of open sets of some topological space. Then our coverings
are exactly collections of open sets which cover U. One can verify the axioms make sense.

« Isomorphism: if we have anisomorphism U =2 U’, then we must have U = U’, and {U} is certainly
acoverof U.

« Refinement: we are simply describing an open cover for each of the U, for a cover {U, } e, which
will build to an open cover of U by taking the union over all of them.

« Pullback: the fiber productalongV-— Uis V xy U, = V N Uy, so we are simply describing an
intersection of the open cover {U, },cx with V' C U to build an open cover of V.

Now, here is our definition of a sheaf.

Definition 3.8 (sheaf). Fix a site C. Then a sheaf F is a presheaf such that all covers {¢,: Uy — U}nen €
Cov U make the sequence

FU) = [[ FWUa) = [] FUa xv Us)
aEA a,BEX

an equalizer exact sequence; here, the right-hand map is induced because there are two maps F(U,,) —
F(Ua XU U,@) and F(Uﬁ) — F(Ua Xu Uﬁ).

This is exactly the usual definition for a sheaf: we are asserting that for any cover {¢,: U, — U} of U,

providing an element of F(U) is equivalent to providing an element of each F(U,) which agree on the “in-

tersections” F'(U, x Fj3). (The uniqueness is the identity axiom, and the existence is the gluability axiom.)
Let's see some more examples.
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Example 3.9. Fix a group G. Then we let C be the corresponding one-object category. Here, a presheaf
is a functor F': C°? — Set, so we are asking for a single set S := F(x) € Set such that eachg € G =
Mor (%, *) produces a morphism Fg: S — S such that

F(e) =1idg and F(goh)=F(h)oF(g).

Thus, presheaves are sets equipped with a right G-action.

Example 3.10. Fix a topological space X, and let C be the category of local homeomorphismY — X.
Then we let our coverings be given by collections of maps CovU = {{pn: Us — U}aea} such that the
disjoint union map

| |Ua—»U

aEX

is surjective. One can somewhat quickly check the axioms. Even though presheaves might be different
on C than on the category of open sets on X, it turns out that the sheaves are the same.

Example 3.11. Let C be the category of topological spaces, and let our coverings Cov X be given by the
set of coverings in the category of open setsin X. A presheaf is asking us to specify a set for every topo-
logical space (satisfying some functoriality conditions). Further, it turns out that the category of sheaves
consists of collections (Fy, 8;) where Fy is a sheaf on U (as a topological space), and forany f: U — V
there is an inverse image transition map 9;1FU — Fy; these satisfy some coherence conditions that
one can write down.

For our next example, we want the following definition.

Definition 3.12 (étale algebra). Fix afield k. Then an étale algebrais a k-algebra which is a finite product
of finite separable extensions of k.

Geometrically, étale algebras as finite k-schemes X which are separable over k.

Example 3.13. Fix a field K. Then the category Et is the category of étale algebras X — Speck, and
coverings Cov X consist of collections {U, — X },¢x such that the disjoint union map

| | U — X
(ISP

is surjective. For our sheaf condition, suppose that L/ K is a finite Galois condition with G := Gal(L/K).
Then our presheaf F': C°P — Set would like to send the map Spec L — Spec K to a set Sy equipped with
a G-action. Further, by pullback, we see that

Spec L Xgpec k Spec L = Spec(L xx L) = |_| Spec L,
geG

where the G-action now lands coordinate-wise. The point is that the sheaf condition on the covering
L — K isrequiring F(K) = S¢. In total, one can show that sheaves on Etx are sets with a condition
action by Gal(K®P/K).

Namely, we see that our Galois cohomology can arise from the above example.
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3.3 April19

The reading for today is Chapter 6 of Poonen’s Rational Points on Varieties and Chapters 1 and 2 of Olsson's
Algebraic Spaces and Stacks.

3.3.1 Etale Morphisms
We would like to mimic singular cohomology on a scheme. The correct notion turns out to be the étale site

of a scheme, defined as follows.

Definition 3.14 (étale site). Fix a scheme X. Then the étale site is the category Et(X) which is the cat-
egory of schemes over X with étale maps. We turn this into a site by defining a covering of the map
U — X as a collection of maps {U, — U}.ex Which are pointwise surjective.

Wait, what does “étale” mean? Roughly speaking, étale morphisms are intended to be the algebraic geom-
etry version of a “local homeomorphism"” between two spaces. Here are some examples.

« The map C* — C* given by squaring is some kind of local homeomorphism, which we can turn into
the scheme map

SpecC [x,x_l] — SpecC [m,x_l]

given by x — z2.

« Unramified maps of (smooth, proper) curves (over an algebraically closed field) feel like they should
be local homeomorphisms in the topological sense, so this will also be étale.

+ Given a field extension L/ K, then the map Spec OL[1/N] — Spec Ok [1/N] is étale if and only if un-
ramified.

+ Given a finite field extension L/ K, then the map Spec L — Spec K is étale if and only if L/K is sepa-
rable.

« Fix an elliptic curve (E, e) over aring R. Then the map [n]: E — F'is étaleifand only if n € R*.

Anyway, here is our definition.

Definition 3.15 (étale). A morphism of schemes f: X — Y is étaleif and only if the following conditions
hold.

« fislocally of finite presentation.

« Hensel's lemma: for any map of rings R’ — R so that the kernel J := ker(R’ — R) has J2 = 0,
then a commutative square as below has a unique lift as shown.

SpecR —— X

1
j i J{f

SpecRf —— Y

The topological picture is that R’ essentially only adds a tangent direction to the point given by Spec R — X,
so f being a local homeomorphism basically means that we should be able to lift this tangent vector back
up to X uniquely.

Remark 3.16. One can define smoothness in basically the same way, not requiring uniqueness.
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Exercise 3.17. Fix Y = Spec A and X := A[z]/ (" — a) wheren > 1is anintegerand a € A*. We
would like to know that the structure map X — Y is étale whenn € A*.

Proof. Certainly this is locally of finite presentation. Well, suppose we have a commuting diagram as fol-
lows.

R +—— Alz]/ (2™ — a) a B +— x
I I I
R +—— A o «——a

The commutativity of the diagram is enforcing 5" = «. We would like a unique lift of a map A[z]/ (2" — a) —
R’, which means that we want a unique solution (5')” = /. Well, choosing any lift 5, of 5 up in R’, we know
that at least

(Bo)" =o' +e
fore € ker(R’ — R). We now need to adjust /3, by some v € J, so we expand
(Bo +7)"™ = (Bp)™ +n(B)" 'y =& +e+n(By)" 1.

We would like this to equal o’ on the nose, for which we see we must have

___ ¢
LA

Thus, we have shown that there is a unique lift 8’ of 8 which solves (8')" = «'. |

Remark 3.18.1f n ¢ A*, then the above map need not be étale. For concreteness, take a = 1 and
suppose that n = pis prime and vanishes in A. Here, we see 2™ — 1 = (z — 1)P. To show that we are not
étale, we use the following diagram.

Alz]/(z = 1)P +—— Alz]/(x —1)P T ——

I I

Alz]/(z — 1P ——— A

Here, we would like to lift 2 to some pth root of 1 in Afz]/(z — 1)P*L. Indeed, we can write any lift as
x + a(x — 1)P for some a € A, but none of these elements to the pth power is going to equal 1 in our
ring.

Let's prove some properties of étale morphisms.

Lemma 3.19. Any étale morphism f: X — Y is flat.

Proof. Omitted. [ ]

Lemma 3.20. We have cancellation: if morphisms f: U — X and g: V — X are étale, then any map
h: U — V suchthat h = g o his étale.

Proof. Omitted. [ |
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Lemma 3.21. We can check étale on fibers: a flat morphism f: X — Y such that the fibers f: X, — y
are étale forall y € Y will have f étale.

Proof. Omitted. [ ]

There's a lot more to say here, but we'll stop here.

3.3.2 Sheaves on the Etale Site

While we're here, let's give some motivation of étale morphisms for number theorists. Fix a scheme X and
integer n invertible in X; i.e., X is a scheme over Z[1/n]. Now, in the étale topology, the sequence

0—>un—>Gm(3"Gm—>0

is exact.! To make sense of this, we need to remember what a sheaf is. For example, G,, is defined as the
sheaf on the étale site by

G (U) =T (U, 0F)

for any étale map U — X. Itis not obvious, but it is true that G,,, is a sheaf on our étale site. Similarly, u,, is
defined by

Un(U) ={uel(U,Oy) : u" =1}.

Notably, u,, is the kernel of a sheaf map, so u,, remains a sheaf.

The main content of our exactness is the check that (=)": G,, — G,, is surjective. Roughly speaking,
here is the check we have to do: given some section u € G,,(U), we would like a covering {U, }aex of U and
sections v, € G,,(U,) such that

vy = ulu,

forall « € A. Quickly, by restricting U, we may assume that U = Spec A is affine, but then our étale cover is
given by
Alz]

— A
@ —u) — Spec A,

Spec

so we are done.
Anyway, now that we have an exact sequence, one can check that our abelian category of sheaves of
abelian groups on the étale site has enough injectives, so we can take cohomology as

0= pn(X) = Gp(X) = G (X) = HEL (X, pn) — Hi(X,Gp) — HE (X, Gpp) — -+ .

One can show that H} (X, G,,) = H (X, G,,).

Remark 3.22. Similarly, if (E, e) is an elliptic curve over a field K, and we have an integer n € K*, then

we produce an exact sequence
0—>E[n]—>E[ﬁ;E—>O,

so we can again take cohomology. Again, we do not have such an exact sequence in the Zariski topology.

The point is that we are in some sense recovering Galois cohomology from étale cohomology.

1 This exactness is false in the Zariski topology: take X = SpecQandn = 2.
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3.4 April21

We continue discussing the étale topology.

Remark 3.23. Fix a scheme X. Then Et(X) has a final object given by idy: X — X. However, one
should not worry about this too much: the site is not so important but rather the category of sheaves

’ ,aff
on the site. For example, one could replace Et(X) with the site Et = (X)) of affine étale X -schemes, but
the corresponding categories of sheaves are the same.

Remark 3.24. A category equivalent to sheaves on a site is called a “topos.” But then there is a natural
way to turn into any such topos into a site.

3.4.1 Some Sheaves on the Etale Site

Let's give some examples of sheaves on the étale site.

Example 3.25 (structure sheaf). There is a sheaf Ox_, sending the object U — X to I'(U, Oy ). Given a
morphism f: V — U of étale open sets, we produce the pullback map f*: T'(U, Oy) — T'(V, Oy). This
forms a presheaf, which one can check directly, and a descent argument shows that this a sheaf.

Because we have a notion of structure sheaf Ox
soon.

we have Oy, -modules and quasicoherent sheaves and

et!

Example 3.26. Fixa quasicoherent sheaf M on X,,,. Then we can produce an “upgraded” quasicoherent
sheaf M, by sending the étale openset g: U — X toI' (U, g* M). Again, a descent argument shows
that this is a sheaf.

Remark 3.27. One can show that, for a suitable definition of quasicoherent over the étale site (namely,
being a module affine-locally for the étale notion of “locally”), Example 3.26 produces an equivalence
of categories

QCoh(X,ar) — QCoh(Xe).

So we have not lost any of our good theory of quasicoherent sheaves. However, we have gained some good
theory of sheaves like Z/mZ.

Example 3.28. Let's think about H?(Gal(C/R), u12). Leti € Gal(C/R) be complex conjugation, so we
note that the quaternions H are supposed to produce a class in there; this is essentially an étale sheaf
of algebras over Spec R. As such, fixing an isomorphism ¢: H g C — M>(C), one can go around the
square

Her C — MQ((C)

1@{ J{Mg(i)

HerC 2 MQ((C)
to produce a cocycle in H!(Gal(C/R), PGLy(C)), from which a boundary map along
0 — po — SLy(C) — PGLy(C) — 0

produces a class in H?(Gal(C/R), uu2). However, realize that we are basically doing étale cohomology
here over SpecR.

We take a moment to acknowledge that one can now upgrade Hilbert's theorem 90 to the following.
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Theorem 3.29. Fix a scheme X. For any quasicoherent sheaf M, there is a natural isomorphism
H. (Xzar7 Mzar) — H.(Xe‘m Met)-
Roughly speaking, H'(Gal(K*®/K), GL,,(K*°)) is trying to classify vector bundles over Spec K, which are

at a point and should be trivial. We upgraded this to the previous result to talk about quasicoherent sheaves
in more generality.

Example 3.30. There is an étale sheaf GL,, on X by sending the affine open Spec A — X to GL, (4).
Similarly, one has an étale sheaf PGL,, by taking the sheafification of the presheaf given by sending
Spec A — X to GL,,(4)/ GL1(A).

The point is that the étale topology allows us to make sense of short exact sequences like
0— pp - GL; - GL; — 0
which is the scheme-theoretic version of the short exact sequence
0 = pp (K5P) — K%PX — K5PX 0

in Galois cohomology.

3.4.2 Azumaya Algebras

To continue our story, we would like to generalize our notion of the Brauer group.

Definition 3.31 (Azumaya algebra). Fix a scheme X. An Azumaya algebra is a sheaf of Ox-algebras
which is étale locally isomorphic to M,,(Ox) for some n.

Quickly, recall the following result.

Theorem 3.32 (Skolem—Noether). Fix a ring R. Then Autg (M, (R)) = PGL,(R).

Corollary 3.33. Fix an Azumaya algebra .4 on X. Then the étale sheaf sending U to the set of isomor-
phisms A|y — M,,(Oy) has a simply transitive action by PGL,,.

This is referred to as a “torsor,” and we will be able to classify them by calculating H!(X,, PGL,,).

Definition 3.34 (torsor). Fix a sheaf G of groups on X. Then a G-torsor is a sheaf of sets S with G-action
such that each étale open set U has a covering {U;} such that S(U;) # @ for each 4, and further, our
action is simply transitive. In other words, being simply transitive means that we have an isomorphism
G xS — 8 xSby(g,s)— (gs,s)isanisomorphism of sheaves of sets.

Here is how this relates to our corollary.

Proposition 3.35. Fix an étale sheaf A of abelian groups. Then H!(X,, A) is naturally isomorphic to the
set of A-torsors up to isomorphism.

Proof. Working from the definition, we recall that computing cohomology of A amounts to constructing an
injective resolution
0 A-TI' 51 5712 — ...
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and then computing
_ ker(D(Z') — I'(Z?))
' (Xer, A) = im(T(Z°) — T(Z1))

Now, given an element of the kernel s € ker(I'(Z*) — I'(Z?)), we produce the A-torsor
S: U {aeI’(U):da=sly}.

Then one can check that s being adjusted by an element of im(I'(Z") — T'(Z')) corresponds to our A(U)-
action, which turns S into an A-torsor. Lastly, one should show that every torsor arises in this way, which is
hard. |

3.5 April24

We provide an example today.

3.5.1 Writing Down the Brauer Group

The goal for today is to construct a smooth projective Q-surface X such that X (Ag) # @ but X (Ag)®" = 2.
In other words, the local-to-global principle fails and is detected by the Brauer—Manin obstruction.

Quickly, we recall our definition of the Brauer group. Precisely, we are looking at the isomorphism classes
of Azumaya algebras over X, where we mod out by the equivalence relation trivializing End(£) for locally
free sheaves £ over X of finite rank. In other words, we say that A ~ A’ if and only if there are vector bundles
£ and &’ such that

A@End(€) 2 A" @ End(E').
Notably, an Azumaya algebra A of rank n? has a simple transitive PGL, -action on the étale sheaf
ZA4(U) == {isomorphisms A|y = M, (Op)},
so we are producing an element of H!(X, PGL,,). However, we have an exact sequence
1—-G,, —»GL, —»PGL, — 1,

of étale sheaves, sowe getamap H'(X,PGL,,) — H%(X,G,,), sothereisaninclusion Br(X) — H2(X,G,,).
Indeed, we have the exact sequence

H'(X,GL,) - H'(X,PGL,) = H*(X,G,,),

and one can check that the previously defined equivalence relation is exactly dictated by the “locally free"”
objects coming from H' (X, GL,,).

Theorem 3.36. For reasonable X (for example, it has an ample line bundle), then the inclusion Br(X) —
H?(X,G,,) is an isomorphism.

There are counterexamples, though we do not have a good understanding in general. For example, we do
not know if we may merely assume that X is a smooth variety.
Let’s talk a bit about “reducing to fields.” Here is the motivation.

Remark 3.37. Suppose that X is a smooth, integral, projective k-scheme, where & is a field of charac-
teristic 0. It is then a fact that there is an injection Br(X) — Br(K (X)) with image we can explicitly
describe; namely, we can describe them using residue maps.
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As such, for our purposes, we will be interested in R being a complete discrete valuation ring (in character-
istic 0) with residue field k, and we define K := Frac R. We now recall that
Br K = H?(Gal(K*P/K), K5°P)
= H*(Gal(K"™ /K), K"
2 H*(Gal(K"™ /K), 7)
+— HY(Gal(K"™/K),Q/Z)
~ HY(Gal(k**? k), Q/Z)

from class field theory that these are all isomorphisms. For example, the leftward arrow <« is an isomor-
phism by staring at the exact sequence

0-Z—-Q—-Q/Z—0,

where the point is that the divisible group Q is not going to have any cohomology. Now, in our set-up, it is
a theorem of Grothendieck that

0 BrX — Bu(K(X)) > @ H(Gal(k(z)*®/k(x)),Q/Z), (3.1)
zeXx @)

where X () means codimension 1. (In other words, we are summing over divisors.) To understand where
the right map is coming from, we note that any class in Br K(X) can restrict to the corresponding discrete
valuation ring in some small neighborhood, complete it, and run through the above set-up.? Here are some
corollaries of this.

« We can more or less smooth over the Brauer group. Explicitly, foran open subscheme U C X such that
X\ U has codimension at least 2, we have that the restriction map Br(X) — Br(U) is an isomorphism.
Namely, our codimension-1 points do not change upon restriction to sucha U.

« Azumayaalgebras more or less glue together: if we have an element of Br K (X ) which merely vanishes
locally in codimension 1, we know that it must arise from Br X.

3.5.2 Iskorskih's Examples
We are now ready for our example. Define the Q-scheme U in P2 as cut out by the equation
Y422 = (3—x2) (x2—2),

andletj: U — X beasmooth projective modelfor this surface. (Namely, any U is birational to a smooth pro-
jective surface, which is our desired X.) For brevity, we set K := K(X), and we choose A .= H (3 — 22, —1)
to be the generalized quaternion algebra.

There are now many things to check. To begin, note that X is a conic bundle over P'. Namely, note that
thereisamap U — Al by projecting onto the = coordinate, and also U embeds into AL x AZ’Z in the obvious
way. To make X a conic bundle, we would like to write X C P? as cut out by a degree-2 homogeneous
polynomial. As a bundle over P!, we are actually asking for an embedding X < P& where € is a vector
bundle over P!, and we want to “cut out” X by a section s € I' (P, Sym?® £). Now, we take

g = Opl () Opl @Opl (2) .
Lo Ly Lo
We now define sp = 1 € T'(P},£5?) and sy = 1 € T'(PL,£7?) and so = — (3w? —2?) (2% — 2w?) €

T (]P’l, Op: (4)). In total, our section s will be given by s := sy + s1 + s2. The point is that if we restrict to
the affine open chart given by z = 1, then X collapses down to U.

2 One should check that a given algebra A € Br K(X) will have residue 0 at only finitely many codimension-1 points. This is a
little involved to check; the point is that any A € Br K(X) will extend in definition to a nonempty open set U, and any codimension-1
scheme intersecting U will have vanishing residue. Thus, we only need to be worried about the finitely many codimension-1 points
livingin X \ U.
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3.6 April26

We continue with Iskovskikh's examples.

3.6.1 Iskovskikh's Examples

For brevity, we today set Fi(z,w) := (3w? — 2?) (22 — 2w?). Let’s be more explicit about our construction

from last class. Namely, to define s € T (P} ,,, Sym? &), it suffices to define our section on the affine lines Al
and A, . Over A} xP? _ we seethat s becomes y® 4 2% — F(x, 1)v*, where we are choosing global sections
y, z, and v to trivialize

E = 0Op1 & Op1 & Opr (2)
We note that U will thus embed into X|4:. On the other side, we see that s = ? + 2% — F(1,w)(v')? on

1 2 . .
Ay, x P, by asimilarargument.
We now run some checks.

« We must check that X is a smooth surface. This is a matter of writing everything out on the standard
affine open subschemes.

« Themap w: X — P}, has exactly four singular fibers. Indeed, fix some [« : ] € P}, ,,. Then the fiber
we are looking at is cut out by
y: + 2% — F(a, B)0v?
inP2 . If F(a,) # 0, then we are defining a degree-2 curve rational curve in P? given by 3> +
22 — F(a, B)v?; we see that this is nonsingular (for example by checking affine-locally). However, if
F(a, ) = 0, then we are looking at y* + 2> = 0in P} _ ,, which we can see is not smooth because it is
the union of two lines intersecting at the origin. '

+ We have X (Ag) # ©. Running the above construction with Z as our base scheme will produce a
scheme X over Pj. We claim that Ay has an R-point and a smooth point for each prime p, which by
Hensel's lemma will produce a Z,,-point for each p, thus giving an Ag-point.

Well, forp ¢ {2,3}, we see that Ay, — IP’}FP has a smooth fiber geometrically isomorphic to ]P’%Fp by the
above computation. However, the Brauer group of IF,, vanishes, so because this fiber is geometrically
isomorphic to P%p means that this fiber must be isomorphic to IP’Ile on the nose; namely, any Brauer—

Severi scheme over F, must be IP’]}F?

Continuing, for R, we note that our equation
T (3—302) (x2—2),

so it suffices to choose x for which 2 < 22 < 3.

Forp = 2 and p = 3, one can find the necessary points by hand and check that they are smooth. For
p = 3, essentially the same argument as above will hold, but p = 2 needs some care.

» We would like to show X (AQ)Br = @, so we must construct some Azumaya algebras. Set K = K (X),
and let A be the quaternion algebra H (3 — z2, —1). In particular, as shown on the homework, taking
quaternion algebras produces a Z-bilinear antisymmetric map

KX KX H sSe se
o X o H? (Gal(K*P /K), K°PX) .
As an aside, we pick up the following fact: if K(¢)/K is a degree-2 extension, then we have isomor-
phisms
K> ~
NEDT ~ H°(Gal(K (i)/K), K(i)*) = H*(Gal(K (i)/K), K(i)*) C H* (Gal(K*"/K), K*P*) .

3 One could in theory write down the point explicitly, but it would probably require some casework.
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One can check, as done on the homework that the class a on the left goes to the quaternion algebra
H(a, 1) on the right.

With this in mind, we also write down
B=H(2*-2,-1) and C:=(3/2>-1,-1).

Using bilinearity of H, one can compute A+ B = (y? + 22, —1), but y> + 22 isanorm of y + zi € K (i),
so A+ B =0,so A = —B. Analogously, we note that C differs from A only by a square, so A = C.

Now, A will define an Azumaya algebra over all points V4 in X except where 3 — 22 has a zero or pole
inP} . Similarly, B defines an Azumaya algebra over all points V except where x> — 2 has zeroes or
poles, and C defines an Azumaya algebra over all points V- where 3/22 — 1 has zeroes or poles. But
one can see that V4 NV N Ve = &, so A suitably extends to all codimension-1 points (as either —B or

(), meaning that A will produce a bona fide algebra Azumaya algebra on X by (3.1).

3.7 April28

Today we finish up with Iskovskikh's examples. There will be make-up lectures on Wednesday and Friday
next week, at the same time and place.

3.7.1 Finishing Iskovskikh’s Examples

We want to show that X (Ag)B" = @. We don't have many tools for this: we have to just pick up some point
(zy)v € X (Ag), for which we claim

1
Z inv, z;[A] = 3
veVy

always, which produces our Brauer—Manin obstruction. Here, note that z}[A] sometimes might require
passing to a different presentation of A should A not actually be defined at this point. In particular, we must
deal with v on cases.

+ We take p ¢ {2,00}. Here, let a denote the z-coordinate of our point z, € X(Q,). We have the
following cases on v, ().

- Ifv,(a) < 0,then3/a® — 1 € ZX, so we work with [C] so that 2 [A] = 23[C] can be represented
by H (3/a? — 1, —1), which lives in Br Z,. However, one can show that the map

Br%, — BrF,

going down to the residue field is a bijection (we technically showed something like this over the
course of our discussion of class field theory), so we conclude that z[A] = 0 because BrF;, = 0.

- Ifv,(a) > 0, then one of 3 —a? or o — 2 lives in Z) . Indeed, certainly it each be in Z, but the sum
of these two elements produces 1, so one must be a unit. As such, we still get to run the above
argument using either A or —B as necessary.

 We take p = co. Letting 7: X — P}, be our projection, we claim that m(z) # [1 : 0]. Indeed, this
would imply that we have

Y +22=(3-02-1?)(12-2-0°) =-1<0,

which is impossible over Q, = R. In particular, we see 2 < a? < 3 in order for the above equation to
have a solution. Thus, we see 3 — a? > 0 or a? — 2 > 0, so we can work with the class 2*_A4 or 2% B,
respectively, from which it follows that we again have the zero class because positive real numbers are
norms from C.

« Lastly, we take p = 2. As before, we have three cases.
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- Ifva(a) > 0,then3 — a? = —1 (mod 4), so 3 — o fails to be a norm from Q3 (i) — Qa, so we
conclude that the quaternion class of 23 A = H? (3 — o2, —1) that fails to vanish in Br Q.

- Ifvg(a) =0, thena? — 2= —1 (mod 4), so we can run the above argument with B.

- Lastly, if va(a) < 0,then3/22 — 1 = —1 (mod 4), so we can run the above argument with C.

In total, we conclude that

> inv, zj[A] #0.

veVy
Namely, we can see that it should be 1/2 because it does double to 0, as we can see from the p = 2 case

(which is the only nonzero contribution).

Remark 3.38. The above example appears quite ad-hoc. Professor Olsson does not have a conceptual
explanation for what is going on.

3.7.2 Descent Obstructions

In general, fix a (say) proper K-variety X. What is going on with the Brauer—Manin obstruction is that a
point z € X () for afield Q produces pullback maps

H(X,Gp) % H2(Q,Gy),

where the point is that we can say something more concrete about H?(Q, G,,,). The Brauer—Manin obstruc-
tion then tries to put some compatibility conditions on these pullbacks.

More generally, we may fix an algebraic K-group G. This becomes an étale sheaf on X by taking the
étale openset U — X to Mork (U, G).

Example 3.39. Taking G = GL,, and U = Spec R, we see

Morg (U, G) = GL,,(R).

Now, for our descent obstruction, we work with H!(X, G) and tell the above story.* Let's see an explicit
example: take G = Z /27, and let X be a curve. Here, H'(X,Z/27Z) corresponds to unramified 2-to-1 maps
of curves D — X, and these have a Z/2Z-action by our double-cover. Now, given a point z € X (£2) for some
field 2, we produce a pullback map

HY(X,7/2Z) — H*(Q,Z/2Z) = Hom(Gal(Q2*P /Q), Z/27),

where we now see hope because the target is nonzero. In particular, we can partition points in X (X') based
on what class they hit in the target, which is better because we can lift such K-points up a point in the curve
D which is doing our covering.

3.8 May3

Let's discuss the descent obstruction.

3.8.1 The Descent Obstruction

As motivation, recall that the Brauer—Manin obstruction essentially took local points in X (A ), sent them
to [[,cv, Br K., and asked if they were in the image of Br K. The points that did in fact come from Br K are

4We did not work with H'(X, G,,) earlier because the H?(2, G, ) all vanish.
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now points which might come from global points. Translating everything into cohomology, we are basically
computing the fiber product of the following square in set.

X(Ag)*=° X(Ak)

! !

H?(Gal(K> /K), k7% ) —— [] H(Cal(Ki®/K,), K3P%)
veVi

Most of this discussion works for general algebraic groups. Before continuing, let’s talk a little about alge-
braic groups.

Example 3.40. The group G = GL, is an algebraic group over a field k. Namely, it is an étale sheaf
because it is a scheme
GLy = Speck[{zi; }1<ij<n]s,

where § € k[{z;; }1<i j<n] is the determinant.

Example 3.41. The group G = PGL,, should be thought of as the quotient GL,, /G,,,, where the quotient
happens on the étale set. This turns out to be an affine scheme, given by

PGL,, = (Spec k[{xi; }1<i,<nls)*™,

where G,, acts by scalar multiplication.

Remark 3.42. It turns out that defining PGL,, R by GL,, R/G,, R is not even an étale sheaf! Well, our
definition of PGL,, is the sheafification of this presheaf, so looking at the exact sequence

1—-G,, —»GL, —»PGL, — 1,

it is enough to check if GL,, R — PGL, R is always surjective. Well, it fails to be surjective at, for
example, R = OpgL,,, which one can check directly.

Quickly, we recall that Br X = H?(X4,G,,), which we discussed earlier. In particular, we can recover
H?(Xe, G,y,) as the union of the images from H!(X,, PGL,), so we might as well just look at PGL,, and
examine the following pullback square

X(Ag)~ X(Ag)

! !

HY(K,PGL,) — [] H'(K.,,PGL,)

veVK

where a is now some class in H*(X, PGL,,). Taking intersections, we can now see an obstruction

PGLn _ ﬂ m (AK)Q-

n>0 a€H1(X,PGL,)

Itis atheorem that actually X (A )PS™ = X (A )BT, but the point of this discussion is that we could actually
swap PGL,, with any reductive group G one pleases. So we define

X descent m n X(AK) ,

G acH(X,G)
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where the intersection of G is working over affine finite type group k-schemes. Notably, because we re-
marked X (A )Pl = X (Ag)BT, we certainly have X (Ag)descent C X (A )BT, so we hope to have a better
invariant. Sadly, we are not out of the woods.

Theorem 3.43 (Poonen). There exist X such that

X(K) ,C,_ X(AK)dcsccnt g X(AK)Br.

Remark 3.44. There is a conjectural program which provides an infinite sequence of obstructions to
characterize X (K).

3.8.2 Torsors

Let's quickly recall our discussion of G-torsors. Here, X is a k-scheme, and G is an algebraic group over k.
Now, H'(X, G) was defined using étale cohomology, but one can also view this as isomorphism classes of
G-torsors, where we mod out by principal homogeneous spaces. Here is the definition of a torsor.

Definition 3.45 (torsor). Fix a k-scheme X and algebraic group G over k. Then a G-torsor is an étale
sheaf P on X with a G-action satisfying the following conditions.

» Forany étale open set U of X and covering {U;} of U, one has P(U;) # @ for some U;.

« If P(U) # @, then the action of G(U) on P(U) is simply transitive.

Example 3.46. Fix an exact sequence
1-G-G5H-1
of algebraic groups. Now, for fixed o € I'(X, H), the étale sheaf given by U s {g € G(U) : n(g) =
t

a|y}is a G-torsor. Indeed, one can adjust any element in here by some element in G(U) to satisfy the
condition.

Remark 3.47. Faithfully flat descent shows that any G-torsor is representable by a scheme.

And here is the definition of a principal homogeneous space.

Definition 3.48 (principal homogeneous space). A principal homogeneous space is an X -scheme S with
a G-action Gx xx S — S which isisomorphic to Gx locally on the étale site.

Now, for a € H (X, G), we observe that we can decompose

XEK)= || {zeX(X):za=9}
yEH(K,G)

In some sense, we have “stratified” H!(X, G).
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Example 3.49. Suppose that a € H!(X, G) arises from the X -scheme S with structure map¢: S — X.
Then we see
{r e X(K):z*a =%} = q(S(K)),

where x is the trivial class in H'(X, G). Indeed, for # € X(K), we draw the following square.
Sy ——

:

Now, a = =« is trivial if and only if we can trivialize S,,, which amounts to finding a K-point in S,, so
these are equivalent data to finding an element in ¢(S(K)).

< —

—

3.9 May3

We continue with the descent obstruction.

3.9.1 TwistingaTorsor

Throughout, K is a field, and X is a smooth projective K-variety. Fix a G-torsor P; explicitly, P is an X-
scheme equipped with a G-action which étale locally looks like Py = G x, U for étale open sets U — X.

We want to twist one torsor by another. Namely, consider Aut(P), which is the étale sheaf on X send-
ing the étale open set U — X to the automorphisms Py — U compatible with the G-action.

Example 3.50. One has Autg(Gx) = Gx by sending g € Gx to the right-multiplicationmap Gx — Gx
given by h — hg.

However, this isomorphism depends on a choice of isomorphismo: P — Gx. Ifweletp,: Autg(P) — Gx
be the corresponding isomorphism given by the above example, then we note that a different choice of
isomorphism ¢’: P — Gx will have

I
0 =Tgy00

because o’ o ! is an automorphism of G'x. From here, one can compute ¢, = go © vy © g; *

This problem propagates with torsors. Namely, with any G-torsor P, it will étale locally look like a bunch
of Ply, & Gy,, but the choices of these isomorphisms being non-canonical (as above) means that we want
Autg P to be a twisted form Gp of Gx on the étale open sets. In fact, tracking everything through, we are
essentially describing a 1-cocycle in the inner automorphisms of G.

From last time, we recall that a given G-torsor P corresponding to a class o € H*(X, G) can be decom-
posed into

XE)= || {zeX(®) :za=+}
YEH!(K,G)

For our construction, we take our G-torsor P and some ¢ € H'(K, G) corresponding to the G-torsor @ on
Spec K and then define

QNS P=(Qx,P)/G

where our G-action is defined by g % (¢,p) = (gflq,gp). Notably, this locally looks like G x G modded out
by the relation (gh, h') = (h, gh'), which is just G, so we in fact have a Gp-torsor.

Remark 3.51. One can check that P A® Pis trivialif and only if Qx = P.
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The point of this discussion is that we may define P¢ := Q A“ P with canonical map 7¢: P¢ — X. As such,
we now note that z € X (K) has ¥’ = ¢ if and only if z* P¢ is trivial, which we can see is equivalent to z* P¢
having a K -point, which is lastly equivalent to = € 7¢(P¢(K)). So we have achieved

X(E)= || =(@P/K)).
vyEH(K,G)

The game, now, is to try to understand K -points of X by trying to understand the Ps instead.

3.9.2 AnExample

We will try to find rational solutions to y* = (22 + 1) (z* + 1). To make this compact, we set

Kz, y, 2]
W = (2% +2%) (&' + 2%))

X = Proj

where we are living inside weighted projective space.

The goal is to tile ourselves by elliptic curves. Set G = Z/27Z, and we will look for G-torsors. For this,
we note there isa map P — X givenas P C A3 cut out by the equations y? = (2% + 1) (z* + 1) and
w? = z* + 1, which we note is a G-torsor via the action of w — —w. To understand the twists, we note that
we are looking at

H'(Q,2/22) = Hom(Gal(Q/Q), Z/22),

and such a homomorphism will correspond to a quadratic extension Q(+/c) of Q. As such, we can compute
our twist as P¢ cut out by the equations y? = (2% + 1) (z* + 1) and cw? = z* + 1.

It turns out that some c will produce elliptic curves. For example, P! is isomorphic to the elliptic curve

y?> = 2% — z, and P? is isomorphic to the elliptic curve y? = 23 — 4. It turns out that #!: P! — X and

72: P2 — X will cover X (Q), so we can solve the elliptic curves to finish. In total, each elliptic curve gives 4
points, so we achieve

U(Q) = {(Oﬂ 1)7 (07 71)7 (17 2)a (17 72)’ (717 72)7 (*13 2)};

as achieved. (We lost a few points due to points at infinity.)

3.9.3 The State of the Art

Fix a number field K. Then we set

X(AK)ét’Br — |—| |—| P(AK)Br

twisted finite groups G/ K P H'(X,G)

as a subset of X (A); namely, for each of the P € H!(X, G) from the descent obstruction, we can apply the
Brauer—Manin obstruction.

Theorem 3.52 (Poonen). Fix a number field K. Then X (Ax)B" is not equal to X (K) in general.
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