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4

THEME 1

WORKING OVER C

Every person believes that he knows what a curve is until he has
learned so much mathematics that the countless possible
abnormalities confuse him.

—Felix Klein, [Kle16]

1.1 January17

Let’s get going.

Warning 1.1. The proofs in this first chapter of the course will be somewhat sketchy. We will later go
back and prove things in more generality using the machinery of algebraic geometry (instead of the
theory of complex manifolds).

1.1.1 Course Notes

Here are some course notes.

The professor for this course is Yunging Tang. Her research is in arithmetic geometry. Office hours
will begin next week.

This course is on complex multiplication of abelian varieties.

There will be homework, and it completely determines the grade. There will be (on average) biweekly
homeworks, which can be found and turned in on bCourses.

There is a syllabus on the bCourses: https://bcourses.berkeley.edu/courses/1532318/.
The syllabus has many references, on abelian varieties, complex multiplication, and class field theory.

There is a schedule page on the bCourses, though it does not refer to every possible reference.

It is encouraged to seek out examples, such as by emailing Professor Yunging Tang. For example,
elliptic curves are important, but their theory is often significantly simpler than the general theory.
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« Our main goal is to discuss the main theorem of complex multiplication. We will give some version
of it in the first part of the class, and then we will give a second version later after a more thorough
discussion of abelian varieties.

« Much of the language will be scheme-theoretic, so it is highly recommended having some algebraic
geometry background on the level of Math 256A.

1.1.2 Complex Tori

Let’s just jump on in. The most basic example of an abelian variety is an elliptic curve, so that is where we
will begin.

Definition 1.2 (elliptic curve). Fix a field k. Then an elliptic curve is a pair (E, e) of a smooth proper k-
curve E of genus 1 and a marked point e € E(k).

Remark 1.3. One can replace “proper” with “projective” here without tears.

Example 1.4. Take k£ := C. It turns out that an elliptic curve (E, e) then makes E(C) into a Riemann
surface of genus 1: smooth makes this a manifold, proper makes it compact, and the genus is preserved.
But then E(C) will have universal cover given by C (in reality, we're looking at some kind of torus), and
the projection map identifies E(C) with C/A for a lattice A C C. By translating, we may as well move
the marked pointe € E(C)to 0 € C/A.

The above examples motivates us to look at higher-dimensional quotients, as follows.

Definition 1.5 (complex torus). A complex torusis a quotient of the form V/A where V is a finite-dimen-
sional C-vector space, and A C V is a lattice of full rank.

Remark 1.6. In the sequel, it may be helpful to note that a complex vector space V is just a real vector
space V together with an R-linear map J: V — V such that J? = idy.. Namely, given a complex vector
space V, we can build J by the action of i. Conversely, given a real vector space V with J: V' — V such
that J2 = —idy, we note that we have a map C — Endg(V) by i — J because C = R[z]/ (22 + 1);
as such, ¥V becomes a complex vector space restricting to the underlying real vector space. These con-
structions are inverse to each other by tracking back through that the action of i is given by J.

It turns out that a complex torus need not be an abelian variety, but one does have the following result to
get projectivity from [MumO08, I.3, p. 33].
Theorem 1.7. Fix a complex torus X := V/A. Then the following are equivalent.

(i) X can be embedded into a complex projective space.

(ii) X isthe analytification of an algebraic C-variety.

(iii) There exists a positive-definite Hermitian form H on V such that H sends A to Z.

Proof. We will discuss this more later in the course. [ |

Remark 1.8. Later on, we will understand the positive-definite Hermitian form as a polarization.

Satisfying any of these equivalent conditions turns out to produce an abelian variety.

6
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Definition 1.9 (abelian variety). An abelian variety is a C-variety A which is a complex torus satisfying
one of the equivalent conditions of Theorem 1.7. In practice, we will choose to define an abelian variety
as a complex torus satisfying (iii).

This definition is rather unsatisfying because it only works over the base field C, but it is good enough for
now.

Remark 1.10. It turns out that there is a unique algebraic structure on the variety, so there is no worry
about this being vague.

Theorem 1.7 involves Hermitian forms, so we will want to get a better handle on these.

Lemma 1.11. Fix a finite-dimensional complex vector space V. Then there is a bijection between Her-
mitian forms H on V and skew-symmetric forms ) on the underlying real vector space of V such that

Y (v, iw) = Y(v,w).

Proof. We begin by describing our maps.

+ In the forward direction, send H: V x V — C to its imaginary part ¢ := im H. Then we have a map
: V xV — R, and here are our checks on it.

— Skew-symmetric: note that ¢(v,v) = Im H(v,v) = 0 because H(v,v) € R because H is Hermi-
tian.

- Bilinear: note that ¢ (cv, w) = Im H(cv,w) = ¢Im H (v, w) = Im H (v, cw) = ¥ (v, cw) and
Y(vy + vo,w) = Im H(vy + v, w) = Im H(vy,w) + Im H(vy, w) = ¥(vy,w) + ¢(va, w)

and similarly (v, w; + we) = Y(v,wy1) + Y (v, wa).
- Note that ¢ (iv,iw) = Im H (iv,iw) = Im i(—i) H (v, w) = Im H (v, w) = ¥ (v, w).

«+ For the backward direction, send ¢ to the form H (v, w) = ¢ (iv, w) + it (v, w). Here are our checks.

- Conjugate symmetry: note (v, w) = —¢ (v, w) implies that Im H (v, w) = —Im H(w,v). Then we
must show that Re H (v, w) = Re H(w, v), or ¢ (iv, w) = ¢ (iw,v). Well,

Y(iw,v) = (v, iw) = ¢ (v, iw) = P(iv, w)
- Bilinear: note

H(vy 4 va,w) = (i(v1 + v2),w) + it (vy + vo, w)
= 1/’(”1#”) + 7;1/}(1}1711)) + 7/)(1'112;71’) + i?/)(’l}g, w)
= H(vy,w) + H(vz,w).

Also, for ¢ € R, we see that H(cv, w) = ¢ (icv, w) + ip(cv, w) = e(y(iv,w) + ip(v, w)) = cH (v, w).
So it remains to check that H (iv, w) = iH (v, w). Well,

H(iv,w) =1 (*v,w) + i (iv,w) = —p(v,w) + iyp(iv, w) = iH (v, w).
We now show that the constructions are inverse.
« Given 1), we constructed H,, and we see that Im H,, = v by construction.

+ Given H, we set ¢ := Im H. Then we must show that the constructed Hy, is equal to H. Note that
Im Hy, = ¢ = Im H by construction, and

Re Hy (v, w) = 9 (iv,w) = Im H (iv,w) = ImiH (v, w) = Re H(v, w),

so the result follows. [ ]
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Remark 1.12. We remark that H is a positive-definite Hermitian form if and only if the form (v, w) —
Re H(v,w) is a positive-definite symmetric form. In terms of the above construction, this corresponds
to the map (v, w) — ¥ (iv, w) being positive-definite; i.e., 1 (iv,v) > 0 forall v and equal to 0 if and only
ifv=0.

The moral of Lemma 1.11 is that we are allowed to only pay attention to the imaginary part. It is worth
having a name for this.

Definition 1.13 (Riemann form). Fix a lattice A of full rank in a finite-dimensional complex vector space
V. Then a skew-symmetric form¢): A x A — Zis a Riemann formifand only if yg: V x V' — R defined
by Yr(x,y) = ¥ (iz,y) produces a symmetric positive-definite.

Remark 1.14. Quickly, we claim that ¢r is symmetric and positive-definite if and only if ¢ (iv,iw) =
(v, w)alwaysand (v, v) — ¥ (iv,v) is positive-definite. Indeed, ¥ is the real part of the Hermitian form
constructed in Lemma 1.11, and we can track through symmetry in the proof and positive-definiteness
from Remark 1.12.

1.1.3 CMFields

We want to give some examples of what “complex multiplication” means. This begins with a discussion of
CM fields.

Lemma 1.15. Fix a number field E/Q. Then the following are equivalent.

(i) There is a quadratic subextension E* C F such that E*/Q is totally real, and E/E™ is totally
imaginary.

(i) There exists a nontrivial field involution ¢: E — E such that o(c¢(a)) = o(«) foranyo: E — Cand
ac k.

(iii) There exists a unique nontrivialfield involutionc: E — E'suchthato(c(a)) = o(a) foranyo: E —
Canda € E.

(iv) There exists a totally real subfield ET C E such that E = E*(a) where a? € ET is “totally
negative” (i.e., it maps to a negative real element for every complex embedding E+ — C).

Proof. We show our implications in sequence.

« We show (i) implies (iv). By completing the square in the quadratic extension E*/E, we may select
a € ET\ Esuchthata? € ET. Being quadratic implies that E = ET(«).

It remains to check that « is totally negative. Fix an embeddingo: E — C, and leta: E — C be
the complex conjugate embedding. Because E is totally imaginary, we note 0 # 7, but o|g+ = 7|+
because E* is totally real, so we must then have o(a) # o(a). On the other hand, o? € E* implies
that

o(a)* = o(a) R,

so o(a) = —o(a). Thus, o(a) must be imaginary, so o(a)? < 0.

« We show (ii) implies (i). Set E* = E¢; because ¢® = idg, we see that E/E™ is quadratic. To see that
E7 is totally real, we note that any embedding o: ET — C can be extendedto 5: E — C. Now, for
any a € ET, we see that

o(a) = 5(a) = 5(c(a) = 5(a) = o(a),

soo(a) € R. Thus, o actually outputs to R.
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Lastly, we must see that F is totally imaginary. Suppose that 0: £ — Cis a complex embedding, and
we show that the image is not contained in R. Indeed, if o () € R, then

() = o(a) = o(c(a)),
soa € ET.Thus,o(a) ¢ Rforanya € E\ ET.

We show (ii) and (iii) are equivalent; of course (iii) implies (ii). To see that (ii) implies (iii), suppose that
¢1 and ¢q are such field automorphisms E — E. Then for any embedding o: E — C, we see that
o(c1(a)) = o(ea(ar)) forany o € E, so ¢; = ¢ follows.

We show (iv) implies (ii). Define ¢ € Gal(Et/FE) by ¢(a) := —a. Then ¢ is an automorphism with
c? = idg. Also, for any embedding o: E — C, we know that o(a) € Rforanya € E*,and o(a)? < 0

by total negativity, so o(«) is purely imaginary. Thus, for any a + ba € E, we see

o(c(a+ba)) =o(a—ba)=0c(a) —o(b)o(a) =o(a) + o(b)o(a) = o(a + ba),

as needed.

Remark 1.16. The proof of (iv) implies (ii) has shown that if E has been embedded into C already, then
cis literally complex conjugation.

This produces the following definition.

Definition1.17 (CM field). Anumber field E/Qisa CM fieldif and only if E satisfies one of the equivalent
conditions of Lemma 1.15. We call the involution ¢c: E — E the complex conjugation of E.

Remark 1.18. The field E need not be Galois.

Remark 1.19. It turns out that ET = E° and is the maximal totally real subfield. Certainly ET C E'is
totally real. Conversely, suppose F' C F is a totally real subfield. We will show that c fixes F, which
then implies F' C E€. Well, for any « € F, we pick up any embedding o: E — C, and we see that

o(c(e) = o(a) = o(a),

so a = ¢(a) follows.
Being CM is a fairly nice adjective.

Lemma 1.20. Fix CM fields £, ..., E, C Q. Then the composite field E; - - - E,, is CM.

Proof. By induction, we may take n = 2; define E := F; F; for brevity. Letc;: E1 — Ejand ca: Ey — E3 be
the complex conjugations, which we would like to extend to a complex conjugation map c: E — E. Well, a
generic element of E can be writtenas o = Z?:l ai;a2; Wwhere ay; € Eq1 and ag; € Fo, so we define

M&

01 ah 02 a27
i=1

We ought to check that ¢ is well-defined. Suppose that Zle a1;a0; = Zle al,;ab;, and choose an embed-
dingo: F1FEy; — C. Then o will restrict to embeddings o1 : £; — Cand o3: F; — C, and we see that

( E C1 alz 02 a2 > E 01 C1 alz 02 C2 am —0< E auazz)

9
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and similar holds when we add primes. So the injectivity of o provides that c is well-defined.

Now, the above has actually automatically shown that o(c(«)) = o(«) for any complex embedding
o: E1Ey; — Cand a € E1FE,. It remains to show that ¢ = idz and that ¢ is a nontrivial field homomor-
phism. To see that c is a field homomorphism, we notec = 0! o100 o ¢, where .: C = C is complex
conjugation. To see that ¢ is nontrivial, we note that it extends ¢; : E; — Ej, which is nontrivial. Lastly, to

see that ¢? = idg, choose o: E1E; — C,and we note thato o c®? =12 00 = 0, so ¢® = idg is forced. [ |

Corollary 1.21. Fix a CM field E. Then its Galois closure M in Q is CM.

Proof. Without loss of generality, choose an embeddingQ C C. Letoy,...,0,: E — Cdenote the complex
embeddings of F, and we note that the Galois closure of E is the composite

o1(E)---o,(E).

By Lemma 1.20, it thus suffices to show that o(E) is a CM field for any embeddingo: E — C.
Well, let ¢: E — E denote the complex conjugation of E; we note that this agrees with the complex
conjugation in C by Remark 1.16. Then to show that ¢(E) is a CM field, we note that we have a complex

conjugation ¢, : o(E) — o(E) by
co(o(@)) = a(c(a)).

This is also o(«), which establishes that ¢, is a nontrivial field involution. (Being nontrivial follows because
E is totally imaginary.) Lastly, for any complex embedding 7: ¢(E) — C, we must show that 7(¢, (o ())) =
7(o(a)). However, we simply note that (7 o o): E — C is another embedding, and

7(co(0(a))) = (T 0 ) (c(e)) = T(o(e)),

as desired. [ |

Having CM fields allow us to define CM types.

Definition 1.22 (CM type). Fixa CM field E with complex conjugation c. Thena CM type on E'is a subset
® C Hom(E, C) such that
Hom(E,C) = ® U cd.

We call the pair (E, ®) a CM pair.

Remark 1.23. When E/Q is imaginary quadratic (which is what happens for elliptic curves), one does
not really have a choice in CM type. But for higher degrees, which exist for higher-dimensional abelian
varieties, there is indeed structure we want to keep track of.

This allows us to write down an abelian variety.

Exercise 1.24. Fix a CM pair (E, ®), and set n := 1[E : Q]. For a lattice a C E, set A := q, and use  to
produce an embedding a — C?® by a — (0())yea. Then C®/ais an abelian variety.

Proof. Quickly, we show that a is a lattice of full rank in C®. Fix an integral basis {a1, . . ., az, } of a. Now, by
viewing C® as R?" by taking real and imaginary parts, we see that the determinant of the map Op®;R — R?"
is, up to sign and a factor of 2, equal to

Ul(al) Ul(Oézn)

CTQn(al) Tt UQn(a27L)

10
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the signs:
c(x)y?

1.2. JANUARY 19 254B: COMPLEX MULTIPLICATION

which is the discriminant of the a,, which is nonzero. (Here, we enumerate ® = {oy,...,0,} and then
onvi = 0 fori € {1,...,n}.) This is sufficient because then Of is a lattice of rank 2n in R?". So we do
indeed have a complex torus.
To provide the abelian variety structure, it suffices to provide the ¢) of Lemma 1.11. We will choose ¢ € a
judiciously and then set
U(@,y) = Trgg(€xc(y)).

For concreteness, we go ahead and embed F into C so that cis literally complex conjugation by Remark 1.16.
As such, we will write ¢(y) as . Now, to choose £, we note that a weak approximation argument grants &, € a
such that Imo(&y) > 0 for each o € ®; such a thing exists by a strong approximation argument. Then set
€ =& — & sothat £ = —¢ while still having

Imo(¢) =Imo(&) —Imo(&) = Ima (&) + Ima(éy) > 0.
We are now ready to conduct our checks.

« Bilinear: the map (z,y) — ({x,7) is Z-linear in both coordinates, and the map (z,y) — Trg/q(zy) is
bilinear in both coordinates, so the composite (x,y) — 1 (z,y) is also bilinear in both coordinates.

» Skew-symmetric: we must show that ¢(z,2) = 0 forany z € Og. Now, it will be helpful to expand

n

Y@, ) = Trg/(Ea®) = Y (0:(¢aT) + 73(EaT)).

i=1
Now, we note that 7;(£27) = 0;(€2T) = 04(€ - 2T) = —0;(£x7), so each term of this sum vanishes.

« Upon tensoring with R to produce ¥g, we must show that ¥ (iz, iy) = Yr(z,y). By scaling z and y, we
may assume that z, y € Og. We also note that £ is purely imaginary, so by scaling iz and 4y, it suffices
to show that )

1/J(I7y) = T3

iy

However, this is immediate from the linearity of the trace.

(€x,Ey).

+ Positive-definite: we must show that ¢k (iz, ) > 0 for each x and is zero if and only if z = 0. We may
as well check this for x € O, and a direct expansion produces

n

Uiz, x) =Y (04(&iaT) + 75(inT)),

i=1
where one makes sense of i by some kind of R-linearity. Expanding somewhat naively, we see

n

Y(iz,z) = Z(Ji(ig) + 0i(—i%))o;(2T) = Z 20;(i€)o;(2T).

i=1

Now, each term of the sum is nonnegative because Im¢;(§) > 0 already, so the total sum can only
vanish provided that all the individual terms vanish. For example, this requires that o;(zZ) = 0 for all
1,502 =0,s0x =0o0orz =0,sox = 0is forced. [ ]

Remark 1.25. In general, one can replace E by a CM algebra and replace OF by certain fractional ideals.
This will turn out to provide all isomorphism classes of abelian varieties with CM.

Next class we will define an abelian variety when not over C.

1.2 January19

Here we go. Today we will define an abelian variety in general, but we will stay focused on the analytic
theory.

11
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1.2.1 Defining Abelian Varieties

Abelian varieties are special kinds of group objects.

Definition 1.26 (group scheme). Fix a base scheme S. Then a group S-scheme is a group object G in
the category Schg of S-schemes. In other words, there exist S-morphisms m: G xs G — G (for mul-
tiplication) and i: G — G (for inversion) and e: S — G (for identity) making the following diagrams
commute.

» Associativity:
GXSGXSGm GXSG

idg % ml J{’m

GxsG —™ @
« |dentity:
G xgS M avsq
G / G
SxgG 29 gxsq
¢ Inversion:

GXSG

idCV'
G
ixm

GXsG

SxG
-

Remark 1.27. Equality of morphisms of k-varieties can be checked on geometric points, so we could

just check the above commutativity on G (k).

In particular, we want to be a variety.

Definition 1.28 (group variety). Fix a base field k. Then a group k-variety is a group scheme which is
also a k-variety (i.e., reduced and separated).

Remark 1.29. By way of analogy, we also note that a Lie group is a group object in the category Man of
smooth manifolds.

Abelian varieties are special kinds of group varieties.

Definition 1.30 (abelian variety). Fix a field k. Then an abelian k-variety is a group k-variety which is
smooth, connected, and proper.

Here, smoothness is something like requiring that we are a manifold, and proper is something like requiring
that we are projective. (It turns out that the conditions imply that A is projective, though this is not obvi-
ous.)

12
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Remark 1.31. One can even replace “k-variety” with “k-scheme” because being smooth over a scheme
implies being regular, which implies reduced.

Remark 1.32. It turns out that being geometrically integral is equivalent to being connected, by some
argument involving the connected component.

Remark 1.33. It turns out that being proper implies that the group law on A is abelian, which we have
notably not included in the hypotheses.

While we're here, we go ahead and define abelian schemes; these will be desirable because we may (per-
haps) want to define varieties via equations in a ring which is not a field (like Z) and then reduce to a field
(like F,) later.

Definition 1.34 (abelian scheme). Fix a base scheme S. An abelian S-scheme is a group S-scheme A
which is proper and smooth over S such that the structure map 7: A — S has connected geometric
fibers. (This last condition means that any geometric point s — S makes Az connected.)

Remark 1.35. Here, smoothness can be verified by something like a Jacobian criterion, analogous to
smoothness for embedded manifolds.

Remark 1.36. Notably, by the hypotheses, the geometric fibers Az are abelian varieties.

1.2.2 Working over C

We now return to working over £ = C. We quickly compare with Definition 1.9: being an abelian variety
over C as defined in the previous subsection implies that A(C) is a smooth complex analytic manifold which
is connected and compact, simply by reading off the adjectives. Now, this means that A(C) is connected and
compact, so we have a connected compact complex Lie group A(C), which one can show is always of the
form V/A where V is a finite-dimensional C-vector space and A C C is a lattice of full rank, as sketched in
Remark 1.38. From there, being algebraic does imply one of the equivalent conditions of Theorem 1.7, and
the converse is similar.
Anyway, for a taste of the analytic theory, we show the following for k = C.

Proposition 1.37. Fix an abelian k-variety A. Then the group law for A is commutative.

Sketch for k = C. For brevity, set ¢ := dim A. Consider the tangent space at the identity e € A, which
we will label T, 4; it is a g-dimensional C-vector space. Now, for e € A(C), we have a holomorphic map
¢y A(C) — A(C) given by conjugation y — xyz~!, and then this induces a linear map dc,: T.A — T.A.
This construction x — dc, produces a holomorphic map

A(C) = GL(T.A).

Indeed, this is holomorphic because dc,, on an open subset of A(C) holomorphic to C9, is simply a matrix
made of the derivatives of ¢, each of which continue to be holomorphic functions.

Now, the key point is that properness of A implies that A(C) is compact, but GL(7.A) is an open sub-
manifold, so the map A(C) — GL(T.A) must be bounded (by the compactness) and hence constant: A(C)
is connected, so it is enough to show that we are locally constant, and in particular, it is enough to show that
we are locally constant on trivializing open covers for A(C) and GL(T.A). But then we are looking at some

13
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bounded holomorphic map CY — C9”, which must be constant by using Liouville's theorem on suitable
projections.

Finishing up, we note that de, = idr, 4, we see that actually dc, = idr. 4 (conjugating by e does nothing),
which implies that ¢, must be the identity for any x € A(C), so the group law is commutative. To move this
up to the level of the scheme group law being commutative, we note that we want the diagram

swap

AxXxA — Ax A
Sl
A

to commute, but we already know that it commutes on C-points, which is enough for C-varieties [Vak17,
Exercise 11.4.B]. [ ]

Remark 1.38. Continuing with & = C, we note that the theory of complex Lie groups produces a group
homomorphismexp: T. A — A(C), which one can show is a covering space map. So A(C) must then be
acompact quotient of T, A, and actually it is a quotient by something discrete, meaning that A(C) = V/A
as above.

Here are some nice corollaries of realizing abelian varieties as complex tori.

Corollary 1.39. Fixan abelian C-variety A of dimension g. For any positive integer n, the multiplication-
by-n map [n]: A(C) — A(C) is a surjective group homomorphism, and its kernel is isomorphic to
(Z/nZ)%9.

Proof. Note [n] is a group homomorphism because A(C) is abelian. For the other claims, write A = V/A for
V a g-dimensional C-vector space. In particular, V/A is a divisible group, so [n] is surjective, and the kernel
is isomorphic to

1 1
ZA/A 2 27%9/7%9 = (Z/nZ)%*
SAJA = TP = (L0,

essentially by choosing a basis for A. |

Corollary 1.40. Fix an abelian C-variety A of dimension g. Then

m(A(C)) = H1(A(C),Z) = A = 2%

Proof. Again, write A = V/A for V a g-dimensional C-vector space. Then V is the universal covering space
for V/A (indeed, it's a simply connected covering space), so 71 (A(C)) = A, from which the rest of the iso-
morphisms follow quickly. For example, the abelianization of w1 (A(C)) is still A, so H;(A(C),Z) = A too.
Lastly, A = Z?9 by choosing a basis. |

1.2.3 Isogenies

While we're here, we define isogenies, which are “squishy” isomorphisms.

Definition 1.41 (isogenies). Fix abelian k-varieties A and B. A k-morphism f: A — B is a surjective
homomorphism with finite kernel.

14
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Example 1.42. For any positive integer n, the map [n]: A — A is an isogeny. We will prove this in
general later, but over C, it follows from Corollary 1.39. In particular, we know [n] is a homomorphism.
Also, the kernel has finitely many C-points, so it must be zero-dimensional and thus finite because it is
a closed subscheme of A.

Lastly, surjectivity is seen on C-points, but it also follows purely formally because the domain and
codomain of [n]: A — A have the same dimension; see [Mil08, Proposition I.7.1]. We will discuss this
later in the course, so | won't bother being formal here.

We would like to describe isogenies (over C) from the perspective of the complex tori. So we pick up the
following proposition.

Proposition 1.43. Fix complex tori V/A and V’//A’. Then holomorphic maps V/A — V’/A’ fixing 0 are
in bijection with C-linear maps V' — V' sending A — A’.

Proof. The backward map simply sends the C-linear map to the quotient map V/A — V'/A’.

For the forward map, we are given a holomorphic map g: V/A — V’/A’ sending ¢: [0] — [0]. Asin
the proof of Corollary 1.40, we note that V and V"’ are the universal covers of V/A and V' /A’, respectively,
because V and V' are simply connected. Thus, the quotient map p willinduce aunique map ¢: V — V onthe
universal covering spaces upon fixing a single point, and we must send ¢(0) := 0 to be linear. In particular,
the diagram

Vv —2 v 00— 0
L] | |
V/A —— VN 0+A —— 0+ A

commutes, and the relevant map ¢ is unique. So thus far we have shown that maps holomorphic V/A —
V' /A’ fixing 0 are in bijection with holomorphic maps V' — V fixing 0 and sending A — A’.

It remains to show that any such ¢ is linear. Note that it is holomorphic because it is locally given by the
holomorphic map V/A — V’/A’. Because ¢(0) = 0, it is enough to show that the derivative dy, : T,V —
T, )V’ does not depend on v € V. In other words, we would like the map

V — HOHl(c(TUVr, Tgo('u)vl)a

given by v — dy,, to be constant. Well, we use the same trick as in Proposition 1.37: note that this map
actually only depends on the class of v € V modulo A, so we really have a holomorphic map

which is bounded because V/A is compact and hence compact by using Liouville's theorem on suitable pro-
jections. |

Remark 1.44. Basically, we can see that being an isogeny means that the underlying linear map will be
a surjective linear map with finite kernel; in particular, dim¢ V' = dim¢ V’. This motivates us thinking
about isogenies as “squishy” isomorphisms.

1.3 January 22

Today we will talk more about the analytic theory.

15
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1.3.1 MoreonlIsogenies

We begin by picking up a piece of language.

Definition 1.45 (isogenous). Fixabelian k-varieties A and B. We say that Aand B are isogenous, written
A ~ B, ifand only if there is an isogeny A — B.

It turns out that having an isogeny is an equivalence relation, so we will not care about the direction of being
“isogenous.” Here are the checks over C.
Lemma 1.46. Fix abelian k-varieties A and B.

(@) Reflexive:idys: A — Aisanisogeny.

(b) Symmetric:ifo: A — Bisanisogeny, thereisanonzerointegernandanotherisogeny: B — A
such that
pop=[njp and  Poyp=[n]a.

(c) Transitive:if op: A — Bandv: B — C areisogenies, then ()0 ¢): A — C'is anisogeny.

Proof over C. We dispose of the easier claims first. Note (a) has little content: id 4 is a surjective homo-
morphism with trivial kernel and hence an isogeny. Similarly, (c) follows because being surjective, being a
homomorphism, and having finite kernel are all properties preserved by composition. Perhaps it is notably
that finite kernel is preserved by composition, but this is equivalent to all fibers being finite, and the fiber of
(1 o @) over some ¢ € C will simply be the (finite!) union of the fibers of  over points b € ¢»~1({c}).

It remains to show (b), which is perhaps the most interesting. We will show this by working with complex
tori and appealing to Proposition 1.43. Fix isomorphisms of compact complex Lie groups A = V/A and
B=V'/A'.Thentheisogeny p: V/A — V'/A’ arises from alinear map ¢: V' — V' sending A — A’. We are
thus looking at the following commutative diagram.

V7 v

ﬂl l”/

V/IA —2— VN

We claim that ¢ is an isomorphism of C-vector spaces.

« Injective: because ker ¢ C V' is a C-subspace, it suffices to show that ker ¢ is discrete. Well, tracking
around the diagram, ker ¢ is contained in ker(w o ¢) = ker(p o 7), which is

U @+n).

[z]€ker ¢
Because ker ¢ is finite, the above set is discrete in V, so we are done.

« Surjective: let o € (0,1) be transcendental. Fix a Z-basis A}, ..., A}, of A’. Then forany \{,..., \] €
A, we see that the set
{aN] + X, . a)s, + Ay,

is still a R-basis of V': the transition matrix from the basis {\], ..., A}, } to the above basis is als, plus
some matrix in Z2", which will surely have nonzero determinant because « is transcendental. Anyway,
¢ hits all e} in its image (modulo A’), so ¢ will hit some vector in a\; + A’ for each i. However, these
vectors will form a basis, as needed.

Now, to continue, fix isomorphisms a: A = Z?" and o’: A’ = Z?". Up to these isomorphisms, : A — A’
(which is an isomorphism upon — ®7 R) becomes a map ¢} : Z*" — Z>" (which is still an isomorphism upon
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— ®zR). In particular, det & is some nonzero integer n, and the adjugate matrix 1/, := adj &, provides a map
such that ¢, o 3}, = &, o 1}, are multiplication by n.

Passing back through a:and o/, we have produced some map ¢: A’ — A such that $ov and 1o are both
multiplication by n. Tensoring by R extends ¢ to an R-linear map V' — V satisfying the same conditions;
note that because multiplication by n is an isomorphism of C-vector spaces, it follows that ¢ is in fact C-
linear.

Now, modding out A and A’, Proposition 1.43 provides us witha map ¢: V'/A’ — V/A of complex tori
such that ¢ o ¢ and ¢ o ¢ are both multiplication by n. Note ¢ is surjective with finite kernel because ¢ is an
isomorphism of vector spaces. (In particular, surjectivity is automatic, and finite kernel follows because the
kernel of ¢ is contained in the kernel of ¢ o ¢ = [n], which is finite.) [ |

Remark 1.47. Being an equivalence relation, and in particular part (b) in Lemma 1.46, provides more
evidence that we should think about isogenies as “squishy” isomorphisms. Indeed, up to multiplication
by an integer, we are a bona fide isomorphism.

Remark 1.48. The end of the above proof has shown that an isomorphism of vector spaces ¢: V — V'
carrying A — A’ will have the needed map ¢: V' — V carrying A’ — A such that the composites
are multiplication by some nonzero integer n. In particular, merely being an isomorphism of vector
spaces implies that the quotient map ¢: (V/A) — (V'/A’) is an isogeny: surjectivity is clear, and finite
kernel follows because the composite with the quotient map ¢: (V//A’) — (V/A) is multiplication by a
nonzero integer, which has finite kernel.

We can decompose abelian varieties based on their isogeny class.

Theorem 1.49 (Poincaré reducibility). Fix an abelian k-variety A, and let B C A be an abelian subvariety.
Then there exists another abelian subvariety B’ C A such that BN B’ is a finite scheme, and

B+B ={b+V :be B,V € B}

is equal to A. In other words, the canonical map B x; B’ — A given by summing is an isogeny.

Proof. Thisis [MumO08, p. 160] or [Mil20b, Theorem 2.12]. In the complex analytic situation, the proof idea
is not so complicated: the point is to take an “orthogonal complement” to B.

Explicitly, set V := Lie A and W := Lie B. Functoriality of the tangent space tells us that W C V, and
functoriality of the exponential map implies that the diagram

0 A v 2Py A 0
] I ]
0 —— ANW w 2y B 0

commutes. Here, A is the kernel of exp: V' — A, so the diagram tells us that A N W must be the kernel of
exp: W — B. (Namely, the kernel of exp: W — Ais W intersected with the kernelof V' — A.) So A = V/A
and B =W/(W nNA).

Now, let H be the required Hermitian form on V, taking integral values on A, and set ¢r := Re H so
that ¢ is a positive-definite symmetric form on the underlying R-vector space of V. Quickly, note that H
continues to be positive-definite and Hermitian on W, so H is also a Hermitian form on W by restriction
(and still taking integer values on AN ).

As promised, we now define W’ := W+, where we take the orthogonal complement with respect to 1.
We have the following checks.

17
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+ Subspace: we claim W’ is a C-subspace of V. By construction, it is an R-subspace. Now, if w € W/,
we would like for iw € W’; namely, if Yr(w,v) = 0forallv € W, then we want g (iw,v) = 0 for all
v € W. Well, we compute

Yr(iw,v) = Re H(iw,v) = Re H(w, —iv) = ¢Yr(w, —iv),
and —iv € W still.

« Lattice: we claim that W’ N A is a lattice of W’. Certainly we have a Z-subgroup, so it remains to
compute the rank. We do this by an explicit construction of the basis. Let {w1, ..., w2 qim w } be a basis
for W N A, and extend it by {v1, ..., v2qimw-} to a basis of A. Now, for each v;, we can subtract out
something in W in order to land in W’; this factor is a rational number because it comes from dividing
out by values of ¥ on A, so we can then scale this element in order to land in W’ N A. This process
slowly produces a linearly independent subset of W’ N A of size 2 dim W/, which shows that W’/ N A is
a lattice of full rank in W',

« Form: as before, we note that H restricts to a positive-definite Hermitian form on W' taking integral
values on W/ N A.

In total, we are able to conclude that B’ := W’ /(W' N A) is an abelian variety, and it is an abelian subvariety
of A = V/A via the inclusion. It remains to show that the induced map B x¢ B’ — A is an isogeny. Well,
this map is given by taking the quotient of the isomorphism W @ W’ — V of C-vector spaces (by (ANW) &
(AN W), which is an isogeny by Remark 1.48. [ |

Remark 1.50. On the homework, we are asked for an example of B C A such that B N B’ is nontrivial
forany B’ C A satisfying the conclusion.

In light of this decomposition, we can take the following definition.

Definition 1.51 (simple). An abelian k-variety A is k-simple if and only if all abelian subvarieties of A are
either {04} or A.

Remark 1.52. It is possible to have an abelian variety be simple over & but not over k.

Corollary 1.53. Fix an abelian k-variety A. Then there are simple abelian k-varieties A4, ..., A, such

that .
A~ H A;.
=1

Proof. Apply Theorem 1.49, inducting on dim A. Being explicit, note dim A = 0 implies that A is simple
because A = {e}. For the induction, note that if A is simple, there is nothing to do. Otherwise, there is an
abelian subvariety B C A of dimension strictly between 0 and dim A. Then Theorem 1.49 provides us with
B’ C Aandanisogeny B x; B’ — A. Now, being surjective with finite kernel implies that dim is an isogney
invariant, so

dim A = dim(B xj B') = dim B + dim B’,

so dim B,dim B’ < dim A. So the induction applies to B and B’, and we are done. |

1.3.2 Endomorphism Rings of Abelian Varieties

For uniqueness of the decomposition in Corollary 1.53, we will want to talk about morphisms between sim-
ple abelian varieties. It will be helpful to have some language for this.

18
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Definition 1.54. Fix abelian k-varieties A and B. Then Homy (A, B) is the abelian group of homomor-
phisms A — B, and Hom?} (A, B) := Homy, (A, B) ®z Q. Similarly, we define

Endg(A) := Homy (A, A) and End{(A) := Hom} (A4, A).

Remark 1.55. Fix an abelian variety A (over C). We show that Endy(A) is integral over Z. Indeed, write
A =V/A, and then an endomorphism ¢: A — A is given by a C-linear map ¢: V' — V sending A — A
by Proposition 1.43. To show ¢ is integral over Z, it will be enough to show that the characteristic
polynomial of ¢ has integral coefficients. Well, identify A = Z2", and then we see that we induce a map
@: 72" — 7", so ¢ can be written as a map with integer coefficients.

One can show that Hom{ (A, B) and End{ (A) only depend on the isogeny class of 4 and B. In fact, we will
be able to use Corollary 1.53 to compute it.

Corollary 1.56. Fix a simple abelian k-variety A. Then End}(A) is a division Q-algebra.

Proof. Fix a nonzero element in End{(A), and we will try to find an inverse for it. Because we only did a
tensor product with Q, we can create a common denominator to be able to write a generic element as ¢
for some positive integer d and nonzero k-endomorphism ¢: A — A. The inverse of 1 is d, so it suffices to
findaninversetop: A — A.

The main point is the existence of “inverses” provided in Lemma 1.46. Namely, we are promised some
¥: A — Aandanonzerointeger n such that p o ) = ¢ o ¢ = [n]4. Thus,

11 ,
po—p=—poyp=ida,
n n

which is our inverse in A. [ |

Corollary 1.57. Fix non-isogenous simple abelian k-varieties A and B. Then the only k-homomorphism
¢: A — Bisthe zero map.

Proof. Suppose A and B are simple abelian k-varieties, and suppose that we have a nonzero homomor-
phism ¢: A — B. We then claim that ¢ is actually an isogeny.

« Surjective: the image of ¢ (which is closed because A is proper) will be an abelian subvariety of B, and
it cannot be {03} because ¢ is nonzero, soim ¢ = B.

+ Finite kernel: the connected component of ker ¢ C A is an abelian subvariety of A, and it cannot be all
of A because ¢ is nonzero, so ker ¢ = {04}. Because ker ¢ is a group scheme, its connected compo-
nents all have the same dimension, so ker ¢ must be zero-dimensional and hence finite. |

Corollary 1.58. Fix a field k£ and isogenous abelian k-varieties A ~ A’ and B ~ B’. Then Hom) (A, B) =
Hom) (A', B').

Proof. We use Lemma 1.46. Let p4: A — A’ and pp: B — B’ be the promised isogenies, and pick up
Ya: A — Aand ¢Yg: B® — B suchthat o4 014 and ¥4 o ¢4 is multiplication by n4, and ¢ o g and
1p o@p is multiplication by ng. Replacing ¥4 with n 4 and replacing g with n 415, we may assume that
na = ng. Anyway, we now can compute that the maps
Hom! (A, B) = Homy(A’, B)
o> %@B ooy
%1/)300/09014 —al

are inverse homomorphisms, so we are done. |
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Corollary 1.59. Fix sequences of pairwise non-isogenous simple abelian k-varieties denoted {A4;},
and {B;}"_;. Then for positive integers {r;}]"; and {s;}7_,, we have

Homk(-ﬁlA’”’ﬁB?) = JI Endi(an.
= J= i,
A;~B,;

Proof. Moving out the products (which is legal because are living in an abelian category), we are looking at

H Homk(Ai, Bj)rixs-j,

4,
but this term is zero unless A; ~ B; by Corollary 1.57. In the event A; ~ B;, we can replace B; by A; by
Corollary 1.58. [ ]

Remark 1.60. Taking A; = B; and r; = s; in Corollary 1.59 shows that End}(A) is a product of matrix
division Q-algebras. In particular, End’(A) is a semisimple Q-algebra.

Remark 1.61. If T]*; A7* and H;‘:l B’ are known to be isogenous already (to, say, an abelian variety
A), then Corollary 1.59 forces m = n and each ¢ has some j such that A; ~ B; (and vice versa). Up to
permutation, we may as well force A; ~ B; for each i. Now, having an invertible element in End (A)
then forces having an invertible element in each End}(A4;), so the relevant matrix algebra must have
r; = s; for each 4. Thus, the decomposition of Corollary 1.53 is unique up to permutation and isogeny.

1.3.3 Complex Multiplication of Abelian Varieties

We are now ready to define complex multiplication for abelian varieties.

Definition 1.62 (complex multiplication). Fix an abelian k-variety A. Then A has complex multiplication
(oris CM)ifand onlyif thereisa CM algebra E (i.e., E is a finite product of CM fields) such that [E : Q] =
2dim A, and there is an embedding E — End}(A).

Namely, A has “multiplication” by some CM fields.

Remark 1.63. It will turn out that this definition holds true for all abelian varieties over finite fields.

Remark 1.64. Suppose A is a simple abelian k-variety. Then A being CM is equivalent to End} (A) be-
ing isomorphic to a CM field of degree 2dim A. Certainly this condition is implied by being CM. In the
other direction, over C, one sees that End’(A) acts faithfully on H; (A(C), Q) by Proposition 1.43. Thus,
End{(A) is a division algebra of degree dividing 2 dim A.

Now, denoting the center of D := End(A) by F, it turns out that the largest field contained in D
has degree (over Q) is [D : F]'/2[F : Q]. To get this to be at most 2dim A, we must have ' = D by a
degree argument. (See [Mil20b, Section I.1] for the required facts on semisimple algebras.)

Remark 1.65. One can remove the requirement of being over C in the above argument by working with
the “Tate module” Hf (A, Q) for £ # char k instead of H*(A(C), Q). Concretely, the Tate module is

TeA=lm A0,

We will work more with Tate modules later in this course.
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Here are some examples.

Example 1.66. Fix an imaginary quadratic field E. Then C/Og is a CM abelian C-variety with complex
multiplication by E; in particular, Proposition 1.43 tells us that the endomorphismring is Og, so we get
E upon taking — ®z Q. If E; and E, are distinct quadratic imaginary fields, then taking products reveals
that (C/Og,) x (C/Og,) has complex multiplication by E; x Es.

Example 1.67. Fix an imaginary quadratic field E. Then (C/Og)? has endomorphism algebra given by
End? ((C/Og)?) = My (E).
Here, there is a lot of choice in the CM algebra embedding into M»(E). Notably, for any D € Z, we see

[OD

2
. 0} = DI,

so Q(v/D) embeds into M,(Q) without tears.

Remark 1.68. One might be interested in understanding what abelian varieties look like in general,
which leads to the notion of a moduli space. It turns out that abelian varieties with complex multi-
plication forms an interesting subset of the full moduli space of abelian varieties.

1.4 January 24

Here we go. Office hours begin today.

1.4.1 Classification of CM Abelian Varieties

Here is our definition. The point is that we would like to “recover” the complex multiplication of a field of
CM type acting on a CM abelian variety.

Definition 1.69 (CM type). Fixa CM field E, and let (A, i) be an abelian variety with complex multiplica-
tion by Fbyi: E — End’(A). Then E acts faithfully on H;(A(C), Q). Hodge theory tells us that we can
decompose

H'(A(C),C) = H* @ H'?,

where H'0 = HOL; here H' = H(A(C),Q")is the space of global sections 1-forms on A(C). Dualizing,
we see

H,(A(C),C) = Lie A(C) @ Lie A(C),
and in fact E acts on Lie A(C). Decomposing Lie A(C) as an E-representation as (P . 4 C, where @ C
Hom(E, C). (This decomposes into 1-dimensional representations because E* is commutative.) Then
® is the CM type.

Remark 1.70. The point of using the Hodge decomposition is to note that Hom(E, C) = ® LI ® by taking
the conjugation of the action. Thus, (E, ®) is fact a CM type. Namely, we have a faithful action of E®qC
on H1(A(C),Q) ®g C = H;(A(C),C), and it decomposes into parts coming from Lie A(C) and parts
coming from Lie(A(C)). Irreducible components in Lie A(C) are 4 Cy;, and irreducible components
in Lie(A(C)) arethen @4 Cc,r, and in total everything must sum up to a faithful module over E®qC =
@D, cttom(s,c) Cp of rank 1, so we see @ LI ¢® = Hom(E, C), as needed.
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Example 1.71. Fixa CM type (E, ®), and set A := C*/Op. Then we claim that the CM type of A can be
recovered as ®. Namely, we certainly have an Og-action on A by construction, so we have an embed-
dingi: E < End"(A) by i(a)(v,), = (¢(a)v,),. As such, we see that the faithful action of E on the
universal cover C®* = H;(A(C),C) is exactly given by

c* = e,
ped

as needed.

We are going to classify isogeny and isomorphism classes of these abelian varieties. Quickly, we discuss our
“inverse” map.

Lemma 1.72. Fix an abelian variety A with complex multiplication by i: £ — End®(A), and let ® be the
CM type of A. Then there exists a fractional ideal a C E such that A =~ C?® /a.

Proof. SetV := Lie A so that we have a natural projection 7: V' — A with kernel A C V. By definition of the
CM type, we may identify V with C® according to the E-action.

Now, by Proposition 1.43, E acts naturally on A ®z Q, but their ranks agree and E is a product of fields,
so A ®z Q must be isomorphic to E as a (semisimple) E-module. In particular, A is identified with a lattice
a C F, as desired. [ ]

The following definition will be useful.
Definition 1.73. Fix CM types (E, ®) and (E’,®’). An isomorphism of CM types is an isomorphism
a: E — E'such that

b={poa:yp €d}.

Here is the point of this definition.

Proposition 1.74. Fixa CM algebra E. Then the set of pairs (A, i) of abelian varieties with complex mul-
tiplication by i (up to isogeny commuting with ¢) is in bijection with CM types (E, ®) up to isomorphism.

Proof. Here,anisogeny ¢: (A,i) — (A’,i") commuting with the complex multiplication is simply anisogeny
@: A — A’ together with an automorphism «: £ — E such that the diagram

E —— End’(4)

QJ |# (1.1)

E —“ End(4)

commutes.
We now show that (A, i) — (E,®4) (where ® 4 is the CM type of A)and (E, ®) — C®/Op are the needed
forward and backward maps for our bijection.

« We claim that the construction of (E,®) — C®/Og is well-defined. Well, suppose we have an iso-
morphism of CM types a: (E, ®) — (E, ®’). Then we get a commutative diagram as follows.

C® .} s O
@T Tq)/
Og E 25 F Og
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Note that the bottom row becomes anisomorphism Oz — Og because o and o~ ! must carry algebraic
integers to algebraic integers; this isomorphism on the bottom then extends to anisomorphism on the
top because Op is a full-rank lattice of our C-vector spaces. In total, we produce an isomorphism of
vector spaces C* — C?’ carrying O to O, which provides an isogeny ¢: C®/Og — C* /Og by
Remark 1.48.

It remains to show that this isogeny ¢ produces an isogeny preserving the complex multiplication.
Well, it is enough to note that the following diagram commutes.

T — 5 End° (C‘P/OE) f — ((Utp) = (go(z)v@)
E —— End’ (C*/Og) ax —— ((vp) = (plaz)v,))

« Remark 1.70 tells us that each (A, ) at least produces some CM type (E,®4). We show that this is
well-defined: let : (A,i) — (A’,4') be an isogeny (with automorphism a: E — E), and we will show
that we produce an isomorphism a: (E,®4) — (E, ®4/) of CM types.

Set V := Lie A(C) and V' := Lie A’(C), and recall that we have canonical isomorphisms A = V/A and
A" =V'/A'. By definition, ® 4 is the subset of Hom(E,C) sothat V = P .4, C, under the E-action,
and ® 4 is defined similarly. Now, Proposition 1.43 argues that the isogeny p: A — A’ lifts to an
isomorphism of vector spaces @: V — V', and any element of End”(A) or End”(A’) will also lift to an
isomorphism of vector spaces. In particular, we produce a commutative diagram as follows.

E —— End¢(V)

|

E — Endc(V')

Thus, Viisisomorphicto V' as an E-representation, and the decomposition V = 4 C,, then forces
V' to have a factor of C,,-1 for each ¢ € ®, so we conclude that a: (E,®4) — (£, ®4/)isin fact an
isomorphism of CM types.

« Forone inverse check, note that taking (£, ®) to A := C®/Og has as its CM type just (E, ®) back again
by Example 1.71.

+ Forthe otherinverse check, we recall from Lemma 1.72 that we can write an abelian variety (A4, i) with
CMtype (E,®)as A = C?/®(a) where a C Eisa lattice. We must show that A isisogenousto C?/Op.

To begin, fix a basis {1, ..., a2, } of a, and let by be the Og-fractional ideal generated by these ele-
ments, and then (3) be a principalideal containing by. There is a natural projection C* /®(a) - C®/(B)
given by expanding the kernel, and it is an isogeny by Remark 1.48. Now, 3: O — (8), so C*/(3) =
C®/0Og, so Aisin factisogenous to C*/Op.

We won't bother to check that these functors are inverses of each other. [ ]

Remark 1.75. We will eventually discuss the moduli space A, of principally polarized g-dimensional
abelian varieties. Then one can require that End(A) contains O for some CM field E as well as [E :
Q] = 2dim A4, and this will make finitely many points. (In fact, we produce a Shimura variety of PEL
type by adding in @, which corresponds to a signature.) Dropping the condition that [F' : Q] = 2dim A4
could still desire a positive-dimensional subset of A,; in particular, we cannot expect that “just” (finite)
combinatorics will be able to parameterize such abelian varieties.

Remark 1.76. We continue with a classification of the (A, i) with CM type (E, ®). Letting O C E be the
largest subring such that O - A C A, it turns out that End(A4) = O by Proposition 1.43. Thus, A is an
O-fractional ideal.
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Corollary 1.77. Fix a CM algebra E and an order O C E. Then the isomorphism classes of CM abelian
varieties (A, i) with complex multiplication by O C E (namely, such thati: O — End(A)) is in bijection
with equivalence classes of triples (E, ®,a) where ® is a CM type of E, and a C O is a fractional ideal.
The equivalence class of triples is given by (E, ®,a) ~ (E, ®’, a) if and only if there is an isomorphism
a: E — E carrying ® to &’ = ® o o and a(a) = ca’ for some c € E*.

Proof. Use the functors of Proposition 1.74, but now we use Remark 1.76 at the end of the proof. |

Example 1.78. With O = OF, we see that our abelian varieties are now in bijection with Clg.

Remark 1.79. Later in life, we will want to add a polarization to results such as Proposition 1.74. Addi-
tionally, we are somehow studying “geometric points” in the moduli space; there is a separate question
of asking over what fields these points in the moduli space can be found over.

1.4.2 Classifying Simple CM Abelian Varieties

We would like to upgrade Proposition 1.74 to restrict to simple abelian varieties. This requires the notion
of a “primitive” CM type.

Definition 1.80 (restriction, extension of CM types). Fix an extension Ey, C F of CM algebras.
« Given a CM type ®, on E, we define its extension to F as

® = {p € Hom(E,C) : ¢|g, € Po}.

« Suppose (E, ®) isa CM type which is an extension of a CM type (Ey, ®o). Then we can recover the
restriction to Ey as
®|g, = {plm, : ¢ € B}

Remark 1.81. In fact, ®|g, will succeed in being a CM type if and only if it is an extension. This explains
the hypothesis in the definition.

Definition 1.82 (primitive). Fix a CM algebra E. A CM type ® on E is primitive if and only if ® is not the
extension of any CM type (Ey, @) for £y C E.

Here is a quick sanity check.

Lemma 1.83. Fixa CM type (E, ®), where F'is a field. Then there is a unique primitive CM type (Ey, )
extending to (E, ®).

Proof. Omitted. The reference is [Mil20b, Proposition 1.9]. Basically, one may assume that F is Galois, and
then one can restrict downwards via some kind of fixed field. [ |

And hereis our result.

Proposition 1.84. Fix a CM field E. Then there is a bijection between simple abelian varieties A with
complex multiplication by E (up to isogeny) and primitive CM types (E, ®) up to isomorphism.

We will prove this next class.
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1.5 January 26

Homework will be posted later today.

Remark 1.85. There are two notions of isogeny and isomorphism of CM abelian varieties (A,4) and
(A’ ") with complex multiplication by E, only one of which we used last class.

« Namely, we might want isomorphism/isogeny f: A — A’ together with an isomorphism «: £ —
E’ making the following diagram commute.

E —— End’(A)

C{ s

E —“ End’(4)

« Alternatively, we can fix a = idg in the above definition.

Last class we used the second notion, despite my typos. This is needed to make isomorphisms (E, ) =
(E',®") make sense. Anyway, to recover the needed statements for the first notion, we need to mod
out by some more isomorphisms.

1.5.1 Finishing Classification of Simple CM Abelian Varieties

Last class we were trying to show the following statement.

Proposition 1.84. Fix a CM field E. Then there is a bijection between simple abelian varieties A with
complex multiplication by E (up to isogeny) and primitive CM types (E, ®) up to isomorphism.

Proof. The point is to restrict Corollary 1.53 to simple abelian varieties. In one direction, if (E, ®) is an
extension of (Ey, ®g), then
C?/Og ~ (C /0 )P
To see this, note that the right-hand side is isogenous to
(C*/Og,) ®0y, OF

by some sort of extension of scalars argument, and now the above abelian variety is just C® /O by tracking
through what it means to extend. The point is that the produced abelian variety is not simple.

In the other direction, suppose (E, ®) is primitive, and we need to check that C®/Op is simple. We will
sketch the idea and refer to [Mil20b, Proposition 3.6] for the full argument.

1. Suppose A has two pieces A7 and A5? in its decomposition into simple abelian varieties. Then we can-
not find a CM field E embedding into End’(A) of the required degree, due to some degree arguments.

2. Suppose A has the single piece A" in its decomposition into simple abelian varieties. But then (E, ®)
would fail to be primitive by the above discussion unless r = 1, so we fall back to r = 1. |

1.5.2 A Jacobian Example

Let's do an example; see [Lan83, Section 1.7] for more.

Fix a prime p, and define the curve C' C P2 as cut out by the equation X? + Y? = ZP. One can check
that C' is smooth, which tells us g(C) = (p — 1)(p — 2); alternatively, one can project this to P and use
the Riemann—Hurwitz formula directly. We will want to work with the Jacobian Jac(C), which is the group
variety parameterized by the degree-0 divisor classes of C; one can check that Jac(C) is in fact an abelian
variety, which we will do later in the course.
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Remark 1.86. By some duality arguments, one finds that

0 \%
HONO) = T

where the inclusion H;(C,Z) — H°(C,$;)Y is given by integration of loops in C. Explicitly, one can
take a degree-0 divisor class ", [P;] — [@;] and produce an integration map

w Qi
w > E / w,
i=17Fi

which is well-defined up to the elements of H;(C,Z). Namely, the integral fp,-i is not a well-defined
complex number because there may be multiple paths, but this path is well-defined up to an element
of H,(C,Z), so we are okay.

Remark 1.87. One might want to understand arithmetic objects attached to the geometric function
J(C), such as Galois representations or L-functions or periods. Having some CM structure grants us
more information to answer these questions.

Let's see why J(C') has complex multiplication.

Theorem 1.88. Fix everything as above. Then J(C) has complex multiplication.

Proof. For brevity, define p, to be the multiplicative group of pth roots of unity. One can give p, a group
scheme structure by viewing it as the kernel of the nth power map (-)": G,, = G,,,. Anyway, the point is
that p, has an action on C by
G [ XY Z] = (XY Z].
For example, when p = 3, we see that C itself will have complex multiplication by Q((3), where the action
by (5 is given as above.
In general, we note p,, X p1,, also has an action on C' by

(GO [GX QY Z) = [pX Y 2 Z].

Now, the action on C provides an action on the Jacobian J(C) by the degree-0 divisors viewpoint. (One can
also see this by functoriality of the Jacobian construction, for example.)
To continue, we remark that one can check that our elements of H°(C,Q!) have basis given by the 1-

forms
dzP

1
D ;L'Pyp ’

o— r,,S
Wrg =T Y

s

wherel < r,s < p—1whenr+s < p—1;herex = X/Z andy = Y/Z are coordinates on one of the
standard affine charts of PZ. (We will not show this in detail.)

So we may note that y,, x 1, acts on w, s by (¢}, (%) wys = ¢'T7%w, .. For this action, we see there
are (p — 2) orbits, each of size 1(p — 1), where (r,s) ~ (r',s') if and only if there is m € Z/pZ* such that
m(r,s) = (r',s") (mod p).

Example 1.89. For example, at p = 5, we have orbits given by
{(1,1),(2,2)}, {(1,2),3, 1)}, {1,3),(2,1)}.
Each of these classes will produce a simple abelian variety with complex multiplication by Q(¢,). The point
is that we can construct a curve C,. ; with a map C — C, , via (r,s) — (zP,z"y*), and the holomorphic

differentials of C. 5 are the ones in the needed orbit of (7, s). So we get simple factors J(C, ;) — J(C), each
of which have complex multiplication by Q((,), so we are done. |
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Remark 1.90. This is not true for general curves C.

Remark 1.91. We will follow this recipe on the homework.

1.6 January29

Homework has been posted. It looks hard. We have two weeks to do it.

1.6.1 The Rosati Involution

Here is our definition.

Definition 1.92 (Rosatiinvolution). Fixan abelian C-variety A = V/A,and letv: AxA — ZbeaRiemann
form on A. Then we define the Rosati involution (—)": End’(A) — End’(A) as follows: for each a €
End’(A), we define a' such that

Ylaz,y) = P(z,aly)
forallz,y € A.

Remark 1.93. Later on, we will view (—)T from the lens of dual abelian varieties, as follows. Note that
1) provides an identification of A with its dual lattice A", and then o is defined so that the following
diagram commutes.

A®zQ) — (AY @2 Q)

.| l»

(A®2Q) — (AY @2 Q)

Namely, this shows that o exists and is unique. Later on, we will have an analogous definition where
As above are replaced with A itself (and AV is replaced with the dual abelian variety AV).

Remark 1.94. One can check that (af)’ = « via the above diagram.

Here is the main result.

Proposition 1.95. Fix an abelian C-variety A with Riemann form ¢: A x A — Z. The Rosati involution
is positive: for all nonzero o € End’(A), we have

Tr(a'a) > 0.

Here, the trace map is defined by the trace in End’(A4) C End(H, (4, Q)).

Proof. Fixa Q-basis B of H1(A,Q) = A ®z Q. Then, by definition, we see that

Tr(afa) = Z Yr(iz, afax) = Z Yr(aiz, ax),

zEB r€B

which is a sum of positive numbers because ¢ is positive-definite by definition. |
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Remark1.96. Thereis aunique positive involution on any CM algebra E, namely its complex conjugation
c. Thus, if A is a simple abelian variety with complex multiplication by £ = End’(A), we must have
al = ¢(a), so

Y(ax,y) = Pz, c(a)y).

In general, if A is not simple, then one can show that there is a CM algebra E C End”(A) of the correct
degree and preserved by (—)'.

We now note that we have the following lemma.

Lemma 1.97. Fix an abelian variety A = V/A with complex multiplication by E C End’(A) fixed by the
Rosatiinvolution. Further, fix a non-degenerate skew-symmetric E-linearform ¢ : (A®7;Q)? — Qsuch
that ¥ (azx,y) = ¥(x, c(ay)) foralla € E. Then

U(z,y) = Trg/géxc(y))

forallz,y € E,were§ € Eand ¢(&) — &.

Proof. Do some linear algebra. |

And we may now give a classification of (polarized) abelian varieties.

Theorem 1.98. Fixa CM algebra E. We parameterize polarized abelian varieties with complex multipli-
cation by E, up to isomorphism.

Proof. Here, anisomorphism (A4, 4,1) = (A’,i',’) is an isomorphism f: A — A’ such that the diagram

AT w

“")J }"(a)

AL

commutes for every a € E, and the diagram

Hi(A,Z) x Hi(A,Z) —2 7

2 |

Hy (A7) x Hi(A,Z) - 7

also commutes.

We now describe our constructions. Given (A, ,1), we build (E, ®, a) as before, where a is constructor
by taking the End(A)-orbit of a chosen vector v € H;(A,Q), and then we pick £ € E* with ¢(§) = —¢ from
the above lemma. Notably, the choice of v is only defined up to multiplication by E*: replacing v with a='v
will adjust a to aa, and we can see that £ — £/(a(c(a))). [ ]

1.6.2 The Field of Definition: Abelian Varieties

We will now show that abelian varieties with complex multiplication are defined over Q.

Remark 1.99. One can show that End’(A) is still defined over the reflex field. The same thing holds for
Hodge cycles (from the perspective of the Shimura variety).

Anyway, our result will follow from the following, by taking & = Q.

28



1.7. JANUARY 31 254B: COMPLEX MULTIPLICATION

Proposition 1.100. Fix an algebraically closed field ¥ C C. Then consider the base-change functor (—)¢
taking abelian varieties defined over k to abelian varieties defined over C. Then (—)¢ is fully faithful and
contains all CM abelian varieties in its (essential) image.

Proof. The key observation is that we have an injection A(k) C A(C) (because C/k is a field extension), and
we have an isomorphism A(k)iors = A(C)iors- Indeed, for any nonzero integer n, we see that A(k)[n] =
Aln](k), but A[n](k) just consists of the solutions in k to some set of polynomial equations. So the solutions
over k and over C will be the same because both these fields are algebraically closed.

Anyway, here are our checks. Fix abelian k-varieties A and A’.

« Faithful: fix f,g: A — A’ suchthat fc = gc. Thenwe see that f¢ and g¢ are the same over A(C)¢ors, SO f
and g are the same over A(k)ios- Thus, itis enough to check that A(k)o.s is Zariski densein A(k). Well,
the Zariski closure B := A(k)iors is @ smooth proper group subvariety of A(k): smoothness is from
char k = 0 and k = k, properness is because it is a closed subscheme of A, and being reduced follows
by construction because we took the Zariski closure. So B° is an abelian subvariety with B°(k)[p] =
A(k)[p] for all primes p > #mo(B): having an element of order p outside B° would force there to be
at least p connected components (one for each multiple of this element), so this can only happen for
p < #mo(B). Thus, we see dim A = dim B°, so we must have B® = A because A is irreducible.

+ Full: we use some descent theory. Fixamap f: Ac — Af, which we must show is the base-change
ofamap A — A’. Quickly, note that & = CG2I(C/F) by some infinite Galois theory (or alternatively, a
more direct argument via Zorn’s lemma). Notably, for 7 € Gal(C/k), there is a map 7(f): Ac — Ag
given by applying 7 to the coefficients of f viewed affine-locally; on C-points, one sees that 7(f) is the
composite (1o for7 1) : A(C) — A'(C).

Now, some descent theory shows that f is defined over k if and only if f = 7(f) forall 7 € Gal(C/k);
approximately speaking, one can just see that the coordinates of f must all in fact be defined over k.
Well, the point is that 7|;, = idg, so f and 7(f) agree on A(k) and hence on A(C).

« Essential image: we will do this next class. Fix a CM abelian C-variety A. By a spreading out argument
that we will give next class (see Proposition 1.103), there is a finitely generated k-algebra R C C such
that we have an abelian scheme A over S := Spec R specializing to A.

Now, O = End¢(A) is finitely generated over Z, so ensuring that these endomorphisms are all defined
over R (perhaps by localizing more), we may assume that O C Endg(A). In particular, A has complex
multiplication. Choosing a geometric point of R given by Speck — R and pulling back .A makes an
abelian variety B over k.

Quickly, note that the CM type of Bisjustthe ® C Hom(FE, C) appearinginthe E-representation Lie B,
which is simply Lie A. So B is at least isogenous with A, so there is a finite kernel G¢ C Bc such that
B¢ /Ge C A. But G is a finite group scheme, so it must be fully contained B[n| for some n, so we can
realize the quotient group scheme B/G back over k, and B/G is the required scheme.! |

Remark 1.101. Fix abelian varieties A and B defined over Q. Then Proposition 1.100 also tells us that a
homomorphism ¢: Ac — B is defined over Q.

1.7 January 31l

We began class by finishing an argument of last class, so | have edited the argument there.

1 Perhaps one should check that the quotient B/G makes sense as an abelian variety, but it all works out, so we won't bother.
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1.7.1 Spreading Out Abelian Varieties

We quickly discuss a result on spreading out abelian varieties.

Proposition 1.102. Fix a K -variety A of finite type, and let ¥ C K be the prime field. Then there exists
a finitely generated k-algebra R and an R-scheme A such that Ax = A.

Proof. This follows from what it means to be finite type. |

Proposition 1.103. Fix an abelian K-variety A of finite type, and let £ C K be the prime field. Then
there exists a finitely generated k-algebra R and an abelian R-scheme A such that Ax = A.

Proof. We get some R and A by Proposition 1.102. We now spread out one condition on A at a time.

« Writing out equations, we may assume that the group law is well-defined by adding in enough de-
nominators and other transcendental elements, making R larger if needed.

« For projectivity, we note that A is projective, and we can basically use the same equations to realize A
as a closed subscheme of projective R-space.

» For smoothness, we pass to the smooth locus of Spec R, which is nonempty because we are already
smooth on the generic fiber. (Notably, we are smooth on, say, the identity section.)

« Lastly, for geometrically connected, we note that having a connected fiber is equivalent to the map
Ospec B — ™ O 4 being an isomorphism on stalks. (Namely, we are asking for the local rings to fail to
be products of R by properness.) This is an open condition, so we may again shrink Spec R enough to
accommodate.

For a reference, Milne has an article on abelian varieties, where this argument is Remark 20.9. [ |

1.7.2 The Field of Definition: Endomorphisms

Quickly, we note that we can define a CM type as a collection ® C Hom(FE, Q) because F is finite étale over
Q anyway. Notably, CM types of abelian varieties also still make sense because an abelian Q-variety A will
have its Lie algebra Lie A (now defined as the Zariski tangent space) continues to have the needed E-action,
and we can decompose this is a representation into a Q-vector space.

Anyway, we now define the reflex field.

Definition 1.104 (reflex field). Fixa CM type (E, ®). Then the reflex field is the subfield E* C Q fixed by

{0 € Gal(Q/Q) : 0® = ®},

where ® is viewed as a subset of Hom(E, C).

Remark 1.105. If E is a field, then E* is contained in the Galois closure of E (in Q).
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Lemma 1.106 ([Mil20b, Proposition 1.16, 1.18]). Fixa CM type (E, ®).

(@) E*is generated by the elements

> wla),

pED

wherea € E.

(b) E*aCM field.

(c) If (B, ®) =T[",(E;, ®;), then E* = Ef--- E*,.
(d) If (E’,®’) is an extension of (E, ®), then (E')* = E*.

Proof. Omitted. One does a little Galois theory to achieve the result. |

Example 1.107. If (E, ®) is a primitive CM type with E a field, then £ = E*.
And now we can provide our definition field for endomorphisms.

Proposition 1.108. Fix an abelian k-variety, where k£ C C. Further, suppose Ay is a CM abelian variety
with CM type (E, ®).

(a) IfE C Endz(A), then E* C k.
(b) If E* C k, and Ay is simple, then £ C Endg(A).

Proof. We prove one part at a time.

- (a) We use (a) of Lemma 1.106. Quickly, we note that

Lie A @), C = Lie Ac = P C,.
ped

Thus, for each a € E, we see that the trace of cvacting on Lie A is 34 ¢(c), but being defined over
k requires that these endomorphisms have trace living in k. So the result follows.

(b) Being simple enforces E = End%(AE). Now, Gal(k/k) acts on End%(AE), so notably we want it to act

trivially on £ C End)(A) by some descent argument. Now, for each o € Gal(k/k), we produce the
following commutative diagram.

LkLAE —ilﬁ Lkh4E

H H
PDr, — Pk,
ped ped

In particular, o induces an isomorphism of CM abelian varieties, so it must induce an isomorphism of
CM typeso: (E,®) — (E,®). Thus, thereis o € Aut(E) suchthato o ® = ® o . Because E* C k,
we can conclude that o maps ® to @, so actually & = ® o a. But then the primitivity of (E, ®) forces

-ﬂk .

Remark 1.109. This tells us that having CM makes our endomorphisms defined over Q.

31



1.8. FEBRUARY 2 254B: COMPLEX MULTIPLICATION

1.8 February2

Office hours next week will move to 2PM-4PM on Wednesday. | am pretty hopelessly behind catching up
on adding details to these notes, but | will do my best to catch up over the weekend. Next week we start
algebraic geometry.

1.8.1 The Shimura-Taniyama Formula

Fix an abelian variety A over a number field K. We want to “reduce A modulo” a prime ‘P € Spec Ok.

Definition 1.110 (good reduction). Fix an abelian variety A over a number field K. Given a prime 3 of
K, we say that A has good reduction at ‘B if and only if there is an abelian scheme A over O, such that
Ak = A. By abuse of notation, we let Ay denote Ay, /.

Remark 1.111. The theory of Néron models implies that the model A over Ok, is unique. We will
discuss this more later.

Remark 1.112. The theory of Néron models also tells us that
Endg(A) Endo,,, (A) € End(Agp).

The last inclusion assumes complex multiplication of A.
Remark 1.113. It turns out that one can always extend K to have good reduction.

Definition 1.114 (Frobenius). Fix a finite field IF,. Given an F-variety X, we define the Frobenius mor-
phism F'x: X — X to be the identity on points and the g-power map on the sheaves Ox — Ox.

Remark 1.115. On points, one can compute that the Frobenius map F': A{;q — Af;q maps (z1,...,Ty) €
Af, (F,) to (zf,...,2L) € A ( F,) because we are merely composing with the ¢g-power map.

Definition 1.116 (Tate module). Fix an abelian variety A over a number field K and a prime ¢. Then we
define the Tate module as

A=lmA[e].

And now here is our result.

Theorem 1.117 (Shimura—Taniyama). Fix an abelian variety A over a number field K of CM type (F, @)
such that K contains all Galois conjugates of E (namely, E is a field) and E C End% (A). If 3 is a prime
of good reduction, then the following hold.

(a) Thereisanelement 7 € Op such that 7 € End% (A) is the Frobenius F4.

(b) Theideal (w) C Op is given by
IT ¢ N/jpm) ®B) -

ped

Here is another statement of Theorem 1.117.
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Theorem 1.118 (Shimura—Taniyama). Fix an abelian variety A over a number field K of CM type (E, ®),
where E C End% (A) is a field. If 8 is a prime of good reduction, then the following hold.

(a) Thereisanelement 7 € O such that 7 € End% (A) is the Frobenius F.
(b) For each place p of E lying over p, we have

ord,(m)  #(PNH,)

ord,(q) #H,

where H, := Hom(E,Q,) = |_|,U‘p Hom(E,,Q,).
Let's see an application.

Corollary 1.119. Fix an abelian variety A over a number field K of CM type (E, ®), where E C End% (A),
and let B be a prime of good reduction.
(a) Let P denote the characteristic polynomial of F,, acting on H;(A(C),Q). We have P € Z[z].

(b) The g-adic valuation of the eigenvalues of Fs,, given by

{W}w”

with multiplicities given by H,, := Hom(E,Q,) as before.

Proof. For(a), use Theorem 1.117 so that m € Of is the needed Frobenius element. Then the characteristic
polynomial of 7 acting on H;(A(C), Q) is simply 7 acting on E, so our characteristic polynomial has integer
coefficients because 7 € Op is integral.

For (b), we note over Q, we note that our characteristic polynomial is

I II -

v|p o€Hom(E, ,@p)

but looping over all o will have the same valuation as ord, (7)/ ord, (¢), so normalizing with the valuation of
q as 1 achieves the result directly from (b) of Theorem 1.118. [ ]

Remark 1.120. Part (a) does not need Theorem 1.117; this is true without even having complex multi-
plication at all.

While we're here, let's see some examples.
Example 1.121. Fix an elliptic curve A with complex multiplication by an imaginary quadratic field £/Q,
and let ® be the CM type. Fix a prime p. There are two cases.

+ Ordinary: we can have p = p1po upin E. Then #H,, = #H,,, so the eigenvalues of the Frobenius
will be 0 and 1 by looking at Theorem 1.118.

« Supersingular: we can have p inert or ramified so that #H, = 2, but then ® N H,, will always have
a single intersection with ®, so our eigenvalues have valuation 1/2 and 1/2.
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Example 1.122. Fix an abelian surface A with complex multiplication by E := Q((5). It turns out that all
CM types are isomorphic to each other, so we will denote a random one by ®. We have the following
cases for an unramified prime p.

« If p splits completely, then #H, = 1forany v | p, so the g-valuation of the eigenvalues will be 0
orl.

« If p fails to split completely, then the g-valuations turn out to all be 1/2. Quickly, one finds that all
primes must be inert in the extension E/Q(v/5), and ¢(H,) = H,, so half of the elements will be
in H, and half not.

Remark 1.123. On the homework, we will compute the g-adic valuation of the Frobenius eigenvalues
of J(C) from section 1.5.2.

Remark 1.124. On the homework, we will compute an example of an abelian surface A with complex
multiplication such that its g-valuations have Frobenius eigenvalues of ¢g-valuation {0,1/2,1/2,1}.

Remark 1.125. A presence of a Weil pairing on Tate modules explain why our eigenvalues of Frobenius
appear “symmetric” (as in {0,1/2,1/2,1}).

Anyway, let’s sketch an argument for Theorem 1.118; we will do it in detail later in the class.

Warning 1.126. Today, we will discuss Theorem 1.117 under the additional assumptions that Kq/Q,
is unramified, where p lies under 93, and that End% (4) N E = O.

Sketch of (a) in Theorem 1.118. For (a), we note that the action of F4,, on Or commutes with the action of
the larger End)_ (Ay), so it follows that it must live in O by an argument on semisimple modules. Namely,
one does sometgﬁing with the Tate modules: one has Ty A ®z, Q; is a rank 1 module over O ®z, Qy, so they
must be the same. |
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THEME 2

BACK TO THE BASICS

Hold tight to your geometric motivation as you learn the formal
structures which have proved to be so effective in studying
fundamental questions.

—Ravi Vakil, [Vak17]

2.1 February5

| did not do much over the weekend. Such is life.

2.1.1 TheRigidity Lemma

For this chapter, we will work over general fields, so we recall the following definition.

Definition 2.1 (abelian variety). Fix a field k. Then an abelian k-variety is a group k-variety which is
smooth, geometrically integral, and proper.

For example, we would like to show that the group law on A is abelian. We will want the following re-
sult.

Theorem 2.2 (Rigidity lemma). Fix k-varieties X, Y, and Z. Suppose X and Y are geometrically integral,
that X is proper, and that there is a point zy € X (k). Suppose a k-morphism f: X x; Y — Z has a

point yo € Y'(k) such that f|x ., is constant, mapping to a point zy € Z(k). Then there is a morphism
g: Y — Zsuchthat f = g o pry in the following diagram.

xxy 1,z
21

.
pr -
Y -

/// g

e

Proof. Pluggingin z = xzq, we see that we must constructg: Y — Z by g(y) = f(x0,y). More precisely, g is
the composite

Y8 XYLz
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We would like to show that f = gopry-. Now, the sourceis reduced, and the target is separated (everything is
avariety), soitis enough to show that these maps agree on an open dense subset because then the equalizer
of the two morphisms must be all of X x; Y. Well, because X x Y isirreducible (because X and Y are both
geometrically integral), any nonempty open subset is dense.

Anyway, let U C Z be any affine open subscheme containing zg so that Z\U is closed. Thus, f~1(Z\U) C
X x Y continues to be closed, and because X is proper, the projection of this set to Y must still be closed.
So define

V=Y \pry (f1(Z\U)).

Quickly, note V' is nonempty because f(zg,y0) € U, implying that 5, € V. (Note we are abusing notation by
identifying a geometric point with the point in its image.) So it is enough to show that

?
flxxwv =g X pry|xx,v.

It is enough to check this on k-points because everything in sight is a variety: k-points are dense because
these schemes are finite type over k, so the equalizer scheme of these two morphisms would then be dense
in X x Y, as required.

Well, fixsome y € V(k). Then f maps X x {y} to U, but X x;, {y} is proper, and U is affine, so f must
be constant.? In particular, for any z € X (k), we see that

flxy) = f(@o,y) = g(2,y),
as required. |

Let's see some applications.

Corollary 2.3. Fix abelian k-varieties A and B. Given a morphism f: A — B, there exists a homomor-
phism h € Homy(A, B) and a point b € B(k) such that f = 7, o h, where 7,: B — B is the translation
map b — mp(x,b). Infact, if f(ea) = ep, then f is a homomorphism.

Proof. Defineb = f(ea) where e, € A(k) is the identity. Then we see that h := 7, ' o f sends e4 — ep. We
want to show that A is actually a group homomorphism. Well, define the map a: A x A — B by
oz, 20) = h(zixo)h(ze) " h(z) ™ .

To verify that h is a homomorphism, it is enough to check that « is constantly eg. For this, we use Theo-
rem 2.2 on a. For example, we see that e4 € A(k) satisfies

a(x,eq) = h(zea)h(ea) th(z) ™ = h(z)eph(z) ™t = h(z)h(z) ™" = ep,

so a(z,y) = alea,y) forall z,y € A(k) by Theorem 2.2. A symmetric argument shows that a(z,y) =
a(xz,eq) forallz,y € A(k), so we conclude that o must actually be constant. [ |

Corollary 2.4. Fix an abelian k-variety A. Then the group law on A is abelian.

Proof. Theinverse mapi: A — A mapsi(es) = e4, so ¢ must be a homomorphism by Corollary 2.3, so
i($1$2) = 2(1'1)2(1'2)

forallzy, o € A(k), s0 2129 = 2oz forallzy, 2o € A(k), as required. [ ]

1 We canrealize U is a closed subscheme of some affine space, so we get amorphism X xj, {y} — AZ for somen > 0. But then the
projections of this map are all constant because maps X xj, {y} — A correspond to global sections of a proper integral k-scheme,
which are just constants in k.
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Remark 2.5. Note that we know that the group law on A is abelian, so the multiplication-by-n map
[n]: A — A makes sense and is an endomorphism. In particular, we see (z122)"™ = a2}

Notation 2.6. In light of Corollary 2.4, for the remainder of the course, we will denote the group law on
an abelian variety additively.

2.1.2 Using The Theorem of the Cube

Here is our result. Again, the actual statement is in terms of varieties.

Theorem 2.7 (of the Cube). Fix proper geometrically integral k-varieties X, Y, and Z. Given three k-
points zg € X (k) and yo € Y (k) and zy € Z(k), suppose a line bundle Lon X x Y x Z has

£|{x0}><Y><Z and £|X><{y0}><Z and E|X><Y><{z0}

all trivial. Then L is trivial.
Remark 2.8. In fact, Theorem 2.7 is even true if we have only two out of the three varieties being proper,
but we will not need this.

We will prove Theorem 2.7 next lecture. For now, let's see how this is used.

Corollary 2.9. Fix an abelian k-variety A and a k-variety X. Given three morphisms f,g,h: X — A and
aline bundle £ on A, we have

(f+g+h)LRFLIGPFLINL=(f+9) LR(g+h)"L®(h+ f) L.
For example, if X = A x A x A, where f, g, and h are the projections, then

mig3L @ pri L @ pry L @ pry L = mip L @ myz L @ m3, L.

Here, mo, denotes summing the relevant coordinates.

Proof. Pulling back the second equality along the map (f,g,h): X — A x A x A produces the first equality,
so it suffices to focus on the second equality. Well, define

K =miyL@pri L& pry LR prs LRmi, LT @mb, L7 @mi L7

It suffices to show that K is trivial. For this, we use Theorem 2.7. By symmetry, we will just show that
Klgeayxaxa is trivial, which will complete the proof. Well, upon doing this restriction, we find

Kleayxaxa = ma3L @ pry L pry L@ pr3 L @ pry Ll @mi LT @pry L]
is manifestly trivial. Notably, restriction commutes with taking tensor products by construction of the tensor
product. |
Remark 2.10. Of course, an induction can extend past three projections.

In particular, we will use Corollary 2.9 in order to compute [n]*L.
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Corollary 2.11. Fix a line bundle £ on an abelian k-variety A. Then, foranyn € Z,

[n]*L = L£O(n+1)/2 o [_1]*£®n(n—1)/2.

In particular, if £ = [—1]*£, then [n]* £ = £L®"°.

Proof. Induct on n using Corollary 2.9 for the inductive step. Namely, n = 0 and n = —1 have no content,
and then one can induct upwards and downwards from there. |

Remark 2.12. The quadratic relation here is what is used in the construction of the Néron—Tate height.

2.2 February?7

We continue.

2.2.1 Preparing The Theorem of the Cube

Let's give another application of Theorem 2.7.

Corollary 2.13. Fix an abelian k-variety A and two points z,y € A. Given a line bundle £, we have

i LEULREL.
Proof. Apply Corollary 2.9 tothe maps f =z and g =yand h := id 4. |

Remark 2.14. Fix a finite field extension k£’ /k. Then given a line bundle £, we produce a group homo-
morphism A(k’) — Pic Ay given by z +— 5L @ L1,

We will now prove Theorem 2.7. We will prove under the hypothesis where & is algebraically closed. The
following lemma tells us that this is fine most of the time.

Lemma 2.15. Fix a proper geometrically integral k-scheme V. Then T'(V, Oy ) = k.
Proof. Thisis[SP, Lemma O0BUG]. [ ]

Lemma 2.16. Fix a proper geometrically integral k-scheme V. Given a line bundle £ on V, if £;- over ;-
is trivial, then £ = Oy over k.

Proof. Quickly, we claim that L is trivial if and only if I'(V, £) # 0and T (V, £L7!) # 0. Certainly if £ is trivial,
then those are Oy (V') # 0. Conversely, suppose we have nonzero elements s € T'(V, £) and t € ['(V,£71),
which correspond to maps s: Oy — Landt € £ — Oy. But now the composite

Ov > L5 oy

is given by a global section ts € Oy (V), which is a field and hence invertible, so we see that the above
composite is invertible, so both s and ¢ must be isomorphisms (e.g., by looking at stalks).
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Thus, to complete the proof, we note that
D(Vi, L) =T(V,L) @i k

because cohomology commutes with faithfully flat base-change, so the left-hand is nonzero if and only if
I'(V, L) is nonzero. [ |

In particular, Theorem 2.7 follows from the algebraically closed case.

2.2.2 Review of Cohomology

We quickly review some cohomology; we refer to [Har77, Chapter Il1] for proofs.

Fix a morphism f: X — Y of Noetherian schemes. Sheaf cohomology is usually given by taking the
right-derived functors H*(X,—) = R*T(X,—). We also a pushforward of f, which becomes a left-exact
functor f.: QCoh(X) — QCoh(Y), sowe can consider its right-derived functors R* f.. Further, if f is proper,
then R* f. sends coherent sheaves to coherent. Being right-derived functors, we have the following prop-
erties.

e« RVf, = f..
+ Givenanexact sequence0 — F' — F — F” — 0 of quasicoherent sheaves on X, we have a long exact
sequence
0= ROfF — ROLF = ROLF' S RULF =

—_~—

« IfYis affine, then R* f.F = H*(X, F). Indeed, the point is that™~is exact, so we can just check that we
have an isomorphism of §-functors by hand.

« IfY = Spec Ris affine, and X is separated, we can compute H*(X, F) via Cegh cohomology as follows:
let U be an open cover of X by affine open subschemes, and we define the Cech complex C* (U, F) of
R-modules as follows: define

C"(u, ].‘) = H F(Uio N---N Uin’ ]-')

10< - <in
andd™: C™(U, F) — C" (U, F) by
n+1 )
(dna)i0<-..<in+1 = Z(*l)J (0i0<-~<}<...<in+1) Uiom'“mUin+1 .
j=0

Then H™(X, F) agrees with the cohomology of the Cech complex.

We will also want the following two big results.

Theorem 2.17 (Semicontinuity). Fix a proper morphism f: X — Y of Noetherian schemes. Suppose
that a coherent sheaf F is flat over Y i.e., 7 is flat over Oy 4(,) for each z € X. Then for eachn > 0,
the function Y — Z given by

Y = dlmk(y) Hn(Xy,]:|Xy)

is upper semi-continuous. In particular,
{y €Y : dimyy) H* (X, Flx,) <a} CY

is closed foralla € Z.

We may be interested in equality.
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Theorem 2.18 (Grauert). Fix a proper morphism f: X — Y of Noetherian schemes. Suppose that a
coherent sheaf F is flat over Y; i.e., 7, is flat over Oy y(, for each z € X. The following are equivalent
for somen > 0.

(i) The functiony > dimy,) H"(X,, F

X, ) is constant.

(i) R™f.F is locally free of finite rank, and

R"f.F ® k(y) ~ H" (X, Flx,)-

2.2.3 The Seesaw Principle

Anyway, our proof of Theorem 2.7 will come from the following result.

Proposition 2.19 (Seesaw principle). Fix a proper geometrically integral k-scheme X and a k-variety T'.
Fix a line bundle Lon X x T.

(a) Theset Ty := {closed t € T : L|x{y is trivial} is closed.

(b) There is a line bundle M on T} such that £|x x1, = pry, (M).

Intuitively, what's going on here is that we are trying to bring a line bundle on the product to come from a
subscheme of our test scheme T..

Proof of Proposition 2.19. We use our cohomology results. Note that £|x 4} trivializing is equivalent to
having I'(X x {t}, L¥'|x (s ) failing to be trivial. But applying this to n = 0 in Theorem 2.17, we see that
these are closed subsets of T, so (a) follows.

For (b), we note that we are achieving equality with

dimp H (X x {t}, L xxqey) = 1

always, so Theorem 2.18 tells us that M := pry,, L is a locally free sheaf of finite rank of rank 1. Now, we
have an adjunction map
pr’}l M = pr;"l prTl* L— £7

which we can check is an isomorphism on stalks over T;. By Nakayama, we may check that this is an iso-
morphism actually on fibers, so we may check that the result is merely nonzero on fibers (because these are
just fields on the fibers), but then it's nonzero on the other side of the adjunction, so the above map must
continue to be an adjunction. |

Remark 2.20. Take £ = C, and we will argue for Theorem 2.7. For W := X x Y x Z, we note that we
have the exact sequence
0—2Z— Ow 0Oy, -1,

which produces the long exact sequence
HY(W,Ow) — HY (W, 0,) — H*(W, Z).

We have a line bundle £ on W which we would like to check is trivial, so with H*(W, Oy;,) = Pic W, we
may as well check triviality through the sequence. Note the Kiinneth formula allows us to decompose
H?(W,Z) into smaller factors, and we see L trivializes in all those factors by the hypothesis on £. So
we see that our line bundle must come from H! (W, Oy,), but it must come from something trivial there
by doing a similar Kiinneth formula computation. So £ will trivialize; note that this argument actually
works on arbitrary products bigger than 3.

We will prove Theorem 2.7 next class. The point is to reduce to curves, where cohomology is understood.
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2.3 February9

Today we will prove the Theorem of the Cube.
2.3.1 Proof of The Theorem of the Cube
We prove Theorem 2.7. The strategy is to reduce to the case of curves.

Theorem 2.7 (of the Cube). Fix proper geometrically integral k-varieties X, Y, and Z. Given three k-
points o € X (k) and yo € Y (k) and zp € Z(k), suppose a line bundle Lon X X Y x Z has

£|{w0}><Y><Z and £|X><{yo}><Z and £|X><Y><{zo}

all trivial. Then L is trivial.

We have two steps. To begin, we reduce to the case where X is a curve. We will want the following
tools.

Theorem 2.21 (Chow's lemma). Fix a proper A-scheme 7: X — Spec A. Then there is an A-scheme
map u: X' — X such that u is surjective and projective, X’ is projective, and there is an open dense
subscheme U C X such that u: p='U — U is an isomorphism.

Proof. See [Vak17, Vakil 19.9.2]. [ |

Theorem 2.22 (Bertini). Fix an infinite field ¥ and a geometrically integral projective k-scheme X C Py .
Then there is a hyperplane H C P} such that H N X is geometrically integral. In fact, the collection of

He (]P’Qf)v with H N X geometrically integral is Zariski dense.

Remark 2.23. One can add adjectives to X and then to the conclusion, like smoothness.

Remark 2.24. One can allow finite fields by working with hypersurfaces instead of hyperplanes; see
[CP14].

This allows us to prove the following geometric fact.

Lemma 2.25. Fix a proper, geometrically integral k-variety X. For any two closed points zg,z; € X,
there is a closed 1-dimensional k-subvariety C C X containing zg and x;.

Proof. By Chow's lemma (Theorem 2.21), we may assume that X is projective, basically by pulling back
along our map p: X’ — X; getting back to X, one needs to project back along p.

Explicitly, one can use Theorem 2.22 to the blow-up Bly,, ,,; X — X. Then zy and z; become codimen-
sion-1 closed subvarieties of the blow-up, so we can get them to intersect with a hypersurface (see Re-
mark 2.24). So we may induct downwards. |

Remark 2.26. This statement is still true for any finite set of points.

Let’'s now do the reduction.

Reduction to the curve case. It is enough to show that L|(,}xy x{-y is trivial for all (z, z). Indeed, by Propo-
sition 2.19, one finds that £ = pr}; M for some line bundle M on X x Z. Then the hypothesis tells us that
L|x x {yo}x z is trivial (replace X with a curve connecting = with z¢), so M will trivialize, so £ will trivialize. W
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| Warning 2.27. | did not really follow the below proof during class.

Proofin the curve case. Fix g := g(X). Then we claim that there is a divisor E C X of degree g such that
I'(X,Qx(—FE)) = 0. Well, we are looking for global differentials on X which vanish on E, so we choose
points one at a time.

Now, define M := pr} Ox(E) ® L, and let W denote the support of R! pry;, M, which is a closed sub-
scheme of Y x Z by definition. Now, forally € Y, we know that L] x » {,}x {20} IS trivial, so M| 235 fy) x {20} =
Opg. But then

HY(X x {y} x {z0}, M|x x4 x{z}) = H' (X, O0x(E)) = H*(X,Qx (- E)),

where the last isomorphism is by Serre duality. But now H°(X,Qx(—E)) = 0 by construction of E, so the
pointisthat W N (Y x {z}) is empty.

Now, because Y is proper, we see pr, (W) C Z is closed and avoiding 2y, so we can find anopen 2’ C Z
around zg such that W N (Y x Z') = 0. As such, we claim that £|x xy x 2 trivializes, which will be enough by
Proposition 2.19. Now, R! prys, M is locally free of rank 1 on Y x Z’: it is enough to check that the Euler is
constantly 1, but being locally constant allows us to compute it on zg, so

X(M|X><{y}><{zo}) = X(M|X><{y}><{zo}) = X(OX(E))v

and we know x(Ox (E)) = 1 by a Riemann—Roch computation.

Being a line bundle now produces a divisor D C X x Y x Z’. Namely, on an affine open cover {U;} on
Y x Z, one has isomorphisms «;: Oy, — N|y,, and we let D; denote the zero set of a;(1) in X x U;, and we
can glue these D; together. Namely, on the intersections, one can check gluing data from N. The point is
that O(D)|x x{y1x{z} = Mlxx{yyx{z} forall(y,2z) € Y x Z, essentially by construction.

Quickly, we claimthat D = E x Y x Z. Well, find some p € X notin the support of E, and we will show
that D N ({p} x Y x Z) is empty, which will imply the claim because then we will find that D is the needed
sum of pointsin E's supporttimes Y x Z. So we will be able to complete the proof by restricting computing
L on D by its restriction to X x {yo} x {20}, which we know to be trivial already.

Well, to show the claim, we (sub)claim

?

(DN {p} xY x2Z))n(({p} x Y x{z0}) U ({p} x {no} x 2)) = &.

Well, £ trivializes on X x {yo} x Zand X x Y x {2} already, so M on this restriction is Ox (E), so this
intersection must then be empty.

We now upgrade using that Y is proper. The projection pr, (D N ({p} x Y x Z)) is a closed subset of Z,
soDN({p} xY x Z) mustjustbe {p} x Y x Z" for a codimension-1 subscheme Z”/ C Z. But the previous
subclaim now requires everything to be empty.

We now complete the proof. Right now we know that O(D)|x x 1y} x{z} Must be pr} O(E)|x x{y1x {1 by
the claim of the previous paragraphs. But O(D) is just M, so we are being told that £| x » 1} x{} is trivial, so
Proposition 2.19 along with the trivialization of L]} xy xz completes the argument that L is trivial. |

2.4 February12

The homework is due today.

2.4.1 AmpleLine Bundles on Abelian Varieties

Today we will show that abelian varieties are projective. The point is to exhibit an ample line bundle, so we
want to understand ample line bundles.
As a corollary to Theorem 2.7, we have the following result.
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Theorem 2.28 (of the Square). Fix a line bundle £ on an abelian k-variety A. For any a € A(k), let

to: A — Adenote the translation. Then forany z,y € A(k), we have
tr o LEELOEL.

Thus, the map ¢ : A(k) — Pic(Az) given by z — £ @ L~ is a group homomorphism.

Proof. For the first claim, take f: {z} — Aandg: {y} — Aandh: {04} — A and apply Corollary 2.9. For
the second claim, we simply expand ¢z (x + y) = ¢2(z) ® ¢ (y) directly. [ ]

Remark 2.29. In fact, o : Pic A — Hom(A(k), Pic(Ay)) is a group homomorphism, which we can see
by expanding out the definitions directly.

So we may make the following definition.

Definition 2.30. Fix an abelian k-variety A. Then we define the subgroup Pic’(A4) C Pic(A) as ker p,. In
other words, ¢ € Pic(A) if and only if ¢ is trivial.

Example 2.31. For an elliptic curve A, one can identify A with Pic’(A), so we get an exact sequence
0 — Pic®(A) — Pic(4) — Z — 0,
where the last map is the degree map.

Let's describe Pic” in a better way.

Lemma 2.32. Fix an abelian k-variety A. Then £ € Pic’(A) if and only if m*L£ = pr} £ ® pr} L.

Proof. We have two implications to show.

» Suppose m*L = pri £ ® pri L. We must show that ¢ is trivial. Well, fix some point « € A(k), and let
iz: {2} — Abe the closed embedding. By definition, one sees

tL=iim"L=43"(pri Lprs L) =04 R L
by some projections. So ¢, () = O4 is trivial.

« Suppose L € PigO(A). Define M := m*L @ prj L~ @ prjy L=, which we want to show is trivial. Now,
for each x € A(k), we see that
M| axfzy = Oa,

so Proposition 2.19 means that M must pull back to a trivial line bundle on both factors, so M is
actually trivial. |

We now pick up some notation.
Definition 2.33. Fix an abelian k-variety A. For a line bundle £ on A, we define K (L) = ker ¢, which

by definition is 3
{r e Alk) : t; L= L}.
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Remark 2.34. Once we upgrade Pic to a scheme, we can view K (L) as the closed subscheme ker ¢.
For today, it will be enough to realize that K(£) is Zariski closed and then view it as a reduced closed
subscheme of A.

Remark 2.35. One has K (£) = A ifand only if £ € Pic’(A).

Let's check that K (L) is Zariski closed.

Lemma 2.36. Fix an abelian k-variety A. Foraline bundle £ on A, the subset K (£) C Ais Zariski closed.

Proof. By definition, we see
K(L)={z€ A(k) :m*"LRpr5 L™ ax(s} =2 Oa}.

However, a computation with Proposition 2.19 shows that K (£) is closed. ]
Lemma 2.37. Fix an abelian k-variety A. For a line bundle £ on 4, we have K (£7!) = K(L).

Proof. Direct from the definition. [ ]

Notably, the above lemma tells us that we cannot tell if a line bundle is ample just from looking at K(£):
if £ is ample, then £~1 is almost never ample. So we will need some notion of effectivity in the following
result.

Theorem 2.38. Fix an abelian k-variety A. For an effective divisor D on A, set £ := O(D). Then the
following are equivalent.

(@) Lisample.
(b) K(L)is finite.
(c) H(D) :=={closedz € A: z+ D = D} is finite.

(d) The linear system |2D| := T'(X,04(2D))/k* (or equivalently, the collection of effective divisors
linearly equivalent to 2D) is base-point free, and the map A — IP",fDl is finite.

Note x + D = D is literal equality, not linear equivalence of divisors. Also, the addition by « is a translation.
Proof. The equivalence of (a) and (d) is algebraic geometry not arising from abelian varieties.

» We show (a) implies (b). Certainly K(£) is a closed k-subgroup of A. In particular, B := K(L£)° will
be connected (hence geometrically integral), reduced (hence smooth), and proper, so B is an abelian
variety. But by definition of B, we know t: £| 3 = L|, so L|5 € Pic’(B), so Lemma 2.32 implies

m*L|p = pr] L|p @prs L|p

as line bundles on B x B. Now ([1],[-1]): B — B x B hasboth [1]: B — Band [-1]: B — B being
isomorphisms, by m o ([—1], [1]) = [0], so pulling back along ([1], [-1]) implies

Op = £|B ® [—1]*E|B.

But then £L| 5 is ample, and [—1] is an isomorphism, so [-1]*L|z is ample, so Op is ample. But then B
must have dimension 0, meaning that B is finite, so K (L) is also finite.
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« We show (b) implies (c). Indeed, z € H(D) with  + D = D then implies t;£ = L, so H(D) C K (L),
which is enough.

« We sketch (d) implies (a). It suffices to show that £#2 is ample. We claim that the pullback of an ample
line bundle by a finite morphism is ample. Well, £%? is ample if and only if

H' (X, F®L%") =0

forall coherent sheaves F and indices ¢ > 0. (The forward implication is just by a cohomology compu-
tation, noting that £ to a sufficiently high power will simply induce an embedding to projective space,
allowing us to compute the cohomology in projective space.)

« We show (c) implies (d). Quickly, we note that (z + D) + (—z + D) ~ 2D by translating around, via
Theorem 2.28.

Now, to be base-point free, we want to show that each point p € A has some section x such that
(x + D) + (—z + D) fails to vanish on y; equivalently, we are asking forz ¢ (—y+ D)and z ¢ y + D.
But —y + D and y + D are both of codimension 1 in A, so these two divisors cannot cover A.

Lastly, we need to show that the associated map ¢: A — PX is finite. Well, because A is proper,
it follows that ¢ is proper, so it suffices to show that ¢ is quasifinite. Well, suppose for the sake of
contradiction that we have a closed point y € PY with infinite fiber; surely the fiber is quasicompact,
so the fiber must actually have positive dimension. Namely, there will be an irreducible proper curve
C C Asuch that ¢(C) is a point; notably, proper curves are projective, so we may as well say that C'is
projective.

Well, for any effective divisor E € |2D|, we either have ENC = C or ENC = @. For this, we will
use Lemma 2.40, proven next class. Indeed, setting E' := x + D for some z € C, one must have
(x+D)U(—x+D)NC # @,soany z,y € Cwillhave (zt—y+2x)+D = x4+ D, meaningz —y € H(D).
But we have put too many points in H (D), so we have achieved our contradiction. |

Corollary 2.39. Fix an abelian k-variety A. Then A is a projective k-scheme.

Proof. It suffices to produce an ample line bundle £. By Theorem 2.38, it suffices to produce an effective
divisor D such that H(D) := {closed z € A : x + D = D} is finite.

For our construction, let U C A be an affine open neighborhood of e. Then D := A\ U is an effective
divisor (it is a fact that D is pure of codimension 1!). We will show our finiteness in two claims.

+ Weclaim H(D) C U. Indeed, ifz € H(D),thenxz + D = D, sox + U = U by taking complements, so
zel.

» We claim H(D) C Ais closed. Indeed, note thereisamapm: A x D — A, and H(D) by definition is
pr, (m~(D)). But D C Ais closed, and A is proper, so H(D) is thus closed.

The above two claims imply that H(D) is finite: giving H (D) the reduced closed subscheme structure, we
seethat H(D) C Aisa proper k-variety, but it is contained in the affine k-variety U, so H(D) must be zero-

dimensional. (For example, to show finiteness, we may as well assume irreducibility, but then if we have
positive dimension, then we will get non-constant global sections from U, so dim H(D) = 0 is forced.) N

2.5 February14

We began class by completing the proof of Theorem 2.38, which I have edited into directly.
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2.5.1 Finishing Up Ample Line Bundles

From last class, we needed the following lemma.

Lemma 2.40. Fix an irreducible projective curve C sitting inside an abelian k-variety A. Given an effec-
tive divisor E with EN C = &, we will have (x —y) + E = Eforanyz,y € C.

Proof. Fix L = O4(FE); the hypothesis is that £L|c = O¢. Note there is a (restricted) multiplication map
m: C x A — A, sowe may look at the line bundle m*L£ on C' x A. For example, for a € A, we may compute

X (m*Lloxizy) = x (L)

On the other hand, the Euler characteristic needs to be constant in our family, so we can compute this at
x =04 as x(t;L|c) = x(O¢). From here, Riemann—Roch implies deg t L|c = deg Oc = 0. But E being an
effective divisor requires that ¢} £|¢ to fully trivialize, so either (z + E) cannot intersect C at all. Thus, for
anyz,y € Candz € E,onehasz € (z—y+C)NE,soactuallyz—y+C C E,soz—y+ax € E, so
z € (y — z) + E. Looping over all z € E completes the proof. [ |

Here is a nice application.

Corollary 2.41. Fix an abelian k-variety A. For any nonzero integer n, the map [n]4: A — A s an
isogeny.

Proof. Because the dimension of the target and source are the same, it is enough to check that [n] 4 is sur-
jective or finite kernel; see [Mil08, Proposition 7.1]. The point is that the dimension of the fiber needs plus
the dimension of the image needs to be the dimension of the target.

As such, we will show that [n]4 has finite kernel. Well, fix an ample line bundle £ on A, which exists
by Corollary 2.39. In fact, we may replace £ by £ ® [-1]*L, which is still ample because pulling back by an
automorphism [—1] preserves being ample. So [-1]*£ = £, and then we can compute [n|*L = £en*,

Let A[n| be the kernelof [n]: A — A. We want to show that A[n] is finite, and because A is quasicompact,
it will be enough to show that A[n] is zero-dimensional. Now, A[n]° is an abelian variety, so we want to show
that A[n]° = {04}. But

[n]* L] Apnje = O e,

so the trivial line bundle on O 4, is ample, forcing A[n]° to be zero-dimensional. |

2.5.2 Degree

We will want to understand the degree of isogenies. Let's go ahead and give the general definition of de-
gree.

Definition 2.42 (degree). Fix a dominant morphism of f: X — Y of integral k-schemes such that
dim X = dimY. Thendeg f := [K(X) : K(Y)] is the degree of f; we define the separable degree and
inseparable degree accordingly. We say that f is separableif and onlyif f: K(Y) — K(X) is separable.

Here is another way to think about degree.
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Definition 2.43 (degree). Fix a proper k-variety X and a line bundle £ on X. For a coherent sheaf F on
X, we define P.: Z — Z by
Pp(F,n) = x (F& L.

It turns out that Pr, is a polynomial of degree bounded above by dim X, by [Vak17, Theorem 19.6.1].
Then the degree of F with respect to £ is the number d.(F) making the leading term of P (F,n), in
the sense that

i Pﬁ(fz TL)

n=oo dg(F)ndimX /(dim X)!’

Then we define the degree as deg £ := d:(Ox).

Let's see how these align.

Proposition 2.44. Fix a finite dominant morphism of f: X — Y of proper integral k-schemes such that
dim X = dimY. Then

(deg f)(deg £) = deg f*L.

Example 2.45. Fixan abelian k-variety A. Then we claim deg[n]4 = n?4™ 4, Asin Corollary 2.41, choose
an ample line bundle £ with £ = [-1]*£. Being ample implies deg £ > 0: by taking powers, we may
assumethat L isvery ample, and then one can do an explicit computation. (Alternatively, do intersection
theory to realize the degree as an intersection number, which is positive.) But we showed

[n]*L = L&,

so the result follows from Proposition 2.44.

2.6 February16

Today we continue discussing degree.

2.6.1 MoreonDegree

Let's just get going.

Lemma 2.46. Fix a proper integral k-scheme X with generic point 5. For a line bundle £ on X and a
coherent sheaf F on X, we have
d¢(F) = (rank F,)(deg £).

Proof. Thisisa standard "dévissage” argument. Because x is additive in short exact sequences, it is enough
to check that there is a coherent sheaf of ideals Z C Ox fitting in the exact sequence

0— kT 5 F 5 Q= 0,

where Qs a torsion sheaf where supp Q is a closed subscheme of X of positive codimension, and supp Ox /7
is also a closed subscheme of X of positive codimension. Indeed, this will imply that

d¢(F) =rank F, - d¢(Z) = rank F,, - deg £

by staring at our short exact sequences.

So it remains to find Z. Well, F is coherent with rank r, so a spreading out argument promises that we
can find an open subscheme U C X such that F|; = OF". Then we can view X \ U as a divisor and take the
line bundle associated to it given by Z. Because U is dense, the quotient 7 will end up being torsion, which
is enough. |
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Proposition 2.44 will follow from this.

Proposition 2.44. Fix a finite dominant morphism of f: X — Y of proper integral k-schemes such that
dim X =dimY. Then
(deg f)(deg £) = deg f*L.

Proof. Exactness of f allows us to see
H' (X, f*L®™) = H* (Y, fo f*L®™) .

Now, the adjunction formula tells us that this is H (Y, f.Ox ® £®"), so unwinding our characteristic poly-
nomial reveals that

deg f*L = d(fOx) = (deg f)(deg L),
where the last equality has used Lemma 2.46. |

Remark 2.47. One can weaken f from being finite to dominant by passing to an open subscheme where
we are finite.

This allows us to understand [n] 4.

Theorem 2.48. Fix an abelian k-variety A. Forany nonzero integern, the map [n]4: A — Aisanisogeny
of degree n2dim4,
(@) [n]a is separable if and only if char k 1 n.

(b) If p := char k, then the inseparable degree of [p] 4 is at least pdim 4,

Proof. The degree computation is immediate from Proposition 2.44 and the computation [n]% £ = £’ for
an ample symmetric line bundle L.

For (a), we note that [n] 4 is separable if and only if it is étale (indeed, [n] 4 is already flat by miracle flat-
ness), so it is enough to check smoothness. But being a group scheme means that we may as well check
smoothness only at 04 € A. Well, an induction on n shows that d[n] 4o, : Lie A — Lie A is multiplication-
by-n,? and this map is invertible if and only if char k { n.

Now, for (b), we note that d[p]|o, : Lie A — Lie A is the zero map. However, [p]: A — A produces a map
by pullback in the opposite direction given by [p]*QY — Q4. This map on the stalk at 0 is dual to the map
on Lie A, which is the zero map, so homogeneity now requires that [p]*Ql — Q1 is fully the zero map. In
other words, for any f € K(A), we have [p]*df = 0in Q}((A)/k, which upon unwinding definitions (in the
differentials) implies

[p]"f € K(A)".

The moral of the story is that [p|*K(A) — K (A) factors through k - K(A)P. But K(A)? has transcendence
degree dim A over k, so this extension has inseparable degree at least pd™ 4, [ |

Corollary 2.49. Fix an abelian k-variety A.
(a) If char k { n, then A[n](k) = (Z/nZ)?dm 4,

(b) If n = p” where p := char k > 0, then Ap](k) = (Z/p”Z)i for some i < dim A.

2 The main thing to check is that dm(t1, t2) = t1 + t2. This is computed in [Mum08, p. 40].
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Proof. For (a), the pointis that [n] 4 being separable implies that A(k)[n] = deg[n] 4, so we know that A(k)[n]
at least has the correct size by Theorem 2.48. Now, for n = ¢” a prime power, one can induct on the power
and use the fact that it has a quotient of the form Z /¢* =1 Z given by multiplication-by-/, so the sharper result
holds. If n is not a prime power, then we decompose into prime powers to conclude.
The argument for (b) is similar. Note deg[p] = p? 4™ 4 still, but we have at least dim A stuck in inseparable
degree, so
p2 dim A ;

#ARp] = dego ] = 32— =

for some 0 < i < g. But the group is p-torsion, so we get (Z/pZ)?, and the same induction on n achieves the
result for p” in general. More explicitly, we write out the exact sequence

0— A(R)[p| = AR)[p"] & AE) [p"'] — 0,
which forces the middle by induction. |
Remark 2.50. The i in the above result is usually called the “p-rank” of A. Itisanisomorphism invariant,
so for example it can produce a stratification of the moduli space. As an example of this being interest-

ing, it is known that having maximal p-rank implies that A is “ordinary,” which relates to the Frobenius
action.

This permits the following definition.

Definition 2.51 (Tate module). Fix an abelian k-variety A and a prime ¢ coprime to char k. Then
T, A = l'glA[K’].

The point is that 7, A = Z2 4™ 4 by taking limits over Corollary 2.49.

Remark 2.52. To define a Tate module for ¢ = char k, one needs to define a p-divisible group.

2.6.2 The Picard Scheme

We will need a little moduli theory but not too much. In particular, we need the Picard functor.
Definition 2.53 (Picard). Fix a k-scheme X. Then the Picard functor takes k-schemes T' to Picx(T') of
isomorphism classes of line bundles on X X T. Given a k-rational point z € X (k), this is in bijection

with “rigidified” line bundles (£, ) on X x; T, where a: L|;} <7 = Or is a choice of trivialization.

Here is the theorem.

Theorem 2.54 (Grothendieck). The functor Picy ;, is representable by a separated k-scheme locally of
finite type. In fact, Pick,, is quasi-projective and is projective if X is smooth.

We will not need to know any part of this proof, but we do need to use that this scheme exists.

Remark 2.55. One can check directly that Picy, ®k = Picx?/ﬁ by some base-change like argument.

2.7 February21

Today we begin our discussion of duality in earnest. Homework will be posted next week.
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2.7.1 ThePicard Scheme of an Abelian Variety

Note that an abelian k-variety A has a k-rational point 04 € A(k) and is smooth, projective, and so on.
Thus, Pic}, ;, A exists. Because A is smooth, this scheme is projective. We would like this to agree with our

construction of Pic® A from earlier.
Theorem 2.56. Fix an abelian k-variety A. Then Picy /. (k) = Pic’(A).

Namely, our goal is to make sense of the following definition.

Definition 2.57 (dual abelian variety). For an abelian k-variety A, we set AY = Pici‘/k to be the dual
abelian variety.

We know that Pic5 ;. is a connected (and hence irreducible) group scheme, but we do not yet know if it is
smooth; Theorem 2.56 will help with this. For example, we do know that AY_ , is in fact an abelian variety.
It will help to have the following notion.
Definition 2.58 (Poincare line bundle). Fix a k-scheme X for which Picx/;, exists. Then thereis a univer-
sal Poincaré (rigidified) line bundle (P, ap) on X x; Picx,;, where a: P|{w}xpiCX/k = Opicy,,- Namely,
(P, «) corresponds to idpicy,, € hPiCX/k(PiCX/k).
Remark 2.59. Unwinding via the Yoneda lemma, any T'-point ¢: T' — Picx ;. corresponds to the rigidi-
fied line bundle (£, ) = ¢*(P, ap). For example, if k' /k is a field extension, then a £’-point A € Picx
corresponds to the rigidified line bundle P|x ¢} -
It will be useful to have some notion of equivalence.
Definition 2.60 (algebraically equivalent). Fix line bundles M and N over a k-scheme X, where k is
algebraically closed. Then M and A are algebraically equivalent if and only if there is a connected k-
variety T'and a line bundle £ over X}, x T and ¢y, t5 € T'(k) such that
Mg‘ClXx{tl} and Ng£|x><{t2}.
Remark 2.61. One may restrict T  to just being a curve by finding a curve between ¢; and ¢s.
Remark 2.62. Rational equivalence basically amounts to taking 7' = P;.
Algebraic equivalence is in fact a weaker condition.
Lemma 2.63. Fix a line bundle £’ on a k-scheme X (with marked point e € X (k)) coming from some
A € Picy/i(k) (where we assume Picxy exists). Then A € Pick (k) if and only if £3-and Ox_ are
algebraically equivalent.
Proof. Inthe forward direction, we take T" := (Picg(/k)E N which is a connected variety. (For connectivity,
,re

we see) Then the universal line bundle P restricts to £ on X x {\} (by definition of A) and restricts to Ox
on X x {e} (by definition of P).

In the reverse direction, pick up our k-scheme T and the provided line bundle £ over X x T with points
t1,to € T, and let {U, };c; be a trivializing open cover, and we assume that the U; are connected. Notably,
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being a trivializing open cover means that we have equipped ourselves with morphisms U; — Picx ;. Now,
we know

»C|X?><{t1} = ['/E and £|ng{t2} = OX;.
Now, the marked point ¢, lives in some U;, and this U; goes to Pic%/,, by the above trivialization, so because

T is connected, actually is all maps to Pic‘;/,{,. Thus, we can specialize to t; to get L in Pic‘;/k,. |

This allows us to prove part of Theorem 2.56.

Lemma 2.64. Fix an abelian k-variety A. Then Pic5, /. (k) C Pic’(A).

Proof. Let P be the universal line bundle on A x AY, ;, which is legal because we're only ever going to work

with k-points anyway. Now, pick up some L € Pic} /;,(k), and we need to show that
m*L 2 pr] L& prs L.
By pullback, it suffices to show this for P, so define
M = (m @idav)*P @ (pr) ®idav)" P~ @ (pr ®idav) P,

which we want to show is trivial. Well, the above is a line bundle on A x A x AV, so we use Theorem 2.7.
For this, note P|g,1xav, = Oav by construction of the universal line bundle, and P|ax (0, } = O4 again
by construction. Now,

Mlfoayxaxay, = P11 (Pl{oA}xAied)

because the first and last terms cancel, and the above line bundle trivializes as discussed; the argument is
similar for A x {04} x AV. Lastly, we see

M\AxAx{oAvd} = (m* @ (pr}) "' @ (pr3) ") (Plaxfoay)
vanishes because now we're just over A x A. |

Before showing the other inclusion, we make some remarks. Well, given some line bundle £, we build
or: A(k) — Pic”(Ag), which we claim actually factors through Pic% /. (k). Indeed, for = € A(k), we want to
know that ¢ £ ® £~ is algebraically equivalent to O, by Lemma 2.63. But then A;; x Ay itself witnesses
the algebraic equivalence because you can write down a line bundle which specializes to both t* £ @ £~ and
t*L ® L1 (the latter of which is trivial).

So we are going to want to show the following.

Proposition 2.65. Fix an abelian k-variety Aand anample line bundle £ on A. Thenthe map . : A(k) —
Pic’(A;) is surjective.

It will help to prove the following lemma.

Lemma 2.66. Fix an abelian k-variety A and a nontrivial line bundle £ € Pic’(A). Then H*(A, £) = 0 for
alli.

Proof. We begin by showing H°(A, £) = 0. Well, if this is not the case, then we may find an effective divisor
D C Asuchthat £ 2 O4(D) by viewing I'( A, L) as parameterizing linear systems. Now, we compute

Oa=04L = ([1a x [=1]a)"m*L = ([1]a x [-1]a)(pr1 L& pr; L) = L& [1]"L.
But then we are being told that D + [—1]* D is rationally equivalent to 0, which forces L to be trivial.
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For the second part, we use the Kiinneth formula. Let k be the smallest positive integer where H*(A4, L)
is nonzero; note k£ > 0 by the above paragraph. Now, we note that we have the commutative diagram.

HF(A, L) —™5 H*(A x A,m*L)

\ l(OA xida)*

HF(A, L)
Thus, H*(A x A,m*L) is nonzero, but the Kiinneth formula tells us that

H*(Ax ApriLopsL)= @ H(A L)@ H(AL).
itj=k

The left-hand side is nonzero, but then some term on the right-hand side must be nonzero, which is a con-
tradiction because we cannot have i =0orj = 0. |

2.8 February23

Today we are joined by a peach and a crab.

2.8.1 Moreon the Picard Scheme

Recall we were in the middle of proving Proposition 2.65. Morally, we are saying that A is isogenous to its
dual.

Proposition 2.65. Fixan abelian k-variety Aand anample line bundle £ on A. Thenthe map . : A(k) —
Pic®(Az) is surjective.

Proof. We may take k to be algebraically closed. Assume for the sake of contradiction that there is a line
bundle M € Pic®(Az) which is not of the form ¢, (z) = t1£ ® L7, so we set

N =m*L@pr} L7 @ prh (Efl ® ./\/lfl) ,

which is a line bundle on A4 x A.
We now use the Leray spectral sequence.

Theorem 2.67 (Leray spectral sequence). Fix a morphism f: X — Y of schemes and a quasicoherent
sheaf F on X. Then there is a spectral sequence

E¥? = HP(Y,Rf.F) = HPTY(X, F).

We will apply this to A on A x A with the two projections pry,pry: A x A — A.

« For example, NV|(;3xa = 5L ® L1 ® M~ (which is nontrivial), so its cohomology vanishes by
Lemma 2.66. Thus, we see that R7 pr;, N' = 0 by computation of higher direct images via Theo-
rem 2.18, so its cohomology vanishes.

« Onthe other hand, N4y (.} = t5£ ® L' is trivial if and only if 2 € K (L) using the notation of Theo-
rem 2.38, which is a finite set by that theorem, so Hj(A,N|AX{I}) =0forxz € A\ K(L), meaning that
the higher direct images on A x K(£) need to vanish via Theorem 2.18.

In other words, R’ pr,, N is a coherent sheaf supported in the finite set K(£). In particular, dimension
arguments mean that H'(A, R’ pr,, N') = 0 for positive i. So our spectral sequence looks like the
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following diagram.

0 °

Because our spectral sequence is converging on this E» page, we are able to conclude that
H"(Ax A, N) = H°(A, R" pry, N).

Our previous point tells us that the left group vanishes, but then the right-hand sheaf is just supported
on finitely many points and so will have global sections unless we actually have R" pr,, N' = 0 for all
n. However, N'|ax10,3 = Oa by construction, so the vanishing of our higher direct images provides
contradiction because H(A4,04) # 0. |

This concludes the proof of Theorem 2.56. Notably, we are now able to upgrade ¢, to a full morphism
A — Pic} /,, sending rigidified line bundles to what we expect them to be. (Explicitly, ¢ is realized on the
level of the moduli spaces.) We factor through Pic® because A is connected, meaning that the image of ¢,
needs to actually land in the connected component.

Remark2.68. Notably, if £is an ample line bundle, we get a surjectivemap . : A — Picj /, sodim A =
dim AV.

2.8.2 Smoothness of the Dual Abelian Variety

Here is the desired result.

| Theorem 2.69. Fix an abelian k-variety A. Then AY = Pic, , is smooth.

Notably, it will be enough to show that AV is smooth somewhere (because we are a group), so it is enough
to show that dim 7pAY = dim A.
It will help to provide a cohomological description of the tangent space.

Lemma 2.70. Fix an abelian k-variety A. Then ToAY =2 H*(A,04).

Proof. By definition,
ToAY == ker (AY(A) — AY(k)),

where A := Spec k[e]/ (£2) is the ring of dual numbers. Unwinding the definition of A, we are looking at
ToAv = ker (PiCA/k(A) — PICA/k(k)) s

where we may replace Pic® with Pic because 0 € Pic, ;. anyway. As a moduli description, we see that Pic
classifies line bundles up to some suitable equivalence, but this equivalence vanishes over the affine scheme
A, so we are going to want to have an exact sequence

0 — TpAY — Pic(A x A) — Pic A.

On the other side of things, we know Pic(X) = H'(X, O%) for any scheme X, which explains how coho-
mology is going to appear. Notably, one has the “exponential” exact sequence

0= 04— 04,,— 04 =1,
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of quasicoherent sheaves on A, where the first map sends f — 1+ f, and the second map comes from the
inclusion A — A x A. Notably, the inclusion A — A x A has a splitting given by the projection, so the above
exact sequence will also split. Because we split, we will remain exact upon applying global sections, so long
exact sequence may read

0— H'Y(A,04) > H (Ax N, 0%, ) = H(A,0F) = ---.

(Here, HY (A x A, O, ») = H'(A, O}, ) because the inclusion is a closed embedding.) The point is that we
get the following morphism of left exact sequences.

0 —— TpAY —— Pic(AxA) ——— PicA

0 —— HY(A,04) —— HY(Ax A O}, ) — HY(A,0F)

The dashed arrow is induced an isomorphism, so we are done. |
Theorem 2.69 will now follow from the following proposition.

Proposition2.71. Let k be an algebraically closed field, and fixan abelian k-variety A, and set g := dim A.

Then dim H'(A,04) = g, and
g9

N\H'(A,04) = ) H'(A,04)

=0

of graded k-vector spaces.
Remark 2.72. A similar statement holds for étale cohomology and other Weil cohomology theories.

Remark2.73. In fact, we will be able to upgrade the isomorphism in Proposition 2.71 to anisomorphism
of Hopf k-algebras, where the Hopf algebra structure is provided by the cup product.

Notably, Theorem 2.69 follows from the above two results because we are directly told that dim Ty AY =
dim A = dim AV.

2.9 February 26

We continue.

2.9.1 Cohomology Rings as Hopf Algebras
Last class we stated the following result.

Proposition2.71. Let k be an algebraically closed field, and fixan abelian k-variety A, and set g := dim A.
Thendim H'(A,O4) = g, and

N\H' (A,04) =@ H (A 04)
=0

of graded k-vector spaces.
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In fact, we will use the classification of Hopf algebras to show that both sides here are Hopf algebras and
that they are isomorphic. For example,

g
Hay =D H'(A,04)
i=0
is a graded k-algebra with product given by the cup product. To see this cup product, one can define it by
Ha®p Ha 2 Haxa — Ha

where the first map is the Kiinneth formula, and the last map is given by pullback along the diagonal A: A —
A x A. In fact, there is some extra structure of a cocommutative coalgebra. Indeed, there is a map

Ha™ Haxa = Ha®p Hy,

where again the second map is the Kiinneth formula. We also have aninversion [-1]*: H4 — H 4. All of this
structure can be put into a Hopf algebra.

Definition 2.74 (Hopf algebra). Fix a field k. Then a Hopf algebra is a graded k-vector space equipped
with a productm: H® H — H,acomultiplication A: H —+ H ® H, aninversion s: H — H, an identity
eH — k, and a coidentity 0: kK — H, satisfying the following.

« (m,d) makes H into a k-algebra.
« (A, e) makes H into a k-coalgebra, meaning that the following diagrams commute.

H—2 HQH

N [

HoH 2% HeHoH

« The maps A and m are algebra and coalgebra homomorphisms, respectively.

« Themap s

Remark 2.75. We can see that commutative Hopf k-algebras A are equivalent to affine group k-sche-
mes. Indeed, one can just unwind the definition of an affine group k-scheme to see that they are just
schemes of the form Spec A where A is a commutative Hopf k-algebra.

We will also want some notion of commutativity in our graded setting.

Definition 2.76 (graded commutative). A k-algebra H is graded commutative if and only if any homo-

geneous elements a,b € H have
ab = (_1)(dega)(degb)ba.

Example 2.77. Fix an abelian k-variety A. Then our work above tells us that H 4 is a finite dimensional
graded commutative Hopf k-algebra. In fact, we see that H° = k by taking global sections. We also
note that we can compute

m*(h)=(1®h)+(h@1)+ > (h@hy)
1>5>0

for some unknown #; and h;. One can see this because m maps1 ® hand h ® 1to h.

The above data will be enough for our classification result.
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Lemma 2.78. Fix a perfect field k. Suppose that H is a graded commutative Hopf k-algebra such that
H®=Fkand H" = 0forr > gandany h € H has

m*(h) = (1@h)+ (Rl + ) (hi®h)

i>75>0

for some unknown h; and h;. Then dim H' < g; in fact, if dim H' = g, then H = A H' as graded
commutative Hopf k-algebras.

Sketch. One can show (and it is due to Borel) that such an H is generated by finitely many homogeneous
elements, generated essentially freely by these elements (i.e., the only relations are given by the graded
commutativity and nilpotent), so let these generators be 1, ..., z,,. Notably,

m m
degH%’ = Zdegmi <9,
i=1 i=1

where the inequality at the end is because the product must be nonzero, so we see that dim H; < g because
dim H; is upper-bounded by the number of x; with degz; = 1. But if we have dim H; = g, then the above
degree computation must achieve equality, so all the generators must have degree exactly 1, and there must
be g of them. Furthermore, we claim that xf = 0 for each generator z;, which holds because x? # (0 means
that the product z; [, z; is still nonzero but has degree larger than g, which is a contradiction. |

One can then feed the above lemma into Proposition 2.71 to show that dim H'(A, O4) < g, which is enough
for our purposes because the quasifinite surjection A — AV promises that dim AY > dim A. So in fact we
get the isomorphism claimed in Proposition 2.71. This in turn completes the proof of Theorem 2.69.

2.9.2 Polarizations

We now discuss some special isogenies.

Definition 2.79 (polarization). Fix an abelian k-variety A. Anisogeny A\: A — AV is a polarization if and
only if A\ = ¢, for some ample line bundle £ on Az. A polarization A is principal if and only if deg A = 1;
i.e., Aisanisomorphism.

Remark 2.80. Each line bundle £’ € Picz/k(A) will have o, = g7, andin fact the converse still holds
by unwinding the definition of Pic’. As such, we can think about polarizations as being a subset of
Pic’(Az)’

Definition 2.81 (Néron—Severi group). Fix an abelian k-variety A. Then the Néron-Severi group is

. PiCA/k (AE)

NS(A) o m-

Approximately speaking, the Néron—Serveri group measures polarizations.
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Remark 2.82. Take k = C. Then the exponential short exact sequence 0 — Z — 04 — O — 1
produces a long exact sequence

HY(A,Z) — HY(A,04) = H'(A,0%) — H*(A,Z).
Now, H'(A,04)/H"(A,Z) = Pic’(A) as discussed earlier, so we note that we have the exact sequence
HY(A,Z) — H'(A,04) — H'(A,0%) — NS(A) — 0.
Pic A

Thus, NS(A) is a finitely generated Z-module because it embeds into H?(A, Z).

Remark 2.83. More generally, NS(A) is a free Z-module of finite rank for any abelian k-variety A, for
any field k. The point is that viewing NS(A) as polarizations will embed into

HOHIE(AE, A%)

by ve, and the target is a free Z-module of finite rank because one can show that any prime ¢ with
char k 1 ¢ builds an injection

Ty: Homg(Ag, Ay) — Hom(Ty(Ag), Te(AF)),

and the target is a free Z,-module of finite rank, and the proof of this inclusion is able to show that the
source is thus free of finite rank (over Z!).

Remark 2.84. Just because \ is a polarization does not mean that there is a line bundle £ on A such
that A = .. Take k to be perfect so that we can use Galois descent by G := Gal(k/k). By definition of
NS(A), we have an exact sequence

0 — AY (k) — Pica/i(k) = NS(A) — 0,
so we get a long exact sequence
0 — AY(k) — Pica (k) = NS(A)Y — H' (G, A" (k)).

As such, we are asking if every A € NS(A)¢ comes from Pic 4 (k), which might be false if (G, A" (k))
fails to vanish. However, it turns out that this is not the case if % is finite.

Remark 2.85. Fix a projective k-curve X and some k-rational point zp € X (k). One can show that
J(X) = Pic%, is a smooth group scheme and hence an abelian variety. Now, each d > 0 produces a
map X?¢ — J(X) by sending (z1, ..., x4) to the line bundle Ox (2;) ® - -- ® Ox (24) ® Ox(—x0)®% In
particular, it turns out that the image of X9~=! — J(X) gives rise to an ample line bundle £ and hence a
polarization .. In fact, this is a principal polarization.

2.10 February28

We now move into a discussion of quotients, so we will want to understand some descent. Homework will
be posted over the weekend.
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2.10.1 Cartier Duals

Our end goal is the following result.
Theorem 2.86 ((MumO08, Theorem 15.1]). Fixanisogeny f: A — B of abelian k-varieties. Then thereis

adualisogeny fV: BY — A" defined by sending (£, @) € Picy 4 (T) to (f*, f*a) € Picq /4 (T). In fact,
ker fV = (ker f)V.

Remark 2.87. For definition of fV to make sense, f merely needs to be a homomorphism.

Wait, how does one define (ker f)V? Well, we will use the Cartier dual [MumO08, §14].

Definition 2.88. Fix a finite commutative group k-scheme G given by the commutative (and cocommu-
tative) Hopf k-algebra H. Then we define the dual HY = Homy(H, k), which is still a Hopf k-algebra,
so the Cartier dual GV of G is the finite commutative group k-scheme

G = Spec H".
Remark 2.89. Let's explain how HY is a Hopf k-algebra. For example, the unitis a map k — H dualizes

toamap HY — k, which is the counit; similarly, the multiplication isa map H®y; H — H, which dualizes
toamap HY — HY @ HY, which is the comultiplication.

Remark 2.90. We can see on the level of Hopf algebras that GVV = G.

More generally, one can discuss the Hopf algebra of morphisms.

Definition 2.91 (Hom scheme). Fix commutative groups S-schemes G and H. Then we define the func-
tor Homg (G, H): Schg — Ab by

Homg (G, H)(T) := Homp(Gr, Hr)
is in fact represented by an S-scheme frequently.
Let's see an example of this, which provides another way to think about the Cartier dual.

Proposition 2.92. Fix a finite commutative group k-scheme G. Then GV represents Homy (G, G, ).

Proof. It suffices to check the result on affine schemes. Namely, given a k-algebra R, we need a (natural)
isomorphism between G (R) and Homg(Gg, G, r). On one hand, we compute

GY(R) = Homy(H", R) = Homg(H" ®; R, R).

Notably, thisis a subset of R-linear maps HY ®y R — R, whichis Hp, after taking another dual. Well, p € Hg
ifand only if (1) = 1 and ¢(ab) = ¢(a)p(b). Explicitly, letting A: H — H ® H denote the comultiplication
and lettinge: H — k denote the counit, we find that we are asking for Ag(¢) = p® pand eg(p) = 1.

On the other hand,

HOHlR<GR, Gm7R) = HOHIHOpr (R[t, t_1]7 HR) .

Thus, we see that we are in bijection with invertible elements of Hg such that the relevant map preserves
the Hopf algebra structure. In particular, preserving the comultiplication map ¢ — ¢ ® t is asking for o € Hpy
to be invertible as wellas Ar(¢) = ¢ ® ¢.

Soin total, we need to relate unitsin Hg to havingeg(y) = 1, whichis a general fact. Certainlyer(p) =1
implies that ¢ is a unit by using the comultiplication. In the reverse direction, we note 1 - 1 = 1 rewrites as
(e®e) o A =g, meaning that eg(¢)? = er(p) always, so ¢ being invertible requires eg(p) = 1. [ |
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Remark 2.93. Fix a finite commutative group k-scheme G with G = Spec H for Hopf k-algebra H. Then
k[G] = HV, where we send g € G to the map H — k corresponding to evaluation at g. (Notably, we are
viewing H as global sections of G, so evaluation makes sense.)

Example 2.94. Take G = (Z/nZ);, which we note is an étale reduced group scheme with n (closed)
points. We claim that G¥ = p,,. Set H to be the Hopf k-algebra corresponding to G. Using the previous
remark, we find that

k[z]
(z" —1)
at least as k-algebras. It remains to check that comultiplication structure is the same on both. On p,,
the comultiplication structure is given by z — (2 ® z), so we just have to track it through on the dual.
Well, for global sections f, g € H, we evaluate

(f9)([Un) = F([Un)g([1}n) = (f © 9)([1}n ® [1]n),

so we have the correct comultiplication.

HY = k[G] =

2.10.2 fpqcDescent

We take a short intermission to discuss fpqc descent. There are lots of references; for example, see [Con15,
§6]. We will work with relatively light hypotheses.

Definition 2.95 (fpqc). A morphism f: X — Y of schemes is fpqc if and only if it is faithfully flat and
quasicompact.

Remark 2.96. Somehow we are generalizing the discussion for gluing on Zariski opens.

Let's discuss what gluing looks like. Fix a map f: Sg — S which is fpqc; then we set S; == Sy x5 Sy and
So = Sy xg So Xg So, and we let p1o, po3, p13: So — Spand py,pe: S1 — Sy be the projections. We would
like to discuss when we can lift quasicoherent sheaves.

Definition 2.97 (descent datum). Fix everything as above. Given a quasicoherent sheaf 7 on Sy, a de-
scent datum on F is an isomorphism 6: piF — p3F of quasicoherent sheaves on S; satisfying the
“cocycle condition” that

P13t = p336 o pis0.
A morphism of descentdatum h: (F,6) — (G, ) is a morphism of the quasicoherent sheaves commut-
ing with the isomorphisms. In other words, the following diagram commutes.

pih
.7:*>p1

0| |v

]-'*>p2g

More explicitly, the equality to define the descent datum is asking for the following diagram to commute.

9 9
PEpiF 2% phypsF === pispsF — 2 phap]

PispiF PispsF

Pisf
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The equalities listed above are really naturalisomorphisms induced by equalities of projections; for example,

P1 P12 = P1 ° P13
Here is our result.

Theorem 2.98. Fix a map f: Sp — S which is fpgc. Then QCoh(S) is equivalent to the category of
descent data (F, 0).

Proof. The forward map takes a quasicoherent sheaf 7 on S to the pair (f*F, 6 ) where 0 is the composite
pif*F = (fop)' F=(fop)' F=prf*F.
It remains to discuss the inverse functor. The proof reduces to the affine case, where we are talking about

modules, and one can attempt to recover the original model from the descent datum by taking some kernel.
|

One can even discuss descent datum on schemes.

Definition 2.99 (descent datum). Fix an Sy-scheme X. Build S; and S and the projections as above.
Then a descent datumis an isomorphism 6: X x g, ,, S1 =2 X Xg, p, S1 such that

P13t = p330 o piaf.

Remark 2.100. In general, we do not expect to be able to actually get a scheme from descent datum,
but we will be okay for affine schemes because these are basically understood by their global sections.

2.11 March1l

Here we go.

2.11.1 The Duallsogeny

Let's prove Theorem 2.86.

Theorem 2.86 ([MumO08, Theorem 15.1]). Fixanisogeny f: A — B of abelian k-varieties. Then thereis
adualisogeny fV: BY — A" defined by sending (£, @) € Picy ,(T) to (f*, f*a) € Picy /4 (T). In fact,
ker fV = (ker f)V.

Proof. Fixak-schemeT. Then (ker f¥)(T) by definition consists of rigidified line bundles (£, A) € Picy . (T)
such that f*(£, @) is trivial in AY. It turns out that we can show that asserting we are in Picy ,, already: one
can show that ¢ £ = L directly forally € B. Explicitly, forz € A, we note that ¢} f*£ = f*L because we
know that f*£ = O g 1. As such, ¢ ¢+ is the zero map. But now we note that

erc(@) = (ec(f(@)))

because t! f*L = f L and some rearranging. So because the left-hand side vanishes, the right-hand
side will need to vanish; in particular, surjectivity of f requires the composite fV o ¢ to vanish. We will
shortly see that fV has finite kernel as a map Picg/, — Pica/, so fV is essentially an isogeny, so ¢, must
itself vanish. (Formally, one should argue on connected components to make sure everything is okay.)

We claim that this set is in bijection with just line bundles £ on B x T such that f*£ = Ox7. Indeed,
for any such line bundle £, having f*£ = O« pins it down in the target, and then this actually fixes the
isomorphism a.
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To continue, we will use fpqc descent to the map A x T — B x T, which is fpqc because f: A — Biis
an isogeny (flat, for example, by miracle flatness). The point is that Theorem 2.98 tells us line bundles on
B x T are equivalent to line bundles on A x T together with descent data. Let’s unwind the descent data;
set G := ker f.

e WetakeSyp:=AxTandS:=BxT.

e Then S; := Sy x5 Spis (A x T)pxr(A x T). Pairsin Sy can be written as (a,a + g) for some g € ker f
(notably, the coordinates must agree down in B x T'), so thisisjust A x T x G.

« Analogously, we seethat So = A x T x G X g.

Now, the line bundles £ of interest need to be O 41 after pulling back by f, so 0: prf Oaxr — prs Oaxr
can be turned into an invertible global section Oaxrxa — Oaxrxa. Namely, 0 e T(A X T x G,O0%, 1. c)-

Because A is proper over k, this really amounts to having § € T'(T x G, O, ;). Also note that we are asking
to satisfy a cocycle condition
pris 0 = pry 6 opri, 0.

Let's compare what we have with G¥(T'), which is supposed to be f € Hom(Gr, G, r). In other words, f is
a global section of I'(T' x G, OF. ) such that Ar(f) = f ® f (to be a group homomorphism).

So it remains to show that the cocycle condition on 6 corresponds to the homomorphism condition on f.
Well, tracking through all the identifications, we see that we are asking for

0(a, g1 + g2) = 0(a, 91)0(a + g1, 92),

which unwinds to Ar(8) = 6 ® 6 upon staring out how the Hopf algebra comultiplication behaves. |

Remark 2.101. Because ker f is a finite group scheme, we see that (ker f)V is finite. Because f being
an isogeny requires dim A = dim B, we are able to conclude that fV is also an isogeny. In fact, deg f =
deg fV by plugging Theorem 2.86 into

deg f = dimk F(ker f, Oker f).
Let's run some other checks on duality.

Proposition 2.102. Given two morphisms f, g: A — B ofabelian k-varieties, we have (f+g)¥ = fV+g".

Proof. Itis enough to check this on BY (k). By unwinding the definitions, it is enough to show that

?
(f+9)' L= Log L.

But in fact £ € BY(k) implies that m*£ = prj £ ® pr5 £ on B x B, which we can then pull back along
(f,9): A — B x Bto achieve the desired equality. |

Corollary 2.103. Fix any abelian k-variety A. Then for any integer n € Z, we have [n]4v = [n]}.

Proof. Noteid}j = id4v by unwinding definitions. Then forn > 0, write [nJ4 = [1]a + --- + [1]4 and apply
Proposition 2.102. For n < 0, one notes that [n] + [—n] = [0] to derive this from the positive case. [ ]

Remark 2.104. For example, we are able to say that A[n]Y is AV [n] after identifying duals suitably.
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2.11.2 Quotients

We will want quotients. For the correct references, see SGA 3, exposé 6, 3.2.

Theorem 2.105. Fix a closed normal group k-subscheme A C B, where A and B are fppf group k-
schemes. (Here, fppf means faithfully flat of finite presentation.) Then there is a unique fppf group
scheme C' such that

1-A—-B—->C—1

is exact in the category of fppf sheaves. In fact, C is the fppf sheafification of the fppf presheaf T' —
B(T)/A(T).

In life, A will typically be affine and in fact finite (such as the kernel of an isogeny). If B is also affine, then
one can take the ring of A-invariants to do the job. In general, because A is finite, one may work locally on A
to complete the argument. Perhaps the gluing wants to glue along the fppf topology, for which one needs
to do descent.

Theorem 2.106 ([BLR90, Theorem 6.1.5]). Fixa map f: Sy — S which is fpqc. Then the functor from
Schg to Sp-schemes with descent data is fully faithful. In fact, this upgrades to an equivalence if one
works with quasi-affine schemes.

This is enough to do our gluing because we only need uniqueness. The point of the above result is to reduce
this discussion to sheaves on the fpqc topology.

Remark 2.107. There is a general theory trying to build a quotient scheme modulo some proper and flat
equivalence relation; one essentially uses the Hilbert scheme to encode everything.

For our purposes, we are only ever going to take quotients by finite group schemes, but understanding quo-
tients in general can be helpful because, for example, this allows us to construction the Picard scheme by
taking a quotient of divisors by an equivalence relation to get line bundles.

2.12 March4

Homework has been posted. It is due shortly before spring break. There will be another homework assigned
over spring break.

Remark 2.108. Any surjective group homomorphism f: A — B of abelian k-varieties will be fpqc au-
tomatically: quasicompactness has no content, and flatness follows by Miracle flatness.

2.12.1 Construction of the Dual Abelian Variety

For completeness, we provide a construction of Picz/k; see [MumO08, §11.8, §l11.13]. The point is to use the
surjection pz: A — Picj ), (which we know exists on the functor of points), so one can recover Picj /;, as a
quotient group scheme by K (L) = ker ¢.. For example, in characteristic 0, our finite group scheme must
be smooth, so we should use the reduced scheme structure.

Quickly, we provide a moduli interpretation for AV.

Definition 2.109 (Poincaré line bundle). Fix an abelian k-variety A. The Poincaré line bundle P on Ax AV
is the line bundle satisfying P|o, x av and P|axx = A for any (rigidified) line bundle A € AY.

Remark 2.110. The line bundle P is unique by Proposition 2.19.
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To see that it exists, for given very ample line bundle £ on A4, define
M=m*Lopr L' @prs L7}

on A x A. Notably, M|o,xa = O4 and M|ax(;} = @c(x) by some computation, so we expect to have
(ida X ¢z)*P = M. So we will be able to construct P by some suitable descent.

Let's now give K (L) a scheme structure: we let it be the maximal subscheme of A such that M|x(£)x 4
is trivial; we won't bother to check that this exists. It turns out that this is the correct scheme structure for
Picj /, by some checking. So to finish our construction of the Poincaré line bundle as providing descent data
on

AxAx AxK(L)=(AXA) xaxav (Ax A) = Ax AY.

The descent data now amounts to providing an isomorphism M = (1 x t,)*M for z € K(L), which can be
done by staring at the group law.

2.12.2 Symmetry of Duality

We defined AY as a dual, so one should expect that A and AV are canonically isogenous. In general, a
line bundle Q (living in the connected component) on A x B produces a homomorphism kg: B — A" by.
For example, P on A x AV corresponds to id: AY — AY. However, swapping coordinates produces an
isomorphisma: A x AY — AV x A will then produce a morphism r,-p: A — (AY)V, which we claim is an
isomorphism.

Proposition 2.111. Fix an abelian k-variety A with Poincaré line bundle P. Then swapping coordinates
produces anisomorphismo: A x AY — AV x A will then produce a canonicalisomorphism s+p: A —

(AV)V. In fact, the following diagram commutes.

A Koxp (A\/)V

WLJ{ /
o7
A

Proof. To see that k,«p is an isomorphism, we let £ be ample so that ¢ and ¢} is an isogeny, and both of
these covers of AV have the same kernel by Theorem 2.86. Now, x,+p is an isogeny because everything in
sight is an isogeny (for example, everything has the same dimension, and finite kernel is forced because its
composite with ¢} has finite kernel), and we are able to conclude that x,-p is an isomorphism because it
has degree 1 (indeed, deg ¢, = deg ).

We now show the commutativity of the given triangle by hand on closed points. In one direction, ¢, (x) =
t:L ® L~ forz € A(k). In other direction, we begin by computing

K/O'*P(x) = P|{x}><AV
by definition of x, and
0F (Ko@) = 0% (Pliapxav) = (d X 02) Pliayxa = (M L@ pri L7 @pr5 L7 |2y ¢ 4,
which agrees with the other side. u
Remark 2.112. For an abelian k-variety A, we will let P4 be its Poincaré line bundle in this remark. Then
it turns out that P4v on AY x (AY)" is * P, pulled back along k. : AY x (AY)Y — AV x A. To see
this, | think one can use a moduli interpretation or the commutativity of the above diagram for some

uniqueness.

Proposition 2.111 motivates the following definition.
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Definition 2.113. Fix an abelian k-variety A. A homomorphism A\: A — AV is symmetric if and only if
AV = X up to the identification of A with AVV.

Example 2.114. A polarization ¢, is symmetric by Proposition 2.111 (perhaps needing to check on k-
points due to the definition of polarization).

Remark 2.115. Fix a morphism of abelian k-varieties f: A — B. Given a line bundle £ on B, tracking
through moduli interpretations produces the following commutative diagram.

This symmetry allows us to construct the “dual” isogeny.

Theorem 2.116. Fix an isogeny f: A — B of abelian k-varieties. Then there is an isogney g: B — A
suchthat g o f = [deg f] 4.

Remark 2.117. It also turns out that f o g = [deg f]5 and so deg g = deg f (where f and g are as above).
This is essentially by doing cancellation on isogenies via quotients.

The proof of Theorem 2.116 is surprisingly technical in its group theory. For example, one needs the fol-
lowing result.

Theorem 2.118 (Deligne). Fix a commutative finite flat £-group scheme G of order m := dimT'(G, O¢).
Then G is killed by [m]¢.
Proof. Omitted. We will show this later. ]
We now prove Theorem 2.116.
Proof of Theorem 2.116. Note f is fpqc, so descent tells us that a k-scheme X makes X (B) an equalizer of

pry,pry: X(A) = X(A xp A) by viewing X as a quasicoherent sheaf. (See [Con15, Theorem 6.2.14].) For
example, the composite

Axker f2Axg A A 4

vanishes for each projection, where m = deg f = dimker f. So [m] o pr; = [m] o pry, so descent tells us that
[m] factors through f, which is what promises the existence of g. |

2.13 March6

Here we go.

2.13.1 Poincaré Reducibility

Now that we have a notion of inverse isogeny, we are able to establish the following result.
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Theorem 2.119 (Poincaré reducibility). Fix an abelian k-subvariety B of A. Then there exists an abelian
k-subvariety B’ such thatm: B x B’ — Ais anisogeny.

Proof. Leti: B — A denote the inclusion. We want to build a complement for B, which is essentially going
to be a quotient of AV (by duality). Explicitly, there is a dual morphism:¥: AY — BY, and pick an ample line
bundle £ on A to provide a polarization ¢ : A — AV. Notably, we have the following commutative diagram.

B—"5 A
‘Pi*ﬁl l@ﬁ
BY i AV

As such, we consider the kernel of (¥ o ¢): A — BV, and we let B’ be the reduced scheme structure on
the connected component so that B’ is in fact an abelian k-variety.

It remains to check that B’ works. Note that the kernel of the addition map B x B’ — A is contained in
B N B’ (on k-points), which is contained in the kernel of ¢; - by the commutativity of the above diagram,
which is finite because ;- is finite. So it is enough to just check that

dim B + dim B’ = dim A.

Well, finiteness of B N B’ at least gives dim B + dim B’ < dim A, so we only need the other inequality. The
main difficulty arises from understanding dim B’. Well, abelian varieties have pure dimension, so

dim B’ = dimker(i" o ) = dimker"”.

(The second equality holds because ¢, has finite kernel, so it cannot adjust the dimension of the fiber.)
Now, iV: BY — AV is a group homomorphism, so all its fibers have the same dimension, and generically
the dimension must be upper-bounded by dim AY — dim BY, which is dim A — dim B. [ |

2.13.2 Finite Group Schemes

We are morally studying finite flat group schemes G over a base scheme S, but we will ignore flatness and
just work over a field k (where everything is flat). We would like to move towards a classification.

Definition 2.120 (connected). Fix a finite group k-scheme G. Then G is local or connected if and only if
G is connected; i.e., G = G°.

Example 2.121. Fix a field &k of characteristic p (possibly 0), and let y,, be the kernel of [n]: G,, = G,,.
Then

klz]
@ - 1)

is only connected when n is a power of p, and p,, is étale if and only if p 1 n.

Jin = Spec

Here is our main result.

Proposition 2.122. Fix a finite group k-scheme G. Then there is a connected group k-scheme G\, and
étale group k-scheme G such that

1= Goe—> G— G — 1

is exact (as fppf sheaves, for example). In fact, if & is perfect, then this splits naturally in G.

Morally, one should have G|, = G° and G to be the quotient given the reduced scheme structure. We
begin with a lemma.

65



2.13. MARCH 6 254B: COMPLEX MULTIPLICATION

Lemma 2.123. Fix a field k. There is an equivalence of categories between finite étale k-algebras and
finite étale k-schemes. Explicitly, one sends a finite étale k-scheme X to I'(X, Ox) and goes in the
opposite direction

Proof. Everything is affine, so we are just moving the words étale and finite back and forth. [ |

Lemma 2.124. Fix afield k. There is an equivalence of categories between finite étale k-schemes X and
finite sets with continuous Gal(k%°P /k)-action.

Proof. Send a scheme X to the set X (k®°P); one can see that this is fully faithful, so it is enough to show that
we are essentially surjective. We will just give a functor from sets with action by G := Gal(k*°P /k) to a finite

étale k-algebra. Well, we just take
€]
<H ksep) 7
ses

where G acts by permuting the coordinates and component-wise at the same time. This produces a finite
étale k-algebra. |

Example 2.125. Fix a field k of characteristic p := char k, and choose an integer n coprime to p. Then u,
is an étale group scheme, and it corresponds to the set p, (k*P), which is the set of nth roots of unity
(equipped with Galois action).

We now add in group structure.

Lemma 2.126. Fix a field k. Then the category of finite étale k-group schemes is equivalent to the cat-
egory of finite groups with continuous action by Gal(k*P /k).

Proof. Set G := Gal(k®*®P/k) for brevity. Then use the previous lemma and add in group structure every-
where. ]

Example 2.127. Let k be algebraically closed. The category of group k-schemes G is just the category
of groups because we are looking for sets with action by the trivial group.

To continue, we will want an understanding of étale morphisms. In particular, we want the notion of “for-
mally étale.”

Proposition 2.128. Fix a field k£ and a finite type k-scheme X. Then there is a finite étale k-scheme
mo(X) and map ¢: X — mo(X) with the following universal property: any map ¢’: X — Y’ such that Y’
is finite étale factors uniquely through g.

Morally, we should think about 7 (X') as (geometrically) connected components.

Proof. The main point is the construction of m(X), for which it is enough to give a set 7o (X)(k*P) with
continuous action by G = Gal(k**? /k). Well, just take our set to be (X} ) to be the collection of geo-
metrically connected components. Then note that G acts on Xy<e» continuously, so it will also permute the
connected components, so our action descends to my(Xys=e» ). Thus, we have indeed constructed some finite
étale k-scheme X.

Note that thereis a natural map X (k%°P) — 7o (X)(k5°P) given by sending a point to its connected compo-
nent, so we get to lift thistoamap ¢: Xgseo — mg(X)gser. This map is G-invariant, so Galois descent provides
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amap X — m(X). (Forexample, one can even use Theorem 2.98.) We will not bother to check the universal
property, but this can be seen by construction because any ¢': X — Y” is essentially determined by where
it sends the connected components of X, all of whose information is given by 7o (X). [ |

Remark 2.129. One can also check that ¢ is faithfully flat, and its fibers are the connected components
of q. Indeed, the fibers are the connected components by construction, so flatness follows by miracle
flatness, and ¢ is faithful because ¢ is geometrically surjective.

Remark 2.130. As usual, if X is a group k-scheme, then we can force 7(X) to be a group k-scheme
too.

We are now ready to prove Proposition 2.122.

Proof of Proposition 2.122. Take G¢ = mo(G), which we know to be a finite étale group kscheme. Then
the exact sequence is essentially immediate. For k perfect, the point is that G,.q4 C G is a smooth subgroup

k-scheme, and the splitting is given by
Gred = G — m(Q),

whose composite we can find to be an isomorphism. m

We are now equipped to give the following definition.

Definition 2.131 (étale-local). Fixa commutative group k-scheme G. Then G is étale-local if and only if
G is étale and its Cartier dual is connected.

Remark 2.132. One finds that G is the sum of four pieces which are étale-étale, étale-local, local-étale,
and local-local. In fact, this decomposition is unique: any map to any other component must be the zero
map (a map from something local to something étale must be trivial and vice versa, essentially because
étale must reduce our scheme structure, but when connected, this must then just go to the identity).

Example 2.133. Fix a field k of characteristic p := char k, where p > 0.
« If nis coprime to p, then p,, is étale-étale (in fact, it is self-dual).
+ The group Z/pZ is dual to p,,, so Z/pZ is étale-local, and y, is local-étale.

» Thereis a group a, is self-dual and local, so it is local-local.
In fact, one has the following remark.

Remark 2.134. Fix an algebraically closed field k of characteristic p > 0.

« The only étale-étale commutative group k-schemes G are products of u,, where n is coprime to
p. Indeed, being étale means that G is a sum of cyclic groups p,, = Z/nZ, and we can only have n
coprime to p in order for the dual of y,,s to be étale.

« A similar point holds for étale-local as being products of Z/p*Z. Essentially the same argument
works, but now we need n to be a power of p in order for the dual factors p,,s to be local.

» Lastly, asimilar point holds for local-étale as being products of y,,s. Indeed, the dual is étale-local,
and then we go to the previous point.

However, there can be lots of local-local commutative k-group schemes.
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Remark 2.135. Fix a field k of characteristic 0. Then every group k-scheme is smooth so every finite
commutative group k-scheme is étale-étale.

Here is an application.

Remark 2.136. Fix a field & of characteristic p > 0. Given an abelian k-variety A and positive integer n
coprime to p, one has
Aln] & A[p"] = Anp"]

by the natural map. Note that A[n] is étale, and its dual is AY[n], which continues to be étale. On the
other hand, one finds that A[p”] has no étale-étale part: one could take a decomposition, and any étale-
étale part remains that way after passing to k*°P, whereupon Remark 2.134 tells us that we can only
have factors of p., with ged(m, p) = 1, but A[p”] has order which is a power of p.

2.14 March 8

Here we go.

2.14.1 Torsion as Finite Flat Group Scheme

The finite group k-schemes of interest to us are of the form A[n| where n is an integer. Remark 2.136 tells
us that the particularly bad case is A[p”]; where p := chark is positive. We know that this will have no
étale-étale part, so it remains to find the remaining parts. Let's use Remark 2.134 to take care of some of
these.

» We know that there will be some étale-local part of the form (Z/p™Z)" (one needs to induct on m).
Here, r is the p-rank.

« By duality, we have some local-étale part of the form ;.. (again, one needs to induct on m).
We would like for » = s. This requires the following result.

Proposition 2.137. Fix abelian k-varieties A and B of p-rank r 4 and rg. If Aand B are isogenous, then
rTA=TB.

Proof. Let f: A — B be anisogeny, and let n be the order of ker f. Now, we see that f restricts to a group
homomorphism A[p™](k) — B[p™](k) with kernel of size at most n, so in light of our kernel having order n,
we see that

meA S npmrB

for all integers m. Sending m — oo forces r4 < rp; by symmetry, we get the other inequality, so we are
done. |

So we see that r = s because 4 and A" are isogenous.

2.14.2 Local Finite Flat Group Schemes

It remains to study the local-local piece. This is harder. We pick up the following definition.

Definition 2.138 (height one). Fix a field & of characteristic p > 0. A finite commutative local k-group
scheme G is of height one if and only if z? = 0 for all x € m, where m is the maximal idealat e € G.

The point of being height one is that its Lie algebra. To understand the Lie algebra, we need to discuss
differentials.
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Definition 2.139 (differential). Fixan S-group scheme G of finite type. Then Qé‘/s is the sheaf of differ-

entials defined so that
Homo,, (Qé/s,]—') = Derg(Og, F)

for any quasicoherent sheaf F on S. Here, Derg(Og, F) refers to the Og-differentials §: O — F,
which are additive maps vanishing on f~'Og C O and satisfying the Leibniz rule.

And here is our Lie algebra.
Definition 2.140 (Lie algebra). Fixan S-group scheme G of finite type. Then the Lie algebra s the set of

left-invariant differentials in Ders(Og, Og), which is canonically identified with Homo,, (¢/s, Oc).

Remark 2.141. Fix an S-group scheme G of finite type. Then there is a natural isomorphism Lie G &
T.G given by sending a differential D to its restricted vector D|.. We refer to [MumO08, pp. 92-94] for
the proof; the idea is to construct an inverse map by using right translates of D|, to build D.

Anyway, here is our “classification” result, which at least gives us the coordinate ring.

Lemma 2.142. Fix a field k of characteristic p > 0. Fix a finite local k-group scheme G of height 1 with
coordinate ring R. Then

for some n. In particular, dimy, R is a power of p.

Proof. Fix x1,...,x, € m which form a k-basis of m/m2. Because G is local, this extends to a surjection
klx1,...,2z,] = R. Being height one tells us that we now get a surjection

k[ih .. 71;71] N R

(xf,...,2h)

We would like this to be an isomorphism. For this, we will want to show that no monomial with powers
less than p vanishes in R. (This is enough because any polynomial relation among the variables can multiply
through by various z,s in order to derive that a monomial must equal zero; we are crucially using that 25 =
already.)

We now usethe Liealgebra. Let Dy, ..., D,, € Lie G be differentials providingadualbasisforzy,..., T, €
m/m?2. Lifting this back up to R tells us that

i=0

where 0 < n; < pandn; # 0. But now any monomial being zero must have all exponents equal zero by
applying the various D,s, so it remains to see that 1 # 0. |

Remark 2.143. Without the hypothesis on height, one needs to allow modding out by terms of the form

P
T

Let’s continue discussing the Lie algebra.

Definition 2.144 (Lie bracket). Fix an S-group scheme G of finite type. Then there is a Lie bracket given
by
[D1, D2 == D1D2 — D2 Dy

for any derivations Dy, D5 € LieG.
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Remark 2.145. If G is a k-group scheme of finite type, then if p := char k is positive, then

D’ =Do---0D
—_—

p

still lives in Lie G. Certainly this is additive and G-linear and vanishes on k, so it remains to check the
Leibniz rule. The point is that one can expand out the Leibniz rule p times as

p . .
D°P _ o1 ¥}
@)= 3 (7)o @orio).
i+j=p
but with p = char &, all terms except the ending ones vanish, giving the Leibniz rule.

The above remark motivates the following definition.

Definition 2.146. Fix a field k of positive characteristic p > 0. Then a p-Lie algebra is a Lie algebra g
equipped with bracket [-, -] as well as an endomorphism (—)®): g — g satisfying the following.

. ()\33)(1)) = \Px (@),

« The adjoint map (ad z): y — [z, y] satisfies ad 2(P) = (ad z)®).

« Onehas (z+y)® = 2@ + 4@ + F (ad z,ad y)y, where F, is some non-commutative polynomial
which we will not write down.

We feel okay not writing down the polynomial F}, because, in our setting, everything is commutative, so the
Lie bracket vanishes, and it will be enough to remark that the relevant term always vanishes.

At long last, we note that we have the following result, explaining our remark earlier that height one
means that it is enough to study the Lie algebra.

Theorem 2.147. The category of finite local k-group schemes of height one is equivalent to the category
of p-Lie algebras over k.

Proof. See [MumO08, p. I11.14]. Morally, the point is to recover the group G from its p-Lie algebra g. Well,
one simply takes the universal enveloping algebra and quotients out by some extra relations arising from
being a p-Lie algebra. |

For our application, we will want the following morphism.
Definition 2.148 (relative Frobenius). Fix a group k-scheme G of finite type, and let Fo: G — G be the

absolute Frobenius given by taking pth powers. Then we define the relative Frobenius F;/specr: G —
G as the map of k-schemes making the following diagram commute, where the square is a pullback.

Example 2.149. Take G := G, . Then o, = ker F(1).
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Remark 2.150. We note that F(1) is a group homomorphism by just writing out the relevant diagrams
and noting that uniqueness of everything must make our diagrams commute. In fact, ker F1) is a finite
local k-group scheme of height 1! Indeed, the point is that F(!) is purely inseparable (by construction),
making ker F(!) local, and then we know

Oc
T(ker F), Oy p)) = m

Corollary 2.151. Fix a commutative finite group k-scheme G of height 1. Then the map [p]: G — G is
the zero map.

Proof. Note that p vanishes on Lie G, from which the result follows from using the inverse functor of Theo-
rem 2.147. |

Corollary 2.152. Fix a commutative finite group k-scheme G of order m. Then [m]: G — G is the zero
map.

Proof. It suffices to check the result on k. Group theory will give the result for any étale part of G, so we
may assume that G is local and in particular has order p™. Now, we note that we can build the composite of
relative Frobenius maps

G-GY 5G® 5.5 a,

This produces injections ker F") C ker F(?) C ... untilker F(®) = G. (Namely, one can see that if any two
kernels are the same, then they must stabilize, but if they are all supposed to be distinct up until G, so we
get this result.) But each quotient becomes a finite group k-scheme killed by [p], so ker F(™) will be killed by
[p"], and we are done. [ ]

2.15 March11

Here we go.

2.15.1 Degree of Isogenies

Today we are going to discuss degrees of isogenies. The point is that we are going to show that the degree
map deg: End A — Z is polynomial. Let's define what this means

Definition 2.153. Fix a k-vector space V. Thenafunction f: V — kisa homogeneous polynomial of de-
green if and only if f|w is a homogeneous polynomial of degree n for any finite-dimensional subspace
W C V. In other words, for any finite set of linearly independent vectors {v1,...,v,}, the function

(aty...,apn) — flagvr + -+ + apvy)

is a homogeneous polynomial of degree n. (The point here is that change of basis does not adjust the
fact that f is a homogeneous polynomial of degree n.)

Remark 2.154. An induction tells us that it suffices to check the result for sets of linearly independent
vectors of size 2.

So we are actually going to show that degEnd A — Z is a polynomial map of degree 2g. For isogenies, we
know how to make sense of degree, but we should probably make a convention if not an isogeny.
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Definition 2.155. Given a homomorphism f: A — B of abelian k-varieties, we define deg f = 0if f is
not an isogeny. For a generalmap + f € End’(A) where g := dim A, we define

deg <1f) = degf.

n n29

Remark 2.156. One can check that L f = Lgimplies that

n

deg f degg
m29  n29

Indeed, by Theorem 2.48, we see that deg[n] = n29 for any integer n, so [m] o f = [n] o g yields the above
equality after rearranging.

So in fact we will aim to show that deg: End”(A) — Q is a homogeneous polynomial of degree 2g.
Here is a starting lemma.

Lemma 2.157. Fix an isogeny g: A — B of abelian k-varieties. For all line bundles £ on B, one has

x(g"L) = (degg)x(L).

Proof. See [MumO08, Theorem 12.2]. Note that this result is similar to Proposition 2.44. We will have more
context for this result when we discuss Riemann—Roch for abelian varieties in more detail. The main point
is to reduce to the elliptic curve case, where one can use the Riemann—Hurwitz formula; notable, the map ¢
is a group homomorphism and hence unramified. |

Remark 2.158. One can upgrade this result so that one needs to make the target of g into a torsor over
the source.

And here is our result.

Theorem 2.159. Fix a simple abelian k-variety A of dimension g. Then deg: End"(4) — Q is a homo-
geneous polynomial of degree 2g.

Proof. Once we know that we have a polynomial, the fact that deg(nf) = n29 deg f will enforce homogene-
ity. So it suffices to show that we are just polynomial, so by Remark 2.154, it suffices to show that the map
deg(nfi + f2) is a polynomial map in n, where f, fo: A — A areisogenies.

Choose an ample line bundle £ on A. By Serre’s criterion for ampleness, we may replace £ with a power
of itself so that £ has no higher cohomology. But £ must be globally generated (it's ample), so £ has some
global sections, so x(£) # 0. Now, Lemma 2.157 tells us

x((nfi+ f2)*L)
x(£) ’

so it remains to work with the numerator. We would like to evaluate £,, := (nfi + f2)*£ inductively, for
which we must use Theorem 2.7. In particular, Theorem 2.7 tells us that

deg(nfi + f2) =

Loio=(+f+0A+L))LEL @@Ly @A) LRL QL@ frLO2
An induction is now able to show that

En — M@n(nfl)/Z ®N®n ® Q
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for some line bundles M and A and Q (which do not depend on n).
Now, the same argument which shows that the Hilbert polynomial is a polynomial shows that the map

(n1,...,n;) Hx(ﬁi@m ®~~~®E;®m)

is always a polynomial in Q[n4, ..., n,], so we are done. |

2.15.2 Riemann-Roch for Abelian Varieties

Let's study the Euler characteristic of line bundles in more detail.

Proposition 2.160. Fix a line bundle £ on an abelian k-variety A.
(@) Thenn — x (£%™) is a homogeneous polynomial of degree 2g.

(b) If £L = O4(D) foradivisor D, then x(£) = (D,...,D)/g!, where (D,..., D) is the intersection
number.

Remark 2.161. Note that (c) of the above tells us that indeed £ being ample means ¢ is an isogeny, so
x(£)? must be nonzero, so x(£) is nonzero.

Proof. We may assume that % is algebraically closed because we are just computing dimensions of coho-
mology, which is preserved by flat base change (such as a field extension).

For (a), we proceed in steps. The point is to reduce to the case of £ being symmetric or in AV, which can
be attacked separately.

1. We claimthat £; ® £;' € AY implies that x(£;) = x(Lz). Indeed, £ ® £; " beingin A implies that
L1 and L, are algebraically equivalent, so they arise as restrictions of a larger line bundle Lon A x S.
However, the Euler characteristic x is locally constant, so we conclude x(£1) = x(L2).

2. We claim that any line bundle £ on A has line bundles £; and £ suchthat £ = £; ® L5 such that £; is
symmetricand £, € AV.

The main point is the construction of £5. We would like to set £, to be £ ® [—1]*£, and take £, to be
L ® [-1]*£~1, but this does not actually multiply to £. So we will want to take some square-roots,
which requires a more careful argument.

To begin, we claim that £ ® [-1]*£~! € AV. Indeed, it suffices to show that the line bundle is trans-
lation-invariant, so we compute

te (LRI LR LT @ L=tLo L @ [-1]" (t L7 ®L).
Now, t*£ ® L1 is certainly in AV because it is just in the image of ¢, and pulling back along [—1]*
stays in AV because this map is just [-1]4v: AY — AV. Infact, [-1] corresponds to inverting the line
bundle, so our line bundle now looks like

GBLOLTT® (', LoL),

which vanishes by Theorem 2.28.

We now use the fact that we are over k, so we may find £, € AY (k) with £5? = L ® [-1]*L£~". Now,
we define £, == £ ® £; ' so that

ULy = UL 1Ly = [ L L e £y = [FF Lo Lo -1 L 8 Ly = Ly,
so L is in fact symmetric, as needed.
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3. We now prove (a). As remarked in the previous proof, this function is certainly polynomial, so it is
enough to compute the degree. The result is true for £ € AV by an inductive argument via m*£ =
pri £ ® pri L, so it remains to handle the case where £ is symmetric. Here, an induction with Theo-
rem 2.7 shows that

 (£7) = x (i) £5) = deglm] - x (£57) = mPx(£7"),

where = has used Lemma 2.157. This completes the homogeneity check.

We now hand-wave the proof of (b) and leave the details for [MumO08, Theorem I1.16]. Any line bundle
can be written as the difference of two very ample line bundles, so it is enough to check the result for very
ample line bundles. If £ is very ample, then intersection theory provides the result: a choice of generic global
sections of Las oy, ..., 04 sothatthey have nocommon zeroes and the div o, intersect transversally; as such,

D9 = (div oy, ..., divay)

is literally the number of points in the intersection of the div g,s. Now, our choice of global sections induces
aclosed embedding p: A — P9, and the above intersection number is the pre-image of the point[1: 0: - - :
0], so we see that D9 = deg ¢. On the other hand, deg(£) = (deg ) deg(Ops (1)), which completes the proof
upon a computation. ]

2.16 March13

Office hours are from 3PM to 5PM today.

2.16.1 More on Riemann-Roch
Here is our statement.

Proposition 2.162. Fix a line bundle £ on an abelian k-variety A. Then if #K (L) is finite, then deg ¢, =
cx(£)? for some absolute constant ¢ depending only on A.

Proof. Note that M := m*L ® prj £ ® prj L is just (id x ¢.)*P, where P is the Poincaré line bundle. We
now use Lemma 2.157 so that

X(M) = (deg o)X (P).
Recall from the proof of Proposition 2.65 that R® pr;, M is supported on K (L), which is still finite, so the
Leray spectral sequence continues to yield

H'(Ax A, M) =T (A R pry{, M).
Now, the projection formula tells us that
R® pry, (m*/ﬁ ®pr; L7 @ pr} /J_l) =R'pr, (m* LoprsL)® L

but because this is supposed to be supported on the finite scheme K (L), the line bundle £ will trivialize.
So
H'(Ax AM)=T (A R pri,(m*"L@pry L) =H (Ax Am*LeprsL7").

This right-hand side is basically a line bundle on A x A because (m,pr,): A x A — A x A, so the Kiinneth
formula tells us

X(M) = x (m* L& pry £7) = X(Dx (£7)
However, (a) of Proposition 2.160 lets us write (ﬁ—l) = (—=1)9x(L), so we conclude. n

Remark 2.163. One can actually show that the degree of the map ¢.: A — AV is x(£)?, but we will not
need this. To show this, one needs to compute x(P) = (—1)9, which is done in [MumO08, Part IIl].
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2.16.2 The Tate Functor Is Faithful

We now shift gears to talk about homomorphisms.

Theorem 2.164. Fix abelian k-varieties A and B. Then Homy (A, B) is a finitely generated abelian group.
In fact, for primes /¢ not divisible by char k, the functor Ty is fully faithful: explicitly, we have an injection

Ty: Homy (A, B) Rz Ly — HOmGal(ksep/k) (TgA, TgB)
This result is essentially due to Weil; our exposition will follow [Mum08, Theorem 1V.19.3].

Remark 2.165. It is an easy mistake to make to claim that Homy (A4, B) is finitely generated because
the T} are injective, and the target is a finitely generated Z,-module. However, one can have infinitely
generated abelian groups which become finitely generated upon tensoring with Z;; for example, Z,
itself will do.

Remark 2.166. Theorem 2.164 produces a bound of the form
ranky, Homy (A, B) < 4(dim A)(dim B)

by bounding the Z,-rank when passing to Tate modules. This bound is not sharp in characteristic zero,
but supersingular abelian varieties of positive characteristic are able to show that this bound is sharp.

Remark 2.167. It is a conjecture of Tate that, if k is finitely generated over its prime field, then T} is
actually full. (The hypothesis on k is necessary: if £ = Q,, then the Galois action is unramified, so one
basically only has Frobenius action, which is not enough to cut down morphisms on the Tate modules.)
If k is finite, the result is due to Tate; if k£ has positive characteristic, the result is known to Zarhin. Lastly,
char £ = 0 was shown by Faltings.

Anyway, let’s prove Theorem 2.164.

Proof. By working through the isogeny class, we may assume that A and B are simple. Explicitly, given
isogenies [[; A4; — Aand B — [[; B, we get an injection

Homy (A, B) ® Z¢ — H Homy,(4;, B;) ® Zy,
Y

and a symmetric argument produces a map in the reverse direction. Notably, if A and B are simple, then
there are no homomorphisms; otherwise, Homy (A, B) embeds in End(A). Thus, we may even assume that
A and B are isogenous and hence equal.

Now, Theorem 2.159 kicks in to tell us that deg: End(A) — Z is a homogeneous polynomial of degree
2dim A, so End(A) is torsion-free because isogenies are always going to have nonzero degree.

To continue, we want the following geometric claim. Suppose that M C End(A) is a finitely generated
subgroup. Then we claim that

QM NEnd(A) :=={f € End(A) : nf € M for nonzeron € Z}

is a finitely generated abelian group. Indeed, QM is a finite-dimensional Q-vector space by assumption, so
deg |gnm is a homogeneous polynomial of degree 2¢, so it is going to extend continuously to a map RM — R.
As such,

U:={xeRM:|degz| <1}

is an open neighborhood of 0 in RM, but U N End(A) = {0} because all isogenies have positive integer
degree. Thus, QM N End(A) is a discrete subgroup of RM, meaning that QM N End(A) is a lattice and in
particular free of finite rank.

We now complete the proof.
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+ We show the injectivity. Because elements of Endy(A) ®z Z, is made of finite sums of the form f ® «,
it is enough to show that Ty is injective when restricted to arbitrary finitely generated submodules
M C End A. Now, M is finitely generated and torsion-free, so it is free of finite rank, so give it a Z-
basis f1, ..., fr; note that this continues to be a Z,-basis of M ®zZ,. We now go ahead and enlarge M
to QM NEnd(A), which we know continues to be finitely generated by the above claim. For our proof,

we now suppose that
Ty (Z aifi) =0
i=1

where a; € Z, for each ¢, and we want to show that the sum vanishes.

Thisis done by an approximation argument. For example, we canfind anr-tuple of integers (a}, ..., al.)

»
equivalent to (ay, ..., a,) to arbitrary precision /¥, meaning

Tg(ia,’iﬁ) =0 (mod &),
i=1

so this endomorphism ¢ := 3", a; f; will take Ty A to /N'T} A, so its kernel contains A [¢V]. But then the
nature of our isogenies means that we have some f” such that p = f” o [¢"], meaning ¢ divides each
of the a} (by using that the f, forms a basis!). Sending N — oo forces the a, to vanish.

« We show that End(A) is finitely generated. Because Ty is injective for infinitely many primes ¢, we
see that End”(A4) must be a finite-dimensional Q-vector space. Thus, we get some finitely generated
subgroup M C End(A) such that QM = End"(A), so End(4) = QM N End®(A) is finitely generated
by the claim. [ |

Remark 2.168. As another application, we note that the Néron—Severi group NS(A) is contained in
Homy (A, AY), which is finitely generated, so NS(A) is still finitely generated.

Remark 2.169. It will turn out that the degree of an isogeny f: A — B can be computed on the level of
Tate modules.

Corollary 2.170. Fix an abelian k-variety A. Then End’(A) is a finite-dimensional semisimple algebra.

Proof. Indeed, End’(A) for simple abelian varieties A is a field of finite dimension over Q by Theorem 2.164,
soitisa number field. So we are just looking at some summation of number fields, which is semisimple. H

We close class by stating a lemma from linear algebra.

Definition 2.171. Fix a finite-dimensional simple Q-algebra B. Then a trace form is a Q-linear map
T: B — Qsuch that T'(ab) = T'(b)T(a). Similarly, a norm form is a polynomial map N: B — Q such
that N(ab) = N(a)N(b).

Proposition 2.172. Fix a finite-dimensional simple Q-algebra B with center K. Then there is a trace
form Trp , with Tr®(1) = 1 such that any trace form 7" on B has the form T' = ¢ o Tr°. Similarly, there

is a norm form Nm g, with Nm®(1) = 1 such that any trace form T on B has the form (Nm /g o Nmo)i
for positive integer i.

Proof. Omitted. [ ]

We remark that a similar statement works for Q.
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2.17 March 15

Here we go.
2.17.1 Degree via Tate Modules
Here is our next result: characteristic polynomials can be computed on the Tate module.

Theorem 2.173. Fix an endomorphism f € End®(A).

(@) We have deg f = det V,f, where V, is the functor A — (T;A) ®z Q. Thus, the characteristic
polynomial P;(x) of V; f satisfies, foranyn € Z,

Py(n) = deg([n]a — f).

(b) The characteristic polynomial P(x) of T, f has integral coefficients.

For (b), note that (a) actually tells us that P(n) = deg([n]a — f) for allintegers n.
It will be helpful to have the following lemma.

Lemma 2.174. Fix an isogeny f: A — B of abelian k-varieties. Then the sequence
0— TyA — TyB — (ker f)(k*P), — 0

is exact, where, where (-), denotes taking the ¢-primary part.

Proof. See [EGM, pp. 10.5-10.6]. Let's sketch the idea. The point is to use cohomology, so we begin by
writing
T, A= @A[f'](kzsep) = lim Hom (Z/0°Z, A(k*P)) = Hom (Qy¢/Z¢, A(K*P)) .
Now, setting N := ker f, we have an exact sequence
0N—-AL B0

of fppf sheaves, which gives an exact sequence
0 = N(kP) = A(k™?) &5 B(k*P) - 0,

which is exact on the right by the surjectivity of f. Now, applying the functor Hom(Q,/Z, —), we note that
N (k®°P) is finite anyway, so it will vanish under the functor, leaving us with the exact sequence

0= T A = TyB — Bxt'(Qe/Ze, N (k) — Ext" (Qe/Ze, A(K*P)).

Notably, if & is perfect, then ¥ = k, so A(k) being divisible makes the last term vanish; in the general
case, one still gets that the map into that term vanishes because we are looking at ¢-torsion, where A(k%P)
is going to be sufficiently divisible.

So it remains to compute the Ext' term. To begin, note that

Ext! (Qe/Ze, N(k*?)) = Ext! (Qe/Ze N(*))

because Q;/Z; works to kill out anything other than ¢-torsion. (Namely, multiplication by something co-
prime to ¢ is an isomorphism on Q;/Z, but will kill out what happens in N.) Now, to compute this last term,
we take the exact sequence

O%Zg%Qg—}QZ/Ze—)O

and apply Hom(—, N (k*°P),) to get
Ext' (Qe/Ze¢, N(k*P),) = Hom(Zy, N (K*P)0),

after some argument in the long exact sequence, which is what we wanted. |
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We are now ready to prove Theorem 2.173.

Proof of Theorem 2.173. We focus on (a) for now; the second claim is immediate from the first and the
definition of the characteristic polynomial, so we focus on the first claim. It suffices to prove the results for
bona fide endomorphisms f: A — A. Indeed, once we have the result here, scaling produces the result for
@, and then a density argument for Q C Q, achieves the full result for Q,. Then we see that

|deg f|, = [#(ker f)e(K*P)], .

Now, the above lemma tells us that this is |det T} f|,. This equality extends to f € End(A4) ® Qq via the
aforementioned density argument.

We now apply Proposition 2.172. Now, write End(A) ®z Q¢ as a product of simple Q,-algebras [], D;
(notably, this algebra is semisimple because it is the base-change of a semisimple algebra). Now, deg and
det agree on ¢-adic valuation as above, so the classification Proposition 2.172 forces them to be actually
equal. More formally, one should write f — |deg f|, as some product

H (Nsz/Qz © Nm%iﬂﬂ)

2

where K; = Z(D;) and the v,s are some integers. Doing similar for det and then plugging in various f €
L, D; (forming a basis) reveals the desired equality.

We now show (b). Define P(n) := deg([n]a — f), which we know is a polynomial (because deg is polyno-
mial Theorem 2.159), meaning we can view P as an element of Q[z]; thus, P, = P has rational coefficients.
It remains to show that the coefficients are integral. Well, because End(A) is free of finite rank over Z, our
f is going to have some monic minimal polynomial ¢ € Z[z].3 Thus, q(V,f) = 0, so the roots of P, must all
be algebraic integers, meaning that P(z) € Z[x], meaning that P(x) € Z[z], as desired. [ ]

2.17.2 Weil Pairing

We now use duality for fun and profit.

Definition 2.175 (Tate twist). Fix a field ¥ and a prime £ not divisible by char k. We define the Tate twist
Z¢(1) as Ty (G, ). Notably, Zy(1) is a free Z,-module of rank 1 with Galois action from Gal(k*°? /k) acting
via the cyclotomic character, where the point is that

T(Gm) = yLnNE“

More generally, given a free Z,-module M of finite rank, we define M (n) :== M ®z, Z,(1)®", where n is
an integer.

To motive our Weil pairing, we note that AV[¢*] = A[¢*]Y by Theorem 2.86, where the second dual is a
Cartier dual. Thus, using our Cartier duality, we induce a map

A[%] x AVL®*] = puge.
We would like to take limits over £°, but to do this, we need the following diagram to commute.

A[f"] x AV ——— g

wﬁ P

A [en-‘rl] x A\/ [fn-‘rl] ——— fUgnat

To check the commutativity here, we need to recall the isomorphism AV [£°] = A[¢®*]V.

3 This can be checked by base-changing to € and thinking about the minimal polynomial for a morphism on the level of lattices.
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Namely, given an endomorphism f: A — A, we need to recall why (ker f)¥ = ker fV. Well, fix a k-point
x of ker f and some line bundle £ on ker f. Then we may choose some 3: f*£ — O, (unique up to scalar),
and we note that we have the following large diagram.

.
L 2 o,

AT

f*,C t*—,B> OA

Then our Weil pairing e : (ker f)(k) x (ker fV)(k) — Gy, is just given by
ep(w, &) =t:B0B7 1,

which is an isomorphism @4 — @4 and hence provides a global section and hence an element of %, as
needed. Note that this does not change if we adjust § by a scalar, so it notably does not depend on the
choice of .

Let’s now do our computation.

Lemma 2.176. Fix an abelian k-variety A and positive integers n and m. Given £ € AY[m](k)and z €

Almn](k), we have e, (2, L) = e (nz, L).
Proof. We do the explicit computation. Pick an isomorphism §: [m]*£ — O4, which induces the isomor-
phism [n]*B8: [mn]*L — O4. Now, we compute
emn (@, £) = t5([n]"B) o ([n]*B) ™ = [n]" (1,80 B7") = [n]"em(nz, L) = em(na, L).
Here, this last equality comes about because we're just pulling back a full isomorphism O 4 — O4, which

does not change the produced global section. |

Remark 2.177. On the homework, we will show that a homomorphism f: A — B reveals

epoe ((Tof)z,y) = egee (z, Ty(f)y),

again by a reasonably explicit computation.

As a corollary, we compute
eon(lz, L) = egnir (x,0L) = epnir (z, L)",

where the first equality is by the lemma, and the second equality is by using the explicit description for the
pairing provided above. (More precisely, we can see that taking a power of / induces a power at the end.) So
we may take limits to produce the following definition.

Definition 2.178 (Weil pairing). Fix an abelian k-variety A. Then we define the Weil pairingas e, : Ty A x
Ty AV — Zy(1) defined above.

Remark 2.179. A choice of polarization A — A grants us a skew-symmetric form
TgA X TgA = Zz(l)

induced by the Weil pairing.
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2.18 March 18

Here we go.

2.18.1 More on the Weil Pairing

We quickly provide a more explicit description of the Weil pairing. As before, choose geometric points x €
A[n](k)and £ € AY[n](k). Smoothness of our abelian k-variety A allows us to realize any line bundle £ € AY
as O4(D) for some Weil divisor D. Note that O 4 (D) C K4, where K 4 is the sheaf of rational functions on
A.

Now, computation of the Weil pairing requires us to choose an isomorphism §: [n]*£ — O4. Well, we
note that [n]*£ embeds into [n]*/C4, which is isomorphic to K4, so we choose the rational function g =

[n]*i o ~1(1) so that divg~! = [n]~'D by tracking through what a pole or zero could be. Then we can
compute
o1 9(z+a)
en(x, L) =tiBo 1 = =,
(= £) 9(z)

which is a number independent of the choice of z.
We now use this computation for some fun and profit.

Proposition 2.180. Fix an abelian k-variety A. For any line bundle £ on A, the composite map

TgA X TgA M T[A X TgAv ee—x> Z[(l)

is skew-symmetric. In particular, if ¢ is a polarization, then this pairing is symplectic.

Proof. We already know that the pairing is non-degenerate by a direct computation, so it remains to show
that (x, ) goes to 0. Namely, we want to show that

er(, Ty(pr)r) =0

for each z. It suffices to show this result for all x € A[¢"] for any n by taking the limit as n — oc.
For this, we use our prior explicit description of the Weil pairing. Well, write £ = O4(D) for some Weil
divisor D, and we compute
oc(r) =tiL@ LT = Ou(t-.D — D).

We now choose g as in the explicit description as above so that div g~ = [¢"]~!(¢t_,D — D). Now, to show
that our Weil pairing vanishes, we want to show that g(z + z) = g(z) for any given z. Well, forany y € A(k)
such that /"y = x (which exists by divisibility), we note

divg~' =t_, ([¢"]7'D) - [¢"]7'D,
so telescoping implies
div [ i, (97") =t ("1 D) — [¢"]7' D,
but this vanishes because z is " -torsion. Thus, our left-hand side is a function i with no zeroes or poles, so

it must be a constant function. For example, h(z + y) = h(z), which unwinds to g(z + z) = g(z) by another
telescoping argument. [ ]

Remark 2.181. In fact, the above argument works for any polarization ¢: A — AV. The passage to the
algebraic closure is not so bad because.

We now pick up the following result.
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Theorem 2.182. Fix a homomorphism ¢: A — AV of abelian k-varieties. Then the following are equiv-
alent.

(i) ¢is symmetric.
(ii) The pairing E¥ induced by

TgA X TgA M} TgA X TgAV — Ze(l)

is skew-symmetric.

(iii) 2 = o, for some line bundle L.

(iv) If k is algebraically closed, then ¢ = ¢ for some line bundle L.

Proof. We will only prove part of this. In particular, we will not show the implication (iii) implies (iv); see
[MumO08, p. 214]. Our argument will use Remark 2.177. Additionally, we note that the diagram

commutes. Unwinding definitions now implies that
ETE(2,y) = BX(Tuf (2), Tof (y))-

We also quickly recall that (A x B)Y = AV x BY essentially by restriction of line bundles; this result is on
the homework. In particular, A x AV is self-dual.
Now, let P denote the Poincaré line bundle. We now execute the following computation.

Lemma 2.183. Let P be the Poincaré line bundle of an abelian k-variety A. Then
EP((z,2Y), (y,y")) = e (z,y") — er=(y,2").

Here, z,y € TyAand 2V, yY € T, AV.

Proof. By bilinearity and skew-symmetry, it is enough to verify the equalities on the pairs ((z, 0), (y,0)) and
((x,0),(0,y")).

» We verify on ((z,0), (y,0)), where our pairing should vanish. Pulling back along (id,0): A — A x AY,
we see P trivializes (it's from Pic), so

E”((2,0), (y,0)) = E®*(2,y) = eg(x,0) = 0.

« We verify on ((,0), (0,4")). We pull back along (0,id) x AY — A x AY, where the main point is to
figure out where P goes. Well, one has the composite map
Ax AY = (Ax AY)Y = AY x A,

where the last map is given by restriction of line bundles. In particular, the pair (z,z) goes to the line
bundle e av) (P@P~1), which then goes to (t:z", z) by a computation with the Poincaré line bundle,
but z¥ € AV is translation invariant, so we are just going to (z", x). So we can compute that

EP((xv O)v (Ovyv)) = 6@00((1‘,0), (yvv O)) = Cgeo (JZ, y\/)’

as desired. [ ]
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We now proceed with the proof. We already know that (iv) implies (i) and (ii) from earlier statements involv-
ing polarizations. To see that (i) implies (iii), we set £ := (id x ¢)*P. Using (2.1), we see

pr(x)

©)Y o ppo(lxep)(r)
©) (p(z),2)
x ) (p(z),z)
e(x),

X
X

(1
(1
=1
2

where we have used symmetry of ¢ at =. (Note ¢ swaps coordinates as shown in the previous proof.)
We now show (ii) implies (iii). Continuing with the same L as in the previous paragraph, we use the
lemma to see

E*(z,y) = EP(Ty(1 x ¢)(x), Te(1 x ¢)(y))
= eg== (2, Typ(y)) — ee=(y, Top(x))
= E¥(z,y) — E¥(y,2)
=2E%(z,y),

where the last equality has used skew-symmetry. Non-degeneracy of our pairing now forces 2p = ¢, so
we are done. |

Remark 2.184. This result shows that NS(A) = NS(Az) is exactly the Z-submodule of symmetric ho-
momorphisms A — AV.

2.18.2 The RosatiInvolution

Here is our definition.

Definition 2.185 (Rosati involution). Fix a polarization A\: A — AV of abelian k-variety A. Then the
Rosati involution (—)" on End”(A) sends ¢ to the map ¢ making the following diagram commute.

ot
A+— A

3| vb

AV £ @V

Explicitly,
(pT =\"lo <pv o\

Remark 2.186. We are working with End”(A) so that we can write down A~! in general. However, if A
is principally polarized, then this inverse already exists in End(A), so we can still write down the Rosati
involution even on End(A).

Remark 2.187. The Rosati involution depends on A, but this dependence is not too bad. Namely, if \;
and A, are two polarizations (in particular, isogenies), then we get an isogeny such that A\; = Ay 0 f, so

Mlopod=f ol toporof,

so we at least have the same conjugacy class in End’(A).

82



2.19. MARCH 20 254B: COMPLEX MULTIPLICATION

2.19 March 20

Today we use the Rosati involution for fun and profit.

2.19.1 Positivity of the Rosati Involution

Manipulation with definitions verify the following.

Proposition 2.188. Fix a polarization A\: A — A" of an abelian k-variety A.
(a) (—)Tislinear.

(b) (_)T anti-commutes: ((p o w)T _ T/)T @ (pT.

(c) Forthe Weil pairing, EXN(Typ(x), y) = EXNz, Top' (y)).

Proof. For (a), note that composition is linear. For (b), proceed directly from the definitions and use the
duality of (—)V. Lastly, for (c), use Remark 2.177 and then pass through A everywhere as needed. |

Now here is our main result on the Rosati involution.

Theorem 2.189 (Positivity). Fixa polarization \: A — AY ofanabelian k-variety A. Thenforany nonzero

¢ € End’(A), one has that

t o) >0.

tr(p o o) = tr(p
Here, tr refers to the reduced trace on the semisimple algebra End®(A). More precisely, for a semisimple
Q-algebra D, let K be its center, and then base-change to K and compute the trace as a matrix algebra
because D ® x K is a matrix algebra. Working with the characteristic polynomial allows us to compute the
trace on the level of V; A via Theorem 2.173, or equivalently via the characteristic polynomial.

Proof. By base-changing our morphisms (which does not adjust the reduced trace here), we may assume
that k is algebraically closed. As such, A = ¢, for an ample line bundle £; taking powers of £ adjusts ¢ by
multiplication by this power, but this does not change the Rosati involution, so we may actually assume that
L is very ample, so say £ = O4(D) where D is an effective Weil divisor (in fact, a hyperplane intersection).
Now, let g := dim A, and the main claim is that
h2o (D¢ D)
tr(pop') =29 D7)

This will complete the proof because ¢ ~!(D) continues to be an effective Weil divisor, and then we are just
computing some intersection numbers, which is positive.

So it remains to prove the claim. We will use Proposition 2.160. Note that - z-1gzon: A — AY isan
isogeny, and this map is equal to [n] o ¢ — ¢« -. The moralis that we can compute the degree

deg ([n] 0 oz — pypr) = deg([n] o pr — ¢ 0pr o)
=deg (pco([n] — ¢z o’ opcogp))
= deg o - deg ([n]g' 0 o).
This last quantity is now the characteristic polynomial P(n) of ¢t o . Thus,

_ deg([n]opr — pper)

P
() degpr

which by Proposition 2.162 is
% (tp*ﬁ_l ® L@n)
x(£)?
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Now, Proposition 2.160 implies

_ ((nD— ¢ 'D)? 2
P = ("2
We would like the term after the leading term of this polynomial, which by linearity looks like
1 _ 1 2
P) = iz (n0(D9) — g™ (D771 D) 51",
whose term after the leading term is exactly what we claimed it would be. |

2.19.2 The Albert Classification

We now see that the positivity of the Rosati involution now gives us some tools to classify algebras.

Lemma 2.190. Fix a division Q-algebra D equipped with a positive anti-involution (=)' on D. Further,
set K .= Z(D)and K™ = {z € K:x =1} withe := [K : Qand e’ := [KT : Q]. Then Kj is totally
real, and either K = K+ or K/K™ is a totally imaginary quadratic extension.

Proof. We begin by trying to prove that K™ is totally real. Well, we can write
KoR=R"®C?

for some nonnegative integers r, s > 0. Notably, the quadratic form z + tr(xz') is a quadratic form ¢(z)
on K+ (note 2 = x here), which extends by continuity to a quadratic form gz on R™ x C*. Now, q itself was
defined over Q, so its null space will be defined over Q, but positivity of (—) tells us that this null space must
vanish. So actually ¢z is positive-definite, but then there can be no copies of Cin K™ ® R because one can
always solve these quadratic equations over the complex numbers.

We now complete the proof. Notably, by definition [K : K*] € {1,2}: indeed, K is defined as being
a subfield of K fixed by a group of order 2 (namely, generated by the automorphism a — af). It remains
to show that K/K™ is a totally imaginary quadratic extension if nontrivial. Well, if nontrivial, we can write
K = K*(y/a) forsome a € K. Now, (y/a)? = a must be fixed by (—)f, but \/a is not, so we must have

(Vo) = —va.
Continuing, suppose for the sake of contradiction that we have a real place i: K — R. Thenif: K — R
continues to be a real place but now hasi(/a) = —if(\/a). To derive contradiction, we work with the pieces

R x Rinside K ® R corresponding to i and if, where we see that

tr ((Z,y) : (xvy)T) = tr((x, y)v (ya Sﬂ)) = QCCy
now fails to be positive-definite. |

There is now a full classification of division algebras with positive anti-involution.

Theorem 2.191 (Albert). Fix a division Q-algebra D equipped with a positive anti-involution (=)' on D.
Further, set K := Z(D)and KT = {z € K:x =2} withe := [K : Q] and e" = [KT:Q]. Then
(D, K, KT) satisfies one of the following.

e Typel: D =K = K+t,and (—)f =idp.

 Typell: K = KT, but Disaquaternion K-algebra D@gR = [[,. s g M2(R) splitas the matrixal-
gebra at all archimedean places of K (which are necessarily real), where (=)' (up to isomorphism)
is given by transposition of matrices. Explicitly, we have D ®g R = [, ;. g M2(R).

« Typelll: K = K, but D is a quaternion K-algebra D ®g R = [],. x. H ramified at all places,
and (—)1 is the standard involution on the quaternions.

« Type IV: K/K™ is a totally imaginary extension with complex conjugation ¢, and D is a division
K-algebra such that inv, (D) + inve,) D = 0if v # ¢(v), and inv,(D) = 0if v = c(v); (—)"is
conjugate transpose.
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Remark 2.192. In the final case, one finds that

DeoR= H M4(C)

i: K—C
uptoc

where d := /[D : K] is the reduced degree.

2.20 March22

Today we continue discussing endomorphism algebras.

2.20.1 Moreonthe Albert Classification

We begin by discussing Theorem 2.191. For our notation, D is a simple algebra with center K and positive
involution (-)" so that K™ = K. We alsosetd := \/[D : K]and e := [K : Q] and ¢ := [KT : Q].

Remark 2.193. In the case of a simple abelian k-variety A of dimension g with D := End’(A), then we
get the following data.

Type | [K*:Q] +/[D:K]|char=0 chark >0 | dimgNS(Ag)g/ dimg End(4z)g
1

[ €o 1 elyg elyg

Il €0 2 2e| g 2e| g 3/4
1l eo 2 2e|g elyg 1/3
\% 2eq d eod? | g eod | g 1/2

We will explain where these restrictions come from later. Do note that we do not if all possible simple
algebras D with positive involution (-)" come from simple abelian varieties. In characteristic 0, we know
exactly what occurs, due to Albert and Shimura. (Shimura, notably, used the geometry of the moduli
space A,.)

Remark 2.194. Let’'s explain what’s going on with the Néron—Severi group. This is occurring when k is
algebraically closed, and we pick a polarization A\: A — AY. Now, we have our embedding
NS(A4) ®z Q — Hom(4, AY) ®z Q — End’(A),

where NS(A) consists of the symmetric homomorphisms. Notably, being a symmetric homomorphism
N: A — AY meansthat f = f, where f € EndO(A) is the isogeny such that M’ = X o f. Indeed, we are
asking for Ao f = f¥ o \in order to be symmetric, which amounts to f = f. So the point is that

NS(A) ®z Q = End’(A)T.
Let's see an example of a dimension restriction.

Lemma 2.195. Fix a simple abelian k-variety A, where chark = 0. Then set notation as above with
D = End’(A). Then d2e | 2g.

Proof. In characteristic zero, the Lefschetz principle allows us to assume that k¥ C C. Then we are granted
that End’(A4) C End”(Ac) will act faithfully on H'(A(C),Q), meaning that d?c | 2g in order for the dimen-
sions to check on. |

This provides the dimension restrictions in types I1-IV.
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Lemma 2.196. Fix a simple abelian k-variety A for any field k. Then set notation as above with D :=
End®(A). Then de | 2g.

Proof. The point is that deg: End”(A4) — Qs a polynomial of degree 2¢, and in fact we showed earlier that
deg is a norm form. But Proposition 2.172 tells us that

i
deg = (Nic/q o No )

for some integer i. Computing the degree of the polynomials everywhere, we get that dei = 2¢ for some
integer ¢, which is what we needed. |

This provides the dimension restrictions in types Il1-IV.

Proposition 2.197. Fix a simple abelian k-variety A for any field k. Then set notation as above with
D := End’(A). Further, suppose that L is a subfield of D fixed by (:). Then [L : Q] | .

Proof. The point is that L C NS(A;) as discussed before. Now, choose a polarization A\: A — A" so that
A = ¢r; we also define f: NS(Az)g — Q by

_ xWM)

so Proposition 2.162 tells us f2 is a norm form. Namely, we know that f(ab) = & f(a) f(b); an argument on
the coefficients of our polynomial is able to show that we either have f(ab) = +f(a)f(b) always or f(ab) =
—f(a)f(b) always. However, taking M = L, we see that the sign + is forced, so f is a norm form on L of
degree ¢! Arguing as in Lemma 2.196 completes. |

Inthe Typel case, oneis able to take L = K («) for suitable choice of & makes K («))/ K a degree-2 extension,
providing the needed bounds for Type I. We won't discuss this in more detail.
Anyway, let's provide some examples.

Example 2.198. Fix an elliptic curve E so that g = 1. We work in characteristic 0. We see we may only
have Type | with e = 1 or Type IV with d = ey = 1, meaning that End’(E) is an imaginary quadratic
extension of Q so that E has complex multiplication.

Example 2.199. Fix an elliptic curve F so that g = 1 in characteristicp > 0.

+ It looks like we might be able to have Type I, which forces e = 1; however, this does not happen
over F, or even IF, by Remark 2.167. (This does happen over F,(t).)

« We can still have Type IV, meaning thateg = d = 1, so EndO(E) is an imaginary quadratic field;
one can achieve this by finding an elliptic curve over Q with ordinary reduction at some prime p so
that the Frobenius endomorphism Frob fails to be in Z.

« Lastly, itis possible to have Type Ill, which means thate = ¢g = 1, but we stillmust have d | 2¢g, and
d = 1is already considered above, so we actually have d = 2 here. This means that D := End’(Q)
is a central simple Q-algebra, and Theorem 2.191 requires it to be H at co. For finite £ # p, we
also see

D ®q Q¢ € Endg /1) (TeA ®2 Qo).

But both sides here have dimension 4, so we must have D ®¢ Q, = M>(Q;), meaning that D splits
at all these finite primes £. The fundamental exact sequence now forces ramification at p.
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Example 2.200. Fix an abelian surface A so that g = 2. We work in characteristic 0.

« Type | is possible; an open subset of the moduli space has e = 1 so that End’(A) = Q, but it is still
possible to have e = 2 so that End”(A) is a real quadratic field.

» Type Il is possible, but this forces ¢ = 1 so that D is a quaternion Q-algebra. Theorem 2.191
requires D to split at oo; every quaternion algebra appears.

» Type lll forces e = 1, and Shimura shows that this never happens.

» For Type IV, one can have ey = 2 so that A is an abelian surface with complex multiplication.
Otherwise, ey = 1, this does not happen when k is algebraically closed: we may take £ = C, but
then End’(A) contains a product of two imaginary quadratic fields, which forces A to be isogenous
to a product of elliptic curves, meaning that A it not simple. However, it is possible that eg = 1 in
general; for example, the Jacobian of y® = 2(z — 1) modulo the Jacobian of y* = z(x — 1) over Q
will work.
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THEME 3
BACK TO COMPLEX MULTIPLICATION

3.1 Aprill

We now return to discussing complex multiplication.

3.1.1 Néron Models
We will not discuss constructions too much, but we will say something. For today, R is a discrete valuation

ring with fraction field K and residue field x. Here is our definition.

Definition 3.1 (Néron model). Fix a discrete valuation ring (R, m, ) with fraction field K. Then a Néron
model of some K-scheme A such that A is a smooth separated R-scheme of finite type satisfying the
following.

'AKZA

« Néron mapping property: if X' is a smooth R-scheme with X := Xk, thenany mapu: X — U is
the base-change of a unique map X — A.

Remark 3.2. The Néron mapping property immediately implies uniqueness up to unique isomorphism.

Remark 3.3. Additionally, the universal property implies that formation of Néron models commutes
with étale base-change. Namely, if Spec R’ — Spec R is étale, then Ag: continues to be smooth over
R/, and drawing out the Cartesian square

Here is our result.

Proposition 3.4. Fix a discrete valuation ring (R, m, ) with fraction field K. If Ais an abelian R-scheme,
then Ais a Néron model of Agk.

Proof. The point is to use the valuative criterion of properness. Let X be a smooth R-scheme, and set X =
X . To apply the valuative criterion for properness, we let ) be the generic point of X;, so Ox ,, is a discrete
valuation ring. Thus, the map FracOx, — A produces a unique lift Spec Ox ,toA. (Note the valuative
criterion is legal because everything in sight is finite type.)

Continuing, by spreading out, we note that we get an R-scheme ) C X such that Yx = X and ), C X,
is open, and we have our unique map Y — A. However, X'\ ) can be taken to be codimension at least 2 (in
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the spreading out) because we are including the generic point. Now, [BLR90, Theorem 4.4.1] tells us that
the group structure (and smoothness) of A tells us that the rational map ) — A can be uniquely extended
to all X. Here is the precise citation.

Proposition 3.5. Fix a discrete valuation ring R, and let G be a smooth separated group R-scheme such
that we have some rational map f: Z — G where Z is smooth, and f is defined outside a set of codi-
mension at least 2. Then f extends uniquely toamap Z — G.

Proof. To use the group structure, we define the rational map F': Z xr Z — G given by

F(z,y) = f(x)f(y)~"

Then f being defined at z means that F' is defined at the element (z, z); in fact, the converse is also true: F’
being defined on (z, ) means we can define it an open neighborhood (x,U), and then we can shrink U so
that f is also defined on U, so one can write f(z) = F(x,u)f(u) for u € U to promise that f is defined at z.
From here, we see that f is defined in codimension 1, so F' is defined codimension 1, so an argument
with algebraic Hartog's lemma tells us that F' can just be defined globally, so f can be defined globally. To
be more explicit, we note that F' is defined at some (x, ) provided that the map O¢,. — K(Z x Z) factors
through Oy 7 (2,), where the application of algebraic Hartog's is valid because we can now to pass to a
sufficiently small open (affine) open neighborhood of (z, ) going to e € G. (Namely, this factoring happens
in codimension 1, so our elements are actually in the ring, so we are okay.) |

This completes the proof. |

Corollary 3.6. Fix abelian schemes A and B over the discrete valuation ring (R, m, k) with fraction field
K. Then the map
Hompg(A, B) = Homg (Ax, Bi)

is an isomorphism.

Proof. Examining the squares to be a homomorphism and using the Néron model property tells us that
the backward map is well-defined both as a morphism and in fact a homomorphism. (Namely, squares
commuting can be encoded in uniqueness of our morphisms.) |

We now state our theorem for existence, but we will not prove it.

Theorem 3.7. Fix a discrete valuation ring (R, m, k) with fraction field K. Then any abelian K-variety A
has a Néron model A. In fact, A is a smooth group scheme, and there is a finite extension L of K such
that A, has semi-abelian identity component.

3.1.2 The Shimura-Taniyama Formula

We now return to prove (a special case of) the Shimura—Taniyama formula. It will help to have the following
lemma.

Lemma 3.8. Let A be an abelian variety of good reduction. Fix everything as above, and let m be an
integer coprime to p. Then o
A(K)[m] = A(Kg™)[m] = Ax()[m].
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Proof. This only uses that A has good reduction. The second equality is not so bad because A(Ky™) =
A(OK%m) by the Néron mapping property (even as groups), which then reduces to A, (%). But we are looking
at kernels of [m], which is finite étale, so Hensel's lemma applies to provide that reduction is a bijection.
We now address the first equality. The cardinality of A(Ky™)[m] is the correct number m? dim4 g0 all
torsion from Ky is defined over K. In fact, all this torsion must be defined over the smaller algebraically
closed field K, so the first equality follows as well. |

In particular, we see that making m a prime-power tells us that
T A =T A,,

where we have compatibility with Galois action, where the “Galois action” by Gal(K/K) on the right is via
the decomposition group. So Theorem 2.164 does the job.

3.2 April3

Today we prove our special case of the Shimura—Taniyama formula.

3.2.1 Proving the Shimura-Taniyama Formula

Here is our statement.

Theorem 3.9. Fix a number field K, and let A be an abelian K -variety with complex multiplication by
the CM algebra (E, ®). Further, we take the following extra assumptions.

« K contains the Galois closure of E.

« A has good reduction at some prime 3 of K, meaning that A is an abelian scheme.
+ Kgq is unramified over Q, where p. Set x :== Ok /*B.

« End(A)NE = Og.

Then there is some unique m € Og such that the reduction of 7 from O C End A = End A to End A,
is Frob. In fact, () is

[T ¢ (Nmg/pm B) -

ped

Proof. We begin by discussing how to get 7 € Op. Recall that the Néron mapping property yields End A =
End A, which embeds in End.A, because we can check the equality of two endomorphisms ¢,%: A — Aon
the Zariski dense subset of prime-to-p torsion of 4, which is already found in A, by Lemma 3.8.

Now, we know E C EndO(A) C End A,, and there is some Frob element. In fact, Frob will commute with
anything from E, which means that it must live in E/, which can be seen directly from the Albert classification
or more directly as follows: it suffices to check the commutativity on the Tate module. But then VA, but
dim(F®Q,) = 2dim A (because E is our CM algebra), and V; A,; also has dimension 2 dim A4, and the relevant
action is faithful on A and hence faithful on A and hence faithful on A, so Vp. A, is a faithful (E @ Q,)-module
of rank 1. Thus, Frob will have to live in £ ® Q, and in End A,,, so it comes from E N End A, which is Og. So
Frob comes from a unique element 7 € Op.

We now turn to the second claim. Note the relative Frobenius F: A — A factors through [p] (we
showed this when discussing finite flat group schemes), so the full Frobenius Frob factors through [g]. In
fact, we can see this more explicitly via the following lemma.

90



3.2. APRIL3 254B: COMPLEX MULTIPLICATION

Lemma 3.10. Fix everything as above. Then

Frob o Frob! = [q]

for any Rosati involution (-)f.

Proof. This is a matter of unraveling the definition. It will be enough to show that Frob' o Frob = [q] by
duality. Well, let \: A — AY be our polarization providing the Rosati involution, and then we see that

FrobAT oFrobs = A"t o FrobsY o Ao Frob 4 .
This being equal to [¢], by rearranging, is equivalent to showing that
Frob} o Frobav = [g].

We will do this by hand. Fix a test T-scheme, and a rigidified line bundle £ on A x T living in AY(T). We
pass L through. For example,
Frobv (£) = (id x F\™)*L,

where F;m) means the relative Frobenius, and then applying the dual morphism Frob; leaves us with

(Frob x id)*(id x F{™)*L.

So we see that we are just taking qth powers on both coordinates, which does indeed produce £%9, as de-
sired. |

The point is that (7) is supported on pOpg, so we can write

for some nonnegative integers m,. To make things principal, set h := # Cl E so that p”**" can be said to be
generated by some ,, € Og. We will compute degy, in two ways.

Lemma 3.11. Fix everything as above. For any a € O, the degree of a as an endomorphism A — A is
NmE/@ «.

Proof. We may let « act on the Tate module VA, as discussed above. Then we previously showed that
dega = det(aly,4,),

but we know Vp A,; is just E ® Qy, and multiplication by o then becomes the usual multiplication by o map
E — E.Thus, the determinant is indeed Nmp q o, as desired. [ ]

The point is that
degyy, = Nmpg /gy, = Nmg/q pmeh,

We now compute this deg v, differently. Because we are only interested in the degree, we may as well take
K =K.

Lemma 3.12. Fix an algebraically closed field & of positive characteristic p, and set ¢ := p™. Then any
isogeny f: A — B of abelian k-varieties such that f*K(B) contains K (A4)? has

deg f < ¢%,

where d = dim ker Lie f.
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Sketch. We will use [Mill7, Theorem 11.27]. Note that ker f is a local finite group k-scheme because f
factors through multiplication-by-g¢, from which one can see that

k[xl, .. ,$7J
pTl pTn
CiD

with r; < m for eachiand n = dim T, ker f by the proof of this result. Then one computes

ker f = Spec

m
deg f=]]»" <p™ =1q",

i=1
but n = dim T, ker f is dim ker Lie f. |
We are actually pretty happy that Lie has appeared because we need to relate everything back to the CM
type. In particular, we know that Lie A admits a K -basis (e,),cs, Wwhere a € E acts on e, by ¢(a).

Now, because Ky3/O, is unramified, we know that Lie A will admit an Ok, -basis by (e, ) ,ca again. In-
deed, the point is that

Op @z Oky, = @ Ok

o: ECKg

because we are unramified.! This basis then goes down to a basis {€,,},cs of Lie A, by reduction. Thus,
ker(Lie,: Lie A, — Lie A,) = span{e, : ¢(v,) € P}

because our multiplication is basically coordinate-wise.
To continue, we recall that
H,:={r € Hom(E,K): 77 "B =p,} and &, :=dnH,.

h#f®.,

The point is that we know dim ker(Lie v, ) is exactly #®,,, meaning deg~, < ¢ by the previous lemma.

Comparing our two expressions for the degree, we see that
Nmpqpi < g#®.

We claim that we have equality. Well, using (3.10), we see

Nmpg,q m = deg Frob = gdimA

because deg Frob = deg Frob'. On the other hand,
Nmgpm = NmE/QHPvm" < Hq#% — # = fAimA
vlp v|p

so the inequality here sharpens to an equality.
Thus, we achieve (Nm /o B)#** = Nmp g p'*. On the other hand, decomposing the norm as a product
of conjugates, we see

Nmgo | [ ¢ (Nmgjpm ®) | = [] Nmiso®,
ped, ped
so comparing our norms implies that
pot = H o (Nmg/p(m) B).
PED,

(In particular, both sides are powers of p,, by construction, so one only needs to compare exponents.) Loop-
ing over all ¢ completes the proof. |

1 1f we want to remove this unramified assumption, then we must work with more theory of p-divisible groups to make this sort of
thing go through.
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Remark 3.13. The bulleted assumptions can essentially be removed, but we will not do so.

Remark 3.14. In fact, one can show that there is an explicit formula of (7) C Og, which we will show
next class.

3.3 April5s

Today we would like to state the Main theorem of complex multiplication.

3.3.1 The Reflex Norm

We need to discuss the reflex norm. To describe our definition, fixa CM type (E, ®), and let £* be the reflex
field. Recall that we may view ® as a subset of Hom(F, Q). Note that

EgoK= [ K.
o€Hom(E,Q)

for any field K containing all embeddings of E into Q. Then Galois descent provides an E ®g E* module Ve
such that

Vo @ K & H K,
ped

simply by definition of E* as being fixed by automorphisms o: Q — Q permuting ®.

Definition 3.15 (reflexnorm). Fixa CM type (E, @), and define V3 asabove. Thenwe defineNg: (E*)* —
E* by
Ng (@) == det(a | V).

In fact, for any K containing E*, one can define Ng ¢: K* — K* by

Nk o(a) = det(a| Ve @p« K).

Remark 3.16. Because of transitivity of norms, we see that
NK,q:. = Nq;. e} NK/E*
This definition work well with Theorem 3.9.

Proposition 3.17. Fix a field K containing the all images of E'in Q. Thenany a € K* has

Nio(a) = [[ ¢ Nk/p(m) a)
peD

Proof. Omitted. See [Mil20b, Proposition 1.26]. The point is to expand out the definitions and stratify along
D. [ ]

Remark 3.18. By tensoring with local fields suitably, we see that N ¢ provides a map Az — A} and
also a map on the fractional ideals.
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3.3.2 The Main Theorem

Now, for our set-up, let A be an abelian Q-variety with CM type (E, ®). Let E* be the reflex field. From here,
note that o € Gal(Q/Q) lets us define

A=A ®@ @,

which has CM type given by o®; thus, if o € Gal(Q/E*), then 0® = ® by definition of E*, meaning that our
CM type is preserved! This observation will simplify matters, though it is possible to work with more general
o if one is willing to put in more work.

Continuing, note that pointwise application of o provides a map o: A — A?, and this isomorphism is
compatible with the E-action on both sides. Continuing, we are granted an isogney a: A — A% which is
compatible with the E-action and unique up to multiplication by E*; this is because A and A are both CM
abelian varieties with the same CM type.> We would like to understand our Galois representations, so we
define

~

T(A):=[[1xA and  V(4):=T(4) @ Q.
4

o~

So we get our isomorphism ‘7(0) :V(4) — 17(A”) and similarly get some ‘7(04). These maps are both going
tobe £ ® Ay linearly, where Ay := Ag ; is denoting the finite adéles. Comparing our two morphisms, we
getsome (o) € Aj, ; such that

a(n(o)z) = o(z)

forallz € 17(A); this is simply because we have provided two isomorphisms between Galois representa-
tions, which must be unique up to some multiplication. In total, we have gotten a group homomorphism

n: Gal(Q/E*) — Ap ;/E*.

We now get the feeling that global class field theory should come up. Because the target is abelian, the
above map actually factors through the abelianization, so it factors through Gal(E*2" E) — A;,E/EX. On
the other hand, we know from the next subsection that there is a global Artin map

A%. ;/E* — Gal(E***/E").
The statement of our Main theorem is then the following.
Theorem 3.19 (Main). Fix everything as above. Then the following diagram commutes.

Gal(Q/E*) ——— A} ;/E*

| I

Gal(E**"/B*) 5 A/ (B*)*
In particular, we are granted essentially total understanding of the Galois action on the Tate module.

Remark3.20. Later, we will use this fine understanding of the Galois representation in order to compute
the L-function of a CM abelian variety.

2 An easy way to see the uniqueness up to £ is to use the Albert classification: it suffices to show that 8 € End®(A) commuting
with the E-action must be in E, which can be seen by looking at the cases individually.
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Remark 3.21. Fix a polarization \: A — AV such that (-)T is complex conjugation on E. Then one has a
Weil pairing ¢: V(A) x V(A) — Af(1) given by gluing together the local Weil pairings. We now define
7 on A% by ¥ (ox,0y) = o(¢(z,y)), which by definition of A,(1) is just x(o)¥(z,y) where y is the
cyclotomic character. Applying Theorem 3.19 to our situation, we get some s such that
V7 (0w, 0y) = P (a(Na(s)z), a(Na(s)y))
= 97 (No(s)Ng(s)aw, ay)
= No(s)No(5)97 (o, ay).

(Note that we get complex conjugation on the N (s) because (-)' is complex conjugation.) So we are
able to compare ¢ with x.yc by comparing our two expressions.

3.3.3 AlLittle Global Class Field Theory

We quickly review the statement of global class field theory. Fixa number field &, and let K" be its abelian
closure.

Definition 3.22 (Artin map). Fix a number field K. Then there is a canonical homomorphism
Artr: A% /KX — Gal(K*™/K)
satisfying the following: for any finite place v, of K and w | v, the following diagram commutes.

Artr,, /K,

K, Gal(L,/K,)

AJ/E* ——— Gal(K*™/K) — Gal(L/K)

Here, Art, is the local Artin map; it is also an isomorphism.

Remark 3.23. Let's describe some properties of the local Artin map.

« If L,/ K, is unramified and nonarchimedean, then

Artr, /i, () = Frobzv(/afg ,

where the — in the exponent is a rather annoying convention.

« If L,/ K, is the extension C/R, then we are looking at the sign map R* — Gal(C/R).

Remark 3.24. One can take a quotient suitably to provide an Artin isomorphism
X

A
ArtL/K: WI((AZ) = Gal(L/K)

Remark 3.25. If K is CM, one may basically ignore the infinite places because they all start out as C.
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3.4 April8

We begin to talk about L-functions.

3.4.1 Hecke Characters from Abelian Varieties

Fix an abelian variety A over a number field X C @ with complex multiplication by E € End’(A). For
simplicity, we will assume that E* C K. Recall we built a Galois representation

pa: Gal(K/K) — Auty, ,(V A),
but because A has complex multiplication, this right-hand side is Autgf, so in fact p will factor as
Pa: Gal(K™/K) = Af ;.
It turns out that Theorem 3.19 implies that
pArtic(s)) = No(Nc/-(5)) - A7

for some unique A\, € E*. Indeed, we know that
Gal(Q/E*) ——— A} ,/E*
| s
Gal(E*™/E*) —— Ap-;/(E*)
commutes, so we combine this with the functoriality of the global Artin map, which says that

Art g

AR /K> —= Gal(Q/K)*

NK/E*J/ lres

AL J(EF)* 2 Gal(@) B )P

commutes. Combining the two diagrams is able to produce our result.
To continue, we have the following result.

Proposition 3.26. The map A, : Af(’f — E* is continuous, where E has been given the discrete topol-
ogy.

We are going to take a roundabout way to this result. We begin with the following result, which will also be
a key input to our proof of the Weil conjectures for abelian varieties.

Remark 3.27. Fix a polarized abelian variety (A4, ¢). Then for any m > 3, it turns out that
Aut((A4,¢)) — Aut A[m]

is injective.

To prove the remark, we will want

Proposition 3.28. Fix an abelian k-variety A. Further, fix any endomorphism a such that af o a = [n] for
some nonzero n € Z. Then the following are true.

(a) Then Q(a) C End®(A) is semisimple.

(b) The multiset {w;} of roots of the characteristic polynomial all have absolute value /|n|.

(c) The multiset {w; } is stable under w — n/w.
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Proof. We begin with (a). Here, we find a’ = n o a™!, so Q(«) is preserved under (-)!. The point is that
x + tr(zz') can now be defined to be a positive-definite quadratic form on Q(«).

We now show that Q(«) is semisimple. Let a C Q(«) be an ideal, then having our quadratic form lets
us define a' and see that Q(a) = a @ a' because everything in sight is finite-dimensional. Thus, we can
decompose Q(«) into simple algebras inductively, meaning that Q(«) is semisimple.

We now handle (b) and (c). We can write

Q(()&):K1XK2X--~XKm

for some m. Because (-)1 is positive-definite, it cannot swap any of these fields, so in fact (-)" must preserve
all these fields, meaning that each is either totally real or has complex multiplication (by some argument
from the Albert classification). Now, we see that the w; are the images of « via the various embeddings

Q(a) = K; —» C,

but (-)T becomes complex conjugation in C, so we see that the image of a will have magnitude +/|n| by direct
computation passing through afa = [n]. Additionally, we see that we can exchange a with af to send w; to
n/w;, which yields (c). [ ]

Remark 3.29. One recovers the Riemann hypothesis part of the Weil conjectures for abelian varieties
by applying this result to the fact that
Frob' o Frob = [q].

One gets the other parts of the Weil conjectures by formally unraveling everything into the other parts;
for example, (b) will give rise to the functional equation.

We next pick up [MumO08, Theorem 21.5].

Theorem 3.30. Fix a polarized abelian variety (A, ). Then for any m > 3, the map

Aut((4,¢)) — Aut A[m]

is injective.

Proof. Suppose that a is an automorphism of Aut((4,¢)). Then af o a = 1 because we are an isomorphism
of the polarized abelian variety. (This is a matter of writing down the corresponding commuting square for
anisomorphism of polarized abelian varieties.) It follows that all eigenvalues of o are algebraic integers with
norm 1, so they are all roots of unity.

We are now ready to complete the proof. It is enough to show that the map has trivial kernel. But then
we see that & = 1 + Mz for some v where M > 3, sow; = 1 + Mux; for some x; where M > 3, from which
some algebraic number theory is able to enforce that w; = 1 for each i. [ |

Remark 3.31. The point of this is to show that the isomorphism class of our polarized abelian varieties
is finite. The reason we must have the word “polarized” is that it is possible to provide abelian varieties
with infinitely many automorphisms; for example, take an abelian variety with complex multiplication
by Q(v/—1, v/—2), which then will have endomorphisms in an order of Q(v/2), which has infinitely many
units.

We are now ready to prove Proposition 3.26.

Proof of Proposition 3.26. Because everything in sight is a group, it is enough to show that s — 1in A;(,f

implies that A, = 1. Well, for m large enough and s close enough to 1, we can achieve Ay € Of (namely,
force s to be a unit at all finite places), \s = 1 (mod M) for large M (which is finitely many congruence
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conditions), and )\, € End(A@). In particular, we know that Af! lives in O N Aut A@ and acts trivially on
Ag[M].
Continuing, we are given that there is a polarization : A5 — AZ which is compatible with the E-action,

and we are able to descend this polarization to its field of definition as ¢: A;, — A}. The point is that we
will be able to see that A, preserves ¢, from which Ay = 1 will follow from Theorem 3.30. To see that we
preserve ¢, we recall the ideas and notations from Remark 3.21, which grants a rational number ¢ such that

cp(z,y) =97 (A 2, A\ ty)

With s close enough to 1, we will get 1) = 1) because 0 = Art s (so s close enough to 1 will make o trivial
over the field of definition L). Continuing, unwinding definitions, we see

Cilw(l‘7y) = ¢(ASI, Asy) = /L[}()\S)\i‘ixvy)a

from which the non-degeneracy of the Weil pairing forces AsAs € Q. Thus, for degree reasons (and positivity
reasons), we see that )\, - A, is a positive integer but also invertible, so it must be 1, so indeed ), preserves
by staring at the above computation. |

We are now ready to define Hecke characters and check that we've built one.

Definition 3.32 (Hecke character). Fix a number field K. A Hecke character is a continuous homomor-
phism x: A% /K> — C*.Ifimy C S*, we say that x is unitary.

Remark 3.33. For any Hecke character x: A /K> — C*, one has a unique decomposition x = xo |-|”
for some o € R where xq is unitary and || is the norm. Indeed, the main point is to define o as |x|; then
the image of x |-|~7 lands in S*.

Thus, we see that we need )\, to be trivial on K.
Let’s describe this construction. Fix everything as before, and choose an embedding 7: E < C. Then
one can define a map a7 via the composite

Ax =[] BY - E- 5 C.

v|oo

Here, the first map is given by s N;(}(bm(s))\(s); here, Nk ¢ « is given by taking the infinite components
of the local reflexnorms N ¢ : A% — AJ. The continuity of a” is basically by definition (everything involved
in the definition is continuous), so it remains to check that o™ vanishes on K*.

3.5 April10

Today we continue towards our discussion of L-functions.

3.5.1 [L-functions for Abelian Varieties

We begin by checking that we have actually defined a Hecke character.

Lemma 3.34. Fix everything as previously discussed. Then o (K*) = 1.

Proof. Quickly, fors € Ag, let sy € A% ; be the finite part, and we recall that
A(s) N;l (NK/E* Sf) = As)Ng.ao(sf) =p (Art}l(s))
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from Theorem 3.19. Now, the right-hand side is trivial for s € K*, and we are able to compute that the
left-hand norm is

Nl_écb(sf) = NI_(,1<I>,oo(S)
basically by definition of s, so we are able to conclude. |

To continue, we note that our Hecke character is actually algebraic.

Definition 3.35 (algebraic). Fix a number field K. A Hecke character x: A% /K* — C* is algebraic if
and only if its archimedean part xc = x|y x is of the form

o) = [Late- T[ ammer

v real v complex

forintegers ne € Z.

Remark 3.36. Approximately speaking, we are asking for this to come from morphism Resg /g G, —
G- In particular, a priori, x» can have exponents which are any integers, so we are placing a fairly
strong algebraic limitation.

Unwinding the definition of N ¢ o reveals that NK © .00 A IS an algebraic Hecke character.
We are now able to define our L-function on the level of the Hecke character.

Definition 3.37 (conductor). Fix a number field K. The conductor m of a Hecke character x: Ax /K> —
C* is afinite idealm = [], p™» chosen to be the smallest possible so that x is trivialon [ ], (1 + p™*).

Note that m conductor exists by continuity of .

Definition 3.38. Fix a number field K. A Hecke character x: A} /K* — C* of conductor m has associ-
ated L-function given by

1
L(x,s) = g 1 — xp(@p) Nk jg(p)~¢’

where @, € pis auniformizer.
We now recall the following result on these L-functions.

Theorem 3.39 (Hecke, Tate's thesis). Fix a number field K and a Hecke character x: Ay /K* — C*.
Then L(s, x) admits a functional equation and a meromorphic continuation to allC

On the other hand, we can build an L-function for A.

Definition 3.40. Fix an abelian variety A over a number field K. Then the L-function of A is

1
1;-[ det (1 — Frob, (N g p)~* | Ve A)’

L(A,s) =

where the Euler factor written is correct when A has good reduction at p, but at bad reduction we must
look at the part of V, A fixed by inertia.

It turns out that for Re s large enough, the Euler product will converge; this is essentially by the Weil con-
jectures. In more words, we may only look at primes of good reduction (there are only finitely many primes
of bad reduction), and the eigenvalues of Frob, have magnitude |Np\1/2, so we should expect convergence
after Res > 3/2.

We now have the following result.
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Theorem 3.41. Fix an abelian variety A over a number field K, and assume that A has complex multi-
plication by the CM algebra E. Then

L(As)= [ Lta7,s).

7: E—C

In particular, L(A4, s) admits a functional equation and meromorphic continuation.

Basically, what is happening is that the Galois representation attached to A is abelian, so we should be able
to decompose it into characters. The theorem will follow from the following result.

Proposition 3.42. Fix an abelian variety A over a number field K, and assume that A has complex mul-
tiplication by the CM algebra E. Fix a prime p of K. We will basically have two steps.

1. If A has good reduction at p, then the restricted character x; := A|;x is trivial on le(p. (In fact,
p
the converse is true, which we will show next lecture.)

2. A\p(wyp) € Op acts on A,y as Frob,,.

We now prove Theorem 3.41.

Proof of Theorem 3.41 assuming Proposition 3.42. We compare the Euler factors by hand. Note V;A is a
rank-1 module over E ®g Q, so

det (1 — Frob,T'| V;A) = Ng,q(1 — Frob,T).

Now, Proposition 3.42 implies that this equals

Ngo(l=X(@)T) = [[ (1-aj(@y)T),
7: E=C

as desired. [ |
We now move towards a proof of Proposition 3.42.

Proof of Proposition 3.42. We beginwith (a). Fixp, and choose ¢ not divisible by p. By local class field theory,
the inertia subgroup I, C Gal(K®/K) is the image of O[X(p under the Artin map, which means that

p(Artg(s))e =1

fors € O, C Ajk. So Artk(s) acts trivially on T A, but then we see that A(s)~1 N;(}q)(s) vanishes on T, A.

Similarly, Nx';(s)e = 1 because p does not divide ¢, so we are forced to conclude that A(s) acts trivially, as
desired. '

We now turn to (b). Here, the point is that A, () acts on Ty A = Ty A, () as p (Artg, (wp) 1), which is
p(Frob,), as desired. [ |

3.6 April12

Today we discuss the fact that an abelian variety with complex multiplication has potentially good reduction
everywhere.

3.6.1 Potentially Good Reduction Everywhere

The following definition is our main character.
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Definition 3.43 (potentially good reduction). Fix an abelian variety A over a number field L. For a prime
p of K, we say that A has potentially good reduction at p if and only if there is a some prime 3 over p
from a finite extension Ly of K\, such that A, has good reduction at 3.

Remark 3.44. We already know that A has good reduction at all but finitely many primes of K. So if
A has potentially good reduction at all primes, we can find a suitably large finite extension L/K such
that Ay has good reduction everywhere. Indeed, simply take a single extension L which is okay for
one prime P over each prime p of K which originally had bad reduction. Then one may make L larger
without losing our good reduction at those primes, but then we can replace L with its Galois closure,
and then the primes are permuted transitively by the Galois group, so we will get good reduction over
every prime B’ over a prime p of K which originally has bad reduction.

Here is our main result for today.

Proposition 3.45. Fix an abelian variety A over a number field K with complex multiplication. Then A
has potentially good reduction everywhere.

For this, we will use the following criterion for good reduction.

Theorem 3.46 (Néron—Ogg-Shafarevich criterion). Fix a discrete valuation ring (R, p, «) with fraction
field K. Then an abelian variety A over K has good reduction if and only if the inertia subgroup I C
Gal(K /K) acts trivially on Ty A for some ¢ not dividing char k.

Proof. We will only sketch the proof because we don’t want to get bogged down with the theory of affine
algebraic groups.

For the converse direction, let A (over R) be the Néron denote the Néron model of A over K. Then the
Néron mapping property implies that

A(K™)[0%] 2 A (Oscune) [°] = A()[E°].

Note that the last map is an isomorphism by Hensel's lemma, namely by our smoothness. This now implies
the forward direction: good reduction means that we are proper in the target, so the end becomes T, A, but
inertia acts trivially on the left, so it must act trivially on the right.

We now focus on the harder converse direction. Because inertia acts trivially on Ty A, our left-hand side
is just A(K)[¢®]. (A priori, this would only be the submodule of A(K)[¢*] fixed by inertia because we are only
looking at the unramified part.) This is somehow “too big"” for A to be anything other than an abelian variety.
Let's explain this. Note A, is a smooth commutative finite type group scheme over &, so it lives in a short
exact sequence

0—- A, - A, = A, /A, — 0,

where the target is finite, and A¢, lives in some short exact sequence
1-2U—=A - G—0,

where U is unipotent and G is semi-abelian (i.e., an extension of an abelian variety B by a torus T). (This
last clause follows by some structure theory of algebraic groups.) Notably, we see that dim A = dim A, =
dim U + dim T + dim B. We now examine the torsion everywhere.

. #B(E) [[n] i ¢n2dim B

o #T(R)[("] is £74™T because over the algebraically closed field, this will split into G3™ 7T which has
torsion given by pgim T,

« #U(R)[¢"] is one because unipotent groups are torsion-free.
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Now, sending n — oo forces that
2dim A =2dim B4+ dim T,

sodimT = 0and dim B = dim A, sodim U = 0 as well. Thus, A, is proper, which can then be lifted to show
that A is proper and hence an abelian scheme. [ ]

We are now ready to prove Proposition 3.45.

Proof of Proposition 3.45. We may extend K immediately so that the endomorphisms promised by com-
plex multiplication are all defined. We are going to use a little local class field theory and the fact that the
Galois representation py: Gal(K/K) — Aut(T,A) is abelian.

Fix some prime p of K which we would like to show that A has potentially good reduction at p (and choose
¢ not divisible by p). Then we note that

Gal(K,/K,) C Gal(K/K) — Aut T, A
has abelian image and hence must factor as
Gal(K3°/K,) — Aut Ty A.

Let I, be the corresponding inertia subgroup so that we want p,(I,,) to be trivial after some extension.
Now, by Local class field theory, I, contains O]X(p and hence contains a finite-index subgroup of the form
1 4 pOk,. Further, Aut Ty A has an /-adic topology, and we see that it has 1 + /End 7, A as a finite-index
subgroup, which is a pro-¢ group. Now, taking the pre-image of Aut(7;A)’s finite-index neighborhood of
the identity and then intersecting with 1 +pOp, produces a map from a finite-index pro-p subgroup of I, to
a finite-index pro-¢ subgroup of Aut Ty A. But such a thing must have finite image, so p,(I,) must still have
finite image by going back up the finite index subgroups. However, we can kill this finite image by passing
to a finite extension of K, so we are done. (Namely, the pre-image of the identity is an open finite index
subgroup of I,,, so we just extend K enough so that the new inertia subgroup goes in there.) [ |

3.6.2 Honda-Tate Theory

As a fun application of some of the theory we've built so far will be to classify isogeny classes of abelian
varieties over finite fields. Let's state our theorem, which requires the notion of a “¢-Weil number.”

Definition 3.47 (Weil numbers). Fix a prime-power ¢. Then a g-Weil number is an algebraic integer =
such that |o(7)|* = ¢ for any embedding o: Q(7) — C. Two g-Weil numbers 7 and 7’ are conjugate,
written  ~ #’, if and only if there is an isomorphism Q(7) — Q(n’) sending = — 7. (In other words, =
and 7’ have the same minimal polynomial, which is equivalent to = and 7’ being Galois conjugates.)

Remark 3.48. Let's explain where this notion is coming from. Well, fix an abelian F,-variety A. Then
we know that
Frobi1 o Froba = [q],

so w4 = Froby has that Q(74) is semisimple (and hence a field when A is simple), so the Albert classi-
fication explaining how to embed this into C tells us that 74 is a ¢-Weil number.

Here is our result.

Theorem 3.49 (Honda-Tate). Fix a prime power ¢. There is a bijection between isogeny classes of sim-
ple abelian F -variety A and conjugacy classes of g-Weil numbers 7 given by sending A +— Frob 4.

The injectivity of the map A — Frob4 is due to Tate. We will not prove this, but here is the precise statement
which Tate proved.
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Theorem 3.50 (Tate). Fix a prime power g and a prime ¢ not dividing ¢. Then the Tate functor T is fully
faithful.

We already know that T} is faithful, so the main content is showing that this functor is full. This turns out
to be rather difficult, though it is not too far outside the scope of the current course. The main point here
is that we will be able to construct morphisms of abelian varieties only by providing morphisms of the Tate
modules.

Corollary 3.51. Fix a prime power g and a prime ¢ not dividing ¢. Then the following are equivalent.
(@) Aand B areF,-isogenous.
(b) VzA = VB (as Galois representations) for some prime ¢ not dividing q.
(c) VoA =2V, B (as Galois representations) for all primes ¢ not dividing g.

(d) P4(t) = Pg(t), where the P4 and Pg are the characteristic polynomials of the Frobenius.

Proof. We already know that (a) implies (c) (the isogeny provides the isomorphism of the Tate modules),
which implies (b) (with no content), which implies (d) by taking the characteristic polynomial on both sides
and seeing that the isomorphism forces them to agree.

We now show the harder implications. To see that (d) implies (c), we note that Frob is semisimple, so
having P4 = Pp implies that V;(A) = V,(B), where the equality even preserves the Frobenius action, and
this Frobenius action is the same as the total Galois action because we are over a finite field. Explicitly,
P, = Pgimplies that Frob 4 and Frobp are conjugate on the Tate module (base-changed to Q) because they
have the same eigenvalues; this then descends to an isomorphism to V; A = V; B preserving Frobenius by
Hilbert's theorem 90 by Galois descent for representations. (Namely, any obstruction to descent would be
a 1-cocycle in a vanishing cohomology group.)?

It remains to show that (c) implies (a), which will follow from Theorem 3.50. Namely, having two isomor-
phic Galois representations provides inverse maps on the level of Tate modules, which can then be lifted to
inverse maps of the abelian varieties (up to multiplication by an integer, which is an isogeny), which is what
we wanted. |

Remark 3.52. Without much more work, we can upgrade this to state that the following are equivalent.
(@) Thereis anisogeny of A onto an abelian subvariety of B.
(b) V;Ais a Galois sub-representation of V;B.
(c) P4 divides Pg.

We now see that the equivalence of (a) and (d) implies that the map sending A to the conjugacy class of
g-Weil numbers given by Frob 4 will be injective, which is the injectivity required in Theorem 3.49. Let’s be
more explicit about this: if 14 = 7, then they have the same minimal polynomial, so one of P4 will have to
divide Pg (using the remark), so one of A or B is isogenous to an abelian subvariety of the other, but then
simplicity forces full isomorphism.

3.7 April15

Today we continue discussing Honda—-Tate theory.

3 Here is another argument: P4 = Pg implies that one can explicitly write down what V; A and V; B should be and then show that
they are isomorphic.
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3.7.1 Buildinga CMField

It remains to see the surjectivity of Theorem 3.49. For this, we will start with a g-Weil number 7 and actually
construct an abelian variety A over a number field K with complex multiplication and then reduce it by some
p € V(K) (making K large enough to ensure that the reduction is okay). This A will be required to have 4,
with the correct g-Weil number. The point is that our proof shows that we can lift any abelian variety over a
finite field (up to finite extension) to an abelian variety with complex multiplication!

Remark 3.53. It is in general an interesting question when one can add requirements to our lifting. For
example, perhaps we want to avoid passing to the isogeny class or removing the finite extension or with
some extra Hodge cycles or endomorphisms.

As such, we need to construct a CM type for our ¢g-Weil number 7. Let’s begin with building the CM field. It
will be helpful to have a better understanding of g-Weil numbers.

Lemma 3.54. Fix a ¢-Weil number 7. Then exactly one of the following is true.
(i) ¢isasquare,and 7 = £,/g, meaning Q(7) = Q.
(ii) ¢isnotasquare, and 7 = +,/q, meaning Q(7) is a real quadratic extension of Q.

(iii) Q(x) is CM.

Proof. For (i) and (ii), suppose we have some real embedding p: Q(7) — R. Then p(7) has magnitude /g,
so p(m) is one of +,/q. If ¢ is a square, we get (i); if ¢ is not a square, we get (ii).

Otherwise, = is totally imaginary, so we claim that Q(7) is CM. We claim that Q(7 + ¢/~) is totally real,
but then Q(7) has degree at most 2 over Q(7 +¢/7) while having no real embeddings, so this extension must
be quadratic and totally imaginary, which will complete the proof. So to check that = + ¢/ is totally real,
pick up some embedding 7: Q(7) — C, and then we see that

T (7T + %) = 7(7) + 7(m)

because |7()|> = q. Now, the above quantity is always real, so we are done. [ |

We now construct our CM field.

Theorem 3.55. Fix a simple abelian IF,-variety A where F,, has characteristic p. Then set D := End’(A)
and K := Z(D)and d := +/[D : K| and e := [K : Q]. Then the following hold.

@) K =Q(ma).
(b) de = 2dim A.

(c) Foreachplacev € V(K), we have

1/2 if vis real,
inv, (D @k K,) = { 220K, : Q] ifv|p,
0 otherwise.

Proof. We will show (a) and (b) and only sketch (c).

(a) By Theorem 3.50, we know that
D ®q Q= EndGal(E/Fq)(WA) = Endg(r,) (Ve A).
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We now apply the double—centralizer theorem [Mil20a, Theorem 1V.1.14]. Let's recall the statement:
fix a field k. Given a finite-dimensional k-algebra B and some faithful semisimple B-module V', we
have

where centralizers are taken in Endy (V).

Applying the theoremto k := Qg and B := Q(74) ®g Q¢ and V = 1, A, we see that Z(B) = D ®g Q¢
because everything commutes with Frobenius, so

Z(D ®q Qv) = K ®q Q-
Intersecting everything with D, we are done.

By the Albert classification, we already know that ed | 2dim A, so we only need to show the equality.
Note that

K®Q =K, x - xK,,

where v1,...,v, are the places of K above /. Now, K ® Q, acts faithfully on V; 4, so we can split up
Vp A into

Vio---oV:

where K, acts on V; for each i. We now do some careful dimension-counting. Note
D ®q Q = Endg (VeA) = [ [ Endg,, (V2),
=1

which by computing Q,-dimensions provides

,

2 2

de = g e;d;,
i=1

wheree; == [K,, : Q¢ and d; = dimg, Vi. Now, we see that

T T T 2
(29)* > (de)? = d%c - e = <Zeid?) <Zei> > (Zew&-) = (29)%,

where we have used Cauchy-Schwartz at >. So our inequalities get upgraded to equalities, so we are
okay.

We postpone the case of v | p until much later. For finite v; | £ where ¢ is a rational prime not dividing
p, we note that the proof of (b) above tells us that

D ®,, Ky, = Endg, (Vi) = Ma(Ko,),

so our invariant vanishes.

For infinite places v, note that there is nothing to say if v is complex, so we only focus on the real case.
Looking at our Albert classification, we note that types | and Il cannot occur because ed = 2g, and type
IV poses no threat because there are no real places anyway. So it remains to run type Ill, where the
Albert classification tells us that D ® R is non-split. |

Remark 3.56. By definition, we see that A has complex multiplication. Namely, we are able to find some
subfield of D with degree 2 dim A, which does provide CM by its technical definition.
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Remark 3.57. Using the above, we see that P4 is the minimal polynomial of w4 (which has degree ¢) to
the power of d. But by facts about central simple algebras from class field theory, d is the least common
multiple of the local invariants. This enables us to pin down D by global class field theory because we
know that it is a division algebra.

Remark 3.58. It is worth noting that our proof of (b) shows that we achieve the equality case in Cauchy—
Schwartz, which implies that the dimensions of the V, must all be equal to each other.

We now begin our construction.

Lemma 3.59. Fix a ¢g-Weil number 7. Then there is a division algebra D over K := Q(x) such that it
satisfies the local conditions of Theorem 3.55(c).

Proof. By the fundamental exact sequence of global class field theory, it suffices to show that the required
D exists provided that

> invy (D @k K,) = 0.

v

If D is totally real, we leave this for homework. It remains to deal with the case where K is CM. Here, there
are no infinite places to worry about, so it remains to study the places over p = charF,. Being CM means
that 77 = ¢ for our complex conjugation automorphism =. We have two cases for a place v over p.

» If v # 7, then pairing off inv, (D ® K,) and inv, (D ® K,) will sum to zero because

ord, (m) + ord, (7) = ord,(q).

« If v = 7, then we get 1 times the degree, but the number of cases where v = ¥ must be even anyway
because our total extension has even degree. So looping over all v, we get

%Z[Ku : Qp]7

v|p
V=0

but the sum must be even because it is [K : Q] (which is even) minus the contributions of the degrees
from the previous case (which is even by the same sort of pairing with [K, : Q,] = [Kz : Q,]), as
needed. [ |

3.8 Aprill7

Today we complete the proof of the surjectivity of Honda—Tate theory.
3.8.1 Finishing Honda-Tate Theory

We continue our construction of the required CM field.

Proposition 3.60. Fix a g-Weil number 7, and set K := Q(r). Let D be a K-division algebra satisfying
the local conditions of Theorem 3.55(c). Then there is a CM field L such that D @ x L splits at all places

of L,and [L: K| =+/[D : K]|.

Proof. Once again, we leave the case where K is totally real to homework. As a quick sketch, one takes
L = K(y/—p) where p := charF,.
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Otherwise, K is CM with totally real subfield K* := Q(7 + ¢/n). Setd := /|D : K] to be our reduced
degree. Now, there exists a totally real extension L™ of KT of degree d such that each place vy of KT above
premainsinertin LT: simply construct an irreducible polynomial (with real roots) which remains irreducible
over all our finitely many places, which comes down to some explicit construction. Then L := KLt is CM
over L and has the correct degree.

It remains to check that D ® i L splits at all places of L. Note D already splits at all places not above p,
so we just need to check that we split at the places above p. Well, for each w € V(L) above v € V(K) above
p, We see

invy, (D @k L) = [Ly, : Ky]inv, (D),

which vanishes because inv, (D) vanishes once multiplied by d by some facts of central simply algebras. W

Remark 3.61. We quickly recall [Mil20a, Corollary IV.3.7]. Under the assumption [L : K] = /[D : K],
then one knows that D ® i L splitting everywhere locally implies splitting globally (by the fundamental
exact sequence), which is equivalent to having a K -algebra embedding L C D.

We now produce our abelian variety.

Proposition 3.62. Fix a g-Weil number 7, and set p := char F, and K = Q(7). Then there is an abelian
scheme A over Ok where K’ is a finite extension of Q, such that .Ag: admits CM by the L constructed
in the previous proposition and A, (where & is the residue field) has Frobenius conjugate to 7V for some
positive integer N.

Proof. By the complex theory, it is enough to construct the required CM type (L, ®). Then we can take K’
large enough so that A has good reduction everywhere, and we will use the Shimura-Taniyama formula to

check what's going on with the Frobenius. Well, let's recall from Theorem 1.117 that ® C Hom(L,Q,), so
we define ®,, .= ® N H,,, and we would like

ordy(ma,) 2 #Py
ordy, (#rk)  #H,

To continue, we want the following lemma, which explains why we need 7%V in our construction if we are
only ever going to use the above condition from ®.

Lemma 3.63. Fixa Weil g-number 7 and ¢’-Weil number 7, where p := char F, = charF,. If K is afield
containing Q(, 7’) and
ordy (m)  ordy ()

ord,(q)  ordy(q)

for any place w € V(K) above p, then (7/)* = 7 for some positive integers a and a’.

Proof. By taking powers of m and 7’ (which continue to be Weil numbers), we may assume that 77 = 7'7/,
meaning ¢ = ¢’. We now want to show that 7 /7’ is a root of unity (so that they will become equal after taking
more powers). But we know that

|7m| = |r7'|

forany embedding 7: Q(7) — C, so it will be enough to check that /7’ is an algebraic integer. Well, for any
place w not above p, we know that w(w) = w(n’) = 0 because 77 = 7'7’ are powers of p. And for any place
w of p, the hypothesis tells us that w(w) = w(n’) still. Thus, we are able to conclude that 7 /7’ is an algebraic
integer, all of whose archimedean norms are 1, so it is a root of unity. |

We now continue with the proof with the above lemma in mind. Let’s quickly explain how to construct ® so

that
ord, ()

ord,(q) "

2 ordy(ma,)
(I)w = Hw e
# ord,, (#r)

= [Ly : K] - [Ky - Qp) -
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Note the product of the central and right factors on the rightmost side is inv,, (D), which we know becomes
an integer after multiplying by [L,, : K] by construction of L at this place. So we may choose ®,, C H,,
somewhat randomly to have the right number of elements. The only extra constraint on @ is to have ® LI ®

to be the full Hom(Z, Q,), which amounts to requiring

4B, + #by — #H,, = #Hy

after rearranging our chosen ®,, appropriately. But comparing what we are requiring about #®,,, we see
we are asking for ord, (7) + ordz(7) = ord,(¢), which is true because ordz(7) = ord, (7).

So in total, we have constructed a special CM type (L, @), which produces an abelian variety over some
number field with the correct CM type by our Galois descent arguments from much earlier, and then the the-
ory of Néron models provides us with our CM abelian scheme .4 with CM type (L, ®). Then Theorem 1.117
grants

ordy(ma,)  #®Pu  ordy(m)
ordy, (#K)  #H, ordy(q)
forany primew € V(L) above p, and then the lemma tells us that 7 is realized up to a power as the Frobenius

w4, Note we can base-change A a little further in order to replace 74, with a higher power, so we are
done. [ |

We are now ready to prove the surjectivity of Theorem 3.49. Thus far, for our ¢-Weil number 7, we have
produced an abelian variety A over a large finite field x such that 7V = 7 4. Note that we must have #r = ¢V
because 7474 = |#x|. To complete the proof, we use Weil restriction, and we will leave some details to the
homework.

Definition 3.64 (Weil restriction). Fix a finite field extension L/K. Given an L-group G, we define the
Weil restriction Resy,/x G on R-points (for R € Algy) by

Remark 3.65. On the homework, we will show that

~ Gal(L/L
Ve(Resp x A) = IndG;E?// I;) V,A

for any finite extension L/ K of fields.

Using the previous remark, we set B := Res, /r, A and see that the action of FrobJX’Fq on Res,r, Ais going
to be Froby4 ., which then splits up as conjugation by cosets on the induction on each piece of the induction
ViB =Ind VA, so we see that 7y = 74 and Pp(t) = P4 (t"V), meaning 7 is a root of Pg, so 75 is conjugate
to 7, completing our surjectivity construction.

3.9 April19

Today we go back to the main theorem of complex multiplication.

3.9.1 ALittle Dieudonné Theory

Recall that the proof of Theorem 3.55 avoided the computation in the case where v | p. Quickly, let's recall
our set-up: let A be a simple abelian k-variety (where k is perfect), and set D := End"(A).

We might be interested in the “p-divisible group” A [p*°], which is the inductive system of groups A [p"]
equipped with the embeddings A [p"] C A [p"*!]. Here is our precise definition.
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Definition 3.66 (p-divisible group). Fix a prime p and an integer h. A p-divisible group is a system of
finite group schemes { X, },.en of order p™" equipped with closed embeddings ¢,,: X,, < X)n + 1 such
that [p]: X,,.+1 — X,, factors through [p] as [p] = 7, © t,—1, and 7, is faithfully flat.

Do note that we can forget about being faithfully flat if we work over a field.
We now note that Tate's theorem extends to this setting.

Theorem 3.67. Fix abelian F,-varieties A and B. Then the restriction map
Hom(A, B) ® Z, — Hom(A[p>], B[p*°])
is an isomorphism.

One concern here is that A [p*>] does not immediately look like it has any attached linear algebra. Let's
remedy this, which is the point of Dieudonné theory; see [CCO14, Appendix A.1] for more details.

Theorem 3.68 (Dieudonné). Fix a perfect field k of characteristic p > 0, and let W (k) be the Witt ring.
Then there is an anti-equivalence of categories sending a p-divisible group to Dieudonné modules,
which are free W (k)-modules of finite rank with specified action by two endomorphisms F and V' sat-
isfying some explicit relations. Explicitly, let o: W (k) — W (k) be the lift of the Frobenius map k£ — k,
and then we require F' to be o-linear, V to be o~ !-linear, and FV = VF = p. We label this functor as
taking the p-divisible group G to the Dieudonné module D(G).

Here, Fisintended to be a “Frobenius.” In our context, we expect Frob 4 : A — A1), which then will descend
to a map on the p-divisible group A [p>]. Then we know that Frob 4 factors through [p] viamap V: AN — A
we call the “Verschiebung.”

Remark 3.69. If we want to consider isogeny classes, then we end up inverting p in our Homs, so the

conditions F'V = VF = pend up fully specifying V; for example, this condition implies that V is o1~

linear by the linearity of the condition F'V = p.

As one might expect, our equivalence of categories sends a p-divisible group { X, },cn basically to its crys-
talline cohomology, in analogy with the Tate module being étale cohomology.

3.9.2 Loose End of Honda-Tate Theory

We now return to the setting of Theorem 3.55. Recall that we have K = Q(n) equal to Z(D), where D =
End’(A). Also, set W = W (F,) for brevity. Now, the equivalence of our categories tells us that

D ©q Qp = (End D(A[p™]))*" @ W[1/p],

so the decomposition K ®g Q, = [],,, K gives rise to a decomposition
Ap>=] ~ ] Go
Ip

in the isogeny category of p-divisible groups. As such, we get a decomposition of D(A[p™]) as

D(A[p™]) ow W(1/p] = P D(G,) @w W[L/p].

vlp

We now set D, = D ®k K, to be the v-component, which is going to be the endomorphism algebra
(End D(G,))°? @w W[1/p]. (Here, endomorphism means that we are taking a W1/p|-linear map compatible
with the action by Frobenius.)
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There is some way to track through the Frobenius action on everything. Approximately speaking, if g(t)
is the minimal polynomial for 74, then a factorization g = [, 9» in Q@,[17] will make 74 act on D(A[p>]) as
F" (with ¢ = p"), and then the polynomials g, explicate how Frobenius should end up acting on each of the
v-components. With some effort, one can compute inv D, as

WI1/p][F]
gu(F7) 7

which yields the correct answer.

Remark 3.70. One can run a similar computation to prove Theorem 1.117 without all of our extra as-
sumptions.

3.9.3 Reduction Step for the Main Theorem

We now begin the proof of Theorem 3.19. We quickly recall the set-up. Fix our abelian variety A over a
number field K with complex multiplication by (E, ®), and we will assume that K contains the reflex field
E*. For some o € Gal(Q/E*), we can reduce this down to the abelianization, so Artin reciprocity grants a
unique s € Ay /E™* such that

Artp«(s) =0

E*,ab.

Further, n(0) is some finite idéle in A ;, and we know Ng(s) € Aj; ;/E*. We would like to know that these
elements agree in the idéle class group.
We begin with some notation.

Notation 3.71. Let K be a number field, and set TX = Resk /g G, to be an algebraic Q-group. Now,
for our CM field E, set ' := E. Note that there is a norm map Ng,r: Te — T for any extension of
numbers fields E/F, so we go ahead and define

T := G, xpr TF,

where the embedding G,,, — T is given on Q-points by the inclusion Q* C F*.

For example, we see that
T(@) = @X X px E* = {a cE*: NE/F(a) S QX} .
More generally, for a Q-algebra R, we have

T(R) = RX X(R®@F)X (R@Q E)X = {’I“ € (R@Q E)X NE/F(T) S (R@Q F)X},
soT(Ay) = {a €A} o Np/p(a) € A@}.

Lemma 3.72. Fix everything as above.
(@) IfT CTF thenT(A;)/T(Q) C TE(Af)/TF(Q) is a topological embedding.
(b) The space T'(Ay)/T(Q) is Hausdorff.

The point for (b) is to show that we will be able to compare two elements via open subsets, which we under-
standin AJXE,f already. Importantly, 1%JX57}0/EX fails to be Hausdorff because E* is dense in Ag,f (even though

the embedding E* — A} is discrete and cocompact!).

Proof. For (a), the inclusion T' C TF is defined on the level of algebraic groups, so it is defined using poly-
nomials over Q. Thus, if z € T'(A;) goes down to T#(Q), then we can actually show that z € T(Q) by some
algebra. The rest of the check for (a) is similar.
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For (b), we will actually check that T'(Q) C T'(Ay) is discrete. For this, we need to find an open neighbor-
hood of the identity which intersects T'(A y) at only finitely many points. Well, T'(Q) N O}, is an open subset
of T(Q) in the restricted topology. By the Dirichlet unit theorem, we know that O} is a finite-index subgroup
of O}, so we may pass to T'(Q) N Oj.

Now, a € T(Q) N O consists of elements a € OF such that Ng/pa= a?, and this value is rational. But
then this requires that a> = +1, so being totally real requires a® = 1, so we see that T(Q) N O} is a finite
set. ]

3.10 April22

Today we continue discussing the main theorem of complex multiplication.

3.10.1 Continuing the Reduction Step
We continue with the notations and notions from last lecture.

Lemma 3.73. Fix some o € Gal(E*?"/E*), and select s € Ag*’f/(E*)X so that Art(s) = o. Further,

choose anisogeny a: A — A%, and we recall that we have some n: VA — VA such that Vaon = Vo.
Then we claim that
ne) _ T(As

~—

The point of this lemma is to reduce everything to the finite setting over Q, allowing us to transition to an
ideal-theoretic statement.

Proof. Fix a polarization X giving rise to the Weil pairing ¢: V(A) x V(A) — Af(1). Then recall from Re-
mark 3.21 that

~—

chclo (U)qﬁ(ﬂﬁ, y) = 1/)0 (0$7 ay
= ¢ (a(n(z)), a(n(y)))
¥ (

=n(o)n(o)y? (az, ay).

Now, note that ¢» and ¥° o o are both Weil pairings compatible with the E-action (by an explicit check:
everything in sight commutes with the E-action), so the classification of Riemann forms over C allows us to
say that they are of the form tr /o (£27) where ¢ is totally negative. The point is that any two Weil pairings
will differ by a totally positive element in F = ET, so

77(0)77(0) = Xcyclo (U)C

for some totally positive ¢ € F.
On the other hand, compatibility of global class field theory requires

No(s)Ng(s) =Nmy . /a,(s)
= ArtQ(J|Qab)
= chclo(g)

up to multiplication by Q*. Our norm must be positive, so the “multiplication by Q*" must upgrade to
“multiplication by Qt.”

Now, define t := 7(c)/ Ng(s) so that £ must be a totally positive element in E™ too (notably, the cyclo-

tomic character cancels out), so checking the Hasse norm principle allows us to conclude that we have some

Why? e € Esuchthatee = tt. Then (t/e)(t/e) = 1,so weareableto concludet (mod E*)livesinT(As)/T(Q). W

111



3.10. APRIL 22 254B: COMPLEX MULTIPLICATION

3.10.2 Ideal-Theoretic Class Field Theory

We are working with CM fields, so we will take our number fields to be totally imaginary.

Definition 3.74 (modulus). Fix a totally imaginary number field K. Then a modulus is a formal product
of the form
H pm(p)
peV(K)

where m(p) > 0 always, m(p) = 0 for infinite places, and m(p) > 0 for only finitely many p.

Here is some more notation we will want to state ideal-theoretic global class field theory.

Definition 3.75 (ray class group). Fix a modulus m of a totally imaginary number field K. We let S(m) :=
{p : m(p) # 0} be the support of m, and we define (™) to be the subgroup of fractional ideals freely
generated by S(m). Then we define

ClE =1 /Ky 1,

where K1 = {a € K* :a =1 (mod p™¥)) forp € S(m)}.

Definition 3.76. Fix a modulus m of a totally imaginary number field K. Then we define

Afm = H(KUX, 0X) x H (1 + pvm(pv)(gv) :

vtm v|lm

Un =[] (145000 ) x TT 0,
v|m vimoo
Wi = [ [ K Un,

vim
v|oco

O =A% /K1 W,

Remark 3.77. One can see that the U, s form an open neighborhood basis of 1 in AXE/EX so it forms
an open neighborhood basis of 1in T'(Af)/T'(Q) upon intersection. Now, and Ng are both continuous,
essentially by their definition, so we are granted a modulus m such that Ng actors as Cl. — Ci(E).

We now state a version of Theorem 3.9 which will help us with our ideal-theoretic main theorem of complex
multiplication.

Theorem 3.78. Fix an abelian variety A over Q with CM type (E, ®). Let E* be the reflex field, and fix
o € Gal(Q/E*), and choose a nonnegative integer m. We will assume that End AN E = Og. Then the
following are true.

(@) Thereisanideala(c) C O and isogeny a: A — A such that a(x) = o(z) for x € A[m]and «is
an a(o)-multiplication. In fact, the ideal class [a(o)] in Cl% is uniquely determined by o.

(b) For sufficiently large modulus m of E*, the class [a(c)] only depends on the action o on the ray
classfield Ly, of m, and [a(0)] = [N (a*)] where a* € Cy, corresponds to o via the reciprocity map
Gal(Lw/E) = CIZ.

Wait what does a(o)-multiplication mean?

112



3.11. APRIL 24 254B: COMPLEX MULTIPLICATION

Definition 3.79. Fix an abelian variety A with complex multiplication by E such that O C End A. Fixan
ideal a of Og. A surjective homomorphism A: A — Bis an a-multiplication if and only if each a € a has
the map a: A — A factor through B, and X is in fact universal with respect to this factoring. (Namely,
anyother \': A — B’ similarly factoring has a unique map B’ — B commuting with everything in sight.)

Remark 3.80. If F is not a field but instead merely a CM algebra, then we must make a into a lattice
instead of an ideal.

Remark 3.81. For any lattice a C FE, there is some (B, \) satisfying the required universal property.
Indeed, simply take B := A/ ker a, where

kera := n ker a,

aca

which we note is actually a finite intersection because a is finitely generated.

Remark 3.82. One expects to have Art(s) = o yielding n(c) corresponding to the class [a(c)] !, which
will be able to provide the required result.

3.11 April24

Today we complete the proof of the main theorem of complex multiplication.

3.11.1 More on a-Multiplication

For our set-up, we have a homomorphism A: A — B, where A has CM type (E, ®). Then let a be a lattice in
E, and we assume that B is an a-multiplication. On C, we can think of A as C9/®(A), and then it turns out
that

Proposition 3.83. Fix an abelian variety A with CM type (E, ®). With lattices a,a’ C F, let \: A — B
and AA — B’ be an a-multiplication and an a’-multiplication, respectively. Then there exists an isogeny
f: B— B’'suchthat X = fAifandonlyifa D o'

Proof. If a D d’, one can build f via the universal property of a-multiplication. For the converse, we want
to show thata = a+ d’. Let \ — A — B” be an (a + a’)-multiplication so that the universal properties
everywhere induce maps as follows.

B" —— B
\ lf
B/

Thus,

kera ker a/
— _—ker(B”" - B)Cker(B" - B)= ————.
ker(a + a’) er(B" = B) € ker(B" = B) ker(a + a’)

Because ker anker a’ = ker(a+a’), we see from the above computation that B” — Bisinjective, soa+a’ = q,
as required. |

113



3.11. APRIL 24 254B: COMPLEX MULTIPLICATION

Proposition 3.84. Fix an abelian variety A with CM type (E, ®). With latticesa,a’ C E, let \: A — A’
and AA’ — A” be an a-multiplication and an a’-multiplication, respectively. Then MX: A — A" is an
aa’-multiplication.

Proof. One can just use the explicit construction of our a-multiplications. For example, one can note that
A’ = A/kera = A®0o, a~!and then iterate this tensor product. ]

Proposition 3.85. Fix an abelian variety A with CM type (E, ®). With lattice a C Op, let A\: A — A’ be
an a-multiplication. Then deg A = [Of : a].

Proof. Over C, write A = C9/A, sodeg A = [a™'A : A] = [OF : a] immediately.

We now work over an arbitrary field. If a = (a) is principal with integral generator, then [a]: A — Ais
the required a-multiplication, which has the correct degree. In general, by using the previous proposition,
we can find X’ so that M\ = [a] for @ € Og, and we can further require that \’ and X have coprime degree,
and now we can finish. [ |

Proposition 3.86. Fix abelian Q-varieties A and B with CM by E, and assume Oz C End A and O C
End B. Ifthereisanisogeny f: A — B preserving the F-action, thenthereisa latticea C EFandisogeny
A: A — B which is an a-multiplication.

Proof. By Galois descent, we'll be able to work over C. Then A(C) = C9/®(b;) and B(C) = C9/P(b2) for
fractional ideals by and by, where (E, ®@) is the CM type. (The existence of the isogeny basically allows us to
assume that A and B have the same CM type, which is why we used the same ®.) Then the point is that we
can adjust our two abelian varieties up to isogeny to make our projection into a b; b, ' -multiplication. |

We are now ready to prove Theorem 3.78.

Proof. We begin with the proof of (a). By Proposition 3.86, we can an isogeny A\: A — A° compatible with
the E-action which is an a-multiplication, where a C Op is some ideal. By Proposition 3.85, we see that
deg f = [Og : q].

Now, looking at our integer m, we may select some a € E* suchthataa C O and [Og : aa]is coprime to
m; thisis basically done by looking at the prime factorization of m and of aand “fixing” the prime factorization
to avoid the various primes. Replacing A by aX and a by aa, we now know that A: A — 2 is still an a-
multipication, but now it has degree coprime to m.

The point is that A: A[m] — A“[m] factors through [deg f]4, which is an isomorphism on m-torsion, so
f is an isomorphism on m-torsion. Because o: A[m] — A?[m] is also an isomorphism, and everything is
compatible with the E-action, we are granted 8 € O such that

B=fltoo (modm).

As such, we finally define a: A — A as f o 3 so that a|ap, = 0|apm), and we know a is now an a(o)-
multiplication for some ideal a(c). Looking at our construction, f is unique up to an element of E*, and
because we are only looking at m-torsion, we only get uniqueness up to E,, 1. So [a(c)] is really an ideal
classin I°(™ /E,. 1, which is Cl’, as required.

We now turn to (b). Suppose a: A — A7 is an a(c)-multiplication, and o/: A — A“ is an a(o’)-
multiplication. Then (o/)?a: A — A?7" is an a(c)a(o”)-multiplication by Proposition 3.84, so we have pro-
duced a group homomorphism

Gal(Q/E*) — Cly

given by o — [a(0)]. By continuity, this must factor through some Gal(L.,/E*) for sufficiently large m (as
restriction), so (b) follows. [ ]
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3.12 April26

Today we complete the proof, for real this time.

3.12.1 Completing the Proof

We are going to combine the Shimura—Taniyama formula with Theorem 3.78 to conclude our proof. Fix an
abelian variety A over a number field K with CM type (E, ®), and suppose that K is Galois and contains all
Galois conjugates of E. Fix a prime p, and let p be a prime of E* above p, and let B be a prime of K above p.
We will further assume that K /Q), is unramified and that O C End A.

Corollary 3.87. Fix everything as above.

(@) There exists an a-multiplication a: A — A (defined over a finite extension of K) where ¢ €
Gal(K/E*) reduces to the Frobenius automorphism of x()/x(p).

(b) Infact, a = Ng(p).

Proof. From Theorem 3.78, we get some f: A — A? which is a b-multiplication, so the same is true
after passing to the reductions Ay and Ag over (), for example by considering the construction of b-
multiplications as a tensor product. Now, because we have b-multiplications, we see

Homp (A, A7) =b~' =b"' = Hompg(4, A7),

so our Frobenius 4y — A§ lifts to a.: A — A (where we are implicitly using the Néron mapping property).

Now, for (b), the point is that we will be able to take powers to recover the Frobenius. Namely, we know
from Theorem 1.117 that there is 7 € O which is a lift of the endomorphism z +— z##(¥) on the reduction
Ap. Now, we know that () is N ¢ () be a valuation computation (and everything in sight being unramified).
Continuing, we compute

Ng,a(P) = No (Ng, - B) = No(p)! F/P).

Now, we note that we can write 7 = o - o - - - 0/ (F/P) =1 where o is the relative #x(p)-power Frobenius,
but this twisting does not adjust which ideal we are going to live in, so () = a/¥/P), The equality in (b)
follows. [ |

We now show the main theorem. Reciprocity tells us that o corresponding to the Frobenius element cor-
responds to p € CI™(E*). Thus, the above result shows the result for all Frobenius corresponding to p in
the case where p is unramified in K/E* and where p is unramified in £*/Q. However, such p have their
Frobenius elements are dense in the Galois group Gal(Q/E*), so we are okay because everything in sight is
continuous.

Remark 3.88. To recover the adélic statement, one finds that (o) in CI™(E*) is a(o)~! by unwinding
the definition of the corresponding a: A — A? in the adélic language.

3.12.2 AlLittle onthe André-Oort Conjecture

Here is our result.
Theorem 3.89. Fix an irreducible polynomial P € C[j, j]. If P uses both variables, and P is not divisible
by Py (which is the defining equation for the subscheme Y, (N) C Al x A of pairs (E1, E») for which

there is a cyclic N-isogeny E; — Es), then there are only finitely many pairs (j,, j.,) corresponding to
points with complex multiplication such that P(j,, j,,) = 0.
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Geometrically, we should imagine P as cutting out an irreducible curve in A2, which is being viewed as a
coarse moduli space for elliptic curves. Essentially, we are saying that if C(C) has infinitely many CM points,
then either C'is X(NV), vertical, or horizontal.

Remark 3.90. The André-Oort conjecture is about this story for general Shimura variety, which was
recently proved.

Anyway, here is our proof.

Proof. Suppose for the sake of contradiction that we have an infinite sequence of points (j,, j,,) on which P
vanishes.

1. We reduce to the case where P has rational coefficients, and P is irreducible over Q. Well, the points
(4n,45) all live in Q because these points have complex multiplication, so P being irreducible with all
these roots requires P to have coefficients in Q. However, P has only finitely many coefficients, so say
they live in a number field F. By replacing P with an irreducible factor of

II o(P) el

o: F=Q
divisible by P, we maintain all of our roots but now live in our reduced case.

2. We set some notation. Let E,, and E/, be the elliptic curves with j-invariant j,, and j/,. Then we set
O, = End((E,)g) and K,, := Frac O,, and d,, := disc K,, and D,, := disc D, which is f2d,, for some
fn- Wealsoset h,, := #Cl10,,.

Now, for n very large, we claim that K,, = K/ and D/,/D,, llves in some finite set. We will basically
show that there are not so many possibilities W|th K, # K!, so for the moment, we drop the n from
our notation. Set L := KK’'and M = L(j) N L(j'). Then we have the following tower of fields.

L(j,J

/\
\/

L

Now, the degrees in the square are all bounded in degree by P, but the degree of L(j)/L by some
explicit class field theory is either h or h/2. All of this is able to imply that D and D’ are all bounded,
which proves our claim. Namely, % is proportional to v/D by the Brauer-Siegel theorem, but Gauss
genus theory tells us that the 2-torsion of the class group is 2 to the power of the number of primes
dividing D. As such, one can relate h(O) to h(Ok) to achieve the bounding.

From here, we are able to take K = K’ or the remainder of our argument. It remains to bound D’/ D.
Well, on one hand, [K (3, ;") : K(j')] is bounded above by deg P, but on the other hand, it is bounded

above by /
=42 100

pllem(f,f")/f

where fand f’ arechosensothat O = Z+ fOx and O’ = Z+ f'Ok-. This tells us that f/ f’ is bounded,
so we are done.
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3. Forthe remainder of our proof, we will assume that all the K s and Ks are all the same. We go ahead
and throw out j-invariants in the same Galois orbit. Now, we define the notation E,, .= C/O,, with

Tn = 2(Dy + v/Dy,). In particular, one can show that log |j,| ~ Im 7, ~ |Dn|1/2.

Now, we claim that j/, — oo asn — oo. Well, we choose a fundamental domain F, which is compact,
so the 7,,s must converge somewhere if they are unbounded. But then one can show

1D |"? ~Tog |jin| ~ —log il — i’ | < O(log | DL ),

which is a problem.

4. To complete the proof, one passes to a subsequence to get inside Yy (V). |
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