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3.12.2 A Little on the André–Oort Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Bibliography 118

List of Definitions 120

4



THEME 1

WORKING OVER C

Every person believes that he knows what a curve is until he has
learned so much mathematics that the countless possible

abnormalities confuse him.

—Felix Klein, [Kle16]

1.1 January 17
Let’s get going.

Warning 1.1. The proofs in this first chapter of the course will be somewhat sketchy. We will later go
back and prove things in more generality using the machinery of algebraic geometry (instead of the
theory of complex manifolds).

1.1.1 Course Notes
Here are some course notes.

• The professor for this course is Yunqing Tang. Her research is in arithmetic geometry. Office hours
will begin next week.

• This course is on complex multiplication of abelian varieties.

• There will be homework, and it completely determines the grade. There will be (on average) biweekly
homeworks, which can be found and turned in on bCourses.

• There is a syllabus on the bCourses: https://bcourses.berkeley.edu/courses/1532318/.
The syllabus has many references, on abelian varieties, complex multiplication, and class field theory.

• There is a schedule page on the bCourses, though it does not refer to every possible reference.

• It is encouraged to seek out examples, such as by emailing Professor Yunqing Tang. For example,
elliptic curves are important, but their theory is often significantly simpler than the general theory.
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1.1. JANUARY 17 254B: COMPLEX MULTIPLICATION

• Our main goal is to discuss the main theorem of complex multiplication. We will give some version
of it in the first part of the class, and then we will give a second version later after a more thorough
discussion of abelian varieties.

• Much of the language will be scheme-theoretic, so it is highly recommended having some algebraic
geometry background on the level of Math 256A.

1.1.2 Complex Tori
Let’s just jump on in. The most basic example of an abelian variety is an elliptic curve, so that is where we
will begin.

Definition 1.2 (elliptic curve). Fix a field k. Then an elliptic curve is a pair (E, e) of a smooth proper k-
curve E of genus 1 and a marked point e ∈ E(k).

Remark 1.3. One can replace “proper” with “projective” here without tears.

Example 1.4. Take k := C. It turns out that an elliptic curve (E, e) then makes E(C) into a Riemann
surface of genus 1: smooth makes this a manifold, proper makes it compact, and the genus is preserved.
But then E(C) will have universal cover given by C (in reality, we’re looking at some kind of torus), and
the projection map identifies E(C) with C/Λ for a lattice Λ ⊆ C. By translating, we may as well move
the marked point e ∈ E(C) to 0 ∈ C/Λ.

The above examples motivates us to look at higher-dimensional quotients, as follows.

Definition 1.5 (complex torus). A complex torus is a quotient of the formV/ΛwhereV is a finite-dimen-
sional C-vector space, and Λ ⊆ V is a lattice of full rank.

Remark 1.6. In the sequel, it may be helpful to note that a complex vector space V is just a real vector
space V together with an R-linear map J : V → V such that J2 = idV . Namely, given a complex vector
space V , we can build J by the action of i. Conversely, given a real vector space V with J : V → V such
that J2 = − idV , we note that we have a map C → EndR(V ) by i 7→ J because C ∼= R[x]/

(
x2 + 1

)
;

as such, V becomes a complex vector space restricting to the underlying real vector space. These con-
structions are inverse to each other by tracking back through that the action of i is given by J .

It turns out that a complex torus need not be an abelian variety, but one does have the following result to
get projectivity from [Mum08, I.3, p. 33].

Theorem 1.7. Fix a complex torus X := V/Λ. Then the following are equivalent.

(i) X can be embedded into a complex projective space.

(ii) X is the analytification of an algebraic C-variety.

(iii) There exists a positive-definite Hermitian form H on V such that H sends Λ to Z.

Proof. We will discuss this more later in the course. ■

Remark 1.8. Later on, we will understand the positive-definite Hermitian form as a polarization.

Satisfying any of these equivalent conditions turns out to produce an abelian variety.
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1.1. JANUARY 17 254B: COMPLEX MULTIPLICATION

Definition 1.9 (abelian variety). An abelian variety is a C-variety A which is a complex torus satisfying
one of the equivalent conditions of Theorem 1.7. In practice, we will choose to define an abelian variety
as a complex torus satisfying (iii).

This definition is rather unsatisfying because it only works over the base field C, but it is good enough for
now.

Remark 1.10. It turns out that there is a unique algebraic structure on the variety, so there is no worry
about this being vague.

Theorem 1.7 involves Hermitian forms, so we will want to get a better handle on these.

Lemma 1.11. Fix a finite-dimensional complex vector space V . Then there is a bijection between Her-
mitian forms H on V and skew-symmetric forms ψ on the underlying real vector space of V such that

ψ(iv, iw) = ψ(v, w).

Proof. We begin by describing our maps.

• In the forward direction, send H : V × V → C to its imaginary part ψ := imH. Then we have a map
ψ : V × V → R, and here are our checks on it.

– Skew-symmetric: note that ψ(v, v) = ImH(v, v) = 0 because H(v, v) ∈ R because H is Hermi-
tian.

– Bilinear: note that ψ(cv, w) = ImH(cv, w) = c ImH(v, w) = ImH(v, cw) = ψ(v, cw) and

ψ(v1 + v2, w) = ImH(v1 + v2, w) = ImH(v1, w) + ImH(v2, w) = ψ(v1, w) + ψ(v2, w)

and similarly ψ(v, w1 + w2) = ψ(v, w1) + ψ(v, w2).
– Note that ψ(iv, iw) = ImH(iv, iw) = Im i(−i)H(v, w) = ImH(v, w) = ψ(v, w).

• For the backward direction, send ψ to the form H(v, w) := ψ(iv, w) + iψ(v, w). Here are our checks.

– Conjugate symmetry: note ψ(v, w) = −ψ(v, w) implies that ImH(v, w) = − ImH(w, v). Then we
must show that ReH(v, w) = ReH(w, v), or ψ(iv, w) = ψ(iw, v). Well,

ψ(iw, v) = −ψ(v, iw) = ψ
(
i2v, iw

)
= ψ(iv, w)

– Bilinear: note

H(v1 + v2, w) = ψ(i(v1 + v2), w) + iψ(v1 + v2, w)

= ψ(iv1, w) + iψ(v1, w) + ψ(iv2, w) + iψ(v2, w)

= H(v1, w) +H(v2, w).

Also, for c ∈ R, we see thatH(cv, w) = ψ(icv, w)+ iψ(cv, w) = c(ψ(iv, w)+ iψ(v, w)) = cH(v, w).
So it remains to check that H(iv, w) = iH(v, w). Well,

H(iv, w) = ψ
(
i2v, w

)
+ iψ(iv, w) = −ψ(v, w) + iψ(iv, w) = iH(v, w).

We now show that the constructions are inverse.

• Given ψ, we constructed Hψ, and we see that ImHψ = ψ by construction.

• Given H, we set ψ := ImH. Then we must show that the constructed Hψ is equal to H. Note that
ImHψ = ψ = ImH by construction, and

ReHψ(v, w) = ψ(iv, w) = ImH(iv, w) = Im iH(v, w) = ReH(v, w),

so the result follows. ■
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1.1. JANUARY 17 254B: COMPLEX MULTIPLICATION

Remark 1.12. We remark that H is a positive-definite Hermitian form if and only if the form (v, w) 7→
ReH(v, w) is a positive-definite symmetric form. In terms of the above construction, this corresponds
to the map (v, w) 7→ ψ(iv, w) being positive-definite; i.e., ψ(iv, v) ≥ 0 for all v and equal to 0 if and only
if v = 0.

The moral of Lemma 1.11 is that we are allowed to only pay attention to the imaginary part. It is worth
having a name for this.

Definition 1.13 (Riemann form). Fix a lattice Λ of full rank in a finite-dimensional complex vector space
V . Then a skew-symmetric form ψ : Λ×Λ→ Z is a Riemann form if and only if ψR : V ×V → R defined
by ψR(x, y) := ψ(ix, y) produces a symmetric positive-definite.

Remark 1.14. Quickly, we claim that ψR is symmetric and positive-definite if and only if ψ(iv, iw) =
ψ(v, w) always and (v, v) 7→ ψ(iv, v) is positive-definite. Indeed,ψR is the real part of the Hermitian form
constructed in Lemma 1.11, and we can track through symmetry in the proof and positive-definiteness
from Remark 1.12.

1.1.3 CM Fields
We want to give some examples of what “complex multiplication” means. This begins with a discussion of
CM fields.

Lemma 1.15. Fix a number field E/Q. Then the following are equivalent.

(i) There is a quadratic subextension E+ ⊆ E such that E+/Q is totally real, and E/E+ is totally
imaginary.

(ii) There exists a nontrivial field involution c : E → E such that σ(c(α)) = σ(α) for any σ : E → C and
α ∈ E.

(iii) There exists a unique nontrivial field involution c : E → E such thatσ(c(α)) = σ(α) for anyσ : E →
C and α ∈ E.

(iv) There exists a totally real subfield E+ ⊆ E such that E = E+(α) where α2 ∈ E+ is “totally
negative” (i.e., it maps to a negative real element for every complex embedding E+ → C).

Proof. We show our implications in sequence.

• We show (i) implies (iv). By completing the square in the quadratic extension E+/E, we may select
α ∈ E+ \ E such that α2 ∈ E+. Being quadratic implies that E = E+(α).
It remains to check that α is totally negative. Fix an embedding σ : E → C, and let σ : E → C be
the complex conjugate embedding. Because E is totally imaginary, we note σ ̸= σ, but σ|E+ = σ|E+

because E+ is totally real, so we must then have σ(α) ̸= σ(α). On the other hand, α2 ∈ E+ implies
that

σ(α)2 = σ(α)
2
∈ R,

so σ(α) = −σ(α). Thus, σ(α) must be imaginary, so σ(α)2 < 0.

• We show (ii) implies (i). Set E+ := Ec; because c2 = idE , we see that E/E+ is quadratic. To see that
E+ is totally real, we note that any embedding σ : E+ → C can be extended to σ̃ : E → C. Now, for
any α ∈ E+, we see that

σ(α) = σ̃(α) = σ̃(c(α)) = σ̃(α) = σ(α),

so σ(α) ∈ R. Thus, σ actually outputs to R.

8



1.1. JANUARY 17 254B: COMPLEX MULTIPLICATION

Lastly, we must see that E is totally imaginary. Suppose that σ : E → C is a complex embedding, and
we show that the image is not contained in R. Indeed, if σ(α) ∈ R, then

σ(α) = σ(α) = σ(c(α)),

so α ∈ E+. Thus, σ(α) /∈ R for any α ∈ E \ E+.

• We show (ii) and (iii) are equivalent; of course (iii) implies (ii). To see that (ii) implies (iii), suppose that
c1 and c2 are such field automorphisms E → E. Then for any embedding σ : E → C, we see that
σ(c1(α)) = σ(c2(α)) for any α ∈ E, so c1 = c2 follows.

• We show (iv) implies (ii). Define c ∈ Gal(E+/E) by c(α) := −α. Then c is an automorphism with
c2 = idE . Also, for any embedding σ : E → C, we know that σ(a) ∈ R for any a ∈ E+, and σ(α)2 < 0
by total negativity, so σ(α) is purely imaginary. Thus, for any a+ bα ∈ E, we see

σ(c(a+ bα)) = σ(a− bα) = σ(a)− σ(b)σ(α) = σ(a) + σ(b)σ(α) = σ(a+ bα),

as needed. ■

Remark 1.16. The proof of (iv) implies (ii) has shown that if E has been embedded into C already, then
c is literally complex conjugation.

This produces the following definition.

Definition 1.17 (CM field). A number fieldE/Q is a CM field if and only ifE satisfies one of the equivalent
conditions of Lemma 1.15. We call the involution c : E → E the complex conjugation of E.

Remark 1.18. The field E need not be Galois.

Remark 1.19. It turns out that E+ = Ec and is the maximal totally real subfield. Certainly E+ ⊆ E is
totally real. Conversely, suppose F ⊆ E is a totally real subfield. We will show that c fixes F , which
then implies F ⊆ Ec. Well, for any α ∈ F , we pick up any embedding σ : E → C, and we see that

σ(c(α)) = σ(α) = σ(α),

so α = c(α) follows.

Being CM is a fairly nice adjective.

Lemma 1.20. Fix CM fields E1, . . . , En ⊆ Q. Then the composite field E1 · · ·En is CM.

Proof. By induction, we may take n = 2; defineE := E1E2 for brevity. Let c1 : E1 → E1 and c2 : E2 → E2 be
the complex conjugations, which we would like to extend to a complex conjugation map c : E → E. Well, a
generic element of E can be written as α =

∑d
i=1 a1ia2i where a1i ∈ E1 and a2i ∈ E2, so we define

c(α) :=

d∑
i=1

c1(a1i)c2(a2i).

We ought to check that c is well-defined. Suppose that
∑d
i=1 a1ia2i =

∑d
i=1 a

′
1ia

′
2i, and choose an embed-

ding σ : E1E2 → C. Then σ will restrict to embeddings σ1 : E1 → C and σ2 : E2 → C, and we see that

σ

(
d∑
i=1

c1(a1i)c2(a2i)

)
=

d∑
i=1

σ1(c1(a1i))σ2(c2(a2i)) = σ

(
d∑
i=1

a1ia2i

)

9
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and similar holds when we add primes. So the injectivity of σ provides that c is well-defined.
Now, the above has actually automatically shown that σ(c(α)) = σ(α) for any complex embedding

σ : E1E2 → C and α ∈ E1E2. It remains to show that c2 = idE and that c is a nontrivial field homomor-
phism. To see that c is a field homomorphism, we note c = σ−1 ◦ ι ◦ σ ◦ c, where ι : C → C is complex
conjugation. To see that c is nontrivial, we note that it extends c1 : E1 → E1, which is nontrivial. Lastly, to
see that c2 = idE , choose σ : E1E2 → C, and we note that σ ◦ c2 = ι2 ◦ σ = σ, so c2 = idE is forced. ■

Corollary 1.21. Fix a CM field E. Then its Galois closure M in Q is CM.

Proof. Without loss of generality, choose an embedding Q ⊆ C. Let σ1, . . . , σn : E → C denote the complex
embeddings of E, and we note that the Galois closure of E is the composite

σ1(E) · · ·σn(E).

By Lemma 1.20, it thus suffices to show that σ(E) is a CM field for any embedding σ : E → C.
Well, let c : E → E denote the complex conjugation of E; we note that this agrees with the complex

conjugation in C by Remark 1.16. Then to show that σ(E) is a CM field, we note that we have a complex
conjugation cσ : σ(E)→ σ(E) by

cσ(σ(α)) := σ(c(α)).

This is also σ(α), which establishes that cσ is a nontrivial field involution. (Being nontrivial follows because
E is totally imaginary.) Lastly, for any complex embedding τ : σ(E)→ C, we must show that τ(cσ(σ(α))) =
τ(σ(α)). However, we simply note that (τ ◦ σ) : E → C is another embedding, and

τ(cσ(σ(α))) = (τ ◦ σ)(c(α)) = τ(σ(α)),

as desired. ■

Having CM fields allow us to define CM types.

Definition 1.22 (CM type). Fix a CM fieldE with complex conjugation c. Then a CM type onE is a subset
Φ ⊆ Hom(E,C) such that

Hom(E,C) = Φ ⊔ cΦ.

We call the pair (E,Φ) a CM pair.

Remark 1.23. When E/Q is imaginary quadratic (which is what happens for elliptic curves), one does
not really have a choice in CM type. But for higher degrees, which exist for higher-dimensional abelian
varieties, there is indeed structure we want to keep track of.

This allows us to write down an abelian variety.

Exercise 1.24. Fix a CM pair (E,Φ), and set n := 1
2 [E : Q]. For a lattice a ⊆ E, set Λ := a, and use Φ to

produce an embedding a→ CΦ by α 7→ (σ(α))σ∈Φ. Then CΦ/a is an abelian variety.

Proof. Quickly, we show that a is a lattice of full rank in CΦ. Fix an integral basis {α1, . . . , α2n} of a. Now, by
viewingCΦ asR2n by taking real and imaginary parts, we see that the determinant of the mapOE⊗ZR→ R2n

is, up to sign and a factor of 2, equal to

det

 σ1(α1) · · · σ1(α2n)
...

. . .
...

σ2n(α1) · · · σ2n(α2n)

 ,
10
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which is the discriminant of the α•, which is nonzero. (Here, we enumerate Φ = {σ1, . . . , σn} and then
σn+i := σi for i ∈ {1, . . . , n}.) This is sufficient because then OE is a lattice of rank 2n in R2n. So we do
indeed have a complex torus.

To provide the abelian variety structure, it suffices to provide theψ of Lemma 1.11. We will choose ξ ∈ a
judiciously and then set

ψ(x, y) := TrE/Q(ξxc(y)).

Check
the signs:
c(x)y?

For concreteness, we go ahead and embedE intoC so that c is literally complex conjugation by Remark 1.16.
As such, we will write c(y) as y. Now, to choose ξ, we note that a weak approximation argument grants ξ0 ∈ a
such that Imσ(ξ0) > 0 for each σ ∈ Φ; such a thing exists by a strong approximation argument. Then set
ξ := ξ0 − ξ0 so that ξ = −ξ while still having

Imσ(ξ) = Imσ(ξ0)− Imσ(ξ0) = Imσ(ξ0) + Imσ(ξ0) > 0.

We are now ready to conduct our checks.

• Bilinear: the map (x, y) 7→ (ξx, y) is Z-linear in both coordinates, and the map (x, y) 7→ TrE/Q(xy) is
bilinear in both coordinates, so the composite (x, y) 7→ ψ(x, y) is also bilinear in both coordinates.

• Skew-symmetric: we must show that ψ(x, x) = 0 for any x ∈ OE . Now, it will be helpful to expand

ψ(x, x) = TrE/Q(ξxx) =

n∑
i=1

(σi(ξxx) + σi(ξxx)).

Now, we note that σi(ξxx) = σi(ξxx) = σi(ξ · xx) = −σi(ξxx), so each term of this sum vanishes.

• Upon tensoring with R to produce ψR, we must show that ψR(ix, iy) = ψR(x, y). By scaling x and y, we
may assume that x, y ∈ OE . We also note that ξ is purely imaginary, so by scaling ix and iy, it suffices
to show that

ψ(x, y) =
1

|ξ|2
ψ(ξx, ξy).

However, this is immediate from the linearity of the trace.

• Positive-definite: we must show that ψR(ix, x) ≥ 0 for each x and is zero if and only if x = 0. We may
as well check this for x ∈ OE , and a direct expansion produces

ψ(ix, x) =

n∑
i=1

(σi(ξixx) + σi(ξixx)),

where one makes sense of i by some kind of R-linearity. Expanding somewhat naively, we see

ψ(ix, x) =

n∑
i=1

(σi(iξ) + σi(−ix))σi(xx) =
n∑
i=1

2σi(iξ)σi(xx).

Now, each term of the sum is nonnegative because Imσi(ξ) > 0 already, so the total sum can only
vanish provided that all the individual terms vanish. For example, this requires that σi(xx) = 0 for all
i, so xx = 0, so x = 0 or x = 0, so x = 0 is forced. ■

Remark 1.25. In general, one can replaceE by a CM algebra and replaceOE by certain fractional ideals.
This will turn out to provide all isomorphism classes of abelian varieties with CM.

Next class we will define an abelian variety when not over C.

1.2 January 19
Here we go. Today we will define an abelian variety in general, but we will stay focused on the analytic
theory.

11
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1.2.1 Defining Abelian Varieties
Abelian varieties are special kinds of group objects.

Definition 1.26 (group scheme). Fix a base scheme S. Then a group S-scheme is a group object G in
the category SchS of S-schemes. In other words, there exist S-morphisms m : G ×S G → G (for mul-
tiplication) and i : G → G (for inversion) and e : S → G (for identity) making the following diagrams
commute.

• Associativity:
G×S G×S G G×S G

G×S G G

m×idG

idG×m

m

m

• Identity:
G×S S G×S G

G G

S ×S G G×S G

idG×e

e×idG

m

m

• Inversion:
G×S G

G S G

G×S G

idG×i

i×idG

e

m

m

Remark 1.27. Equality of morphisms of k-varieties can be checked on geometric points, so we could
just check the above commutativity on G(k).

In particular, we want to be a variety.

Definition 1.28 (group variety). Fix a base field k. Then a group k-variety is a group scheme which is
also a k-variety (i.e., reduced and separated).

Remark 1.29. By way of analogy, we also note that a Lie group is a group object in the category Man of
smooth manifolds.

Abelian varieties are special kinds of group varieties.

Definition 1.30 (abelian variety). Fix a field k. Then an abelian k-variety is a group k-variety which is
smooth, connected, and proper.

Here, smoothness is something like requiring that we are a manifold, and proper is something like requiring
that we are projective. (It turns out that the conditions imply that A is projective, though this is not obvi-
ous.)

12
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Remark 1.31. One can even replace “k-variety” with “k-scheme” because being smooth over a scheme
implies being regular, which implies reduced.

Remark 1.32. It turns out that being geometrically integral is equivalent to being connected, by some
argument involving the connected component.

Remark 1.33. It turns out that being proper implies that the group law on A is abelian, which we have
notably not included in the hypotheses.

While we’re here, we go ahead and define abelian schemes; these will be desirable because we may (per-
haps) want to define varieties via equations in a ring which is not a field (like Z) and then reduce to a field
(like Fp) later.

Definition 1.34 (abelian scheme). Fix a base scheme S. An abelian S-scheme is a group S-scheme A
which is proper and smooth over S such that the structure map π : A → S has connected geometric
fibers. (This last condition means that any geometric point s→ S makes As connected.)

Remark 1.35. Here, smoothness can be verified by something like a Jacobian criterion, analogous to
smoothness for embedded manifolds.

Remark 1.36. Notably, by the hypotheses, the geometric fibers As are abelian varieties.

1.2.2 Working over C
We now return to working over k = C. We quickly compare with Definition 1.9: being an abelian variety
over C as defined in the previous subsection implies thatA(C) is a smooth complex analytic manifold which
is connected and compact, simply by reading off the adjectives. Now, this means thatA(C) is connected and
compact, so we have a connected compact complex Lie group A(C), which one can show is always of the
form V/Λ where V is a finite-dimensional C-vector space and Λ ⊆ C is a lattice of full rank, as sketched in
Remark 1.38. From there, being algebraic does imply one of the equivalent conditions of Theorem 1.7, and
the converse is similar.

Anyway, for a taste of the analytic theory, we show the following for k = C.

Proposition 1.37. Fix an abelian k-variety A. Then the group law for A is commutative.

Sketch for k = C. For brevity, set g := dimA. Consider the tangent space at the identity e ∈ A, which
we will label TeA; it is a g-dimensional C-vector space. Now, for e ∈ A(C), we have a holomorphic map
cx : A(C) → A(C) given by conjugation y 7→ xyx−1, and then this induces a linear map dcx : TeA → TeA.
This construction x 7→ dcx produces a holomorphic map

A(C)→ GL(TeA).

Indeed, this is holomorphic because dcx, on an open subset of A(C) holomorphic to Cg, is simply a matrix
made of the derivatives of c, each of which continue to be holomorphic functions.

Now, the key point is that properness of A implies that A(C) is compact, but GL(TeA) is an open sub-
manifold, so the map A(C) → GL(TeA) must be bounded (by the compactness) and hence constant: A(C)
is connected, so it is enough to show that we are locally constant, and in particular, it is enough to show that
we are locally constant on trivializing open covers for A(C) and GL(TeA). But then we are looking at some

13
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bounded holomorphic map Cg → Cg2 , which must be constant by using Liouville’s theorem on suitable
projections.

Finishing up, we note that dex = idTeA, we see that actually dce = idTeA (conjugating by e does nothing),
which implies that cx must be the identity for any x ∈ A(C), so the group law is commutative. To move this
up to the level of the scheme group law being commutative, we note that we want the diagram

A×A A×A

A

swap

m
m

to commute, but we already know that it commutes on C-points, which is enough for C-varieties [Vak17,
Exercise 11.4.B]. ■

Remark 1.38. Continuing with k = C, we note that the theory of complex Lie groups produces a group
homomorphism exp: TeA→ A(C), which one can show is a covering space map. SoA(C) must then be
a compact quotient ofTeA, and actually it is a quotient by something discrete, meaning thatA(C) ∼= V/Λ
as above.

Here are some nice corollaries of realizing abelian varieties as complex tori.

Corollary 1.39. Fix an abelianC-varietyA of dimension g. For any positive integern, the multiplication-
by-n map [n] : A(C) → A(C) is a surjective group homomorphism, and its kernel is isomorphic to
(Z/nZ)2g.

Proof. Note [n] is a group homomorphism becauseA(C) is abelian. For the other claims, writeA = V/Λ for
V a g-dimensional C-vector space. In particular, V/Λ is a divisible group, so [n] is surjective, and the kernel
is isomorphic to

1

n
Λ/Λ ∼=

1

n
Z2g/Z2g ∼= (Z/nZ)2g,

essentially by choosing a basis for Λ. ■

Corollary 1.40. Fix an abelian C-variety A of dimension g. Then

π1(A(C)) ∼= H1(A(C),Z) ∼= Λ ∼= Z2g.

Proof. Again, writeA = V/Λ for V a g-dimensional C-vector space. Then V is the universal covering space
for V/Λ (indeed, it’s a simply connected covering space), so π1(A(C)) ∼= Λ, from which the rest of the iso-
morphisms follow quickly. For example, the abelianization of π1(A(C)) is still Λ, so H1(A(C),Z) ∼= Λ too.
Lastly, Λ ∼= Z2g by choosing a basis. ■

1.2.3 Isogenies
While we’re here, we define isogenies, which are “squishy” isomorphisms.

Definition 1.41 (isogenies). Fix abelian k-varieties A and B. A k-morphism f : A → B is a surjective
homomorphism with finite kernel.

14
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Example 1.42. For any positive integer n, the map [n] : A → A is an isogeny. We will prove this in
general later, but over C, it follows from Corollary 1.39. In particular, we know [n] is a homomorphism.
Also, the kernel has finitely many C-points, so it must be zero-dimensional and thus finite because it is
a closed subscheme of A.

Lastly, surjectivity is seen on C-points, but it also follows purely formally because the domain and
codomain of [n] : A → A have the same dimension; see [Mil08, Proposition I.7.1]. We will discuss this
later in the course, so I won’t bother being formal here.

We would like to describe isogenies (over C) from the perspective of the complex tori. So we pick up the
following proposition.

Proposition 1.43. Fix complex tori V/Λ and V ′/Λ′. Then holomorphic maps V/Λ → V ′/Λ′ fixing 0 are
in bijection with C-linear maps V → V ′ sending Λ→ Λ′.

Proof. The backward map simply sends the C-linear map to the quotient map V/Λ→ V ′/Λ′.
For the forward map, we are given a holomorphic map φ : V/Λ → V ′/Λ′ sending φ : [0] 7→ [0]. As in

the proof of Corollary 1.40, we note that V and V ′ are the universal covers of V/Λ and V ′/Λ′, respectively,
becauseV andV ′ are simply connected. Thus, the quotient mapφwill induce a unique mapφ : V → V on the
universal covering spaces upon fixing a single point, and we must send φ(0) := 0 to be linear. In particular,
the diagram

V V ′ 0 0

V/Λ V ′/Λ′ 0 + Λ 0 + Λ′

φ

φ

commutes, and the relevant map φ is unique. So thus far we have shown that maps holomorphic V/Λ →
V ′/Λ′ fixing 0 are in bijection with holomorphic maps V → V fixing 0 and sending Λ→ Λ′.

It remains to show that any such φ is linear. Note that it is holomorphic because it is locally given by the
holomorphic map V/Λ → V ′/Λ′. Because φ(0) = 0, it is enough to show that the derivative dφv : TvV →
Tφ(v)V

′ does not depend on v ∈ V . In other words, we would like the map

V → HomC(TvV, Tφ(v)V
′),

given by v 7→ dφv, to be constant. Well, we use the same trick as in Proposition 1.37: note that this map
actually only depends on the class of v ∈ V modulo Λ, so we really have a holomorphic map

V/Λ→ HomC(TvV, Tφ(v)V
′) ∼= C(dimV )(dimV ′),

which is bounded because V/Λ is compact and hence compact by using Liouville’s theorem on suitable pro-
jections. ■

Remark 1.44. Basically, we can see that being an isogeny means that the underlying linear map will be
a surjective linear map with finite kernel; in particular, dimC V = dimC V

′. This motivates us thinking
about isogenies as “squishy” isomorphisms.

1.3 January 22

Today we will talk more about the analytic theory.
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1.3.1 More on Isogenies
We begin by picking up a piece of language.

Definition 1.45 (isogenous). Fix abelian k-varietiesA andB. We say thatA andB are isogenous, written
A ∼ B, if and only if there is an isogeny A→ B.

It turns out that having an isogeny is an equivalence relation, so we will not care about the direction of being
“isogenous.” Here are the checks over C.

Lemma 1.46. Fix abelian k-varieties A and B.

(a) Reflexive: idA : A→ A is an isogeny.

(b) Symmetric: ifφ : A→ B is an isogeny, there is a nonzero integern and another isogenyψ : B → A
such that

φ ◦ ψ = [n]B and ψ ◦ φ = [n]A.

(c) Transitive: if φ : A→ B and ψ : B → C are isogenies, then (ψ ◦ φ) : A→ C is an isogeny.

Proof over C. We dispose of the easier claims first. Note (a) has little content: idA is a surjective homo-
morphism with trivial kernel and hence an isogeny. Similarly, (c) follows because being surjective, being a
homomorphism, and having finite kernel are all properties preserved by composition. Perhaps it is notably
that finite kernel is preserved by composition, but this is equivalent to all fibers being finite, and the fiber of
(ψ ◦ φ) over some c ∈ C will simply be the (finite!) union of the fibers of φ over points b ∈ ψ−1({c}).

It remains to show (b), which is perhaps the most interesting. We will show this by working with complex
tori and appealing to Proposition 1.43. Fix isomorphisms of compact complex Lie groups A ∼= V/Λ and
B ∼= V ′/Λ′. Then the isogeny φ : V/Λ→ V ′/Λ′ arises from a linear map φ̃ : V → V ′ sending Λ→ Λ′. We are
thus looking at the following commutative diagram.

V V ′

V/Λ V ′/Λ′

φ̃

φ

π π′

We claim that φ̃ is an isomorphism of C-vector spaces.

• Injective: because ker φ̃ ⊆ V is a C-subspace, it suffices to show that ker φ̃ is discrete. Well, tracking
around the diagram, ker φ̃ is contained in ker(π ◦ φ̃) = ker(φ ◦ π), which is⋃

[x]∈kerφ

(x+ Λ).

Because kerφ is finite, the above set is discrete in V , so we are done.

• Surjective: let α ∈ (0, 1) be transcendental. Fix a Z-basis λ′1, . . . , λ′2n of Λ′. Then for any λ′′1 , . . . , λ′′2n ∈
Λ′, we see that the set

{αλ′1 + λ′′1 , . . . , αλ
′
2n + λ′′2n}

is still a R-basis of V ′: the transition matrix from the basis {λ′1, . . . , λ′2n} to the above basis is αI2n plus
some matrix in Z2n, which will surely have nonzero determinant becauseα is transcendental. Anyway,
φ hits all αλ′• in its image (modulo Λ′), so φ̃will hit some vector in αλ′i +Λ′ for each i. However, these
vectors will form a basis, as needed.

Now, to continue, fix isomorphisms α : Λ ∼= Z2n and α′ : Λ′ ∼= Z2n. Up to these isomorphisms, φ̃ : Λ → Λ′

(which is an isomorphism upon−⊗Z R) becomes a map φ̃′
0 : Z2n → Z2n (which is still an isomorphism upon
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−⊗ZR). In particular, det φ̃′
0 is some nonzero integer n, and the adjugate matrix ψ̃′

0 := adj φ̃′
0 provides a map

such that ψ̃′
0 ◦ φ̃′

0 = φ̃′
0 ◦ ψ̃′

0 are multiplication by n.
Passing back throughα andα′, we have produced some map ψ̃ : Λ′ → Λ such that φ̃◦ψ̃ and ψ̃◦φ̃ are both

multiplication by n. Tensoring by R extends ψ̃ to an R-linear map V ′ → V satisfying the same conditions;
note that because multiplication by n is an isomorphism of C-vector spaces, it follows that ψ̃ is in fact C-
linear.

Now, modding out Λ and Λ′, Proposition 1.43 provides us with a map ψ : V ′/Λ′ → V/Λ of complex tori
such that φ ◦ ψ and ψ ◦ φ are both multiplication by n. Note ψ is surjective with finite kernel because ψ̃ is an
isomorphism of vector spaces. (In particular, surjectivity is automatic, and finite kernel follows because the
kernel of ψ is contained in the kernel of φ ◦ ψ = [n]B , which is finite.) ■

Remark 1.47. Being an equivalence relation, and in particular part (b) in Lemma 1.46, provides more
evidence that we should think about isogenies as “squishy” isomorphisms. Indeed, up to multiplication
by an integer, we are a bona fide isomorphism.

Remark 1.48. The end of the above proof has shown that an isomorphism of vector spaces φ̃ : V → V ′

carrying Λ → Λ′ will have the needed map ψ̃ : V ′ → V carrying Λ′ → Λ such that the composites
are multiplication by some nonzero integer n. In particular, merely being an isomorphism of vector
spaces implies that the quotient map φ : (V/Λ) → (V ′/Λ′) is an isogeny: surjectivity is clear, and finite
kernel follows because the composite with the quotient map ψ : (V ′/Λ′)→ (V/Λ) is multiplication by a
nonzero integer, which has finite kernel.

We can decompose abelian varieties based on their isogeny class.

Theorem 1.49 (Poincaré reducibility). Fix an abelian k-varietyA, and letB ⊆ A be an abelian subvariety.
Then there exists another abelian subvariety B′ ⊆ A such that B ∩B′ is a finite scheme, and

B +B′ = {b+ b′ : b ∈ B, b′ ∈ B′}

is equal to A. In other words, the canonical map B ×k B′ → A given by summing is an isogeny.

Proof. This is [Mum08, p. 160] or [Mil20b, Theorem 2.12]. In the complex analytic situation, the proof idea
is not so complicated: the point is to take an “orthogonal complement” to B.

Explicitly, set V := LieA and W := LieB. Functoriality of the tangent space tells us that W ⊆ V , and
functoriality of the exponential map implies that the diagram

0 Λ V A 0

0 Λ ∩W W B 0

exp

exp

commutes. Here, Λ is the kernel of exp: V ↠ A, so the diagram tells us that Λ ∩W must be the kernel of
exp: W ↠ B. (Namely, the kernel of exp: W ↠ A is W intersected with the kernel of V ↠ A.) So A = V/Λ
and B =W/(W ∩ Λ).

Now, let H be the required Hermitian form on V , taking integral values on Λ, and set ψR := ReH so
that ψR is a positive-definite symmetric form on the underlying R-vector space of V . Quickly, note that H
continues to be positive-definite and Hermitian on W , so H is also a Hermitian form on W by restriction
(and still taking integer values on Λ ∩W ).

As promised, we now defineW ′ :=W⊥, where we take the orthogonal complement with respect to ψR.
We have the following checks.

17
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• Subspace: we claim W ′ is a C-subspace of V . By construction, it is an R-subspace. Now, if w ∈ W ′,
we would like for iw ∈ W ′; namely, if ψR(w, v) = 0 for all v ∈ W , then we want ψR(iw, v) = 0 for all
v ∈W . Well, we compute

ψR(iw, v) = ReH(iw, v) = ReH(w,−iv) = ψR(w,−iv),

and−iv ∈W still.

• Lattice: we claim that W ′ ∩ Λ is a lattice of W ′. Certainly we have a Z-subgroup, so it remains to
compute the rank. We do this by an explicit construction of the basis. Let {w1, . . . , w2 dimW } be a basis
for W ∩ Λ, and extend it by {v1, . . . , v2 dimW ′} to a basis of Λ. Now, for each vi, we can subtract out
something inW in order to land inW ′; this factor is a rational number because it comes from dividing
out by values of ψ on Λ, so we can then scale this element in order to land in W ′ ∩ Λ. This process
slowly produces a linearly independent subset ofW ′ ∩ Λ of size 2 dimW ′, which shows thatW ′ ∩ Λ is
a lattice of full rank in W ′.

• Form: as before, we note that H restricts to a positive-definite Hermitian form on W ′ taking integral
values on W ′ ∩ Λ.

In total, we are able to conclude thatB′ :=W ′/(W ′ ∩ Λ) is an abelian variety, and it is an abelian subvariety
of A = V/Λ via the inclusion. It remains to show that the induced map B ×C B

′ → A is an isogeny. Well,
this map is given by taking the quotient of the isomorphismW ⊕W ′ ↠ V of C-vector spaces (by (Λ∩W )⊕
(Λ ∩W ′)), which is an isogeny by Remark 1.48. ■

Remark 1.50. On the homework, we are asked for an example of B ⊆ A such that B ∩ B′ is nontrivial
for any B′ ⊆ A satisfying the conclusion.

In light of this decomposition, we can take the following definition.

Definition 1.51 (simple). An abelian k-varietyA is k-simple if and only if all abelian subvarieties ofA are
either {0A} or A.

Remark 1.52. It is possible to have an abelian variety be simple over k but not over k.

Corollary 1.53. Fix an abelian k-variety A. Then there are simple abelian k-varieties A1, . . . , An such
that

A ∼
n∏
i=1

Ai.

Proof. Apply Theorem 1.49, inducting on dimA. Being explicit, note dimA = 0 implies that A is simple
because A = {e}. For the induction, note that if A is simple, there is nothing to do. Otherwise, there is an
abelian subvariety B ⊆ A of dimension strictly between 0 and dimA. Then Theorem 1.49 provides us with
B′ ⊆ A and an isogenyB ×k B′ → A. Now, being surjective with finite kernel implies that dim is an isogney
invariant, so

dimA = dim(B ×k B′) = dimB + dimB′,

so dimB, dimB′ < dimA. So the induction applies to B and B′, and we are done. ■

1.3.2 Endomorphism Rings of Abelian Varieties
For uniqueness of the decomposition in Corollary 1.53, we will want to talk about morphisms between sim-
ple abelian varieties. It will be helpful to have some language for this.

18
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Definition 1.54. Fix abelian k-varieties A and B. Then Homk(A,B) is the abelian group of homomor-
phisms A→ B, and Hom0

k(A,B) := Homk(A,B)⊗Z Q. Similarly, we define

Endk(A) := Homk(A,A) and End0k(A) := Hom0
k(A,A).

Remark 1.55. Fix an abelian variety A (over C). We show that Endk(A) is integral over Z. Indeed, write
A = V/Λ, and then an endomorphism φ : A → A is given by a C-linear map φ̃ : V → V sending Λ → Λ
by Proposition 1.43. To show φ is integral over Z, it will be enough to show that the characteristic
polynomial of φ̃ has integral coefficients. Well, identify Λ ∼= Z2n, and then we see that we induce a map
φ̃ : Z2n → Z2n, so φ̃ can be written as a map with integer coefficients.

One can show that Hom0
k(A,B) and End0k(A) only depend on the isogeny class of A and B. In fact, we will

be able to use Corollary 1.53 to compute it.

Corollary 1.56. Fix a simple abelian k-variety A. Then End0k(A) is a division Q-algebra.

Proof. Fix a nonzero element in End0k(A), and we will try to find an inverse for it. Because we only did a
tensor product with Q, we can create a common denominator to be able to write a generic element as 1

dφ
for some positive integer d and nonzero k-endomorphism φ : A → A. The inverse of 1

d is d, so it suffices to
find an inverse to φ : A→ A.

The main point is the existence of “inverses” provided in Lemma 1.46. Namely, we are promised some
ψ : A→ A and a nonzero integer n such that φ ◦ ψ = ψ ◦ φ = [n]A. Thus,

φ ◦ 1

n
ψ =

1

n
ψ ◦ φ = idA,

which is our inverse in A. ■

Corollary 1.57. Fix non-isogenous simple abelian k-varietiesA andB. Then the only k-homomorphism
φ : A→ B is the zero map.

Proof. Suppose A and B are simple abelian k-varieties, and suppose that we have a nonzero homomor-
phism φ : A→ B. We then claim that φ is actually an isogeny.

• Surjective: the image of φ (which is closed becauseA is proper) will be an abelian subvariety ofB, and
it cannot be {0B} because φ is nonzero, so imφ = B.

• Finite kernel: the connected component of kerφ ⊆ A is an abelian subvariety ofA, and it cannot be all
of A because φ is nonzero, so kerφ = {0A}. Because kerφ is a group scheme, its connected compo-
nents all have the same dimension, so kerφ must be zero-dimensional and hence finite. ■

Corollary 1.58. Fix a field k and isogenous abelian k-varieties A ∼ A′ and B ∼ B′. Then Hom0
k(A,B) ∼=

Hom0
k(A

′, B′).

Proof. We use Lemma 1.46. Let φA : A → A′ and φB : B → B′ be the promised isogenies, and pick up
ψA : A′ → A and ψB : B′ → B such that φA ◦ ψA and ψA ◦ φA is multiplication by nA, and φB ◦ ψB and
ψB ◦φB is multiplication by nB . Replacing ψA with nBψA and replacing ψB with nAψB , we may assume that
nA = nB . Anyway, we now can compute that the maps

Hom0
k(A,B) ∼= Homk(A

′, B′)
α 7→ 1

nφB ◦ α ◦ ψA
1
nψB ◦ α

′ ◦ φA ←[ α′

are inverse homomorphisms, so we are done. ■
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Corollary 1.59. Fix sequences of pairwise non-isogenous simple abelian k-varieties denoted {Ai}mi=1

and {Bj}nj=1. Then for positive integers {ri}mi=1 and {sj}nj=1, we have

Homk

(
m∏
i=1

Arii ,

n∏
j=1

B
sj
j

)
∼=

∏
i,j

Ai∼Bj

End0k(Ai)
ri×sj .

Proof. Moving out the products (which is legal because are living in an abelian category), we are looking at∏
i,j

Homk(Ai, Bj)
ri×sj ,

but this term is zero unless Ai ∼ Bj by Corollary 1.57. In the event Ai ∼ Bj , we can replace Bj by Ai by
Corollary 1.58. ■

Remark 1.60. Taking Ai = Bj and ri = sj in Corollary 1.59 shows that End0k(A) is a product of matrix
division Q-algebras. In particular, End0(A) is a semisimple Q-algebra.

Remark 1.61. If
∏m
i=1A

ri
i and

∏n
j=1B

sj
j are known to be isogenous already (to, say, an abelian variety

A), then Corollary 1.59 forces m = n and each i has some j such that Ai ∼ Bj (and vice versa). Up to
permutation, we may as well force Ai ∼ Bi for each i. Now, having an invertible element in End0k(A)
then forces having an invertible element in each End0k(Ai), so the relevant matrix algebra must have
ri = si for each i. Thus, the decomposition of Corollary 1.53 is unique up to permutation and isogeny.

1.3.3 Complex Multiplication of Abelian Varieties
We are now ready to define complex multiplication for abelian varieties.

Definition 1.62 (complex multiplication). Fix an abelian k-varietyA. ThenA has complex multiplication
(or is CM) if and only if there is a CM algebraE (i.e.,E is a finite product of CM fields) such that [E : Q] =
2 dimA, and there is an embedding E ↪→ End0k(A).

Namely, A has “multiplication” by some CM fields.

Remark 1.63. It will turn out that this definition holds true for all abelian varieties over finite fields.

Remark 1.64. Suppose A is a simple abelian k-variety. Then A being CM is equivalent to End0k(A) be-
ing isomorphic to a CM field of degree 2 dimA. Certainly this condition is implied by being CM. In the
other direction, over C, one sees that End0(A) acts faithfully onH1(A(C),Q) by Proposition 1.43. Thus,
End0k(A) is a division algebra of degree dividing 2 dimA.

Now, denoting the center of D := End0k(A) by F , it turns out that the largest field contained in D
has degree (over Q) is [D : F ]1/2[F : Q]. To get this to be at most 2 dimA, we must have F = D by a
degree argument. (See [Mil20b, Section I.1] for the required facts on semisimple algebras.)

Remark 1.65. One can remove the requirement of being over C in the above argument by working with
the “Tate module” H1

ét(A,Qℓ) for ℓ ̸= char k instead of H1(A(C),Q). Concretely, the Tate module is

TℓA := lim←−
n

A [ℓn] .

We will work more with Tate modules later in this course.
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Here are some examples.

Example 1.66. Fix an imaginary quadratic field E. Then C/OE is a CM abelian C-variety with complex
multiplication byE; in particular, Proposition 1.43 tells us that the endomorphism ring isOE , so we get
E upon taking−⊗ZQ. IfE1 andE2 are distinct quadratic imaginary fields, then taking products reveals
that (C/OE1

)× (C/OE2
) has complex multiplication by E1 × E2.

Example 1.67. Fix an imaginary quadratic field E. Then (C/OE)2 has endomorphism algebra given by

End0C
(
(C/OE)2

) ∼=M2(E).

Here, there is a lot of choice in the CM algebra embedding into M2(E). Notably, for any D ∈ Z, we see[
0 D
1 0

]2
= DI,

so Q(
√
D) embeds into M2(Q) without tears.

Remark 1.68. One might be interested in understanding what abelian varieties look like in general,
which leads to the notion of a moduli space. It turns out that abelian varieties with complex multi-
plication forms an interesting subset of the full moduli space of abelian varieties.

1.4 January 24
Here we go. Office hours begin today.

1.4.1 Classification of CM Abelian Varieties
Here is our definition. The point is that we would like to “recover” the complex multiplication of a field of
CM type acting on a CM abelian variety.

Definition 1.69 (CM type). Fix a CM fieldE, and let (A, i) be an abelian variety with complex multiplica-
tion byE by i : E → End0(A). ThenE acts faithfully onH1(A(C),Q). Hodge theory tells us that we can
decompose

H1(A(C),C) = H01 ⊕H10,

whereH10 = H01; hereH01 = H0(A(C),Ω1) is the space of global sections 1-forms onA(C). Dualizing,
we see

H1(A(C),C) = LieA(C)⊕ LieA(C),

and in fact E acts on LieA(C). Decomposing LieA(C) as an E-representation as
⊕

φ∈Φ Cφ where Φ ⊆
Hom(E,C). (This decomposes into 1-dimensional representations because E× is commutative.) Then
Φ is the CM type.

Remark 1.70. The point of using the Hodge decomposition is to note that Hom(E,C) = Φ⊔Φ by taking
the conjugation of the action. Thus, (E,Φ) is fact a CM type. Namely, we have a faithful action ofE⊗QC
on H1(A(C),Q) ⊗Q C = H1(A(C),C), and it decomposes into parts coming from LieA(C) and parts
coming from Lie(A(C)). Irreducible components in LieA(C) are

⊕
φ∈Φ Cφ, and irreducible components

inLie(A(C)) are then
⊕

φ∈Φ Ccφ, and in total everything must sum up to a faithful module overE⊗QC =⊕
φ∈Hom(E,C) Cφ of rank 1, so we see Φ ⊔ cΦ = Hom(E,C), as needed.
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Example 1.71. Fix a CM type (E,Φ), and set A := CΦ/OE . Then we claim that the CM type of A can be
recovered as Φ. Namely, we certainly have anOE-action on A by construction, so we have an embed-
ding i : E ↪→ End0(A) by i(α)(vφ)φ := (φ(α)vφ)φ. As such, we see that the faithful action of E on the
universal cover CΦ = H1(A(C),C) is exactly given by

CΦ =
⊕
φ∈Φ

Cφ,

as needed.

We are going to classify isogeny and isomorphism classes of these abelian varieties. Quickly, we discuss our
“inverse” map.

Lemma 1.72. Fix an abelian variety A with complex multiplication by i : E → End0(A), and let Φ be the
CM type of A. Then there exists a fractional ideal a ⊆ E such that A ∼= CΦ/a.

Proof. Set V := LieA so that we have a natural projection π : V ↠ Awith kernel Λ ⊆ V . By definition of the
CM type, we may identify V with CΦ according to the E-action.

Now, by Proposition 1.43, E acts naturally on Λ⊗Z Q, but their ranks agree and E is a product of fields,
so Λ ⊗Z Q must be isomorphic to E as a (semisimple) E-module. In particular, Λ is identified with a lattice
a ⊆ E, as desired. ■

The following definition will be useful.

Definition 1.73. Fix CM types (E,Φ) and (E′,Φ′). An isomorphism of CM types is an isomorphism
α : E → E′ such that

Φ = {φ′ ◦ α : φ′ ∈ Φ′}.

Here is the point of this definition.

Proposition 1.74. Fix a CM algebraE. Then the set of pairs (A, i) of abelian varieties with complex mul-
tiplication by i (up to isogeny commuting with i) is in bijection with CM types (E,Φ) up to isomorphism.

Proof. Here, an isogenyφ : (A, i)→ (A′, i′) commuting with the complex multiplication is simply an isogeny
φ : A→ A′ together with an automorphism α : E → E such that the diagram

E End0(A)

E End0(A′)

φα

i

i′

(1.1)

commutes.
We now show that (A, i) 7→ (E,ΦA) (where ΦA is the CM type ofA) and (E,Φ) 7→ CΦ/OE are the needed

forward and backward maps for our bijection.

• We claim that the construction of (E,Φ) 7→ CΦ/OE is well-defined. Well, suppose we have an iso-
morphism of CM types α : (E,Φ)→ (E,Φ′). Then we get a commutative diagram as follows.

CΦ CΦ′

OE E E′ OEα

Φ Φ′
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Note that the bottom row becomes an isomorphismOE → OE becauseα andα−1 must carry algebraic
integers to algebraic integers; this isomorphism on the bottom then extends to an isomorphism on the
top because OE is a full-rank lattice of our C-vector spaces. In total, we produce an isomorphism of
vector spaces CΦ → CΦ′ carrying OE to OE , which provides an isogeny φ : CΦ/OE → CΦ′

/OE by
Remark 1.48.
It remains to show that this isogeny φ produces an isogeny preserving the complex multiplication.
Well, it is enough to note that the following diagram commutes.

E End0
(
CΦ/OE

)
x

(
(vφ) 7→ (φ(x)vφ)

)

E End0
(
CΦ′

/OE
)

αx
(
(vφ) 7→ (φ(αx)vφ)

)α φ

• Remark 1.70 tells us that each (A, i) at least produces some CM type (E,ΦA). We show that this is
well-defined: let φ : (A, i)→ (A′, i′) be an isogeny (with automorphism α : E → E), and we will show
that we produce an isomorphism α : (E,ΦA)→ (E,ΦA′) of CM types.
Set V := LieA(C) and V ′ := LieA′(C), and recall that we have canonical isomorphisms A = V/Λ and
A′ = V ′/Λ′. By definition, ΦA is the subset of Hom(E,C) so that V =

⊕
φ∈ΦA

Cφ under the E-action,
and ΦA′ is defined similarly. Now, Proposition 1.43 argues that the isogeny φ : A → A′ lifts to an
isomorphism of vector spaces φ̃ : V → V ′, and any element of End0(A) or End0(A′) will also lift to an
isomorphism of vector spaces. In particular, we produce a commutative diagram as follows.

E EndC(V )

E EndC(V
′)

α φ̃

i

i′

Thus, V is isomorphic to V ′ as anE-representation, and the decomposition V ∼=
⊕

φ∈Φ Cφ then forces
V ′ to have a factor of Cφ◦α−1 for each φ ∈ Φ, so we conclude that α : (E,ΦA) → (E,ΦA′) is in fact an
isomorphism of CM types.

• For one inverse check, note that taking (E,Φ) toA := CΦ/OE has as its CM type just (E,Φ) back again
by Example 1.71.

• For the other inverse check, we recall from Lemma 1.72 that we can write an abelian variety (A, i) with
CM type (E,Φ) asA = CΦ/Φ(a)where a ⊆ E is a lattice. We must show thatA is isogenous toCΦ/OE .
To begin, fix a basis {α1, . . . , α2n} of a, and let b0 be the OE-fractional ideal generated by these ele-
ments, and then (β) be a principal ideal containing b0. There is a natural projectionCΦ/Φ(a) ↠ CΦ/(β)
given by expanding the kernel, and it is an isogeny by Remark 1.48. Now, β : OE → (β), so CΦ/(β) ∼=
CΦ/OE , so A is in fact isogenous to CΦ/OE .

We won’t bother to check that these functors are inverses of each other. ■

Remark 1.75. We will eventually discuss the moduli space Ag of principally polarized g-dimensional
abelian varieties. Then one can require that End(A) contains OE for some CM field E as well as [E :
Q] = 2 dimA, and this will make finitely many points. (In fact, we produce a Shimura variety of PEL
type by adding in Φ, which corresponds to a signature.) Dropping the condition that [E : Q] = 2 dimA
could still desire a positive-dimensional subset ofAg; in particular, we cannot expect that “just” (finite)
combinatorics will be able to parameterize such abelian varieties.

Remark 1.76. We continue with a classification of the (A, i) with CM type (E,Φ). LettingO ⊆ E be the
largest subring such that O · Λ ⊆ Λ, it turns out that End(A) = O by Proposition 1.43. Thus, Λ is an
O-fractional ideal.
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Corollary 1.77. Fix a CM algebra E and an order O ⊆ E. Then the isomorphism classes of CM abelian
varieties (A, i) with complex multiplication byO ⊆ E (namely, such that i : O → End(A)) is in bijection
with equivalence classes of triples (E,Φ, a) where Φ is a CM type of E, and a ⊆ O is a fractional ideal.
The equivalence class of triples is given by (E,Φ, a) ∼ (E,Φ′, a) if and only if there is an isomorphism
α : E → E carrying Φ to Φ′ = Φ ◦ α and α(a) = ca′ for some c ∈ E×.

Proof. Use the functors of Proposition 1.74, but now we use Remark 1.76 at the end of the proof. ■

Example 1.78. WithO = OE , we see that our abelian varieties are now in bijection with ClE .

Remark 1.79. Later in life, we will want to add a polarization to results such as Proposition 1.74. Addi-
tionally, we are somehow studying “geometric points” in the moduli space; there is a separate question
of asking over what fields these points in the moduli space can be found over.

1.4.2 Classifying Simple CM Abelian Varieties
We would like to upgrade Proposition 1.74 to restrict to simple abelian varieties. This requires the notion
of a “primitive” CM type.

Definition 1.80 (restriction, extension of CM types). Fix an extension E0 ⊆ E of CM algebras.

• Given a CM type Φ0 on E0, we define its extension to E as

Φ := {φ ∈ Hom(E,C) : φ|E0
∈ Φ0}.

• Suppose (E,Φ) is a CM type which is an extension of a CM type (E0,Φ0). Then we can recover the
restriction to E0 as

Φ|E0
:= {φ|E0 : φ ∈ Φ}.

Remark 1.81. In fact, Φ|E0 will succeed in being a CM type if and only if it is an extension. This explains
the hypothesis in the definition.

Definition 1.82 (primitive). Fix a CM algebra E. A CM type Φ on E is primitive if and only if Φ is not the
extension of any CM type (E0,Φ0) for E0 ⊆ E.

Here is a quick sanity check.

Lemma 1.83. Fix a CM type (E,Φ), whereE is a field. Then there is a unique primitive CM type (E0,Φ0)
extending to (E,Φ).

Proof. Omitted. The reference is [Mil20b, Proposition 1.9]. Basically, one may assume thatE is Galois, and
then one can restrict downwards via some kind of fixed field. ■

And here is our result.

Proposition 1.84. Fix a CM field E. Then there is a bijection between simple abelian varieties A with
complex multiplication by E (up to isogeny) and primitive CM types (E,Φ) up to isomorphism.

We will prove this next class.
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1.5 January 26
Homework will be posted later today.

Remark 1.85. There are two notions of isogeny and isomorphism of CM abelian varieties (A, i) and
(A′, i′) with complex multiplication by E, only one of which we used last class.

• Namely, we might want isomorphism/isogeny f : A→ A′ together with an isomorphism α : E →
E′ making the following diagram commute.

E End0(A)

E End0(A′)

α f

i

i′

• Alternatively, we can fix α = idE in the above definition.

Last class we used the second notion, despite my typos. This is needed to make isomorphisms (E,Φ) ∼=
(E′,Φ′) make sense. Anyway, to recover the needed statements for the first notion, we need to mod
out by some more isomorphisms.

1.5.1 Finishing Classification of Simple CM Abelian Varieties
Last class we were trying to show the following statement.

Proposition 1.84. Fix a CM field E. Then there is a bijection between simple abelian varieties A with
complex multiplication by E (up to isogeny) and primitive CM types (E,Φ) up to isomorphism.

Proof. The point is to restrict Corollary 1.53 to simple abelian varieties. In one direction, if (E,Φ) is an
extension of (E0,Φ0), then

CΦ/OE ∼
(
CΦ0/OE0

)[E:E0]
.

To see this, note that the right-hand side is isogenous to(
CΦ0/OE0

)
⊗OE0

OE

by some sort of extension of scalars argument, and now the above abelian variety is just CΦ/OE by tracking
through what it means to extend. The point is that the produced abelian variety is not simple.

In the other direction, suppose (E,Φ) is primitive, and we need to check that CΦ/OE is simple. We will
sketch the idea and refer to [Mil20b, Proposition 3.6] for the full argument.

1. SupposeA has two piecesAr11 andAr22 in its decomposition into simple abelian varieties. Then we can-
not find a CM fieldE embedding into End0(A) of the required degree, due to some degree arguments.

2. Suppose A has the single piece Ar in its decomposition into simple abelian varieties. But then (E,Φ)
would fail to be primitive by the above discussion unless r = 1, so we fall back to r = 1. ■

1.5.2 A Jacobian Example
Let’s do an example; see [Lan83, Section 1.7] for more.

Fix a prime p, and define the curve C ⊆ P2
C as cut out by the equation Xp + Y p = Zp. One can check

that C is smooth, which tells us g(C) = 1
2 (p − 1)(p − 2); alternatively, one can project this to P1

C and use
the Riemann–Hurwitz formula directly. We will want to work with the Jacobian Jac(C), which is the group
variety parameterized by the degree-0 divisor classes of C; one can check that Jac(C) is in fact an abelian
variety, which we will do later in the course.
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Remark 1.86. By some duality arguments, one finds that

J(C)(C) =
H0(C,Ω1)

∨

H1(C,Z)
,

where the inclusion H1(C,Z) → H0(C,Ω1)
∨ is given by integration of loops in C. Explicitly, one can

take a degree-0 divisor class
∑n
i=1[Pi]− [Qi] and produce an integration map

ω 7→
n∑
i=1

∫ Qi

Pi

ω,

which is well-defined up to the elements of H1(C,Z). Namely, the integral
∫ Qi

Pi
is not a well-defined

complex number because there may be multiple paths, but this path is well-defined up to an element
of H1(C,Z), so we are okay.

Remark 1.87. One might want to understand arithmetic objects attached to the geometric function
J(C), such as Galois representations or L-functions or periods. Having some CM structure grants us
more information to answer these questions.

Let’s see why J(C) has complex multiplication.

Theorem 1.88. Fix everything as above. Then J(C) has complex multiplication.

Proof. For brevity, define µp to be the multiplicative group of pth roots of unity. One can give µp a group
scheme structure by viewing it as the kernel of the nth power map (−)n : Gm → Gm. Anyway, the point is
that µp has an action on C by

ζp : [X : Y : Z] 7→ [ζpX : Y : Z].

For example, when p = 3, we see that C itself will have complex multiplication by Q(ζ3), where the action
by ζ3 is given as above.

In general, we note µp × µp also has an action on C by

(ζip, ζ
j
p) : [ζ

i
pX : ζjpY : Z] 7→ [ζpX : Y : Z].

Now, the action onC provides an action on the Jacobian J(C) by the degree-0 divisors viewpoint. (One can
also see this by functoriality of the Jacobian construction, for example.)

To continue, we remark that one can check that our elements of H0(C,Ω1) have basis given by the 1-
forms

ωr,s := xrys · 1
p
· dx

p

xpyp
,

where 1 ≤ r, s ≤ p − 1 when r + s ≤ p − 1; here x := X/Z and y := Y/Z are coordinates on one of the
standard affine charts of P2

C. (We will not show this in detail.)
So we may note that µp × µp acts on ωr,s by (ζip, ζ

j
p) : ωr,s 7→ ζir+jsp ωr,s. For this action, we see there

are (p − 2) orbits, each of size 1
2 (p − 1), where (r, s) ∼ (r′, s′) if and only if there is m ∈ Z/pZ× such that

m(r, s) ≡ (r′, s′) (mod p).

Example 1.89. For example, at p = 5, we have orbits given by

{(1, 1), (2, 2)}, {(1, 2), (3, 1)}, {1, 3), (2, 1)}.

Each of these classes will produce a simple abelian variety with complex multiplication by Q(ζp). The point
is that we can construct a curve Cr,s with a map C → Cr,s via (r, s) 7→ (xp, xrys), and the holomorphic
differentials ofCr,s are the ones in the needed orbit of (r, s). So we get simple factors J(Cr,s)→ J(C), each
of which have complex multiplication by Q(ζp), so we are done. ■
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Remark 1.90. This is not true for general curves C.

Remark 1.91. We will follow this recipe on the homework.

1.6 January 29
Homework has been posted. It looks hard. We have two weeks to do it.

1.6.1 The Rosati Involution
Here is our definition.

Definition 1.92 (Rosati involution). Fix an abelianC-varietyA = V/Λ, and letψ : Λ×Λ→ Zbe a Riemann
form on A. Then we define the Rosati involution (−)† : End0(A) → End0(A) as follows: for each α ∈
End0(A), we define α† such that

ψ(αx, y) = ψ(x, α†y)

for all x, y ∈ Λ.

Remark 1.93. Later on, we will view (−)† from the lens of dual abelian varieties, as follows. Note that
ψ provides an identification of Λ with its dual lattice Λ∨, and then α† is defined so that the following
diagram commutes.

(Λ⊗Z Q) (Λ∨ ⊗Z Q)

(Λ⊗Z Q) (Λ∨ ⊗Z Q)

α† α∨

ψ

ψ

Namely, this shows that α† exists and is unique. Later on, we will have an analogous definition where
Λs above are replaced with A itself (and Λ∨ is replaced with the dual abelian variety A∨).

Remark 1.94. One can check that (α†)† = α via the above diagram.

Here is the main result.

Proposition 1.95. Fix an abelian C-variety A with Riemann form ψ : Λ × Λ → Z. The Rosati involution
is positive: for all nonzero α ∈ End0(A), we have

Tr(α†α) > 0.

Here, the trace map is defined by the trace in End0(A) ⊆ End(H1(A,Q)).

Proof. Fix a Q-basis B of H1(A,Q) = Λ⊗Z Q. Then, by definition, we see that

Tr(α†α) =
∑
x∈B

ψR(ix, α
†αx) =

∑
x∈B

ψR(αix, αx),

which is a sum of positive numbers because ψR is positive-definite by definition. ■
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Remark 1.96. There is a unique positive involution on any CM algebraE, namely its complex conjugation
c. Thus, if A is a simple abelian variety with complex multiplication by E = End0(A), we must have
α† = c(α), so

ψ(αx, y) = ψ(x, c(α)y).

In general, if A is not simple, then one can show that there is a CM algebra E ⊆ End0(A) of the correct
degree and preserved by (−)†.

We now note that we have the following lemma.

Lemma 1.97. Fix an abelian variety A = V/Λ with complex multiplication by E ⊆ End0(A) fixed by the
Rosati involution. Further, fix a non-degenerate skew-symmetricE-linear formψ : (Λ⊗ZQ)2 → Q such
that ψ(αx, y) = ψ(x, c(αy)) for all α ∈ E. Then

ψ(x, y) = TrE/Q(ξxc(y))

for all x, y ∈ E, were ξ ∈ E and c(ξ)− ξ.

Proof. Do some linear algebra. ■

And we may now give a classification of (polarized) abelian varieties.

Theorem 1.98. Fix a CM algebraE. We parameterize polarized abelian varieties with complex multipli-
cation by E, up to isomorphism.

Proof. Here, an isomorphism (A, i, ψ) ∼= (A′, i′, ψ′) is an isomorphism f : A→ A′ such that the diagram

A A′

A A′

f

f

i(α) i′(α)

commutes for every α ∈ E, and the diagram

H1(A,Z)×H1(A,Z) Z

H1(A
′,Z)×H1(A

′,Z) Z

ψ

ψ′

f

also commutes.
We now describe our constructions. Given (A, i, ψ), we build (E,Φ, a) as before, where a is constructor

by taking the End(A)-orbit of a chosen vector v ∈ H1(A,Q), and then we pick ξ ∈ E× with c(ξ) = −ξ from
the above lemma. Notably, the choice of v is only defined up to multiplication by E×: replacing v with a−1v
will adjust a to aa, and we can see that ξ 7→ ξ/(a(c(a))). ■

1.6.2 The Field of Definition: Abelian Varieties
We will now show that abelian varieties with complex multiplication are defined over Q.

Remark 1.99. One can show that End0(A) is still defined over the reflex field. The same thing holds for
Hodge cycles (from the perspective of the Shimura variety).

Anyway, our result will follow from the following, by taking k = Q.

28



1.7. JANUARY 31 254B: COMPLEX MULTIPLICATION

Proposition 1.100. Fix an algebraically closed field k ⊆ C. Then consider the base-change functor (−)C
taking abelian varieties defined over k to abelian varieties defined over C. Then (−)C is fully faithful and
contains all CM abelian varieties in its (essential) image.

Proof. The key observation is that we have an injectionA(k) ⊆ A(C) (because C/k is a field extension), and
we have an isomorphism A(k)tors = A(C)tors. Indeed, for any nonzero integer n, we see that A(k)[n] =
A[n](k), butA[n](k) just consists of the solutions in k to some set of polynomial equations. So the solutions
over k and over C will be the same because both these fields are algebraically closed.

Anyway, here are our checks. Fix abelian k-varieties A and A′.

• Faithful: fix f, g : A→ A′ such that fC = gC. Then we see that fC and gC are the same overA(C)tors, so f
and g are the same overA(k)tors. Thus, it is enough to check thatA(k)tors is Zariski dense inA(k). Well,
the Zariski closure B := A(k)tors is a smooth proper group subvariety of A(k): smoothness is from
char k = 0 and k = k, properness is because it is a closed subscheme of A, and being reduced follows
by construction because we took the Zariski closure. So B◦ is an abelian subvariety with B◦(k)[p] =
A(k)[p] for all primes p > #π0(B): having an element of order p outside B◦ would force there to be
at least p connected components (one for each multiple of this element), so this can only happen for
p < #π0(B). Thus, we see dimA = dimB◦, so we must have B◦ = A because A is irreducible.

• Full: we use some descent theory. Fix a map f : AC → A′
C, which we must show is the base-change

of a map A → A′. Quickly, note that k = CGal(C/k) by some infinite Galois theory (or alternatively, a
more direct argument via Zorn’s lemma). Notably, for τ ∈ Gal(C/k), there is a map τ(f) : AC → A′

C
given by applying τ to the coefficients of f viewed affine-locally; on C-points, one sees that τ(f) is the
composite

(
τ ◦ f ◦ τ−1

)
: A(C)→ A′(C).

Now, some descent theory shows that f is defined over k if and only if f = τ(f) for all τ ∈ Gal(C/k);
approximately speaking, one can just see that the coordinates of f must all in fact be defined over k.
Well, the point is that τ |k = idk, so f and τ(f) agree on A(k) and hence on A(C).

• Essential image: we will do this next class. Fix a CM abelian C-varietyA. By a spreading out argument
that we will give next class (see Proposition 1.103), there is a finitely generated k-algebraR ⊆ C such
that we have an abelian schemeA over S := SpecR specializing to A.

Now,O := EndC(A) is finitely generated overZ, so ensuring that these endomorphisms are all defined
over R (perhaps by localizing more), we may assume thatO ⊆ EndR(A). In particular,A has complex
multiplication. Choosing a geometric point of R given by Spec k → R and pulling back A makes an
abelian variety B over k.

Quickly, note that the CM type ofB is just theΦ ⊆ Hom(E,C) appearing in theE-representationLieB,
which is simply LieA. So BC is at least isogenous with A, so there is a finite kernel GC ⊆ BC such that
BC/GC ⊆ A. But G is a finite group scheme, so it must be fully contained B[n] for some n, so we can
realize the quotient group scheme B/G back over k, and B/G is the required scheme.1 ■

Remark 1.101. Fix abelian varietiesA andB defined over Q. Then Proposition 1.100 also tells us that a
homomorphism φ : AC → BC is defined over Q.

1.7 January 31

We began class by finishing an argument of last class, so I have edited the argument there.

1 Perhaps one should check that the quotient B/G makes sense as an abelian variety, but it all works out, so we won’t bother.
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1.7.1 Spreading Out Abelian Varieties

We quickly discuss a result on spreading out abelian varieties.

Proposition 1.102. Fix a K-variety A of finite type, and let k ⊆ K be the prime field. Then there exists
a finitely generated k-algebra R and an R-schemeA such thatAK = A.

Proof. This follows from what it means to be finite type. ■

Proposition 1.103. Fix an abelian K-variety A of finite type, and let k ⊆ K be the prime field. Then
there exists a finitely generated k-algebra R and an abelian R-schemeA such thatAK = A.

Proof. We get some R andA by Proposition 1.102. We now spread out one condition onA at a time.

• Writing out equations, we may assume that the group law is well-defined by adding in enough de-
nominators and other transcendental elements, making R larger if needed.

• For projectivity, we note thatA is projective, and we can basically use the same equations to realizeA
as a closed subscheme of projective R-space.

• For smoothness, we pass to the smooth locus of SpecR, which is nonempty because we are already
smooth on the generic fiber. (Notably, we are smooth on, say, the identity section.)

• Lastly, for geometrically connected, we note that having a connected fiber is equivalent to the map
OSpecR → π∗OA being an isomorphism on stalks. (Namely, we are asking for the local rings to fail to
be products of R by properness.) This is an open condition, so we may again shrink SpecR enough to
accommodate.

For a reference, Milne has an article on abelian varieties, where this argument is Remark 20.9. ■

1.7.2 The Field of Definition: Endomorphisms

Quickly, we note that we can define a CM type as a collection Φ ⊆ Hom(E,Q) because E is finite étale over
Q anyway. Notably, CM types of abelian varieties also still make sense because an abelian Q-variety A will
have its Lie algebra LieA (now defined as the Zariski tangent space) continues to have the neededE-action,
and we can decompose this is a representation into a Q-vector space.

Anyway, we now define the reflex field.

Definition 1.104 (reflex field). Fix a CM type (E,Φ). Then the reflex field is the subfieldE∗ ⊆ Q fixed by

{σ ∈ Gal(Q/Q) : σΦ = Φ},

where Φ is viewed as a subset of Hom(E,C).

Remark 1.105. If E is a field, then E∗ is contained in the Galois closure of E (in Q).
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Lemma 1.106 ([Mil20b, Proposition 1.16, 1.18]). Fix a CM type (E,Φ).

(a) E∗ is generated by the elements ∑
φ∈Φ

φ(α),

where α ∈ E.

(b) E∗ a CM field.CM type?
Milne, Ex
1.19. See
also Lang
Ch 1, S5.

(c) If (E,Φ) =
∏m
i=1(Ei,Φi), then E∗ = E∗

1 · · ·E∗
m.

(d) If (E′,Φ′) is an extension of (E,Φ), then (E′)∗ = E∗.

Proof. Omitted. One does a little Galois theory to achieve the result. ■

Example 1.107. If (E,Φ) is a primitive CM type with E a field, then E = E∗.

And now we can provide our definition field for endomorphisms.

Proposition 1.108. Fix an abelian k-variety, where k ⊆ C. Further, suppose Ak is a CM abelian variety
with CM type (E,Φ).

(a) If E ⊆ End0k(A), then E∗ ⊆ k.

(b) If E∗ ⊆ k, and Ak is simple, then E ⊆ End0k(A).

Proof. We prove one part at a time.

(a) We use (a) of Lemma 1.106. Quickly, we note thatCoherence
of Lie?

LieA⊗k C = LieAC =
⊕
φ∈Φ

Cφ.

Thus, for each α ∈ E, we see that the trace of α acting on LieA is
∑
φ∈Φ φ(α), but being defined over

k requires that these endomorphisms have trace living in k. So the result follows.

(b) Being simple enforces E = End0
k
(Ak). Now, Gal(k/k) acts on End0

k
(Ak), so notably we want it to act

trivially on E ⊆ End0k(A) by some descent argument. Now, for each σ ∈ Gal(k/k), we produce the
following commutative diagram.

LieAk LieAk

⊕
φ∈Φ

kφ
⊕
φ∈Φ

kφ

σ

In particular, σ induces an isomorphism of CM abelian varieties, so it must induce an isomorphism of
CM types σ : (E,Φ) → (E,Φ). Thus, there is α ∈ Aut(E) such that σ ◦ Φ = Φ ◦ α. Because E∗ ⊆ k,
we can conclude that σ maps Φ to Φ, so actually Φ = Φ ◦ α. But then the primitivity of (E,Φ) forces
α = idE .Milne

Prop. 1.9
■

Remark 1.109. This tells us that having CM makes our endomorphisms defined over Q.
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1.8 February 2
Office hours next week will move to 2PM–4PM on Wednesday. I am pretty hopelessly behind catching up
on adding details to these notes, but I will do my best to catch up over the weekend. Next week we start
algebraic geometry.

1.8.1 The Shimura–Taniyama Formula
Fix an abelian varietyA over a number fieldK. We want to “reduceAmodulo” a primeP ∈ SpecOK .

Definition 1.110 (good reduction). Fix an abelian variety A over a number field K. Given a prime P of
K, we say thatA has good reduction at P if and only if there is an abelian schemeA overOKP

such that
AK = A. By abuse of notation, we let AP denoteAOK/P.

Remark 1.111. The theory of Néron models implies that the model A over OKP
is unique. We will

discuss this more later.

Remark 1.112. The theory of Néron models also tells us that

EndK(A) EndOKP
(A) ⊆ End(AP).

The last inclusion assumes complex multiplication of A.

Remark 1.113. It turns out that one can always extend K to have good reduction.

Definition 1.114 (Frobenius). Fix a finite field Fq. Given an Fq-variety X, we define the Frobenius mor-
phism FX : X → X to be the identity on points and the q-power map on the sheavesOX → OX .

Remark 1.115. On points, one can compute that the Frobenius map F : AnFq
→ AnFq

maps (x1, . . . , xn) ∈
AnFq

(Fq) to (xq1, . . . , x
1
n) ∈ AnFq

(Fq) because we are merely composing with the q-power map.

Definition 1.116 (Tate module). Fix an abelian variety A over a number field K and a prime ℓ. Then we
define the Tate module as

TℓA := lim←−A [ℓ•] .

And now here is our result.

Theorem 1.117 (Shimura–Taniyama). Fix an abelian varietyA over a number fieldK of CM type (E,Φ)
such that K contains all Galois conjugates of E (namely, E is a field) and E ⊆ End0K(A). If P is a prime
of good reduction, then the following hold.

(a) There is an element π ∈ OE such that π ∈ End0K(A) is the Frobenius FA.

(b) The ideal (π) ⊆ OE is given by ∏
φ∈Φ

φ−1
(
NK/φ(E) P

)
.

Here is another statement of Theorem 1.117.
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Theorem 1.118 (Shimura–Taniyama). Fix an abelian varietyA over a number fieldK of CM type (E,Φ),
where E ⊆ End0K(A) is a field. If P is a prime of good reduction, then the following hold.

(a) There is an element π ∈ OE such that π ∈ End0K(A) is the Frobenius FA.

(b) For each place p of E lying over p, we have

ordv(π)

ordv(q)
=

#(Φ ∩Hv)

#Hv
,

where Hv := Hom(E,Qp) =
⊔
v|pHom(Ev,Qp).

Let’s see an application.

Corollary 1.119. Fix an abelian varietyA over a number fieldK of CM type (E,Φ), whereE ⊆ End0K(A),
and let P be a prime of good reduction.

(a) Let P denote the characteristic polynomial of FAP
acting on H1(A(C),Q). We have P ∈ Z[x].

(b) The q-adic valuation of the eigenvalues of FAP
given by{

#(Φ ∩Hv)

#Hv

}
v|p
,

with multiplicities given by Hv := Hom(E,Qp) as before.

Proof. For (a), use Theorem 1.117 so that π ∈ OE is the needed Frobenius element. Then the characteristic
polynomial of π acting on H1(A(C),Q) is simply π acting on E, so our characteristic polynomial has integer
coefficients because π ∈ OE is integral.

For (b), we note over Qp we note that our characteristic polynomial is∏
v|p

∏
σ∈Hom(Ev,Qp)

(x− σ(π)),

but looping over all σ will have the same valuation as ordv(π)/ ordv(q), so normalizing with the valuation of
q as 1 achieves the result directly from (b) of Theorem 1.118. ■

Remark 1.120. Part (a) does not need Theorem 1.117; this is true without even having complex multi-
plication at all.

While we’re here, let’s see some examples.

Example 1.121. Fix an elliptic curveAwith complex multiplication by an imaginary quadratic fieldE/Q,
and let Φ be the CM type. Fix a prime p. There are two cases.

• Ordinary: we can have p = p1p2 up inE. Then #Hp1 = #Hp2 , so the eigenvalues of the Frobenius
will be 0 and 1 by looking at Theorem 1.118.

• Supersingular: we can have p inert or ramified so that #Hv = 2, but then Φ∩Hv will always have
a single intersection with Φ, so our eigenvalues have valuation 1/2 and 1/2.
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Example 1.122. Fix an abelian surfaceAwith complex multiplication byE := Q(ζ5). It turns out that all
CM types are isomorphic to each other, so we will denote a random one by Φ. We have the following
cases for an unramified prime p.

• If p splits completely, then #Hv = 1 for any v | p, so the q-valuation of the eigenvalues will be 0
or 1.

• If p fails to split completely, then the q-valuations turn out to all be 1/2. Quickly, one finds that all
primes must be inert in the extension E/Q(

√
5), and c(Hv) = Hv, so half of the elements will be

in Hv and half not.

Remark 1.123. On the homework, we will compute the q-adic valuation of the Frobenius eigenvalues
of J(C) from section 1.5.2.

Remark 1.124. On the homework, we will compute an example of an abelian surface A with complex
multiplication such that its q-valuations have Frobenius eigenvalues of q-valuation {0, 1/2, 1/2, 1}.

Remark 1.125. A presence of a Weil pairing on Tate modules explain why our eigenvalues of Frobenius
appear “symmetric” (as in {0, 1/2, 1/2, 1}).

Anyway, let’s sketch an argument for Theorem 1.118; we will do it in detail later in the class.

Warning 1.126. Today, we will discuss Theorem 1.117 under the additional assumptions that KP/Qp
is unramified, where p lies under P, and that End0K(A) ∩ E = OE .

Sketch of (a) in Theorem 1.118. For (a), we note that the action of FAP
onOE commutes with the action of

the largerEnd0KP
(AP), so it follows that it must live inOE by an argument on semisimple modules. Namely,

one does something with the Tate modules: one has TℓA⊗Zℓ
Qℓ is a rank 1 module overOE ⊗Zℓ

Qℓ, so they
must be the same. ■
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THEME 2

BACK TO THE BASICS

Hold tight to your geometric motivation as you learn the formal
structures which have proved to be so effective in studying

fundamental questions.

—Ravi Vakil, [Vak17]

2.1 February 5
I did not do much over the weekend. Such is life.

2.1.1 The Rigidity Lemma
For this chapter, we will work over general fields, so we recall the following definition.

Definition 2.1 (abelian variety). Fix a field k. Then an abelian k-variety is a group k-variety which is
smooth, geometrically integral, and proper.

For example, we would like to show that the group law on A is abelian. We will want the following re-
sult.

Theorem 2.2 (Rigidity lemma). Fix k-varietiesX,Y , andZ. SupposeX andY are geometrically integral,
that X is proper, and that there is a point x0 ∈ X(k). Suppose a k-morphism f : X ×k Y → Z has a
point y0 ∈ Y (k) such that f |X×{y} is constant, mapping to a point z0 ∈ Z(k). Then there is a morphism
g : Y → Z such that f = g ◦ prY in the following diagram.

X × Y Z

Y

g
prY

f

Proof. Plugging in x = x0, we see that we must construct g : Y → Z by g(y) := f(x0, y). More precisely, g is
the composite

Y
x0→ X ×k Y

f→ Z.
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We would like to show that f = g◦prY . Now, the source is reduced, and the target is separated (everything is
a variety), so it is enough to show that these maps agree on an open dense subset because then the equalizer
of the two morphisms must be all ofX ×k Y . Well, becauseX ×Y is irreducible (becauseX and Y are both
geometrically integral), any nonempty open subset is dense.

Anyway, letU ⊆ Z be any affine open subscheme containingx0 so thatZ\U is closed. Thus, f−1(Z\U) ⊆
X × Y continues to be closed, and because X is proper, the projection of this set to Y must still be closed.
So define

V := Y \ prY
(
f−1(Z \ U)

)
.

Quickly, note V is nonempty because f(x0, y0) ∈ U , implying that y0 ∈ V . (Note we are abusing notation by
identifying a geometric point with the point in its image.) So it is enough to show that

f |X×kV
?
= g × prY |X×kV .

It is enough to check this on k-points because everything in sight is a variety: k-points are dense because
these schemes are finite type over k, so the equalizer scheme of these two morphisms would then be dense
in X × Y , as required.

Well, fix some y ∈ V (k). Then f maps X ×k {y} to U , but X ×k {y} is proper, and U is affine, so f must
be constant.1 In particular, for any x ∈ X(k), we see that

f(x, y) = f(x0, y) = g(x, y),

as required. ■

Let’s see some applications.

Corollary 2.3. Fix abelian k-varieties A and B. Given a morphism f : A → B, there exists a homomor-
phism h ∈ Homk(A,B) and a point b ∈ B(k) such that f = τb ◦ h, where τb : B → B is the translation
map b 7→ mB(x, b). In fact, if f(eA) = eB , then f is a homomorphism.

Proof. Define b := f(eA) where eA ∈ A(k) is the identity. Then we see that h := τ−1
b ◦ f sends eA 7→ eB . We

want to show that h is actually a group homomorphism. Well, define the map α : A×A→ B by

α(x1, x2) := h(x1x2)h(x2)
−1h(x1)

−1.

To verify that h is a homomorphism, it is enough to check that α is constantly eB . For this, we use Theo-
rem 2.2 on α. For example, we see that eA ∈ A(k) satisfies

α(x, eA) = h(xeA)h(eA)
−1h(x)−1 = h(x)eBh(x)

−1 = h(x)h(x)−1 = eB ,

so α(x, y) = α(eA, y) for all x, y ∈ A(k) by Theorem 2.2. A symmetric argument shows that α(x, y) =
α(x, eA) for all x, y ∈ A(k), so we conclude that α must actually be constant. ■

Corollary 2.4. Fix an abelian k-variety A. Then the group law on A is abelian.

Proof. The inverse map i : A→ A maps i(eA) = eA, so i must be a homomorphism by Corollary 2.3, so

i(x1x2) = i(x1)i(x2)

for all x1, x2 ∈ A(k), so x1x2 = x2x1 for all x1, x2 ∈ A(k), as required. ■

1 We can realize U is a closed subscheme of some affine space, so we get a morphism X×k {y} → An
k for some n > 0. But then the

projections of this map are all constant because maps X ×k {y} → A1
k correspond to global sections of a proper integral k-scheme,

which are just constants in k.
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Remark 2.5. Note that we know that the group law on A is abelian, so the multiplication-by-n map
[n] : A→ A makes sense and is an endomorphism. In particular, we see (x1x2)

n = xn1x
n
2 .

Notation 2.6. In light of Corollary 2.4, for the remainder of the course, we will denote the group law on
an abelian variety additively.

2.1.2 Using The Theorem of the Cube
Here is our result. Again, the actual statement is in terms of varieties.

Theorem 2.7 (of the Cube). Fix proper geometrically integral k-varieties X, Y , and Z. Given three k-
points x0 ∈ X(k) and y0 ∈ Y (k) and z0 ∈ Z(k), suppose a line bundle L on X × Y × Z has

L|{x0}×Y×Z and L|X×{y0}×Z and L|X×Y×{z0}

all trivial. Then L is trivial.

Remark 2.8. In fact, Theorem 2.7 is even true if we have only two out of the three varieties being proper,
but we will not need this.

We will prove Theorem 2.7 next lecture. For now, let’s see how this is used.

Corollary 2.9. Fix an abelian k-variety A and a k-variety X. Given three morphisms f, g, h : X → A and
a line bundle L on A, we have

(f + g + h)∗L ⊗ f∗L ⊗ g∗L ⊗ h∗L = (f + g)∗L ⊗ (g + h)∗L ⊗ (h+ f)∗L.

For example, if X = A×A×A, where f , g, and h are the projections, then

m∗
123L ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L = m∗

12L ⊗m∗
23L ⊗m∗

31L.

Here, m• denotes summing the relevant coordinates.

Proof. Pulling back the second equality along the map (f, g, h) : X → A×A×A produces the first equality,
so it suffices to focus on the second equality. Well, define

K := m∗
123L ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L ⊗m∗

12L−1 ⊗m∗
23L−1 ⊗m∗

31L−1.

It suffices to show that K is trivial. For this, we use Theorem 2.7. By symmetry, we will just show that
K|{eA}×A×A is trivial, which will complete the proof. Well, upon doing this restriction, we find

K|{eA}×A×A ∼= m∗
23L ⊗ pr∗1 L ⊗ pr∗2 L ⊗ pr∗3 L ⊗ pr∗2 L−1 ⊗m∗

23L−1 ⊗ pr∗3 L−1

is manifestly trivial. Notably, restriction commutes with taking tensor products by construction of the tensor
product. ■

Remark 2.10. Of course, an induction can extend past three projections.

In particular, we will use Corollary 2.9 in order to compute [n]∗L.
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Corollary 2.11. Fix a line bundle L on an abelian k-variety A. Then, for any n ∈ Z,

[n]∗L = L⊗n(n+1)/2 ⊗ [−1]∗L⊗n(n−1)/2.

In particular, if L = [−1]∗L, then [n]∗L = L⊗n2 .

Proof. Induct on n using Corollary 2.9 for the inductive step. Namely, n = 0 and n = −1 have no content,
and then one can induct upwards and downwards from there. ■

Remark 2.12. The quadratic relation here is what is used in the construction of the Néron–Tate height.

2.2 February 7
We continue.

2.2.1 Preparing The Theorem of the Cube
Let’s give another application of Theorem 2.7.

Corollary 2.13. Fix an abelian k-variety A and two points x, y ∈ A. Given a line bundle L, we have

t∗x+yL ∼= t∗xL ⊗ t∗yL.

Proof. Apply Corollary 2.9 to the maps f ≡ x and g ≡ y and h := idA. ■

Remark 2.14. Fix a finite field extension k′/k. Then given a line bundle L, we produce a group homo-
morphism A(k′)→ PicAk′ given by x 7→ t∗xL ⊗ L−1.

We will now prove Theorem 2.7. We will prove under the hypothesis where k is algebraically closed. The
following lemma tells us that this is fine most of the time.

Lemma 2.15. Fix a proper geometrically integral k-scheme V . Then Γ(V,OV ) = k.

Proof. This is [SP, Lemma 0BUG]. ■

Lemma 2.16. Fix a proper geometrically integral k-scheme V . Given a line bundle L on V , if Lk over Vk
is trivial, then L ∼= OV over k.

Proof. Quickly, we claim that L is trivial if and only if Γ(V,L) ̸= 0 and Γ
(
V,L−1

)
̸= 0. Certainly if L is trivial,

then those areOV (V ) ̸= 0. Conversely, suppose we have nonzero elements s ∈ Γ(V,L) and t ∈ Γ(V,L−1),
which correspond to maps s : OV → L and t ∈ L → OV . But now the composite

OV
s→ L t→ OV

is given by a global section ts ∈ OV (V ), which is a field and hence invertible, so we see that the above
composite is invertible, so both s and t must be isomorphisms (e.g., by looking at stalks).
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Thus, to complete the proof, we note that

Γ(Vk,L
′
k
) = Γ(V,L)⊗k k

because cohomology commutes with faithfully flat base-change, so the left-hand is nonzero if and only if
Γ(V,L) is nonzero. ■

In particular, Theorem 2.7 follows from the algebraically closed case.

2.2.2 Review of Cohomology
We quickly review some cohomology; we refer to [Har77, Chapter III] for proofs.

Fix a morphism f : X → Y of Noetherian schemes. Sheaf cohomology is usually given by taking the
right-derived functors H•(X,−) := R•Γ(X,−). We also a pushforward of f , which becomes a left-exact
functor f∗ : QCoh(X)→ QCoh(Y ), so we can consider its right-derived functorsR•f∗. Further, if f is proper,
then R•f∗ sends coherent sheaves to coherent. Being right-derived functors, we have the following prop-
erties.

• R0f∗ = f∗.

• Given an exact sequence 0→ F ′ → F → F ′′ → 0 of quasicoherent sheaves onX, we have a long exact
sequence

0→ R0f∗F ′ → R0f∗F → R0f∗F ′′ δ1→ R1f∗F ′ → · · · .

• If Y is affine, thenR•f∗F = ˜H•(X,F). Indeed, the point is that ·̃ is exact, so we can just check that we
have an isomorphism of δ-functors by hand.

• IfY = SpecR is affine, andX is separated, we can computeH•(X,F) via Čech cohomology as follows:
let U be an open cover of X by affine open subschemes, and we define the Čech complex C•(U ,F) of
R-modules as follows: define

Cn(U ,F) :=
∏

i0<···<in

Γ(Ui0 ∩ · · · ∩ Uin ,F)

and dn : Cn(U ,F)→ Cn+1(U ,F) by

(dnσ)i0<···<in+1
:=

n+1∑
j=0

(−1)j(σi0<···<ĵ<...<in+1
)|Ui0∩···∩Uin+1

.

Then Hn(X,F) agrees with the cohomology of the Čech complex.

We will also want the following two big results.

Theorem 2.17 (Semicontinuity). Fix a proper morphism f : X → Y of Noetherian schemes. Suppose
that a coherent sheaf F is flat over Y ; i.e., Fx is flat over OY,f(x) for each x ∈ X. Then for each n ≥ 0,
the function Y → Z given by

y 7→ dimk(y)H
n(Xy,F|Xy

)

is upper semi-continuous. In particular,{
y ∈ Y : dimk(y)H

n(Xy,F|Xy
) ≤ a

}
⊆ Y

is closed for all a ∈ Z.

We may be interested in equality.
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Theorem 2.18 (Grauert). Fix a proper morphism f : X → Y of Noetherian schemes. Suppose that a
coherent sheaf F is flat over Y ; i.e., Fx is flat overOY,f(x) for each x ∈ X. The following are equivalent
for some n ≥ 0.

(i) The function y 7→ dimk(y)H
n(Xy,F|Xy

) is constant.

(ii) Rnf∗F is locally free of finite rank, and

Rnf∗F ⊗ k(y) ≃ Hn(Xy,F|Xy
).

2.2.3 The Seesaw Principle
Anyway, our proof of Theorem 2.7 will come from the following result.

Proposition 2.19 (Seesaw principle). Fix a proper geometrically integral k-schemeX and a k-variety T .
Fix a line bundle L on X × T .

(a) The set T1 :=
{

closed t ∈ T : L|X×{t} is trivial
}

is closed.

(b) There is a line bundleM on T1 such that L|X×T1
∼= pr∗T1

(M).

Intuitively, what’s going on here is that we are trying to bring a line bundle on the product to come from a
subscheme of our test scheme T .

Proof of Proposition 2.19. We use our cohomology results. Note that L|X×{t} trivializing is equivalent to
having Γ(X × {t},L±1|X×{t}) failing to be trivial. But applying this to n = 0 in Theorem 2.17, we see that
these are closed subsets of T , so (a) follows.

For (b), we note that we are achieving equality with

dimk(t)H
0
(
X × {t},L|X×{t}

)
= 1

always, so Theorem 2.18 tells us thatM := prT1∗ L is a locally free sheaf of finite rank of rank 1. Now, we
have an adjunction map

pr∗T1
M = pr∗T1

prT1∗ L → L,
which we can check is an isomorphism on stalks over T1. By Nakayama, we may check that this is an iso-
morphism actually on fibers, so we may check that the result is merely nonzero on fibers (because these are
just fields on the fibers), but then it’s nonzero on the other side of the adjunction, so the above map must
continue to be an adjunction. ■

Remark 2.20. Take k = C, and we will argue for Theorem 2.7. For W := X × Y × Z, we note that we
have the exact sequence

0→ Z→ OW
exp→ O×

W → 1,

which produces the long exact sequence

H1(W,OW )→ H1(W,O×
W )→ H2(W,Z).

We have a line bundle L on W which we would like to check is trivial, so with H1(W,O×
W ) = PicW , we

may as well check triviality through the sequence. Note the Künneth formula allows us to decompose
H2(W,Z) into smaller factors, and we see L trivializes in all those factors by the hypothesis on L. So
we see that our line bundle must come fromH1(W,OW ), but it must come from something trivial there
by doing a similar Künneth formula computation. So L will trivialize; note that this argument actually
works on arbitrary products bigger than 3.

We will prove Theorem 2.7 next class. The point is to reduce to curves, where cohomology is understood.
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2.3 February 9
Today we will prove the Theorem of the Cube.

2.3.1 Proof of The Theorem of the Cube
We prove Theorem 2.7. The strategy is to reduce to the case of curves.

Theorem 2.7 (of the Cube). Fix proper geometrically integral k-varieties X, Y , and Z. Given three k-
points x0 ∈ X(k) and y0 ∈ Y (k) and z0 ∈ Z(k), suppose a line bundle L on X × Y × Z has

L|{x0}×Y×Z and L|X×{y0}×Z and L|X×Y×{z0}

all trivial. Then L is trivial.

We have two steps. To begin, we reduce to the case where X is a curve. We will want the following
tools.

Theorem 2.21 (Chow’s lemma). Fix a proper A-scheme π : X → SpecA. Then there is an A-scheme
map µ : X ′ → X such that µ is surjective and projective, X ′ is projective, and there is an open dense
subscheme U ⊆ X such that µ : µ−1U → U is an isomorphism.

Proof. See [Vak17, Vakil 19.9.2]. ■

Theorem 2.22 (Bertini). Fix an infinite field k and a geometrically integral projective k-schemeX ⊆ PNk .
Then there is a hyperplane H ⊆ PNk such that H ∩X is geometrically integral. In fact, the collection of
H ∈

(
PNk
)∨ with H ∩X geometrically integral is Zariski dense.

Remark 2.23. One can add adjectives to X and then to the conclusion, like smoothness.

Remark 2.24. One can allow finite fields by working with hypersurfaces instead of hyperplanes; see
[CP14].

This allows us to prove the following geometric fact.

Lemma 2.25. Fix a proper, geometrically integral k-variety X. For any two closed points x0, x1 ∈ X,
there is a closed 1-dimensional k-subvariety C ⊆ X containing x0 and x1.

Proof. By Chow’s lemma (Theorem 2.21), we may assume that X is projective, basically by pulling back
along our map µ : X ′ → X; getting back to X, one needs to project back along µ.

Explicitly, one can use Theorem 2.22 to the blow-up Bl{x0,x1}X → X. Then x0 and x1 become codimen-
sion-1 closed subvarieties of the blow-up, so we can get them to intersect with a hypersurface (see Re-
mark 2.24). So we may induct downwards. ■

Remark 2.26. This statement is still true for any finite set of points.

Let’s now do the reduction.

Reduction to the curve case. It is enough to show that L|{x}×Y×{z} is trivial for all (x, z). Indeed, by Propo-
sition 2.19, one finds that L = pr∗13M for some line bundleM on X × Z. Then the hypothesis tells us that
L|X×{y0}×Z is trivial (replaceX with a curve connectingxwithx0), soMwill trivialize, soLwill trivialize. ■
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Warning 2.27. I did not really follow the below proof during class.

Proof in the curve case. Fix g := g(X). Then we claim that there is a divisor E ⊆ X of degree g such that
Γ(X,ΩX(−E)) = 0. Well, we are looking for global differentials on X which vanish on E, so we choose
points one at a time.

Now, defineM := pr∗1OX(E) ⊗ L, and let W denote the support of R1 pr23∗M, which is a closed sub-
scheme of Y ×Z by definition. Now, for all y ∈ Y , we know thatL|X×{y}×{z0} is trivial, soM|{x}×{y}×{z0}

∼=
OE . But then

H1(X × {y} × {z0},M |X×{y}×{z0}) = H1(X,OX(E)) ∼= H0(X,ΩX(−E)),

where the last isomorphism is by Serre duality. But now H0(X,ΩX(−E)) = 0 by construction of E, so the
point is that W ∩ (Y × {z0}) is empty.

Now, because Y is proper, we see prZ(W ) ⊆ Z is closed and avoiding z0, so we can find an open Z ′ ⊆ Z
around z0 such thatW ∩ (Y ×Z ′) = 0. As such, we claim that L|X×Y×Z′ trivializes, which will be enough by
Proposition 2.19. Now, R1 pr23∗M is locally free of rank 1 on Y × Z ′: it is enough to check that the Euler is
constantly 1, but being locally constant allows us to compute it on z0, so

χ(M |X×{y}×{z0}) = χ(M|X×{y}×{z0}) = χ(OX(E)),

and we know χ(OX(E)) = 1 by a Riemann–Roch computation.
Being a line bundle now produces a divisor D ⊆ X × Y × Z ′. Namely, on an affine open cover {Ui} on

Y ×Z, one has isomorphisms αi : OUi
→ N|Ui

, and we letDi denote the zero set of αi(1) inX ×Ui, and we
can glue these Di together. Namely, on the intersections, one can check gluing data from N . The point is
thatO(D)|X×{y}×{z} ∼=M|X×{y}×{z} for all (y, z) ∈ Y × Z, essentially by construction.

Quickly, we claim thatD = E × Y ×Z. Well, find some p ∈ X not in the support ofE, and we will show
that D ∩ ({p} × Y × Z) is empty, which will imply the claim because then we will find that D is the needed
sum of points inE’s support times Y ×Z. So we will be able to complete the proof by restricting computing
L on D by its restriction to X × {y0} × {z0}, which we know to be trivial already.

Well, to show the claim, we (sub)claim

(D ∩ ({p} × Y × Z)) ∩ (({p} × Y × {z0}) ∪ ({p} × {y0} × Z))
?
= ∅.

Well, L trivializes on X × {y0} × Z and X × Y × {z0} already, soM on this restriction is OX(E), so this
intersection must then be empty.

We now upgrade using that Y is proper. The projection prZ(D ∩ ({p} × Y × Z)) is a closed subset of Z,
soD ∩ ({p} × Y × Z) must just be {p} × Y × Z ′′ for a codimension-1 subscheme Z ′′ ⊆ Z. But the previous
subclaim now requires everything to be empty.

We now complete the proof. Right now we know that O(D)|X×{y}×{z} must be pr∗1O(E)|X×{y}×{z} by
the claim of the previous paragraphs. ButO(D) is justM, so we are being told thatL|X×{y}×{z} is trivial, so
Proposition 2.19 along with the trivialization of L|{x0}×Y×Z completes the argument that L is trivial. ■

2.4 February 12
The homework is due today.

2.4.1 Ample Line Bundles on Abelian Varieties
Today we will show that abelian varieties are projective. The point is to exhibit an ample line bundle, so we
want to understand ample line bundles.

As a corollary to Theorem 2.7, we have the following result.
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Theorem 2.28 (of the Square). Fix a line bundle L on an abelian k-variety A. For any a ∈ A(k), let
ta : A→ A denote the translation. Then for any x, y ∈ A(k), we have

t∗x+yL ∼= t∗xL ⊗ t∗yL.

Thus, the map φL : A(k)→ Pic(Ak) given by x 7→ t∗xL ⊗ L−1 is a group homomorphism.

Proof. For the first claim, take f : {x} → A and g : {y} → A and h : {0A} → A and apply Corollary 2.9. For
the second claim, we simply expand φL(x+ y) = φL(x)⊗ φL(y) directly. ■

Remark 2.29. In fact, φ• : PicA → Hom(A(k),Pic(Ak)) is a group homomorphism, which we can see
by expanding out the definitions directly.

So we may make the following definition.

Definition 2.30. Fix an abelian k-varietyA. Then we define the subgroup Pic0(A) ⊆ Pic(A) as kerφ•. In
other words, φ ∈ Pic0(A) if and only if φL is trivial.

Example 2.31. For an elliptic curve A, one can identify A with Pic0(A), so we get an exact sequence

0→ Pic0(A)→ Pic(A)→ Z→ 0,

where the last map is the degree map.

Let’s describe Pic0 in a better way.

Lemma 2.32. Fix an abelian k-variety A. Then L ∈ Pic0(A) if and only if m∗L ∼= pr∗1 L ⊗ pr∗2 L.

Proof. We have two implications to show.

• Suppose m∗L ∼= pr∗1 L ⊗ pr∗2 L. We must show that φL is trivial. Well, fix some point x ∈ A(k), and let
ix : {x} → A be the closed embedding. By definition, one sees

t∗xL = i∗xm
∗L = i∗ (pr∗1 L ⊗ pr∗2 L) = OA ⊗ L

by some projections. So φL(x) = OA is trivial.

• Suppose L ∈ Pic0(A). DefineM := m∗L ⊗ pr∗1 L−1 ⊗ pr∗2 L−1, which we want to show is trivial. Now,
for each x ∈ A(k), we see that

M |A×{x} ∼= OA,

so Proposition 2.19 means that M must pull back to a trivial line bundle on both factors, so M is
actually trivial. ■

We now pick up some notation.

Definition 2.33. Fix an abelian k-variety A. For a line bundle L on A, we define K(L) := kerφL, which
by definition is

{x ∈ A(k) : t∗xL ∼= L}.
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Remark 2.34. Once we upgrade Pic to a scheme, we can view K(L) as the closed subscheme kerφL.
For today, it will be enough to realize that K(L) is Zariski closed and then view it as a reduced closed
subscheme of A.

Remark 2.35. One has K(L) = A if and only if L ∈ Pic0(A).

Let’s check that K(L) is Zariski closed.

Lemma 2.36. Fix an abelian k-varietyA. For a line bundleL onA, the subsetK(L) ⊆ A is Zariski closed.

Proof. By definition, we see

K(L) =
{
x ∈ A(k) : m∗L ⊗ pr∗2 L−1|A×{x} ∼= OA

}
.

However, a computation with Proposition 2.19 shows that K(L) is closed. ■

Lemma 2.37. Fix an abelian k-variety A. For a line bundle L on A, we have K
(
L−1

)
= K(L).

Proof. Direct from the definition. ■

Notably, the above lemma tells us that we cannot tell if a line bundle is ample just from looking at K(L):
if L is ample, then L−1 is almost never ample. So we will need some notion of effectivity in the following
result.

Theorem 2.38. Fix an abelian k-variety A. For an effective divisor D on A, set L := O(D). Then the
following are equivalent.

(a) L is ample.

(b) K(L) is finite.

(c) H(D) := {closed x ∈ A : x+D = D} is finite.

(d) The linear system |2D| := Γ(X,OA(2D))/k× (or equivalently, the collection of effective divisors
linearly equivalent to 2D) is base-point free, and the map A→ P|2D|

k is finite.

Note x+D = D is literal equality, not linear equivalence of divisors. Also, the addition by x is a translation.

Proof. The equivalence of (a) and (d) is algebraic geometry not arising from abelian varieties.

• We show (a) implies (b). Certainly K(L) is a closed k-subgroup of A. In particular, B := K(L)◦ will
be connected (hence geometrically integral), reduced (hence smooth), and proper, so B is an abelian
variety. But by definition of B, we know t∗xL|B ∼= L|B , so L|B ∈ Pic0(B), so Lemma 2.32 implies

m∗L|B ∼= pr∗1 L|B ⊗ pr∗2 L|B

as line bundles on B × B. Now ([1], [−1]) : B → B × B has both [1] : B → B and [−1] : B → B being
isomorphisms, by m ◦ ([−1], [1]) = [0], so pulling back along ([1], [−1]) implies

OB ∼= L|B ⊗ [−1]∗L|B .

But then L|B is ample, and [−1] is an isomorphism, so [−1]∗L|B is ample, soOB is ample. But then B
must have dimension 0, meaning that B is finite, so K(L) is also finite.
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• We show (b) implies (c). Indeed, x ∈ H(D) with x +D = D then implies t∗xL ∼= L, so H(D) ⊆ K(L),
which is enough.

• We sketch (d) implies (a). It suffices to show thatL⊗2 is ample. We claim that the pullback of an ample
line bundle by a finite morphism is ample. Well, L⊗2 is ample if and only if

Hi
(
X,F ⊗ L⊗2n

)
= 0

for all coherent sheavesF and indices i > 0. (The forward implication is just by a cohomology compu-
tation, noting that L to a sufficiently high power will simply induce an embedding to projective space,
allowing us to compute the cohomology in projective space.)

• We show (c) implies (d). Quickly, we note that (x + D) + (−x + D) ∼ 2D by translating around, via
Theorem 2.28.

Now, to be base-point free, we want to show that each point p ∈ A has some section x such that
(x +D) + (−x +D) fails to vanish on y; equivalently, we are asking for x /∈ (−y +D) and x /∈ y +D.
But−y +D and y +D are both of codimension 1 in A, so these two divisors cannot cover A.

Lastly, we need to show that the associated map φ : A → PNk is finite. Well, because A is proper,
it follows that φ is proper, so it suffices to show that φ is quasifinite. Well, suppose for the sake of
contradiction that we have a closed point y ∈ PNk with infinite fiber; surely the fiber is quasicompact,
so the fiber must actually have positive dimension. Namely, there will be an irreducible proper curve
C ⊆ A such that φ(C) is a point; notably, proper curves are projective, so we may as well say that C is
projective.

Well, for any effective divisor E ∈ |2D|, we either have E ∩ C = C or E ∩ C = ∅. For this, we will
use Lemma 2.40, proven next class. Indeed, setting E′ := x + D for some x ∈ C, one must have
(x+D)∪ (−x+D)∩C ̸= ∅, so any x, y ∈ C will have (x−y+x)+D = x+D, meaning x−y ∈ H(D).
But we have put too many points in H(D), so we have achieved our contradiction. ■

Corollary 2.39. Fix an abelian k-variety A. Then A is a projective k-scheme.

Proof. It suffices to produce an ample line bundle L. By Theorem 2.38, it suffices to produce an effective
divisor D such that H(D) := {closed x ∈ A : x+D = D} is finite.

For our construction, let U ⊆ A be an affine open neighborhood of e. Then D := A \ U is an effective
divisor (it is a fact that D is pure of codimension 1!). We will show our finiteness in two claims.

• We claim H(D) ⊆ U . Indeed, if x ∈ H(D), then x+D = D, so x+ U = U by taking complements, so
x ∈ U .

• We claim H(D) ⊆ A is closed. Indeed, note there is a map m : A ×D → A, and H(D) by definition is
prA

(
m−1(D)

)
. But D ⊆ A is closed, and A is proper, so H(D) is thus closed.

The above two claims imply that H(D) is finite: giving H(D) the reduced closed subscheme structure, we
see thatH(D) ⊆ A is a proper k-variety, but it is contained in the affine k-variety U , soH(D) must be zero-
dimensional. (For example, to show finiteness, we may as well assume irreducibility, but then if we have
positive dimension, then we will get non-constant global sections from U , so dimH(D) = 0 is forced.) ■

2.5 February 14

We began class by completing the proof of Theorem 2.38, which I have edited into directly.

45



2.5. FEBRUARY 14 254B: COMPLEX MULTIPLICATION

2.5.1 Finishing Up Ample Line Bundles

From last class, we needed the following lemma.

Lemma 2.40. Fix an irreducible projective curve C sitting inside an abelian k-variety A. Given an effec-
tive divisor E with E ∩ C = ∅, we will have (x− y) + E = E for any x, y ∈ C.

Proof. Fix L := OA(E); the hypothesis is that L|C = OC . Note there is a (restricted) multiplication map
m : C ×A→ A, so we may look at the line bundle m∗L on C ×A. For example, for a ∈ A, we may compute

χ
(
m∗L|C×{x}

)
= χ (t∗xL|C) .

On the other hand, the Euler characteristic needs to be constant in our family, so we can compute this at
x = 0A as χ(t∗0L|C) = χ(OC). From here, Riemann–Roch implies deg t∗xL|C = degOC = 0. But E being an
effective divisor requires that t∗xL|C to fully trivialize, so either (x + E) cannot intersect C at all. Thus, for
any x, y ∈ C and z ∈ E, one has z ∈ (z − y + C) ∩ E, so actually z − y + C ⊆ E, so z − y + x ∈ E, so
z ∈ (y − x) + E. Looping over all z ∈ E completes the proof. ■

Here is a nice application.

Corollary 2.41. Fix an abelian k-variety A. For any nonzero integer n, the map [n]A : A → A is an
isogeny.

Proof. Because the dimension of the target and source are the same, it is enough to check that [n]A is sur-
jective or finite kernel; see [Mil08, Proposition 7.1]. The point is that the dimension of the fiber needs plus
the dimension of the image needs to be the dimension of the target.

As such, we will show that [n]A has finite kernel. Well, fix an ample line bundle L on A, which exists
by Corollary 2.39. In fact, we may replace L by L ⊗ [−1]∗L, which is still ample because pulling back by an
automorphism [−1] preserves being ample. So [−1]∗L = L, and then we can compute [n]∗L = L⊗n2 .

LetA[n] be the kernel of [n] : A→ A. We want to show thatA[n] is finite, and becauseA is quasicompact,
it will be enough to show thatA[n] is zero-dimensional. Now,A[n]◦ is an abelian variety, so we want to show
that A[n]◦ = {0A}. But

[n]∗L|A[n]◦
∼= OA[n]◦ ,

so the trivial line bundle onOA[n]◦ is ample, forcing A[n]◦ to be zero-dimensional. ■

2.5.2 Degree

We will want to understand the degree of isogenies. Let’s go ahead and give the general definition of de-
gree.

Definition 2.42 (degree). Fix a dominant morphism of f : X → Y of integral k-schemes such that
dimX = dimY . Then deg f := [K(X) : K(Y )] is the degree of f ; we define the separable degree and
inseparable degree accordingly. We say that f is separable if and only if f : K(Y )→ K(X) is separable.

Here is another way to think about degree.
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Definition 2.43 (degree). Fix a proper k-variety X and a line bundle L on X. For a coherent sheaf F on
X, we define PL : Z→ Z by

PL(F , n) := χ
(
F ⊗ L⊗n) .

It turns out that PL is a polynomial of degree bounded above by dimX, by [Vak17, Theorem 19.6.1].
Then the degree of F with respect to L is the number dL(F) making the leading term of PL(F , n), in
the sense that

lim
n→∞

PL(F , n)
dL(F)ndimX/(dimX)!

.

Then we define the degree as degL := dL(OX).

Let’s see how these align.

Proposition 2.44. Fix a finite dominant morphism of f : X → Y of proper integral k-schemes such that
dimX = dimY . Then

(deg f)(degL) = deg f∗L.

Example 2.45. Fix an abeliank-varietyA. Then we claimdeg[n]A = n2 dimA. As in Corollary 2.41, choose
an ample line bundle L with L = [−1]∗L. Being ample implies degL > 0: by taking powers, we may
assume thatL is very ample, and then one can do an explicit computation. (Alternatively, do intersection
theory to realize the degree as an intersection number, which is positive.) But we showed

[n]∗L = L⊗n2

,

so the result follows from Proposition 2.44.

2.6 February 16
Today we continue discussing degree.

2.6.1 More on Degree
Let’s just get going.

Lemma 2.46. Fix a proper integral k-scheme X with generic point η. For a line bundle L on X and a
coherent sheaf F on X, we have

dℓ(F) = (rankFη)(degL).

Proof. This is a standard “dèvissage” argument. Because χ is additive in short exact sequences, it is enough
to check that there is a coherent sheaf of ideals I ⊆ OX fitting in the exact sequence

0→ IrankFη → F → Q→ 0,

whereQ is a torsion sheaf where suppQ is a closed subscheme ofX of positive codimension, and suppOX/I
is also a closed subscheme of X of positive codimension. Indeed, this will imply that

dℓ(F) = rankFη · dℓ(I) = rankFη · degL

by staring at our short exact sequences.
So it remains to find I. Well, F is coherent with rank r, so a spreading out argument promises that we

can find an open subscheme U ⊆ X such thatF|U = O⊕r
U . Then we can viewX \U as a divisor and take the

line bundle associated to it given by I. Because U is dense, the quotient J will end up being torsion, which
is enough. ■
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Proposition 2.44 will follow from this.

Proposition 2.44. Fix a finite dominant morphism of f : X → Y of proper integral k-schemes such that
dimX = dimY . Then

(deg f)(degL) = deg f∗L.

Proof. Exactness of f allows us to see

Hi
(
X, f∗L⊗n) = Hi

(
Y, f∗f

∗L⊗n) .
Now, the adjunction formula tells us that this is Hi(Y, f∗OX ⊗ L⊗n), so unwinding our characteristic poly-
nomial reveals that

deg f∗L = dL(f∗OX) = (deg f)(degL),

where the last equality has used Lemma 2.46. ■

Remark 2.47. One can weaken f from being finite to dominant by passing to an open subscheme where
we are finite.

This allows us to understand [n]A.

Theorem 2.48. Fix an abelian k-varietyA. For any nonzero integern, the map [n]A : A→ A is an isogeny
of degree n2 dimA.

(a) [n]A is separable if and only if char k ∤ n.

(b) If p := char k, then the inseparable degree of [p]A is at least pdimA.

Proof. The degree computation is immediate from Proposition 2.44 and the computation [n]∗AL = L⊗n2 for
an ample symmetric line bundle L.

For (a), we note that [n]A is separable if and only if it is étale (indeed, [n]A is already flat by miracle flat-
ness), so it is enough to check smoothness. But being a group scheme means that we may as well check
smoothness only at 0A ∈ A. Well, an induction on n shows that d[n]A|0A : LieA → LieA is multiplication-
by-n,2 and this map is invertible if and only if char k ∤ n.

Now, for (b), we note that d[p]|0A : LieA→ LieA is the zero map. However, [p] : A→ A produces a map
by pullback in the opposite direction given by [p]∗Ω1

A → Ω1
A. This map on the stalk at 0 is dual to the map

on LieA, which is the zero map, so homogeneity now requires that [p]∗Ω1
A → Ω1

A is fully the zero map. In
other words, for any f ∈ K(A), we have [p]∗df = 0 in Ω1

K(A)/k, which upon unwinding definitions (in the
differentials) implies

[p]∗f ∈ K(A)p.

The moral of the story is that [p]∗K(A) → K(A) factors through k · K(A)p. But K(A)p has transcendence
degree dimA over k, so this extension has inseparable degree at least pdimA. ■

Corollary 2.49. Fix an abelian k-variety A.

(a) If char k ∤ n, then A[n](k) ∼= (Z/nZ)2 dimA.

(b) If n = pν where p := char k > 0, then A[p](k) ∼= (Z/pνZ)i for some i ≤ dimA.

2 The main thing to check is that dm(t1, t2) = t1 + t2. This is computed in [Mum08, p. 40].
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Proof. For (a), the point is that [n]A being separable implies thatA(k)[n] = deg[n]A, so we know thatA(k)[n]
at least has the correct size by Theorem 2.48. Now, for n = ℓν a prime power, one can induct on the power
and use the fact that it has a quotient of the formZ/ℓν−1Z given by multiplication-by-ℓ, so the sharper result
holds. If n is not a prime power, then we decompose into prime powers to conclude.

The argument for (b) is similar. Note deg[p] = p2 dimA still, but we have at least dimA stuck in inseparable
degree, so

#A(k)[p] = degsep[p] =
p2 dimA

deginsep[p]
= pi

for some 0 ≤ i ≤ g. But the group is p-torsion, so we get (Z/pZ)i, and the same induction on n achieves the
result for pν in general. More explicitly, we write out the exact sequence

0→ A(k)[p]→ A(k)[pν ]
p→ A(k)

[
pν−1

]
→ 0,

which forces the middle by induction. ■

Remark 2.50. The i in the above result is usually called the “p-rank” ofA. It is an isomorphism invariant,
so for example it can produce a stratification of the moduli space. As an example of this being interest-
ing, it is known that having maximal p-rank implies thatA is “ordinary,” which relates to the Frobenius
action.

This permits the following definition.

Definition 2.51 (Tate module). Fix an abelian k-variety A and a prime ℓ coprime to char k. Then

TℓA := lim←−A[ℓ
•].

The point is that TℓA = Z2 dimA
ℓ by taking limits over Corollary 2.49.

Remark 2.52. To define a Tate module for ℓ = char k, one needs to define a p-divisible group.

2.6.2 The Picard Scheme
We will need a little moduli theory but not too much. In particular, we need the Picard functor.

Definition 2.53 (Picard). Fix a k-schemeX. Then the Picard functor takes k-schemes T to PicX/k(T ) of
isomorphism classes of line bundles on X ×k T . Given a k-rational point x ∈ X(k), this is in bijection
with “rigidified” line bundles (L, α) on X ×k T , where α : L|{x}×T ∼= OT is a choice of trivialization.

Here is the theorem.

Theorem 2.54 (Grothendieck). The functor PicX/k is representable by a separated k-scheme locally of
finite type. In fact, Pic◦X/k is quasi-projective and is projective if X is smooth.

We will not need to know any part of this proof, but we do need to use that this scheme exists.

Remark 2.55. One can check directly that PicX/k ⊗k = PicXk/k
by some base-change like argument.

2.7 February 21
Today we begin our discussion of duality in earnest. Homework will be posted next week.
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2.7.1 The Picard Scheme of an Abelian Variety
Note that an abelian k-variety A has a k-rational point 0A ∈ A(k) and is smooth, projective, and so on.
Thus, Pic◦A/k A exists. Because A is smooth, this scheme is projective. We would like this to agree with our
construction of Pic0A from earlier.

Theorem 2.56. Fix an abelian k-variety A. Then Pic◦A/k(k) = Pic0(A).

Namely, our goal is to make sense of the following definition.

Definition 2.57 (dual abelian variety). For an abelian k-variety A, we set A∨ := Pic◦A/k to be the dual
abelian variety.

We know that Pic◦A/k is a connected (and hence irreducible) group scheme, but we do not yet know if it is
smooth; Theorem 2.56 will help with this. For example, we do know that A∨

red is in fact an abelian variety.
It will help to have the following notion.

Definition 2.58 (Poincaré line bundle). Fix a k-schemeX for whichPicX/k exists. Then there is a univer-
sal Poincaré (rigidified) line bundle (P, αP) on X ×k PicX/k where α : P|{x}×PicX/k

∼= OPicX/k
. Namely,

(P, α) corresponds to idPicX/k
∈ hPicX/k

(PicX/k).

Remark 2.59. Unwinding via the Yoneda lemma, any T -point φ : T → PicX/k corresponds to the rigidi-
fied line bundle (L, α) = φ∗(P, αP). For example, if k′/k is a field extension, then a k′-point λ ∈ PicX/k
corresponds to the rigidified line bundle P|X×{λ}.

It will be useful to have some notion of equivalence.

Definition 2.60 (algebraically equivalent). Fix line bundles M and N over a k-scheme X, where k is
algebraically closed. ThenM and N are algebraically equivalent if and only if there is a connected k-
variety T and a line bundle L over Xk × T and t1, t2 ∈ T (k) such that

M∼= L|X×{t1} and N ∼= L|X×{t2}.

Remark 2.61. One may restrict T to just being a curve by finding a curve between t1 and t2.

Remark 2.62. Rational equivalence basically amounts to taking T = P1
k.

Algebraic equivalence is in fact a weaker condition.

Lemma 2.63. Fix a line bundle L′ on a k-scheme X (with marked point e ∈ X(k)) coming from some
λ ∈ PicX/k(k) (where we assume PicX/k exists). Then λ ∈ Pic◦X/k(k) if and only if L′

k
and OXk

are
algebraically equivalent.

Proof. In the forward direction, we take T :=
(
Pic◦X/k

)
k,red

, which is a connected variety. (For connectivity,
we see) Then the universal line bundle P restricts to L′ on X × {λ} (by definition of λ) and restricts to OX
on X × {e} (by definition of P).

In the reverse direction, pick up our k-scheme T and the provided line bundle L over X × T with points
t1, t2 ∈ T , and let {Ui}i∈I be a trivializing open cover, and we assume that the Ui are connected. Notably,

50



2.7. FEBRUARY 21 254B: COMPLEX MULTIPLICATION

being a trivializing open cover means that we have equipped ourselves with morphisms Ui → PicX/k. Now,
we know

L|Xk×{t1}
∼= L′

k
and L|Xk×{t2}

∼= OXk
.

Now, the marked point t2 lives in some Ui, and this Ui goes to Pic◦X/k by the above trivialization, so because
T is connected, actually is all maps to Pic◦X/k. Thus, we can specialize to t1 to get L in Pic◦X/k.What? ■

This allows us to prove part of Theorem 2.56.

Lemma 2.64. Fix an abelian k-variety A. Then Pic◦A/k(k) ⊆ Pic0(A).

Proof. Let P be the universal line bundle on A×A∨
red, which is legal because we’re only ever going to work

with k-points anyway. Now, pick up some L ∈ Pic◦A/k(k), and we need to show that

m∗L ∼= pr∗1 L ⊗ pr◦2 L.

By pullback, it suffices to show this for P , so define

M := (m⊗ idA∨)∗P ⊗ (pr1⊗idA∨)∗P−1 ⊗ (pr2⊗idA∨)∗P−1,

which we want to show is trivial. Well, the above is a line bundle on A × A × A∨, so we use Theorem 2.7.
For this, note P|{0A}×A∨

red

∼= OA∨
red

by construction of the universal line bundle, and P|A×{0A∨} ∼= OA again
by construction. Now,

M|{0A}×A×A∨
red

∼= pr∗1

(
P|{0A}×A∨

red

)
because the first and last terms cancel, and the above line bundle trivializes as discussed; the argument is
similar for A× {0A} ×A∨. Lastly, we see

M|A×A×{0A∨
red

} =
(
m∗ ⊗ (pr∗1)

−1 ⊗ (pr∗2)
−1
)
(P|A×{0A})

vanishes because now we’re just over A×A. ■

Before showing the other inclusion, we make some remarks. Well, given some line bundle L, we build
φL : A(k)→ Pic0(Ak), which we claim actually factors through Pic◦A/k(k). Indeed, for x ∈ A(k), we want to
know that t∗xL ⊗ L−1 is algebraically equivalent to OAk

by Lemma 2.63. But then Ak × Ak itself witnesses
the algebraic equivalence because you can write down a line bundle which specializes to both t∗xL⊗L−1 and
t∗eL ⊗ L−1 (the latter of which is trivial).

So we are going to want to show the following.

Proposition 2.65. Fix an abelian k-varietyA and an ample line bundleLonA. Then the mapφL : A(k)→
Pic0(Ak) is surjective.

It will help to prove the following lemma.

Lemma 2.66. Fix an abelian k-varietyA and a nontrivial line bundleL ∈ Pic0(A). ThenHi(A,L) = 0 for
all i.

Proof. We begin by showingH0(A,L) = 0. Well, if this is not the case, then we may find an effective divisor
D ⊆ A such that L ∼= OA(D) by viewing Γ(A,L) as parameterizing linear systems. Now, we compute

OA = 0∗AL = ([1]A × [−1]A)∗m∗L = ([1]A × [−1]A)(pr∗1 L ⊗ pr∗2 L) = L ⊗ [−1]∗L.

But then we are being told that D + [−1]∗D is rationally equivalent to 0, which forces L to be trivial.
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For the second part, we use the Künneth formula. Let k be the smallest positive integer whereHk(A,L)
is nonzero; note k > 0 by the above paragraph. Now, we note that we have the commutative diagram.

Hk(A,L) Hk(A×A,m∗L)

Hk(A,L)

m∗

(0A×idA)∗

Thus, Hk(A×A,m∗L) is nonzero, but the Künneth formula tells us that

Hk(A×A,pr∗1 L ⊗ pr∗2 L) =
⊕
i+j=k

Hi(A,L)⊗Hj(A,L).

The left-hand side is nonzero, but then some term on the right-hand side must be nonzero, which is a con-
tradiction because we cannot have i = 0 or j = 0. ■

2.8 February 23
Today we are joined by a peach and a crab.

2.8.1 More on the Picard Scheme
Recall we were in the middle of proving Proposition 2.65. Morally, we are saying that A is isogenous to its
dual.

Proposition 2.65. Fix an abelian k-varietyA and an ample line bundleLonA. Then the mapφL : A(k)→
Pic0(Ak) is surjective.

Proof. We may take k to be algebraically closed. Assume for the sake of contradiction that there is a line
bundleM∈ Pic◦(Ak) which is not of the form φL(x) = t∗xL ⊗ L−1, so we set

N := m∗L ⊗ pr∗1 L−1 ⊗ pr∗2
(
L−1 ⊗M−1

)
,

which is a line bundle on A×A.
We now use the Leray spectral sequence.

Theorem 2.67 (Leray spectral sequence). Fix a morphism f : X → Y of schemes and a quasicoherent
sheaf F on X. Then there is a spectral sequence

Epq2 = Hp(Y,Rqf∗F)⇒ Hp+q(X,F).

We will apply this toN on A×A with the two projections pr1,pr2 : A×A→ A.

• For example, N|{x}×A = t∗xL ⊗ L−1 ⊗ M−1 (which is nontrivial), so its cohomology vanishes by
Lemma 2.66. Thus, we see that Rj pr1∗N = 0 by computation of higher direct images via Theo-
rem 2.18, so its cohomology vanishes.

• On the other hand,N|A×{x} = t∗xL ⊗ L−1 is trivial if and only if x ∈ K(L) using the notation of Theo-
rem 2.38, which is a finite set by that theorem, soHj(A,N|A×{x}) = 0 for x ∈ A \K(L), meaning that
the higher direct images on A×K(L) need to vanish via Theorem 2.18.
In other words,Rj pr2∗N is a coherent sheaf supported in the finite setK(L). In particular, dimension
arguments mean that Hi(A,Rj pr2∗N ) = 0 for positive i. So our spectral sequence looks like the

52



2.8. FEBRUARY 23 254B: COMPLEX MULTIPLICATION

following diagram.
0 • 0 0

0 • 0 0

0 • 0 0

Because our spectral sequence is converging on this E2 page, we are able to conclude that

Hn(A×A,N ) = H0(A,Rn pr2∗N ).

Our previous point tells us that the left group vanishes, but then the right-hand sheaf is just supported
on finitely many points and so will have global sections unless we actually have Rn pr2∗N = 0 for all
n. However, N|A×{0A} ∼= OA by construction, so the vanishing of our higher direct images provides
contradiction because H0(A,OA) ̸= 0. ■

This concludes the proof of Theorem 2.56. Notably, we are now able to upgrade φL to a full morphism
A → Pic◦A/k sending rigidified line bundles to what we expect them to be. (Explicitly, φL is realized on the
level of the moduli spaces.) We factor through Pic◦ because A is connected, meaning that the image of φL
needs to actually land in the connected component.

Remark 2.68. Notably, ifL is an ample line bundle, we get a surjective mapφL : A→ Pic◦A/k, sodimA =
dimA∨.

2.8.2 Smoothness of the Dual Abelian Variety
Here is the desired result.

Theorem 2.69. Fix an abelian k-variety A. Then A∨ = Pic◦A/k is smooth.

Notably, it will be enough to show that A∨ is smooth somewhere (because we are a group), so it is enough
to show that dimT0A

∨ = dimA.
It will help to provide a cohomological description of the tangent space.

Lemma 2.70. Fix an abelian k-variety A. Then T0A∨ ∼= H1(A,OA).

Proof. By definition,
T0A

∨ := ker (A∨(Λ)→ A∨(k)) ,

where Λ := Spec k[ε]/
(
ε2
)

is the ring of dual numbers. Unwinding the definition of A∨, we are looking at

T0A
∨ := ker

(
PicA/k(Λ)→ PicA/k(k)

)
,

where we may replace Pic◦ with Pic because 0 ∈ Pic◦A/k anyway. As a moduli description, we see that Pic
classifies line bundles up to some suitable equivalence, but this equivalence vanishes over the affine scheme
Λ, so we are going to want to have an exact sequence

0→ T0A
∨ → Pic(A× Λ)→ PicA.

On the other side of things, we know Pic(X) = H1(X,O×
X) for any scheme X, which explains how coho-

mology is going to appear. Notably, one has the “exponential” exact sequence

0→ OA → O×
A×Λ → O

×
A → 1,
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of quasicoherent sheaves onA, where the first map sends f 7→ 1+ εf , and the second map comes from the
inclusionA→ A×Λ. Notably, the inclusionA→ A×Λ has a splitting given by the projection, so the above
exact sequence will also split. Because we split, we will remain exact upon applying global sections, so long
exact sequence may read

0→ H1(A,OA)→ H1(A× Λ,O×
A×Λ)→ H1(A,O×

A)→ · · · .

(Here,H1(A×Λ,O×
A×Λ) = H1(A,O×

A×Λ) because the inclusion is a closed embedding.) The point is that we
get the following morphism of left exact sequences.

0 T0A
∨ Pic(A× Λ) PicA

0 H1(A,OA) H1(A× Λ,O×
A×Λ) H1(A,O×

A)

The dashed arrow is induced an isomorphism, so we are done. ■

Theorem 2.69 will now follow from the following proposition.

Proposition 2.71. Letk be an algebraically closed field, and fix an abeliank-varietyA, and set g := dimA.
Then dimH1(A,OA) = g, and ∧

H1(A,OA) ∼=
g⊕
i=0

Hi(A,OA)

of graded k-vector spaces.

Remark 2.72. A similar statement holds for étale cohomology and other Weil cohomology theories.

Remark 2.73. In fact, we will be able to upgrade the isomorphism in Proposition 2.71 to an isomorphism
of Hopf k-algebras, where the Hopf algebra structure is provided by the cup product.

Notably, Theorem 2.69 follows from the above two results because we are directly told that dimT0A
∨ =

dimA = dimA∨.

2.9 February 26

We continue.

2.9.1 Cohomology Rings as Hopf Algebras
Last class we stated the following result.

Proposition 2.71. Letk be an algebraically closed field, and fix an abeliank-varietyA, and set g := dimA.
Then dimH1(A,OA) = g, and ∧

H1(A,OA) ∼=
g⊕
i=0

Hi(A,OA)

of graded k-vector spaces.
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In fact, we will use the classification of Hopf algebras to show that both sides here are Hopf algebras and
that they are isomorphic. For example,

HA :=

g⊕
i=0

Hi(A,OA)

is a graded k-algebra with product given by the cup product. To see this cup product, one can define it by

HA ⊗k HA
∆∗

→ HA×A → HA

where the first map is the Künneth formula, and the last map is given by pullback along the diagonal∆: A→
A×A. In fact, there is some extra structure of a cocommutative coalgebra. Indeed, there is a map

HA
m∗

→ HA×A ∼= HA ⊗k HA,

where again the second map is the Künneth formula. We also have an inversion [−1]∗ : HA → HA. All of this
structure can be put into a Hopf algebra.

Definition 2.74 (Hopf algebra). Fix a field k. Then a Hopf algebra is a graded k-vector space equipped
with a productm : H ⊗H → H, a comultiplication ∆: H → H ⊗H, an inversion s : H → H, an identity
εH → k, and a coidentity δ : k → H, satisfying the following.

• (m, δ) makes H into a k-algebra.

• (∆, ε) makes H into a k-coalgebra, meaning that the following diagrams commute.

H H ⊗H

H ⊗H H ⊗H ⊗H

∆

∆

∆⊗id

id⊗∆

• The maps ∆ and m are algebra and coalgebra homomorphisms, respectively.

• The map s

Remark 2.75. We can see that commutative Hopf k-algebras A are equivalent to affine group k-sche-
mes. Indeed, one can just unwind the definition of an affine group k-scheme to see that they are just
schemes of the form SpecA where A is a commutative Hopf k-algebra.

We will also want some notion of commutativity in our graded setting.

Definition 2.76 (graded commutative). A k-algebra H is graded commutative if and only if any homo-
geneous elements a, b ∈ H have

ab = (−1)(deg a)(deg b)ba.

Example 2.77. Fix an abelian k-variety A. Then our work above tells us that HA is a finite dimensional
graded commutative Hopf k-algebra. In fact, we see that H0 = k by taking global sections. We also
note that we can compute

m∗(h) = (1⊗ h) + (h⊗ 1) +
∑
i>j>0

(hi ⊗ hj)

for some unknown hi and hj . One can see this because m maps 1⊗ h and h⊗ 1 to h.Why?

The above data will be enough for our classification result.
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Lemma 2.78. Fix a perfect field k. Suppose that H is a graded commutative Hopf k-algebra such that
H0 = k and Hr = 0 for r > g and any h ∈ H has

m∗(h) = (1⊗ h) + (h⊗ 1) +
∑
i>j>0

(hi ⊗ hj)

for some unknown hi and hj . Then dimH1 ≤ g; in fact, if dimH1 = g, then H ∼=
∧
H1 as graded

commutative Hopf k-algebras.

Sketch. One can show (and it is due to Borel) that such an H is generated by finitely many homogeneous
elements, generated essentially freely by these elements (i.e., the only relations are given by the graded
commutativity and nilpotent), so let these generators be x1, . . . , xm. Notably,

deg

m∏
i=1

xi =

m∑
i=1

deg xi ≤ g,

where the inequality at the end is because the product must be nonzero, so we see that dimH1 ≤ g because
dimH1 is upper-bounded by the number of xi with deg xi = 1. But if we have dimH1 = g, then the above
degree computation must achieve equality, so all the generators must have degree exactly 1, and there must
be g of them. Furthermore, we claim that x2j = 0 for each generator xj , which holds because x2j ̸= 0 means
that the product xj

∏
i xi is still nonzero but has degree larger than g, which is a contradiction. ■

One can then feed the above lemma into Proposition 2.71 to show that dimH1(A,OA) ≤ g, which is enough
for our purposes because the quasifinite surjection A ↠ A∨ promises that dimA∨ ≥ dimA. So in fact we
get the isomorphism claimed in Proposition 2.71. This in turn completes the proof of Theorem 2.69.

2.9.2 Polarizations

We now discuss some special isogenies.

Definition 2.79 (polarization). Fix an abelian k-variety A. An isogeny λ : A→ A∨ is a polarization if and
only if λk = φL for some ample line bundleL onAk. A polarization λ is principal if and only if deg λ = 1;
i.e., λ is an isomorphism.

Remark 2.80. Each line bundleL′ ∈ Pic◦A/k(A) will haveφL = φL⊗L′ , and in fact the converse still holds
by unwinding the definition of Pic0. As such, we can think about polarizations as being a subset of

Pic(Ak)

Pic0(Ak)
.

Definition 2.81 (Néron–Severi group). Fix an abelian k-variety A. Then the Néron–Severi group is

NS(A) :=
PicA/k(Ak)

Pic◦A/k(Ak)
.

Approximately speaking, the Néron–Serveri group measures polarizations.
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Remark 2.82. Take k = C. Then the exponential short exact sequence 0 → Z → OA → O×
A → 1

produces a long exact sequence

H1(A,Z)→ H1(A,OA)→ H1(A,O×
A)→ H2(A,Z).

Now,H1(A,OA)/H1(A,Z) ∼= Pic0(A) as discussed earlier, so we note that we have the exact sequence

H1(A,Z)→ H1(A,OA)→ H1(A,O×
A)︸ ︷︷ ︸

PicA

→ NS(A)→ 0.

Thus, NS(A) is a finitely generated Z-module because it embeds into H2(A,Z).

Remark 2.83. More generally, NS(A) is a free Z-module of finite rank for any abelian k-variety A, for
any field k. The point is that viewing NS(A) as polarizations will embed into

Homk(Ak, A
∨
k
)

by φ•, and the target is a free Z-module of finite rank because one can show that any prime ℓ with
char k ∤ ℓ builds an injection

Tℓ : Homk(Ak, A
∨
k
)→ Hom(Tℓ(Ak), Tℓ(A

∨
k
)),

and the target is a free Zℓ-module of finite rank, and the proof of this inclusion is able to show that the
source is thus free of finite rank (over Z!).

Remark 2.84. Just because λ is a polarization does not mean that there is a line bundle L on A such
that λ = φL. Take k to be perfect so that we can use Galois descent by G := Gal(k/k). By definition of
NS(A), we have an exact sequence

0→ A∨(k)→ PicA/k(k)→ NS(A)→ 0,

so we get a long exact sequence

0→ A∨(k)→ PicA/k(k)→ NS(A)G → H1(G,A∨(k)).

As such, we are asking if every λ ∈ NS(A)G comes from PicA/k(k), which might be false ifH1(G,A∨(k))
fails to vanish. However, it turns out that this is not the case if k is finite.

Remark 2.85. Fix a projective k-curve X and some k-rational point x0 ∈ X(k). One can show that
J(X) := Pic◦X/k is a smooth group scheme and hence an abelian variety. Now, each d > 0 produces a
map Xd → J(X) by sending (x1, . . . , xd) to the line bundle OX(x1) ⊗ · · · ⊗ OX(xd) ⊗ OX(−x0)⊗d. In
particular, it turns out that the image ofXg−1 → J(X) gives rise to an ample line bundle L and hence a
polarization φL. In fact, this is a principal polarization.

2.10 February 28

We now move into a discussion of quotients, so we will want to understand some descent. Homework will
be posted over the weekend.
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2.10.1 Cartier Duals
Our end goal is the following result.

Theorem 2.86 ([Mum08, Theorem 15.1]). Fix an isogeny f : A→ B of abelian k-varieties. Then there is
a dual isogeny f∨ : B∨ → A∨ defined by sending (L, α) ∈ Pic◦B/k(T ) to (fL, f∗α) ∈ Pic◦A/k(T ). In fact,
ker f∨ = (ker f)∨.

Remark 2.87. For definition of f∨ to make sense, f merely needs to be a homomorphism.

Wait, how does one define (ker f)∨? Well, we will use the Cartier dual [Mum08, §14].

Definition 2.88. Fix a finite commutative group k-schemeG given by the commutative (and cocommu-
tative) Hopf k-algebra H. Then we define the dual H∨ := Homk(H, k), which is still a Hopf k-algebra,
so the Cartier dual G∨ of G is the finite commutative group k-scheme

G∨ := SpecH∨.

Remark 2.89. Let’s explain howH∨ is a Hopf k-algebra. For example, the unit is a map k → H dualizes
to a mapH∨ → k, which is the counit; similarly, the multiplication is a mapH⊗kH → H, which dualizes
to a map H∨ → H∨ ⊗H∨, which is the comultiplication.

Remark 2.90. We can see on the level of Hopf algebras that G∨∨ = G.

More generally, one can discuss the Hopf algebra of morphisms.

Definition 2.91 (Hom scheme). Fix commutative groups S-schemesG andH. Then we define the func-
tor HomS(G,H) : SchS → Ab by

HomS(G,H)(T ) := HomT (GT , HT )

is in fact represented by an S-scheme frequently.

Let’s see an example of this, which provides another way to think about the Cartier dual.

Proposition 2.92. Fix a finite commutative group k-scheme G. Then G∨ represents Homk(G,Gm).

Proof. It suffices to check the result on affine schemes. Namely, given a k-algebra R, we need a (natural)
isomorphism between G∨(R) and HomR(GR,Gm,R). On one hand, we compute

G∨(R) = Homk(H
∨, R) = HomR(H

∨ ⊗k R,R).

Notably, this is a subset ofR-linear mapsH∨⊗kR→ R, which isHR after taking another dual. Well,φ ∈ HR

if and only if φ(1) = 1 and φ(ab) = φ(a)φ(b). Explicitly, letting ∆: H → H ⊗k H denote the comultiplication
and letting ε : H → k denote the counit, we find that we are asking for ∆R(φ) = φ⊗ φ and εR(φ) = 1.

On the other hand,
HomR(GR,Gm,R) = HomHopfR

(
R[t, t−1], HR

)
.

Thus, we see that we are in bijection with invertible elements of HR such that the relevant map preserves
the Hopf algebra structure. In particular, preserving the comultiplication map t 7→ t⊗ t is asking for φ ∈ HR

to be invertible as well as ∆R(φ) = φ⊗ φ.
So in total, we need to relate units inHR to having εR(φ) = 1, which is a general fact. Certainly εR(φ) = 1

implies that φ is a unit by using the comultiplication. In the reverse direction, we note 1 · 1 = 1 rewrites as
(ε⊗ ε) ◦∆ = ε, meaning that εR(φ)2 = εR(φ) always, so φ being invertible requires εR(φ) = 1. ■
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Remark 2.93. Fix a finite commutative group k-schemeGwithG = SpecH for Hopf k-algebraH. Then
k[G] ∼= H∨, where we send g ∈ G to the mapH → k corresponding to evaluation at g. (Notably, we are
viewing H as global sections of G, so evaluation makes sense.)

Example 2.94. Take G = (Z/nZ)k, which we note is an étale reduced group scheme with n (closed)
points. We claim thatG∨ = µn. SetH to be the Hopf k-algebra corresponding toG. Using the previous
remark, we find that

H∨ = k[G] =
k[x]

(xn − 1)

at least as k-algebras. It remains to check that comultiplication structure is the same on both. On µn,
the comultiplication structure is given by x 7→ (x ⊗ x), so we just have to track it through on the dual.
Well, for global sections f, g ∈ H, we evaluate

(fg)([1]n) = f([1]n)g([1]n) = (f ⊗ g)([1]n ⊗ [1]n),

so we have the correct comultiplication.

2.10.2 fpqc Descent
We take a short intermission to discuss fpqc descent. There are lots of references; for example, see [Con15,
§6]. We will work with relatively light hypotheses.

Definition 2.95 (fpqc). A morphism f : X → Y of schemes is fpqc if and only if it is faithfully flat and
quasicompact.

Remark 2.96. Somehow we are generalizing the discussion for gluing on Zariski opens.

Let’s discuss what gluing looks like. Fix a map f : S0 → S which is fpqc; then we set S1 := S0 ×S S0 and
S2 := S0 ×S S0 ×S S0, and we let p12, p23, p13 : S2 → S1 and p1, p2 : S1 → S0 be the projections. We would
like to discuss when we can lift quasicoherent sheaves.

Definition 2.97 (descent datum). Fix everything as above. Given a quasicoherent sheaf F on S0, a de-
scent datum on F is an isomorphism θ : p∗1F → p∗2F of quasicoherent sheaves on S1 satisfying the
“cocycle condition” that

p∗13θ = p∗23θ ◦ p∗12θ.

A morphism of descent datum h : (F , θ)→ (G, ψ) is a morphism of the quasicoherent sheaves commut-
ing with the isomorphisms. In other words, the following diagram commutes.

p∗1F p∗1G

p∗2F p∗2G

p∗1h

p∗2h

θ ψ

More explicitly, the equality to define the descent datum is asking for the following diagram to commute.

p∗12p
∗
1F p∗12p

∗
2F p∗23p

∗
2F p∗23p

∗
1

p∗13p
∗
1F p∗13p

∗
2F

p∗12θ p∗23θ

p∗13θ
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The equalities listed above are really natural isomorphisms induced by equalities of projections; for example,
p1 ◦ p12 = p1 ◦ p13.

Here is our result.

Theorem 2.98. Fix a map f : S0 → S which is fpqc. Then QCoh(S) is equivalent to the category of
descent data (F , θ).

Proof. The forward map takes a quasicoherent sheafF onS to the pair (f∗F , θF )where θF is the composite

p∗1f
∗F = (f ◦ p1)∗F = (f ◦ p2)∗F = p∗2f

∗F .

It remains to discuss the inverse functor. The proof reduces to the affine case, where we are talking about
modules, and one can attempt to recover the original model from the descent datum by taking some kernel.

■

One can even discuss descent datum on schemes.

Definition 2.99 (descent datum). Fix an S0-scheme X. Build S1 and S2 and the projections as above.
Then a descent datum is an isomorphism θ : X ×S0,p1 S1

∼= X ×S0,p2 S1 such that

p∗13θ = p∗23θ ◦ p∗12θ.

Remark 2.100. In general, we do not expect to be able to actually get a scheme from descent datum,
but we will be okay for affine schemes because these are basically understood by their global sections.

2.11 March 1
Here we go.

2.11.1 The Dual Isogeny
Let’s prove Theorem 2.86.

Theorem 2.86 ([Mum08, Theorem 15.1]). Fix an isogeny f : A→ B of abelian k-varieties. Then there is
a dual isogeny f∨ : B∨ → A∨ defined by sending (L, α) ∈ Pic◦B/k(T ) to (fL, f∗α) ∈ Pic◦A/k(T ). In fact,
ker f∨ = (ker f)∨.

Proof. Fix ak-schemeT . Then (ker f∨)(T )by definition consists of rigidified line bundles (L, A) ∈ Pic◦B/k(T )
such that f∗(L, α) is trivial in A∨. It turns out that we can show that asserting we are in Pic◦B/k already: one
can show that t∗yL ∼= L directly for all y ∈ B. Explicitly, for x ∈ A, we note that t∗xf∗L ∼= f∗L because we
know that f∗L ∼= OA×T . As such, φf∗L is the zero map. But now we note that

φf∗L(x) = f∨(φL(f(x)))

because t∗xf∗L = f∗t∗f(x)L and some rearranging. So because the left-hand side vanishes, the right-hand
side will need to vanish; in particular, surjectivity of f requires the composite f∨ ◦ φL to vanish. We will
shortly see that f∨ has finite kernel as a map PicB/k → PicA/k, so f∨ is essentially an isogeny, so φL must
itself vanish. (Formally, one should argue on connected components to make sure everything is okay.)

We claim that this set is in bijection with just line bundles L on B × T such that f∗L ∼= OA×T . Indeed,
for any such line bundle L, having f∗L ∼= OA×T pins it down in the target, and then this actually fixes the
isomorphism α.
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To continue, we will use fpqc descent to the map A × T → B × T , which is fpqc because f : A → B is
an isogeny (flat, for example, by miracle flatness). The point is that Theorem 2.98 tells us line bundles on
B × T are equivalent to line bundles on A × T together with descent data. Let’s unwind the descent data;
set G := ker f .

• We take S0 := A× T and S := B × T .

• Then S1 := S0 ×S S0 is (A× T )B×T (A× T ). Pairs in S1 can be written as (a, a+ g) for some g ∈ ker f
(notably, the coordinates must agree down in B × T ), so this is just A× T ×G.

• Analogously, we see that S2 = A× T ×G× g.

Now, the line bundles L of interest need to be OA×T after pulling back by f , so θ : pr∗1OA×T → pr∗2OA×T
can be turned into an invertible global sectionOA×T×G → OA×T×G. Namely, θ ∈ Γ(A × T × G,O×

A×T×G).
BecauseA is proper over k, this really amounts to having θ ∈ Γ(T ×G,O×

T×G). Also note that we are asking
to satisfy a cocycle condition

pr∗13 θ = pr∗2 θ ◦ pr∗12 θ.

Let’s compare what we have withG∨(T ), which is supposed to be f ∈ Hom(GT ,Gm,T ). In other words, f is
a global section of Γ(T ×G,O×

T×G) such that ∆T (f) = f ⊗ f (to be a group homomorphism).
So it remains to show that the cocycle condition on θ corresponds to the homomorphism condition on f .

Well, tracking through all the identifications, we see that we are asking for

θ(a, g1 + g2) = θ(a, g1)θ(a+ g1, g2),

which unwinds to ∆T (θ) = θ ⊗ θ upon staring out how the Hopf algebra comultiplication behaves. ■

Remark 2.101. Because ker f is a finite group scheme, we see that (ker f)∨ is finite. Because f being
an isogeny requires dimA = dimB, we are able to conclude that f∨ is also an isogeny. In fact, deg f =
deg f∨ by plugging Theorem 2.86 into

deg f = dimk Γ(ker f,Oker f ).

Let’s run some other checks on duality.

Proposition 2.102. Given two morphisms f, g : A→ B of abeliank-varieties, we have (f+g)∨ = f∨+g∨.

Proof. It is enough to check this on B∨(k). By unwinding the definitions, it is enough to show that

(f + g)∗L
?∼= f∗L ⊗ g∗L.

But in fact L ∈ B∨(k) implies that m∗L ∼= pr∗1 L ⊗ pr∗2 L on B × B, which we can then pull back along
(f, g) : A→ B ×B to achieve the desired equality. ■

Corollary 2.103. Fix any abelian k-variety A. Then for any integer n ∈ Z, we have [n]A∨ = [n]∨A.

Proof. Note id∨A = idA∨ by unwinding definitions. Then for n ≥ 0, write [n]A = [1]A + · · · + [1]A and apply
Proposition 2.102. For n ≤ 0, one notes that [n] + [−n] = [0] to derive this from the positive case. ■

Remark 2.104. For example, we are able to say that A[n]∨ is A∨[n] after identifying duals suitably.
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2.11.2 Quotients
We will want quotients. For the correct references, see SGA 3, exposé 6, 3.2.

Theorem 2.105. Fix a closed normal group k-subscheme A ⊆ B, where A and B are fppf group k-
schemes. (Here, fppf means faithfully flat of finite presentation.) Then there is a unique fppf group
scheme C such that

1→ A→ B → C → 1

is exact in the category of fppf sheaves. In fact, C is the fppf sheafification of the fppf presheaf T 7→
B(T )/A(T ).

In life, A will typically be affine and in fact finite (such as the kernel of an isogeny). If B is also affine, then
one can take the ring ofA-invariants to do the job. In general, becauseA is finite, one may work locally onA
to complete the argument. Perhaps the gluing wants to glue along the fppf topology, for which one needs
to do descent.

Theorem 2.106 ([BLR90, Theorem 6.1.5]). Fix a map f : S0 → S which is fpqc. Then the functor from
SchS to S0-schemes with descent data is fully faithful. In fact, this upgrades to an equivalence if one
works with quasi-affine schemes.

This is enough to do our gluing because we only need uniqueness. The point of the above result is to reduce
this discussion to sheaves on the fpqc topology.

Remark 2.107. There is a general theory trying to build a quotient scheme modulo some proper and flat
equivalence relation; one essentially uses the Hilbert scheme to encode everything.

For our purposes, we are only ever going to take quotients by finite group schemes, but understanding quo-
tients in general can be helpful because, for example, this allows us to construction the Picard scheme by
taking a quotient of divisors by an equivalence relation to get line bundles.

2.12 March 4
Homework has been posted. It is due shortly before spring break. There will be another homework assigned
over spring break.

Remark 2.108. Any surjective group homomorphism f : A → B of abelian k-varieties will be fpqc au-
tomatically: quasicompactness has no content, and flatness follows by Miracle flatness.

2.12.1 Construction of the Dual Abelian Variety
For completeness, we provide a construction of Pic◦A/k; see [Mum08, §II.8, §III.13]. The point is to use the
surjection φL : A → Pic◦A/k (which we know exists on the functor of points), so one can recover Pic◦A/k as a
quotient group scheme by K(L) := kerφL. For example, in characteristic 0, our finite group scheme must
be smooth, so we should use the reduced scheme structure.

Quickly, we provide a moduli interpretation for A∨.

Definition 2.109 (Poincaré line bundle). Fix an abelian k-varietyA. The Poincaré line bundleP onA×A∨

is the line bundle satisfying P|0A×A∨ and P|A×λ ∼= λ for any (rigidified) line bundle λ ∈ A∨.

Remark 2.110. The line bundle P is unique by Proposition 2.19.
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To see that it exists, for given very ample line bundle L on A, define

M := m∗L ⊗ pr∗1 L−1 ⊗ pr∗2 L−1

on A × A. Notably, M|0A×A ∼= OA andM|A×{x} = φL(x) by some computation, so we expect to have
(idA × φL)

∗P =M. So we will be able to construct P by some suitable descent.
Let’s now give K(L) a scheme structure: we let it be the maximal subscheme of A such thatM|K(L)×A

is trivial; we won’t bother to check that this exists. It turns out that this is the correct scheme structure for
Pic◦A/k by some checking. So to finish our construction of the Poincaré line bundle as providing descent data
on

A×A×A×K(L) = (A×A)×A×A∨ (A×A)→ A×A∨.

The descent data now amounts to providing an isomorphismM ∼= (1 × tx)∗M for x ∈ K(L), which can be
done by staring at the group law.

2.12.2 Symmetry of Duality
We defined A∨ as a dual, so one should expect that A and A∨∨ are canonically isogenous. In general, a
line bundle Q (living in the connected component) on A × B produces a homomorphism κQ : B → A∨ by.
For example, P on A × A∨ corresponds to id : A∨ → A∨. However, swapping coordinates produces an
isomorphism σ : A × A∨ → A∨ × A will then produce a morphism κσ∗P : A → (A∨)∨, which we claim is an
isomorphism.

Proposition 2.111. Fix an abelian k-variety A with Poincaré line bundle P . Then swapping coordinates
produces an isomorphism σ : A×A∨ → A∨×Awill then produce a canonical isomorphism κσ∗P : A→
(A∨)∨. In fact, the following diagram commutes.

A (A∨)∨

A

φL

φ∨
L

κσ∗P

Proof. To see that κσ∗P is an isomorphism, we let L be ample so that φL and φ∨
L is an isogeny, and both of

these covers of A∨ have the same kernel by Theorem 2.86. Now, κσ∗P is an isogeny because everything in
sight is an isogeny (for example, everything has the same dimension, and finite kernel is forced because its
composite with φ∨

L has finite kernel), and we are able to conclude that κσ∗P is an isomorphism because it
has degree 1 (indeed, degφL = degφ∨

L).
We now show the commutativity of the given triangle by hand on closed points. In one direction,φL(x) =

t∗xL ⊗ L−1 for x ∈ A(k). In other direction, we begin by computing

κσ∗P(x) = P|{x}×A∨

by definition of κ, and

φ∨
L (κσ∗P(x)) = φ∨

L
(
P|{x}×A∨

)
= (id× φL)

∗P|{x}×A =
(
m∗L ⊗ pr∗1 L−1 ⊗ pr∗2 L−1

)
|{x}×A,

which agrees with the other side. ■

Remark 2.112. For an abelian k-varietyA, we will letPA be its Poincaré line bundle in this remark. Then
it turns out that PA∨ on A∨ × (A∨)∨ is σ∗PA pulled back along κ−1

σ∗PA
: A∨ × (A∨)∨ → A∨ × A. To see

this, I think one can use a moduli interpretation or the commutativity of the above diagram for some
uniqueness.

Proposition 2.111 motivates the following definition.
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Definition 2.113. Fix an abelian k-variety A. A homomorphism λ : A → A∨ is symmetric if and only if
λ∨ = λ up to the identification of A with A∨∨.

Example 2.114. A polarization φL is symmetric by Proposition 2.111 (perhaps needing to check on k-
points due to the definition of polarization).

Remark 2.115. Fix a morphism of abelian k-varieties f : A → B. Given a line bundle L on B, tracking
through moduli interpretations produces the following commutative diagram.

A B

A∨ B∨

f

f∨

φf∗L φL

This symmetry allows us to construct the “dual” isogeny.

Theorem 2.116. Fix an isogeny f : A → B of abelian k-varieties. Then there is an isogney g : B → A
such that g ◦ f = [deg f ]A.

Remark 2.117. It also turns out that f ◦ g = [deg f ]B and so deg g = deg f (where f and g are as above).
This is essentially by doing cancellation on isogenies via quotients.

The proof of Theorem 2.116 is surprisingly technical in its group theory. For example, one needs the fol-
lowing result.

Theorem 2.118 (Deligne). Fix a commutative finite flat k-group schemeG of orderm := dimΓ(G,OG).
Then G is killed by [m]G.

Proof. Omitted. We will show this later. ■

We now prove Theorem 2.116.

Proof of Theorem 2.116. Note f is fpqc, so descent tells us that a k-schemeX makesX(B) an equalizer of
pr1,pr2 : X(A) → X(A ×B A) by viewing X as a quasicoherent sheaf. (See [Con15, Theorem 6.2.14].) For
example, the composite

A× ker f ∼= A×B A
pr•→ A

[m]→ A

vanishes for each projection, wherem := deg f = dimker f . So [m] ◦ pr1 = [m] ◦ pr2, so descent tells us that
[m] factors through f , which is what promises the existence of g. ■

2.13 March 6
Here we go.

2.13.1 Poincaré Reducibility
Now that we have a notion of inverse isogeny, we are able to establish the following result.
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Theorem 2.119 (Poincaré reducibility). Fix an abelian k-subvarietyB ofA. Then there exists an abelian
k-subvariety B′ such that m : B ×B′ → A is an isogeny.

Proof. Let i : B ↪→ A denote the inclusion. We want to build a complement forB, which is essentially going
to be a quotient ofA∨ (by duality). Explicitly, there is a dual morphism i∨ : A∨ → B∨, and pick an ample line
bundleL onA to provide a polarizationφL : A→ A∨. Notably, we have the following commutative diagram.

B A

B∨ A∨

i

i∨

φLφi∗L

As such, we consider the kernel of (i∨ ◦ φL) : A → B∨, and we let B′ be the reduced scheme structure on
the connected component so that B′ is in fact an abelian k-variety.

It remains to check that B′ works. Note that the kernel of the addition map B × B′ → A is contained in
B ∩ B′ (on k-points), which is contained in the kernel of φi∗L by the commutativity of the above diagram,
which is finite because φi∗L is finite. So it is enough to just check that

dimB + dimB′ ?
= dimA.

Well, finiteness of B ∩ B′ at least gives dimB + dimB′ ≤ dimA, so we only need the other inequality. The
main difficulty arises from understanding dimB′. Well, abelian varieties have pure dimension, so

dimB′ = dimker(i∨ ◦ φL) = dimker i∨.

(The second equality holds because φL has finite kernel, so it cannot adjust the dimension of the fiber.)
Now, i∨ : B∨ → A∨ is a group homomorphism, so all its fibers have the same dimension, and generically
the dimension must be upper-bounded by dimA∨ − dimB∨, which is dimA− dimB. ■

2.13.2 Finite Group Schemes
We are morally studying finite flat group schemes G over a base scheme S, but we will ignore flatness and
just work over a field k (where everything is flat). We would like to move towards a classification.

Definition 2.120 (connected). Fix a finite group k-scheme G. Then G is local or connected if and only if
G is connected; i.e., G = G◦.

Example 2.121. Fix a field k of characteristic p (possibly 0), and let µn be the kernel of [n] : Gm → Gm.
Then

µn = Spec
k[x]

(xn − 1)

is only connected when n is a power of p, and µn is étale if and only if p ∤ n.

Here is our main result.Unique?

Proposition 2.122. Fix a finite group k-scheme G. Then there is a connected group k-scheme Gloc and
étale group k-scheme Gét such that

1→ Gloc → G→ Gét → 1

is exact (as fppf sheaves, for example). In fact, if k is perfect, then this splits naturally in G.

Morally, one should have Gloc = G◦ and Gét to be the quotient given the reduced scheme structure. We
begin with a lemma.
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Lemma 2.123. Fix a field k. There is an equivalence of categories between finite étale k-algebras and
finite étale k-schemes. Explicitly, one sends a finite étale k-scheme X to Γ(X,OX) and goes in the
opposite direction

Proof. Everything is affine, so we are just moving the words étale and finite back and forth. ■

Lemma 2.124. Fix a field k. There is an equivalence of categories between finite étale k-schemesX and
finite sets with continuous Gal(ksep/k)-action.

Proof. Send a schemeX to the setX(ksep); one can see that this is fully faithful, so it is enough to show that
we are essentially surjective. We will just give a functor from sets with action byG := Gal(ksep/k) to a finite
étale k-algebra. Well, we just take (∏

s∈S
ksep

)G
,

where G acts by permuting the coordinates and component-wise at the same time. This produces a finite
étale k-algebra. ■

Example 2.125. Fix a field k of characteristic p := char k, and choose an integer n coprime to p. Then µn
is an étale group scheme, and it corresponds to the set µn(ksep), which is the set of nth roots of unity
(equipped with Galois action).

We now add in group structure.

Lemma 2.126. Fix a field k. Then the category of finite étale k-group schemes is equivalent to the cat-
egory of finite groups with continuous action by Gal(ksep/k).

Proof. Set G := Gal(ksep/k) for brevity. Then use the previous lemma and add in group structure every-
where. ■

Example 2.127. Let k be algebraically closed. The category of group k-schemes G is just the category
of groups because we are looking for sets with action by the trivial group.

To continue, we will want an understanding of étale morphisms. In particular, we want the notion of “for-
mally étale.”

Proposition 2.128. Fix a field k and a finite type k-scheme X. Then there is a finite étale k-scheme
π0(X) and map q : X → π0(X) with the following universal property: any map q′ : X → Y ′ such that Y ′

is finite étale factors uniquely through q.

Morally, we should think about π0(X) as (geometrically) connected components.

Proof. The main point is the construction of π0(X), for which it is enough to give a set π0(X)(ksep) with
continuous action by G := Gal(ksep/k). Well, just take our set to be π0(Xksep) to be the collection of geo-
metrically connected components. Then note that G acts on Xksep continuously, so it will also permute the
connected components, so our action descends to π0(Xksep). Thus, we have indeed constructed some finite
étale k-scheme X.

Note that there is a natural mapX(ksep)→ π0(X)(ksep)given by sending a point to its connected compo-
nent, so we get to lift this to a map q : Xksep → π0(X)ksep . This map isG-invariant, so Galois descent provides
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a mapX → π0(X). (For example, one can even use Theorem 2.98.) We will not bother to check the universal
property, but this can be seen by construction because any q′ : X → Y ′ is essentially determined by where
it sends the connected components of X, all of whose information is given by π0(X). ■

Remark 2.129. One can also check that q is faithfully flat, and its fibers are the connected components
of q. Indeed, the fibers are the connected components by construction, so flatness follows by miracle
flatness, and q is faithful because q is geometrically surjective.

Remark 2.130. As usual, if X is a group k-scheme, then we can force π0(X) to be a group k-scheme
too.

We are now ready to prove Proposition 2.122.

Proof of Proposition 2.122. Take Gét := π0(G), which we know to be a finite étale group kscheme. Then
the exact sequence is essentially immediate. For k perfect, the point is that Gred ⊆ G is a smooth subgroup
k-scheme, and the splitting is given by

Gred → G→ π0(G),

whose composite we can find to be an isomorphism.Why? ■

We are now equipped to give the following definition.

Definition 2.131 (étale-local). Fix a commutative group k-schemeG. ThenG is étale-local if and only if
G is étale and its Cartier dual is connected.

Remark 2.132. One finds thatG is the sum of four pieces which are étale-étale, étale-local, local-étale,
and local-local. In fact, this decomposition is unique: any map to any other component must be the zero
map (a map from something local to something étale must be trivial and vice versa, essentially because
étale must reduce our scheme structure, but when connected, this must then just go to the identity).

Example 2.133. Fix a field k of characteristic p := char k, where p > 0.

• If n is coprime to p, then µn is étale-étale (in fact, it is self-dual).

• The group Z/pZ is dual to µp, so Z/pZ is étale-local, and µp is local-étale.

• There is a group αp is self-dual and local, so it is local-local.

In fact, one has the following remark.

Remark 2.134. Fix an algebraically closed field k of characteristic p > 0.

• The only étale-étale commutative group k-schemes G are products of µn where n is coprime to
p. Indeed, being étale means that G is a sum of cyclic groups µn ∼= Z/nZ, and we can only have n
coprime to p in order for the dual of µns to be étale.

• A similar point holds for étale-local as being products of Z/p•Z. Essentially the same argument
works, but now we need n to be a power of p in order for the dual factors µns to be local.

• Lastly, a similar point holds for local-étale as being products ofµp• . Indeed, the dual is étale-local,
and then we go to the previous point.

However, there can be lots of local-local commutative k-group schemes.
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Remark 2.135. Fix a field k of characteristic 0. Then every group k-scheme is smooth so every finite
commutative group k-scheme is étale-étale.

Here is an application.

Remark 2.136. Fix a field k of characteristic p > 0. Given an abelian k-variety A and positive integer n
coprime to p, one has

A[n]⊕A [pν ] ∼= A [npν ]

by the natural map. Note that A[n] is étale, and its dual is A∨[n], which continues to be étale. On the
other hand, one finds thatA[pν ] has no étale-étale part: one could take a decomposition, and any étale-
étale part remains that way after passing to ksep, whereupon Remark 2.134 tells us that we can only
have factors of µm with gcd(m, p) = 1, but A[pν ] has order which is a power of p.

2.14 March 8
Here we go.

2.14.1 Torsion as Finite Flat Group Scheme
The finite group k-schemes of interest to us are of the form A[n] where n is an integer. Remark 2.136 tells
us that the particularly bad case is A[pν ]k where p := char k is positive. We know that this will have no
étale-étale part, so it remains to find the remaining parts. Let’s use Remark 2.134 to take care of some of
these.

• We know that there will be some étale-local part of the form (Z/pmZ)r (one needs to induct on m).
Here, r is the p-rank.

• By duality, we have some local-étale part of the form µspm (again, one needs to induct on m).

We would like for r = s. This requires the following result.

Proposition 2.137. Fix abelian k-varieties A and B of p-rank rA and rB . If A and B are isogenous, then
rA = rB .

Proof. Let f : A → B be an isogeny, and let n be the order of ker f . Now, we see that f restricts to a group
homomorphism A[pm](k)→ B[pm](k) with kernel of size at most n, so in light of our kernel having order n,
we see that

pmrA ≤ npmrB

for all integers m. Sending m → ∞ forces rA ≤ rB ; by symmetry, we get the other inequality, so we are
done. ■

So we see that r = s because A and A∨ are isogenous.

2.14.2 Local Finite Flat Group Schemes
It remains to study the local-local piece. This is harder. We pick up the following definition.

Definition 2.138 (height one). Fix a field k of characteristic p > 0. A finite commutative local k-group
scheme G is of height one if and only if xp = 0 for all x ∈ m, where m is the maximal ideal at eG ∈ G.

The point of being height one is that its Lie algebra. To understand the Lie algebra, we need to discuss
differentials.
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Definition 2.139 (differential). Fix an S-group schemeG of finite type. Then Ω1
G/S is the sheaf of differ-

entials defined so that
HomOG

(
Ω1
G/S ,F

)
= DerS(OG,F)

for any quasicoherent sheaf F on S. Here, DerS(OG,F) refers to the OS-differentials δ : OG → F ,
which are additive maps vanishing on f−1OS ⊆ OG and satisfying the Leibniz rule.

And here is our Lie algebra.

Definition 2.140 (Lie algebra). Fix an S-group schemeG of finite type. Then the Lie algebra is the set of
left-invariant differentials in DerS(OG,OG), which is canonically identified with HomOG

(ΩG/S ,OG).

Remark 2.141. Fix an S-group scheme G of finite type. Then there is a natural isomorphism LieG ∼=
TeG given by sending a differential D to its restricted vector D|e. We refer to [Mum08, pp. 92–94] for
the proof; the idea is to construct an inverse map by using right translates of D|e to build D.

Anyway, here is our “classification” result, which at least gives us the coordinate ring.

Lemma 2.142. Fix a field k of characteristic p > 0. Fix a finite local k-group scheme G of height 1 with
coordinate ring R. Then

R ∼=
k[x1, . . . , xn]

(xp1, . . . , x
p
n)

for some n. In particular, dimk R is a power of p.

Proof. Fix x1, . . . , xn ∈ m which form a k-basis of m/m2. Because G is local, this extends to a surjection
k[x1, . . . , xr]→ R. Being height one tells us that we now get a surjection

k[x1, . . . , xn]

(xp1, . . . , x
p
n)
→ R.

We would like this to be an isomorphism. For this, we will want to show that no monomial with powers
less than p vanishes inR. (This is enough because any polynomial relation among the variables can multiply
through by various x•s in order to derive that a monomial must equal zero; we are crucially using that xp• = 0
already.)

We now use the Lie algebra. LetD1, . . . , Dn ∈ LieGbe differentials providing a dual basis forx1, . . . , xn ∈
m/m2. Lifting this back up to R tells us that

Dj

∏
i=0

xni
i ̸= 0

where 0 ≤ ni < p and nj ̸= 0. But now any monomial being zero must have all exponents equal zero by
applying the various D•s, so it remains to see that 1 ̸= 0. ■

Remark 2.143. Without the hypothesis on height, one needs to allow modding out by terms of the form
xp

•

i .

Let’s continue discussing the Lie algebra.

Definition 2.144 (Lie bracket). Fix an S-group schemeG of finite type. Then there is a Lie bracket given
by

[D1, D2] := D1D2 −D2D1

for any derivations D1, D2 ∈ LieG.
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Remark 2.145. If G is a k-group scheme of finite type, then if p := char k is positive, then

D◦p = D ◦ · · · ◦D︸ ︷︷ ︸
p

still lives in LieG. Certainly this is additive and G-linear and vanishes on k, so it remains to check the
Leibniz rule. The point is that one can expand out the Leibniz rule p times as

D◦p(ab) =
∑
i+j=p

(
p

i

)
D◦i(a)D◦j(b),

but with p = char k, all terms except the ending ones vanish, giving the Leibniz rule.

The above remark motivates the following definition.

Definition 2.146. Fix a field k of positive characteristic p > 0. Then a p-Lie algebra is a Lie algebra g
equipped with bracket [·, ·] as well as an endomorphism (−)(p) : g→ g satisfying the following.

• (λx)(p) = λpx(p).

• The adjoint map (adx) : y 7→ [x, y] satisfies adx(p) = (adx)(p).

• One has (x+ y)(p) = x(p)+ y(p)+Fp(adx, ad y)y, where Fp is some non-commutative polynomial
which we will not write down.

We feel okay not writing down the polynomial Fp because, in our setting, everything is commutative, so the
Lie bracket vanishes, and it will be enough to remark that the relevant term always vanishes.

At long last, we note that we have the following result, explaining our remark earlier that height one
means that it is enough to study the Lie algebra.

Theorem 2.147. The category of finite local k-group schemes of height one is equivalent to the category
of p-Lie algebras over k.

Proof. See [Mum08, p. III.14]. Morally, the point is to recover the group G from its p-Lie algebra g. Well,
one simply takes the universal enveloping algebra and quotients out by some extra relations arising from
being a p-Lie algebra. ■

For our application, we will want the following morphism.

Definition 2.148 (relative Frobenius). Fix a group k-scheme G of finite type, and let FG : G→ G be the
absolute Frobenius given by taking pth powers. Then we define the relative Frobenius FG/ Spec k : G →
G(1) as the map of k-schemes making the following diagram commute, where the square is a pullback.

G

G(1) G

k k
Fk

FG

F (1)

Example 2.149. Take G := Ga,k. Then αp = kerF (1).
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Remark 2.150. We note that F (1) is a group homomorphism by just writing out the relevant diagrams
and noting that uniqueness of everything must make our diagrams commute. In fact, kerF (1) is a finite
local k-group scheme of height 1! Indeed, the point is that F (1) is purely inseparable (by construction),
making kerF (1) local, and then we know

Γ(kerF (1),OkerF (1)) =
OG,e

{xp : x ∈ mG,e}
.

Corollary 2.151. Fix a commutative finite group k-scheme G of height 1. Then the map [p] : G → G is
the zero map.

Proof. Note that p vanishes on LieG, from which the result follows from using the inverse functor of Theo-
rem 2.147.Why is Lie

faithful?
■

Corollary 2.152. Fix a commutative finite group k-scheme G of order m. Then [m] : G → G is the zero
map.

Proof. It suffices to check the result on k. Group theory will give the result for any étale part of G, so we
may assume that G is local and in particular has order pn. Now, we note that we can build the composite of
relative Frobenius maps

G→ G(1) → G(2) → · · · → G(n).

This produces injections kerF (1) ⊆ kerF (2) ⊆ · · · until kerF (n) = G. (Namely, one can see that if any two
kernels are the same, then they must stabilize, but if they are all supposed to be distinct up until G, so we
get this result.) But each quotient becomes a finite group k-scheme killed by [p], so kerF (n) will be killed by
[pn], and we are done.What? ■

2.15 March 11
Here we go.

2.15.1 Degree of Isogenies
Today we are going to discuss degrees of isogenies. The point is that we are going to show that the degree
map deg : EndA→ Z is polynomial. Let’s define what this means

Definition 2.153. Fix a k-vector spaceV . Then a function f : V → k is a homogeneous polynomial of de-
gree n if and only if f |W is a homogeneous polynomial of degree n for any finite-dimensional subspace
W ⊆ V . In other words, for any finite set of linearly independent vectors {v1, . . . , vn}, the function

(a1, . . . , an) 7→ f(a1v1 + · · ·+ anvn)

is a homogeneous polynomial of degree n. (The point here is that change of basis does not adjust the
fact that f is a homogeneous polynomial of degree n.)

Remark 2.154. An induction tells us that it suffices to check the result for sets of linearly independent
vectors of size 2.

So we are actually going to show that deg EndA → Z is a polynomial map of degree 2g. For isogenies, we
know how to make sense of degree, but we should probably make a convention if not an isogeny.
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Definition 2.155. Given a homomorphism f : A → B of abelian k-varieties, we define deg f = 0 if f is
not an isogeny. For a general map 1

nf ∈ End0(A) where g := dimA, we define

deg

(
1

n
f

)
:=

deg f

n2g
.

Remark 2.156. One can check that 1
mf = 1

ng implies that

deg f

m2g
=

deg g

n2g
.

Indeed, by Theorem 2.48, we see that deg[n] = n2g for any integer n, so [m]◦f = [n]◦g yields the above
equality after rearranging.

So in fact we will aim to show that deg : End0(A)→ Q is a homogeneous polynomial of degree 2g.
Here is a starting lemma.

Lemma 2.157. Fix an isogeny g : A→ B of abelian k-varieties. For all line bundles L on B, one has

χ(g∗L) = (deg g)χ(L).

Proof. See [Mum08, Theorem 12.2]. Note that this result is similar to Proposition 2.44. We will have more
context for this result when we discuss Riemann–Roch for abelian varieties in more detail. The main point
is to reduce to the elliptic curve case, where one can use the Riemann–Hurwitz formula; notable, the map g
is a group homomorphism and hence unramified. ■

Remark 2.158. One can upgrade this result so that one needs to make the target of g into a torsor over
the source.

And here is our result.

Theorem 2.159. Fix a simple abelian k-variety A of dimension g. Then deg : End0(A) → Q is a homo-
geneous polynomial of degree 2g.

Proof. Once we know that we have a polynomial, the fact that deg(nf) = n2g deg f will enforce homogene-
ity. So it suffices to show that we are just polynomial, so by Remark 2.154, it suffices to show that the map
deg(nf1 + f2) is a polynomial map in n, where f1, f2 : A→ A are isogenies.

Choose an ample line bundleL onA. By Serre’s criterion for ampleness, we may replaceLwith a power
of itself so that L has no higher cohomology. But Lmust be globally generated (it’s ample), so L has some
global sections, so χ(L) ̸= 0. Now, Lemma 2.157 tells us

deg(nf1 + f2) =
χ((nf1 + f2)

∗L)
χ(L)

,

so it remains to work with the numerator. We would like to evaluate Ln := (nf1 + f2)
∗L inductively, for

which we must use Theorem 2.7. In particular, Theorem 2.7 tells us that

Ln+2 = (f1 + f1 + (nf1 + f2))
∗L ∼= Ln+1 ⊗ Ln+1 ⊗ (2f1)

∗L ⊗ L−1
n ⊗ L−1

n ⊗ f∗1L⊗−2.

An induction is now able to show that

Ln =M⊗n(n−1)/2 ⊗N⊗n ⊗Q
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for some line bundlesM andN andQ (which do not depend on n).
Now, the same argument which shows that the Hilbert polynomial is a polynomial shows that the map

(n1, . . . , nr) 7→ χ
(
L⊗n1
1 ⊗ · · · ⊗ L⊗nr

r

)
is always a polynomial in Q[n1, . . . , nr], so we are done. ■

2.15.2 Riemann–Roch for Abelian Varieties
Let’s study the Euler characteristic of line bundles in more detail.

Proposition 2.160. Fix a line bundle L on an abelian k-variety A.

(a) Then n 7→ χ (L⊗n) is a homogeneous polynomial of degree 2g.

(b) If L = OA(D) for a divisor D, then χ(L) = (D, . . . ,D)/g!, where (D, . . . ,D) is the intersection
number.

Remark 2.161. Note that (c) of the above tells us that indeedL being ample means φL is an isogeny, so
χ(L)2 must be nonzero, so χ(L) is nonzero.

Proof. We may assume that k is algebraically closed because we are just computing dimensions of coho-
mology, which is preserved by flat base change (such as a field extension).

For (a), we proceed in steps. The point is to reduce to the case of L being symmetric or inA∨, which can
be attacked separately.

1. We claim that L1 ⊗ L−1
2 ∈ A∨ implies that χ(L1) = χ(L2). Indeed, L1 ⊗ L−1

2 being in A∨ implies that
L1 and L2 are algebraically equivalent, so they arise as restrictions of a larger line bundle L on A× S.
However, the Euler characteristic χ is locally constant, so we conclude χ(L1) = χ(L2).

2. We claim that any line bundleL onA has line bundlesL1 andL2 such thatL = L1⊗L2 such thatL1 is
symmetric and L2 ∈ A∨.
The main point is the construction of L2. We would like to set L1 to be L ⊗ [−1]∗L, and take L2 to be
L ⊗ [−1]∗L−1, but this does not actually multiply to L. So we will want to take some square-roots,
which requires a more careful argument.
To begin, we claim that L ⊗ [−1]∗L−1 ∈ A∨. Indeed, it suffices to show that the line bundle is trans-
lation-invariant, so we compute

tx
(
L ⊗ [−1]∗L−1

)
⊗ L−1 ⊗ [−1]∗L = t∗xL ⊗ L−1 ⊗ [−1]∗

(
t∗−xL−1 ⊗ L

)
.

Now, t∗xL ⊗ L−1 is certainly in A∨ because it is just in the image of φL, and pulling back along [−1]∗
stays in A∨ because this map is just [−1]A∨ : A∨ → A∨. In fact, [−1] corresponds to inverting the line
bundle, so our line bundle now looks like

t∗xL ⊗ L−1 ⊗
(
t∗−xL ⊗ L−1

)
,

which vanishes by Theorem 2.28.
We now use the fact that we are over k, so we may find L2 ∈ A∨(k) with L⊗2

2 = L ⊗ [−1]∗L−1. Now,
we define L1 := L ⊗ L−1

2 so that

[−1]∗L1 = [−1]∗L ⊗ [−1]∗L−1
2 = [−1]∗L ⊗ L⊗2

2 ⊗ L
−1
2 = [−1]∗L ⊗ L⊗ [−1]∗L−1 ⊗ L−1

2 = L1,

so L1 is in fact symmetric, as needed.
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3. We now prove (a). As remarked in the previous proof, this function is certainly polynomial, so it is
enough to compute the degree. The result is true for L ∈ A∨ by an inductive argument via m∗L =
pr∗1 L ⊗ pr∗2 L, so it remains to handle the case where L is symmetric. Here, an induction with Theo-
rem 2.7 shows that

χ
(
L⊗m2n

)
= χ

(
[m]∗L⊗n) ∗

= deg[m] · χ
(
L⊗n) = m2gχ(L⊗n),

where ∗
= has used Lemma 2.157. This completes the homogeneity check.

We now hand-wave the proof of (b) and leave the details for [Mum08, Theorem III.16]. Any line bundle
can be written as the difference of two very ample line bundles, so it is enough to check the result for very
ample line bundles. IfL is very ample, then intersection theory provides the result: a choice of generic global
sections ofL asσ0, . . . , σg so that they have no common zeroes and thediv σ• intersect transversally; as such,

Dg = (div σ0, . . . ,div σg)

is literally the number of points in the intersection of the div σ•s. Now, our choice of global sections induces
a closed embeddingφ : A→ Pg, and the above intersection number is the pre-image of the point [1 : 0 : · · · :
0], so we see thatDg = degφ. On the other hand, deg(L) = (degφ) deg(OPg (1)), which completes the proof
upon a computation. ■

2.16 March 13
Office hours are from 3PM to 5PM today.

2.16.1 More on Riemann–Roch
Here is our statement.

Proposition 2.162. Fix a line bundle L on an abelian k-varietyA. Then if #K(L) is finite, then degφL =
cχ(L)2 for some absolute constant c depending only on A.

Proof. Note thatM := m∗L ⊗ pr∗1 L ⊗ pr∗2 L is just (id × φL)
∗P , where P is the Poincaré line bundle. We

now use Lemma 2.157 so that
χ(M) = (degφL)χ(P).

Recall from the proof of Proposition 2.65 that R• pr1∗M is supported on K(L), which is still finite, so the
Leray spectral sequence continues to yield

Hi(A×A,M) = Γ
(
A,Ri pr1∗M

)
.

Now, the projection formula tells us that

R• pr1∗
(
m∗L ⊗ pr∗1 L−1 ⊗ pr∗2 L−1

)
= Ri pr1∗ (m

∗L ⊗ pr∗2 L)⊗ L−1,

but because this is supposed to be supported on the finite scheme K(L), the line bundle L−1 will trivialize.
So

Hi(A×A,M) = Γ
(
A,Ri pr1∗(m

∗L ⊗ pr∗2 L−1)
)
= Hi

(
A×A,m∗L ⊗ pr∗2 L−1

)
.

This right-hand side is basically a line bundle on A × A because (m,pr2) : A × A → A × A, so the Künneth
formula tells us

χ(M) = χ
(
m∗L ⊗ pr∗2 L−1

)
= χ(L)χ

(
L−1

)
.

However, (a) of Proposition 2.160 lets us write χ
(
L−1

)
= (−1)gχ(L), so we conclude. ■

Remark 2.163. One can actually show that the degree of the map φL : A→ A∨ is χ(L)2, but we will not
need this. To show this, one needs to compute χ(P) = (−1)g, which is done in [Mum08, Part III].
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2.16.2 The Tate Functor Is Faithful
We now shift gears to talk about homomorphisms.

Theorem 2.164. Fix abelian k-varietiesA andB. ThenHomk(A,B) is a finitely generated abelian group.
In fact, for primes ℓ not divisible by char k, the functor Tℓ is fully faithful: explicitly, we have an injection

Tℓ : Homk(A,B)⊗Z Zℓ → HomGal(ksep/k)(TℓA, TℓB)

This result is essentially due to Weil; our exposition will follow [Mum08, Theorem IV.19.3].

Remark 2.165. It is an easy mistake to make to claim that Homk(A,B) is finitely generated because
the Tℓ are injective, and the target is a finitely generated Zℓ-module. However, one can have infinitely
generated abelian groups which become finitely generated upon tensoring with Zℓ; for example, Zℓ
itself will do.

Remark 2.166. Theorem 2.164 produces a bound of the form

rankZ Homk(A,B) ≤ 4(dimA)(dimB)

by bounding the Zℓ-rank when passing to Tate modules. This bound is not sharp in characteristic zero,
but supersingular abelian varieties of positive characteristic are able to show that this bound is sharp.

Remark 2.167. It is a conjecture of Tate that, if k is finitely generated over its prime field, then Tℓ is
actually full. (The hypothesis on k is necessary: if k = Qp, then the Galois action is unramified, so one
basically only has Frobenius action, which is not enough to cut down morphisms on the Tate modules.)
If k is finite, the result is due to Tate; if k has positive characteristic, the result is known to Zarhin. Lastly,
char k = 0 was shown by Faltings.

Anyway, let’s prove Theorem 2.164.

Proof. By working through the isogeny class, we may assume that A and B are simple. Explicitly, given
isogenies

∏
iAi → A and B →

∏
j Bj , we get an injection

Homk(A,B)⊗ Zℓ →
∏
i,j

Homk(Ai, Bj)⊗ Zℓ,

and a symmetric argument produces a map in the reverse direction. Notably, if A and B are simple, then
there are no homomorphisms; otherwise, Homk(A,B) embeds in End(A). Thus, we may even assume that
A and B are isogenous and hence equal.

Now, Theorem 2.159 kicks in to tell us that deg : End(A) → Z is a homogeneous polynomial of degree
2 dimA, so End(A) is torsion-free because isogenies are always going to have nonzero degree.

To continue, we want the following geometric claim. Suppose that M ⊆ End(A) is a finitely generated
subgroup. Then we claim that

QM ∩ End(A) := {f ∈ End(A) : nf ∈M for nonzero n ∈ Z}

is a finitely generated abelian group. Indeed, QM is a finite-dimensional Q-vector space by assumption, so
deg |QM is a homogeneous polynomial of degree 2g, so it is going to extend continuously to a map RM → R.
As such,

U := {x ∈ RM : |deg x| < 1}
is an open neighborhood of 0 in RM , but U ∩ End(A) = {0} because all isogenies have positive integer
degree. Thus, QM ∩ End(A) is a discrete subgroup of RM , meaning that QM ∩ End(A) is a lattice and in
particular free of finite rank.

We now complete the proof.
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• We show the injectivity. Because elements of Endk(A)⊗Z Zℓ is made of finite sums of the form f ⊗α,
it is enough to show that Tℓ is injective when restricted to arbitrary finitely generated submodules
M ⊆ EndA. Now, M is finitely generated and torsion-free, so it is free of finite rank, so give it a Z-
basis f1, . . . , fr; note that this continues to be a Zℓ-basis ofM ⊗ZZℓ. We now go ahead and enlargeM
to QM ∩End(A), which we know continues to be finitely generated by the above claim. For our proof,
we now suppose that

Tℓ

(
r∑
i=1

aifi

)
= 0

where ai ∈ Zℓ for each i, and we want to show that the sum vanishes.
This is done by an approximation argument. For example, we can find an r-tuple of integers (a′1, . . . , a′r)
equivalent to (a1, . . . , ar) to arbitrary precision ℓN , meaning

Tℓ

(
r∑
i=1

a′ifi

)
≡ 0 (mod ℓN ),

so this endomorphism φ :=
∑
i a

′
ifi will take TℓA to ℓNTℓA, so its kernel containsA

[
ℓN
]
. But then the

nature of our isogenies means that we have some f ′ such that φ = f ′ ◦
[
ℓN
]
, meaning ℓN divides each

of the a′i (by using that the f• forms a basis!). Sending N →∞ forces the a′• to vanish.

• We show that End(A) is finitely generated. Because Tℓ is injective for infinitely many primes ℓ, we
see that End0(A) must be a finite-dimensional Q-vector space. Thus, we get some finitely generated
subgroup M ⊆ End(A) such that QM = End0(A), so End(A) = QM ∩ End0(A) is finitely generated
by the claim. ■

Remark 2.168. As another application, we note that the Néron–Severi group NS(A) is contained in
Homk(A,A

∨), which is finitely generated, so NS(A) is still finitely generated.

Remark 2.169. It will turn out that the degree of an isogeny f : A→ B can be computed on the level of
Tate modules.

Corollary 2.170. Fix an abelian k-variety A. Then End0(A) is a finite-dimensional semisimple algebra.

Proof. Indeed, End0(A) for simple abelian varietiesA is a field of finite dimension overQ by Theorem 2.164,
so it is a number field. So we are just looking at some summation of number fields, which is semisimple. ■

We close class by stating a lemma from linear algebra.

Definition 2.171. Fix a finite-dimensional simple Q-algebra B. Then a trace form is a Q-linear map
T : B → Q such that T (ab) = T (b)T (a). Similarly, a norm form is a polynomial map N : B → Q such
that N(ab) = N(a)N(b).

Proposition 2.172. Fix a finite-dimensional simple Q-algebra B with center K. Then there is a trace
form Tr◦B/k with Tr◦(1) = 1 such that any trace form T on B has the form T = φ ◦ Tr◦. Similarly, there
is a norm form NmB/k with Nm◦(1) = 1 such that any trace form T onB has the form

(
NmK/Q ◦Nm◦)i

for positive integer i.

Proof. Omitted. ■

We remark that a similar statement works for Qℓ.
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2.17 March 15
Here we go.

2.17.1 Degree via Tate Modules
Here is our next result: characteristic polynomials can be computed on the Tate module.

Theorem 2.173. Fix an endomorphism f ∈ End0(A).

(a) We have deg f = detVℓf , where Vℓ is the functor A 7→ (TℓA) ⊗Z Qℓ. Thus, the characteristic
polynomial Pℓ(x) of Vℓf satisfies, for any n ∈ Z,

Pℓ(n) = deg([n]A − f).

(b) The characteristic polynomial P (x) of Tℓf has integral coefficients.

For (b), note that (a) actually tells us that P (n) = deg([n]A − f) for all integers n.
It will be helpful to have the following lemma.

Lemma 2.174. Fix an isogeny f : A→ B of abelian k-varieties. Then the sequence

0→ TℓA→ TℓB → (ker f)(ksep)ℓ → 0

is exact, where, where (·)ℓ denotes taking the ℓ-primary part.

Proof. See [EGM, pp. 10.5–10.6]. Let’s sketch the idea. The point is to use cohomology, so we begin by
writing

TℓA = lim←−A[ℓ
•](ksep) = lim←−Hom(Z/ℓ•Z, A(ksep)) = Hom (Qℓ/Zℓ, A(ksep)) .

Now, setting N := ker f , we have an exact sequence

0→ N → A
f→ B → 0

of fppf sheaves, which gives an exact sequence

0→ N(ksep)→ A(ksep)
f→ B(ksep)→ 0,

which is exact on the right by the surjectivity of f . Now, applying the functor Hom(Qℓ/Zℓ,−), we note that
N(ksep) is finite anyway, so it will vanish under the functor, leaving us with the exact sequence

0→ TℓA→ TℓB → Ext1(Qℓ/Zℓ, N(ksep))→ Ext1(Qℓ/Zℓ, A(ksep)).

Notably, if k is perfect, then ksep = k, so A(k) being divisible makes the last term vanish; in the general
case, one still gets that the map into that term vanishes because we are looking at ℓ-torsion, where A(ksep)
is going to be sufficiently divisible.

So it remains to compute the Ext1 term. To begin, note that

Ext1(Qℓ/Zℓ, N(ksep)) = Ext1(Qℓ/Zℓ, N(ksep)ℓ)

because Qℓ/Zℓ works to kill out anything other than ℓ-torsion. (Namely, multiplication by something co-
prime to ℓ is an isomorphism on Qℓ/Zℓ but will kill out what happens inN .) Now, to compute this last term,
we take the exact sequence

0→ Zℓ → Qℓ → Qℓ/Zℓ → 0

and apply Hom(−, N(ksep)ℓ) to get

Ext1(Qℓ/Zℓ, N(ksep)ℓ) = Hom(Zℓ, N(ksep)ℓ),

after some argument in the long exact sequence, which is what we wanted. ■
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We are now ready to prove Theorem 2.173.

Proof of Theorem 2.173. We focus on (a) for now; the second claim is immediate from the first and the
definition of the characteristic polynomial, so we focus on the first claim. It suffices to prove the results for
bona fide endomorphisms f : A→ A. Indeed, once we have the result here, scaling produces the result for
Q, and then a density argument for Q ⊆ Qℓ achieves the full result for Qℓ. Then we see that

|deg f |ℓ = |#(ker f)ℓ(k
sep)|ℓ .

Now, the above lemma tells us that this is |detTℓf |ℓ. This equality extends to f ∈ End(A) ⊗ Qℓ via the
aforementioned density argument.

We now apply Proposition 2.172. Now, write End(A) ⊗Z Qℓ as a product of simple Qℓ-algebras
∏
iDi

(notably, this algebra is semisimple because it is the base-change of a semisimple algebra). Now, deg and
det agree on ℓ-adic valuation as above, so the classification Proposition 2.172 forces them to be actually
equal. More formally, one should write f 7→ |deg f |ℓ as some product∏

i

(
NmKi/Qℓ

◦Nm◦
Di/Ki

)vi
where Ki = Z(Di) and the v•s are some integers. Doing similar for det and then plugging in various f ∈∏
iDi (forming a basis) reveals the desired equality.

We now show (b). Define P (n) := deg([n]A − f), which we know is a polynomial (because deg is polyno-
mial Theorem 2.159), meaning we can view P as an element of Q[x]; thus, Pℓ = P has rational coefficients.
It remains to show that the coefficients are integral. Well, because End(A) is free of finite rank over Z, our
f is going to have some monic minimal polynomial q ∈ Z[x].3 Thus, q(Vℓf) = 0, so the roots of Pℓ must all
be algebraic integers, meaning that P (x) ∈ Z[x], meaning that P (x) ∈ Z[x], as desired. ■

2.17.2 Weil Pairing
We now use duality for fun and profit.

Definition 2.175 (Tate twist). Fix a field k and a prime ℓ not divisible by char k. We define the Tate twist
Zℓ(1) as Tℓ(Gm). Notably, Zℓ(1) is a free Zℓ-module of rank 1 with Galois action from Gal(ksep/k) acting
via the cyclotomic character, where the point is that

Tℓ(Gm) = lim←−µℓ• .

More generally, given a free Zℓ-moduleM of finite rank, we defineM(n) :=M ⊗Zℓ
Zℓ(1)⊗n, where n is

an integer.

To motive our Weil pairing, we note that A∨[ℓ•] ∼= A[ℓ•]∨ by Theorem 2.86, where the second dual is a
Cartier dual. Thus, using our Cartier duality, we induce a map

A[ℓ•]×A∨[ℓ•]→ µℓ• .

We would like to take limits over ℓ•, but to do this, we need the following diagram to commute.

A[ℓn]×A∨[ℓn] µℓn

A
[
ℓn+1

]
×A∨ [ℓn+1

]
µℓn+1

(ℓ,ℓ) ℓ

To check the commutativity here, we need to recall the isomorphism A∨[ℓ•] ∼= A[ℓ•]∨.
3 This can be checked by base-changing to C and thinking about the minimal polynomial for a morphism on the level of lattices.
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Namely, given an endomorphism f : A→ A, we need to recall why (ker f)∨ ∼= ker f∨. Well, fix a k-point
x of ker f and some line bundle L on ker f . Then we may choose some β : f∗L → OA (unique up to scalar),
and we note that we have the following large diagram.

t∗xf
∗L t∗xOA

f∗t∗f(x)L

f∗L OA
t∗xβ

t∗xβ

Then our Weil pairing ef : (ker f)(k)× (ker f∨)(k)→ Gm is just given by

ef (x,L) := t∗xβ ◦ β−1,

which is an isomorphism OA → OA and hence provides a global section and hence an element of k×, as
needed. Note that this does not change if we adjust β by a scalar, so it notably does not depend on the
choice of β.

Let’s now do our computation.

Lemma 2.176. Fix an abelian k-variety A and positive integers n and m. Given L ∈ A∨[m](k) and x ∈
A[mn](k), we have emn(x,L) = em(nx,L).

Proof. We do the explicit computation. Pick an isomorphism β : [m]∗L → OA, which induces the isomor-
phism [n]∗β : [mn]∗L → OA. Now, we compute

emn(x,L) = t∗x([n]
∗β) ◦ ([n]∗β)−1 = [n]∗

(
t∗nxβ ◦ β−1

)
= [n]∗em(nx,L) = em(nx,L).

Here, this last equality comes about because we’re just pulling back a full isomorphism OA → OA, which
does not change the produced global section. ■

Remark 2.177. On the homework, we will show that a homomorphism f : A→ B reveals

eℓ∞((Tℓf)x, y) = eℓ∞(x, Tℓ(f
∨)y),

again by a reasonably explicit computation.

As a corollary, we compute
eℓn(ℓx, ℓL) = eℓn+1(x, ℓL) = eℓn+1(x,L)ℓ,

where the first equality is by the lemma, and the second equality is by using the explicit description for the
pairing provided above. (More precisely, we can see that taking a power of ℓ induces a power at the end.) So
we may take limits to produce the following definition.

Definition 2.178 (Weil pairing). Fix an abelian k-varietyA. Then we define the Weil pairing as e• : TℓA×
TℓA

∨ → Zℓ(1) defined above.

Remark 2.179. A choice of polarization A→ A∨ grants us a skew-symmetric form

TℓA× TℓA→ Zℓ(1)

induced by the Weil pairing.
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2.18 March 18
Here we go.

2.18.1 More on the Weil Pairing
We quickly provide a more explicit description of the Weil pairing. As before, choose geometric points x ∈
A[n](k) andL ∈ A∨[n](k). Smoothness of our abelian k-varietyA allows us to realize any line bundleL ∈ A∨

as OA(D) for some Weil divisor D. Note that OA(D) ⊆ KA, where KA is the sheaf of rational functions on
A.

Now, computation of the Weil pairing requires us to choose an isomorphism β : [n]∗L → OA. Well, we
note that [n]∗L embeds into [n]∗KA, which is isomorphic to KA, so we choose the rational function g :=
[n]∗i ◦ β−1(1) so that div g−1 = [n]−1DWhy? by tracking through what a pole or zero could be. Then we can
compute

en(x,L) = t∗xβ ◦ β−1 =
g(z + x)

g(z)
,

which is a number independent of the choice of z.
We now use this computation for some fun and profit.

Proposition 2.180. Fix an abelian k-variety A. For any line bundle L on A, the composite map

TℓA× TℓA
id×φL−−−−→ TℓA× TℓA∨ eℓ∞−−→ Zℓ(1)

is skew-symmetric. In particular, if φL is a polarization, then this pairing is symplectic.

Proof. We already know that the pairing is non-degenerate by a direct computation,Why? so it remains to show
that (x, x) goes to 0. Namely, we want to show that

eℓ∞(x, Tℓ(φL)x) = 0

for each x. It suffices to show this result for all x ∈ A[ℓn] for any n by taking the limit as n→∞.
For this, we use our prior explicit description of the Weil pairing. Well, write L = OA(D) for some Weil

divisor D, and we compute
φL(x) = t∗xL ⊗ L−1 = OA(t−xD −D).

We now choose g as in the explicit description as above so that div g−1 = [ℓn]−1(t−xD −D). Now, to show
that our Weil pairing vanishes, we want to show that g(z + x) = g(z) for any given z. Well, for any y ∈ A(k)
such that ℓny = x (which exists by divisibility), we note

div g−1 = t−y
(
[ℓn]−1D

)
− [ℓn]−1D,

so telescoping implies

div

ℓn−1∏
i=0

t∗iy
(
g−1

)
= t−x

(
[ℓn]−1D

)
− [ℓn]−1D,

but this vanishes because x is ℓn-torsion. Thus, our left-hand side is a function hwith no zeroes or poles, so
it must be a constant function. For example, h(z + y) = h(z), which unwinds to g(z + x) = g(z) by another
telescoping argument. ■

Remark 2.181. In fact, the above argument works for any polarization φ : A → A∨. The passage to the
algebraic closure is not so bad because.

We now pick up the following result.
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Theorem 2.182. Fix a homomorphism φ : A→ A∨ of abelian k-varieties. Then the following are equiv-
alent.

(i) φ is symmetric.

(ii) The pairing Eφ induced by

TℓA× TℓA
id×φ−−−→ TℓA× TℓA∨ → Zℓ(1)

is skew-symmetric.

(iii) 2φ = φL for some line bundle L.

(iv) If k is algebraically closed, then φ = φL for some line bundle L.

Proof. We will only prove part of this. In particular, we will not show the implication (iii) implies (iv); see
[Mum08, p. 214]. Our argument will use Remark 2.177. Additionally, we note that the diagram

A B

A∨ B∨

f

φLφf∗L

f∨

(2.1)

commutes. Unwinding definitions now implies that

Ef
∗L(x, y) = EL(Tℓf(x), Tℓf(y)).

We also quickly recall that (A × B)∨ ∼= A∨ × B∨ essentially by restriction of line bundles; this result is on
the homework. In particular, A×A∨ is self-dual.

Now, let P denote the Poincaré line bundle. We now execute the following computation.

Lemma 2.183. Let P be the Poincaré line bundle of an abelian k-variety A. Then

EP((x, x∨), (y, y∨)) = eℓ∞(x, y∨)− eℓ∞(y, x∨).

Here, x, y ∈ TℓA and x∨, y∨ ∈ TℓA∨.

Proof. By bilinearity and skew-symmetry, it is enough to verify the equalities on the pairs ((x, 0), (y, 0)) and
((x, 0), (0, y∨)).

• We verify on ((x, 0), (y, 0)), where our pairing should vanish. Pulling back along (id, 0) : A → A × A∨,
we see P trivializes (it’s from Pic), so

EP((x, 0), (y, 0)) = EOA(x, y) = eℓ∞(x, 0) = 0.

• We verify on ((x, 0), (0, y∨)). We pull back along (0, id) × A∨ → A × A∨, where the main point is to
figure out where P goes. Well, one has the composite map

A×A∨ → (A×A∨)∨ = A∨ ×A,

where the last map is given by restriction of line bundles. In particular, the pair (x, x∨) goes to the line
bundle t∗(x,x∨)(P ⊗P

−1), which then goes to (t∗xx
∨, x) by a computation with the Poincaré line bundle,

but x∨ ∈ A∨ is translation invariant, so we are just going to (x∨, x). So we can compute that

EP((x, 0), (0, y∨)) = eℓ∞((x, 0), (y∨, 0)) = eℓ∞(x, y∨),

as desired. ■
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We now proceed with the proof. We already know that (iv) implies (i) and (ii) from earlier statements involv-
ing polarizations. To see that (i) implies (iii), we set L := (id× φ)∗P . Using (2.1), we see

φL(x) = (1× φ)∨ ◦ φP ◦ (1× φ)(x)
= (1× φ)∨(φ(x), x)
∗
= (1× φ)(φ(x), x)
= 2φ(x),

where we have used symmetry of φ at ∗
=. (Note φP swaps coordinates as shown in the previous proof.)

We now show (ii) implies (iii). Continuing with the same L as in the previous paragraph, we use the
lemma to see

EL(x, y) = EP(Tℓ(1× φ)(x), Tℓ(1× φ)(y))
= eℓ∞(x, Tℓφ(y))− eℓ∞(y, Tℓφ(x))

= Eφ(x, y)− Eφ(y, x)
= 2Eφ(x, y),

where the last equality has used skew-symmetry. Non-degeneracy of our pairing now forces 2φ = φL, so
we are done. ■

Remark 2.184. This result shows that NS(A) = NS(Ak) is exactly the Z-submodule of symmetric ho-
momorphisms A→ A∨.

2.18.2 The Rosati Involution
Here is our definition.

Definition 2.185 (Rosati involution). Fix a polarization λ : A → A∨ of abelian k-variety A. Then the
Rosati involution (−)† on End0(A) sends φ to the map φ† making the following diagram commute.

A A

A∨ A∨φ∨

φ†

λλ

Explicitly,
φ† := λ−1 ◦ φ∨ ◦ λ.

Remark 2.186. We are working with End0(A) so that we can write down λ−1 in general. However, if A
is principally polarized, then this inverse already exists in End(A), so we can still write down the Rosati
involution even on End(A).

Remark 2.187. The Rosati involution depends on λ, but this dependence is not too bad. Namely, if λ1
and λ2 are two polarizations (in particular, isogenies), then we get an isogeny such that λ1 = λ2 ◦ f , so

λ−1
1 ◦ φ ◦ λ1 = f−1 ◦ λ−1

2 ◦ φ ◦ λ2 ◦ f,

so we at least have the same conjugacy class in End0(A).
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2.19 March 20
Today we use the Rosati involution for fun and profit.

2.19.1 Positivity of the Rosati Involution
Manipulation with definitions verify the following.

Proposition 2.188. Fix a polarization λ : A→ A∨ of an abelian k-variety A.

(a) (−)† is linear.

(b) (−)† anti-commutes: (φ ◦ ψ)† = ψ† ◦ φ†.

(c) For the Weil pairing, Eλ(Tℓφ(x), y) = Eλ(x, Tℓφ
†(y)).

Proof. For (a), note that composition is linear. For (b), proceed directly from the definitions and use the
duality of (−)∨. Lastly, for (c), use Remark 2.177 and then pass through λ everywhere as needed. ■

Now here is our main result on the Rosati involution.

Theorem 2.189 (Positivity). Fix a polarizationλ : A→ A∨ of an abeliank-varietyA. Then for any nonzero
φ ∈ End0(A), one has that

tr(φ ◦ φ†) = tr(φ† ◦ φ) > 0.

Here, tr refers to the reduced trace on the semisimple algebra End0(A). More precisely, for a semisimple
Q-algebra D, let K be its center, and then base-change to K and compute the trace as a matrix algebra
because D ⊗K K is a matrix algebra. Working with the characteristic polynomial allows us to compute the
trace on the level of VℓA via Theorem 2.173, or equivalently via the characteristic polynomial.

Proof. By base-changing our morphisms (which does not adjust the reduced trace here), we may assume
that k is algebraically closed. As such, λ = φL for an ample line bundle L; taking powers of L adjusts φL by
multiplication by this power, but this does not change the Rosati involution, so we may actually assume that
L is very ample, so say L = OA(D) where D is an effective Weil divisor (in fact, a hyperplane intersection).

Now, let g := dimA, and the main claim is that

tr(φ ◦ φ†)
?
= 2g ·

(
Dg−1, φ−1D

)
(Dg)

.

This will complete the proof because φ−1(D) continues to be an effective Weil divisor, and then we are just
computing some intersection numbers, which is positive.

So it remains to prove the claim. We will use Proposition 2.160. Note that φφ∗L−1⊗L⊗n : A → A∨ is an
isogeny, and this map is equal to [n] ◦ φL − φφ∗L. The moral is that we can compute the degree

deg ([n] ◦ φL − φφ∗L) = deg ([n] ◦ φL − φ∨ ◦ φL ◦ φ)
= deg

(
φL ◦

(
[n]− φ−1

L ◦ φ
∨ ◦ φL ◦ φ

))
= degφL · deg

(
[n]φ† ◦ φ

)
.

This last quantity is now the characteristic polynomial P (n) of φ† ◦ φ. Thus,

P (n) =
deg ([n] ◦ φL − φφ∗L)

degφL
,

which by Proposition 2.162 is

P (n) =
χ
(
φ∗L−1 ⊗ L⊗n)

χ(L)2
.
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Now, Proposition 2.160 implies

P (n) =

(
(nD − φ−1D)g

(Dg)

)2

.

We would like the term after the leading term of this polynomial, which by linearity looks like

P (n) =
1

(Dg)2
(
ng(Dg)− gng−1

(
Dg−1, φ−1D

)
+ · · ·

)2
,

whose term after the leading term is exactly what we claimed it would be. ■

2.19.2 The Albert Classification
We now see that the positivity of the Rosati involution now gives us some tools to classify algebras.

Lemma 2.190. Fix a division Q-algebra D equipped with a positive anti-involution (−)† on D. Further,
set K := Z(D) and K+ :=

{
x ∈ K : x = x†

}
with e := [K : Q] and e+ := [K+ : Q]. Then K0 is totally

real, and either K = K+ or K/K+ is a totally imaginary quadratic extension.

Proof. We begin by trying to prove that K+ is totally real. Well, we can write

K0 ⊗ R = Rr ⊗ Cs

for some nonnegative integers r, s ≥ 0. Notably, the quadratic form x 7→ tr(xx†) is a quadratic form q(x)
on K+ (note x† = x here), which extends by continuity to a quadratic form qR on Rr × Cs. Now, q itself was
defined over Q, so its null space will be defined over Q, but positivity of (−)† tells us that this null space must
vanish. So actually qR is positive-definite, but then there can be no copies of C in K+ ⊗ R because one can
always solve these quadratic equations over the complex numbers.

We now complete the proof. Notably, by definition [K : K+] ∈ {1, 2}: indeed, K+ is defined as being
a subfield of K fixed by a group of order 2 (namely, generated by the automorphism α 7→ α†). It remains
to show that K/K+ is a totally imaginary quadratic extension if nontrivial. Well, if nontrivial, we can write
K = K+(

√
α) for some α ∈ K+. Now, (

√
α)2 = α must be fixed by (−)†, but

√
α is not, so we must have

(
√
α)† = −

√
α.

Continuing, suppose for the sake of contradiction that we have a real place i : K → R. Then i† : K → R
continues to be a real place but now has i(

√
α) = −i†(

√
α). To derive contradiction, we work with the pieces

R× R inside K ⊗ R corresponding to i and i†, where we see that

tr
(
(x, y) · (x, y)†

)
= tr((x, y), (y, x)) = 2xy

now fails to be positive-definite. ■

There is now a full classification of division algebras with positive anti-involution.

Theorem 2.191 (Albert). Fix a division Q-algebraD equipped with a positive anti-involution (−)† onD.
Further, set K := Z(D) and K+ :=

{
x ∈ K : x = x†

}
with e := [K : Q] and e+ := [K+ : Q]. Then

(D,K,K+) satisfies one of the following.

• Type I: D = K = K+, and (−)† = idD.

• Type II:K = K+, butD is a quaternionK-algebraD⊗QR ∼=
∏
i : K↪→RM2(R) split as the matrix al-

gebra at all archimedean places ofK (which are necessarily real), where (−)† (up to isomorphism)
is given by transposition of matrices. Explicitly, we have D ⊗Q R ∼=

∏
i : K↪→RM2(R).

• Type III: K = K+, but D is a quaternion K-algebra D ⊗Q R ∼=
∏
i : K↪→R H ramified at all places,

and (−)† is the standard involution on the quaternions.

• Type IV: K/K+ is a totally imaginary extension with complex conjugation c, and D is a division
K-algebra such that invv(D) + invc(v)D = 0 if v ̸= c(v), and invv(D) = 0 if v = c(v); (−)† is
conjugate transpose.
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Remark 2.192. In the final case, one finds that

D ⊗Q R ∼=
∏

i : K→C
up to c

Md(C)

where d :=
√
[D : K] is the reduced degree.

2.20 March 22
Today we continue discussing endomorphism algebras.

2.20.1 More on the Albert Classification
We begin by discussing Theorem 2.191. For our notation, D is a simple algebra with center K and positive
involution (·)† so that K+ = K†. We also set d :=

√
[D : K] and e := [K : Q] and e0 := [K+ : Q].

Remark 2.193. In the case of a simple abelian k-variety A of dimension g with D := End0(A), then we
get the following data.

Type [K+ : Q]
√

[D : K] char = 0 char k > 0 dimQ NS(Ak)Q/ dimQ End(Ak)Q
I e0 1 e | g e | g 1
II e0 2 2e | g 2e | g 3/4
III e0 2 2e | g e | g 1/3
IV 2e0 d e0d

2 | g e0d | g 1/2

We will explain where these restrictions come from later. Do note that we do not if all possible simple
algebrasDwith positive involution (·)† come from simple abelian varieties. In characteristic 0, we know
exactly what occurs, due to Albert and Shimura. (Shimura, notably, used the geometry of the moduli
spaceAg.)

Remark 2.194. Let’s explain what’s going on with the Néron–Severi group. This is occurring when k is
algebraically closed, and we pick a polarization λ : A→ A∨. Now, we have our embedding

NS(A)⊗Z Q→ Hom(A,A∨)⊗Z Q→ End0(A),

where NS(A) consists of the symmetric homomorphisms. Notably, being a symmetric homomorphism
λ′ : A→ A∨ means that f = f†, where f ∈ End0(A) is the isogeny such that λ′ = λ ◦ f . Indeed, we are
asking for λ ◦ f = f∨ ◦ λ in order to be symmetric, which amounts to f = f†. So the point is that

NS(A)⊗Z Q ∼= End0(A)†.

Let’s see an example of a dimension restriction.

Lemma 2.195. Fix a simple abelian k-variety A, where char k = 0. Then set notation as above with
D := End0(A). Then d2e | 2g.

Proof. In characteristic zero, the Lefschetz principle allows us to assume that k ⊆ C. Then we are granted
that End0(A) ⊆ End0(AC) will act faithfully on H1(A(C),Q), meaning that d2e | 2g in order for the dimen-
sions to check on. ■

This provides the dimension restrictions in types II–IV.
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Lemma 2.196. Fix a simple abelian k-variety A for any field k. Then set notation as above with D :=
End0(A). Then de | 2g.

Proof. The point is that deg : End0(A)→ Q is a polynomial of degree 2g, and in fact we showed earlier that
deg is a norm form. But Proposition 2.172 tells us that

deg =
(
NK/Q ◦N◦

D/K

)i
for some integer i. Computing the degree of the polynomials everywhere, we get that dei = 2g for some
integer i, which is what we needed. ■

This provides the dimension restrictions in types III–IV.

Proposition 2.197. Fix a simple abelian k-variety A for any field k. Then set notation as above with
D := End0(A). Further, suppose that L is a subfield of D fixed by (·)†. Then [L : Q] | g.

Proof. The point is that L ⊆ NS(Ak) as discussed before. Now, choose a polarization λ : A → A∨ so that
λ = φL; we also define f : NS(Ak)Q → Q by

f(φM) :=
χ(M)

χ(L)
,

so Proposition 2.162 tells us f2 is a norm form. Namely, we know that f(ab) = ±f(a)f(b); an argument on
the coefficients of our polynomial is able to show that we either have f(ab) = +f(a)f(b) always or f(ab) =
−f(a)f(b) always. However, takingM = L, we see that the sign + is forced, so f is a norm form on L of
degree g! Arguing as in Lemma 2.196 completes. ■

In the Type I case, one is able to takeL = K(α) for suitable choice ofαmakesK(α)/K a degree-2 extension,
providing the needed bounds for Type I. We won’t discuss this in more detail.

Anyway, let’s provide some examples.

Example 2.198. Fix an elliptic curve E so that g = 1. We work in characteristic 0. We see we may only
have Type I with e = 1 or Type IV with d = e0 = 1, meaning that End0(E) is an imaginary quadratic
extension of Q so that E has complex multiplication.

Example 2.199. Fix an elliptic curve E so that g = 1 in characteristic p > 0.

• It looks like we might be able to have Type I, which forces e = 1; however, this does not happen
over Fq or even Fq by Remark 2.167. (This does happen over Fp(t).)

• We can still have Type IV, meaning that e0 = d = 1, so End0(E) is an imaginary quadratic field;
one can achieve this by finding an elliptic curve over Q with ordinary reduction at some prime p so
that the Frobenius endomorphism Frob fails to be in Z.

• Lastly, it is possible to have Type III, which means that e = e0 = 1, but we still must have d | 2g, and
d = 1 is already considered above, so we actually have d = 2 here. This means thatD := End0(Q)
is a central simple Q-algebra, and Theorem 2.191 requires it to be H at∞. For finite ℓ ̸= p, we
also see

D ⊗Q Qℓ ⊆ EndGal(k/k)(TℓA⊗Z Qℓ).

But both sides here have dimension 4, so we must haveD⊗QQℓ ∼=M2(Qℓ), meaning thatD splits
at all these finite primes ℓ. The fundamental exact sequence now forces ramification at p.
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Example 2.200. Fix an abelian surface A so that g = 2. We work in characteristic 0.

• Type I is possible; an open subset of the moduli space has e = 1 so that End0(A) = Q, but it is still
possible to have e = 2 so that End0(A) is a real quadratic field.

• Type II is possible, but this forces e = 1 so that D is a quaternion Q-algebra. Theorem 2.191
requires D to split at∞; every quaternion algebra appears.

• Type III forces e = 1, and Shimura shows that this never happens.

• For Type IV, one can have e0 = 2 so that A is an abelian surface with complex multiplication.
Otherwise, e0 = 1, this does not happen when k is algebraically closed: we may take k = C, but
thenEnd0(A) contains a product of two imaginary quadratic fields, which forcesA to be isogenous
to a product of elliptic curves, meaning that A it not simple. However, it is possible that e0 = 1 in
general; for example, the Jacobian of y8 = x(x− 1) modulo the Jacobian of y4 = x(x− 1) over Q
will work.
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THEME 3

BACK TO COMPLEX MULTIPLICATION

3.1 April 1
We now return to discussing complex multiplication.

3.1.1 Néron Models
We will not discuss constructions too much, but we will say something. For today, R is a discrete valuation
ring with fraction field K and residue field κ. Here is our definition.

Definition 3.1 (Néron model). Fix a discrete valuation ring (R,m, κ) with fraction fieldK. Then a Néron
model of some K-scheme A such thatA is a smooth separated R-scheme of finite type satisfying the
following.

• AK = A

• Néron mapping property: if X is a smooth R-scheme with X := XK , then any map u : X → U is
the base-change of a unique map X → A.

Remark 3.2. The Néron mapping property immediately implies uniqueness up to unique isomorphism.

Remark 3.3. Additionally, the universal property implies that formation of Néron models commutes
with étale base-change. Namely, if SpecR′ → SpecR is étale, then AR′ continues to be smooth over
R′, and drawing out the Cartesian square

Here is our result.

Proposition 3.4. Fix a discrete valuation ring (R,m, κ)with fraction fieldK. IfA is an abelianR-scheme,
thenA is a Néron model ofAK .Group

structure
upgrades? Proof. The point is to use the valuative criterion of properness. LetX be a smoothR-scheme, and setX :=

XK . To apply the valuative criterion for properness, we let η be the generic point ofXκ, soOX ,η is a discrete
valuation ring. Thus, the map FracOX ,η → A produces a unique lift SpecOX ,ηtoA. (Note the valuative
criterion is legal because everything in sight is finite type.)

Continuing, by spreading out, we note that we get an R-scheme Y ⊆ X such that YK = X and Yκ ⊆ Xκ
is open, and we have our unique map Y → A. However, X \ Y can be taken to be codimension at least 2 (in
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the spreading out) because we are including the generic point.Why? Now, [BLR90, Theorem 4.4.1] tells us that
the group structure (and smoothness) of A tells us that the rational map Y → A can be uniquely extended
to all X . Here is the precise citation.

Proposition 3.5. Fix a discrete valuation ringR, and letG be a smooth separated groupR-scheme such
that we have some rational map f : Z → G where Z is smooth, and f is defined outside a set of codi-
mension at least 2. Then f extends uniquely to a map Z → G.

Proof. To use the group structure, we define the rational map F : Z ×R Z → G given by

F (x, y) := f(x)f(y)−1.

Then f being defined at x means that F is defined at the element (x, x); in fact, the converse is also true: F
being defined on (x, x) means we can define it an open neighborhood (x, U), and then we can shrink U so
that f is also defined on U , so one can write f(x) = F (x, u)f(u) for u ∈ U to promise that f is defined at x.

From here, we see that f is defined in codimension 1, so F is defined codimension 1, so an argument
with algebraic Hartog’s lemma tells us that F can just be defined globally, so f can be defined globally. To
be more explicit, we note that F is defined at some (x, x) provided that the mapOG,e → K(Z × Z) factors
through OZ×Z,(x,x), where the application of algebraic Hartog’s is valid because we can now to pass to a
sufficiently small open (affine) open neighborhood of (x, x) going to e ∈ G. (Namely, this factoring happens
in codimension 1, so our elements are actually in the ring, so we are okay.) ■

This completes the proof. ■

Corollary 3.6. Fix abelian schemesA and B over the discrete valuation ring (R,m, κ) with fraction field
K. Then the map

HomR(A,B)→ HomK(AK ,BK)

is an isomorphism.

Proof. Examining the squares to be a homomorphism and using the Néron model property tells us that
the backward map is well-defined both as a morphism and in fact a homomorphism. (Namely, squares
commuting can be encoded in uniqueness of our morphisms.) ■

We now state our theorem for existence, but we will not prove it.

Theorem 3.7. Fix a discrete valuation ring (R,m, κ) with fraction fieldK. Then any abelianK-varietyA
has a Néron modelA. In fact,A is a smooth group scheme, and there is a finite extension L of K such
thatAL has semi-abelian identity component.

3.1.2 The Shimura–Taniyama Formula
We now return to prove (a special case of) the Shimura–Taniyama formula. It will help to have the following
lemma.

Lemma 3.8. Let A be an abelian variety of good reduction. Fix everything as above, and let m be an
integer coprime to p. Then

A(K)[m] = A(Kunr
P )[m] = Aκ(κ)[m].
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Proof. This only uses that A has good reduction. The second equality is not so bad because A(Kunr
P ) =

A(OKunr
P

) by the Néron mapping property (even as groups), which then reduces toAκ(κ). But we are looking
at kernels of [m], which is finite étale, so Hensel’s lemma applies to provide that reduction is a bijection.

We now address the first equality. The cardinality of A(Kunr
P )[m] is the correct number m2 dimA, so all

torsion fromKP is defined overKunr
P . In fact, all this torsion must be defined over the smaller algebraically

closed field K, so the first equality follows as well. ■

In particular, we see that making m a prime-power tells us that

TℓA = TℓAκ,

where we have compatibility with Galois action, where the “Galois action” by Gal(K/K) on the right is via
the decomposition group. So Theorem 2.164 does the job.

3.2 April 3

Today we prove our special case of the Shimura–Taniyama formula.

3.2.1 Proving the Shimura–Taniyama Formula
Here is our statement.

Theorem 3.9. Fix a number field K, and let A be an abelian K-variety with complex multiplication by
the CM algebra (E,Φ). Further, we take the following extra assumptions.

• K contains the Galois closure of E.

• A has good reduction at some prime P of K, meaning thatA is an abelian scheme.

• KP is unramified over Qp where p. Set κ := OK/P.

• End(A) ∩ E = OE .

Then there is some unique π ∈ OE such that the reduction of π fromOE ⊆ EndA = EndA to EndAκ
is Frob. In fact, (π) is ∏

φ∈Φ

φ−1
(
NmK/φ(E) P

)
.

Proof. We begin by discussing how to get π ∈ OE . Recall that the Néron mapping property yields EndA =
EndA, which embeds in EndAκ because we can check the equality of two endomorphisms φ,ψ : A → A on
the Zariski dense subset of prime-to-p torsion ofA, which is already found inAκ by Lemma 3.8.

Now, we knowE ⊆ End0(A) ⊆ EndAκ, and there is some Frob element. In fact, Frob will commute with
anything fromE, which means that it must live inE, which can be seen directly from the Albert classification
or more directly as follows: it suffices to check the commutativity on the Tate module. But then VℓAκ, but
dim(E⊗Qℓ) = 2 dimA (becauseE is our CM algebra), andVℓAκ also has dimension 2 dimA, and the relevant
action is faithful onA and hence faithful onA and hence faithful onAκ, so VℓAκ is a faithful (E⊗Qℓ)-module
of rank 1. Thus, Frob will have to live in E ⊗Qℓ and in EndAκ, so it comes from E ∩ EndA, which isOE . So
Frob comes from a unique element π ∈ OE .

We now turn to the second claim. Note the relative Frobenius F : A → A(1) factors through [p] (we
showed this when discussing finite flat group schemes), so the full Frobenius Frob factors through [q]. In
fact, we can see this more explicitly via the following lemma.
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Lemma 3.10. Fix everything as above. Then

Frob ◦ Frob† ?
= [q]

for any Rosati involution (·)†.

Proof. This is a matter of unraveling the definition. It will be enough to show that Frob† ◦ Frob = [q] by
duality. Well, let λ : A→ A∨ be our polarization providing the Rosati involution, and then we see that

FrobA
† ◦ FrobA = λ−1 ◦ FrobA∨ ◦ λ ◦ FrobA .

This being equal to [q], by rearranging, is equivalent to showing that

Frob∨A ◦ FrobA∨ = [q].

We will do this by hand. Fix a test T -scheme, and a rigidified line bundle L on A × T living in A∨(T ). We
pass L through. For example,

FrobA∨(L) = (id× F (m)
T )∗L,

where F (m)
T means the relative Frobenius, and then applying the dual morphism Frob∨A leaves us with

(FrobA × id)∗(id× F (m)
T )∗L.

So we see that we are just taking qth powers on both coordinates, which does indeed produce L⊗q, as de-
sired. ■

The point is that (π) is supported on pOE , so we can write

π =
∏
v|p

pmv
v

for some nonnegative integers mv. To make things principal, set h := #ClE so that pmvh
v can be said to be

generated by some γv ∈ OE . We will compute deg γv in two ways.

Lemma 3.11. Fix everything as above. For any α ∈ OE , the degree of α as an endomorphism A→ A is
NmE/Q α.

Proof. We may let α act on the Tate module VℓAκ, as discussed above. Then we previously showed that

degα = det(α|VℓAκ),

but we know VℓAκ is just E ⊗ Qℓ, and multiplication by α then becomes the usual multiplication by α map
E → E. Thus, the determinant is indeed NmE/Q α, as desired. ■

The point is that
deg γv = NmE/Q γv = NmE/Q pmvh

v .

We now compute this deg γv differently. Because we are only interested in the degree, we may as well take
κ = κ.

Lemma 3.12. Fix an algebraically closed field k of positive characteristic p, and set q := pm. Then any
isogeny f : A→ B of abelian k-varieties such that f∗K(B) contains K(A)q has

deg f ≤ qd,

where d = dimker Lie f .

91



3.2. APRIL 3 254B: COMPLEX MULTIPLICATION

Sketch. We will use [Mil17, Theorem 11.27]. Note that ker f is a local finite group k-scheme because f
factors through multiplication-by-q, from which one can see that

ker f = Spec
k[x1, . . . , xn](
xp

r1

1 , . . . , xp
rn

n

)
with ri ≤ m for each i and n = dimTe ker f by the proof of this result. Then one computes

deg f =

m∏
i=1

pri ≤ pmn = qn,

but n = dimTe ker f is dimker Lie f . ■

We are actually pretty happy that Lie has appeared because we need to relate everything back to the CM
type. In particular, we know that LieA admits a K-basis (eφ)φ∈Φ, where a ∈ E acts on eφ by φ(a).

Now, because KP/Op is unramified, we know that LieAwill admit anOKP
-basis by (eφ)φ∈Φ again. In-

deed, the point is that
OE ⊗Z OKP

=
⊕

σ : E⊆KP

OKP

because we are unramified.1 This basis then goes down to a basis {eφ}φ∈Φ of LieAκ by reduction. Thus,

ker(Lie γv : LieAκ → LieAκ) = span{eφ : φ(γv) ∈ P}

because our multiplication is basically coordinate-wise.
To continue, we recall that

Hv :=
{
τ ∈ Hom(E,K) : τ−1P = pv

}
and Φv := Φ ∩Hv.

The point is that we know dimker(Lie γv) is exactly #Φv, meaning deg γv ≤ qh#Φv by the previous lemma.
Comparing our two expressions for the degree, we see that

NmE/Q pmv
v ≤ q#Φv .

We claim that we have equality. Well, using (3.10), we see

NmE/Q π = deg Frob = qdimA

because deg Frob = deg Frob†. On the other hand,

NmE/Q π = NmE/Q
∏
v|p

pmv
v ≤

∏
v|p

q#Φv = q#Φ = qdimA,

so the inequality here sharpens to an equality.
Thus, we achieve (NmK/Q P)#Φv = NmE/Q pmv

v . On the other hand, decomposing the norm as a product
of conjugates, we see

NmE/Q

 ∏
φ∈Φv

φ−1(NmK/φ(E) P)

 =
∏
φ∈Φ

NmK/Q P,

so comparing our norms implies that

pmv
v =

∏
φ∈Φv

φ−1(NmK/φ(E) P).

(In particular, both sides are powers of pv by construction, so one only needs to compare exponents.) Loop-
ing over all φ completes the proof. ■

1 If we want to remove this unramified assumption, then we must work with more theory of p-divisible groups to make this sort of
thing go through.
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Remark 3.13. The bulleted assumptions can essentially be removed, but we will not do so.

Remark 3.14. In fact, one can show that there is an explicit formula of (π) ⊆ OE , which we will show
next class.

3.3 April 5
Today we would like to state the Main theorem of complex multiplication.

3.3.1 The Reflex Norm
We need to discuss the reflex norm. To describe our definition, fix a CM type (E,Φ), and letE∗ be the reflex
field. Recall that we may view Φ as a subset of Hom(E,Q). Note that

E ⊗Q K ∼=
∏

σ∈Hom(E,Q)

Kσ

for any fieldK containing all embeddings ofE into Q. Then Galois descent provides anE⊗Q E
∗ module VΦ

such that
VΦ ⊗E∗ K ∼=

∏
φ∈Φ

Kφ

simply by definition of E∗ as being fixed by automorphisms σ : Q→ Q permuting Φ.

Definition 3.15 (reflex norm). Fix a CM type (E,Φ), and defineVΦ as above. Then we defineNΦ : (E×)∗ →
E× by

NΦ(α) := det(α | VΦ).

In fact, for any K containing E∗, one can define NK,Φ : K× → K× by

NK,Φ(α) := det(α | VΦ ⊗E∗ K).

Remark 3.16. Because of transitivity of norms, we see that

NK,Φ = NΦ ◦NK/E∗ .

This definition work well with Theorem 3.9.

Proposition 3.17. Fix a field K containing the all images of E in Q. Then any a ∈ K× has

NK,Φ(a) =
∏
φ∈Φ

φ−1
(
NK/φ(E) a

)

Proof. Omitted. See [Mil20b, Proposition 1.26]. The point is to expand out the definitions and stratify along
Φ. ■

Remark 3.18. By tensoring with local fields suitably, we see that NK,Φ provides a map A×
K → A×

E and
also a map on the fractional ideals.
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3.3.2 The Main Theorem

Now, for our set-up, letA be an abelian Q-variety with CM type (E,Φ). LetE∗ be the reflex field. From here,
note that σ ∈ Gal(Q/Q) lets us define

Aσ := A⊗Q Q,

which has CM type given by σΦ; thus, if σ ∈ Gal(Q/E∗), then σΦ = Φ by definition of E∗, meaning that our
CM type is preserved! This observation will simplify matters, though it is possible to work with more general
σ if one is willing to put in more work.

Continuing, note that pointwise application of σ provides a map σ : A → Aσ, and this isomorphism is
compatible with the E-action on both sides. Continuing, we are granted an isogney α : A → Aσ which is
compatible with the E-action and unique up to multiplication by E×; this is because A and Aσ are both CM
abelian varieties with the same CM type.2 We would like to understand our Galois representations, so we
define

T̂ (A) :=
∏
ℓ

TℓA and V̂ (A) := T̂ (A)⊗Z Q.

So we get our isomorphism V̂ (σ) : V̂ (A)→ V̂ (Aσ) and similarly get some V̂ (α). These maps are both going
to be E ⊗ Af linearly, where Af := AE,f is denoting the finite adéles. Comparing our two morphisms, we
get some η(σ) ∈ A×

E,f such that

α(η(σ)x) = σ(x)

for all x ∈ V̂ (A); this is simply because we have provided two isomorphisms between Galois representa-
tions, which must be unique up to some multiplication. In total, we have gotten a group homomorphism

η : Gal(Q/E∗)→ A×
E,f/E

×.

We now get the feeling that global class field theory should come up. Because the target is abelian, the
above map actually factors through the abelianization, so it factors through Gal(E∗,ab, E) → A×

f,E/E
×. On

the other hand, we know from the next subsection that there is a global Artin map

A×
E∗,f/E

∗ → Gal(E∗,ab/E∗).

The statement of our Main theorem is then the following.

Theorem 3.19 (Main). Fix everything as above. Then the following diagram commutes.

Gal(Q/E∗) A×
E,f/E

×

Gal(E∗,ab/E∗) AE∗,f/(E
∗)×

η

Art

NΦ

In particular, we are granted essentially total understanding of the Galois action on the Tate module.

Remark 3.20. Later, we will use this fine understanding of the Galois representation in order to compute
the L-function of a CM abelian variety.

2 An easy way to see the uniqueness up to E× is to use the Albert classification: it suffices to show that β ∈ End0(A) commuting
with the E-action must be in E, which can be seen by looking at the cases individually.
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Remark 3.21. Fix a polarization λ : A→ A∨ such that (·)† is complex conjugation on E. Then one has a
Weil pairing ψ : V̂ (A)× V̂ (A)→ Af (1) given by gluing together the local Weil pairings. We now define
ψσ on Aσ by ψσ(σx, σy) := σ(ψ(x, y)), which by definition of Af (1) is just χ(σ)ψ(x, y) where χ is the
cyclotomic character. Applying Theorem 3.19 to our situation, we get some s such that

ψσ(σx, σy) = ψσ(α(NΦ(s)x), α(NΦ(s)y))

= ψσ(NΦ(s)NΦ(s)αx, αy)

= NΦ(s)NΦ(s)ψ
σ(αx, αy).

(Note that we get complex conjugation on the NΦ(s) because (·)† is complex conjugation.) So we are
able to compare ψσ with χcyc by comparing our two expressions.

3.3.3 A Little Global Class Field Theory

We quickly review the statement of global class field theory. Fix a number fieldK, and letKab be its abelian
closure.

Definition 3.22 (Artin map). Fix a number field K. Then there is a canonical homomorphism

ArtK : A×
K/K

× → Gal(Kab/K)

satisfying the following: for any finite place v, of K and w | v, the following diagram commutes.

Kv Gal(Lw/Kv)

A×
K/K

× Gal(Kab/K) Gal(L/K)

iv

ArtK

ArtLw/Kv

Here, Artv is the local Artin map; it is also an isomorphism.

Remark 3.23. Let’s describe some properties of the local Artin map.

• If Lw/Kv is unramified and nonarchimedean, then

ArtLw/Kv
(α) = Frob

−v(α)
Lw/Kv

,

where the− in the exponent is a rather annoying convention.

• If Lw/Kv is the extension C/R, then we are looking at the sign map R× → Gal(C/R).

Remark 3.24. One can take a quotient suitably to provide an Artin isomorphism

ArtL/K :
A×
K

K× N(A×
L )
→ Gal(L/K).

Remark 3.25. If K is CM, one may basically ignore the infinite places because they all start out as C.

95



3.4. APRIL 8 254B: COMPLEX MULTIPLICATION

3.4 April 8
We begin to talk about L-functions.

3.4.1 Hecke Characters from Abelian Varieties
Fix an abelian variety A over a number field K ⊆ Q with complex multiplication by E ⊆ End0(A). For
simplicity, we will assume that E∗ ⊆ K. Recall we built a Galois representation

ρA : Gal(K/K)→ AutAE,f
(V̂ A),

but because A has complex multiplication, this right-hand side is Aut×E,f , so in fact ρ will factor as

ρA : Gal(Kab/K)→ A×
E,f .

It turns out that Theorem 3.19 implies that

ρ(ArtK(s)) = NΦ(NK/E∗(s)) · λ−1
s

for some unique λs ∈ E×. Indeed, we know that

Gal(Q/E∗) A×
E,f/E

×

Gal(E∗,ab/E∗) AE∗,f/(E
∗)×

η

Art

NΦ

commutes, so we combine this with the functoriality of the global Artin map, which says that

A×
K/K

× Gal(Q/K)ab

A×
E∗/(E∗)× Gal(Q/E∗)ab

ArtK

ArtE∗

NK/E∗ res

commutes. Combining the two diagrams is able to produce our result.
To continue, we have the following result.

Proposition 3.26. The map λ• : A×
K,f → E× is continuous, where E has been given the discrete topol-

ogy.

We are going to take a roundabout way to this result. We begin with the following result, which will also be
a key input to our proof of the Weil conjectures for abelian varieties.

Remark 3.27. Fix a polarized abelian variety (A,φ). Then for any m ≥ 3, it turns out that

Aut((A,φ))→ AutA[m]

is injective.

To prove the remark, we will want

Proposition 3.28. Fix an abelian k-varietyA. Further, fix any endomorphism α such that α† ◦α = [n] for
some nonzero n ∈ Z. Then the following are true.

(a) Then Q(α) ⊆ End0(A) is semisimple.

(b) The multiset {ωi} of roots of the characteristic polynomial all have absolute value
√
|n|.

(c) The multiset {ωi} is stable under ω 7→ n/ω.
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Proof. We begin with (a). Here, we find α† = n ◦ α−1, so Q(α) is preserved under (·)†. The point is that
x 7→ tr(xx†) can now be defined to be a positive-definite quadratic form on Q(α).

We now show that Q(α) is semisimple. Let a ⊆ Q(α) be an ideal, then having our quadratic form lets
us define a⊥ and see that Q(α) = a ⊕ a⊥ because everything in sight is finite-dimensional. Thus, we can
decompose Q(α) into simple algebras inductively, meaning that Q(α) is semisimple.

We now handle (b) and (c). We can write

Q(α) = K1 ×K2 × · · · ×Km

for somem. Because (·)† is positive-definite, it cannot swap any of these fields, so in fact (·)† must preserve
all these fields, meaning that each is either totally real or has complex multiplication (by some argument
from the Albert classification). Now, we see that the ωj are the images of α via the various embeddings

Q(α)→ Ki → C,

but (·)† becomes complex conjugation inC, so we see that the image ofαwill have magnitude
√
|n| by direct

computation passing through α†α = [n]. Additionally, we see that we can exchange α with α† to send ωi to
n/ωi, which yields (c). ■

Remark 3.29. One recovers the Riemann hypothesis part of the Weil conjectures for abelian varieties
by applying this result to the fact that

Frob† ◦ Frob = [q].

One gets the other parts of the Weil conjectures by formally unraveling everything into the other parts;
for example, (b) will give rise to the functional equation.

We next pick up [Mum08, Theorem 21.5].

Theorem 3.30. Fix a polarized abelian variety (A,φ). Then for any m ≥ 3, the map

Aut((A,φ))→ AutA[m]

is injective.

Proof. Suppose that α is an automorphism of Aut((A,φ)). Then α† ◦α = 1 because we are an isomorphism
of the polarized abelian variety. (This is a matter of writing down the corresponding commuting square for
an isomorphism of polarized abelian varieties.) It follows that all eigenvalues ofα are algebraic integers with
norm 1, so they are all roots of unity.

We are now ready to complete the proof. It is enough to show that the map has trivial kernel. But then
we see that α = 1 +Mx for some x where M > 3, so ωi = 1 +Mxi for some xi where M > 3, from which
some algebraic number theory is able to enforce that ωi = 1 for each i. ■

Remark 3.31. The point of this is to show that the isomorphism class of our polarized abelian varieties
is finite. The reason we must have the word “polarized” is that it is possible to provide abelian varieties
with infinitely many automorphisms; for example, take an abelian variety with complex multiplication
by Q(

√
−1,
√
−2), which then will have endomorphisms in an order of Q(

√
2), which has infinitely many

units.

We are now ready to prove Proposition 3.26.

Proof of Proposition 3.26. Because everything in sight is a group, it is enough to show that s → 1 in A×
K,f

implies that λs = 1. Well, for m large enough and s close enough to 1, we can achieve λs ∈ O×
E (namely,

force s to be a unit at all finite places), λs ≡ 1 (mod M) for large M (which is finitely many congruence
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conditions), and λs ∈ End(AQ).How? In particular, we know that λ±1
s lives in OE ∩ AutAQ and acts trivially on

AQ[M ].
Continuing, we are given that there is a polarizationφ : AQ → A∨

Q which is compatible with theE-action,
and we are able to descend this polarization to its field of definition as φ : AL → A∨

L. The point is that we
will be able to see that λs preserves φ, from which λs = 1 will follow from Theorem 3.30. To see that we
preserve φ, we recall the ideas and notations from Remark 3.21, which grants a rational number c such that

cψ(x, y) = ψσ
(
λ−1
s x, λ−1

s y
)

With s close enough to 1, we will get ψσ = ψ because σ = Art s (so s close enough to 1 will make σ trivial
over the field of definition L). Continuing, unwinding definitions, we see

c−1ψ(x, y) = ψ(λsx, λsy) = ψ(λsλsx, y),

from which the non-degeneracy of the Weil pairing forcesλsλs ∈ Q. Thus, for degree reasons (and positivity
reasons), we see that λs · λs is a positive integer but also invertible, so it must be 1, so indeed λs preserves
φ by staring at the above computation. ■

We are now ready to define Hecke characters and check that we’ve built one.

Definition 3.32 (Hecke character). Fix a number field K. A Hecke character is a continuous homomor-
phism χ : A×

K/K
× → C×. If imχ ⊆ S1, we say that χ is unitary.

Remark 3.33. For any Hecke character χ : A×
K/K

× → C×, one has a unique decomposition χ = χ0 |·|σ
for some σ ∈ R where χ0 is unitary and |·| is the norm. Indeed, the main point is to define σ as |χ|; then
the image of χ |·|−σ lands in S1.

Thus, we see that we need λ• to be trivial on K×.
Let’s describe this construction. Fix everything as before, and choose an embedding τ : E ↪→ C. Then

one can define a map ατ via the composite

A×
K →

∏
v|∞

E×
v ↠ Eτ

τ→ C×.

Here, the first map is given by s 7→ N−1
K,Φ,∞(s)λ(s); here, NK,Φ,∞ is given by taking the infinite components

of the local reflex normsNK,Φ : A×
K → A×

E . The continuity ofατ is basically by definition (everything involved
in the definition is continuous), so it remains to check that ατ vanishes on K×.

3.5 April 10
Today we continue towards our discussion of L-functions.

3.5.1 L-functions for Abelian Varieties
We begin by checking that we have actually defined a Hecke character.

Lemma 3.34. Fix everything as previously discussed. Then ατ (K×) = 1.

Proof. Quickly, for s ∈ A×
K , let sf ∈ A×

K,f be the finite part, and we recall that

λ(s)N−1
Φ

(
NK/E∗ sf

)
= λ(s)NK,Φ(sf ) = ρ

(
Art−1

K (s)
)
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from Theorem 3.19. Now, the right-hand side is trivial for s ∈ K×, and we are able to compute that the
left-hand norm is

N−1
K,Φ(sf ) = N−1

K,Φ,∞(s)

basically by definition of s, so we are able to conclude. ■

To continue, we note that our Hecke character is actually algebraic.

Definition 3.35 (algebraic). Fix a number field K. A Hecke character χ : A×
K/K

× → C× is algebraic if
and only if its archimedean part χ∞ := χ|K×

∞
is of the form

χ∞(x∞) =
∏
v real

xnv
v ·

∏
v complex

xnv
v xnv

v

for integers n• ∈ Z.

Remark 3.36. Approximately speaking, we are asking for this to come from morphism ResK/Q Gm →
Gm. In particular, a priori, χ∞ can have exponents which are any integers, so we are placing a fairly
strong algebraic limitation.

Unwinding the definition of NK,Φ,∞ reveals that N−1
K,Φ,∞ λ is an algebraic Hecke character.

We are now able to define our L-function on the level of the Hecke character.

Definition 3.37 (conductor). Fix a number fieldK. The conductor m of a Hecke character χ : A×
K/K

× →
C× is a finite ideal m =

∏
p p

mp chosen to be the smallest possible so that χ is trivial on
∏

p (1 + pmp).

Note that m conductor exists by continuity of χ.

Definition 3.38. Fix a number field K. A Hecke character χ : A×
K/K

× → C× of conductor m has associ-
ated L-function given byOutside

these fac-
tors?

L(χ, s) :=
∏
p∤m

1

1− χp(ϖp)NK/Q(p)−s
,

where ϖp ∈ p is a uniformizer.

We now recall the following result on these L-functions.

Theorem 3.39 (Hecke, Tate’s thesis). Fix a number field K and a Hecke character χ : A×
K/K

× → C×.
Then L(s, χ) admits a functional equation and a meromorphic continuation to all C.

On the other hand, we can build an L-function for A.

Definition 3.40. Fix an abelian variety A over a number field K. Then the L-function of A is

L(A, s) :=
∏
p

1

det
(
1− Frobp(NK/Q p)−s | VℓA

) ,
where the Euler factor written is correct whenA has good reduction at p, but at bad reduction we must
look at the part of VℓA fixed by inertia.

It turns out that for Re s large enough, the Euler product will converge; this is essentially by the Weil con-
jectures. In more words, we may only look at primes of good reduction (there are only finitely many primes
of bad reduction), and the eigenvalues of Frobp have magnitude |N p|1/2, so we should expect convergence
after Re s > 3/2.

We now have the following result.
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Theorem 3.41. Fix an abelian variety A over a number field K, and assume that A has complex multi-
plication by the CM algebra E. Then

L(A, s) =
∏

τ : E→C
L(ατ , s).

In particular, L(A, s) admits a functional equation and meromorphic continuation.

Basically, what is happening is that the Galois representation attached toA is abelian, so we should be able
to decompose it into characters. The theorem will follow from the following result.

Proposition 3.42. Fix an abelian variety A over a number field K, and assume that A has complex mul-
tiplication by the CM algebra E. Fix a prime p of K. We will basically have two steps.

1. If A has good reduction at p, then the restricted character χp := λ|K×
p

is trivial on O×
Kp

. (In fact,
the converse is true, which we will show next lecture.)

2. λp(ϖp) ∈ OE acts onAκ(p) as Frobp.

We now prove Theorem 3.41.

Proof of Theorem 3.41 assuming Proposition 3.42. We compare the Euler factors by hand. Note VℓA is a
rank-1 module over E ⊗Q Qℓ, so

det (1− FrobpT | VℓA) = NE/Q(1− FrobpT ).

Now, Proposition 3.42 implies that this equals

NE/Q(1− λp(ϖp)T ) =
∏

τ : E→C

(
1− ατp(ϖp)T

)
,

as desired. ■

We now move towards a proof of Proposition 3.42.

Proof of Proposition 3.42. We begin with (a). Fix p, and choose ℓnot divisible by p. By local class field theory,
the inertia subgroup Ip ⊆ Gal(Kab/K) is the image ofO×

Kp
under the Artin map, which means that

ρ(ArtK(s))ℓ = 1

for s ∈ O×
Kp
⊆ A×

K . So ArtK(s) acts trivially on TℓA, but then we see that λ(s)−1 N−1
K,Φ(s) vanishes on TℓA.

Similarly, N−1
K,Φ(s)ℓ = 1 because p does not divide ℓ, so we are forced to conclude that λ(s) acts trivially, as

desired.
We now turn to (b). Here, the point is that λp(ϖp) acts on TℓA = TℓAκ(p) as ρ

(
ArtKp

(ϖp)
−1
)

, which is
ρ(Frobp), as desired. ■

3.6 April 12
Today we discuss the fact that an abelian variety with complex multiplication has potentially good reduction
everywhere.

3.6.1 Potentially Good Reduction Everywhere
The following definition is our main character.
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Definition 3.43 (potentially good reduction). Fix an abelian varietyA over a number fieldL. For a prime
p of K, we say that A has potentially good reduction at p if and only if there is a some prime P over p
from a finite extension LP of Kp such that ALP

has good reduction at P.

Remark 3.44. We already know that A has good reduction at all but finitely many primes of K. So if
A has potentially good reduction at all primes, we can find a suitably large finite extension L/K such
that AL has good reduction everywhere. Indeed, simply take a single extension L which is okay for
one prime P over each prime p of K which originally had bad reduction. Then one may make L larger
without losing our good reduction at those primes, but then we can replace L with its Galois closure,
and then the primes are permuted transitively by the Galois group, so we will get good reduction over
every prime P′ over a prime p of K which originally has bad reduction.

Here is our main result for today.

Proposition 3.45. Fix an abelian variety A over a number field K with complex multiplication. Then A
has potentially good reduction everywhere.

For this, we will use the following criterion for good reduction.

Theorem 3.46 (Néron–Ogg–Shafarevich criterion). Fix a discrete valuation ring (R, p, κ) with fraction
field K. Then an abelian variety A over K has good reduction if and only if the inertia subgroup I ⊆
Gal(K/K) acts trivially on TℓA for some ℓ not dividing charκ.

Proof. We will only sketch the proof because we don’t want to get bogged down with the theory of affine
algebraic groups.

For the converse direction, let A (over R) be the Néron denote the Néron model of A over K. Then the
Néron mapping property implies that

A(Kunr)[ℓ•] ∼= A (OKunr) [ℓ•] ↠ A(κ)[ℓ•].

Note that the last map is an isomorphism by Hensel’s lemma, namely by our smoothness. This now implies
the forward direction: good reduction means that we are proper in the target, so the end becomes TℓA, but
inertia acts trivially on the left, so it must act trivially on the right.

We now focus on the harder converse direction. Because inertia acts trivially on TℓA, our left-hand side
is justA(K)[ℓ•]. (A priori, this would only be the submodule ofA(K)[ℓ•] fixed by inertia because we are only
looking at the unramified part.) This is somehow “too big” forA to be anything other than an abelian variety.
Let’s explain this. Note Aκ is a smooth commutative finite type group scheme over κ, so it lives in a short
exact sequence

0→ A◦
κ → Aκ → Aκ/A◦

κ → 0,

where the target is finite, andA◦
κ lives in some short exact sequence

1→ U → A◦
κ → G→ 0,

where U is unipotent and G is semi-abelian (i.e., an extension of an abelian variety B by a torus T ). (This
last clause follows by some structure theory of algebraic groups.) Notably, we see that dimA = dimAκ =
dimU + dimT + dimB. We now examine the torsion everywhere.

• #B(κ)[ℓn] is ℓn·2 dimB .

• #T (κ)[ℓn] is ℓn dimT because over the algebraically closed field, this will split into GdimT
m , which has

torsion given by µdimT
ℓn .

• #U(κ)[ℓn] is one because unipotent groups are torsion-free.
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Now, sending n→∞ forces that
2 dimA = 2dimB + dimT,

so dimT = 0 and dimB = dimA, so dimU = 0 as well. Thus,Aκ is proper, which can then be lifted to show
thatA is proper and hence an abelian scheme.How? ■

We are now ready to prove Proposition 3.45.

Proof of Proposition 3.45. We may extend K immediately so that the endomorphisms promised by com-
plex multiplication are all defined. We are going to use a little local class field theory and the fact that the
Galois representation ρℓ : Gal(K/K)→ Aut(TℓA) is abelian.

Fix some prime pofK which we would like to show thatAhas potentially good reduction at p (and choose
ℓ not divisible by p). Then we note that

Gal(Kp/Kp) ⊆ Gal(K/K)→ AutTℓA

has abelian image and hence must factor as

Gal(Kab
p /Kp)→ AutTℓA.

Let Ip be the corresponding inertia subgroup so that we want ρℓ(Ip) to be trivial after some extension.
Now, by Local class field theory, Ip containsO×

Kp
and hence contains a finite-index subgroup of the form

1 + pOKp
. Further, AutTℓA has an ℓ-adic topology, and we see that it has 1 + ℓEndTℓA as a finite-index

subgroup, which is a pro-ℓ group. Now, taking the pre-image of Aut(TℓA)’s finite-index neighborhood of
the identity and then intersecting with 1+pOKp

produces a map from a finite-index pro-p subgroup of Ip to
a finite-index pro-ℓ subgroup of AutTℓA. But such a thing must have finite image, so ρℓ(Ip) must still have
finite image by going back up the finite index subgroups. However, we can kill this finite image by passing
to a finite extension of K, so we are done. (Namely, the pre-image of the identity is an open finite index
subgroup of Ip, so we just extend K enough so that the new inertia subgroup goes in there.) ■

3.6.2 Honda–Tate Theory
As a fun application of some of the theory we’ve built so far will be to classify isogeny classes of abelian
varieties over finite fields. Let’s state our theorem, which requires the notion of a “q-Weil number.”

Definition 3.47 (Weil numbers). Fix a prime-power q. Then a q-Weil number is an algebraic integer π
such that |σ(π)|2 = q for any embedding σ : Q(π) → C. Two q-Weil numbers π and π′ are conjugate,
written π ∼ π′, if and only if there is an isomorphism Q(π)→ Q(π′) sending π 7→ π′. (In other words, π
and π′ have the same minimal polynomial, which is equivalent to π and π′ being Galois conjugates.)

Remark 3.48. Let’s explain where this notion is coming from. Well, fix an abelian Fq-variety A. Then
we know that

Frob†A ◦ FrobA = [q],

so πA := FrobA has that Q(πA) is semisimple (and hence a field whenA is simple), so the Albert classi-
fication explaining how to embed this into C tells us that πA is a q-Weil number.

Here is our result.

Theorem 3.49 (Honda–Tate). Fix a prime power q. There is a bijection between isogeny classes of sim-
ple abelian Fq-variety A and conjugacy classes of q-Weil numbers π given by sending A 7→ FrobA.

The injectivity of the mapA 7→ FrobA is due to Tate. We will not prove this, but here is the precise statement
which Tate proved.
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Theorem 3.50 (Tate). Fix a prime power q and a prime ℓ not dividing q. Then the Tate functor Tℓ is fully
faithful.

We already know that Tℓ is faithful, so the main content is showing that this functor is full. This turns out
to be rather difficult, though it is not too far outside the scope of the current course. The main point here
is that we will be able to construct morphisms of abelian varieties only by providing morphisms of the Tate
modules.

Corollary 3.51. Fix a prime power q and a prime ℓ not dividing q. Then the following are equivalent.

(a) A and B are Fq-isogenous.

(b) VℓA ∼= VℓB (as Galois representations) for some prime ℓ not dividing q.

(c) VℓA ∼= VℓB (as Galois representations) for all primes ℓ not dividing q.

(d) PA(t) = PB(t), where the PA and PB are the characteristic polynomials of the Frobenius.

Proof. We already know that (a) implies (c) (the isogeny provides the isomorphism of the Tate modules),
which implies (b) (with no content), which implies (d) by taking the characteristic polynomial on both sides
and seeing that the isomorphism forces them to agree.

We now show the harder implications. To see that (d) implies (c), we note that Frob is semisimple, so
having PA = PB implies that Vℓ(A) = Vℓ(B), where the equality even preserves the Frobenius action, and
this Frobenius action is the same as the total Galois action because we are over a finite field. Explicitly,
PA = PB implies that FrobA and FrobB are conjugate on the Tate module (base-changed to Q) because they
have the same eigenvalues; this then descends to an isomorphism to VℓA ∼= VℓB preserving Frobenius by
Hilbert’s theorem 90 by Galois descent for representations. (Namely, any obstruction to descent would be
a 1-cocycle in a vanishing cohomology group.)3

It remains to show that (c) implies (a), which will follow from Theorem 3.50. Namely, having two isomor-
phic Galois representations provides inverse maps on the level of Tate modules, which can then be lifted to
inverse maps of the abelian varieties (up to multiplication by an integer, which is an isogeny), which is what
we wanted. ■

Remark 3.52. Without much more work, we can upgrade this to state that the following are equivalent.

(a) There is an isogeny of A onto an abelian subvariety of B.

(b) VℓA is a Galois sub-representation of VℓB.

(c) PA divides PB .

We now see that the equivalence of (a) and (d) implies that the map sending A to the conjugacy class of
q-Weil numbers given by FrobA will be injective, which is the injectivity required in Theorem 3.49. Let’s be
more explicit about this: if πA = πB , then they have the same minimal polynomial, so one of PA will have to
divide PB (using the remark), so one of A or B is isogenous to an abelian subvariety of the other, but then
simplicity forces full isomorphism.

3.7 April 15

Today we continue discussing Honda–Tate theory.

3 Here is another argument: PA = PB implies that one can explicitly write down what VℓA and VℓB should be and then show that
they are isomorphic.
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3.7.1 Building a CM Field
It remains to see the surjectivity of Theorem 3.49. For this, we will start with a q-Weil number π and actually
construct an abelian varietyA over a number fieldK with complex multiplication and then reduce it by some
p ∈ V (K) (makingK large enough to ensure that the reduction is okay). ThisAwill be required to haveAκ(p)
with the correct q-Weil number. The point is that our proof shows that we can lift any abelian variety over a
finite field (up to finite extension) to an abelian variety with complex multiplication!

Remark 3.53. It is in general an interesting question when one can add requirements to our lifting. For
example, perhaps we want to avoid passing to the isogeny class or removing the finite extension or with
some extra Hodge cycles or endomorphisms.

As such, we need to construct a CM type for our q-Weil number π. Let’s begin with building the CM field. It
will be helpful to have a better understanding of q-Weil numbers.

Lemma 3.54. Fix a q-Weil number π. Then exactly one of the following is true.

(i) q is a square, and π = ±√q, meaning Q(π) = Q.

(ii) q is not a square, and π = ±√q, meaning Q(π) is a real quadratic extension of Q.

(iii) Q(π) is CM.

Proof. For (i) and (ii), suppose we have some real embedding ρ : Q(π) → R. Then ρ(π) has magnitude√q,
so ρ(π) is one of±√q. If q is a square, we get (i); if q is not a square, we get (ii).

Otherwise, π is totally imaginary, so we claim that Q(π) is CM. We claim that Q(π + q/π) is totally real,
but thenQ(π) has degree at most 2 overQ(π+q/π)while having no real embeddings, so this extension must
be quadratic and totally imaginary, which will complete the proof. So to check that π + q/π is totally real,
pick up some embedding τ : Q(π)→ C, and then we see that

τ
(
π +

q

π

)
= τ(π) + τ(π)

because |τ(π)|2 = q. Now, the above quantity is always real, so we are done. ■

We now construct our CM field.

Theorem 3.55. Fix a simple abelian Fq-variety A where Fq has characteristic p. Then set D := End0(A)

and K := Z(D) and d :=
√
[D : K] and e := [K : Q]. Then the following hold.

(a) K = Q(πA).

(b) de = 2dimA.

(c) For each place v ∈ V (K), we have

invv(D ⊗K Kv) =


1/2 if v is real,
ordv(π)
ordv(q)

[Kv : Qp] if v | p,
0 otherwise.

Proof. We will show (a) and (b) and only sketch (c).

(a) By Theorem 3.50, we know that

D ⊗Q Qℓ = EndGal(Fq/Fq
)(VℓA) = EndQ(πA)(VℓA).
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We now apply the double–centralizer theorem [Mil20a, Theorem IV.1.14]. Let’s recall the statement:
fix a field k. Given a finite-dimensional k-algebra B and some faithful semisimple B-module V , we
have

Z(Z(B)) = B,

where centralizers are taken in Endk(V ).
Applying the theorem to k := Qℓ and B := Q(πA) ⊗Q Qℓ and V := VℓA, we see that Z(B) = D ⊗Q Qℓ
because everything commutes with Frobenius, so

Z(D ⊗Q Qℓ) = K ⊗Q Qℓ.

Intersecting everything with D, we are done.

(b) By the Albert classification, we already know that ed | 2 dimA, so we only need to show the equality.
Note that

K ⊗Qℓ = Kv1 × · · · ×Kvr

where v1, . . . , vr are the places of K above ℓ. Now, K ⊗ Qℓ acts faithfully on VℓA, so we can split up
VℓA into

V1 ⊕ · · · ⊕ Vr

where Kvi acts on Vi for each i. We now do some careful dimension-counting. Note

D ⊗Q Qℓ = EndK(VℓA) =

r∏
i=1

EndKvi
(Vi),

which by computing Qℓ-dimensions provides

d2e =

r∑
i=1

eid
2
i ,

where ei := [Kvi : Qℓ] and di := dimKvi
Vi. Now, we see that

(2g)2 ≥ (de)2 = d2e · e =

(
r∑
i=1

eid
2
i

)(
r∑
i=1

ei

)
∗
≥

(
r∑
i=1

eidi

)2

= (2g)2,

where we have used Cauchy–Schwartz at
∗
≥. So our inequalities get upgraded to equalities, so we are

okay.

(c) We postpone the case of v | p until much later. For finite vi | ℓ where ℓ is a rational prime not dividing
p, we note that the proof of (b) above tells us that

D ⊗vi Kvi = EndKvi
(Vi) =Md(Kvi),

so our invariant vanishes.
For infinite places v, note that there is nothing to say if v is complex, so we only focus on the real case.
Looking at our Albert classification, we note that types I and II cannot occur because ed = 2g, and type
IV poses no threat because there are no real places anyway. So it remains to run type III, where the
Albert classification tells us that D ⊗ R is non-split. ■

Remark 3.56. By definition, we see thatAhas complex multiplication. Namely, we are able to find some
subfield of D with degree 2 dimA, which does provide CM by its technical definition.
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Remark 3.57. Using the above, we see that PA is the minimal polynomial of πA (which has degree e) to
the power of d. But by facts about central simple algebras from class field theory, d is the least common
multiple of the local invariants. This enables us to pin down D by global class field theory because we
know that it is a division algebra.

Remark 3.58. It is worth noting that our proof of (b) shows that we achieve the equality case in Cauchy–
Schwartz, which implies that the dimensions of the V• must all be equal to each other.

We now begin our construction.

Lemma 3.59. Fix a q-Weil number π. Then there is a division algebra D over K := Q(π) such that it
satisfies the local conditions of Theorem 3.55(c).

Proof. By the fundamental exact sequence of global class field theory, it suffices to show that the required
D exists provided that ∑

v

invv(D ⊗K Kv) = 0.

If D is totally real, we leave this for homework. It remains to deal with the case where K is CM. Here, there
are no infinite places to worry about, so it remains to study the places over p = charFq. Being CM means
that ππ = q for our complex conjugation automorphism ·. We have two cases for a place v over p.

• If v ̸= v, then pairing off invv(D ⊗Kv) and invv(D ⊗Kv) will sum to zero because

ordv(π) + ordv(π) = ordv(q).

• If v = v, then we get 1
2 times the degree, but the number of cases where v = v must be even anyway

because our total extension has even degree. So looping over all v, we get

1

2

∑
v|p
v=v

[Kv : Qp],

but the sum must be even because it is [K : Q] (which is even) minus the contributions of the degrees
from the previous case (which is even by the same sort of pairing with [Kv : Qp] = [Kv : Qp]), as
needed. ■

3.8 April 17
Today we complete the proof of the surjectivity of Honda–Tate theory.

3.8.1 Finishing Honda–Tate Theory
We continue our construction of the required CM field.

Proposition 3.60. Fix a q-Weil number π, and set K := Q(π). Let D be a K-division algebra satisfying
the local conditions of Theorem 3.55(c). Then there is a CM field L such thatD⊗K L splits at all places
of L, and [L : K] =

√
[D : K].

Proof. Once again, we leave the case where K is totally real to homework. As a quick sketch, one takes
L := K(

√
−p) where p := charFq.
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Otherwise, K is CM with totally real subfield K+ := Q(π + q/π). Set d :=
√
[D : K] to be our reduced

degree. Now, there exists a totally real extensionL+ ofK+ of degree d such that each place v0 ofK+ above
p remains inert inL+: simply construct an irreducible polynomial (with real roots) which remains irreducible
over all our finitely many places, which comes down to some explicit construction. Then L := KL+ is CM
over L+ and has the correct degree.

It remains to check that D ⊗K L splits at all places of L. Note D already splits at all places not above p,
so we just need to check that we split at the places above p. Well, for eachw ∈ V (L) above v ∈ V (K) above
p, we see

invw(D ⊗K L) = [Lw : Kv] invv(D),

which vanishes because invv(D) vanishes once multiplied by d by some facts of central simply algebras. ■

Remark 3.61. We quickly recall [Mil20a, Corollary IV.3.7]. Under the assumption [L : K] =
√
[D : K],

then one knows thatD⊗K L splitting everywhere locally implies splitting globally (by the fundamental
exact sequence), which is equivalent to having a K-algebra embedding L ⊆ D.

We now produce our abelian variety.

Proposition 3.62. Fix a q-Weil number π, and set p := charFq and K := Q(π). Then there is an abelian
schemeA overOK′ whereK ′ is a finite extension of Qp such thatAK′ admits CM by the L constructed
in the previous proposition andAκ (whereκ is the residue field) has Frobenius conjugate toπN for some
positive integer N .

Proof. By the complex theory, it is enough to construct the required CM type (L,Φ). Then we can take K ′

large enough so thatA has good reduction everywhere, and we will use the Shimura–Taniyama formula to
check what’s going on with the Frobenius. Well, let’s recall from Theorem 1.117 that Φ ⊆ Hom(L,Qp), so
we define Φw := Φ ∩Hw, and we would like

ordw(πAκ)

ordw(#κ)

?
=

#Φw
#Hw

.

To continue, we want the following lemma, which explains why we need πN in our construction if we are
only ever going to use the above condition from Φ.

Lemma 3.63. Fix a Weil q-number π and q′-Weil number π′, where p := charFq = charFq′ . IfK is a field
containing Q(π, π′) and

ordw(π)

ordw(q)
=

ordw(π
′)

ordw(q′)

for any place w ∈ V (K) above p, then (π′)a
′
= πa for some positive integers a and a′.

Proof. By taking powers of π and π′ (which continue to be Weil numbers), we may assume that ππ = π′π′,
meaning q = q′. We now want to show that π/π′ is a root of unity (so that they will become equal after taking
more powers). But we know that

|τπ| = |τπ′|
for any embedding τ : Q(π)→ C, so it will be enough to check that π/π′ is an algebraic integer. Well, for any
place w not above p, we know that w(π) = w(π′) = 0 because ππ = π′π′ are powers of p. And for any place
w of p, the hypothesis tells us thatw(π) = w(π′) still. Thus, we are able to conclude that π/π′ is an algebraic
integer, all of whose archimedean norms are 1, so it is a root of unity. ■

We now continue with the proof with the above lemma in mind. Let’s quickly explain how to construct Φ so
that

#Φw
?
= Hw ·

ordw(πAκ
)

ordw(#κ)
= [Lw : Kv] · [Kv : Qp] ·

ordv(π)

ordv(q)
.
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Note the product of the central and right factors on the rightmost side is invv(D), which we know becomes
an integer after multiplying by [Lw : Kv] by construction of L at this place. So we may choose Φw ⊆ Hw

somewhat randomly to have the right number of elements. The only extra constraint on Φ is to have Φ ⊔ Φ
to be the full Hom(L,Qp), which amounts to requiring

#Φw +#Φw
?
= #Hw = #Hw

after rearranging our chosen Φw appropriately. But comparing what we are requiring about #Φw, we see
we are asking for ordv(π) + ordv(π) = ordv(q), which is true because ordv(π) = ordv(π).

So in total, we have constructed a special CM type (L,Φ), which produces an abelian variety over some
number field with the correct CM type by our Galois descent arguments from much earlier, and then the the-
ory of Néron models provides us with our CM abelian schemeAwith CM type (L,Φ). Then Theorem 1.117
grants

ordw(πAκ)

ordw(#κ)
=

#Φw
#Hw

=
ordw(π)

ordw(q)

for any primew ∈ V (L) above p, and then the lemma tells us that π is realized up to a power as the Frobenius
πAκ

. Note we can base-change A a little further in order to replace πAκ
with a higher power, so we are

done. ■

We are now ready to prove the surjectivity of Theorem 3.49. Thus far, for our q-Weil number π, we have
produced an abelian varietyA over a large finite field κ such that πN = πA. Note that we must have#κ = qN

because πAπA = |#κ|. To complete the proof, we use Weil restriction, and we will leave some details to the
homework.

Definition 3.64 (Weil restriction). Fix a finite field extension L/K. Given an L-group G, we define the
Weil restriction ResL/K G on R-points (for R ∈ AlgK ) by

ResL/K G(R) := G(R⊗K L).

Remark 3.65. On the homework, we will show that

Vℓ(ResL/K A) ∼= Ind
Gal(L/L)

Gal(K/K)
VℓA

for any finite extension L/K of fields.

Using the previous remark, we set B := Resκ/Fq
A and see that the action of FrobNA,Fq

on Resκ/Fq
A is going

to be FrobA,κ, which then splits up as conjugation by cosets on the induction on each piece of the induction
VℓB = IndVℓA,What? so we see that πNB = πA and PB(t) = PA

(
tN
)

, meaning π is a root of PB , so πB is conjugate
to π, completing our surjectivity construction.

3.9 April 19

Today we go back to the main theorem of complex multiplication.

3.9.1 A Little Dieudonné Theory
Recall that the proof of Theorem 3.55 avoided the computation in the case where v | p. Quickly, let’s recall
our set-up: let A be a simple abelian k-variety (where k is perfect), and set D := End0(A).

We might be interested in the “p-divisible group” A [p∞], which is the inductive system of groups A [pn]
equipped with the embeddings A [pn] ⊆ A

[
pn+1

]
. Here is our precise definition.
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Definition 3.66 (p-divisible group). Fix a prime p and an integer h. A p-divisible group is a system of
finite group schemes {Xn}n∈N of order pnh equipped with closed embeddings ιn : Xn ↪→ X)n+ 1 such
that [p] : Xn+1 → Xn factors through [p] as [p] = πn ◦ ιn−1, and πn is faithfully flat.

Do note that we can forget about being faithfully flat if we work over a field.
We now note that Tate’s theorem extends to this setting.

Theorem 3.67. Fix abelian Fq-varieties A and B. Then the restriction map

Hom(A,B)⊗ Zp → Hom(A[p∞], B[p∞])

is an isomorphism.

One concern here is that A [p∞] does not immediately look like it has any attached linear algebra. Let’s
remedy this, which is the point of Dieudonné theory; see [CCO14, Appendix A.1] for more details.

Theorem 3.68 (Dieudonné). Fix a perfect field k of characteristic p > 0, and let W (k) be the Witt ring.
Then there is an anti-equivalence of categories sending a p-divisible group to Dieudonné modules,
which are free W (k)-modules of finite rank with specified action by two endomorphisms F and V sat-
isfying some explicit relations. Explicitly, let σ : W (k) → W (k) be the lift of the Frobenius map k → k,
and then we require F to be σ-linear, V to be σ−1-linear, and FV = V F = p. We label this functor as
taking the p-divisible group G to the Dieudonné module D(G).

Here,F is intended to be a “Frobenius.” In our context, we expectFrobA : A→ A(1), which then will descend
to a map on the p-divisible groupA [p∞]. Then we know that FrobA factors through [p] via map V : A(1) → A
we call the “Verschiebung.”

Remark 3.69. If we want to consider isogeny classes, then we end up inverting p in our Homs, so the
conditions FV = V F = p end up fully specifying V ; for example, this condition implies that V is σ−1-
linear by the linearity of the condition FV = p.

As one might expect, our equivalence of categories sends a p-divisible group {Xn}n∈N basically to its crys-
talline cohomology, in analogy with the Tate module being étale cohomology.

3.9.2 Loose End of Honda–Tate Theory
We now return to the setting of Theorem 3.55. Recall that we have K := Q(π) equal to Z(D), where D :=
End0(A). Also, set W :=W (Fq) for brevity. Now, the equivalence of our categories tells us that

D ⊗Q Qp = (EndD(A[p∞]))op ⊗W [1/p],

so the decomposition K ⊗Q Qp =
∏
v|pKv gives rise to a decomposition

A[p∞] ∼
∏
v|p

Gv

in the isogeny category of p-divisible groups. As such, we get a decomposition of D(A[p∞]) as

D(A[p∞])⊗W W [1/p] =
⊕
v|p

D(Gv)⊗W W [1/p].

We now set Dv := D ⊗K Kv to be the v-component, which is going to be the endomorphism algebra
(EndD(Gv))op⊗WW [1/p]. (Here, endomorphism means that we are taking aW [1/p]-linear map compatible
with the action by Frobenius.)
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There is some way to track through the Frobenius action on everything. Approximately speaking, if g(t)
is the minimal polynomial for πA, then a factorization g =

∏
v|p gv in Qp[T ] will make πA act on D(A[p∞]) as

F r (with q = pr), and then the polynomials gv explicate how Frobenius should end up acting on each of the
v-components. With some effort, one can compute invDv as

W [1/p][F ]

gv(F r)
,

which yields the correct answer.

Remark 3.70. One can run a similar computation to prove Theorem 1.117 without all of our extra as-
sumptions.

3.9.3 Reduction Step for the Main Theorem
We now begin the proof of Theorem 3.19. We quickly recall the set-up. Fix our abelian variety A over a
number field K with complex multiplication by (E,Φ), and we will assume that K contains the reflex field
E∗. For some σ ∈ Gal(Q/E∗), we can reduce this down to the abelianization, so Artin reciprocity grants a
unique s ∈ A×

E,f/E
∗,× such that

ArtE∗(s) = σ|E∗,ab .

Further, η(σ) is some finite idéle in A×
E,f , and we know NΦ(s) ∈ A×

E,f/E
×. We would like to know that these

elements agree in the idéle class group.
We begin with some notation.

Notation 3.71. Let K be a number field, and set TK := ResK/Q Gm to be an algebraic Q-group. Now,
for our CM field E, set F := E+. Note that there is a norm map NE/F : TE → TF for any extension of
numbers fields E/F , so we go ahead and define

T := Gm ×TF TE ,

where the embedding Gm → TF is given on Q-points by the inclusion Q× ⊆ F×.

For example, we see that

T (Q) = Q× ×F× E× =
{
a ∈ E× : NE/F (a) ∈ Q×} .

More generally, for a Q-algebra R, we have

T (R) = R× ×(R⊗QF )× (R⊗Q E)× = {r ∈ (R⊗Q E)× : NE/F (r) ∈ (R⊗Q F )
×},

so T (Af ) =
{
a ∈ A×

E,F : NE/F (a) ∈ A×
Q

}
.

Lemma 3.72. Fix everything as above.

(a) If T ⊆ TE , then T (Af )/T (Q) ⊆ TE(Af )/TE(Q) is a topological embedding.

(b) The space T (Af )/T (Q) is Hausdorff.

The point for (b) is to show that we will be able to compare two elements via open subsets, which we under-
stand in A×

E,f already. Importantly, A×
E,f/E

× fails to be Hausdorff becauseE× is dense in A×
E,f (even though

the embedding E× → A×
E is discrete and cocompact!).

Proof. For (a), the inclusion T ⊆ TE is defined on the level of algebraic groups, so it is defined using poly-
nomials over Q. Thus, if x ∈ T (Af ) goes down to TE(Q), then we can actually show that x ∈ T (Q) by some
algebra. The rest of the check for (a) is similar.

110



3.10. APRIL 22 254B: COMPLEX MULTIPLICATION

For (b), we will actually check that T (Q) ⊆ T (Af ) is discrete. For this, we need to find an open neighbor-
hood of the identity which intersects T (Af ) at only finitely many points. Well, T (Q) ∩O×

E is an open subset
ofT (Q) in the restricted topology. By the Dirichlet unit theorem, we know thatO×

F is a finite-index subgroup
ofO×

E , so we may pass to T (Q) ∩ O×
F .

Now, a ∈ T (Q) ∩ O×
F consists of elements a ∈ O×

F such that NE/F a = a2, and this value is rational. But
then this requires that a2 = ±1, so being totally real requires a2 = 1, so we see that T (Q) ∩ O×

F is a finite
set. ■

3.10 April 22
Today we continue discussing the main theorem of complex multiplication.

3.10.1 Continuing the Reduction Step
We continue with the notations and notions from last lecture.

Lemma 3.73. Fix some σ ∈ Gal(E∗,ab/E∗), and select s ∈ A×
E∗,f/(E

∗)× so that Art(s) = σ. Further,
choose an isogeny α : A→ Aσ, and we recall that we have some η : V̂ A→ V̂ A such that V̂ α ◦ η = V̂ σ.
Then we claim that

η(σ)

NΦ(s)
∈ T (Af )
T (Q)

.

The point of this lemma is to reduce everything to the finite setting over Q, allowing us to transition to an
ideal-theoretic statement.

Proof. Fix a polarization λ giving rise to the Weil pairing ψ : V̂ (A) × V̂ (A) → Af (1). Then recall from Re-
mark 3.21 that

χcyclo(σ)ψ(x, y) = ψσ(σx, σy)

= ψσ(α(η(x)), α(η(y)))

= ψσ(αx, αy)

= η(σ)η(σ)ψσ(αx, αy).

Now, note that ψ and ψσ ◦ α2 are both Weil pairings compatible with the E-action (by an explicit check:
everything in sight commutes with theE-action), so the classification of Riemann forms over C allows us to
say that they are of the form trE/Q(ξxy) where ξ is totally negative. The point is that any two Weil pairings
will differ by a totally positive element in F = E+, so

η(σ)η(σ) = χcyclo(σ)c

for some totally positive c ∈ F .
On the other hand, compatibility of global class field theory requires

NΦ(s)Nϕ(s) = NmAE×,f/Af
(s)

= ArtQ(σ|Qab)

= χcyclo(σ)

up to multiplication by Q×. Our norm must be positive, so the “multiplication by Q×” must upgrade to
“multiplication by Q+.”Why?

Now, define t := η(σ)/NΦ(s) so that tt must be a totally positive element in E+ too (notably, the cyclo-
tomic character cancels out), so checking the Hasse norm principle allows us to conclude that we have some
e ∈ E such that ee = tt. Then (t/e)(t/e) = 1, so we are able to conclude t (mod E×) lives inT (Af )/T (Q).Why? ■

111



3.10. APRIL 22 254B: COMPLEX MULTIPLICATION

3.10.2 Ideal-Theoretic Class Field Theory
We are working with CM fields, so we will take our number fields to be totally imaginary.

Definition 3.74 (modulus). Fix a totally imaginary number field K. Then a modulus is a formal product
of the form

m :=
∏

p∈V (K)

pm(p)

where m(p) ≥ 0 always, m(p) = 0 for infinite places, and m(p) > 0 for only finitely many p.

Here is some more notation we will want to state ideal-theoretic global class field theory.

Definition 3.75 (ray class group). Fix a modulus m of a totally imaginary number fieldK. We let S(m) :=
{p : m(p) ̸= 0} be the support of m, and we define IS(m) to be the subgroup of fractional ideals freely
generated by S(m). Then we define

ClmK := IS(m)/Km,1,

where Km,1 := {α ∈ K× : α ≡ 1 (mod pm(p)) for p ∈ S(m)}.

Definition 3.76. Fix a modulus m of a totally imaginary number field K. Then we define

A×
K,m :=

∏
v∤m

(K×
v ,O×

v )×
∏
v|m

(
1 + pm(pv)

v Ov
)
,

Um :=
∏
v|m

(
1 + pm(pv)

v OV
)
×
∏
v∤m∞

O×
v ,

Wm :=
∏
v∤m
v|∞

K×
v Um,

Cm := A×
E,m/Km,1Wm.

Remark 3.77. One can see that the Ums form an open neighborhood basis of 1 in A×
f,E/E

×, so it forms
an open neighborhood basis of 1 in T (Af )/T (Q) upon intersection. Now, η andNΦ are both continuous,
essentially by their definition, so we are granted a modulus m such that NΦ actors as ClmE∗ → Cm(E).

We now state a version of Theorem 3.9 which will help us with our ideal-theoretic main theorem of complex
multiplication.

Theorem 3.78. Fix an abelian variety A over Q with CM type (E,Φ). Let E∗ be the reflex field, and fix
σ ∈ Gal(Q/E∗), and choose a nonnegative integer m. We will assume that EndA ∩ E = OE . Then the
following are true.

(a) There is an ideal a(σ) ⊆ OE and isogeny α : A → Aσ such that α(x) = σ(x) for x ∈ A[m] and α is
an a(σ)-multiplication. In fact, the ideal class [a(σ)] in ClmE is uniquely determined by σ.

(b) For sufficiently large modulus m of E∗, the class [a(σ)] only depends on the action σ on the ray
class field Lm of m, and [a(σ)] = [NΦ(a

∗)] where a∗ ∈ Cm corresponds to σ via the reciprocity map
Gal(Lm/E) ∼= ClmE .

Wait what does a(σ)-multiplication mean?
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Definition 3.79. Fix an abelian varietyAwith complex multiplication byE such thatOE ⊆ EndA. Fix an
ideal a ofOE . A surjective homomorphism λ : A→ B is an a-multiplication if and only if each a ∈ a has
the map a : A → A factor through B, and λ is in fact universal with respect to this factoring. (Namely,
any otherλ′ : A→ B′ similarly factoring has a unique mapB′ → B commuting with everything in sight.)

Remark 3.80. If E is not a field but instead merely a CM algebra, then we must make a into a lattice
instead of an ideal.

Remark 3.81. For any lattice a ⊆ E, there is some (B, λ) satisfying the required universal property.
Indeed, simply take B := A/ ker a, where

ker a :=
⋂
a∈a

ker a,

which we note is actually a finite intersection because a is finitely generated.

Remark 3.82. One expects to have Art(s) = σ yielding η(σ) corresponding to the class [a(σ)]−1, which
will be able to provide the required result.

3.11 April 24
Today we complete the proof of the main theorem of complex multiplication.

3.11.1 More on a-Multiplication
For our set-up, we have a homomorphism λ : A→ B, whereA has CM type (E,Φ). Then let a be a lattice in
E, and we assume that B is an a-multiplication. On C, we can think of A as Cg/Φ(Λ), and then it turns out
that

Proposition 3.83. Fix an abelian variety A with CM type (E,Φ). With lattices a, a′ ⊆ E, let λ : A → B
and λA→ B′ be an a-multiplication and an a′-multiplication, respectively. Then there exists an isogeny
f : B → B′ such that λ′ = fλ if and only if a ⊇ a′.

Proof. If a ⊇ a′, one can build f via the universal property of a-multiplication. For the converse, we want
to show that a = a + a′. Let λ′′ → A → B′′ be an (a + a′)-multiplication so that the universal properties
everywhere induce maps as follows.

B′′ B

B′

f

Thus,
ker a

ker(a+ a′)
= ker(B′′ → B) ⊆ ker(B′′ → B) =

ker a′

ker(a+ a′)
.

Becauseker a∩ker a′ = ker(a+a′′), we see from the above computation thatB′′ → B is injective, so a+a′ = a,
as required. ■
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Proposition 3.84. Fix an abelian variety A with CM type (E,Φ). With lattices a, a′ ⊆ E, let λ : A → A′

and λA′ → A′′ be an a-multiplication and an a′-multiplication, respectively. Then λ′λ : A → A′′ is an
aa′-multiplication.

Proof. One can just use the explicit construction of our a-multiplications. For example, one can note that
A′ = A/ ker a = A⊗OE

a−1 and then iterate this tensor product. ■

Proposition 3.85. Fix an abelian variety A with CM type (E,Φ). With lattice a ⊆ OE , let λ : A → A′ be
an a-multiplication. Then deg λ = [OE : a].

Proof. Over C, write A = Cg/Λ, so deg λ =
[
a−1Λ : Λ

]
= [OE : a] immediately.

We now work over an arbitrary field. If a = (a) is principal with integral generator, then [a] : A → A is
the required a-multiplication, which has the correct degree. In general, by using the previous proposition,
we can find λ′ so that λ′λ = [α] for α ∈ OE , and we can further require that λ′ and λ have coprime degree,
and now we can finish. ■

Proposition 3.86. Fix abelian Q-varieties A and B with CM by E, and assume OE ⊆ EndA and OE ⊆
EndB. If there is an isogeny f : A→ B preserving theE-action, then there is a lattice a ⊆ E and isogeny
λ : A→ B which is an a-multiplication.

Proof. By Galois descent, we’ll be able to work over C. Then A(C) = Cg/Φ(b1) and B(C) = Cg/Φ(b2) for
fractional ideals b1 and b2, where (E,Φ) is the CM type. (The existence of the isogeny basically allows us to
assume that A and B have the same CM type, which is why we used the same Φ.) Then the point is that we
can adjust our two abelian varieties up to isogeny to make our projection into a b1b

−1
2 -multiplication. ■

We are now ready to prove Theorem 3.78.

Proof. We begin with the proof of (a). By Proposition 3.86, we can an isogeny λ : A → Aσ compatible with
the E-action which is an a-multiplication, where a ⊆ OE is some ideal. By Proposition 3.85, we see that
deg f = [OE : a].

Now, looking at our integerm, we may select some a ∈ E× such that aa ⊆ OE and [OE : aa] is coprime to
m; this is basically done by looking at the prime factorization ofmand ofaand “fixing” the prime factorization
to avoid the various primes. Replacing λ by aλ and a by aa, we now know that λ : A → Aσ is still an a-
multipication, but now it has degree coprime to m.

The point is that λ : A[m] → Aσ[m] factors through [deg f ]A, which is an isomorphism on m-torsion, so
f is an isomorphism on m-torsion. Because σ : A[m] → Aσ[m] is also an isomorphism, and everything is
compatible with the E-action, we are granted β ∈ OE such thatWhy?

β ≡ f−1 ◦ σ (mod m).

As such, we finally define α : A → Aσ as f ◦ β so that α|A[m] = σ|A[m], and we know α is now an a(σ)-
multiplication for some ideal a(σ). Looking at our construction, f is unique up to an element of E×, and
because we are only looking at m-torsion, we only get uniqueness up to Em,1. So [a(σ)] is really an ideal
class in IS(m)/Em,1, which is ClmE , as required.What?

We now turn to (b). Suppose α : A → Aσ is an a(σ)-multiplication, and α′ : A → Aσ
′ is an a(σ′)-

multiplication. Then (α′)σα : A → Aσσ
′ is an a(σ)a(σ′)-multiplication by Proposition 3.84, so we have pro-

duced a group homomorphism
Gal(Q/E×)→ ClmE

given by σ 7→ [a(σ)]. By continuity, this must factor through some Gal(Lm/E
∗) for sufficiently large m (as

restriction), so (b) follows. ■
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3.12 April 26
Today we complete the proof, for real this time.

3.12.1 Completing the Proof
We are going to combine the Shimura–Taniyama formula with Theorem 3.78 to conclude our proof. Fix an
abelian variety A over a number field K with CM type (E,Φ), and suppose that K is Galois and contains all
Galois conjugates of E. Fix a prime p, and let p be a prime ofE∗ above p, and let P be a prime ofK above p.
We will further assume that KP/Qp is unramified and thatOE ⊆ EndA.

Corollary 3.87. Fix everything as above.

(a) There exists an a-multiplication α : A → Aσ (defined over a finite extension of K) where σ ∈
Gal(K/E∗) reduces to the Frobenius automorphism of κ(P)/κ(p).

(b) In fact, a = NΦ(p).

Proof. From Theorem 3.78, we get some f : A → Aσ which is a b-multiplication, so the same is true
after passing to the reductions A0 and Aσ0 over κ(P), for example by considering the construction of b-
multiplications as a tensor product. Now, because we have b-multiplications, we see

HomE(A,A
σ) = b−1 = b−1 = HomE(A,A

σ),

so our Frobenius A0 → Aσ0 lifts to α : A→ Aσ (where we are implicitly using the Néron mapping property).
Now, for (b), the point is that we will be able to take powers to recover the Frobenius. Namely, we know

from Theorem 1.117 that there is π ∈ OE which is a lift of the endomorphism x 7→ x#κ(P) on the reduction
A0. Now, we know that (π) isNK,Φ(P)be a valuation computation (and everything in sight being unramified).
Continuing, we compute

NK,Φ(P) = NΦ

(
NK/E∗ P

)
= NΦ(p)

f(P/p).

Now, we note that we can write π = α · σα · · ·σf(P/p)−1α, where σ is the relative #κ(p)-power Frobenius,
but this twisting does not adjust which ideal we are going to live in, so (π) = af(P/p). The equality in (b)
follows. ■

We now show the main theorem. Reciprocity tells us that σ corresponding to the Frobenius element cor-
responds to p ∈ Clm(E∗). Thus, the above result shows the result for all Frobenius corresponding to p in
the case where p is unramified in K/E∗ and where p is unramified in E∗/Q. However, such p have their
Frobenius elements are dense in the Galois group Gal(Q/E∗), so we are okay because everything in sight is
continuous.

Remark 3.88. To recover the adélic statement, one finds that η(σ) in Clm(E∗) is a(σ)−1 by unwinding
the definition of the corresponding α : A→ Aσ in the adélic language.

3.12.2 A Little on the André–Oort Conjecture
Here is our result.

Theorem 3.89. Fix an irreducible polynomial P ∈ C[j, j′]. If P uses both variables, and P is not divisible
by PN (which is the defining equation for the subscheme Y0(N) ⊆ A1 × A1 of pairs (E1, E2) for which
there is a cyclic N-isogeny E1 → E2), then there are only finitely many pairs (jn, j

′
n) corresponding to

points with complex multiplication such that P (jn, j′n) = 0.
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Geometrically, we should imagine P as cutting out an irreducible curve in A2, which is being viewed as a
coarse moduli space for elliptic curves. Essentially, we are saying that ifC(C) has infinitely many CM points,
then either C is X0(N), vertical, or horizontal.

Remark 3.90. The André–Oort conjecture is about this story for general Shimura variety, which was
recently proved.

Anyway, here is our proof.

Proof. Suppose for the sake of contradiction that we have an infinite sequence of points (jn, j′n) on which P
vanishes.

1. We reduce to the case where P has rational coefficients, and P is irreducible over Q. Well, the points
(jn, j

′
n) all live in Q because these points have complex multiplication, so P being irreducible with all

these roots requires P to have coefficients in Q. However, P has only finitely many coefficients, so say
they live in a number field F . By replacing P with an irreducible factor of∏

σ : F→Q

σ(P ) ∈ Q[j, j′]

divisible by P , we maintain all of our roots but now live in our reduced case.

2. We set some notation. Let En and E′
n be the elliptic curves with j-invariant jn and j′n. Then we set

On := End((En)Q) and Kn := FracOn and dn := discKn and Dn := discDn, which is f2ndn for some
fn. We also set hn := #ClOn.

Now, for n very large, we claim that Kn = K ′
n and D′

n/Dn lives in some finite set. We will basically
show that there are not so many possibilities with Kn ̸= K ′

n, so for the moment, we drop the n from
our notation. Set L := KK ′ and M := L(j) ∩ L(j′). Then we have the following tower of fields.

L(j, j′)

L(j) L(j′)

M

L

Now, the degrees in the square are all bounded in degree by P , but the degree of L(j)/L by some
explicit class field theory is either h or h/2. All of this is able to imply that D and D′ are all bounded,
which proves our claim. Namely, h is proportional to

√
D by the Brauer–Siegel theorem, but Gauss

genus theory tells us that the 2-torsion of the class group is 2 to the power of the number of primes
dividing D. As such, one can relate h(O) to h(OK) to achieve the bounding.

From here, we are able to take K = K ′ or the remainder of our argument. It remains to bound D′/D.
Well, on one hand, [K(j, j′) : K(j′)] is bounded above by degP , but on the other hand, it is bounded
above by

lcm(f, f ′)

f

∏
p|lcm(f,f ′)/f

(
1−

(
d

p

)
1

p

)
where f and f ′ are chosen so thatO = Z+fOK andO′ = Z+f ′OK′ . This tells us that f/f ′ is bounded,
so we are done.
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3. For the remainder of our proof, we will assume that all theK•s andK ′
•s are all the same. We go ahead

and throw out j-invariants in the same Galois orbit. Now, we define the notation En := C/On with
τn := 1

2 (Dn +
√
Dn). In particular, one can show that log |jn| ≈ Im τn ≈ |Dn|1/2.

Now, we claim that j′n →∞ as n→∞. Well, we choose a fundamental domain F , which is compact,
so the τns must converge somewhere if they are unbounded. But then one can show

|Dn|1/2 ∼ log |jn| ∼ − log |j′n − j′∞| ≪ O(log |D′
n|),

which is a problem.

4. To complete the proof, one passes to a subsequence to get inside Y0(N). ■
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