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THEME 1

BUILDING COHOMOLOGY

Every person believes that he knows what a curve is until he has
learned so much mathematics that the countless possible

abnormalities confuse him.

—Felix Klein, [Kle16]

1.1 January 17
Let’s just get started.

1.1.1 Course Notes
Here are some notes about the course.

• The professor is Paul Vojta, whose email is vojta@math.berkeley.edu.

• The course webpage is https://math.berkeley.edu/ṽojta/256b.html.

• The textbook is [Har77].

• We will assume algebraic geometry on the level of Math 256A, which is a prerequisite for this course.

• This course focuses on (Zariski) cohomology of schemes, so we will spend most of our time going
through [Har77, Chapter III]. We will also discuss smoothness, which lives in [Har77, Chapter III] as
well. Along our way, we will want to discuss some topics in [Har77, Chapter II] in more detail, such as
on divisors.

• Grading will be based on homework. Homework will be weekly or biweekly, due on Wednesdays (in
general).

1.1.2 Abelian Categories
We’ll assume some basic category theory (monomorphisms, epimorphisms, equalizers, coequalizers, etc.).
Abelian categories are somewhat complex, so we provide their definition. Roughly speaking, our end goal
is to do cohomology, which arises from homological algebra, and homological algebra lives in abelian cate-
gories.
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1.1. JANUARY 17 256B: ALGEBRAIC GEOMETRY

Definition 1.1 (preadditive). A preadditive category is a category C where the morphism setHomC(A,B)
forms an abelian group for any A,B ∈ C, and composition distributes over addition. Explicitly, the
composition map

◦ : HomC(B,C)×HomC(A,B) → HomC(A,C)

is bilinear.

It follows directly from having the preadditive structure that finite products and finite coproducts are canon-
ically isomorphic. However, these (bi)products need not exist.

Definition 1.2 (additive). An additive category is a preadditive category admitting all finite products/co-
products.

Definition 1.3 (abelian). An abelian category is an additive category C in which the following hold.

• Every morphism admits a kernel and a cokernel; here, a (co)kernel is a (co)equalizer with the zero
map.

• Every monomorphism is the kernel of some morphism.

• Every epimorphism is the cokernel of some morphism.

Let’s give some examples.

Example 1.4. The following are abelian categories; we omit the checks.

• The category Ab of abelian groups is abelian.

• For a ringA, the category Mod(A) ofA-modules is abelian. In particular, for a field k, the category
Vec(k) of k-vector spaces is abelian.

Example 1.5. Here are more abelian categories, related to sheaves. All of their “abelian” hypotheses
are done by passing to stalks or a similar local argument.

• For a topological space X, the category Ab(X) of sheaves of abelian groups on X is abelian.

• Similarly, for a ringed space (X,OX), the category Mod(X) of sheaves of OX-modules is abelian.

• For a scheme X, the category QCoh(X) of quasicoherent sheaves on X is abelian.

• Similarly, for a schemeX, the categoryCoh(X) of coherent sheaves onX is also abelian. Notably,
we do not have infinite products here, but that’s okay.

Example 1.6. For any abelian category A, its opposite category Aop is also abelian. One can see this by
going through the conditions, all of which dualize.

1.1.3 Exact Functors

We will want to discuss exact functors in order to homological algebra in our abelian categories. Let’s have
at it.
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1.1. JANUARY 17 256B: ALGEBRAIC GEOMETRY

Definition 1.7 (additive). Fix abelian categories C and D. A (covariant) functor F : C → D is additive if
and only if the map

F : HomC(A,B) → HomD(FA,FB)

(of F acting on morphisms A → B) is a group homomorphism, for any A,B ∈ C. Flipping arrows and
using Example 1.6 produces the same definition for contravariant functors.

Example 1.8. Fix a topological space X. Then the functor Γ(X,−) : Ab(X) → Ab of global sections
F 7→ Γ(X,F) is additive.

Remark 1.9. Being additive implies that the functor preserves biproducts. Roughly speaking, this holds
because being a biproduct can be written as a set of equations for the object (and its inclusion/projection
morphisms) to satisfy.

To define (left) exact for a functor, we need to define what it means to be exact.

Definition 1.10 (exact). Fix abelian categories C and D. Then a sequence of maps

A
f→ B

g→ C

is exact atB if and only if ker g = ker(coker f) (up to some identification). Here, ker(coker f) is intended
to basically be the image.

Definition 1.11 (left exact). Fix abelian categories C and D. A (covariant) additive functor F : C → D is
left-exact if and only if a left exact sequence

0 → A′ → A→ A′′

produces a left exact sequence
0 → FA′ → FA→ FA′′.

Reversing the arrows produces the dual notion of right exactness.

Remark 1.12. Being left exact equivalently means thatF preserves kernels, so by Remark 1.9 and a little
category theory, F actually preserves all finite limits.

Example 1.13. The functor of global sections from Example 1.8 is left exact by [Har77, Exercise II.1.8].

To get us set up, let’s approximately describe what we are trying to do. Basically, fix an exact sequence

0 → F ′ → F → F ′′ → 0

of sheaves of abelian groups on a topological space X. Then there is a sequence of “cohomology” functors{
Hi(X,−)

}
i∈N with H0(X,−) = Γ(X,−) and a “long” exact sequence as follows

0 H0(X,F ′) H0(X,F) H0(X,F ′′)

H1(X,F ′) H1(X,F) H1(X,F ′′) · · ·

where the maps Hi(X,F ′′) → Hi+1(X,F ′) take some work to describe.
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1.2. JANUARY 19 256B: ALGEBRAIC GEOMETRY

Remark 1.14. These functors will have a number of magical properties, which will amount to the main
theorems of this course. Let’s give an example. Fix a projective schemeX over a field k, where i : X →
Pnk is the promised closed embedding; let I be the corresponding ideal sheaf of this closed embedding.
Then we have an exact sequence

0 → I → OPn
k
→ i∗OX → 0,

which one can do cohomology to. In fact, one can take the tensor product of this exact sequence with
the twisting sheaves OPn

k
(m); for example, we will prove thatH1(Pnk , I(m)) = 0 for sufficiently largem,

which eventually implies that the map

Γ
(
Pnk ,OPn

k
(m)

)
→ Γ(X,OX(m))

is surjective for sufficiently large m. In other words, global sections of OX(m) are all restrictions of
global sections of OPn

k
(m)!

1.2 January 19
We’ll do some homological algebra today.

1.2.1 Homological Algebra on Complexes
Homological algebra is something that comes out of understanding complexes, which we will now de-
fine.

Definition 1.15 (complex). Fix an abelian categoryA. A complex (A•, d•) is a collection
{
Ai
}
i∈Z together

with some morphisms di : Ai → Ai+1 such that di+1◦di = 0. We may abbreviate the differential d• from
the notation.

Remark 1.16. The above definition is usually a “cocomplex.” We will have no need for the dual notion
of a complex in this course.

Remark 1.17. By convention, if we state that we have a complex but only define Ai for a subset of Z,
then the full bona fide complex simply sets the undefined terms to zero.

Now that we have a complex, we should define a morphism.

Definition 1.18 (complex morphism). Fix an abelian categoryA. Given complexes (A•, d•A) and (B•, d•B),
a morphism of complexesφ• : A• → B• is a collection of morphismsφi : Ai → Bi making the following
diagram commute for each i.

Ai Ai+1

Bi Bi+1

φi φi+1

di

di+1

Unsurprisingly, our definition of morphism provides us with a category of complexes, and in fact the category
of complexes is an abelian category, where the point is that biproducts, kernels, and cokernels can all be
computed pointwise at each term of the complex.

We are now ready to define cohomology.
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1.2. JANUARY 19 256B: ALGEBRAIC GEOMETRY

Definition 1.19 (cohomology). Fix a complex (A•, d•) valued in an abelian category A. Then we define
the ith cohomology as

hi(A•) :=
ker di

im di−1
.

Here, im di−1 has an induced map to ker di because di ◦ di−1 = 0.

Remark 1.20. Quickly, recall that the image im di−1 is in fact ker(coker di−1).

Remark 1.21. In fact, cohomology is functorial: a morphism f• : (A•, d•A) → (B•, d•B) of complexes
induces a morphismhi(f•) : hi(A•) → hi(B•)on the ith cohomology, and one can check that this makes
hi into a functor. To be explicit, this morphism is induced by the following morphism of short exact
sequences.

0 im di−1
A ker diA hi(A•) 0

0 im di−1
B ker diB hi(B•) 0

fi fi fi

Namely, the morphisms on the left are well-defined because f• is in fact a morphism.

The main result on these cohomology groups is the following.

Proposition 1.22. Fix an abelian category A. Given a short exact sequence

0 → A• → B• → C• → 0

of complexes in A, there are natural maps δi : hi(C•) → hi+1(A•) producing a long exact sequence as
follows.

· · · hi(A•) hi(B•) hi(C•)

hi+1(A•) hi+1(B•) hi+1(C•) · · ·

δi

Proof. To produce the long exact sequence, use the Snake lemma. The proof is somewhat technical, so I will
refer directly to [Elb22, Theorem 4.82], though the proof there is for the dual notion of homology instead
of cohomology. (Note that we can replace A with Aop to recover the result.) The naturality of the δ• can be
checked directly from its construction. ■

We would like to measure a morphism of complexes based on what it does to cohomology: namely, two
morphisms of complexes may induce the same map on cohomology despite being technically distinct. One
way this might happen is by being “chain” homotopic.

Definition 1.23 (chain homotopy). Fix morphisms f•, g• : (A•, d•A) → (B•, d•B) of the chain complexes
(A•, d•A) and (B•, d•B) valued in an abelian categoryA. A chain homotopy is a sequence of mapski : Ai →
Bi−1 such that

f i − gi = ki+1 ◦ diA + di−1
B ◦ ki.

In this case, we say that f• and g• are chain homotopic.

Remark 1.24. One can check directly that being chain homotopic is an equivalence relation on chain
morphisms.

9
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And here is our result.

Proposition 1.25. Fix morphisms f•, g• : (A•, d•A) → (B•, d•B) of chain complexes (A•, d•A) and (B•, d•B)
valued in an abelian category A. If f• ∼ g•, then hi(f•) = hi(g•) for all i.

Proof. By some embedding theorem, we may as well work in Mod(R) for some ring R. Now, fix some α ∈
ker diA, and we want to show that [

f i(α)− gi(α)
]
= 0

in hi(B•). But now let kj : Aj → Bj−1 for j ∈ Z provide our chain homotopy, so we see

f i(α)− gi(α) = ki+1
(
diA(α)︸ ︷︷ ︸

0

)
+ di−1

B

(
ki(α)

)
vanishes in hi(B•), as desired. ■

1.2.2 Injective Resolutions

We would now like to use our homological algebra to say something concrete about functors, which requires
building injective resolutions. Injective resolutions are built out of injectives, so here is that definition.

Definition 1.26 (injective). Fix an object I in an abelian category A. Then I is injective if and only if the
functor HomA(−, I) is right exact.

Remark 1.27. The functor HomA(−, I) is already left-exact (and contravariant), so it is equivalent to
ask for this functor to be fully exact. Unwinding the definition, we may equivalently ask for short exact
sequences

0 → A′ → A→ A′′ → 0

to produce short exact sequences

0 → HomA(A
′′, I) → HomA(A, I) → HomA(A

′, I) → 0,

but this is already left-exact, so we are really only concerned about surjectivity on the right. So we may
equivalently ask for injectionsA′ ↪→ A to produce surjectionsHomA(A

′, I) ↠ HomA(A, I); i.e., any map
A′ → I can be extended to a full map A→ I.

We also have the following dual notion.

Definition 1.28 (projective). Fix an object P in an abelian category A. Then P is injective if and only if
the functor HomA(P,−) is right exact.

Remark 1.29. Exactly the dual arguments to Remark 1.27 say that being projective is equivalent to
HomA(P,−) being fully exact, or equivalently that any map P → A′′ can be pulled back to a map P → A
whenever we have a surjection A↠ A′′.

And we now define our resolutions.

10
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Definition 1.30 (resolution). Fix an object A in an abelian category A. A coresolution is an exact se-
quence

0 → A
ε→ E0 → E1 → · · ·

in A; we may write this as 0 → A→ E•. A resolution is an exact sequence

· · · → E1 → E0
ε→ A→ 0

in A; again, we may write this as E• → A → 0. For any property P of objects in A, we say that the
resolution is P if and only if the Es are all P .

Of interest to us right now are injective and projective resolutions, but we will find use for other kinds of
resolutions.

We want to be able to build injective resolutions. The following provides the required adjective.

Definition 1.31 (enough injectives). An abelian category A has enough injective if and only if any object
A ∈ A has a monomorphism to an injective object.

And here is the relevant result.

Proposition 1.32. Fix an abelian category A with enough injectives. Then every object A ∈ A has an
injective resolution.

Proof. By induction, it is enough to show that, for any map f : A→ E, there exists a map g : E → I where I
is injective and the sequenceA→ E → I is exact. Indeed, this will be enough because we can start with the
sequence 0 → A, then extend to 0 → A→ E0, then extend to 0 → A→ E0 → E1, and so on.

Now, to show the claim of the previous paragraph, we note that we may find an injective object I and a
monomorphism g : coker f → I because A has enough injectives. Then we note that the composite

A→ E → coker f ↪→ I

produces the exact sequence A→ E → I, as desired. ■

1.3 January 22
Today we will derive functors.

1.3.1 More on Injective Resolutions
A nice property of injective resolutions is that they are, in some sense, functorial in their object.

Proposition 1.33. Fix a morphism f : A → B of objects in A. Given injective resolutions 0 → A → E•

and 0 → B → F •, one can find maps gi : Ei → F i for each i inducing a chain morphism of the injective
resolutions.

Proof. This is an exercise is induction and using the injective. ■

In fact, this morphism is unique.

Proposition 1.34. Fix a morphism f : A → B of objects in A, and fix injective resolutions 0 → A → E•

and 0 → B → F •. Then any two morphisms f• and g• of the injective resolutions, which agree on
A→ B, are chain homotopic.

11
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Proof. Set h• := f• − g•. Upon subtracting out g suitably, we see that the diagram

0 A I0 I1 I2 · · ·

0 B J0 J1 J2 · · ·

δ

ε

d0A d1A d2A

d0B d1B d2B

0 h0 h1 h2

commutes, and we want to show that the morphism h• of the injective resolutions is chain homotopic to the
zero map.

Now, we see h0 ◦ δ = 0, so we may as well factor h0 through coker δ ⊆ I1. But J0 is an injective object, so
the map h0 : coker δ → J i extends to a map k1 : I1 → J0. For completeness, we also define k0 : I0 → J−1

be the zero map. Anyway, we now compute

d−1
B ◦ k0 + k1 ◦ d0A = h0

by construction.
Further, we see (

h1 − d0B ◦ k1
)
◦ d0A = h1 ◦ d0A − d0B ◦ h0 = 0

by the commutativity of our diagram. As such, we have a map
(
h1 − d0B ◦ k1

)
: coker d0A → J1 which can be

extended to a map k2 ◦ I2 → J1 by the injectivity of J1. In particular, we see that h1 − d0B ◦ k1 = k2 ◦ d1A by
construction. Explicitly, let π1 : I1 → coker d0 and i1 : coker d0 → I2 be the obvious maps, and we compute

d0B ◦ k1 + k2 ◦ d1A = h1 − h
1 ◦ π1 + k2 ◦ d1 = h1 − k2 ◦ i2 ◦ pi1 + k2 ◦ d1A = h1.

We now iterate the construction of ki+1 from ki provided in this paragraph inductively to complete the proof.
■

Remark 1.35. The proofs of the previous two proposition nowhere require that the resolutions onA be
injective. We will have no need to work in this generality though.

1.3.2 Right-Derived Functors
At long last, we can derive functors.

Definition 1.36 (right-derived functor). Fix a left-exact functor F : A → B of abelian categories. For
each i ∈ N, we define the right derived functors

RiF (A, I•) := hi(FI•),

where 0 → A → I• is an injective resolution of the object A. This construction is functorial: given a
morphism φ : A→ B in A equipped with injective resolutions 0 → A→ I• and 0 → B → J•, we define
the morphism

RiF (φ, f•) : hi(FI•) → hi(FJ•)

as hi(F (f•)) for any extension f• : I• → J• of φ.

We would like to remove the dependencies on the injective resolutions. This requires a couple checks. To
begin, we get rid of the dependency of RiF (φ) on f•.

Lemma 1.37. Fix objects A and B in an abelian category A, and equip them with injective resolutions
0 → A → I• and 0 → B → J•. For any two morphisms f•, g• : I• → J• extending a given morphism
φ : A→ B, we have

RiF (φ, f•) = RiF (φ, g•).

12
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Proof. We know that f• and g• are chain homotopic by Proposition 1.34. This chain homotopy is preserved
by an additive functor, so Ff• and Fg• are still chain homotopic, so Proposition 1.25 implies the conclusion
upon taking cohomology. ■

Notation 1.38. Fix everything as in Definition 1.36. We will write RiF (φ) for RiF (φ, f•) because it is
independent of the choice of f• by Lemma 1.37 (and an f• always exists by Proposition 1.33). For
now,RiF (φ) still should depend on the choice of injective resolutions, but we will suppress it from the
notation anyway.

Remark 1.39. Perhaps we should check functoriality of our construction.

• For an object A equipped with an injective resolution 0 → A→ I•, we can extend idA : A→ A by
idI• : I

• → I•. Passing through F and taking cohomology reveals RiF (idA) = idRiF (A,I•).

• Fix morphisms φ : A → B and ψ : B → C extending to maps of injective resolutions f• : I• → J•

and g• : J• → K•, respectively. Then one want to extend (ψ ◦φ) : A→ C to a morphism I• → K•

is via g• ◦ f•, and doing so establishes that

RiF (A, I•) RiF (B, J•)

Ri(C,K•)

RiF (φ)

RiF (ψ)
RiF (ψ◦φ)

commutes, from which we can read off functoriality.

Remark 1.40. We can purchase that RiF does not depend on the choice of injective resolution from
Remark 1.39: running the functoriality check on 0 → A→ I• mapping to 0 → A→ J• and then back to
0 → A→ I• reveals that the mapsRiF (A, I•) → RiF (A, J• andRiF (A, J•) → RiF (A, I•) are mutually
inverse, so we get the needed isomorphism.

Remark 1.41. Note RiF is additive because all steps in the construction (passing through F and then
taking cohomology) are additive.

We can even compute our 0th right-derived functor without tears.

Example 1.42. Fix an abelian category A with enough injectives. Then F ≃ R0F . Indeed, on objects, fix
an injective resolution 0 → A→ I• for a given object A ∈ A, and we see that

R0F (A) = h0(F (I•)) = ker(FI0 → FI1) = FA,

where the last equality follows from left-exactness of F . On morphisms φ : A → B, we fix injective
resolutions 0 → A→ I• and 0 → B → J•, and then we produce a morphism of left exact sequences as
follows.

0 A I0 I1

0 B J0 J1

φ f0 f1

Passing through F retains left exactness (and commutativity), allowing us to conclude R0F (φ) = Fφ.

13
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1.4 January 24
Today we continue deriving functors.

1.4.1 The Long Exact Sequence
Here is the main result on cohomology.

Theorem 1.43. Fix a left exact functor F : A → B of abelian categories with enough injectives. Given a
short exact sequence

0 → A′ → A→ A′′ → 0

in A, there are natural morphisms δi : RiF (A′′) → Ri+1F (A′) for i ≥ 0 (i.e., the δi are natural in the
short exact sequence) such that there is a long exact sequence as follows.

0 R0F (A′) R0F (A) R0F (A′′)

R1F (A′) R1F (A) R1F (A′′) · · ·

δ0

Proof. We use Proposition 1.22. The main obstacle is that we need to produce a short exact sequence of
injective resolutions for A′, A, and A′′. We begin by fixing injective resolutions 0 → A′ → I• and 0 → A′′ →
J•, which we would like to glue together into an injective resolution for A as well. In particular, we would
like a sequence of morphisms to go into the middle of the following diagram.

0 0 0

0 A′ I0 I1 · · ·

0 A I0 ⊕ J0 I1 ⊕ J1 · · ·

0 A′′ J0 J1 · · ·

0 0 0

Here, the downward morphisms, except the ones on the far left, are all given by having a split short exact
sequence. (Note Ii⊕J i is injective for each i because the sum of injective objects must be injective; this can
be seen directly from the definition of injective objects.)

Working inductively, the main point is as follows: suppose we have a diagram as follows, where we would
like to induce the vertical morphism f making the diagram commute.

0 K ′ K K ′′ 0

0 I I ⊕ J J 0

f ′ f ′′f

Here, I and J are injective, and f ′ and f ′′ is injective; the Snake lemma will imply that f is injective too. Well,
by summing, all one needs is maps g′ : K → I and g′′ : K → J making the following diagram commute.

0 K ′ K K ′′ 0

0 I I ⊕ J J 0

f ′ f ′′
g′ g′′

14
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For this, we see that g′′ is given by composition, and g′ is given because K ′ ⊆ K and I is injective object.
We now explain how the previous step proves the result. We immediately produce the needed map

A→ I0 ⊕ J0. Now to go from having the map Ii ⊕ J i → Ii+1 ⊕ J i+1 to having the map Ii+1 ⊕ J i+1, we use
the above paragraph on the following diagram.

0
Ii+1

Ii
Ii+1

Ii
⊕ J i+1

J i
J i+1

J i
0

0 Ii+2 Ii+2 ⊕ J i+2 J i+2 0

This completes the construction of the needed short exact sequence of injective resolutions, from which the
result follows upon using Proposition 1.22 on the short exact sequence of complexes

0 → FI• → FI• ⊕ FJ• → FJ• → 0.

(This is still short exact because additive functors preserve split short exact sequences.) Note that we have
not checked that the δ•s are natural in the short exact sequence; this follows from the naturality of Proposi-
tion 1.22. ■

1.4.2 Acyclic Objects
We note the following computation.

Proposition 1.44. Fix a left exact functor F : A → B of abelian categories with enough injectives. If
I ∈ A is injective, then RiF (I) = 0 for all i ≥ 1.

Proof. There is an injective resolution

0 → I → I → 0 → 0 → · · ·

of I. Upon taking F , we see that R0F (I) = I/0 and R1F (I) = 0/I and RiF (I) = 0/0 for i ≥ 2. This proves
the result. ■

We now get the following definition.

Definition 1.45 (acyclic). Fix a left exact functor F : A → B of abelian categories with enough injectives.
We say an object A ∈ A is acyclic for F if and only if RiF (A) = 0 for all i ≥ 1.

Example 1.46. If A ∈ A is injective, then Proposition 1.44 implies that A is acyclic for any left exact
functor F : A → B.

Here is the point of defining acyclic objects.

Proposition 1.47. Fix a left exact functor F : A → B of abelian categories with enough injectives. For
any acyclic resolution 0 → A→ I•, there are canonical isomorphisms

RiF (A) ∼= hi(FJ•).

Proof. Induct on i using the long exact sequences. For example, there is nothing to say for i = 0. To get up
to i = 1, use the exact sequence

0 → A
ε→ J0 → coker ε→ 0

to produce the needed long exact sequence

0 → FA→ FJ0 → F coker ε→ R1F (A) → 0,

and h1(FJ•) becomes the needed quotient. This process continues upwards. ■

15
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1.4.3 A Little δ-Functors
Here is our definition.

Definition 1.48 (δ-functor). Fix abelian categories A and B. A δ-functor consists of the data of some
additive functors T i : A → B for each i ∈ N and some morphisms δi : T iA′′ → T i+1A for each short
exact sequence 0 → A′ → A→ A′′ → 0 such that there is a long exact sequence as follows.

0 T 0A′ T 0A T 0A′′

T 1A′ T 1A T 1A′′ · · ·
δ0

Example 1.49. If A has enough injective, the derived functors provide examples of δ-functors by Theo-
rem 1.43.

The following definition will be very helpful.

Definition 1.50 (initial). Fix abelian categories A and B. A δ-functor (T •, δ•T ) is initial if and only if any
other δ-functor (U•, δ•U ) together with a map φ : T 0 ⇒ U0 has a unique sequence of natural trans-
formations η• : T • ⇒ U• extending φ and commute with the formation of the long exact sequences.
Explicitly, a short exact sequence 0 → A′ → A→ A′′ → 0 induces the following morphism of long exact
sequences.

0 T 0A′ T 0A T 0A′′ T 1A′ T 1A · · ·

0 U0A′ U0A U0A′′ U1A′ U1A · · ·

δ0T

δ0U

f0 f0 f0 f1 f1

Note that initial δ-functors are unique up to unique isomorphism when they exist.

1.5 January 26

Today we will finish our discussion of right-derived functors.

1.5.1 Initial δ-Functors
We will want to make some use of our discussion of δ-functors.

Definition 1.51 (effaceable). Fix an additive functor F : A → B of abelian categories. Then F is efface-
able if and only if each A ∈ A has a monomorphism u : A→M such that Fu = 0.

We have the following result which will help us check that right-derived functors are initial.

Theorem 1.52. Fix δ-functor (T •, δ•) : A → B. If T • is effaceable for all i > 0, then (T •, δ•) is initial.

Proof. Omitted. The proof is somewhat long and technical. We refer to [Wei94, Theorem 2.4.7] for most
of the needed details. ■
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Corollary 1.53. Fix abelian categories A and B such that A has enough injectives. If F : A → B is left
exact, the right-derived functors (R•F, δ•) is effaceable and thus initial.

Proof. By Theorem 1.52, it remains to show being effaceable. Well, for any objectA ∈ A, we can find a map
u : A → I where I is injective, so the map Riu : RiU → RiI is the zero map for i > 1 because RiI = 0 by
Proposition 1.44. ■

Corollary 1.54. Fix abelian categories A and B such that A has enough injectives. If (T •, δ•) is an initial
δ-functor, then T 0 is left exact, and T • ≃ RiT 0 for all i ≥ 0.

Proof. For any short exact sequence
0 → A′ → A→ A′′ → 0,

being a δ-fucntor implies the left exact sequence

0 → T 0A′ → T 0A→ T 0A′′.

Thus, T 0 is left exact. Now, the usual category theory arguments show that initial δ-functors (when they
exist) are unique up to unique isomorphism, so Corollary 1.53 completes the proof. ■

1.5.2 Having Enough Injectives
Let’s show that some abelian categories have enough injectives. We begin with Ab.

Definition 1.55 (divisible). An abelian group A is divisible if and only if the multiplication-by-n map
n : A→ A is surjective for all nonzero integers n.

Example 1.56. The groups Q, Q/Z, R, and 0 are divisible.

Here is the point of this definition.

Proposition 1.57. An abelian group A is injective in Ab if and only if A is divisible.

Proof. We show our implications separately.

• Suppose A is injective, and fix some a ∈ A and nonzero integer n ∈ Z so that we want to find a′ ∈ A
with a = na′. Well, we have the morphism nZ → A given by n 7→ a, but nZ ⊆ Z means that the
injectivity of A forces nZ → A to extend to Z → A, as follows.

0 nZ Z

A

n 7→a

Now, the image of 1 along Z → A can be called a′ and has na′ = a by construction.

• SupposeA is divisible. We will use Zorn’s lemma. Well, for our setup, suppose that we have an inclu-
sion M ′ ⊆M and a map φ : M ′ → A which we would like to extend up to M .
Let Φ be the collection of extensions of φ : M ′ → A to some subgroup N ⊆ M containing M ′, and
order Φ by extension: we have (N1, φ1) ⪯ (N2, φ2) if and only if N1 ⊆ N2 and φ2|N1

= φ1. Now, Φ
is nonempty (it has (M ′, φ)), and its ascending chains are upper-bounded (the union of an extension
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of group homomorphisms will continue to be a group homomorphism), so Zorn’s lemma provides Φ
with a maximal element (M ′′, φ′′).
We claim that M ′′ =M , which will complete the proof. Well, we will show a contrapositive: suppose
(N,ψ) ∈ Φ has N ̸= M ; then we claim that (N,ψ) is not maximal. Well, given any x ∈ M \N , we will
extend ψ to N + Zx. Set H := {n ∈ Z : nx ∈ N}. We have two cases.

– Suppose H = 0. Then N + Zx = N ⊕ Zx, so we can extend ψ by just setting ψ(x) := 0.
– Suppose H = nZ for some positive integer n > 0. Divisibility promises us some a ∈ A such

that ψ(nx) = na, so we would like to extend ψ by ψ(x) = a. Namely, we would like to define
ψ̃ : (N + Zx) → A by

ψ̃(m+ kx) := ψ(m) + ka.

Of course, this will be a group homomorphism extending ψ̃ provided that it is well-defined. Well,
supposem+ kx = m′ + k′x, and we want to show that ψ(m)+ ka = ψ(m′)+ k′a, or equivalently,
ψ(m − m′) = (k′ − k)a. We now note that (k′ − k)x = m − m′ ∈ N , so k′ − k = nℓ for some
integer ℓ by construction of n, so we computed

(k′ − k)a = nℓa = ψ(nℓx) = ψ((k′ − k)x) = ψ(m−m′),

as needed. ■

Theorem 1.58. Fix a ring R. The category Mod(R) has functorial injectives.

Proof. We proceed in steps.

1. As an intermediate step, set J := HomZ(R,Q/Z). Then we note that

HomR(−, J) ≃ HomZ(−,Q/Z)

by the hom–tensor adjunction. Additionally, ifM ̸= 0, we see that HomZ(M,Q/Z) is nonzero by being
an injective object, so the left-hand side is also nonzero. Lastly, the right-hand functor is exact, so the
left-hand functor is exact, so we see that J is injective.
We now set A∨ := HomR(A, J).

2. So we will want to show that the map
ev• : A→ A∨∨

given by eva : φ 7→ φ(a) is injective. Well, let K := ker ev•, and we draw the following commutative
diagram.

K M

K∨∨ M∨∨

ev•ev•

Because (−)∨ is an exact functor, we see that the bottom row must be injective. But the diagonal
composite is zero, so actually ev• : K → K∨∨ must be fully the zero map. Thus, K = 0 by the check in
the previous step.

3. We actually construct the needed injection. Note we have a surjection⊕
x∈A∨

R↠ A∨,

so we have an injection

A ↪→ A∨∨ ↪→ HomZ

( ⊕
x∈A∨

R, J

)
= JA

∨
.
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The right-hand side can be seen to be injective, so we are essentially done; notably, our construction
is functorial in A. Explicitly, given a map A → B, we induce a map B∨ → A∨, and taking fibers of this
map induces a map JA∨ → JB

∨ . (Any coordinate in A∨ not in the image of B∨ can just get sent to
0.) ■

1.6 January 29
Today we continue to show that categories have enough injectives.

1.6.1 Exactness in Abelian Categories
Let’s say a few more things about abelian categories.

Example 1.59. Fix an abelian categoryA. ThenAhas an empty biproduct 0, which is both initial and final
by its definition. We will not bother to write out the identification of biproducts in additive categories.

Remark 1.60. Fix an abelian categoryA. Any morphismφ : A→ B can be factored as ν◦ηwhere η : A→
X is epic and ν : X → B is monic. To see that this factorization exists, we can set η = coker(kerφ) and
ν = ker(cokerφ). Additionally, the factorization ν ◦ η is unique in the following sense: if η′ : A → X ′

and ν′ : X ′ → B is another such factorization, there is a unique isomorphism ψ : X → X ′ making the
following diagram commute.

X

A B

X ′
η′

η ν

ν′

ψ

Remark 1.61. The previous remark implies that being an isomorphism is equivalent to being both monic
and epic. Namely, one just factors the given morphism φ : A → B in the two ways idB ◦ φ = φ ◦ idA to
conclude that φ has an inverse.

The prior two remarks allow us to make sense of exactness in a meaningful way.

Definition 1.62 (exact). Fix morphisms φ : A → B and ψ : B → C, and factor these as φ = ν ◦ η and
ψ = µ ◦ ε where ν and µ are epic and η and ε are monic. Here is the diagram.

X Y

A B C

η ν

φ ψ

µ ε

Then the sequence
A→ B → C

is exact if and only if ν = ker ε; this is equivalent to asking for ε = coker ν.

The equivalence of these two notions follows by the uniqueness of the factorization. Note that this is ap-
proximately the correct notion because we really want to say that φ surjects onto the kernel of ψ. But then
we note ν basically acts as the image of φ, and ε basically acts as the kernel of ψ.
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1.6.2 Sheaves Have Enough Injectives
We now move up to sheaves.

Theorem 1.63. Fix a ringed space (X,OX). Then the category Mod(OX) of OX-modules has functorial
injectives.

Proof. Fix a sheaf F ∈ Mod(OX). For each x ∈ X, recall that Mod(OX,x) has functorial injectives by The-
orem 1.58, so we let Ix(Fx) be an injective module into which Fx injects. Letting jx : {x} → X denote the
inclusion map, we then define

I :=
∏
x∈X

(jx)∗Ix(Fx).

Note that this is an OX-module because it is the product of OX-modules. Note that there is a naturally
defined map i : F → (jx)∗Ix(Fx) defined by the composite

F(U) → Fx → Ix(Fx)

for each x ∈ U (and we get the zero map for x /∈ U ). This map i is injective on stalks: we can see that Fx will
embed into the coordinate (jx)∗Ix(Fx). Additionally, this construction of i is functorial.

As such, it just remains to show that I is injective. Suppose that G ∈ Mod(OX), and we compute

HomOX
(G, I) ≃

∏
x∈X

HomOX
(G, (jx)∗Ix(Fx)) ≃

∏
x∈X

HomOX,x
(Gx, Ix(Fx)).

Now, each Ix(Fx) is an injective object, so the functors HomOX,x
(−, Ix(Fx)) is an exact functor for each

x ∈ X, so the total functor above is exact, as needed. ■

Corollary 1.64. Fix a topological space X. Then the category Ab(X) of category of sheaves of abelian
groups on X has functorial injectives.

Proof. Set OX to be the constant sheaf Z on X. Then OX is a sheaf of rings, and OX-modules are exactly
sheaves of abelian groups, so the result follows from Theorem 1.63. ■

1.6.3 Sheaf Cohomology
We can finally define sheaf cohomology.

Definition 1.65 (sheaf cohomology). Fix a topological space X. Because Ab(X) has enough injectives
(by Corollary 1.64) and Γ(X,−) : Ab(X) → Ab is left exact, we define the sheaf cohomology functors
as

H•(X,−) := R•Γ(X,−).

Remark 1.66. It is rather hard to computeH•(X,−) directly from the definition. For example, it will be
helpful to build a large class of acyclic objects and then use Proposition 1.47.

To realize the above remark, we have the following definition.

Definition 1.67 (flasque). Fix a sheaf F on a topological space X. Then F is flasque if and only if its
restriction maps are surjective.
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1.7 January 31
Here we go.

1.7.1 Flasque Resolutions
We have “already” seen many examples of flasque sheaves, as explained in the following lemma.

Lemma 1.68. Fix a ringed space (X,OX). Then any injective OX-module is flasque.

Proof. Fix an open subset U ⊆ X, and let j : U ↪→ X be the inclusion so that we may set OU := j!(OX |U ).
Notably, we are realizing OX as an OU-module.

Let’s quickly review j!. Explicitly, for a sheaf F on U , we defined j!F as “extension by zero”: it is the
sheafification of the presheaf

Opre
U (W ) := 7→

{
F(W ) if W ⊆ U,

0 otherwise.

Notably, the stalks of j!F areFx ifx ∈ U and 0 otherwise, which we can see by working with the above sheaf.
Notably, there is a canonical map F → (j!F)|U , which we can see is an isomorphism by checking on stalks.

We now proceed with the proof. For each open V ⊆ U , there is an injection OV ↪→ OU (we can see that
this is an injection by checking on stalks). As such, for our injective sheafI, we get the following commutative
diagram.

HomOX
(OU , I) HomOX

(OV , I)

I(U) I(V )

We claim that we can place vertical isomorphisms, which will complete the proof because the top row is
surjective because I is an injective OX-module.

Well, for the vertical morphisms, we write

HomOX
(OU , I) = HomOX

(Opre
U , I)

∗
= HomOX |U (Opre

U |U , I|U )
= HomOX |U (OX |U , I|U )
= HomOX(U)(OX(U), I(U))

= I(U).

Here, ∗
= is just given by restricting an OX-morphism; it is injective because the map OU → I can be deter-

mined by how it behaves on stalks, which are only seen on U , and it is surjective because one can extend a
map Opre

U |U → I|U to a full map Opre
U → I by having the map Opre

U (W ) → I(W ) just be zero (which of course
is the only option!). ■

Anyway, let’s put our flasque sheaves to good use.

Lemma 1.69. Fix a topological space X. Any flasque sheaf F ∈ Ab(X) is acyclic for H•(X,−).

Proof. This is a matter of dimension-shifting. We claim thatHi(X,F) = 0 for all i ≥ 1 and flasque sheaves
F . We proceed by induction on i, so we may assume the result for indices less than i. Now, find an injective
sheaf with an embedding F ↪→ I. Letting G be the quotient, we produce the exact sequence

0 → F → I → G → 0.
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The two middle terms are flasque (see Lemma 1.68), so the right term is flasque. Now, [Har77, Exer-
cise 1.16] tells us that G is flasque, and the sequence

0 → Γ(X,F) → Γ(X, I) → Γ(X,G) → 0

is exact. Now, the long exact sequence produces the exact sequence

Hi−1(X, I) → Hi−1(X,G) → Hi(X,F) → Hi(X, I)︸ ︷︷ ︸
0

.

The previous exact sequence shows that the mapHi−1(X, I) → Hi−1(X,G) is surjective map for i = 1, and
it continues to be surjective for other i by the induction (namely, both terms will be zero). Thus, the map
Hi−1(X,G) → Hi(X,F) is the zero map, so we conclude that Hi(X,F) = 0. ■

And here is the promised sanity check.

Proposition 1.70. Fix a ringed space (X,OX). Then H•(X,−) = R•Γ(X,−), where now Γ(X,−) is a
functor Mod(OX) → Ab.

Proof. An injective resolution in Mod(OX) is a flasque resolution by Lemma 1.68 and hence an acyclic res-
olution in Ab(X) by Lemma 1.69. So Proposition 1.47 completes the proof. ■

Remark 1.71. A priori, the objects H•(X,−) were just abelian groups, but Proposition 1.70 assures us
that we can usually give this more structure. In particular, ifX is anA-scheme for a ringA, then actually
Γ(X,−) is a functor Mod(OX) → Mod(A), and the right-derived functors for this Γ(X,−) agree with
H•(X,−) upon passing through the forgetful functor because the forgetful functor is exact (namely
sending cohomology to cohomology).

1.7.2 Directed Colimits
We would like for our cohomology to vanish at high dimensions when X is a finite-dimensional scheme.
The following lemma will be useful.

Lemma 1.72. Fix a Noetherian topological spaceX and a directed system {Fα}α∈Λ of flasque sheaves.
Then the directed limit lim−→Fα is flasque.

Proof. Quickly, because colimits commute with colimits, we see that(
lim−→Fα

)
(U) = lim−→Fα(U).

(In particular, this is a sheaf, and then it satisfies the needed universal property by construction; the above
equality requires X to be Noetherian.) Now, fix open subsets V ⊆ U . Then lim−→Fα(U) → lim−→Fα(V ) is
surjective because it is surjective on the components (and colimits commute with colimits), so the above
description of our sections completes the proof. ■

1.8 February 2
Let’s just get this over with.
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1.8.1 More on Directed Colimits
We continue our discussion towards Grothendieck vanishing. We can now see that directed colimits com-
mutes with cohomology.

Proposition 1.73. Fix a Noetherian topological space X. Given a directed system {Fα}α∈Λ of sheaves
in Ab(X), there is a natural isomorphism

lim−→H•(X,Fα) = H•
(
X, lim−→Fα

)
compatible in the long exact sequence.

Proof. For convenience, let C be the category of directed systems in Ab(X) indexed by Λ. We would like to
exhibit an isomorphism

lim−→H•(X,−) ≃ H•
(
X, lim−→−

)
of δ-functors C → Ab.

Quickly, we note that we can take a sheaf F and map it to its “sheaf of discontinuous sections” given by

U 7→
∏
x∈U

Fx.

This construction is functorial and can be repeated, so we get functorial flasque resolutions in F .
In particular, let G•

α be the produced flasque resolution of Fα. Thus, using Lemma 1.69 with Proposi-
tion 1.47 to compute our cohomology, we see

lim−→Hi(X,Fα) ≃ lim−→hi(Γ(X,G•
α)).

Now, taking directed colimits is exact, so this is

hi
(
lim−→Γ(X,G•

α)
)
.

Taking global sections commutes with directed colimits (here we use that X is Noetherian with [Har77,
Exercise 1.11]), so this is

hi
(
Γ
(
X, lim−→G•

α

))
.

Now, taking these directed colimits commutes with taking stalks, so it will be exact on sheaves, so we have
the resolution

0 → lim−→Fα → lim−→G•
α,

so our last cohomology is the desiredHi
(
X, lim−→Fα

)
. Everything has been done on the level of resolutions,

so we have produced a bona fide isomorphism of δ-functors. ■

Example 1.74. Cohomology also commutes with infinite direct sums because these are directed colim-
its (of the finite sums!).

1.8.2 Cohomology on Closed Subsets
Next up, one reduction we will want to make is to go down closed subschemes, so we have the follow-
ing.
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Lemma 1.75. Fix a closed subset j : Y → X of a topological space. Given a sheaf F ∈ Ab(Y ), there is a
natural isomorphism

H•(Y,F) = H•(X, j∗F)

compatible in the long exact sequence.

Proof. We are asking for an isomorphism of δ-functorsAb(Y ) → Ab. The point is that, by computing stalks,
j∗ is an exact functor, and by computing sections, j∗ sends flasque sheaves to flasque sheaves. So we use
the usual combination of Lemma 1.69 with Proposition 1.47 so that a flasque resolution G• of F produces
the sequence of natural isomorphisms

Hi(Y,F) ≃ hi(Γ(Y,G•)) = hi(Γ(X, j∗G•)) ≃ Hi(X, j∗F).

Everything was done on the level of resolutions, so this is an isomorphism of δ-functors. ■

Remark 1.76. If Y ⊆ X is not closed, j∗ need not be exact.

With our closed subsets, we will want the notion of restricting sheaves.

Definition 1.77. Fix a topological space X and closed subset i : Z → X and open subset j : U → X
where U = X \ Z. For a sheaf F on X, we set FZ := i∗(F|Z) and FU := j!(F|U ).

Remark 1.78. Fix everything as above. Computing stalks, we see that there is an exact sequence

0 → FU → F → FZ → 0

of sheaves on X, provided F ∈ Ab(X). We will not bother to give the construction of the maps; they
can be given on the level of presheaves, where the left map is essentially an inclusion, and the right map
is essentially a restriction.

1.9 February 5
Here we go.

1.9.1 Grothendieck Vanishing
Last class we began the proof of the following result, which I have moved to today because it will be our
focus for today.

Theorem 1.79 (Grothendieck vanishing). Fix a Noetherian topological space X of dimension n. Given
F ∈ Ab(X), we have Hi(X,F) = 0 for i > n.

Proof. We proceed by induction on the collection of pairs (n,m) ∈ {(−1, 0)} ∪ N × Z+, where n = dimX
and m is the number of irreducible components of X. For our induction, we order {(−1, 0)} ∪ N × Z+ lexi-
cographically; here dim∅ = −1. In other words, we will induct on the dimension, and within that induction,
we will induct on the number of irreducible components.

Anyway, we proceed in steps.
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1. We begin by reducing toX being irreducible; fixX of dimension n, and assume all lower results (lower
dimension, fewer irreducible components if of dimension n). We may assume thatX is nonempty, so
choose an irreducible componentZ ⊆ X, and setU := X \Z. Notably, for this paragraph (making the
reduction), we are assuming the statement for Z, so any sheaf F ∈ Ab(X) has the exact sequence

0 → FU → F → FZ → 0

by Remark 1.78. By the long exact sequence, it will be enough to show thatHi(X,FZ) = Hi(X,FU ) =
0 for all i > n. For one, note that Hi(X,FZ) = 0 for all i > n because Hi(X,FZ) = Hi(Z,F|Z) by
Lemma 1.75, and we have assumed the conclusion for Z.
So it remains to discussH•(X,FU ). We begin by claiming that there is a sheaf G on U such that FU =
j∗G where j : U ↪→ X is the inclusion. Indeed, Remark 1.78 provides an exact sequence

0 → (FU )X\U → FU → (FU )U → 0,

but (FU )X\U = 0 by computing stalks: any nonzero stalk must have p ∈ X \ U and (F|U )p ̸= 0 and
hence p ∈ U also, but no such p suffices. Thus, we see

FU ∼= (FU )U ∼= j∗(FU |U ),

so G := FU |U will do the trick.
We are now ready to show that Hi(X,FU ) = 0 for i > n. Well, by the previous paragraph, we see

Hi(X,FU ) = Hi(X, j∗(FU |U )) = Hi(U,FU |U )

by Lemma 1.75. But now, by inductive hypothesis, this vanishes for i < n because U has one fewer
irreducible component than X and no higher dimension.

2. We handle some base cases. WhendimX = −1, we haveX = ∅, where there is nothing to do. We will
also handle dimX = 0 while we’re here. The previous step allows us to assume that X is irreducible.
Quickly, we remark that the only closed subsets of X are {∅, X}. Indeed, of course these sets are
closed. Conversely, if Z ⊆ X is a minimally closed subset, then minimality forces Z to be irreducible,
but then ∅ ⊆ Z ⊆ X requires Z ∈ {∅, X} because dimX = 0.
Thus, the previous paragraph implies that X has the indiscrete topology. In particular, all sheaves
are flasque because evaluating a sheaf on ∅ makes a single point, so Hi(X,−) vanishes for i > 0, as
needed.

3. Fix a sheaf F of abelian groups on X; we need Hi(X,F) = 0 for i > dimX. We reduce to the case
where F is finitely generated (as a sheaf—namely, there are finitely many sections such that the re-
strictions of those sections generate F(U) for all open U ⊆ X). Well, define the set

B :=
⋃

openU⊆X

F(U),

and let A denote the collection of finite subsets. Notably, by restriction, A becomes a set which is
directed by the collection of open sets onX. Anyway, for α ∈ A, let Fα denote the sheaf generated by
the sections in α, and we conclude by noting that F = lim−→Fα, so

Hi(X,F) = lim−→Hi(X,Fα)

by Proposition 1.73, which vanishes for i > dimX by assumption of this step.

4. Fix a finitely generated sheaf F of abelian groups on X; we need Hi(X,F) = 0 for i > dimX. We
reduce to the case where F is generated by a single section (and its restrictions). Indeed, assuming
we have the case of generated by a single section, we may proceed by induction: if F is generated
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by n sections α (so that F = Fα), let α′ ⊊ α be a proper subset of sections, and let Fα′ be the sheaf
generated by α′. Then we have the exact sequence

0 → Fα′ → Fα → G → 0,

and we note thatG is generated by fewer thannelements; explicitly,G is generated by the images of the
sections inα\α′. To be explicit, one can see that Fα\α′ ↠ G by checking on stalks. Thus,Hi(X,Fα′) =
Hi(X,G) = 0 for i > dimX by assumption, so the long exact sequence enforces Hi(X,F) = 0 for
i > dimX.

5. Fix a sheaf F of abelian groups onX generated by a single section s ∈ F(U) whereU ⊆ X is open; we
need Hi(X,F) = 0 for i > dimX. We reduce to the case of subsheaves of ZU .
Well, we may assume that U is nonempty (or else F = 0, and there is nothing to be done). Now, there
is a map ZU → F given by sending 1 7→ s on U (working on the presheaf) and then appropriately
restricting elsewhere. This map is surjective by hypothesis on F (indeed, it is surjective on the level of
the presheaves), so we let K denote the kernel, providing the short exact sequence

0 → K → ZU → F → 0.

Now, Hi(X,K) = Hi(X,ZU ) = 0 for i > dimX by assumption of this section, so Hi(X,F) = 0 for
i > dimX by the long exact sequence.

6. In this reduction step, we will use that X is irreducible. Fix a subsheaf F of ZU for open U ⊆ X; we
need Hi(X,F) = 0 for i > dimX. We reduce to the case F = ZU . If F = 0, there is nothing to do.
Otherwise, we may let d be the smallest positive integer such that d ∈ Fx as x ∈ U varies (notably,
some Fx is nonzero, so a d exists). Now,

V := {x ∈ U : d ∈ Fx}

is nonempty and open (d ∈ Fx means that d ∈ F(U ′) for some open U ′ ⊆ U ), and Fx = dZ for each
x ∈ V , so F|V = dZ, so we have an equality FV = dZV . So we have an exact sequence

0 → dZV → F → F/dZV → 0

of sheaves on X. By assumption, we have the result for dZV . Now, F/dZV is supported on U \ V
by construction of V , and U \ V will have smaller dimension than X because X is irreducible, so we
get the result for F/dZV by the inductive hypothesis on X. So the long exact sequence purchases the
result for F .

7. We complete the induction. We may assume thatX is irreducible of dimension n, and we may assume
that F = ZU . Well, we have an exact sequence

0 → ZU → Z → ZX\U

by Remark 1.78. Because X is irreducible, X \ U has smaller dimension, Hi(X,ZX\U ) = 0 for i >
dimX − 1 (also using Lemma 1.75). Additionally, Z is flasque becauseX is irreducible—all open sub-
sets of X are connected, so Z(U) = Z always—and hence acyclic by Lemma 1.69, so we conclude
Hi(X,ZU ) = 0 for i > dimX by the long exact sequence. ■

While we’re here, let’s do an example computation to show Theorem 1.79 is sharp.

Exercise 1.80. Fix a field k, and set X := A1
k. Given distinct points P,Q ∈ X, set U := X \ {P,Q}, and

we see
H1(X,ZU ) ̸= 0.
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Proof. Let j : U ↪→ X denote the inclusion so that ZU = j!(Z). Note that U is irreducible, so any open
subsets are connected, so we may as well have

ZU (V ) =

{
Z if V ⊆ U and V ̸= ∅,
0 otherwise.

Anyway, note that we have the exact sequence

0 → ZU → Z → Z{P,Q} → 0

by Remark 1.78, so we get a long exact sequence

H0(X,ZU ) → H0(X,Z) → H0(X,Z{P,Q}) → H1(X,ZU ) → H1(X,Z).

Because X is irreducible, we see that Z is flasque (all open subsets are connected), so the rightmost term
vanishes by Lemma 1.69. Also, above we noted that H0(X,ZU ) = 0, and computing global sections on the
other sheaves implies that we have

0 → Z → Z⊕ Z → H1(X,ZU ) → 0,

so the rightmost map cannot be surjective. ■
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THEME 2

COHOMOLOGY ON SCHEMES

2.1 February 7

Today we will compute cohomology on affine schemes.

2.1.1 Cohomology on Affine Schemes
To build our cohomology on SpecA, we pick up the following checks.

Proposition 2.1. Fix an injectiveA-module I, whereA is Noetherian. Then Ĩ is a flasque sheaf onSpecA.

Proof. This proof is somewhat annoying, so we omit and refer to [Har77, Proposition III.3.4]. The main idea
is to do Noetherian induction on Supp Ĩ. ■

Proposition 2.2. Fix a Noetherian ring A. Then quasicoherent sheaves on X := SpecA are acyclic.

Proof. Fix an A-module M , and we want to show that M̃ is acyclic. Well, fix an injective resolution 0 →
M → I•, which by Proposition 2.1 produces an acyclic resolution

0 → M̃ → Ĩ•.

Lemma 1.69 followed by Proposition 1.47 allows us to compute cohomology using this resolution, but this
is just

0 →M → I•

upon taking global sections, which is exact, so the cohomology of M̃ must vanish. ■

Thus, we see quasicoherent sheaves on affine schemes are well-behaved. This turns out to characterize
affine schemes. Before doing anything, we will want the following lemma.

Lemma 2.3. Fix a quasicompact scheme X. Then any closed subscheme V ⊆ X has a closed point.
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Proof. Fix a finite affine open cover {Ui}ni=1 of X, doable because X is quasicompact, and we may suppose
that no affine open subset is covered by the union of the other ones (for then we could remove this open
subset from the finite collection). Then we see that

U1 \ (U2 ∪ U3 ∪ · · · ∪ Un)

is a closed nonempty subset of U1, so it has a closed point p ∈ U1 corresponding to a maximal ideal of
Γ(U1,OU1) which contains the ideal cut out by the complement of (U2 ∪ · · · ∪ Un). We claim that p is still
closed in X.

Well,

X \ {p} =

n⋃
i=1

(Ui \ {p}) = (U1 \ {p}) ∪
n⋃
i=2

Ui

is open, so we are okay. ■

Theorem 2.4 (Serre). Fix a Noetherian scheme X. Then the following are equivalent.

(i) X is affine.

(ii) Hi(X,F) = 0 for all quasicoherent sheaves F on X and indices i > 0.

(iii) H1(X, I) = 0 for all quasicoherent sheaves I of ideals on X.

Proof. Note (i) implies (ii) is Proposition 2.2, and (ii) implies (iii) with no content. So the main content of the
argument is (iii) implies (i). We proceed in steps.

1. To set ourselves up, we recall [Har77, Exercise II.2.17], which is on the homework, which asserts that
X is affine if and only if there is a finite set {f1, . . . , fr} of global sections generating A := Γ(X,OX)
such that the open subschemes

Xfi := {x ∈ X : (fi)x /∈ mx}

are affine.

2. We claim that all closed points p ∈ X have some f ∈ A such that Xf is affine and p ∈ Xf . Well, let
U ⊆ X be some affine open neighborhood of p ∈ X, and let Y := X \ U . Note that we have a short
exact sequence

0 → IY ∪{p} → IY → k(p) → 0

of sheaves on X, where I• is the ideal sheaf of a closed subscheme, and k(p) refers to the skyscraper
sheaf at p. Notably exactness of this sequence can be checked on stalks; more explicitly, the left map
is just an isomorphism on X \ {p}, and on {p} this is 0 → mp → OX,p → k(p) → 0, which is exact
because p is closed (!). Now, by (iii), we have an exact sequence

H0(X, IY ) → H0(X, k(p)) → H1(X, IY ∪{p})︸ ︷︷ ︸
0

,

so we can find some f ∈ Γ(X, IY ) such that f /∈ mp by this surjectivity, so p /∈ Xf by construction. But
now f ∈ IY means that Y ∩ Xf ̸= ∅, so Xf ⊆ U , and in fact, we see Uf ⊆ Xf ⊆ Uf , so Xf is affine
(because U is affine means Uf is affine), so we have completed the proof of the claim.

3. We exhibit a finite set {f1, . . . , fr} ⊆ A of global sections such that Xf• are affine and cover X. Well,
letXcl denote the set of closed points ofX, and Lemma 2.3 shows that each p ∈ Xcl has some fp ∈ A
such that p ∈ Xfp and Xfp is affine.
We want {Xfp}p∈Xcl

to cover X, so we consider

Z := X

∖ ⋃
p∈Xcl

Xfp ,
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which is a closed subset of X, so we give Z the reduced subscheme structure. Well, suppose for the
sake of contradiction that Z is nonempty. Because X is quasicompact, so is the closed subset Z, so Z
has a closed point p ∈ Z. But then p is still closed in X: we know Z \ {p} is open in X, so there is an
open U ⊆ X such that Z \ {p} = Z ∩ U , so X \ {p} = (X \ Z) ∪ U . This is a contradiction because
p ∈ Xfp and so cannot be in Z.
We are now done: X is quasicompact, so we can reduce {Xfp}p∈Xcl

to a finite subcover, which com-
pletes this step and hence the proof.

4. We complete the proof. In particular, to plug into the first step, fix {f1, . . . , fr} as in the previous step,
and we must show that (f1, . . . , fr) = A.
We want to show that the map α : O⊕r

X → OX given by (a1, . . . , ar) 7→ (a1f1 + · · ·+ arfr) is surjective
on global sections. Certainly α is surjective on stalks: any x ∈ X can be placed in some Xfr , and then
fr : OX,x → OX,x is already an isomorphism. But now K := kerα produces the exact sequence

Γ
(
X,O⊕r

X

) α→ Γ(X,OX) → H1(X,K).

To complete this step, we would like to know that H1(X,K) = 0.
Namely, we will claim that H1

(
X,K ∩O⊕i

X

)
= 0 for each i ∈ {0, . . . , r} by induction. There is nothing

to say for i = 0. Then if H1(X,F ∩O⊕(i−1)
X ) = 0, we have an exact sequence

0 → K ∩O⊕(i−1)
X → K ∩O⊕i

X → Qi → 0,

where Qi is the needed sheaf. One can see that Qi is a subsheaf of OX (namely, it is an ideal sheaf) by
applying the Snake lemma to the following diagram.

0 K ∩O⊕(i−1)
X K ∩O⊕i

X Qi 0

0 O⊕(i−1)
X O⊕i

X OX 0

Thus,H1(X,Qi) = 0by our hypothesis (iii), so the long exact sequence implies thatH1
(
X,K ∩O⊕i

X

)
=

0, where we are now using the inductive hypothesis. ■

2.2 February 9
We spent most of the class completing the proof of Theorem 2.4. I have edited into those notes for continuity
reasons.

Remark 2.5. Note the identity map A → Γ(X,OX) induces a map φ : X → SpecA via the adjunction.
So after we produce the sections (f1, . . . , fr) withXfi affine, it might appear that we are done because
we might be able to glue the Xfi

∼= SpecAfi into making φ an isomorphism. But this does not work:
indeed, φ need not even be surjective!

2.2.1 More Cohomology on Affine Schemes
Let’s see an application of some of the work we’ve done.

Corollary 2.6. Fix a Noetherian scheme X. Any quasicoherent sheaf F on X can be embedded into a
flasque quasicoherent sheaf.
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Proof. The point is to reduce to the affine case and then use Proposition 2.1. Let {Ui}ni=1 be a finite affine
open cover of X, where Ui = SpecAi. Because F is quasicoherent, we can find an Ai-module Mi such that
F|Ui

∼= Mi, and then we may embed Mi into an injective Ai-module Ii. So we have injections F|Ui
→ Ĩi on

Ui, so we can glue these into a map

F →
n⊕
i=1

(ji)∗Ĩi,

where ji : Ui → X is the inclusion. Notably, (ji)∗ sends quasicoherent sheaves to quasicoherent sheaves
(noteX is Noetherian), so

⊕n
i=1(ji)∗Ĩi is still quasicoherent, and the above map is injective because we can

check injectivity on stalks and so on the affine open cover {Ui}ni=1. Lastly, (ji)∗ sends flasque sheaves to
flasque sheaves, so our sum is still flasque. ■

2.3 February 12

Today we will discuss Čech cohomology.

2.3.1 Čech Cohomology to Groups
For today, X will be a topological space, F will be a sheaf of abelian groups on X, and U := {Ui}i∈I is an
open cover of X, and we will fix a well-ordering on I. For indices i0, . . . , ip ∈ I, we define the notation

Ui0,...,ip := Ui0 ∩ · · · ∩ Uip .

We can now define our complex.

Definition 2.7 (Čech complex). Fix notation as above. For each p ≥ 0, define

Cp(U ,F) :=
∏

i0<···<ip

F(Ui0,...,ip)

and the map d : Cp(U ,F) → Cp+1(U ,F) by

(dpα)i0,...,ip+1
:=

p+1∑
j=0

(−1)jαi0,...,̂ij ,...,ip+1
,

where the hat means an omission of the index.

Remark 2.8. One can check directly that dp+1 ◦ dp = 0, which we will not write out. Thus, (C•(U ,F), d•)
is in fact a complex of abelian groups.

We now define a convention our indices. Given a class α ∈ Cp(U ,F), for arbitrary indices i0, . . . , ip ∈ I
(perhaps not in order), we define

αi0,...,ip :=

{
0 if there is a repeated index,
(−1)sgnσασ(i0),...,σ(ip) where σ(i0) < · · · < σ(ip).

Note that even if σ(i0) < · · · < σ(ip) fails to hold, multiplicativity of the sign means that we still have the
equation

αi0,...,ip = (−1)sgnσασ(i0),...,σ(ip),

so our notation makes sense.
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Remark 2.9. Our differential also still makes sense with these indices. By multiplicativity of the sign, it
will suffice to prove the result by induction on the length of σ. Namely, supposing that

(dpα)i0,...,ip+1
:=

p+1∑
j=0

(−1)jαi0,...,̂ij ,...,ip+1
,

we will show that

(dpα)σ(i0),...,σ(ip+1) :=

p+1∑
j=0

(−1)jα
σ(i0),...,σ̂(ij),...,σ(ip+1)

,

where σ is a transposition (ℓ, ℓ + 1). Namely, the left-hand side is multiplied by −1, so we need the
right-hand side to also be multiplied by −1. For the terms j /∈ {ℓ, ℓ + 1}, then we get our sign on each
term. Lastly, j ∈ {ℓ, ℓ+ 1} swap in the summation, so their signs also suitably swap with each other.

Remark 2.10. Even if there are repeated indices, we still achieve

(dpα)i0,...,ip+1
:=

p+1∑
j=0

(−1)jαi0,...,̂ij ,...,ip+1
.

The left-hand side is zero, and the right-hand side is zero at almost every term, except perhaps when
j is an index repeated exactly twice, but in this case, the two times j is an index repeated exactly twice
will have cancelling signs, so the entire thing still vanishes.

Anyway, we can now define our cohomology.

Definition 2.11 (Čech cohomology). Fix notation as above. We define Ȟp(U ,F) := hp(C•(U ,F)).

Let’s do so some sample computations.

Example 2.12. If U = {X}, then we see that

Cp(U ,F) =

{
Γ(X,F) if p = 0,

0 else,

so Ȟp(U ,F) is the same.

Remark 2.13. Čech cohomology frequently does not actually produce a long exact sequence, so perhaps
it is not technically a cohomology theory. Indeed, using Example 2.12, it is not the case that a short
exact sequence 0 → F ′ → F → F ′′ → 0 of sheaves of abelian groups on X will produce a short exact
sequence

0 → Γ(X,F ′) → Γ(X,F) → Γ(X,F ′′) → 0.

Example 2.14. We always have Ȟ0(U ,F) = Γ(X,F). Indeed, Γ(X,F) is by definition the kernel of the
map ∏

i

F(Ui)
d1→
∏
i<j

F(Ui ∩ Uj),

where (d1α)ij = αi − αj . But this is exactly Γ(X,F) by the sheaf conditions: we can uniquely glue
sections on the U• which agree on the intersections.
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Exercise 2.15. Fix a field k and X := P1
k = Proj k[x, y], and let U := D+(x) and V := D+(y) make

up the standard affine open cover U := {U, V } of X. We compute the Čech cohomology of the sheaf
F = OX(1).

Proof. We begin by computing our complex.

• We compute C0(U ,OX(1)) = Γ(U,OX(1))× Γ(V,OX(1)) = xk[y/x]⊕ yk[x/y].

• We compute C1(U ,OX(1)) = xk[y/x, x/y].

• For p ≥ 2, we have C2(U ,OX(1)) = 0 because our cover has only two elements anyway.

The only nontrivial differential is the map C0(U ,OX(1)) → C1(U ,OX(1)), which we see “restricts” x and y
to their images in xk[y/x, x/y] = Γ(D+(xy),OX(1)).

In total, we may compute

Ȟ0(U ,OX(1)) = xk[y/x] ∩ yk[x/y] = kx⊕ ky,

which is correctly the global sections. Continuing,

Ȟ1(U ,OX(1)) =
ker d1

im d0
= coker d0 = 0

because d0 is surjective: any element of xk[y/x, x/y] can be separated into polynomials in x and polyno-
mials in y, so it can be realized from C0(U ,OX(1)). Lastly, we note Ȟp(U ,OX(1)) = 0 for p ≥ 2 because
Cp(U ,OX(1)) = 0 there. ■

2.4 February 14

Today we compare Čech and derived cohomology.

2.4.1 Čech Cohomology to Sheaves
For today, X will be a topological space, F will be a sheaf of abelian groups on X, and U := {Ui}i∈I is an
open cover of X, and we will fix a well-ordering on I. We fix notation as previous.

So we get a complex on sheaves as follows, upgrading our previous complex.

Definition 2.16 (Čech complex). Fix notation as above. For each p ≥ 0, define

Cp(U ,F) :=
∏

i0<···<ip

j∗F|Ui0,...,ip
,

where j is the needed inclusion, and the map d : Cp(U ,F) → Cp+1(U ,F) by

(dpα)i0,...,ip+1
:=

p+1∑
j=0

(−1)jαi0,...,̂ij ,...,ip+1
,

where the hat means an omission of the index.

One checks as usual that we do indeed have a complex, which again we will not write out.

Example 2.17. Fix everything as above. Then we can compute

Γ(X, Cp(U ,F)) = Cp(U ,F).

We now begin doing our comparison.

33



2.4. FEBRUARY 14 256B: ALGEBRAIC GEOMETRY

Lemma 2.18. Fix notation as above. Then there is a natural transformation ε : F → C0(U ,F) given by
εV (s) := (s|Ui∩V )Ui∈U . In fact,

0 → F ε→ C•(U ,F)

is an exact sequence of sheaves.

Proof. We won’t bother to check that ε is in fact a morphism of sheaves. For the exactness, note the se-
quence

0 → Γ(V,F) → Γ
(
V, C0(U ,F)

)
→ Γ

(
V, C1(U ,F)

)
is exact for all V by the sheaf condition on F . For exactness elsewhere, we need exactness of

Cp−1(U ,F) → Cp(U ,F) → Cp+1(U ,F).

This can be checked on stalks, which is done by hand. We won’t write out the details. ■

Proposition 2.19. Fix everything as above. If F is flasque, then Ȟp(U ,F) = 0 for p > 0.

Proof. Fix some p ≥ 0 for the time being. For F is flasque, the restrictions F|Ui0,...,ip
will also be flasque,

so the pushforward j∗(F|Ui0,...,ip
) will also continue to be flasque, so the product Cp(U ,F) will be flasque.

Thus, Lemma 1.69 and Proposition 1.47 allow us to computeHp(X,F) via this resolution. To complete the
proof, we note

Hp(X,F) = hp(Γ(X, C•(U ,F))) = h•(C•(U ,F)) = Ȟp(U ,F).

The left-hand side vanishes by Lemma 1.69, so the right-hand side also vanishes. ■

2.4.2 The Čech Comparison Theorem
So we have some acyclic objects agreeing. We are now ready to construct the needed natural map.

Lemma 2.20. Fix everything as above. Then there is natural map Ȟp(U ,F) → Hp(X,F).

Proof. Fix an injective resolution 0 → F → I• ofF . Because the I• are injective, an inductive argument pro-
duces a morphism of the complexes C•(U ,F) → I•. Then this morphism of complexes induces a morphism
on cohomology, as desired. Choosing the injectives functorially in F promises that this map is natural.

Alternatively, one can check that this map does not depend on the choice of I by doing some homotopy
computation using the argument of Proposition 1.34; naturality follows by choosing the injective resolutions
to have maps between them a priori. Being explicit, we can produce a commutative diagram

0 F C(U ,F)• I•

0 G C(U ,G)• J •

φ

where the rightmost square commutes up to some homotopy. Taking cohomology produces the needed
commuting square for our map to be natural. ■

We now check when this map is an isomorphism.
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Theorem 2.21. Fix a Noetherian separated scheme X, and let U be an affine open cover of X, and
let F be a quasicoherent sheaf on X. Then for all p ≥ 0, the natural map Ȟp(U ,F) → Hp(X,F) of
Lemma 2.20 are isomorphisms.

Proof. We induct on p. For p = 0, one uses Example 2.14; we won’t bother to check that the map is the
natural one. Additionally, we remark that if F is flasque, we get the result for p > 0 by Proposition 2.19.

Now, fix some quasicoherent sheaf F for which we want to show that Ȟp(U ,F) → Hp(X,F) is an iso-
morphism. Then Corollary 2.6 allows us to embed F into a flasque quasicoherent sheaf F ; letting Q be the
quotient, we get the exact sequence

0 → F → G → Q → 0.

Note thatX being separated implies that Ui0,...,ip is affine, so Proposition 2.19 implies H1(Ui0,...,ip ,F) = 0,
so

0 → F(Ui0,...,ip) → G(Ui0,...,ip) → R(Ui0,...,ip) → 0

is exact. Thus,
0 → C•(U ,F) → C•(U ,G) → C•(U ,Q) → 0

is an exact sequence of the Čech complexes, so we get a long exact sequence of Čech cohomology. Notably,
we even have a morphism of the exact sequences of the above sequence with injective resolutions of F and
G and Q. Being explicit, there is going to be a morphism of short exact sequences as follows.

0 C•(U ,F) C•(U ,G) C•(U ,Q) 0

0 Γ(X, I•) Γ(X,J •) Γ(X,K•) 0

Now, if p ≥ 1, then Ȟp(U ,G) = Hp(U ,G) = 0 by being flasque (see also Proposition 2.19) so we get the
commutative diagram as follows.

Ȟp−1(U ,G) Ȟp−1(U ,Q) Ȟp(U ,F) 0

Hp−1(X,G) Hp−1(X,Q) Hp(X,F) 0

ε ε ε

The two maps on the left are isomorphisms by the inductive hypothesis, so the map ε (on cokernels!) must
be an isomorphism as well by a Five lemma. ■

2.5 February 16
Here we go.

2.5.1 Upgrading Čech Comparison
Here is a quick remark.

Remark 2.22. Fix a schemeX overSpecA. Then the Čech complexC•(U ,F) is a complex ofA-modules,
so the cohomology Ȟ•(U ,F) areA-modules as well. Analogously, C•(U ,F) is a complex of quasicoher-
entA-modules, so the induced map Lemma 2.20 can be checked to be a map ofA-modules by making
everything into a morphism of A-modules. So Theorem 2.21 explains that H•(X,F) is an A-module
when X is a Noetherian separated A-scheme.
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We will want to upgrade Theorem 2.21 somewhat; notably, Theorem 2.21 has some strong hypotheses on
X and F , which we will work to remove. We will succeed in removing them for H1.

Our method will be based on allowing the open cover U to get finer. So we should define what is meant
by a refinement.

Definition 2.23 (refinement). A refinement of an open cover U on X is an open cover V such that there
is a mp λ : V → U such that V ⊆ λ(V ) for each V ∈ V . In practice, we may index U and V and view λ as
a function on indices.

Refinements allow us to improve Čech cohomology. To make this precise, we need to get morphisms on
Čech cohomology.

Lemma 2.24. Fix a sheaf F of abelian groups on X. Given a refinement λ : V → U where U := {Ui}i∈I
and V := {Vj}j∈J , we get a natural map of complexes λ• : C•(U ,F) → C•(V,F) and hence a (very)
natural map λp : Ȟ•(U ,F) → Ȟ•(V,F).

Proof. Define λp : Cp(U ,F) → Cp(V,F) by

(λpα)j0,...,jp := αλ(j0),...,α(jp).

One can check that λp upgrades to a morphism of complexes by checking that

Cp(U ,F) Cp+1(U ,F)

Cp(V,F) Cp+1(V,F)

λp λp+1

dpU

dpV

commutes, so we upgrade to a morphism on cohomology. While we’re here, we do a flurry of naturality
checks.

• Note that λp is also natural in F because the diagram

Cp(U ,F) Cp(U ,G)

Cp(V,F) Cp(U ,G)

λp

Cpφ

Cpφ

λp

commutes for any sheaf morphism φ : F → G.

• Note that λ is functorial in the refinement. Indeed, given a refinement µ : W → V where W :=
{Wk}k∈K , then we see that

C•(U ,F) C•(W,F)

C•(V,F)

λ• µ•

(µ◦λ)•

commutes by an explicit computation.

• Note that the morphismλ• : Ȟ•(U ,F) → Ȟ•(V,F) is independent of the choice of refinementλ, which
can be seen by taking a common refinement of two choices λ, λ′ : U → V ; we won’t write out the
relevant diagram for this check. ■
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Remark 2.25. Any two refinements of U have a common refinement by taking intersections, so we have
a directed system, so we can construct a directed colimit

lim−→ Ȟp(U ,F)

for each p.

The following naturality check for Lemma 2.24 will be especially important.

Lemma 2.26. Fix a sheaf F of abelian groups on X. Given a refinement λ : V → U where U := {Ui}i∈I
andV := {Vj}j∈J , the following diagram commutes, where the unlabeled arrows are from Lemma 2.20.

Ȟ•(U ,F) Hp(X,F)

Ȟ•(V,F)

λ•

Proof. Fix an injective resolution 0 → F → I• of F . Then one can build a commutative diagram of resolu-
tions

C•(U ,F) I•

C•(V,F)

where the top arrow is induced by a choice of arrow in the bottom right. (Notably, λ• is induced in basi-
cally the same way as Lemma 2.24.) So taking global sections and then cohomology produces the needed
commutative diagram. ■

The point of Lemma 2.26 is that we can combine it with Remark 2.25 to produce a map

lim−→ Ȟp(U ,F) → Hp(X,F).

And here is our result.

Proposition 2.27. Fix a sheaf F of abelian groups on X. Then the natural map

lim−→ Ȟp(U ,F) → Hp(X,F)

described above is an isomorphism for p ∈ {0, 1}.

Proof. For p = 0, then Example 2.14 tells us that everything involved is Γ(X,F). So the main content will
be with p = 1.

So we take p = 1. We would like to dimension-shift, but we will run into complications. Embed F into a
flasque sheaf I and let Q be the quotient so that

0 → F → I → Q → 0

is an exact sequence. Now, to access Čech cohomology, note any open cover U has an injectionC•(U ,F) →
C•(U , I), so we let D•(U) be the quotient complex so that we have an exact sequence

0 → C•(U ,F) → C•(U , I) → D•(U) → 0
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which we have checked in Lemma 2.24 is natural in the refinement U . (Naturality in D• is induced.) Thus,
for a refinement λ : V → U , we get a commutative diagram as follows with exact rows.

0 Ȟ0(U ,F) Ȟ0(U , I) h0(D(U)) Ȟ1(U ,F) Ȟ1(U , I)

0 Ȟ0(V,F) Ȟ0(V, I) h0(D(V)) Ȟ1(V,F) Ȟ1(V, I)

(2.1)

Note Ȟ1(U , I) = Ȟ1(V, I) = 0 by Proposition 2.19, so the ends are zero. Also, the left two maps are iso-
morphisms by the p = 0 case (they are both Γ(X,F)). Now, the universal property of the cokernel produces
the morphism of exact sequences

0 h0(D•(U)) Ȟ0(U ,Q) Γ(X,Q)

0 h0(D•(V)) Ȟ0(V,Q) Γ(X,Q)

basically because Γ(X,−) is already known to be left exact. Thus, we see that the left vertical map above is
injective, so the Five lemma in (2.1) tells us that Ȟ1(U ,F) → Ȟ1(V,F) is injective.

We now take colimits over everything (which is an exact operation because the colimits are filtered) to
draw the following diagram.

0 Γ(X,F) Γ(X, I) lim−→h0(D•(U)) lim−→ Ȟ1(U ,F) lim−→ Ȟ1(U , I)

0 Γ(X,F) Γ(X, I) Γ(X,R) H1(X,F) H1(X, I)

As before, the ends vanish, and the middle arrow is induced. More precisely, the Horseshoe lemma produces
a commutative diagram

0 C•(U ,F) C•(U , I) C•(U ,Q)

0 I• I• ⊕ J • J • 0

(2.2)

where 0 → F → I• and 0 → I → J • are both injective resolutions, which then produces the morphism of
short exact sequences

0 C•(U ,F) C•(U , I) D•(U) 0

0 Γ(X, I•) Γ(X, I• ⊕ J•) Γ(X, J•) 0

by taking global sections. Taking cohomology (and then taking colimits) is what produces the needed vertical
map making everything commute.

We now continue staring at (2.2). Now, we know that the first and second vertical arrows are isomor-
phisms, so the Five lemma dictates that it is enough to show that the third (middle) vertical arrow is an
isomorphism. It is already injective, so we just need surjectivity. Morally, this is because sections of the
quotient sheaf will (on an open cover) come from sections of the quotient presheaf, and h0(D•(U)) is exactly
these sections on the open cover U .

To be explicit, we work on stalks. Let q : I → Q denote the quotient map and some s ∈ Γ(X,Q) which
we would like to hit. Well, looking on stalks, each x ∈ X has some open neighborhood Ux with a section
tx ∈ Γ(Ux, I) such that qx((tx)x) = s|Ux . Setting U := {Ux}x∈X , we have that ((tx)x) ∈ C0(U , I), so we can
take this along q to get (s|Ux

)x∈X ∈ C0(U ,Q), but in fact this lives in D•(U) because it came from C•(U , I),
so we see that s was in fact in the image. ■

38



2.6. FEBRUARY 21 256B: ALGEBRAIC GEOMETRY

2.6 February 21

We spent most class completing a proof from the previous class, and I have edited directly into the notes of
the previous class for continuity.

2.6.1 Cohomology on Projective Space
We are now moving towards the proof of Serre duality, for which we will want to have computed the coho-
mology of some line bundles on projective space. Throughout, we will take A to be a Noetherian ring (for
example, a field), set S := A[x0, . . . , xr] to be the graded ring, and we set X := PrA = ProjS. Our goal is to
compute the cohomology of the sheaves OX(n) := S̃(n). We also recall the following construction: for an
OX-module F , we can define

Γ•(F) :=
⊕
n∈Z

Γ(X,F(n)),

which is a Z-graded S-module. Let’s go ahead and state our desired theorem.

Theorem 2.28. Fix a Noetherian ring A, and set S := A[x0, . . . , xr] (for r ≥ 1) and X := PrA.

(a) The natural map
S →

⊕
n∈Z

Γ(X,OX(n))

is an isomorphism of Z-graded S-modules.

(b) Hi(X,OX(n)) = 0 for all 0 < i < r and n ∈ Z.

(c) Hr(X,OX(−r − 1)) = A.

(d) For each n ∈ Z, the natural map

H0(X,OX(n))×Hr(X,OX(−r − 1− n)) → Hr(X,OX(−r − 1)) ∼= A

is a perfect pairing of free A-modules of finite rank.

Remark 2.29. The standard affine open covering on PnA tells us that Hi(X,F) = 0 for any i > r and
any quasicoherent sheaf F . Notably, we are using Čech cohomology via the comparison theorem The-
orem 2.21, which applies because X is in fact Noetherian and separated.

2.7 February 23
Here we go.

2.7.1 More on Cohomology on Projective Space
Today we prove Theorem 2.28.

Proof of Theorem 2.28. As suggested by the remark, our proof of Theorem 2.28 will use Čech cohomology.
It will be helpful to glue everything together into

F :=
⊕
n∈Z

OX(n),
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which is a Z-graded quasicoherent sheaf of S-modules. Taking cohomology, which commutes with infinite
sums because taking infinite sums is exact, we see that

Hi(X,F) =
⊕
n∈Z

Hi(X,OX(n))

for each i. Notably, one has an A-module structure everywhere by Remark 2.22.
Now, for our open cover U (for Čech cohomology), we take Uj := D+(xj) for 0 ≤ j ≤ r; note then

that Ui0,...,ip := Ui0 ∩ · · · ∩ Uip = D+(xi0 · · ·xip). In particular, PrA is Noetherian and separated (note A is
Noetherian), so

Ȟ•(U ,OX(n)) ∼= H•(X,OX(n))

by Theorem 2.21. Notably, we find that

F(Ui0···ip) = Sxi0
···xip

by tracking through the localizations on OX(n), meaning that our Čech complex looks like

0 →
∏
i0

Sxi0

d0→
∏
i0,i1

Sxi0
xi1

d1→ · · · d
r−1

→ Sx0···xr → 0

of graded S-modules.
We now proceed with our arguments.

(a) We compute
Ȟ0(U ,F) = ker d0 =

⋂
i

Sxi .

Here, the intersections are being taken in Sx0···xr
, legal because the relevant localization maps are in-

jective. Now, this lastS-module is justS because (for example)S = Sx0∩Sx1 by a direct computation.1

(c) We begin by claiming that Ȟr(U ,F) is the free graded A-module with basis given by elements of the
formxℓ00 · · ·xℓrr where ℓi are negative integers. Notably, in degree−r−1, we are searching for solutions
to ℓ0 + · · ·+ ℓr = −r − 1, which is only ℓ0 = · · · = ℓr = −1, so we will have rank 1, which is (c).
So it remains to show the claim. Well, looking at our Čech complex,

Ȟr(U ,F) = coker

(∏
j

Sx0···x̂j ···xr

dr−1

→ Sx0···xr

)
.

Now, Sx0···xr
is a free A-module with basis given by terms of the form xℓ00 · · ·xℓrr where ℓ0, . . . , ℓr ∈ Z,

so we want the cokernel to kill all undesired terms. Well, tracking through dr−1, we find that it is just
inclusion (up to sign), so the image is the freeA-module with basis given by terms of the formxℓ00 · · ·xℓrr
with at least one nonnegative exponent, so the claim follows.

(d) Let’s begin by describing the pairing. Given some s ∈ H0(X,OX(n)) (which is just a global section),
we produce a map s : OX(−r − 1− n) → OX(−r − 1). Moving up to cohomology, we get an A-linear
map Hr(X,OX(−r − 1− n)) → Hr(X,OX(−r − 1)), which upon letting s vary produces the required
bilinear pairing

H0(X,OX(n)) → HomA(H
r(X,OX(−r − 1− n)), Hr(X,OX(−r − 1))).

It remains to check that this pairing is perfect and that these are free A-modules of finite rank; note
(a) and the computation in (c) above actually shows that these are free A-modules of finite rank. If
n < 0, then both terms in our pairing will vanish, so there will be nothing left to check. For example,
H0(X,OX(n)) = 0 by (a), andHr(X,OX(−r−1−n)) = 0 by the claim in (c): we knowHr(X,OX(−r−

1 Here we have used that r ≥ 1.
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1 − n)) = 0 is a free A-module with basis given by xℓ00 · · ·xℓrr where the ℓ•s are negative integers
summing to −r − 1− n > −r − 1, but there is no such basis element.
So we may take n ≥ 0. Tracking through the description of our pairing on Čech cohomology, we see
that the basis element xm0

0 · · ·xmr
r ∈ H0(X,OX(n)) (of total degree n) will send the basis element

xℓ00 · · ·xℓrr ∈ Hr(X,OX(−r − 1 − n)) to the element xm0+ℓ0
0 · · ·xmr+ℓr

r ∈ Hr(X,OX(−r − 1)) (which
means 0 if any exponent is nonnegative). Let’s explain this. To begin, we need to show that we actually
have a well-defined map. On Čech cohomology, we are attempting to describe a map

(
ker d0

)
n
⊗A

Cr(U ,F)−r−1−n

(im dr−1)−r−1−n
→ Cr(U ,F)−r−1

(im dr−1)−r−1

.

We can now see that ker d0 = S, so it does have basis elements in the form xm0
0 · · ·xmr

r of total degree
n, and tensoring by this element will indeed send basis elements xℓ00 · · ·xℓrr ∈ Hr(X,OX(−r− 1− n))
as described. (Notably, we do go to 0 if any exponent is nonnegative because this is the image of dr−1.
Perhaps one might also want to note that if we input some element xℓ00 · · ·xℓrr with a nonnegative ex-
ponent, then the corresponding product will have a nonnegative exponent in the same spot.) Formally,
perhaps one should go through the following commutative diagram, as follows.

C•(U ,OX(−r − 1− n)) C•(U ,OX(−r − 1))

C•(U ,F)−r−1−n C•(U ,F)−r−1

(−⊗s)

We are now able to show that the relevant pairing is perfect. We use the bases listed above to actually
claim that our pairing makes these bases dual bases: the basis element xm0

0 · · ·xmr
r ∈ H0(X,OX(n))

has dual basis element x−m0−1
0 · · ·x−mr−1

r ∈ Hr(X,OX(−r− 1− n)), which we can check directly. To
see this, certainly we have

xm0
0 · · ·xmr

r · x−m0−1
0 · · ·x−mr−1

r = x−1
0 · · ·x−1

r ,

which is the basis element of Hr(X,OX(−r − 1)). Then for any other basis element xℓ00 · · ·xℓrr ∈
Hr(X,OX(−r−1−n)), the only way for the pairing to send this to a nonzero element is formi+ℓi < 0
for each ℓi, meaning that ℓi ≤ −mi − 1 for each i, but then

∑
imi = n and

∑
i ℓi = −r − 1 − n forces

equality everywhere.

(b) We will induct on r. For r = 1, there is nothing to show because there is no i to check. We now show
two separate claims.

• We claim that each i > 0 has each element of Hi(X,F) annihilated by some power of xr. It is
enough to show that the localization Hi(X,F)xr vanishes. Now, by the inductive step, we see
that the cohomology of the restricted Čech complex C•(U ∩ Ur,F|Ur ) vanishes for indices i > 0:
indeed, by Theorem 2.21, we may check this on sheaf cohomology, for which the result follows
from Theorem 2.4 because Ur is affine and F is quasicoherent. Thus, by localizing, we see that
C•(U ∩ Ur,F|Ur

)xr
continues to have vanishing cohomology for indices i > 0, which reduces to

the needed claim. (Note the Čech complex does reduce to U ∩Ur because we are localizing at xr.)
• For 0 < i < r, we actually claim that xr : Hi(X,F) → Hi(X,F) is injective. Here is where we will

use the induction. The point is that each n ∈ Z has an exact sequence

0 → S(n− 1)
xr→ S(n) → S(n)

(xr)
→ 0

of graded S-modules. So we letH ⊆ PrA denote the hyperplane cut out by xr = 0 so that taking ·̃
everywhere glues us into the short exact sequence

0 → F(−1)
xr→ F → FH → 0,
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where FH :=
⊕

n∈Z OH(n). (Formally, we first get an exact sequence of the form 0 → OX(n −
1) → OX(n) → OH(n) → 0 and then summing over all n ∈ Z.) Thus, the long exact sequence
produces

Hi−1(X,F) → Hi−1(X,FH) → Hi(X,F(−1))
xr→ Hi(X,F)

for 1 ≤ i < r, but Hi−1(X,FH) = Hi−1(H,FH) = 0 by the inductive hypothesis for 1 < i < r.
(We have used Lemma 1.75.) Thus, the rightmost map is injective in these cases, as claimed.
But even when i = 1, the leftmost map is the map S → S/(xr) by (a), which is surjective, so the
rightmost map continues to be injective.

We now see that (b) follows from the above claims because multiplication by xkr is injective but also
the zero map for k sufficiently large. ■

Remark 2.30. The choice of isomorphism in (c) is notably not canonical. In particular, it depends on our
choice of basis element for the cokernel.

2.8 February 26

We began class completing the proof of Theorem 2.28, for which I have edited the notes of last class for
continuity reasons. We then spent most of the remaining class on a single result which we spent more time
on in the following class, so I have moved the remaining discussion there.

2.9 February 28

We began class by completing the proof of a result.

2.9.1 Cohomology on Projective Schemes
We recall the following definition.

Definition 2.31 (very ample). Fix a morphism f : X → Y of schemes. A line bundle L on X is f-very
ample if and only if there is locally closed embedding i : X → PrY for some r ≥ 0 such thatL ∼= i∗OPr

Y
(1).

Remark 2.32. Under proper hypotheses, we will be able to upgrade the locally closed embedding to
a closed embedding. Explicitly, fix a scheme X over a Noetherian scheme Y . Then the following are
equivalent.

(a) X is projective over Y .

(b) X is proper and has a Y -very ample sheaf.

For (a) implies (b), note projective implies proper, and projective grants a very ample sheaf by definition.
For (b) implies (a), note having a very ample sheaf grants a locally closed embedding i : X → PrY , and
X being proper forces the image of i to be closed, so i upgrades to a closed embedding, making X
projective over Y .

We now use Theorem 2.28 for fun and profit.
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Theorem 2.33. Fix a Noetherian ringA and projectiveA-schemeX. Further, fix a very ample line bundle
OX(1) on X and coherent sheaf F on X.

(a) Hi(X,F) is a finitely generated A-modules for all i > 0.

(b) There exists an integer n0 such that Hi(X,F(n)) = 0 for n > n0 and i > 0.

Proof. We proceed in steps.

1. We reduce to X = PrA for some r > 0. Indeed, fix some closed embedding j : X → PrA for some r > 0
such that OX(1) = j∗OPr

A
(1). ThenHi(X,F(n)) = Hi(PrA, j∗(F(n))) by Lemma 1.75; now, everything

around is Noetherian and separated, so j∗F is coherent on PrA, so (a) will indeed follow from knowing
the result for PrA. Further,

j∗(F(n)) = j∗(F ⊗OX(n)) = j∗F ⊗ j∗j
∗OPr

A
(n) = (j∗F)(n),

where ∗
= is by the projection formula [Har77, Exercise II.5.1]. Thus, (b) will also follow from the result

for PrA.

2. We show the result for F = OX(q) for q ∈ Z. Indeed, we get this result directly from Theorem 2.28:
(a) follows from the stated computations, and (b) follows because Hr(X,OX(q)) = 0 for q sufficiently
large.

3. We also note that one can glue the previous step together to achieve F isomorphic to a finite direct
sum of sheaves of the form OX(q) for q ∈ Z.

4. We now tackle the general case by descending induction on the index i. Notably, Čech cohomology
via Theorem 2.21 tells us that Hi(X,F) = 0 for i > r (see Remark 2.29), making (a) and (b) have no
content. (Technically, for (b), n0 is not supposed to depend on i, but this will in practice be no issue
because the value of n0 doesn’t even matter in these cases.)
For our induction, we take i ≤ r, assuming the result for i + 1. The main point is that there is a sheaf
E isomorphic to

⊕N
i=1 OX(qi) with a surjection π : E → F by [Har77, Corollary II.5.18]. So we set

K := kerπ to produce a short exact sequence

0 → K → E → F → 0 (2.3)

of coherent sheaves. Thus, for (a), we note that the long exact sequence produces the exact sequence

Hi(X, E) → Hi(X,F) → Hi+1(X,K),

so the middle term must be a finitely generatedA-module because the end terms are by the previous
step and the inductive hypothesis. (Explicitly, we are using some Noetherian submodule argument.)
For (b), we twist (2.3) by n ∈ Z and then take the long exact sequence to get the exact sequence

Hi(X, E(n)) → Hi(X,F(n)) → Hi+1(X,K(n)).

Notably, for n large enough the two terms on the end will vanish, so the middle term will vanish as
well.
Technically, the value of n0 in (b) is not supposed to depend on i. Well, we have shown that each i ≤ r
hasmi ∈ Z such thatHi(X,F(n)) = 0 for i > mi, and we can analogously takemi = 0 for i > r, so we
can just take n0 to be the maximum of all these values (or perhaps their sum) to complete the proof of
(b). ■

Corollary 2.34. Fix a Noetherian ring A and projective A-scheme X. For any coherent sheaf F on X,
the A-module Γ(X,F) is finitely generated.

Proof. Take i = 0 in (a) of Theorem 2.33. ■
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Corollary 2.35. Fix a Noetherian ring A and a closed subscheme X ⊆ PrA for some r ≥ 0. Then the
restriction map

Γ(PrA,OPr
A
(n)) → Γ(X,OX(n))

is surjective for n sufficiently large.

Proof. Let I ⊆ OPr
A

be the ideal sheaf cutting out the closed subscheme Y . Notably, everything in sight is
Noetherian, so I is coherent, so H1(PrA, I(n)) = 0 for n sufficiently large by Theorem 2.33. Now, we take
the short exact sequence

0 → I → OPr
A
→ i∗OX → 0,

twist by some sufficiently large n ∈ Z and take the long exact sequence so that

Γ(PrA,OPr
A
(n)) → Γ(PrA, i∗OX(n)) → H1(PrA, I(n)).

The rightmost term vanishes by construction ofn, and the middle term isΓ(X,OX(n)) (say, by Lemma 1.75),
so the result follows. ■

Remark 2.36. Because global sections of Γ(PrA,OPr
A
(n)) are homogeneous polynomials of degree n in

k[x0, . . . , xr], we see that we can write out any global section in OX(n) in this way.
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THEME 3

LINE BUNDLES AND DIVISORS

3.1 March 1
Today we discuss line bundles.

3.1.1 Ample Line Bundles
The following result helps motivate the notion of ample.

Proposition 3.1 (Serre). Fix a projective schemeX over a Noetherian ringA, and letOX(1) be some very
ample line bundle. For any coherent quasicoherent sheaf F on X, there is an integer n0(F) such that
F(n) is generated by finitely many global sections for n ≥ n0(F).

Proof. We proceed in steps.

1. We reduce to the case ofX = PrA. BecauseX is projective, and OX(1) is very ample, we are promised
some closed embedding i : X → PrA such that OX(1) = i∗OPr

A
(1). Because i is finite (and A Noethe-

rian), we see that i∗F continues to be coherent. Notably, H0(X,F) = H0(PrA, i∗F).
For all affine open subschemesU = SpecB ofPrA, the fact that i is closed allows us to sayV := i−1(U) is
an affine open subscheme SpecB/iofX (where I ⊆ B is some ideal). Now,F is coherent, soF|V = M̃

for some finitely generated (B/I)-module M . Further, (i∗F)|U = M̃ , where M is now viewed as a B-
module via B ↠ B/I, so if we have global sections s0, . . . , sn ∈ H0(PrA, i∗F) globally generating i∗F ,
they will restrict to some m1, . . . ,mn ∈ M which generate M as a B-module and hence generate as
a (B/I)-module. Thus, F|V is generated by these global sections for all affine open subschemes V ,
which is good enough.

2. We complete the proof. Cover X = PrA with the standard affine open subschemes D+(xi) where
0 ≤ i ≤ r; sayD+(xi) = Bi := A[x0/xi, . . . , xn/xi]. Notably,F|D+(xi)

∼= M̃i for some finitely generated
Bi-module Mi, so we may let {sij}mi

j=1 be a set of generators. Notably, for each sij , we can imagine
cancelling out any possible pole by multiplying by xnij

i for some integer nij , making xnij

i sij a global
section of F(nij). (See [Har77, Lemma II.5.14].) Let n be the maximum of all the nijs so that xnsij is
a global section of F(n).

Now, F(n)|D+(xi) is isomorphic to M̃ ′
i for some Bi-module Mi, and xni : F → F(n) will produce an

isomorphism Mi → M ′
i by how twisting works, so the global sections xni sij are able to generate each

M̃ ′
i . So our global sections are able to generate F(n), as required. ■

So let’s codify the conclusion of the above result.
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Definition 3.2 (globally generated). Fix a schemeX. An OX-module F is globally generated if and only
if Γ(X,F) generates F .

Remark 3.3. Perhaps one is worried about finite generation. Well, if F is a coherent sheaf on a Noethe-
rian schemeX, then being globally generated means thatF is actually generated by a finite set of global
sections. Morally, letting S be a generating subset of global sections, we coverX by finitely many open
affine Noetherian subschemes, and then over each subscheme, only finitely many global sections of S
need to be used because F is coherent. So we only pick out finitely many global sections from S that
are needed to generate it.

This leads to the following definition.

Definition 3.4 (ample). A line bundle L on a Noetherian scheme X is ample if and only if any coherent
sheaf F on X has some integer n0(F) ∈ Z such that F ⊗ L⊗n is globally generated for any n ≥ n0(F).

Remark 3.5. A very ample line bundle is always relative to the (locally closed) embedding of X into
projective space.

Example 3.6. Proposition 3.1 explains that very ample line bundles on projective schemes are ample.

Example 3.7. Fix an affine Noetherian schemeX = SpecA. Then every coherent sheaf onX is globally
generated, so actually any line bundle L is ample: for any coherent sheaf F on X, we see F ⊗ L⊗n

continues to be coherent for any n ≥ 0 (say), so it is globally generated.

Let’s run some basic checks on ample line bundles.

Lemma 3.8. Fix a line bundle L on a Noetherian scheme X. Then the following are equivalent.

(i) L is ample.

(ii) L⊗m is ample for all m > 0.

(iii) L⊗m is ample for some m > 0.

Proof. Note (ii) implies (iii) has little content. Also, for (i) implies (ii), we proceed via the definitions directly:
for any coherent sheafF , we know that there is a nonnegative integern0(F) such thatF⊗L⊗n forn ≥ n0(F),
but then F ⊗ (L⊗m)

⊗n for n ≥ n0(F) also. Thus, L⊗m is ample.
So it remains to show that (iii) implies (i), which requires a trick. Fix a coherent sheaf F , and we want

to show that F ⊗ L⊗n is globally generated for sufficiently large n. Well, L⊗m is ample, so for each i ∈
{0, . . . ,m− 1}, there is some ni(F) ≥ 0 such that(

F ⊗ L⊗i)⊗ (L⊗m)⊗n = F ⊗ L⊗(i+mn)

is globally generated for n ≥ ni(F). (Namely, we recall F ⊗L⊗i is coherent!) Thus, for n ≥ m(max{ni}+1),
we see that F⊗L⊗n is globally generated by finding the i ∈ {0, . . . ,m−1} with n ≡ i (mod m) and applying
the previous sentence. ■

Lemma 3.9. Fix an ample line bundle L on a Noetherian scheme X. For any open subscheme U ⊆ X,
the line bundle L|U remains ample.
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Proof. This is not as easy as it might look. Let F be a coherent sheaf on U . The difficulty is that we must
use [Har77, Exercise II.5.15] in order to build a coherent sheaf F ′ on X such that F ′|U = F ; morally, one
reduces to the affine case by some technical argument, and then some sort of extension by zero can work.
Now, there is some n0(F ′) such that F ′ ⊗ L⊗n is globally generated for n ≥ n0(F ′), meaning that(

F ′ ⊗ L⊗n) |U = F ⊗ (L|U )⊗n

continues to be globally generated forn ≥ n0(F ′), as desired. (The restriction is globally generated basically
by viewing the global generation condition as asking for a surjective map O⊕m

X ↠ F ′ ⊗ L⊗n.) ■

We now use ample line bundles to build very ample line bundles. Because we are allowed to “take roots” of
ample line bundles, we will have to “take powers” below.

Proposition 3.10. Fix a Noetherian schemeX of finite type over a Noetherian ringA. Given a line bundle
L on X, then L is ample if and only if and only if L⊗m is very ample for some positive integer m > 0.

Proof. The forward direction is essentially Proposition 3.1. Indeed, if L⊗m is very ample, find some locally
closed embedding i : X → PrA such that L⊗m ∼= i∗O)PrA(1). Because i is locally closed, we can write i as
i2 ◦ i1 where i1 : X → X is open, and i2 : X → PrA is closed. Then i∗2OPr

A
(1) is very ample onX, hence ample

by Proposition 3.1, so its restriction to X is ample by Lemma 3.9, so L is ample by Lemma 3.8.
We will show the other direction next class. ■

3.2 March 4
Today we finish discussing line bundles.

3.2.1 More on Ample Line Bundles
We now use ample line bundles to build very ample line bundles. Because we are allowed to “take roots” of
ample line bundles, we will have to “take powers” below.

Proposition 3.11. Fix a Noetherian schemeX of finite type over a Noetherian ringA. Given a line bundle
L on X, then L is ample if and only if and only if L⊗m is very ample for some positive integer m > 0.

Proof. The forward direction is essentially Proposition 3.1. Indeed, if L⊗m is very ample, find some locally
closed embedding i : X → PrA such that L⊗m ∼= i∗O)PrA(1). Because i is locally closed, we can write i as
i2 ◦ i1 where i1 : X → X is open, and i2 : X → PrA is closed. Then i∗2OPr

A
(1) is very ample onX, hence ample

by Proposition 3.1, so its restriction to X is ample by Lemma 3.9, so L is ample by Lemma 3.8.
It remains to show the forward direction. The point is thatL and some generating sections will determine

a morphism to projective space, which we eventually want to be a closed embedding. In particular, we need
to separate points and tangent vectors to be a closed embedding. Anyway, we proceed in steps.

1. As such, as a starting step, we claim that any p ∈ X has n > 0 and a section s ∈ Γ (X,L⊗n) such that
Xs contains p and is affine. (Recall Xs consists of q ∈ X such that sq /∈ mqL⊗n

q ; in particular, Xs is
open.) To begin, let U be an affine open neighborhood of p such that L|U = OU , and let Y := X \ U
be the complement, which we give the reduced scheme structure. While we’re here, we also let IY be
the coherent ideal sheaf corresponding to Y (note IY is coherent because X is Noetherian).
Thus, ampleness of L tells us that IY ⊗L⊗n is globally generated for n sufficiently large. In particular,
we may find a global section s ∈ Γ(X, IY ⊗ L⊗n) such that sp /∈ mp(IY ⊗ L⊗n)p. Now, IY ⊆ OX , so
Γ(X, IY ⊗ L⊗n) → Γ(X,L⊗n) is injective, so we may view s as a global section of L⊗n.
Continuing, p /∈ Y means (i∗OY )p = 0 (here, i : Y → X is the embedding), so the short exact sequence

0 → IY → OX → i∗OY → 0
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being exact at the stalk at p forces the inclusion IY,p → OX,p to be an isomorphism. As such, we see
sp /∈ mpL⊗n

p . However, the failure of this to be an isomorphism for q ∈ Y means that sq ∈ mqL⊗n
q for

q ∈ Y . So we are able to conclude that p ∈ Xs and Xs ⊆ U ; in particular, Xs is now affine because it is
a distinguished open subscheme of the affine schemeU , where s|U is being viewed as a global section
of OU because L⊗n|U ∼= OU .

2. We upgrade the open cover produced by the previous step. Now, becauseX is quasicompact, we can
find finitely many sections {s1, . . . , sk} such that theXsi are affine and coverX. Now, by construction,
si ∈ Γ(X,L⊗ni) for some ni > 0, so we set n := lcm(n1, . . . , nk) and replace si with a power so that
si ∈ Γ(X,L⊗n). We also note that L⊗n is ample here, so we may as well replace L with L⊗n so that
actually n = 1, and the s• are global sections of L.
Continue with the open cover Xi := Xsi where 1 ≤ i ≤ k as in the previous step. Because X is of
finite type over A, we may write Bi = A[bi1, . . . , biki ]. As we stated earlier, [Har77, Lemma II.5.14]
tells us that each i and j have some nij > 0 such that snij

i bij is the restriction of a global section
cij ∈ Γ(X,L⊗nij ); again, by taking lcms and replacing L with a power of itself, we may assume that
nij = 1 for all i and j. As such, we see that the si and cij are global sections which generate L.

3. At this point, we have a list of global sections generating L, so we produce a morphism φ : X → PNA to
projective space. In particular, we can write PNA = Proj k[xi, yij ] so that φ∗xi = si and φ∗yij = cij for
each i and j; for example, Xsi is the pre-image of D+(xi). Notably, the induced map Xsi0

→ D+(xi0)
is a closed embedding: by construction, on rings, this map looks like A[xi/xi0 , yij/xi0 ] → Bi0 , which
is surjective by construction of the map and the cijs. As such, X is a closed subscheme of an open
subscheme of PNA via the map given by global sections of L, so we conclude that L is very ample. ■

Let’s see some extra miscellaneous facts about ample and very ample line bundles.

Lemma 3.12. Fix a morphism π : X → Y of Noetherian schemes.

(a) If L is π-very ample, then L⊗n is π-very ample for any n ≥ 0.

(b) If L and M are both very ample, then L ⊗M is very ample.

Proof. For (a), use the n-uple embedding, which is notably closed. More explicitly, if L is very ample, then
it comes from some locally closed embedding i : X → PNY , so we can post-compose with the closed em-
bedding PNY → PnNY , which effectively takes powers of L as needed. For (b), proceed as above, but now we
note that there is a closed embedding PNA ×PMA → PNM+M+N−1

A which we want to post-compose by to get
L ⊗M. ■

And here are some facts about ampleness.

Lemma 3.13. Fix a Noetherian scheme X.

(a) If L and M are ample, then L ⊗M is also ample.

(b) If L is ample, and i : X ′ → X is a locally closed embedding, then i∗L continues to be ample.

(c) For r > 0 and n ≤ 0, then OPr
A
(n) is not ample on PrA.

Proof. One proceeds directly from the definitions for (a), and one pulls back according to the definitions for
(b). Lastly, for (c), we simply have to note that OPr

A
(n) never has global sections for n < 0, so no tensor

power of it can succeed to be very ample, so it can never succeed to be ample. ■

3.3 March 6
Here we go.
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3.3.1 Ample Line Bundles via Cohomology
Let’s return to cohomology but now with some ample flavor.

Proposition 3.14. Fix a proper X over a Noetherian ring A. Given a line bundle L on X, the following
are equivalent.

(i) L is ample.

(ii) For any coherent sheaf F on X, there is an integer n0(F) such that Hi(X,F ⊗ L⊗n) = 0 for i > 0
and n > n0(F).

Proof. We have two implications to show. Quickly, we show (i) implies (ii) so that L is ample. Because X
has an ample sheaf L, there is a very ample power L⊗m by Proposition 3.11. Now using Theorem 2.33, for
each k between 0 and n − 1, we can find some nk such that Hi(X,F ⊗ L⊗k(n)) = 0 for n > nk, where
OX(1) := L⊗m. Taking n0(F) := max{(m+ 1)(nk + 1) : 0 ≤ k ≤ n− 1} will now work.

We show (ii) implies (i). This is harder. We proceed in steps.

1. Fix a coherent sheaf F on X a closed point p ∈ X. We claim that there is an integer n0 (depending on
F and p) such that any n ≥ n0 has an open neighborhood U ⊆ X such that Γ(X,F ⊗ L⊗n) generates
(F ⊗ L⊗n)|U .
To begin, the fact that p is closed grants us an exact sequence

0 → Ip → OX → k(p) → 0,

so
Ip ⊗F → F → F ⊗ k(p) → 0

is exact. Computing the image of Ip ⊗F in F , we see that

0 → IpF → F → F ⊗ k(p) → 0

is exact. The point is that (ii) tells us that some n0 has H1(X, IpF ⊗ L⊗n) = 0 for n ≥ n0, meaning

Γ(X,F ⊗ L⊗n) → Γ(X,F ⊗ L⊗n ⊗ k(p))

is surjective for n ≥ n0. Thus, Nakayama’s lemma tells us that Γ(X,F ⊗ L⊗n) generates (F ⊗ L⊗n)p.
As such, there is a map π : O⊕N

X → F ⊗ L⊗n which is surjective at p. It remains to spread out from p.
Well, choose U to be the complement of the support of cokerπ, meaning that (cokerπ)|U vanishes, so
π continues to be surjective on U , and we are done.

2. We upgrade the previous step to makeU independent of n. We still make allowU to depend on F and
p, which we fix. Notably, the first claim does grant m > 0 and open V ⊆ X such that L⊗m is globally
generated over V .
Now, using the previous step on F ⊗ L⊗r for each 0 ≤ r < m, we get some n0 very large and open
subsets Ur for each r such that F ⊗ L⊗(n0+r) is globally generated over Ur for each r. We now set

U := V ∩
m−1⋂
r=0

Ur,

which is now independent of n: for any n ≥ n0, write n = n0 + km+ r with k ≥ 0 and 0 ≤ r < m, and
we see that

F ⊗ Ln = F ⊗ L⊗(n0+r) ⊗ L⊗mk

is the tensor product of sheaves globally generated over U , which continues to be globally generated.
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3. We now finish the proof. BecauseX is Noetherian, it is quasicompact, so any nonempty closed subset
has a closed point by Lemma 2.3. So we claim that the open neighborhoods Up of the previous step
cover X: if not, then the complement is closed, which has a closed point p, but then Up means that it
can have no closed point.
Thus, quasicompactness ofX grants finitely many closed points {p1, . . . , pr} such that theUpi coverX,
and each pi has been granted some ni such that F ⊗L⊗n is globally generated overUi for each n ≥ ni.
Choosing n := max{ni : 1 ≤ i ≤ r} completes the argument because we have an open cover. ■

Remark 3.15. A close examination of the proof of (ii) implies (i) shows that we only use (ii) in the first
step, and we only use it to show H1 vanishes.

3.3.2 The Euler Characteristic
While we’re here, we talk about the Euler characteristic quickly.

Definition 3.16 (Euler characteristic). Fix a k-schemeX. Then given a coherent sheaf F onX, the Euler
characteristic χ(F) is

χ(F) :=
∑
i≥0

dimkH
i(X,F).

Note that these dimensions are finite by Theorem 2.33.

Remark 3.17. If one has an exact sequence

0 → F0 → F1 → · · · → Fn → 0

of coherent sheaves on X, then
∑n
i=0(−1)iχ(Fi) = 0. Indeed, if n = 2, then this is direct from the long

exact sequence; for the general case, one inducts on n. (For example, if n = 0 or n = 1, there is nothing
to do, and for higher n, one can divide up the long exact sequence into short ones.)

3.4 March 8
Bump, bump, bump.

3.4.1 The Hilbert Polynomial
There is a notion of Hilbert polynomial arising from the Euler characteristic.

Proposition 3.18. Fix a projective scheme X over a Noetherian ring A, and let OX(1) be a very ample
line bundle. Given a coherent sheaf F onX, there is a polynomial PF ∈ Q[x] such that χ(F(n)) = P (n)
for all n.

Proof. Morally, one inducts on the support of F . Using the projectivity of X, we are granted a closed em-
bedding i : X → PrA such that OX(1) = i∗OPr

A
(1). Additionally, note that we may assume that X = PrA by

replacing F with i∗F (which is still coherent because i is proper and everything in sight is Noetherian).
We will use Noetherian induction on suppF . For our base case, if suppF is empty, then F vanishes, so

χ(F(n)) = 0 always, so P = 0 will work. Otherwise, we will take suppF to be nonempty for our induction.
Without loss of generality that suppF ̸⊆ Hr (certainly the support cannot be contained in all the hyperplanes
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because they have empty intersection), where Hr is cut out by xr = 0. We now define K and Q to build a
short exact sequence

0 → K → F(−1)
xr→ F → Q → 0.

Twisting, we get the short exact sequence

0 → K(n) → F(−n) xr→ F(n) → Q(n) → 0

for all integers n. Thus, Remark 3.17 tells us that

χ(F(n))− χ(F(n− 1)) = χ(Q(n))− χ(K(n))

for all integers n. We would now like to use the inductive hypothesis on Q and K, which we see is legal
because their supports are contained in suppF (by construction) but also inHr (because outsideHr the map
xr : F(−1) → F is an isomorphism), and Hr ∩ suppF ⊊ suppF .1

Thus, we get polynomials PK and PQ so that χ(K(n)) = PK(n) and χ(Q(n)) = PQ(n) for all integers n.
But now we see that χ(F(n)) − χ(F(n − 1)) numerically agrees with a polynomial, so a quick computation
with finite differences tells us that it too is a polynomial. ■

Remark 3.19. Hartshorne has a hint for this result [Har77, Exercise III.5.2], which is somewhat mislead-
ing. Namely, it suggested cutting by a generic hyperplane, but ifA is finite, there may be no hyperplane
which actually cuts down the dimension. One can fix this (as above) by using Noetherian induction;
alternatively, one can use hypersurfaces instead of hyperplanes to get enough ways to cut down our
dimension. A harder approach would be to base-change A to K(A) in the finite case (and then K(A) is
certainly infinite). But to show this move is legal, one has to know that this base-change does not adjust
cohomology, which we will establish later.

Remark 3.20. A careful reading of the above proof shows that degPF ≤ dim suppF .

The above proposition permits the following definition.

Definition 3.21 (Hilbert polynomial). Fix a projective k-scheme X with very ample line bundle OX(1).
Given a coherent sheaf F , we let PF (x) denote the Hilbert polynomial defined so that P (n) = χ(F(n))
for all n ∈ Z.

Quickly, we establish that this Hilbert polynomial agrees with what is found in commutative algebra.

Corollary 3.22. Fix a field k and set X := PrA with r > 0. Given a coherent sheaf F , set

M := Γ•(F) :=
⊕
n∈Z

H0(X,F(n)).

Then the Hilbert polynomial PF is the Hilbert polynomial of the module M defined so that PM (n) =
dimkMn for n sufficiently large.

Proof. Set S := k[x0, . . . , xr] for brevity, and we see that M is a graded S-module. Now, dimkMn =
dimkH

0(X,F(n)) by definition, so we are asking for

χ(F(n))
?
= dimkH

0(X,F(n))

1 We are using “Noetherian induction,” which means that it is enough for these supports to be proper subsets of suppF . The point
is that there is no infinite descending chain
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for n large enough. Recalling what χ(F(n)) is, we are asking for
∞∑
i=0

dimkH
i(X,F(n))

?
= dimkH

0(X,F(n)).

But now Proposition 3.14 tells us that there is n0(F) so that Hi(X,F(n)) = 0 for i > 0 and n > n0(F), so
the higher terms of the sum vanish. ■

3.4.2 Introducing Divisors
We now escape our discussion of cohomology to discuss Weil divisors. Weil divisors only real make sense
with sufficient regularity hypotheses.

Definition 3.23 (regular in codimension one). Fix a scheme X. Then X is regular in codimension one if
and only if OX,η is regular for all generic points η of codimension 1.

Remark 3.24. A normal Noetherian scheme is regular in codimension 1 because normal Noetherian
local domains are regular (in fact, discrete valuation rings).

We will want to bring down our schemes a little more.

Definition 3.25 (smoothish). A schemeX is smoothish if it is Noetherian, separated, and regular in codi-
mension 1.

Please note that “smoothish” is not a word used in the usual literature, but I would prefer to not have to
write all the hypotheses all the time.

Weil divisors are built from schemes of codimension 1, which we now give a name to.

Definition 3.26 (Weil divisor). Fix a smoothish scheme X. A prime divisor on X is a closed integral
subscheme of codimension 1; we denote the set of prime divisors byX(1). A Weil divisor is an element
of Z[X(1)]. We let DivX denote the set of Weil divisors.

Definition 3.27 (effective). A Weil divisor D on a smoothish scheme X is effective if and only if

D =
∑

Y ∈X(1)

nY Y

has nY ≥ 0 for all prime divisors Y .

Notation 3.28. Fix a prime divisor Y of a smoothish scheme X. Letting η be the generic point of Y , we
see that OX,η is a discrete valuation ring insideK(X), so we let νY : K(X)× → Z be the corresponding
valuation.

Example 3.29. Fix a (smoothish) curveX over C. Notably,X is smooth (it’s a regular curve), soX(C) is
a Riemann surface. The prime divisors onX are just the closed points, andK(X) are the meromorphic
functions on X. Given a point p ∈ X, one can now realize νp(f) as the order of vanishing of f at p.

3.5 March 11
Today we continue with divisors.
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3.5.1 Principal Divisors
Now that we’ve defined valuations, we can define zeroes and poles.

Definition 3.30 (zero, pole). Fix a smoothish scheme X and some Y ∈ X(1). We say that f ∈ K(X)×

has a zero at Y if and only if νY (f) > 0, and f has a pole at Y if and only if νY (f) < 0.

We now imagine fixing the function f and letting Y vary.

Lemma 3.31. Fix a smoothish scheme X. Given f ∈ K(X)×, the set{
Y ∈ X(1) : νY (f) ̸= 0

}
is finite.

Proof. Note that K(X) = OX,ξ where ξ is the generic point of X, so we are granted an open subset U ⊆
Xf ∩ X1/f of X such that f, 1/f ∈ OX(U); we may even assume that U is affine. Notably, if Y ∈ X(1)

achieves Y ∩ U ̸= ∅, then OX(U) ⊆ OX,Y because the generic point of Y will live in U , meaning νY (f) ≥ 0;
a similar argument shows 1/f ∈ OX,Y thus yielding νY (1/f) ≥ 0, so we are actually receiving νY (f) = 0.

Thus, νY (f) ̸= 0 actually requires Y ⊆ X \ U . Because X \ U has strictly smaller dimension than X and
Y has codimension 1, we see that Y must actually be one of the irreducible components of X \ U , of which
there are finitely many because X is Noetherian. ■

The above lemma makes the following definition make sense.

Definition 3.32 (principal). Fix a smoothish scheme X and some f ∈ K(X)×. Then we define the prin-
cipal divisor

div(f) :=
∑

Y ∈X(1)

νY (f)Y.

We say that a divisor D is principal if and only if it takes the form div(f).

Example 3.33. On the smoothish scheme X = SpecZ, we see f = 6 shows that (2) + (3) is a principal
divisor.

One can generalize the above construction to use line bundles.

Definition 3.34 (rational section). Fix a smoothish scheme X. Given a line bundle L on X, a rational
section is an element s of the stalk Lξ where ξ is the generic point of X.

Remark 3.35. Fix a smoothish schemeX and a rational section s of a line bundle L onX. Given a prime
divisor Y of X, let U,U ′ ⊆ X be nonempty open subsets such that U ∩ Y ̸= ∅ and U ′ ∩ Y ̸= ∅ with
isomorphisms φ : L|U → OU and φ′ : L|U ′ → OU ′ . Then there is some global section g ∈ O×

U∩U ′ such
that φ′ = gφ. However, we see νY (g) = 0 by the argument of Lemma 3.31 (note U ∩ U ′ ∩ Y ̸= ∅), so

νY (φ(s)) = νY (φ
′(s)).

The point is that we can make sense of the term νY (s) because this is independent of the choice of
trivializing isomorphism νY .
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Remark 3.36. Fix a smoothish scheme X and a rational section s of a line bundle L on X. Then the set{
Y ∈ X(1) : νY (f) ̸= 0

}
remains finite: one can giveX a finite open cover {Uα}α∈κ trivializingL so that νY (s)becomes νY (s|Uα),
where we know our set is finite (for Uα) by Lemma 3.31. Combining our sets for all Uα for α ∈ κ keeps
our set finite.

Definition 3.37. Fix a smoothish scheme X and a rational section s of a line bundle L on X. Then we
define

divL(s) :=
∑

Y ∈X(1)

νY (f)Y.

Example 3.38. We note that div = divOX
.

Remark 3.39. Given rational sections s and s′ of the line bundles L and L′, we see

divL⊗L′(s⊗ s′) = divL(s) + divL′(s′).

The point is that we can find an open coverU ofX which trivializesL andL′ simultaneously, where s⊗s′
just becomes the product of two sections, whereupon it is enough to note that νY (ss′) = νY (s)+νY (s

′)
for each prime divisor Y and then sum over all Y .

Example 3.40. By taking L = L′ = OX in the prior remark, we see that

div(ss′) = div s+ div s′,

so div is a homomorphism K(X)× → DivX. In particular, the set of principal divisors is a subgroup of
DivX.

3.5.2 The Class Group
Now that we have a subgroup, we can consider the quotient.

Definition 3.41 (linearly equivalent). Fix a smoothish scheme X. Then two Weil divisors D and D′ are
linearly equivalent, denotedD ∼ D′ if and only ifD−D′ is a principal divisor. In particular, we define the
class group ClX as the quotient of Div(X) by the principal divisors, so D ∼ D′ if and only if [D] = [D′]
in ClX.

Example 3.42. A Noetherian domain A is a unique factorization domain if and only if A is normal (and
hence smoothish by an argument) with Cl(SpecA) = 0. Indeed, under normality hypotheses, commu-
tative algebra shows that to check that A is a unique factorization domain has it enough to check that
the codimension 1 primes of A to be principal, which is exactly what Cl(SpecA) = 0 promises.

For example,
ClAnk = Cl(Spec k[x1, . . . , xn]) = 0

for any field k.

We also recall the following fact from commutative algebra.
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Proposition 3.43. Fix a normal Noetherian domain A. Then⋂
p

Ap = A,

where the intersection is over all minimal nonzero primes.

Proof. Omitted. ■

Let’s see some applications of Proposition 3.43.

Corollary 3.44. IfA is a normal Noetherian domain withX := SpecA, then we see that f ∈ K(X)× has
div(f) effective if and only if f ∈ A.

Proof. Having νY (f) ≥ 0 just means that f ∈ Ap where p is the prime cutting out Y , so the result now
follows from Proposition 3.43. ■

We would like to compute ClX in some non-affine cases. We will do this by reducing to the affine case, for
which we want the following exact sequence.

Proposition 3.45. Fix a smoothish scheme X and a nonempty open subscheme U ⊆ X. Setting Z :=
X \ U , there is an exact sequence

0 →
⊕

Y ∈X(1)

Y⊆Z

Z[Y ] → DivX → DivU → 0.

Here, the right-hand map is given by Y 7→ (Y ∩ U).

Proof. Exactness on the left is just the definition of the map on the right: some prime divisor Y vanishes on
DivU if and only if Y ∩U is empty, which is equivalent to Y ⊆ Z. Lastly, surjectivity is not so bad: for prime
divisor Y0 of U , we note that Y 0 is a prime divisor of X satisfying Y 0 ∩ U = Y0 (indeed, these subsets share
their unique generic point!). ■

Proposition 3.46. Fix a smoothish scheme X and a nonempty open subscheme U ⊆ X, and set Z :=
X \ U .

(a) The induced map ClX → ClU is surjective.

(b) If codimX Z ≥ 2, then the induced map of (a) is an isomorphism.

(c) If Z is a prime divisor of X, then the sequence

Z[Z] → ClX → ClU → 0

is exact.

Proof. Here we go.

(a) We already know that the map DivX → DivU is surjective, so it remains to check that the principal
divisors ofX go to principal divisors ofU . Well, for f ∈ K(X), we note that νY (f) = νY ∩U (f |U ) when-
ever Y ∩ U is nonempty because Y and Y ∩ U share a generic point; for other Y ⊆ Z, the component
simply vanishes as Y 7→ 0 in DivU anyway. So div(f) does go to div(f |U ).
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(b) The point is that every prime divisor Y of X fails to live in Z. As such, Proposition 3.45 produces an
isomorphism DivX → DivU , and (a) tells us that the principal divisors of U exactly are the principal
divisors of X.

(c) We already have surjectivity on the left for the map ClX → ClU , so it remains to show that the kernel
of this map is generated by Z. Well, any prime divisor ofX vanishing in U will arise from Z because Z
is a prime divisor, so we are okay. ■

3.6 March 13
Here we go.

3.6.1 Degree of Divisors
We begin by defining degree in the most geometric situation.

Definition 3.47 (degree). Fix a fieldk and positive integern > 0. Then letY be a prime divisor ofX := Pnk ,
which we remark is smoothish. Because Y is integral, we may write Y = V ((f)) for some irreducible
homogeneous polynomial f (unique up to multiplication by an element of k×), so we define the degree
as

deg Y := deg f.

Remark 3.48. To see that Y takes the form V ((f)), note that Y ↪→ X is an integral closed subscheme
of codimension 1, so we can affine-locally realize it via a quotient of k[x0/i, . . . , x̂i/i, . . . , xn/i] of codi-
mension 1, and here dimension theory tells us that we will be cut out by a single irreducible polynomial.
Then we can glue together our irreducible polynomials to complete.

Let’s understand this notion of degree.

Proposition 3.49. Fix a field k and positive integer n > 0 so that X := Pnk is smoothish. Let H be the
hyperplane cut out by x0.

(a) For any divisor D on X, we have D ∼ dH where d = degD.

(b) All principal divisors on f have degree 0.

(c) deg induces an isomorphism ClX → Z.

Proof. Here we go.

(a) By linearity, we may assume that D is a prime divisor Y of the form V ((f)) for some irreducible ho-
mogeneous polynomial of degree d. Then f/xd0 ∈ K(X)× (it is a rational section defined on the distin-
guished open subscheme cut out by x0 ̸= 0), so the principal divisor associated to f/xd0 is Y − dH, so
we are done.

(b) We omit this argument.

(c) By (a), we have a surjective homomorphism deg : DivX → Z. Note that this is well-defined up to
equivalence: if D ∼ D′, then we see (degD)H ∼ (degD′)H by (a), so to show that degD = degD′,
it suffices to show that H is not equivalent to 0. But H has degree 1 (it’s cut out by x0), so we get the
claim by (b).
Thus, we have a well-defined surjection degClX → Z. Setting U := X \H (which we note is isomor-
phic to Ank ), we see that Proposition 3.46 provides an exact sequence

Z[H] → ClX → ClU → 0,
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but the last term vanishes because Ank is the spectrum of a unique factorization domain. So the map
Z[H] → ClX is surjective and has trivial kernel because any kernel would give kernel inZ[H] → ClX →
Z (where the last map is deg), but the composite Z[H] → Z is the identity. ■

Remark 3.50. One can show that X × A1 satisfies Cl(X × A1) ∼= ClX.

Remark 3.51. It is not generally true that Cl(X ×Y ) ∼= ClX ×ClY . For example, takeX ⊆ P2
k to be cut

out by y2z = x3 − xz2, and let ∆ ⊆ X ×k X be the diagonal. Then ∆ is a prime divisor but not linearly
equivalent to any divisor coming from ClX × ClX. Namely, we are claiming that ∆ fails to equivalent
to one of the form

∑
i Pi × X +

∑
j X × Qj for closed points {Pi} and {Qj} of X. Otherwise, we get

f ∈ K(X ×X) such that
∆ =

∑
i

Pi ×X +
∑
j

X ×Qj + div f.

Choosing R1, R2 ∈ X distinct from the Pi and Qj , then f |R1×X produces a rational function on X with
div f = R1 −

∑
j Qj , and similarly one gets f2 with div f2 = R2 −

∑
j Qj , but then R1 ∼ R2, which

contradicts X not being isomorphic to P1
k.

3.6.2 Rational Maps
We will also want to discuss rational maps in some detail before continuing.

Definition 3.52 (variety). Fix an algebraically closed field k. Then a variety over k is an integral separated
k-scheme of finite type.

We want to define rational maps, which we do as follows.

Definition 3.53 (dominant). A morphism f : X → Y of integral schemes is dominant if and only if f(X)
is Zariski dense in Y .

Remark 3.54. Suppose that X and Y are integral schemes with generic points ξ and η, respectively.
Then we claim that f : X → Y is dominant if and only if f(ξ) = η. Certainly if f(ξ) = η than the image
of f is Zariski dense. Conversely, if ξ specializes to some x ∈ X, then we note that f(ξ) will specialize
to some f(x) by continuity of f , so f(X) ⊆ {f(ξ), so for this to be all of Y we must have f(ξ) = η.

Definition 3.55 (rational). Fix integral separated schemes X and Y . Then a rational map is an equiva-
lence class of maps (U,φ) where φ : U → Y is a bona fide morphism, where we declare (U,φ) ∼ (V, ψ)
if and only if φ|U∩V = ψ|U∩V . The rational map φ : X → Y is dominant if its representatives are.

Remark 3.56. Let’s discuss how to check that this is an equivalence relation. Reflexivity and symmetry
have little content, but transitivity requires us to remark that any two rational maps will agree on a
closed subset of their domain (this is where being separated is used), so agreeing on a closed subset
means that they will actually agree.

Remark 3.57. One can compose rational maps exactly as expected, with the caveat that we need to work
in smaller and smaller Zariski open subsets.
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Remark 3.58. Any rational map φ : X → Y has a unique largest open subset U where it is defined;
indeed, one can simply take the union of all theUs appearing in the equivalence class. The point here is
that one can specify the entire rational map by specifying how it behaves on any open subscheme.

With maps in one direction, we should discuss having maps in both directions.

Definition 3.59 (birational). Fix integral separated schemesX and Y . A birational map is a rational map
φ : X → Y with a birational inverse map.

Remark 3.60. One can see that birational maps are necessarily dominant because the image needs to
surject onto some Zariski open subset.

3.7 March 15
Today we’ll continue our discussion of birational maps and then move on to divisors on curves.

3.7.1 More on Birational Maps
Last class we discussed birational maps. It will be helpful to have the following stronger notion.

Definition 3.61 (birational). A morphism f : X → Y of integral separated schemes is birational if and
only if it is a birational map; i.e., it has a rational map as an inverse.

Example 3.62. Fix an algebraically closed field k. Let X ⊆ A2
k × P1

k be the closed k-subvariety{
((x, y), [t : u]) ∈ A2

k × P1
k : xu = yt

}
.

(Formally, this is cut out by some equation.) Let φ be the projection onto A2
k. Notably, if (x, y) ̸= (0, 0),

then the fiber is the single point ((x, y), [x : y]), but if (x, y) = (0, 0), then the fiber is a full P1
k. Thus, φ

is a birational morphism: certainly it is a morphism, and its inverse can be represented by the rational
map is given by (x, y) 7→ ((x, y), [x : y]), defined on A2

k \ {(0, 0)}.

Definition 3.63 (graph). Given a morphism f : X → Y of S-schemes, the graph Γf of f is the morphism
(idX , f) : X → X ×S Y .

Example 3.64. If f : SpecA → SpecB is a morphism of affine R-schemes, then the graph is the map
SpecA→ Spec(A⊗R B) given by the map A⊗R B → A defined by a⊗ b 7→ a · f ♯(b).

Remark 3.65. If f is separated, then (idX , f) : X → X × Y is a closed embedding. Indeed, the square

X X ×S Y

Y Y ×S Y

f

∆f

Γf

(f,idY )

is a pullback square, so Γf is a closed embedding because ∆f is.
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Example 3.66. Continuing from Example 3.62, define U := A2
k \ {(0, 0)} and then f : U → P1

k given by
φ(x, y) := [x : y]. (Notably, f is a rational map A2

k → A1
k.) Then we set ψ := (idU , f) so that ψ is the

graph of f ; notably, everything in sight is separated, so this graph is a closed embedding onto the closed
subscheme X ∩ (U × P1

k) of U × P1
k. Notably, X ⊆ A2

k × P1
k is then a closed subset agreeing with this

graph in a Zariski dense subset, so X is the closure of the graph.

Remark 3.67. Continuing, the example, we can view f as an element ofK(A2
k×P1

k), whereupon we may
compute f(x, y) = y/x has div(f) = (y)− (x). More generally, for a scheme X, rational maps X → A1

correspond to rational functions on X by passing to an open subset and using the adjunction

Mor(X,A1) ∼= Hom(Z[x],Γ(X,OX)) ∼= Γ(X,OX).

We now note that birational maps do indeed (locally) behave like isomorphisms.

Proposition 3.68. Fix a field k and a birational map φ : X → Y of k-varieties. Then there are nonempty
open subschemes U ⊆ X and V ⊆ Y such that φ induces an isomorphism φ : U ∼= V . Conversely, any
isomorphism on nonempty open subschemes induces a birational map.

Proof. The second claim just uses the given isomorphism on nonempty open subschemes to define the
birational maps. For the first claim, if φ has rational inverse given by ψ, then take some open subscheme
U ⊆ X where φ is defined and some open subscheme V ⊆ Y where ψ is defined. Then U ∩ φ−1(V ) and
V ∩ ψ−1(U) should do the trick because we know that composing φ and ψ (when defined) will yield the
identity. ■

We now take a moment to note that rational maps are determined purely by the functions on the vari-
ety.

Proposition 3.69. Fix a field k. A dominant rational maps f : X → Y of k-varieties functorially defines
a k-algebra homomorphism f ♯ : K(Y ) → K(X) given by taking stalks at the generic points.

Proof. All that remains to be checked is functoriality, which is true because (f ◦ g)♯ = g♯ ◦ f ♯ as maps of
sheaves, and taking stalks is functorial. ■

Remark 3.70. In fact, we note that a rational function g ∈ K(Y ) thought of as a rational map g : Y → A1

will go to the induced rational map (g ◦f) : X → A1. This is a matter of tracking through the adjunction.
Indeed, assuming that everything is defined over U ⊆ X and V ⊆ Y , we merely need to note that the
following diagram commutes.

Mor(V,Spec k[x]) Γ(V,OV ) g g♯(x)

Mor(U,Spec k[x]) Γ(U,OU ) (g ◦ f) (g ◦ f)♯(x)

f♯(−◦f)

Theorem 3.71. Let k be an algebraically closed field. The functor X 7→ K(X) from the category of
k-varieties (equipped with dominant rational maps) to the category of k-algebras (equipped with k-
algebra homomorphisms) is fully faithful.

Proof. See [Har77, Theorem I.4.4]. ■
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3.7.2 Proper Curves
Here is our definition.

Definition 3.72 (curve). Fix a field k. A curve over k is a one-dimensional k-varietyX. ThenX is a com-
plete if and only if proper and nonsingular if and only if regular.

Having properness (and being dimension 1) allows us to use the valuative criterion to produce the following
result.

Proposition 3.73. Ant rational map f : C → X from a regular k-curveC to a proper k-varietyX extends
uniquely to a full morphism C → X.

Proof. This is exactly the valuative criterion for properness for curves. ■

3.8 March 18
Today we continue discussing curves.

3.8.1 Properties of Curves
We quickly note that projective and proper are the same for curves.

Proposition 3.74. Fix a regular curveX over an algebraically closed fieldk. Then the following are equiv-
alent.

(i) X is projective.

(ii) X is proper.

(iii) X ∼= t(CK(x)) where t : Vark → Schk is the equivalence of [Har77, Proposition 2.6].

Proof. We won’t show the equivalences of (i) and (iii). The implication (i) to (ii) is simply because projective
implies proper. The implication (ii) to (i) is by Chow’s lemma.

Lemma 3.75 (Chow). Fix a schemeX proper over a Noetherian scheme S. Then there exists a birational
morphism g : X → X ′ where X ′ is projective over S.

We won’t prove Lemma 3.75 because it is pretty hard. To see how Lemma 3.75 shows the implication,
note that g extends to a full morphism g : X → X ′ which is an isomorphism on an open subscheme U of X.
Checking our isomorphism on stalks reveals that X ′ continues to be regular, and then we finish by noting
that the inverse rational map for g also extends to a full map X ′ → X, so we are done. ■

This allows us to understand morphisms of curves.

Proposition 3.76. Fix a morphism f : X → Y of curves over an algebraically closed field k, and suppose
X is proper and regular. Then exactly one of the following hold.

(i) f(X) is a single point.

(ii) f is surjective. In this case, f ♯ : K(Y ) → K(X) is a finite field extension, and Y is proper, and f is
finite.
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Proof. Note f(X) must be a closed subset of Y because X is proper, and because Y is a curve, all closed
subsets are either finite sets of points or all of Y . However, X is connected, so f(X) is connected, so the
image of f(X) is either a point or all of Y (and not both).

It remains to do the other checks of (ii) in the case that f is surjective. Because f is surjective, we see
that Y is proper (in particular, Y is universally closed because the image of any morphism from Y will
continue to have closed image because we can realize this as an image from X). Now, f is dominant, so
f ♯ : K(Y ) → K(X) is injective, so we have an actual field extension; because these two field extensions
have transcendence degree 1 by Noether normalization, we see that this is an algebraic extension. Because
these rings are finitely generated over k, we see that the extension K(Y ) ⊆ K(X) is also finite generated,
so our degree is in fact finite.

It remains to check that f is finite. This is somewhat involved. Let V = SpecB be some nonempty affine
open subscheme of Y , and let A be the integral closure of B in K(X). Note A is finite over B because our
field extension is finite. As such, we would like to know that U := SpecA is f−1(V ). Well,K(U) = K(X), so
U is birational toX. Further U is normal and hence regular by construction, so properness ofX means that
the birational map U → X becomes a full morphism i : U → X. Notably, the diagram

U X

V Y

i

f

⊆

commutes by construction of the map i, so i(U) ⊆ X lands inside f−1(V ). We would like for i to be an open
embedding, which we do as follows: note U will embed as an open subset into some unique proper regular
curveU ,2 and universality then provides a rational mapX → U (which extends to a full morphism g : X → U )
making the diagram

U U

V X

Y

⊆
g

i

f

commute. Tracking around this diagram reveals that g−1(U) ⊆ f−1(V ).
We quickly claim that g−1(U) = f−1(V ). Well, suppose for the sake of contradiction that we have strict

containment. Because generic points map to generic points, we at least are a nonempty open subset, so at
worst we are missing some finite set of closed points {p1, . . . , pr}. Well, set W := f−1(V ) \ {p2, . . . , pr} to
be g−1(U) with p1 appended. Then g sendsW \ {p1} to U , and f mapsW to V , so because U → V is proper
(in fact finite), we know that g must extend to a map W → U by the valuative criterion for properness (as
usual). But g′(p1) ∈ U while g(p) /∈ U , which contradicts the fact that the map U → k is separated (again
using a valuative criterion for points on k).

We now complete the proof that f is finite. Note g|g−1(U) ◦ i sendsU back toU , andφ◦g sends f−1(V ) to
f−1(V ), and these maps are overX andY respectively, so we have mutually inverse isomorphisms. Namely,
we have provided our isomorphism of U with f−1(V ) over Y , so f−1(V ) is finite over V because U is. ■

This allows us to define the degree of a morphism.

Definition 3.77 (degree). Fix a finite morphism f : X → Y over a field k. Then the degree of f , denoted
deg f , is the degree of the field extension f ♯ : K(Y ) → K(X).

Proposition 3.78. Fix a regular curve U over an algebraically closed field k. Then there is an open em-
bedding U into a proper regular curve X.

2 More precisely, place U into some projective space, and let U be the closure there.

61



3.9. MARCH 20 256B: ALGEBRAIC GEOMETRY

Proof. Let V ⊆ U be some nonempty affine open subscheme. Then we can place V into some projective
space and takes its closure, which we call V . Let π : X → V be the normalization map so that π is finite (note
that this is a birational map). Now,X is normal and proper (in particular, it follows thatX is regular), so one
can argue as in the previous point to see that the rational map

U → V ⊆ V → X

extends uniquely to an open embedding. Indeed, this is the main content of the proof of Proposition 3.76.
■

3.9 March 20
We now discuss divisors on curves.

3.9.1 Weil Divisors on Curves
Fix an algebraically closed field k and regular k-curve X. As such, X is smoothish, and integral codimen-
sion 1 subschemes are just points (indeed, they are dimension 0), so a divisor is just a linear combination of
points.

Definition 3.79 (degree). Fix a smoothish scheme X. Given a Weil divisor D :=
∑n
i=1 ni[Yi], we define

the degree of D as

degD :=

n∑
i=1

ni.

Note that deg : DivX → Z is a group homomorphism by definition.

It will be helpful to understand how degree changes functorially.

Definition 3.80 (pullback). Fix an algebraically closed field k and a finite morphism f : X → Y of regular
k-curves. Then we define the pullback f∗ : Div Y → DivX in the following way. Given a closed point
q ∈ Y , we must define f∗(q), which is done by the following recipe: choose a uniformizer πq of the
discrete valuation ring OY,q, and then we set

f∗(q) :=
∑

p∈f−1({q})

νp(πq)p.

Remark 3.81. We note that f∗ descends to a map ClY → ClX. Indeed, it is enough to show that
principal divisors div g on Y go to principal divisors on X. Indeed, we claim that

f∗(div g)
?
= div f∗g,

where the right-hand side is viewing f∗g as a rational function inK(X)×. To see the claim, we compute
by hand: if g has a zero/pole of order n at some q ∈ Y (i.e., νq(g) = n), then say g = πnq at this point, and
we see that (g ◦ f) will have a zero/pole also of order n at any p ∈ f−1({q}) but now scaled by νp(πq)
because νp(f∗g) = νp(π

n
q ) = nνp(πq). Because any zero/pole of f∗g must come from a zero/pole of g,

we are done.

Proposition 3.82. Fix an algebraically closed field k and a finite morphism f : X → Y of regular k-
curves. Then

deg f∗D = (deg f)(degD).
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Proof. By linearity, it suffices to prove this in the case whereD is a point p. By finiteness of f , we may replace
Y with an affine open neighborhood SpecA of Y , where SpecB = f−1(SpecA) is the pre-image, and now
we know that the ring extension A → B is finite. Further, f is dominant (these are dimension 1 schemes),
so A → B is injective. Also, an argument similar to Proposition 3.76 allows us to say that actually B is the
integral closure of A in K(X).

Now, to get us thinking in commutative algebra, write p ∈ SpecA for p. Then f−1({p}) consists of the
nonzero prime ideals a of B with q ∩ A = p. Setting S := A \ p, we may localize B at S so that S−1B is a
semi-local ring with maximal ideals exactly f−1({p}). Because B is finite over A, we see that, we see S−1B
is finite over S−1A; notably, S−1A is now a discrete valuation ring and hence a principal ideal domain. So we
may let n be the rank of S−1B over S−1A. In total, we have built the following diagram.

B S−1B K(X)

A S−1A K(Y )⊆ ⊆

⊆ ⊆

Further localizing will not change our rank, so

deg f = [K(Y ) : K(X)] = rankS−1A S
−1B,

which can then be computed by taking the quotient at our maximal ideal as S−1B/p. To compute this last
rank, we see

S−1B/p ∼=
∏
q

OX,q/πpOX,p =
∏
p

OX,p/π
νp(q)
p

by the Chinese remainder theorem. So on the right-hand side we are computing deg f∗(q), and the left-hand
side is deg f as previously discussed, so we are done. ■

Corollary 3.83. Fix an algebraically closed field k. For any proper regular k-curve X, then deg div f = 0
for any rational function f ∈ K(X).

Proof. If f is constant, then div f = 0, so there is nothing to say. Otherwise, because k is algebraically
closed, we see that f is transcendental, so we get a k-algebra homomorphism k(t) → K(X) sending t 7→
f . Now, the adjunction tells us that this produces a rational map X → A1

k, which then extends to a full
morphism X → P1

k where div f = φ∗(div t) by construction. But deg div t = 0, so the result follows from
Proposition 3.82. ■

Remark 3.84. The above corollary tells us that if X is proper, then deg descends to a morphism

deg : ClX → Z.

Remark 3.85. Outside the setting of curves, it does not make sense to pull back Weil divisors in gen-
eral. But there is a pushforward operation: suppose f : X → Y is a dominant morphism of smoothish
schemes of the same dimension. Then any prime divisor Z on X either has f(Z) a prime divisor (in
which case we’ll set f∗(Z) := [K(Z) : K(f(Z))]f(Z)) or f(Z) has higher codimension (in which case we
will make f∗(Z) := 0).

3.9.2 Cartier Divisors
We said that pulling back Weil divisors does not make sense in general. The correct setting to be able to do
pullback is Cartier divisors.
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Definition 3.86 (Cartier divisor). Fix an integral schemeX. Then the sheaf K× of quotients denotes the
constant sheaf K(X)× on X, and the sheaf O×

X denotes the sheaf of units on X. Then a Cartier divisor
is a global section of the quotient sheaf K×/O×

X . We let CDiv(X) denote the group of Cartier divisors
on X.

Remark 3.87. Let’s give a more concrete description of a Cartier divisor. By general nonsense of sheafi-
fication, and global section can be defined locally on some Zariski open cover by genuine sections of
the presheaf. So a global section of K×/O×

X has equivalent data to an open cover U of X and sections
(fU )U∈U such that fU ∈ K×(U) which agree on intersections, meaning that fU/fV ∈ O×

X(U ∩ V ) for
each U, V ∈ U .

3.10 March 22

Today we continue our discussion of Cartier divisors.

3.10.1 More on Cartier Divisors
We begin with a continuation of Remark 3.87.

Remark 3.88. The representation {fU}U∈U is far from unique. Namely, it is very possible that two dif-
ferent {fU}U∈U and {gV }V ∈V give the same Cartier divisor: indeed, this merely asks that they are the
same up to O×

X after refining the open cover; i.e., we are asking for

fU/gV ∈ OX(U ∩ V )×

for any U ∈ U and V ∈ V .

As with Weil divisors, we will want a notion of effectivity.

Definition 3.89 (effective). A Cartier divisor D on an integral scheme X is effective if and only if D is
represented by some {fU}U∈U where fU ∈ OX(U).

Remark 3.90. Using Remark 3.88, we see if {gV }V ∈V represents an effective Cartier divisor {fU}U∈U
where fU ∈ OX(U), then gV ∈ OX(V )× for all V . Indeed, we are given that

gV /fU ∈ OX(U ∩ V )×

for any U or V , meaning that gV ∈ OX(U ∩ V ) for any U , so gV ∈ OX(V ) by gluing.

Definition 3.91 (support). Fix a Cartier divisor D on an integral scheme X. If {fU}U∈U , we say that the
support of D is

suppD := {x ∈ X : (fU )x /∈ O×
X,x for some U with x ∈ U}.

By the coherence of the Cartier divisor and equality of Cartier divisors, we see that x ∈ suppD if and
only if (gV )x /∈ O×

X,x for any x ∈ V for any {gV }V ∈V representing D.

We forgot to define what support means for Weil divisors, so here it is.
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Definition 3.92 (support). Fix a Weil D =
∑
Y ∈X(1) nY Y on a smoothish scheme X. Then the support

of D is
suppD :=

⋃
Y ∈X(1)

nY ̸=0

Y.

Note that this is a closed subset of X of codimension 1.

We also have a notion of principal divisors and hence equivalence.

Definition 3.93 (principal). A Cartier divisor D on an integral scheme X is principal if and only if it is
represented by a single global rational function f ∈ K(X)×.

Definition 3.94 (linearly equivalent). We say that two Cartier divisorsD andD′ on an integral schemeX
are linearly equivalent if and only if D/D′ is principal. The quotient CaDiv(X)/K(X)× of linear equiv-
alence classes of Cartier divisors is the Cartier divisor class group CaCl(X).

Remark 3.95 (Vojta). The notation CaCl(X) is not to be confused with CaCl2, which is calcium chloride.

Now, one of the key benefits of Cartier divisors is that it is easier to describe how to pull them back.

Definition 3.96. Fix a line bundle L on an integral scheme X, and let s be a nonzero rational section of
L. Then for a trivializing open subset U ⊆ X for L, we choose an isomorphism φU : L|U → OX |U , and
we see that φU (s) is a rational section of OX |U , which is an element fU of K(X). Note that the class
fU ∈ K(X)/OX(U)× does not depend on the choice of φU (either on the isomorphism or really on the
open subset U ) because automorphisms of OX(U) are given by OX(U)×. Thus, we let {fU}U∈U define
the Cartier divisor divL(s).

Remark 3.97. Tracking through the definition reveals that

divL(s) · divL′(s′) = divL⊗L′(s⊗ s′).

In particular, taking (L′, s′) = (L∨, s∨), we see that the output is a principal Cartier divisor.

Remark 3.98. If s is a global section ofL, then we see that divL(s) is an effective Cartier divisor, basically
by construction.

3.10.2 Cartier Divisors to Weil Divisors
We now describe a map CaDivX → DivX. In particular, we let X denote an integral smoothish scheme
defined by sending

D 7→
∑

Y ∈X(1)

νY (fU )Yi,

where {fU}U∈U representsD, and we only take νY (fU ) whenU ∩Y ̸= ∅; note that νY (fU ) does not depend
on the choice of U because updating fU by a unit does not change the valuation.

Remark 3.99. If X is in addition normal, then the above map is injective. Indeed, suppose that D is in
the kernel of this map and is represented by {fU}U∈U . Then fU , f−1

U ∈ OX(U)× for all U to have trivial
valuation, but then this means that D is the trivial Cartier divisor.

Under additional smoothness hypotheses, we get the following.
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Proposition 3.100. Fix an integral, Noetherian, separated, and locally factorial schemeX. (Note thatX
is then regular and hence smoothish.) Then we have the following.

(a) The map CaDivX → DivX is an isomorphism.

(b) Fix a Cartier divisor D with image D′ ∈ DivX. Then D is effective/principal if and only if D′ is.

(c) We have suppD = suppD′, where D′ ∈ DivX denotes the image of D ∈ CaDivX.

Proof. We omit the proof of (c) (which is a matter of expanding the definitions).
Let’s show (a). Remark 3.99 tells us that this map is injective (note locally factorial implies normal), so

we really only need to show surjectivity. Fix some Weil divisor D′ we want to hit by a Cartier divisor in
CaDivX. The point is to look sufficiently locally to make the Weil divisor D′ “locally principal,” which is
legal because X is locally factorial. Explicitly, at each x ∈ X, we know that D′ restricts a divisor D′

x on the
stalk SpecOX,x, but OX,x is factorial, and D′

x is height one, so D′
x is principal, meaning we get fx ∈ K(X)×

such that div(fx) = D′
x.

We now spread out from stalks. NoteD′ − div(fx) has support not containing x, so we can find an open
neighborhood Ux such that D′|U = div(fx)|U . Thus, one sees that D := {(Ux, fx)}x∈X will assemble into
a Cartier divisor (on overlaps Ux ∩ Uy we have fx/fy ∈ OX(Ux ∩ Uy) because over in DivX the divisor
vanishes, so the injectivity of our map from Remark 3.99 makes us okay), andD by construction of the map
CaDivX → DivX goes to D′.

We now turn our attention to (b). For the principal assertion, the point is that the diagram

K(X)× CaDivX

DivX

commutes, so the set of principal Cartier divisors and Weil divisors correspond.
We now address effectivity. If D is effective, then of course D′ is effective by construction of the map:

writingD = {fU}U∈U , having fU ∈ Γ(U,OU )means that all its valuations are nonnegative, soD′ is effective.
In the other direction, if D′ is effective with D = {fU}U∈U where the U ∈ U are all affine. We know that
νY (fU ) ≥ 0 whenever Y intersects U nontrivially, so algebraic Hartog’s lemma tells us that fU ∈ Γ(U,OU )
for each U , yielding our effectivity of D. (Note we have used that X is normal, which follows because X is
locally factorial.) ■

3.11 April 1

We began class by completing the proof of Proposition 3.100.

3.11.1 Line Bundles from Cartier Divisors
Have some miscellaneous remarks to Proposition 3.100.

Remark 3.101. LetA be the localization at the element x2 − 1 of the subring of k[x, y] generated by the
homogeneous polynomials of degree not equal to 1. Then set X := SpecA, which one can see is an
integral smoothish scheme, but X is nor normal. In fact, div(x − 1) vanishes as a Weil divisor (there is
no height one prime to witness this being nonzero), but x−1 is not a regular function ofX, so div(x−1)
is nonzero as a Cartier divisor.
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Example 3.102. The scheme

X := Spec
C[x, y, z]
(xy − z2)

is normal, but it fails to be locally factorial: indeed, it is singular at (0, 0, 0), and the prime divisor cut out
by y = z = 0 fails to be principal.

We now take the following definition in order to relate Cartier divisors back to line bundles.

Definition 3.103. Fix an integral scheme X. Given a Cartier divisor D on X represented by {fU}U∈U ,
we let OX(D) be the subsheaf of KX by

OX(D)|U := f−1
U OU .

Given an OX-module F , we set F(D) := F ⊗OX
OX(D).

Here are some sanity checks.

Remark 3.104. Note that OX(D) does in fact assemble into a quasicoherent sheaf because fU/fV ∈
OX(U ∩V )× wheneverU, V ∈ U ; in fact, OX(D) is a line bundle because anyU ∈ U has an isomorphism

OX(D)|U → OU

given by f/fU 7→ f .
Also, we note that OX(D) is independent of the choice of representative {fU}U∈U for basically the

same reason: if {gV }V ∈V also represents D, then we note that the union of the two lists of rational
sections also represents D, and the resulting OX(D) must agree in all three cases.

Remark 3.105. A direct computation shows that OX(D1 + D2) ∼= OX(D1) ⊗ OX(D2). Explicitly, by
refining open covers, we may assume that D1 = {fU}U∈U and D2 = {gU}U∈U , and we have local iso-
morphisms

OX(D1)|U ⊗OX(D2)|U OX(D1 +D2)|U f ⊗ g fg

OU ⊗OU OU fUf ⊗ gUg fUgUfg

which we can see glue together on the overlaps.

Here is a more nontrivial check.

Proposition 3.106. Fix Cartier divisors D1 and D2 of an integral scheme X. Then OX(D1) ∼= OX(D2) if
and only if D1 ∼ D2.

Proof. Remark 3.105 tells us that it suffices to show that OX(D) is trivial if and only if D is principal. If D
is principal, then we see that OX(D) is trivial by construction because D can be represented globally by a
section.

Conversely, supposeOX(D) is isomorphic toOX . Then writeD = {fU}U∈U , and letφ : OX → OX(D) be
the isomorphism, so we are told that f := φ(1) is a global section with ffU ∈ OX(U)× for eachU (invertibility
follows because φ must be invertible), so D = div(f). ■

In the next class, we made the following remarks, which I have moved here.
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Remark 3.107. If D is a Cartier divisor on X, then 1 ∈ K(X)× gives a rational section 1D of OX(D)
where divOX(D) 1D = D. Explicitly, with D = {fU}U∈U , we have

1D = fUf
−1
U ,

and f−1
U generates OX(D)|U , meaning divOX(D)|U 1D = divOX(D)|U fU . In particular, D being effective

means 1D is a global section, and 1D being a global section of course then means that D is effective.

Remark 3.108. One can show that s being a nonzero rational section of L with D := divL(s) achieves
OX(D) ∼= L. We will omit this proof, but it amounts to checking the result on a trivializing open cover
of L and then writing everything out.

Remark 3.109. The previous remark implies that the map CaClX → PicX is an isomorphism. Namely,
the previous remark provides the inverse map taking a line bundle L to some divL(s) for any choice of
rational section s, which is well-defined up to equivalence. (In fact, we showed earlier that it is injective,
and the previous remark provides surjectivity.)

Example 3.110. We show that PicPrk ∼= Z with isomorphism given by n 7→ OX(n), where X := Prk.
Explicitly, we have the chain of isomorphisms

Z ∼= ClX ∼= CaClX ∼= PicX.

The first isomorphism sends 1 7→ [H]; because X is locally factorial, the next map [H] 7→ [H] is an
isomorphism; the last map sends [H] toOX(H) = OX(1) and is an isomorphism by the previous remark.
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THEME 4

BACK TO COHOMOLOGY

4.1 April 3
Here we go. We began class finishing up some things on Cartier divisors, which I have just moved to the
previous day for continuity reasons.

4.1.1 Ext Groups and Sheaves
For today, (X,OX) will be a ringed space. We will usually take (X,OX) to be a scheme, but we will have
occasion to takeX to be a point andOX to be a ring. Instead of our usual cohomology taking place inAb(X),
we will work in Mod(OX), which does not adjust any cohomology as we showed earlier.

We will build “Ext” by deriving “Hom,” so we need the following check.

Proposition 4.1. Fix a ringed space (X,OX) and OX-modules F and G. Then

Hom(F ,G) : U 7→ HomU (F|U ,G|U )

is a sheaf of OX-modules, and the functors HomX(F ,−) and Hom(F ,−) are left-exact.

Proof. Being a sheaf was checked in Math 256A. These are additive functors of course by adding pointwise,
and to check left-exactness, we begin with

0 → G′ → G → G′′ → 0

and see that
HomU (F|U ,G′|U ) = ker(HomU (F ,G) → Hom(F ,G′′))

by a computation on global sections (which commutes with taking the kernel anyway). This shows that
HomX is exact, and by working over all U , we see that Hom is exact by checking on sections. ■

So we are able to make the following definition.

Definition 4.2 (Ext). Fix a ringed space (X,OX) and OX-module F . Then we define the right-derived
functors Ext•X(F ,−) := R• HomX(F ,−) and Ext•X(F ,−) := R•Hom(F ,−).

Example 4.3. For i = 0, one always has Ext0(F ,G) = Hom(F ,G) and Ext0(F ,G) = Hom(F ,G).
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Example 4.4. Fix an OX-module G with injective resolution 0 → G → I•. For i > 0, one finds

Exti(OX ,G) = hi(Hom(OX , I•)) = h•(I•) = 0.

Similarly,
Exti(OX ,G) = hi(Hom(OX , I•)) = hi(Γ(X, I•)) = Hi(X,G).

Thus, Γ
(
X, Exti(OX , G)

)
is not Exti(X,G) in general.

We would like to understand these functors locally, which we now explain.

Lemma 4.5. Fix a ringed space (X,OX). Given an injective OX-module I and open subsetU ⊆ X, then
I|U is still an injective OU-module.

Proof. Fix an injection F → G of OU-modules, and suppose we have a map F → I|U which we want to ex-
tend to a map G → I|U . Letting j : U → X be the inclusion, we can define extension by zero j! : Mod(OU ) →
Mod(OX). Checking on stalks shows that j!F → j!G remains injective, and now we have a map j!F →
j!(I|U ) → I, so we get a map j!G → I extending this. Restricting this map back to U will do the trick;
notably, it extends the original map F → I|U by checking on stalks, where everything is okay by construc-
tion. ■

Proposition 4.6. Fix modules F and G on the ringed space (X,OX). Then

Ext•U (F|U ,G|U ) ∼= Ext•X(F ,G)|U

for any open subset U ⊆ X.

Proof. Fix an injective resolution 0 → G → I• of G. Then Lemma 4.5 tells us that 0 → G|U → I•|U is another
injective resolution. Now,

Ext•U (F|U ,G|U ) = h• (HomU (F|U , I•|U )) = h• (HomX(F , I•)|U )
∗
= h•(HomX(F , I•))|U = Ext•X(F ,G)|U ,

where ∗
= holds because restricting to U is an exact functor. For example, one has a map Hom(F , E∨ ⊗ G) to

Hom(F ⊗E ,G) by sending a sheaf morphismφ : F → E∨⊗G to the (pre)sheaf morphism F ⊗E → G defined
by a ⊗ b 7→ φ(a)(b). Similarly, one has a map Hom(F ,G) ⊗ E∨ → Hom(F , E∨ ⊗ G) by sending φ ⊗ b to the
morphism a 7→ (bφ(a)). ■

It will be helpful to have an understanding of locally free sheaves E of finite rank.

Remark 4.7. For any locally free sheaf E and any sheaves F and G, we see

Hom(F ⊗ E ,G) ∼= Hom(F , E∨ ⊗ G) ∼= Hom(F ,G)⊗ E∨.

Indeed, one can write down natural maps in various directions, which we see is an isomorphism by
checking on stalks where everything is basically Hom(F ,G) taken to the power of the rank of E .

Remark 4.8. If E is locally free of finite rank, and I is injective, then we remark that E ⊗ I continues to
be injective. Indeed, E is locally free, so − ⊗ E∨ is exact, and Hom(−, I) is exact because I is injective,
so the prior remark tells us that

Hom(−⊗ E∨, I) ∼= Hom(−, E ⊗ I)

will be an exact functor, as needed.
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4.2 April 5
We continue to discuss various Ext things.

4.2.1 Ext for Locally Free Sheaves
We now upgrade Remark 4.7 as follows.

Proposition 4.9. Fix a locally free OX-module E on the ringed space (X,OX). Then

Ext•(F ⊗ E ,G) ∼= Ext•(F , E∨ ⊗ G) and Ext•(F ⊗ E ,G) ∼= Ext•(F , E∨ ⊗ G)

for any OX-modules F and G.

Proof. Fix an injective resolution 0 → G → I• of G. Then note that tensoring with E∨ is exact because E∨ is
locally free (indeed, simply check this on stalks), so we may compute

Ext•(F ⊗ E ,G) = h•(Hom(F ⊗ E , I•))
∗∼= hi(Hom(F , E∨ ⊗ G))
= Ext•(F , E∨ ⊗ G).

Notably,
∗∼= has used Remark 4.7. Similarly,

Ext•(F , E∨ ⊗ G) = h•(Hom(F , E∨ ⊗ I•))

= hi(Hom(F ⊗ E , I•))

= Ext•(F ⊗ E ,G),

and

Ext•(F , E∨ ⊗ G) = h•(Hom(F , E∨ ⊗ I•))

= hi(Hom(F , I•)⊗ E)
∗
= hi(Hom(F , I•))⊗ E
= Ext•(F ⊗ E ,G)⊗ E ,

where ∗
= holds by exactness of −⊗ E . ■

We now discuss the other entry for Ext.

Proposition 4.10. Fix a short exact sequence

0 → F ′ → F → F ′ → 0

of OX-modules on the locally ringed space (X,OX). Then for any OX-module G, there is a long exact
sequence

0 → Hom(F ′′,G) → Hom(F ,G) → Hom(F ′,G) → Ext1(F ′′,G) → · · · .

Proof. Fix an injective resolution 0 → G → I• of G. Then any open U ⊆ X produces a short exact sequence
of complexes

0 → Hom(F ′′|U , I•|U ) → Hom(F|U , I•|U ) → Hom(F ′|U , I•) → 0

because each I•|U is injective by Lemma 4.5. Thus, we get an exact sequence

0 → Hom(F ′′, I•) → Hom(F , I•) → Hom(F ′, I•) → 0,

so Proposition 1.22 provides the desired long exact sequence. ■
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Remark 4.11. The same proof shows the analogous result for Hom and Ext. Namely, we simply take
U = X in our first short exact sequence and then apply Proposition 1.22.

Remark 4.12. Using spectral sequences, one can show that a resolution E• → F → 0 of F by locally
free sheaves of finite rank gives rise to canonical isomorphisms

Ext•(F ,G) ∼= h•(Hom(E•,G)).

4.2.2 More on Ext
We take a moment to discuss how to take stalks of Ext.

Proposition 4.13. Fix a Noetherian scheme X, and let F be coherent on X, and let G be any sheaf of
OX-modules. For any x ∈ X, we have

Ext•(F ,G)x ∼= Ext•OX,x
(Fx,Gx).

Note that we have already discussed how to make sense of Ext•OX,x
because this is just Ext on the locally

ringed space (x,OX,x).

Proof. Proposition 4.6 explains that both sides of our computation are local on X, so we may assume that
X is affine; say X = SpecA. Being coherent means that F = M̃ where M is a finitely generated A-module.
Because we are in a Noetherian ring, we may this give M is a resolution E• → M → 0 by free A-modules
E• of finite rank. Thus, Remark 4.12 lets us compute

Ext•(F ,G)x = h•(Hom(Ẽ•,G))x
∗
= h•

(
Hom(Ẽ•,G)x

)
= h•

(
(Ẽ∨

• ⊗ G)x
)
,

where ∗
= holds by exactness of taking stalks. On the other hand, using Remark 4.12 again, we see

Ext•OX,x
(Fx, Ex) = h•(HomOX,x

((Ẽ•)x,Gx)) = h•
(
(Ẽ∨

• )x ⊗OX,x
Gx
)
.

(Observe that we are frequently and silently using Remark 4.7.) We now note that our two computations
have gotten the same answer because the stalk of a tensor product is the tensor product of the stalks. ■

Next up, we discuss Ext on projective schemes.

Proposition 4.14. Fix a projective scheme X over a Noetherian ring A, and let OX(1) be a very ample
line bundle onX. Given coherent sheaves F and G onX, there is an integer n0 := n0(F ,G,OX(1)) such
that

Γ(X, Ext•(F ,G(n))) ∼= Ext•(F ,G(n))

for all n ≥ n0.

Proof. We proceed in steps.

1. We deal with some easy cases. If i = 0, then the result holds simply by definition of Hom (namely,
global sections is Hom). Also, if F is locally free, then we use Proposition 4.9 and Example 4.4 to see

Exti(F ,G(n)) ∼= Ext•(OX ,F∨ ⊗ G(n)) ∼= Hi(X, (F∨ ⊗ G)(n))

vanishes for i > 0 and n sufficiently large by Theorem 2.33. Similarly, combining Proposition 4.9 and
Example 4.4, we see

Γ(X, Exti(F ,G(n))) ∼= Γ(X, Exti(OX ,F∨ ⊗ G(n))) = Γ(X, 0)

for any i > 0 and any integer n.
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2. We now handle the general case. We induct on i. For i = 0, there is nothing to say. Now, for any coher-
ent F , we can find a locally free coherent sheaf E surjecting onto F by some kind of local argument.1

This gives rise to a short exact sequence

0 → K → E → F → 0

of coherent OX-modules. Now, because E is locally free, we know that Exti(E ,G(n)) = 0 for large
enough n and Exti(E ,F(n)) = 0 for all integers n. For i > 1, the long exact sequence now provides
isomorphisms

Exti(K,G(n)) ∼= Exti+1(F ,G(n)) and Exti(K,G(n)) ∼= Exti+1(F ,G(n)),

for n sufficiently large, from which taking global sections reveals

Γ
(
X, Exti(K,G(n))

) ∼= Γ
(
X, Exti+1(F ,G(n))

)
,

so we are done by the inductive hypothesis applied to K.
For i = 1, we must do more work. Here, we get the exact sequences

0 → Hom(F ,G(n)) → Hom(E ,G(n)) → Hom(K,G(n)) → Ext1(F ,G(n)) → 0,

and
0 → Hom(F ,G(n)) → Hom(E ,G(n)) → Hom(K,G(n)) → Ext1(F ,G(n)) → 0,

where these final terms are vanishing by moving E around and using Example 4.4. Now, taking global
sections of the last sequence produces the sequence

0 → Γ(X,Hom(F ,G(n))) → Γ(X,Hom(E ,G(n))) → Γ(X,Hom(K,G(n))) → Γ
(
X, Ext1(F ,G(n))

)
→ 0,

which we now check is exact for n sufficiently large: exactness on the left is free, and we purchase
exactness on the right by Exercise III.5.10. The point is that we get isomorphisms

Ext1(F ,G(n)) ∼= coker(Hom(E ,G(n)) → Hom(K,G(n))) ∼= coker Γ(Hom(E ,G(n)) → Hom(K,G(n)) ∼= Γ
(
X, Ext1(F ,G(n))

)
.

Technically, have not yet checked that n0 is independent of n. Well, because OX(1), it comes from a
closed embedding X → PrA. So using Čech cohomology, we see that

Exti(E ,G(n)) ∼= Ext(OX , E∨ ⊗ G(n)) ∼= Hi(X, (E∨ ⊗ G(n)) = 0

for i > r and anyn, E , andG. By computing at stalks via Proposition 4.13, we also see thatExti(E ,G(n)) =
0 for i > r. The point is that n0 can be independent of i because there are only finitely many i to choose
from, so we can just take n0(F ,G,OX(1)) to be the largest of our constructed n0(F ,G,OX(1), i). ■

4.3 April 8
We completed a proof from last class.

4.3.1 Serre Duality on Pn
k

We now move towards a discussion of Serre duality, which is our version of Poincaré duality.

Definition 4.15 (canonical sheaf). Fix a regular k-variety X. Then the canonical sheaf is ωX := ∧nΩX/k,
where n := dimX and ΩX/k is the sheaf of differentials (or equivalently, the cotangent sheaf) on X.
Recall that ΩX/k is locally free of rank n, so ωX is a line bundle.

1 The point is that F(n) is globally generated for sufficiently large n, so one can take E to be some power of OX(−n).
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Example 4.16. WhenX = PrA, one has that ωX = OX(−n−1). This is a rather long computation, which
we will take for granted for now.

Now, here is our Serre duality on projective space.

Theorem 4.17. Fix a field k, and let X := Pnk with n > 0. Then the following hold.

(a) We have a non-canonical isomorphism t : Hn(X,ωX) ∼= k.

(b) For any coherent sheaf F on X, the natural k-bilinear map

Hom(F , ωX)⊗Hn(X,F) → Hn(X,ωX)
t→ k

is a perfect pairing of finite-dimensional k-vector spaces. Here, the left map is given by (φ, c) 7→
Hn(φ)(c).

(c) For every i ≥ 0, there is a natural functorial isomorphism

Exti(F , ωX) → Hom
(
Hn−i(X,F), Hn(X,ωX)

)
.

When i = 0, this recovers the perfect pairing of (b).

Remark 4.18. Perhaps we should be more explicit about hat is meant by our pairing and isomorphism
being “natural.” For (b), we are stating that the following diagram commutes (by functoriality) for any
sheaf morphism φ : F → G.

Hom(F , ωX) Hn(X,F) (gφ, c)

Hom(G, ωX) Hn(X,G) Hn(X,ωX) (g, φ(c)) Hn(gφ)(c)

−◦φ
evF

evG

Hn(φ)

⊗

⊗

Proof. Here we go. We quickly dispense of (a) and (b).

(a) This is immediate from combining Theorem 2.28 and Example 4.16.

(b) As a special case, first suppose that F is some sum of line bundles of the form OX(q). By summation,
we can actually just handle F = OX(q), and then the canonical isomorphisms

Hom(F , ωX) = Hom(OX(q),OX(−n− 1)) = Γ(X,OX(−q − 1− n)),

and Hn(X,F) = Γ(X,OX(q)), so we again get this from Theorem 2.33.
It remains to handle the general case, for which we use Remark 4.18. Note [Har77, Corollary II.5.18]
provides an exact sequence of the form

E1 → E0 → F → 0,

where E1 and E0 are sums of OX(q)s. This produces a commutative diagram of the following form.

0 Hom(F , ωX) Hom(E0, ωX) Hom(E1, ωX)

0 Hn(X,F)∨ Hn(X, E0)∨ Hn(X, E1)∨

Here, the commutativity is by using Remark 4.18 to turn a morphism from a tensor product to a mor-
phism into the dual. The top row is exact by left-exactness ofHom, and the bottom row is exact because
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it is the dual of the end of the long exact sequence for Pnk . We will complete the proof next class. To
see this last clause more explicitly, we let K1 be the kernel of the map E0 ↠ F , and we see that the
long exact sequence reads

Hn−1(X,F) → Hn(X,K1) → Hn(X, E0) → Hn(X,F) → 0,

where the 0 at the end comes from the fact thatHn−1(X,−) = 0by a computation with Čech cohomol-
ogy. Replacing Hn(X,K1) with Hn(X, E1) (which will still surject onto the kernel) and then dualizing
produces the required left-exact sequence.

Anyway, we now complete the proof of (b) by the Five lemma.

(c) Note that i = 0 holds by (b), and the rest is assigned as homework. In short, one should induct on i.
The main point is that Ext•(−, ωX) and Hom(Hn−•(X,−), Hn(X,ωX)) are both δ-functors, for which
we have provided a homomorphism between them already. One can conclude by a careful induction
on i, essentially arguing as in (b) via some Five lemma argument using the same sort of coverings of F
by vector bundles which are sums of OX(q)s, for which the result holds by Theorem 2.33 and propo-
sition 4.14 (indeed, for q large enough, everything in sight vanishes). ■

4.4 April 10

We began class by completing the proof of Theorem 4.17.

Remark 4.19. The isomorphism t : Hn(X,ωX) → k is invariant under automorphisms of Pnk (which are
in bijection with PGLn(k)); see [Har77, Example 7.1.1].

4.4.1 Dualizing Sheaves

The sheafωX was the main character of Theorem 4.17. For more generalX, it is not obvious whatωX should
be, so we will simply pick up a definition for when we have such a sheaf.

Definition 4.20 (dualizing sheaf). Fix a proper k-schemeX of dimension n. Then a dualizing sheaf ofX
is a pair (ω◦

X , t) where ω◦
X is a coherent sheaf onX, and t : Hn(X,ω◦

X) → k is a morphism such that the
composite

Hom(F , ω◦
X)⊗Hn(X,F) → Hn(X,ω◦

X)
t→ k

is a perfect pairing for all coherent sheaves F ; in other words, the coherent sheaf ω◦
X represents the

functor F 7→ Hn(X,F)∨, where choice of t amounts to a choice of the natural isomorphism from
Hom(−, ω◦

X). More generally, for n ≥ dimX, we say that ω◦
X is an n-dualizing sheaf if and only if it

represents the functor F 7→ Hn(X,F)∨.

Remark 4.21. Technically, our definition permitsX to have irreducible components of differing dimen-
sions. This is bad, so in the future, we will require X to have pure dimension n.

Remark 4.22. If n > dimX, then the functor F 7→ Hn(X,F)∨ is the zero functor, so we take ω◦
X = 0 to

represent it.
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Remark 4.23. Let’s explain why dualizing sheaves amount to representing objects. This is essentially
the Yoneda lemma.

• Suppose (ω◦
X , t) is a dualizing sheaf. Then our perfect pairing amounts to saying that we have a

natural isomorphism
Hom(−, ω◦

X) ⇒ Hn(X,−)∨

by φ 7→ (c 7→ t(Hn(φ)c)). So ω◦
X represents our functor.

• Suppose ω◦
X represents our functor via the natural isomorphism Ψ: Hom(−, ω◦

X) ⇒ Hn(X,−)∨.
Then t := Ψω◦

X
(idω◦

X
) is a morphism t : Hn(X,ω◦

X) → k, and we note that the following diagram
commutes for any morphism φ ∈ Hom(F , ω◦

X).

Hom(ω◦
X , ω

◦
X) Hn(X,ω◦

X)∨ idω◦
X

t

Hom(F , ω◦
X) Hn(X,F)∨ φ t ◦Hn(φ)

−◦φ Hn(φ)

This unravels into telling us that (ω◦
X , t) is a dualizing sheaf; notably, we have produced the needed

perfect pairing because the bottom row is an isomorphism because ΨF is a natural isomorphism.

4.5 April 12
We continue discussing dualizing sheaves.

4.5.1 More on Dualizing Sheaves
We begin today with an aside.

Proposition 4.24. One can upgrade Remark 4.23 as follows. Let C1 be the category of pairs (ω, t) where
ω is coherent on X and t : Hn(X,ω) → k; a morphism of such pairs is a morphism of the coherent
sheaves commuting with the data of t. Then let C2 be the category of pairs (ω,Ψ) where ω is coherent
on X and Ψ is a natural transformation Hom(−, ω) → Hn(X,−)∨; a morphism is again a morphism of
the coherent sheaves commuting with the data of Ψ. Then these categories are equivalent.

Proof. The point is to upgrade the constructions of Remark 4.23 into full functors, and we can check that
these functors are inverses. Here are our constructions.

• Define F : C1 → C − 2 by sending the pair (ω, t) to the natural transformation (ω,Ψ), where we define
ΨF : Hom(F , ω) → Hn(X,F)∨ is defined by the pairing

ΨF (φ)(c) := t (Hn(φ)c) .

Note that this is a natural transformation: for any α : F → G, the diagram

Hom(G, ω) Hn(X,G)∨ φ (c 7→ t (Hn(φ)c))

Hom(F , ω) Hn(X,F)∨ (φ ◦ α) (c 7→ t (Hn(φ)Hn(α)c))

α

ΨG

ΨF

α

commutes.
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On morphisms, suppose we have some morphism β : (ω, t) → (ω′, t′). Then we define F1β : (ω,Ψ) →
(ω′,Ψ′) using the same underlying morphism of sheaves ω → ω′. To see that this commutes with the
data of the natural transformation, we note that the diagram

Hom(F , ω1) Hn(X,F)∨ φ (c 7→ t (Hn(φ)c))

Hom(F , ω2) Hn(X,F)∨ (φ ◦ β) (c 7→ t′ (Hn(φ ◦ β)c))

Ψ1(F)

Ψ2(F)

−◦β

commutes because β : (ω, t) → (ω′, t′) is already a morphism.
We omit the functoriality checks.

• Define G : C2 → C1 by sending the pair (ω,Ψ) to the pair (ω, t), where t is defined by Ψω(idω). We will
omit the remaining checks for this functor because they are all similar to the previous functor.

We omit the checks that these functors are inverse, though it is not too hard to check by hand. ■

Remark 4.25. Take X = Pnk , and set ω := OX(−n − 1). Then Hn(X,OX(−n − 1)) ∼= k, so we can fix
some isomorphism t. Then t allows us to choose an elementα ∈ Hn(X,OX(−n−1)) such that t(α) = 1,
and now one can check that (ω, t) is a dualizing sheaf by tracking α around as needed.

4.5.2 Dualizing Sheaves for Projective Schemes
We would like to transfer duality from PNk back down to X.

Lemma 4.26. Let X be a closed subscheme of PNk of codimension r. Then

ExtiPN
k
(OX , ωPN

k
) = 0

for all i < r.

Proof. For brevity, let the sheaf in question be F i. We can do cohomology just with coherent sheaves, so
F i is coherent (see also [Har77, Exercise 6.3]). Thus, F i(q) is globally generated for q large enough. So by
undoing the twisting, it is enough to show that

Γ
(
PNk ,F i(q)

) ?
= 0

for q large enough. Well, by expanding out our definitions and moving around the twisting inside the Ext
and applying Proposition 4.14, we see

Γ
(
PNk ,F i(q)

)
= Γ

(
PNk , ExtiPN

k
(OX , ωPN

k
(q))

)
= ExtiPN

k
(OX , ωPN

k
(q))

= ExtiPN
k
(OX(−q), ωPN

k
)

∗
= HN−i (X,OX(−q))∨ ,

where the last step has used Theorem 4.17. Now, this last cohomology group vanishes for q large enough
by Theorem 2.28, so we are done. ■

Remark 4.27. Later in life, we will be able to upgrade this result to replacePNk with any equidimensional
Cohen–Macaulay scheme.
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Lemma 4.28. Let X be a closed subscheme of PNk of codimension r. Set ω◦
X := Extr

(
OX , ωPN

k

)
. Then

we have a natural isomorphism

HomX (F , ω◦
X) ∼= ExtrPN

k

(
F , ωPN

k

)
,

where F is any OX-module.

Proof. Fix an injective resolution ωPN
k
→ I• of ωPN

k
by injective OPN

k
-modules. Notably,

ExtiPN
k
(F , ωPN

k
) = hi

(
HomPN

k
(F , I•)

)
and ExtiPN

k
(F , ωPN

k
) = hi

(
HomPN

k
(F , I•)

)
.

We now proceed in steps.

1. We begin with an algebraic lemma. Fix a ring A, and let I ⊆ A be an ideal. Given an A/I-module M
and an N-module A, we claim

HomA(M,N)
?∼= HomA/I(M,HomA(A/I,N)).

Indeed, note HomA(A/I,N) is isomorphic to N ′ := {n ∈ N : an = 0 for a ∈ I} by the map φ 7→
φ(1). So our right-hand side is HomA/I(M,N ′), but that’s just HomA(M,N ′) because asserting that
our morphism is over (A/I) or over A has no content. Lastly, HomA(M,N ′) is HomA(M,N) because
the image of any morphism out of M needs to land inside the submodule of N killed by I, which is
precisely N ′.

2. Let’s apply this. If F is a sheaf of OX-modules, and I is a sheaf of OPN
k

-modules, then we claim that

HomX

(
F ,HomPN

k
(OX , I)

) ?∼= HomPN
k
(F , I). (4.1)

Indeed, in one direction, we have an inclusion

HomX

(
F ,HomPN

k
(OX , I)

)
= HomPN

k

(
F ,HomPN

k
(OX , I)

)
⊆ HomPN

k
(F , I).

Namely, the first map simply acknowledge that any morphism out of F must be killed by the ideal
sheaf of X anyway, and the second map is an inclusion because the surjection OPN

k
↠ OX yields an

inclusion HomPN
k
(OX , I) → HomPN

k
(OPN

k
, I), which we can then upgrade to F .

It remains to check that our map in (4.1) is a surjection. Namely, we would like to show that a morphism
φ ∈ HomPN

k
(F , I) has its image contained in HomPN

k
(OX , I). Well, note OX is coherent over PNk , so

we get
HomPN

k
(OX , I)p = HomOPN

k
,p
(OX,p, Ip)

by Proposition 4.13. As such, we want to show that imφp ⊆ HomOPN
k

,p
(OX,p, Ip), but this target is just

the subset of Ip killed by the ideal sheaf defining OX,p, which is surely in the image of φp because φ
factors through F , which is an OX-module. This finishes the verification of (4.1).

3. We now claim that injective OPN
k

-modules I produces injective OX-modules J := HomPN
k
(OX , I).

The above step promises that HomX(−,J ) and HomPN
k
(−, I) are naturally isomorphic functors, so

the exactness of the latter produces the exactness of the former.

4. Now set J • := HomPN
k
(OX , I•). We claim that

0 → J 0 → J 1 → · · · → J r−1 → J r
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is exact. Indeed, for i < r, we see

hi(J •) = hi(HomX(OX , I•)) = hi
(
HomPN

k
(OX , I•)

)
= ExtiPN

k
(OX , ωPN

k
),

which vanishes by Lemma 4.26.

5. Now, set J r
1 to be the image of the map J r−1 → J r so that we get the exact sequence

0 → J 0 → J 1 → · · · → J r−1 → J r
1 → 0.

We claim that J r
1 is in fact injective by an induction on r. Indeed, the main point is that we can decom-

pose this exact sequence into short exact sequences of the form

0 → I ′ → I → I ′′ → 0,

where I ′ is injective by inductive hypothesis, and I is injective. Then this short exact sequence splits
because I ′ is injective, and then I ′′ is injective because Hom(−, I ′′) then embeds (via the splitting) into
the exact functor Hom(−, I), forcing exactness.

6. We now complete the proof. Set J r
2 via the splitting so that J r = J r

1 ⊕ J r
2 . Then define the two

complexes

J i
1 :=


J i if i < r,

J r
1 if i = r,

0 if i > r,

and J i
2 :=


0 if i < r,

J r
2 if i = r,

J i if i > r.

Thus, we see that J • ∼= J •
1 ⊕ J •

2 by construction, all terms involved are injective, and J •
1 is exact.

We now compute using our resolutions. For example, we see that

ω◦
X = ExtrPN

k
(OX , ωPN

k
) = hr(J •)

using our injective resolution, but then this is hr(J •
2 ) by construction of J •

2 , so we see that

ω◦
X = ker

(
J r
2 → J r+1

2

)
because J r−1

2 = 0. So we live in a left-exact sequence

0 → ω◦
X → J r

2 → J r+1
2 .

We now introduce F . For any OX-module F , we may compute

Extr(F , ωPN
k
) = hr(HomPN

k
(F , I•))

= hr(HomX(F ,J •))

= hr(HomX(F ,J •
1 ))⊕ hr(HomX(F ,J •

2 ))

= HomX(F , ω◦
X),

where the last equality follows in two pieces: note HomX(F ,J r−1
1 ) → HomX(F ,J r

1 ) is surjective be-
causeJ r

1 is a direct summand ofJ r, so the left term withJ •
1 vanishes, and then the previous paragraph

provides the right-exact sequence

Hom(F ,J r
2 ) → HomX

(
F ,J r+1

2

)
→ Hom(F , ω◦

X) → 0,

thus completing the proof. We take a moment to recognize that all the above isomorphisms are indeed
functorial in F . ■

4.6 April 15
We spent class completing the proof of a lemma from last class.
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4.7 April 17
Today we discuss duality for many projective schemes.

4.7.1 Serre Duality
We begin by providing our dualizing sheaves.

Proposition 4.29. Fix a nonempty projective schemeX over a field k, and set n := dimX. ThenX has a
dualizing sheaf.

Proof. Choose an embedding X ⊆ PNk with N very large, and let r := N − n be the codimension. Then we
define

ω◦
X := ExtrPN

k

(
OX , ωPN

k

)
.

Then Lemma 4.28 shows
HomX (F , ω◦

X) ∼= ExtrPN
k

(
F , ωPN

k

)
for any OX-module F . If F is coherent, then duality of ωPN

k
on PNk tells us that this is

ExtrPN
k

(
F , ωPN

k

)
∼= HN−r(PNk ,F) = Hn(X,F).

All of these isomorphisms are functorial in F , so we see that ω◦
X is a dualizing sheaf via Remark 4.23. ■

At long last, here is our duality theorem.

Theorem 4.30 (Serre duality). Fix a nonempty projective schemeX over a field k with very ample sheaf
OX(1), and set n := dimX. Let ω◦

X be a dualizing sheaf for X, which exists by Proposition 4.29.

(a) For all i ≥ 0, there are natural morphisms

θi : ExtiX(F , ω◦
X) → Hn−i(X,F)∨.

(b) The following are equivalent.

(i) X is Cohen–Macaulay and equidimensional.
(ii) For any locally free F on X of finite rank, we have Hi(X,F(−q)) = 0 for i > n and q suffi-

ciently large.
(iii) Hi(X,OX(−q)) = 0 for all i < n and q sufficiently large.
(iv) The maps θ• defined above are isomorphisms for all i and F .

Proof. Here we go.

(a) It is enough to show that Ext•(−, ω◦
X) is coeffaceable and hence a universal contravariant δ-functor

because this makes the morphism at t = 0 extend uniquely to a morphism of δ-functors.
As usual, we note that any coherent F has some vector bundle E :=

⊕
iOX(−qi) for q• sufficiently

large such that there is a surjection E ↠ F . Then we see that

Ext•X(E , ω◦
X) =

⊕
i

Ext•X(OX , ω
◦
X(qi)) = H•(X,ω◦

X(qi))

vanishes for q• sufficiently large (even for all indices), which completes our check.

(b) We show the implications one at a time.
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• Note (ii) implies (iii) with no content.

• We check that (iii) implies (iv). By the discussion above utilizing universal δ-functors, it is enough
to show that Hn−•(X,−)∨ is also coeffaceable and hence universal. Well, choose any coherent
F and then select E as above. Then (iii) tells us that

Hn−•(X, E)∨ =
⊕
i

Hn−•(X,OX(−qi))

vanishes for all i > 0 and q• sufficiently large, which completes our check. So universality makes
the morphisms θ• into isomorphisms.

• We check that (iv) implies (ii). Well, we just directly compute

H•(X,F(−q))
θ∼= Extn−•

X (F(−q), ω◦
X)∨ ∼= Extn−•

X (OX , ω
◦
X ⊗F∨(q))∨ ∼= Hn−•(X,ω◦

X ⊗F∨(q))∨,

which vanishes for large q by Theorem 2.33.

We won’t bother to prove that (i) and (ii) are equivalent because we don’t want to define Cohen–
Macaulay. ■

Remark 4.31. If X is regular (for example, if X is smooth), then X is Cohen–Macaulay.

Here, then, is the “headline” result.

Corollary 4.32. Fix a nonempty projective schemeX over a field kwith very ample sheaf OX(1), and set
n := dimX. Letω◦

X be a dualizing sheaf forX, which exists by Proposition 4.29. IfX is Cohen–Macaulay
and equidimensional, then any locally free coherent sheaf F has

H•(X,F) ∼= Hn−•(X,F∨ ⊗ ω◦
X)∨.

Proof. As before, we compute

H•(X,F)
θ∼= Extn−•

X (F , ω◦
X)∨ ∼= Extn−•

X (OX , ω
◦
X ⊗F∨)∨ ∼= Hn−•(X,ω◦

X ⊗F∨)∨,

so we are done. ■

4.7.2 The Koszul Complex
We will want the Koszul complex in order to actually compute ω◦

X in some cases.

Definition 4.33 (Koszul complex). Fix a ringA and some elements f1, . . . , fr ∈ A. Then the Koszul com-
plex K•(f1, . . . , fr) is defined by

Kp(f1, . . . , fr) := ∧pAr

on objects. To define the differential, we let {e1, . . . , er} denote the standard basis onK1 = Ar and then
define d : Kp → Kp−1 by

d(ei1 ∧ · · · ∧ eip) :=
p∑
j=1

(−q)j−1fij (ei1 ∧ · · · ∧ êij ∧ · · · ∧ eip).

One can define this for a general A-module M by applying −⊗AM everywhere.
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4.8 April 19

Today we try to compute the dualizing sheaf in some cases.

4.8.1 Computing the Dualizing Sheaf

We will want the following notion.

Definition 4.34 (regular). Fix a ringA and anA-moduleM . Then a regular sequence forM is a sequence
{f1, . . . , fr} ⊆ A such that fi is a non-zero-divisor on M/(f1, . . . , fi−1M) for all i.

A priori, the regular sequence depends on the ordering of the f•s.

Proposition 4.35. Fix a ring A and an A-module M and a regular sequence {f1, . . . , fr} for M . Then

hi(K•(f1, . . . , fr)⊗AM) =

{
0 if i > 0,

M/(f1, . . . , fr)M if i = 0.

Proof. Omitted for time. See, for example, [Eis95, Section 17.5]. This is more or less just a long computa-
tion. ■

Noting that exterior powers are free over A, we see that we have basically produced a free resolution for
M/(f1, . . . , fr)M .

Anyway, here is our main result.

Theorem 4.36. Fix a field k, and letX be a nonempty closed subscheme of PNK cut out by the ideal sheaf
I. If X is a locally complete intersection of codimension r, then

ω◦
X

∼= ωPN
k
⊗ ∧r

(
I/I2

)∨
.

In particular, ω◦
X is a line bundle on X.

Sketch. We know that ω◦
X = ExtrPN

k
(OX , ωPN

k
), so we just need to compute this sheaf.

1. We begin by computing our stalks. Fix some closed point x ∈ X, and let U ⊆ PNk be an affine open
neighborhood of x; set U = SpecA. Being a locally complete intersection means that we may shrink
X so that X ∩ U = V (f1, . . . , fr) inside SpecA. With x ∈ U , we may find the corresponding maximal
ideal m ∈ SpecA. Because PNk is smooth, it is regular, so Am is regular, so it is Cohen–Macaulay, so
{f1, . . . , fr} is a regular sequence by some commutative algebra.

Thus, K•(f1, . . . , fr) ⊗ Am is a free resolution of Am/(f1, . . . , fr)Am, which is OX,x. The property of
being free just means that there is some set of elements which provide an isomorphism from some
free module, which is a condition that can be spread out (namely, we are asking for some kernel and
cokernel to vanish as soon as we fix the required image); thus, we can shrink U so that K•(f1, . . . , fr)
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is just a free resolution of A. We now use this resolution to compute

ExtrPN
k

(
OX , ωPN

k

)
|U ∼= hr

(
Hom(K•(f1, . . . , fr)

∼, ωPN
k
|)U
)

=
ker dr

im dr−1

=
Hom

(
Kr(f1, . . . , fr)

∼, ωPN
k
|U
)

im
(
Hom

(
Kr−1(f1, . . . , fr)∼, ωPN

k
|U
)
→ Hom

(
Kr(f1, . . . , fr)∼, ωPN

k
|U
))

=
ωPN

k
|U

im

(
(ωPN

k
|U )r

(f1,...,fr)→ ωPN
k
|U
)

by some computation with the Koszul complex; for example, ker dr is as written because the next term
of the sequence is 0, and im dr−1 is as written by tracking through what happens on the Koszul complex
at this stage (with the standard basis of the exterior product). We now note that this last sheaf is
isomorphic to (ωPN

k
⊗OX)|U .

2. We now must check that the isomorphisms provided in the previous step glue to a global isomorphism
(namely, that they are compatible on intersections). The main check is that one can more naturally
identify

Kr(f1, . . . , fr)
∼ ⊗OX

∼= ∧r
(
I/I2

)
by noting that the quotient on the right is basically generated by (f1, . . . , fr). We won’t write out these
details. ■

Corollary 4.37. Fix a regular, projective, nonempty projective scheme. Then ω◦
X

∼= ωX , where ωX :=
∧dimXΩX . In particular, Hr(X,OX) ∼= H0(X,ωX)∨.

Proof. Because X is projective, we may embed it into PNk for some N > 0. A regular scheme is a locally
complete intersection, so

ω◦
X

∼= ωPN
k
⊗ ∧r

(
I/I2

)∨
as above, but the adjunction formula [Har77, Proposition II.8.20] explains that this is ωX . The last sentence
now follows from applying Corollary 4.32. ■

Example 4.38. If X has dimension 1, then we see that

pa(X) = h1(X,OX) = h0(X,ωX) = pg(X).

However, if X is singular, then it turns out pa(X) > pg(X); notably, if π : X̃ → X is a normalization of
X, then pg(X) = pg(X̃). It is known that pa(X)− pg(X) is controlled by the singularities of X: one has

pa(X)− pg(X) =
∑

singular x∈X

[κ(x) : k]δx,

where δx := dimκ(x)(π∗OX̃/OX)x.

4.9 April 22
We began by finishing up our discussion of duality.
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4.9.1 The Kodaira Vanishing Theorem
Here is our statement.

Theorem 4.39 (Kodaita vanishing). Fix a nonsingular projective variety X over C, and set n := dimX.
Given an ample line bundle L on X, the following are true.

(a) Hi
(
X,Li ⊗ ωX

)
= 0 for all i > 0.

(b) Hi
(
X,L−i) = 0.

Proof. We omit the proof because it uses analytic methods, but we do remark that (a) and (b) are equivalent
by Corollary 4.32. ■

Corollary 4.40. Fix a nonsingular projective variety X over a field k of characteristic 0, and set n :=
dimX. Given an ample line bundle L on X, the following are true.

(a) Hi
(
X,Li ⊗ ωX

)
= 0 for all i > 0.

(b) Hi
(
X,L−i) = 0.

Proof. We use the “Lefschetz principle” to reduce our computations to C. Because X is projective, we are
granted a closed embedding i : X ⊆ PNk for some N > 0.

Now, listing out the various coefficients used in the definition of the closed embedding i and the con-
struction of the line bundle L, we are granted a field k0 finitely generated over Q, a smooth schemeX0 over
k0, a closed embedding i0 : X0 → PNk0 , and a line bundle L0 onX0 such that i0 ×k0 k = i and L0 pulls back to
X. Explicitly, note the ideal sheaf of X is finitely generated and so can be described with only finitely many
elements over Q (from k), and L can similarly be described in terms of a trivializing open cover and how to
transition between them (via a Cartier divisor) which can again be fit into a finitely generated field extension
of Q. (Smoothness ofX can be given by the full rank of the Jacobian via local defining equations, so again it
can be witnessed using finitely many elements of k0.)

Now, becauseC has infinite transcendence degree overQ, we can find a field embedding k0 ↪→ C, allow-
ing us to base-change X0 and L0 (over k0) to XC and LC (over C). We are now able to apply Theorem 4.39
because proper base change implies

H•(X,L) = H•(X0,L0)⊗k0 k and H•(XC,LC) = H•(X0,L0)⊗k0 C

for any index. More directly, one can note that these cohomology groups can be computed via Čech co-
homology by Theorem 2.21, and the Čech complex can be base-changed by a field to adjust cohomology
exactly as needed to produce the above isomorphisms. ■
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THEME 5

SPECTRAL SEQUENCES

5.1 April 22

We now switch gears and start talking about spectral sequences.

5.1.1 Spectral Sequences

Let A be an abelian category; for example, one does not lose much by taking A = Ab. Here is our defini-
tion.

Definition 5.1 (spectral sequence). Fix an abelian categoryA. A spectral sequence is a sequence of pairs
{(Er, dr)}r≥0 of bi-graded objects Er :=

⊕
p,q∈NE

p,q
r equipped with “differential” homomorphisms

dr : E
p,q
r → Ep+q,q−r+1

r such that the following hold.

(a) d2r = 0.

(b) H(Er) = Er+1. In other words,

Epqr =
ker
(
dr : E

p,q
r → Ep+r,q−r+1

r

)
im
(
dr : E

p−r,q+r−1
r → Ep,qr

) .
Visually, here are the morphisms d0.

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 0) (1, 0) (2, 0) (3, 0)
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Here are the morphisms d1.

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 0) (1, 0) (2, 0) (3, 0)

Here are the morphisms d2.

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 2)

One can imagine how this continues.

Remark 5.2. The “antidiagonal” of terms with n = p+ q for fixed n will be quite important.

Remark 5.3. Set n := p = q. If r > n + 1, then q − r + 1 < 0 and p − r < 0, so dp,qr = dp−r,q+r−1
r = 0

because these morphisms are “outside” of our E•,•
r . Thus, Ep,qr+1 = Ep,qr , allowing us to define

Ep,q∞ := Ep,qn+1 = Ep,qn+2 = · · · .

The previous remark suggests that we will be able to define later Ers using prior ones by induction, but we
note that d0 and d1 move in orthogonal directions, so there is basically no hope of beginning this induction
at the E0 stage. However, this turns out to be the only obstruction.

Definition 5.4 (double complex). Fix an abelian category A. A double complex is a bi-graded object
K•,• :=

⊕
p,q∈NK

p,q equipped with differentials dp,q : Kp,q → Kp,q+1 and δp,q : Kp,q → Kp+1,q such
that d ◦ d = 0 and δ ◦ δ = 0 and d ◦ δ = −δ ◦ d. (This last condition means that d and δ “anti-commute.”)

Theorem 5.5. A double complex (K, d, δ) functorially determines a spectral sequence {(Er, dr)}r≥0 such
that E0 = K, d0 = d, and d1 is induced by δ (and the later differentials are also uniquely defined).

We will prove this later by working in slightly more generality.

Definition 5.6 (filtration). Fix a cocomplex (K•, d) of abelian groups. A filtration of K• is an N-graded
filtration of the form

Kn = F 0K0 ⊇ F 1Kn ⊇ · · ·

ofKn for alln such thatD : F pK → F pK for all p. We will throughout assume that eachnhasF pKn = 0
for sufficiently large p. We call the triple (K•, d, F •) a filtered complex.
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Example 5.7. The double complex (K•,•, d, δ) gives rise to a cocomplex

Kn :=
⊕
p+q=n

Kp,q

with canonical filtration by

F p0Kn =
⊕
p+q=n
p≥p0

Kp,q = Kp0,n−p0 ⊕Kp0+1,n−p0−1 ⊕ · · · ⊕Kn−p0+1,p0+1 ⊕Kn−p0,p0 .

5.2 April 24
We continue discussing spectral sequences.

5.2.1 Building Spectral Sequences
Throughout, (K•,•, d, δ) is a double complex, and we define the complex (K•, D•) by Kn :=

⊕
p+q=nK

p,q

to have filtration given by
F p0Kn =

⊕
p+q=n
p≥p0

Kp,q.

Now, we will take n := p + q everywhere and take the notation Kn;p = Kp,q so that F pKn =
⊕

p≥p0 K
n;p0 .

Additionally, we note that d0 is induced by D1 due to the commutativity of the following diagram.

F pKn F pKn/F p+1Kn

F pKn+1 F pKn+1/F p1Kn+1

D1 d0

We now set En;p0 = Ep,q0 := F pKn/F p+1Kn so that En;p0 = Kn;p and d0 = d.
Now, here is our main theorem.

Theorem 5.8. Fix a filtered complex (K•, D, F ). Assume that F pKn = 0 for p > n; for convenience, set
F pKn = Kn for p < 0. Now, for all nonnegative integers r, p, n ≥ 0, set

Xn;p
−1 := F pKn,

Xn;p
r := F pKn ∩D−1

(
F p+rKn+1

)
Y n;pr := D

(
Xn−1;p−r+1
r−1

)
+Xn;p−1

r−1 ,

En;pr := Xn;p
r /Y n;pr .

Then the following hold.

(a) Y n;pr ⊆ Xn;p
r for all r, n, p ≥ 0.

(b) D produces a well-defined map dn;pr : En;pr → En+1;p+r
r for all r, n, p ≥ 0.

(c) Ep,qr is a spectral sequence with the above data.

(d) Fn+1(Hn(K•)) = 0, and F p(Hn(K•))/F p+1(Hn(K•)) ∼= En;p∞ for all n and p ≤ n.

Proof. We omit this proof. It is a very long computation. ■
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As a quick aside, we note that we can take transposes.

Definition 5.9 (transpose). Given a double complex (K•,•, d, δ), then one can define

K̃p,q := Kq,p

so that (K̃•,•, δ, d) is the transpose double complex.

Remark 5.10. Fix a double complex (K•,•, d, δ), and let (K•, D•) be the filtered complex. Further, we
let (K̃•, D̃•) be the filtered complex of the transposed double complex. Then one can check that

Hn(K•) = Hn(K̃•)

because the underlying modules are really the same.

Anyway, let’s see an application: let’s finally prove Remark 4.12.

Proposition 5.11. Fix a ringed space X, and let F ,G ∈ Mod(OX). Let E• → F be a resolution of F by
locally free sheaves of finite rank. Then for all indices i,

Exti(F ,G) = hi(Hom(E•,G)).

Proof. Let 0 → G → I• be an injective resolution of G in Mod(OX), and let Kp,q := Hom(Ep, Iq) be a
double complex, where our differentials d : Kp,q → Kp,q+1 and δ : Kp,q → Kp+1,q are induced by the give
resolutions (up to appropriate sign). LetEp,qr be the resulting spectral sequence from Theorem 5.8. We now
compute some pages.

• Ep,q0 = Kp,q = Hom(Ep, Iq).

• Ep,q1 = hq(Hom(Ep, I•)) = Extq(Ep,G) = Extq(OX , E∨
p ⊗ G), which we see vanishes when q > 0.

• Ep,q2 = hp(Ep,q1 ) is hp(Hom(E•,G)) when q = 0 and again vanishes when q > 0.

Now, for r > 1, we see that dr = 0 due to the slope of dr, so Ep,q∞ = Ep,q2 . Letting K• be the total complex,
we see that all but one of the quotients of the filtration of Hn(K•) vanish for each n (using the exactness of
our Hom functors), so Hn(K•) ∼= En,0∞

∼= hn(E•,G) by the computation on the E2 page.
We now let Ẽp,qr be the transposed spectral sequence. Here are some computations.

• Ẽp,q0 = Eq,p0 = Hom(Eq, Ip).

• Ẽp,q1 = hq(Hom(Eq, Ip)), but Ip is injective, so this is Hom(hq(E•), Ip), which is Hom(F , Ip) when
q = 0 and vanishes for q > 0.

• Ẽp,q2 = hp(Hom(F , I•)) if q = 0 and vanishes otherwise.

For the same reasons as before, Ẽp,q∞ = Ẽp,q2 and Hn(K̃•) ∼= Ẽn,02
∼= Extn(F ,G).

We now conclude because

Extn(F ,G) ∼= Hn(K̃•) = Hn(K•) ∼= hn(Hom(E•,G)),

as desired. ■

5.3 April 26
We now turn to a discussion of higher direct images.
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5.3.1 Higher Direct Images
Here is our definition.

Definition 5.12 (higher direct image). Fix a continuous map f : X → Y of topological spaces. Then the
higher direct images are the right-derived functors of the functor f∗ : Ab(X) → Ab(Y ).

Remark 5.13. Perhaps we should check that f∗ is left exact. Left exactness can be checked on the level
of sections, so pick up a left-exact sequence 0 → F ′ → F → F ′′ of sheaves on X, and to check that

0 → f∗F ′ → f∗F → f∗F ′′

is exact, it suffices to pick up an open subset V ⊆ Y and note that

0 → f∗F ′(V ) → f∗F(V ) → f∗F ′′(V )

is exact because this is the exact sequence

0 → F ′ (f−1(V )
)
→ F

(
f−1(V )

)
→ F ′′ (f−1(V ′′)

)
.

Example 5.14. Frequently we will take f : X → Y to be a morphism of schemes, which can be thought
of as a family of schemes over Y by taking the fiber Xy for each y ∈ Y . For example, given a functor
F : SchopY → Set (for example, outputting abelian varieties or similar), one can hope for a morphism
f : X → Y so that X represents this functor.

Example 5.15. A projective Q-varietyX can be extended to a morphismX ′ → SpecZ basically by clear-
ing denominators to define our equations. One has X(Q) = X ′(SpecZ) by the valuative criterion of
properness for X ′. This is the beginning of Arakelov theory.

It will be helpful to relate our higher direct images to our previously studied cohomology.

Proposition 5.16. Fix a continuous map f : X → Y of topological spaces. For any sheaf F on X of
abelian groups and index i, the sheaves R•f∗F are the sheafification of the presheaves

V 7→ H• (f−1(V ),F|f−1(V )

)
.

Proof. Let Hi(F) be the given sheaves. Note H0(F) is the sheafification of the sections of F pushed from
X, which is exactly f∗F already. Note that R•f∗ yields a universal δ-functor, so it is enough to check that
H•(F) provides an effaceable (and hence universal) δ-functor.

To check that we have a δ-functor, fix an exact sequence 0 → F ′ → F → F ′′ → 0 of sheaves of abelian
groups on X, and then we note that each open subset V ⊆ Y produces a long exact sequence

0 → H0
(
f−1(V ),F ′|f−1(V )

)
→ H0

(
f−1(V ),F|f−1(V )

)
→ H0

(
f−1(V ),F ′′|f−1(V )

)
→ · · · .

Thus, the sequence of presheaves will be exact, so the sequence of sheaves fromH• will be exact upon taking
sheafification. This completes our construction of long exact sequence, making H• into a δ-functor.

It remains to check H• is effaceable. The point is that Ab(X) has enough injectives. Namely, any sheaf
can be embedded into an injective object I, so it will be enough to check that H•(I) = 0 in higher degrees.
Well, Lemma 4.5 tells us that I|f−1(V ) is injective when V ⊆ Y is open, so Hi

(
f−1(V ), I|f−1(V )

)
= 0 for

i > 0 and open V ⊆ Y , so Hi(I) = 0 for i > 0 by taking the sheafification of the zero presheaf. ■
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Corollary 5.17. Fix a continuous map f : X → Y of topological spaces. For any sheaf F onX of abelian
groups and open subset V ⊆ Y , we have

R•f∗F|V ∼= R•f∗
(
F|f−1(V )

)
.

Proof. Use Proposition 5.16 and note that the construction of the presheaf in the statement commutes
with restriction. Explicitly, constructing it for f : X → Y and then restricting to f−1(V ) produces the same
presheaf as constructing it for f : f−1(V ) → V . ■

Corollary 5.18. Fix a continuous map f : X → Y of topological spaces. If F is a flasque sheaf of abelian
groups on X, then Rif∗F = 0 for all i > 0.

Proof. Note that F|U is flasque for any openU ⊆ X by its definition, so because flasque sheaves are acyclic
by Lemma 1.69, we see that the presheaf given in Proposition 5.16 vanishes, so we are done. ■

Technically, we constructed R•f∗ for sheaves of abelian groups, but we may want to work with the functor
f∗ : Mod(OX) → Mod(Y OOY ) instead (e.g., in the case of schemes). This causes no problems.

Proposition 5.19. Fix a morphism f : (X,OX) → (Y,OY ) of ringed spaces. Then the higher direct im-
ages R•f∗ on Mod(OX) are the right-derived functors of the functor f∗ : Mod(OX) → Mod(OY ).

Proof. Repeat the proof of Proposition 1.70 because these two functors have a common set of acyclic ob-
jects given by flasque sheaves (by Corollary 5.18 combined with Lemma 1.68). ■

Proposition 5.16 provides some means to compute these higher direct images, but it will be helpful to have
more special cases.

Proposition 5.20. Fix a morphism f : X → Y of schemes. Assume that X is Noetherian and that Y =
SpecA is affine. Then for any quasicoherent sheaf F on X, we have

R•f∗F ∼= ˜H•(X,F).

Proof. We will show an isomorphism of δ-functors defined QCoh(X) → Mod(Y ). For our base case of this
isomorphism, we note that i = 0 has f∗F quasicoherent on Y , and its module of global sections is in fact
H0(X,F), so the isomorphism follows.

For the induction, we do the usual dimension-shifting. Embed F into a quasicoherent flasque sheaf G
on X, which is possible by Corollary 2.6, and let Q be the cokernel of this embedding, which will produce a
short exact sequence

0 → F → G → Q → 0.

Then Rif∗G = 0 for i > 0 by Corollary 5.18, and Hi(X,G) = 0 by Lemma 1.69, so for each i ≥ 0, we get the
following commutative diagram.

Rif∗G Rif∗Q Ri+1f∗F 0

˜Hi(X,G) ˜Hi(X,Q) ˜Hi+1(X,F) 0

Here, the right vertical map is induced, and the left square commutes with vertical isomorphisms by induc-
tion. Namely, granting the result for i, we achieve the result for i+ 1 by the uniqueness of the cokernel. ■
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Corollary 5.21. Let f : X → Y be a morphism of schemes. Assume that X is Noetherian. If F is a
quasicoherent sheaf on X, then R•f∗F is a quasicoherent sheaf on Y for any index.

Proof. Being quasicoherent can be checked on an affine open cover of Y . Because forming the higher direct
image commutes with restriction (see Corollary 5.17), we complete by Proposition 5.20. ■

Remark 5.22. If F is not quasicoherent, we of course cannot ask for R•f∗F to be quasicoherent. For
example, take f = idX and let F be any sheaf which fails to be quasicoherent.
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