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THEME 1
INTRODUCTION

1.1 February3

This lecture was given by Pavel Etingof, but the course will be taught by Roman Bezrukavnikov. Today, we
will review some ring theory. Almost everything will be the same as in usual (commutative) ring theory, so
we will be fast.

1.1.1 Basic Ring and Module Theory

This course is about non-commutative rings.

Definition 1.1. A ring R is an abelian group (R, +) equipped with a multiplication -: R x R — R which
is associative, unital, and distributive.

Warning 1.2. A ring in this course is not required to be commutative.

Example 1.3. Given aring R, there is an opposite ring R°P, which is the same underlying additive group
but has the opposite multiplicative structure: for any a°?, b°? € R°P, we define

a®? - b%P = (ba)P.
Example 1.4. For any ring R, there is aring M,,(R) of the n x n matrices with entries in R. The addition
and multiplication of matrices is as usual.

Here is are some special kinds of ring.

Definition 1.5 (skew field). A skew fieldis a ring R in which every nonzero element admits a multiplica-
tive inverse.

Remark1.6. If Risaskewfield, thenthe set R* of nonzero elementsin Risagroup under multiplication.

Rings are understood through the abelian category of modules they produce.
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Definition 1.7 (module). Fix a ring R. A left R-module is an abelian group M equipped with a bilinear
action map R x M — M which is

(a) associative: (ab)m = a(bm) forany a,b € Rand m € M, and
(b) unital: 1m = mforallm € M.

There is an analogous notion of a right R-module.

Remark 1.8. Thering R is both a left and right R-module, where the action is given by the multiplication
structure.

Warning 1.9. By convention a “module” is a left module.

Remark 1.10. A left R-module has equivalent data to a right R°?-module. The point is that we need to
reverse the elements of R appearing in the associativity check.

It will occasionally be useful to have both left and right actions.

Definition 1.11 (bimodule). Fix rings R and S. Then an (R, S)-bimodule is an abelian group M with
commuting left R-module and right S-module structures. In other words, M is both a left and right
R-module, and foranya € Rand b € Sandm € M, we have

a(mb) = (am)b.

If R =S, then we may refer to an (R, S)-bimodule as an R-bimodule.

Example 1.12. The ring R is an R-bimodule.

As usual, one can define relative notions.

Definition 1.13 (submodule). Fix a module M over a ring R. Then a left R-submodule N of M is an
abelian subgroup which is invariant under the R-action. There are analogous notions of right R-sub-
modules.

Definition 1.14 (quotient). Fix a submodule N of a module M over a ring R. Then we can give the quo-
tient abelian group M/N the structure of a quotient module via the R-action

r(m+ N) :=rm+ N.
We will not bother to check that these are in fact well-defined modules.

Definition 1.15 (ideal). Fix a ring R. Then a left ideal is a left R-submodule of R. Right ideals and two-
sided ideals are defined analogously.

Example 1.16. If [ is a left ideal, then R/I is a left R-module.

Remark 1.17. If I is a two-sided ideal, then R/I is a ring.

Having defined our objects, we may note that there are morphisms.
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Definition 1.18 (homomorphism). Fix rings R and S. Then a homomorphism ¢: R — S of rings is a
group homomorphism which preserves the multiplication and the unit. An isomorphismis an invertible
homomorphism.

Definition 1.19 (homomorphism). Fix R-modules M and N. Then a homomorphism ¢: M — N of
modules is a group homomorphism which preserves the R-module structures. An isomorphism is an
invertible homomorphism. An endomorphism is a homomorphism from a module to itself. There are
analogous notions for right R-modules and bimodules.

Example 1.20. For any module M of aring R, the set of endomorphisms is denoted End i M. Itisaring,
where the multiplication structure is given by composition. As usual, we will not check this.

Example 1.21. Consider a ring R as a left module over itself. Then the ring Endy R is isomorphic to
R°P. Indeed, the isomorphism R°? — Endg R is given by sending r to the endomorphism z — zr. The
inverse map sends an endomorphism ¢ to ¢(1).

One can, as usual, define kernels, images, and cokernels.

Definition 1.22 (direct sum). Fix a ring R. Given a family {M; },c of modules, we define the direct sum
D M
il

to consist of finitely supported sequences from each M,.

As usual, we will not bother to check that this is an R-module.

1.1.2 Invariant Basis Number

Bases only exist for free modules, which we should now define.

Definition 1.23 (free, rank). Fix a ring R. A free R-module is one isomorphic to the R-module @, _; R,
where I is some set. The rank of M, denoted rank M, is the cardinality |I|.

Of course, we do not know if the rank is well-defined!

Definition 1.24 (IBN). Fix a ring R. Then R satisfies the IBN property (i.e., the invariant basis property)
if and only if, for any sets I and J, if R and R’ are isomorphic, then I and J have the same cardinality.

Example 1.25. If R is a commutative field, then linear algebra shows that R satisfies IBN. The same
argument works for any skew fields R.

Non-Example 1.26. The ring (0) does not have IBN because (0) = (0) & (0).
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Non-Example 1.27. Let V be the direct sum vector space C®N. For each i € N, there is a basis vector
e; which is 1 at the ith coordinate and zero elsewhere. Now, consider the ring R := Endc¢ V; such an
endomorphism ¢ can be written as a matrix A defined by

90(61‘) = Z Ajiej-

jeN

Note that A has only finitely many nonzero entries in each column because A;; can only be nonzero for
finitely many j! Then R does not have IBN: set V, := C®Nand V_ = C!*?NsothatV = V, @ V_, but
there are isomorphisms V = V, = V_ of vector spaces. Thus, there are isomorphisms

Endc V = Home(Vy @ V2, V) = Home (V4, V) @ Home(V-, V) 2 Endc V @ Endc V
of left R-modules.
Remark 1.28. There are also examples of rings without IBN which admit no zero divisors, but this is
harder.

Let's check that some rings satisfy IBN.

Proposition 1.29. Fix a homomorphism ¢: R — S of rings. If S has IBN, then R has IBN.

Proof. Suppose that we have an isomorphism v: R®! — R®’ for two sets I and .J; let 1/~ be its inverse.
We want to show that |I| = | J|.

The idea is to pass the isomorphism 7 (and its inverse) to S. Let {e; };c be a basis of R®Z, and similarly
let {f;},cs be a basis of R®7. Then there are matrix coefficients {r;;}; and {s;; }:; for which

1/}(61) = Zrﬂfj and 1,[)71(‘](‘]‘) = Zsijei.

jed icl
We can now define 1: S®7 — §%7 and ¢y~1: §9/ — $®1 by using the same equations. Then ¢ o 1)~!

and ¥~ ! o 1) are the identities, which is just some equalities occurring on the matrix coefficients. Thus, we
conclude that 1) and 1y ~! are inverse isomorphisms, so the IBN property for S implies that |I| = | J|. |

Remark 1.30. Intuitively, we are basically extending scalars functorially from R to S.

Example 1.31. We show that any commutative ring has IBN. Indeed, any commutative ring R admits
a maximal ideal m for which R/m is a field. Now, R/m has IBN by Example 1.25, so we are done by
Proposition 1.29.

Here is a different sort of example.

Lemma 1.32. Fixaring R. If R has IBN, then M,,(R) has IBN.

Proof. Suppose that one has an isomorphism S/ = §9/ for some sets I and J. As an R-module, %! is
free of rank n? - |I|, and similar holds for S®7. Because R has IBN, we conclude that the cardinalities n? - |I|
and n? - |J| are equal, so |I| = | J| follows.! [ |

LIf I and J are finite, then the last equality follows by counting. If T and J are infinite, then instead we note that n2 |I| = |I|, which
is not hard to show using Cantor—Schroder—Bernstein theorem.
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Example 1.33. By Example 1.25, any skew field D has IBN. Thus, Lemma 1.32 implies that M,, (D) also
has IBN.

Remark 1.34. Here is an amusing application. By Non-Example 1.27, End¢ V does not have IBN, where
V = C®N. But M, (D) has IBN for any skew field D by Example 1.33. Thus, by Proposition 1.29, there
are no homomorphisms End¢ V' — M, (D)!

1.1.3 Recognizing Skew Fields

For our next big result, we note that it is sometimes possible to classify module categories easily.

Example 1.35. Fix a skew field D. The usual arguments in linear algebra show that every D-module is
free.

In fact, this property of modules recognizes skew fields!
Theorem 1.36. Fix a ring R. If every R-module is free, then R is a skew field.
To prove Theorem 1.36, we need Schur'’s lemma.

Definition 1.37 (irreducible). Fix a ring R. Then an R-module M is irreducible or simple if and only if it
is nonzero and admits no nonzero proper submodules.

Lemma 1.38 (Schur). Fix irreducible modules M and N for a ring R.

(@) Any homomorphism ¢: M — N is either zero or an isomorphism.

(b) Thering Endg M is a skew field.

Proof. Note that (b) follows from (a) by taking M = N. To show (a), it is enough to check that ¢ is a bijection
if nonzero. Well, it is enough to check that ¢ is injective and surjective.

« Forinjectivity, note ker ¢ C M is a proper submodule because ¢ is nonzero, so ker ¢ = 0 because M is
irreducible.

 For surjectivity, imy C N is a nonzero submodule because ¢ is nonzero, so imp = N because N is
irreducible. [ |

We will also need some constructions.

Lemma 1.39. Fix a nonzero ring R.
(@) Then R admits a simple module.
(b) Every proper left ideal is contained in a maximal left ideal.

(c) For any module M, a proper submodule N C M is maximal if and only if the quotient M/N is
simple.

Proof. We show each part separately.

(@) Thisfollows from (b)and (c): the R-module R admits a maximal submodule I by (b), so R/I isasimple
R-module by (c).
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(b) This is an application of Zorn's lemma. For example, to show (b), we can show more generally that,
for any finitely generated R-module M, any proper R-submodule N C M is contained in a maximal
ideal. Indeed, let F be the family of proper submodules of M containing N. Then F is partially ordered
by inclusion, and it is nonempty because it contains N. To show that 7 admits a maximal element, we
need to show that any ascending chain { N, },ca admits an upper bound. Well, consider

N = U N,.

aEA

Certainly N’ contains N and upper-bounds the chain, so it merely remains to check that N’ is proper.
For this, recall that M is finitely generated, so we may select a finite set of generators S C M. ltis
enough to check that S ¢ N’, which we show by contradiction: if S C N’, then each element of S lives
in some N,, so by taking maximums, there is § large enough so that S C Ng, from which M = Nj
follows, which is a contradiction.

Thus, Zorn’s lemma provides us with some maximal element N’ of 7. We can see that N’ is maximal
among submodules in F, but it is then not hard to see that in fact N’ is a maximal submodule.

(c) Onone hand, if M/N is simple, then any submodule E sitting between N and M descends to a sub-
module E/N C M/N.Thus, E/N =0(andso E = N)or E/N = M/N (and so E = M). Conversely, if
N C M is maximal, then any submodule E C M/N lifts to an R-submodule of M containing N. Thus,
E = N/N and sois zero, or E = M/N and so is everything. [ |

Remark 1.40. It is worthwhile to remember that we have shown that any finitely generated R-module
admits a maximal submodule and hence a simple quotient.

Non-Example 1.41. It is not in general true that infinitely generated modules have simple quotients.
Indeed, the Z-module Q has no simple quotient. Indeed, the simple Z-modules arise from the maximal
ideals of Z and are thus the fields F,, where p is prime. But there is no homomorphism Q — F, of groups
for any prime p because Q is divisible!

We are finally ready for our proof.

Proof of Theorem 1.36. Fix a simple R-module L, which exists by Lemma 1.39. Note that L cannot have
an R-submodule isomorphic to R? because then L would contain a smaller submodule isomorphic to R.
However, L is known to be free, so its rank must be 1, so we conclude that L = R.

Thus, R is simple as an R-module, so it follows that Endy R is a skew field by Lemma 1.38. Hence, R°P
is a skew field by Example 1.21, so R is a skew field as well. |

1.1.4 Semisimple Modules

We close our class by saying something about semisimple modules.

Definition 1.42 (semisimple). Fix a ring R. Then a semisimple module M is a module which is isomor-
phic to a direct sum of simple modules.

Lemma 1.43. Fix a ring R and a semisimple module M =
there is a subset J C I so that

ser M;. For any R-submodule N C M,

M=Na@P M.
JjeJ

Proof. For brevity, we define M; = @
construct J. We have two steps.

e M; for each subset J C I. The idea is to use Zorn's lemma to
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1. We use Zorn's lemma. Let F to be the collection of J for which M; N N = &, which we order by
inclusion. We now use Zorn's lemma to find a maximal element of F, which we note is nonempty (it
has &) and partially ordered by inclusion. It remains to show that F has upper bounds for all it chains.
Well, choose a chain {J, }aea, and we consider the set

J = U Ja.

acA

Certainly J’ is an upper bound for the chain, provided that we check that in fact M; " N = @&. We
want to show that any n € M; N N hasn = 0. Then note that n € M is only nonzero in finitely many
coordinates, so we merely have to find a € A large enough so that J, includes all these coordinates;
thenn € M; N N,son=0.

Thus, Zorn's lemma provides us with a maximal element J of F.

2. We complete the proof. Note M ;NN = 0 by construction, so it remainsto checkthat M;+N = M. Itis
enough to check that each copy of M; livesin M;+ N. Ifi € J, thereis nothing to do. Otherwise, i ¢ J,
so the maximality of J implies that M ;_;; N NV is nonempty. Thus, we can find some n € My NN,
and we see that it must have nonzero component in M;. By adding in an element from M, we see
that n + M includes an element m; whose only nonzero component is in M;. But M; is simple, so
Rm; = M;,soM; C N+ Mj. |



BIBLIOGRAPHY

[Shul6] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.

10



LIST OF DEFINITIONS

bimodule, 4 homomorphism, 5
left module, 4

direct sum, 5 right module, 4

free, 5
quotient, 4
homomorphism, 5, 5
IBN. 5 rank, 5
! ring
|deall,e4f1t ideal 4 homomorphism, 5
right ideal, 4 o
two-sided ideal, 4 sgmmmple, 8
irreducible, 7 simple, 7
skew field, 3
module, 4 submodule, 4

11



	Contents
	Introduction
	February 3
	Basic Ring and Module Theory
	Invariant Basis Number
	Recognizing Skew Fields
	Semisimple Modules


	Bibliography
	List of Definitions

