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THEME 1

INTRODUCTION

1.1 February 3

This lecture was given by Pavel Etingof, but the course will be taught by Roman Bezrukavnikov. Today, we
will review some ring theory. Almost everything will be the same as in usual (commutative) ring theory, so
we will be fast.

1.1.1 Basic Ring and Module Theory
This course is about non-commutative rings.

Definition 1.1. A ring R is an abelian group (R,+) equipped with a multiplication · : R × R → R which
is associative, unital, and distributive.

Warning 1.2. A ring in this course is not required to be commutative.

Example 1.3. Given a ringR, there is an opposite ringRop, which is the same underlying additive group
but has the opposite multiplicative structure: for any aop, bop ∈ Rop, we define

aop · bop := (ba)op.

Example 1.4. For any ringR, there is a ringMn(R) of the n× nmatrices with entries inR. The addition
and multiplication of matrices is as usual.

Here is are some special kinds of ring.

Definition 1.5 (skew field). A skew field is a ringR in which every nonzero element admits a multiplica-
tive inverse.

Remark 1.6. IfR is a skew field, then the setR× of nonzero elements inR is a group under multiplication.

Rings are understood through the abelian category of modules they produce.
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Definition 1.7 (module). Fix a ring R. A left R-module is an abelian group M equipped with a bilinear
action map R×M →M which is

(a) associative: (ab)m = a(bm) for any a, b ∈ R and m ∈M , and

(b) unital: 1m = m for all m ∈M .

There is an analogous notion of a right R-module.

Remark 1.8. The ringR is both a left and rightR-module, where the action is given by the multiplication
structure.

Warning 1.9. By convention a “module” is a left module.

Remark 1.10. A left R-module has equivalent data to a right Rop-module. The point is that we need to
reverse the elements of R appearing in the associativity check.

It will occasionally be useful to have both left and right actions.

Definition 1.11 (bimodule). Fix rings R and S. Then an (R,S)-bimodule is an abelian group M with
commuting left R-module and right S-module structures. In other words, M is both a left and right
R-module, and for any a ∈ R and b ∈ S and m ∈M , we have

a(mb) = (am)b.

If R = S, then we may refer to an (R,S)-bimodule as an R-bimodule.

Example 1.12. The ring R is an R-bimodule.

As usual, one can define relative notions.

Definition 1.13 (submodule). Fix a module M over a ring R. Then a left R-submodule N of M is an
abelian subgroup which is invariant under the R-action. There are analogous notions of right R-sub-
modules.

Definition 1.14 (quotient). Fix a submodule N of a module M over a ring R. Then we can give the quo-
tient abelian group M/N the structure of a quotient module via the R-action

r(m+N) := rm+N.

We will not bother to check that these are in fact well-defined modules.

Definition 1.15 (ideal). Fix a ring R. Then a left ideal is a left R-submodule of R. Right ideals and two-
sided ideals are defined analogously.

Example 1.16. If I is a left ideal, then R/I is a left R-module.

Remark 1.17. If I is a two-sided ideal, then R/I is a ring.

Having defined our objects, we may note that there are morphisms.
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Definition 1.18 (homomorphism). Fix rings R and S. Then a homomorphism ϕ : R → S of rings is a
group homomorphism which preserves the multiplication and the unit. An isomorphism is an invertible
homomorphism.

Definition 1.19 (homomorphism). Fix R-modules M and N . Then a homomorphism ϕ : M → N of
modules is a group homomorphism which preserves the R-module structures. An isomorphism is an
invertible homomorphism. An endomorphism is a homomorphism from a module to itself. There are
analogous notions for right R-modules and bimodules.

Example 1.20. For any moduleM of a ringR, the set of endomorphisms is denoted EndRM . It is a ring,
where the multiplication structure is given by composition. As usual, we will not check this.

Example 1.21. Consider a ring R as a left module over itself. Then the ring EndRR is isomorphic to
Rop. Indeed, the isomorphism Rop → EndRR is given by sending r to the endomorphism x 7→ xr. The
inverse map sends an endomorphism ϕ to ϕ(1).

One can, as usual, define kernels, images, and cokernels.

Definition 1.22 (direct sum). Fix a ring R. Given a family {Mi}i∈I of modules, we define the direct sum⊕
i∈I

Mi

to consist of finitely supported sequences from each Mi.

As usual, we will not bother to check that this is an R-module.

1.1.2 Invariant Basis Number

Bases only exist for free modules, which we should now define.

Definition 1.23 (free, rank). Fix a ring R. A free R-module is one isomorphic to the R-module
⊕

i∈I R,
where I is some set. The rank of M , denoted rankM , is the cardinality |I|.

Of course, we do not know if the rank is well-defined!

Definition 1.24 (IBN). Fix a ring R. Then R satisfies the IBN property (i.e., the invariant basis property)
if and only if, for any sets I and J , if RI and RJ are isomorphic, then I and J have the same cardinality.

Example 1.25. If R is a commutative field, then linear algebra shows that R satisfies IBN. The same
argument works for any skew fields R.

Non-Example 1.26. The ring (0) does not have IBN because (0) = (0)⊕ (0).
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Non-Example 1.27. Let V be the direct sum vector space C⊕N. For each i ∈ N, there is a basis vector
ei which is 1 at the ith coordinate and zero elsewhere. Now, consider the ring R := EndC V ; such an
endomorphism ϕ can be written as a matrix A defined by

ϕ(ei) =
∑
j∈N

Ajiej .

Note thatA has only finitely many nonzero entries in each column becauseAji can only be nonzero for
finitely many j! Then R does not have IBN: set V+ := C2N and V− := C1+2N so that V = V+ ⊕ V−, but
there are isomorphisms V ∼= V+

∼= V− of vector spaces. Thus, there are isomorphisms

EndC V = HomC(V+ ⊕ V−, V ) = HomC(V+, V )⊕HomC(V−, V ) ∼= EndC V ⊕ EndC V

of left R-modules.

Remark 1.28. There are also examples of rings without IBN which admit no zero divisors, but this is
harder.

Let’s check that some rings satisfy IBN.

Proposition 1.29. Fix a homomorphism ϕ : R→ S of rings. If S has IBN, then R has IBN.

Proof. Suppose that we have an isomorphism ψ : R⊕I → R⊕J for two sets I and J ; let ψ−1 be its inverse.
We want to show that |I| = |J |.

The idea is to pass the isomorphism ψ (and its inverse) to S. Let {ei}i∈I be a basis of R⊕I , and similarly
let {fj}j∈J be a basis of R⊕J . Then there are matrix coe�cients {rij}ij and {sij}ij for which

ψ(ei) =
∑
j∈J

rjifj and ψ−1(fj) =
∑
i∈I

sijei.

We can now define ψ̃ : S⊕I → S⊕J and ψ̃−1 : S⊕J → S⊕I by using the same equations. Then ψ ◦ ψ−1

and ψ−1 ◦ ψ are the identities, which is just some equalities occurring on the matrix coe�cients. Thus, we
conclude that ψ̃ and ψ̃−1 are inverse isomorphisms, so the IBN property for S implies that |I| = |J |. �

Remark 1.30. Intuitively, we are basically extending scalars functorially from R to S.

Example 1.31. We show that any commutative ring has IBN. Indeed, any commutative ring R admits
a maximal ideal m for which R/m is a field. Now, R/m has IBN by Example 1.25, so we are done by
Proposition 1.29.

Here is a di�erent sort of example.

Lemma 1.32. Fix a ring R. If R has IBN, then Mn(R) has IBN.

Proof. Suppose that one has an isomorphism S⊕I ∼= S⊕J for some sets I and J . As an R-module, S⊕I is
free of rank n2 · |I|, and similar holds for S⊕J . BecauseR has IBN, we conclude that the cardinalities n2 · |I|
and n2 · |J | are equal, so |I| = |J | follows.1 �

1 If I and J are finite, then the last equality follows by counting. If I and J are infinite, then instead we note that n2 |I| = |I|, which
is not hard to show using Cantor–Schröder–Bernstein theorem.
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Example 1.33. By Example 1.25, any skew fieldD has IBN. Thus, Lemma 1.32 implies thatMn(D) also
has IBN.

Remark 1.34. Here is an amusing application. By Non-Example 1.27, EndC V does not have IBN, where
V := C⊕N. But Mn(D) has IBN for any skew field D by Example 1.33. Thus, by Proposition 1.29, there
are no homomorphisms EndC V →Mn(D)!

1.1.3 Recognizing Skew Fields
For our next big result, we note that it is sometimes possible to classify module categories easily.

Example 1.35. Fix a skew field D. The usual arguments in linear algebra show that every D-module is
free.

In fact, this property of modules recognizes skew fields!

Theorem 1.36. Fix a ring R. If every R-module is free, then R is a skew field.

To prove Theorem 1.36, we need Schur’s lemma.

Definition 1.37 (irreducible). Fix a ring R. Then an R-module M is irreducible or simple if and only if it
is nonzero and admits no nonzero proper submodules.

Lemma 1.38 (Schur). Fix irreducible modules M and N for a ring R.

(a) Any homomorphism ϕ : M → N is either zero or an isomorphism.

(b) The ring EndRM is a skew field.

Proof. Note that (b) follows from (a) by takingM = N . To show (a), it is enough to check thatϕ is a bijection
if nonzero. Well, it is enough to check that ϕ is injective and surjective.

• For injectivity, note kerϕ ⊆M is a proper submodule because ϕ is nonzero, so kerϕ = 0 becauseM is
irreducible.

• For surjectivity, imϕ ⊆ N is a nonzero submodule because ϕ is nonzero, so imϕ = N because N is
irreducible. �

We will also need some constructions.

Lemma 1.39. Fix a nonzero ring R.

(a) Then R admits a simple module.

(b) Every proper left ideal is contained in a maximal left ideal.

(c) For any module M , a proper submodule N ⊆ M is maximal if and only if the quotient M/N is
simple.

Proof. We show each part separately.

(a) This follows from (b) and (c): theR-moduleR admits a maximal submodule I by (b), soR/I is a simple
R-module by (c).
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(b) This is an application of Zorn’s lemma. For example, to show (b), we can show more generally that,
for any finitely generated R-module M , any proper R-submodule N ⊆ M is contained in a maximal
ideal. Indeed, letF be the family of proper submodules ofM containingN . ThenF is partially ordered
by inclusion, and it is nonempty because it containsN . To show thatF admits a maximal element, we
need to show that any ascending chain {Nα}α∈Λ admits an upper bound. Well, consider

N ′ :=
⋃
α∈Λ

Nα.

Certainly N ′ contains N and upper-bounds the chain, so it merely remains to check that N ′ is proper.
For this, recall that M is finitely generated, so we may select a finite set of generators S ⊆ M . It is
enough to check that S 6⊆ N ′, which we show by contradiction: if S ⊆ N ′, then each element of S lives
in some Nα, so by taking maximums, there is β large enough so that S ⊆ Nβ , from which M = Nβ
follows, which is a contradiction.
Thus, Zorn’s lemma provides us with some maximal element N ′ of F . We can see that N ′ is maximal
among submodules in F , but it is then not hard to see that in fact N ′ is a maximal submodule.

(c) On one hand, if M/N is simple, then any submodule E sitting between N and M descends to a sub-
moduleE/N ⊆M/N . Thus,E/N = 0 (and soE = N ) orE/N = M/N (and soE = M ). Conversely, if
N ⊆M is maximal, then any submoduleE ⊆M/N lifts to anR-submodule ofM containingN . Thus,
E = N/N and so is zero, or E = M/N and so is everything. �

Remark 1.40. It is worthwhile to remember that we have shown that any finitely generated R-module
admits a maximal submodule and hence a simple quotient.

Non-Example 1.41. It is not in general true that infinitely generated modules have simple quotients.
Indeed, the Z-module Q has no simple quotient. Indeed, the simple Z-modules arise from the maximal
ideals ofZ and are thus the fieldsFp where p is prime. But there is no homomorphismQ→ Fp of groups
for any prime p because Q is divisible!

We are finally ready for our proof.

Proof of Theorem 1.36. Fix a simple R-module L, which exists by Lemma 1.39. Note that L cannot have
an R-submodule isomorphic to R2 because then L would contain a smaller submodule isomorphic to R.
However, L is known to be free, so its rank must be 1, so we conclude that L ∼= R.

Thus, R is simple as an R-module, so it follows that EndRR is a skew field by Lemma 1.38. Hence, Rop

is a skew field by Example 1.21, so R is a skew field as well. �

1.1.4 Semisimple Modules
We close our class by saying something about semisimple modules.

Definition 1.42 (semisimple). Fix a ring R. Then a semisimple module M is a module which is isomor-
phic to a direct sum of simple modules.

Lemma 1.43. Fix a ring R and a semisimple module M =
⊕

i∈IMi. For any R-submodule N ⊆ M ,
there is a subset J ⊆ I so that

M = N ⊕
⊕
j∈J

Mj .

Proof. For brevity, we define MJ :=
⊕

j∈JMj for each subset J ⊆ I. The idea is to use Zorn’s lemma to
construct J . We have two steps.
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1. We use Zorn’s lemma. Let F to be the collection of J for which MJ ∩ N = ∅, which we order by
inclusion. We now use Zorn’s lemma to find a maximal element of F , which we note is nonempty (it
has ∅) and partially ordered by inclusion. It remains to show thatF has upper bounds for all it chains.
Well, choose a chain {Jα}α∈Λ, and we consider the set

J ′ :=
⋃
α∈Λ

Jα.

Certainly J ′ is an upper bound for the chain, provided that we check that in fact MJ ∩ N = ∅. We
want to show that any n ∈ MJ ∩N has n = 0. Then note that n ∈ M is only nonzero in finitely many
coordinates, so we merely have to find α ∈ Λ large enough so that Jα includes all these coordinates;
then n ∈MJα ∩N , so n = 0.
Thus, Zorn’s lemma provides us with a maximal element J of F .

2. We complete the proof. NoteMJ∩N = 0 by construction, so it remains to check thatMJ+N = M . It is
enough to check that each copy ofMi lives inMJ +N . If i ∈ J , there is nothing to do. Otherwise, i /∈ J ,
so the maximality of J implies thatMJ∪{i} ∩N is nonempty. Thus, we can find some n ∈MJ∪{i} ∩N ,
and we see that it must have nonzero component in Mi. By adding in an element from MJ , we see
that n + MJ includes an element mi whose only nonzero component is in Mi. But Mi is simple, so
Rmi = Mi, so Mi ⊆ N +MJ . �
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