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THEME 1

DE RHAM COHOMOLOGY IN MIXED
CHARACTERISTIC

These talks were given by Alexander Petrov.

1.1 February 2

Here we go.

1.1.1 Algebraic de Rham Cohomology

Let’s begin by describing what we mean by de Rham cohomology. We will consider a smooth varietyX over
an algebraically closed field F .

Definition 1.1 (smooth). We say that a variety X over a field F is smooth if and only if ΩX/F is a vector
bundle of rank dimX on each connected component. Here, on an a�ne open subsetU ⊆ X, recall that
ΩX/F (U) is spanned by symbols of the form f dg, where the symbol d is (as usual)F -linear and satisfies
the Leibniz rule.

Definition 1.2 (algebraic de Rham cohomology). Fix a smooth variety X over a field F . Then one can
iterate the F -linear map d : OX → ΩX/F to a map d : Ωi

X/F → Ωi+1
X/F for each i, where Ωi

X/F
:= ∧iΩX/F .

We now define the de Rham complex to the complex

Ω•X/F : 0→ OX
d→ Ω1

X/F
d→ · · · ,

and we define the de Rham cohomology Hn
dR(X/F ) to be the nth hypercohomology of Ω•X/F . Here, hy-

percohomology means the total cohomology of some produced acyclic double complex which resolves
the complex (e.g., a Čech resolution). Note that this hypercohomology is merely a vector space over F .

Example 1.3. The map d : Ω1
X/F → Ω2

X/F is given by d(f dg) = df ∧ dg.
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1.1. FEBRUARY 2 18.708: TOPICS IN ALGEBRA

Example 1.4. Suppose thatX is a�ne. Then vector bundles are already acyclic, so the hypercohomology
does nothing. Thus,

Hn
dR(X/F ) = Hn

(
X; 0→ OX

d→ Ω1
X/F

d→ · · ·
)
.

As usual, this is ker (d|Ωn) / im (d|Ωn−1).

Remark 1.5. If X is a�ne and i > dimX, then Ωi
X/F vanishes, so the algebraic de Rham cohomology

also vanishes.

Remark 1.6. A di�erent definition is required for non-smoothX. Roughly speaking, one should embed
into a smooth variety and take cohomology there.

Here is one way to convince ourselves that this is a reasonable cohomology theory.

Theorem 1.7 (Grothendieck). Suppose thatX is a smooth variety over C. Then there is a canonical iso-
morphism

Hn
B(X(C);C)→ Hn

dR(X/C).

Here, the left-hand side is Betti cohomology (also called singular cohomology).

Sketch. We argue in the case that X is a�ne. Then X(C) already has a notion of Ωi,an
X/C given by the holo-

morphic forms. Algebraic forms embed into holomorphic ones, which produces a morphism

0 OX(X) Ω1
X/C(X) Ω2

X/C(X) · · ·

0 Oan
X (X) Ω1,an

X/C(X) Ω2,an
X/C(X) · · ·

of complexes. It then turns out that this is an isomorphism on cohomology, so we reduce to comparing
analytic de Rham cohomology with singular cohomology.

This is now a problem of analysis. One can pass from holomorphic di�erentials to smooth di�erentials
via a similar process, which produces another morphism

0 Oan
X (X) Ω1,an

X/C(X) Ω2,an
X/C(X) · · ·

0 C∞(X(C),C) Ω1
C∞(X(C)) Ω2

C∞(X(C)) · · ·

of complexes, which is also an isomorphism on complexes. We are now reduced to the setting of de Rham’s
theorem for real manifolds. �

Example 1.8. Consider X := A1
C \ {0} = Spec k[t, 1/t].

• Our di�erential map d : C[t, 1/t] → C[t, 1/t] dt sends tn to ntn−1 dt. Thus, H0
dR(X) is one-dimen-

sional given by the constants, and H1
dR(X) is one-dimensional spanned by dt/t.

• The point above works also for holomorphic di�erentials. The interesting bit is in degree 1, where
the point is that there is no global antiderivative for dx/x.

• On the other hand,X(C) = C \ {0} is homotopy equivalent to the circle, so we expect its singular
cohomology to be supported in degrees 0 and 1, where it should be one-dimensional.
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Corollary 1.9 (Artin vanishing). IfX is an a�ne algebraic complex smooth variety, then Hn(X(C);C) = 0
for n > dimX.

Proof. The algebraic de Rham cohomology complex vanishes above dimX. �

Corollary 1.10. Fix a smooth variety X over C. Then Hn
dR(X/C) is finite-dimensional.

Proof. Pass to singular cohomology. �

Remark 1.11. This corollary still admits algebraic proofs in characteristic zero by working with holo-
nomic D-modules. Pavel Etingof claims that there is an algebraic proof using the fact that the direct
image of a holonomicD-module is a holonomicD-module.

We would like to point out that our de Rham cohomology is algebraic but still interesting.

Remark 1.12. Suppose that X is smooth over Q. Base-changing by a field is exact, so

Hn
dR(X/Q)C ∼= Hn

dR(XC/C).

However, Theorem 1.7 grants an isomorphism to Hn(X(C);C) ∼= Hn
B(X(C);Z)C. Notably, we then find

a lattice and a rational structure over in some complex vector space, but the comparison between the
two is quite interesting mathematically (and amounts to the study of periods).

Example 1.13. In the case thatX = A1
Q \ {0}, the comparison between H1

dR(X/Q)C and H1
B(X(C);Z) is

mediated by a constant 2πi. Indeed, once unwinds the de Rham theorem, this amounts to the statement
that a contour integral of dx/x going once around the origin is 2πi.

1.1.2 Frobenius Structure
We now pass to positive characteristic. Let k be a perfect field of positive characteristic p, and we may still
consider a smooth variety X.

Remark 1.14. If k is perfect, then Ω1
X/k = Ω1

X/Fp
by doing some thinking about inseparable extensions.

The moral is that
y1/p dy = d

(
(y1/p)p

)
,

so the coe�cients can be brought down when everything is a pth power.

This cohomology is rather strangely behaved.

Example 1.15. TakeX := A1
k. The de Rham cohomology still lives in degrees zero and one, so we would

like to study the kernel and cokernel of the k-linear map d : k[t]→ k[t] dt given by tn 7→ ntn−1.

• We see that H0
dR(A1

k/k) = ker d is spanned by tpi for each i.

• We see that H1
dR(A1

k/k) = im d is infinite-dimensional because the di�erentials tmp−1 dt fail to be
in the image. In fact, these classes form a basis.
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Let’s try to view these infinite-dimensional groups as a feature instead of a bug. Indeed, it turns out that the
de Rham complex has some extra structure. The de Rham complex

0→ OX
d→ Ω1

X/k
d→ Ω2

X/k
d→ · · ·

is merely made of sheaves of k-vector spaces overX. In characteristic zero, this is all the structure present,
but in characteristic p, we have more structure.

Notation 1.16. Fix a varietyX over a field k of characteristic p. For a sheafF ofOX-modules, we define

Fp := {fp : f ∈ OX}

to locally be given by the pth powers.

The moral is that d(fp) = 0 always, so the de Rham complex is in fact Op
X-linear! Let’s attempt to codify

this.

Definition 1.17 (relative Frobenius). Fix a scheme X over a field k of characteristic p. Then there is an
absolute Frobenius Fabs : X → X which is the identity on topological spaces and the pth power on
sheaves. This is a morphism of schemes but not of k-schemes (in general). The relative Frobenius
F : X → X(1) is the morphism fitting into the following diagram.

X

X(1) X

k k

Fabs

y

Fabs

Remark 1.18. Note thatX(p) is isomorphic toX as a scheme but not as a k-scheme! However, we now
benefit because the relative Frobenius F is morphism of k-schemes.

Remark 1.19. The relative Frobenius F : X → X(1) is finite flat of degree pdimX

Example 1.20. IfX = Spec k[t1, . . . , tn], thenX(1) = Spec k [tp1, . . . , t
p
n]. Thus, we see that the embedding

k [tp1, . . . , t
p
n] ⊆ k[t1, . . . , tn]

is indeed finite flat of degree pn.

We now see that
0→ F∗OX

d→ F∗Ω
1
X/k

d→ F∗Ω
2
X/F → · · ·

is a complex of quasicoherent sheaves on X(1). In fact, because F is finite flat, these are all vector bun-
dles: F∗OX has rank pdimX and F∗Ωi

X/k has rank pdimX
(

dimX
i

)
. BecauseOX(1) = (F∗OX)p, we see that this

complex is in factOX(1)-linear.

Example 1.21. Take X = Spec k[t]. Then X(1) := Spec k [tp], and d : k[t] → k[t] dt is k [tp]-linear! Thus,
Hi

dR(X/k) was required to be given by k [tp]-modules, which explains why we received vector spaces of
infinite dimension.

6



1.1. FEBRUARY 2 18.708: TOPICS IN ALGEBRA

Note that passing through F∗ is not going to adjust the underlying k-vector spaces, so

Hn
dR(X/k) = Hn

Zar

(
X(1); 0→ F∗OX

d→ F∗Ω
1
X/k

d→ F∗Ω
2
X/k

d→ · · ·
)
.

To see why this has globalized theOp
X-linearity, we need the Cartier isomorphism.

Theorem 1.22 (Cartier isomorphism). Fix a smooth variety X over a perfect field k. Then there is a
canonical isomorphism

Hi(F∗Ω
•
X) ∼= Ωi

X(1) .

Here, the left-hand side is a coherentOX(1)-module.

Remark 1.23. This is a reason why characteristic p may be more convenient than characteristic 0: one
could still try to understandHi(Ω•X/k) when char k = 0, but this has no easy answer.

Example 1.24. Consider X = A1
k. ThenH1 is given by the module

k[t] dt

d(k[t])
,

which our formalism now remembers is a k [tp]-module. And indeed, we can show that this is iso-
morphic to k [tp] · tp−1 dt. Setting s := tp, we know that Ω1

X(1)/k
is given by the module k[s] ds, so our

isomorphism of modules is given by sending ds to tp−1 dt. One can even check that this isomorphism is
canonical in the sense that it will not change under automorphisms of A1.

We will prove Theorem 1.22 later after a detour.

1.1.3 Crystalline Cohomology

We continue with our perfect field k of positive characteristic p. Our story so far has taken a variety X over
a field k, and then we have produced some (total) complex RΓdR(X/k) in the derived category D(Veck).
Crystalline cohomology will allow us to produce an answer in characteristic 0 instead of characteristic p.
The idea is to “choose” a lift to characteristic p and then check that the answer is independent of the lift.

The correct formalism for this lifting is that of a “formal scheme.”

Definition 1.25 (Witt ring). Fix a perfect field k of characteristic p. Then there is a ring W (k) satisfying
that

• W (k) is p-torsion-free,

• W (k)/p ∼= k, and

• W (k) is the limit of the W (k)/pn as n→∞.

This ring W (k) turns out to be unique up to unique isomorphism. We may write Wn(k) := W (k)/pn.

Example 1.26. One can see that W (Fp) = Zp and W (Fp) is its unramified closure.
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Remark 1.27. There is a completely explicit construction of W (k), but it is rather involved: given a p-
torsion-free ring R, we identify W (R) := RN but with ring structure chosen so that

(a0, a1, a2, . . .) 7→ ap
n

0 + pap
n−1

1 + · · ·+ pnan

is a ring homomorphism W (R) → R. It turns out that this ring structure is given by some polynomials
(called “ghost coordinates”), so we are allowed to define W (k). From a higher level, it turns out that
W (k) is the unique deformation of k, which exists because Ω1

k/Fp
= 0.

Definition 1.28 (formal scheme). Fix a perfect field k of characteristic p. A p-adic formal schemeX is a
collection of schemes Xn over Wn(k) equipped with isomorphisms

Xn+1 ×Wn+1(k) Wn(k)→ Xn.

The structure sheaf ÔX is the inverse limit of theOXn
s.

Example 1.29. Given a scheme X over W (k), we can produce a formal scheme Ŷ with Ŷn := Y ×W (k)

Wn(k) and the induced internal isomorphisms.

Remark 1.30. We can even define Ω̂X1
X̃

.

We can now describe crystalline cohomology.

Theorem 1.31. Fix a perfect field k of positive characteristic p. Then there is a functor sending smooth k-
varietiesX to a complex RΓcris(X/W (k)) in the derived categoryD(ModW (k)) satisfying the following.

(a) There is a quasi-isomorphism RΓcris(X/W (k))⊗L
W (k) k

∼= RΓdR(X/k).

(b) If X̃ is a smooth formal scheme overW (k) (meaning that X̃n is smooth overWn(k) for all n), then

RΓcris(X1/W (k)) ∼= RΓZar

(
X; ÔX̃

d→ Ω̂1
X̃

d→ · · ·
)

Remark 1.32. Here, (a) immediately tells us that the cohomology of RΓcris(X/W (k)) is not expected to
be finitely generated.

Remark 1.33. There is something remarkable here, which is that choosing two di�erent lifts of X to a
smooth formal scheme produces the same cohomology!

Remark 1.34. It turns out that flatness is equivalent to smoothness in this context.
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