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THEME 1
INTRODUCTION

1.1 February2

Here we go.

1.1.1 Review of Lie Groups

We start with some quick review. Here are our groups.

Definition 1.1 (Lie group). A Lie group is a group object G in the category of manifolds. One may specify
a “real” or "complex” Lie group, which means that we are taking the category of real or complex mani-
folds. Explicitly, we are asking for G to be equipped with regular maps m: G x G — G, i: G — G, and
an identity. A homomorphism of Lie groups is a morphism of the group objects.

Example 1.2. One has the usual examples: R™, U(n), Sp,,,(R), O(p, ¢), and SU(n) are all real Lie groups.
Example 1.3. There are classical groups over C, such as SL,,(C), which are all Lie groups.
Definition 1.4. If G is a Lie group, then its connected component G° is a normal Lie subgroup.

Remark 1.5. The quotient moG := G/G° is a discrete topological group.

Remark 1.6. Given a Lie group G, the universal cover G — G can be checked to a Lie group via some
universal properties, so we receive a homomorphism 7: G — G. It turns out that the kernel is a central
discrete subgroup Z C G. It notably follows that 71 (G) is abelian.

Remark 1.7. One can check that G° is generated by any open neighborhood of the identity. Indeed, the
generated subgroup can be seen to be both open and closed.

Example 1.8. With G = S!, we have the universal cover G = R, and the kernelis Z C R.

We also have subgroups.
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Definition 1.9 (Lie subgroup). A Lie subgroup is an immersed submanifold H C G which is also a sub-
group, meaning that H < G admits injective differentials. A closed Lie subgroup is an embedded
submanifold H C G which is also a subgroup.

Remark 1.10. It turns out that closed Lie subgroups are in fact closed subsets, which can be checked
locally.

Example 1.11. The subgroup Q™ C R is a Lie subgroup, but it is not a closed Lie subgroup. The only
closed Li subgroups are vector spaces.

Example 1.12. The subgroup O,,(R) C GL,(R) is a closed real Lie subgroup.

Remark 1.13. It turns out that a closed subgroup of G is in fact a closed Lie subgroup. We will prove
this later in the semester.

Definition 1.14 (quotient). Fix a closed Lie subgroup H C G. Then G/H is a manifold with transitive
G-action. If H is normal, then G/ H is further a Lie group.

Remark 1.15. In general, if G acts transitively on a manifold X, then for any 2 € X, Stabg(z) C Gisa
closed Lie subgroup, and the quotient is isomorphic to X.

Remark 1.16. If G acts on a space X which is not transitive, then for any x € X, the subset Gz C X is
at least an immersed submanifold.

Example 1.17. The group R has an action on R?/Z2 by t: 2 + tx. The orbit of (say), (1/2,v/2/2) is an
immersed but not closed submanifold.

Definition 1.18 (representation). Fix a Lie group G. A representation of a Lie group is a homomorphism
G — GL,(C).

Example 1.19. Let G act on itself by conjugation. Then each g € G acts on T1G — T1G, so we receive
an adjoint representation Ad.: G — GL(T1G).

As usual, one can define morphisms of representations, subrepresentations, direct sums, duals, tensor
products, irreducible representations, and so on. We also have a Schur’s lemma.

Lemma 1.20. Fix irreducible representations V and W of G.
(@) Then a G-equivariant map ¢: V — W is either zero or an isomorphism.

(b) Any G-equivariant map A — A is ascalar.

Proof. Omitted. [ |
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Definition 1.21 (unitary). A unitary representation is one admitting a G-invariant positive-definite Her-
mitian form.

Remark 1.22. Any unitary representation admits a decomposition into irreducible representations by
taking orthogonal complements.

Non-Example 1.23. Let B C GL2(C) be the subgroup of upper-triangular matrices. Then the standard
representation of B does not admit a decomposition into irreducibles, so it cannot be made unitary.

Example 1.24. If G is finite, then any representation V admits a unitary structure: given any unitary
structure (—, —)o, one can define an invariant unitary structure

1
(v, w) = @ Z(gv,gw>o,

geG

where dg is a choice of Haar measure.

Theorem 1.25 (Maschke). Fix a finite group G. Then all representations admit decomposition into irre-
ducible representations.

Proof. This follows from Example 1.24. |
1.1.2 Review of Lie Algebras

We now linearize our story.

Remark 1.26. Note that G acts on itself by left translations /,, so the tangent bundle T'G can be given a
global frame by the induced isomorphisms d/,: T'G — T,G.

Notation 1.27. For each a € T1G, we define the vector field L, by

L, =gacT,G.
Remark 1.28. One can check that all left-invariant vector fields take the form L,.

Definition 1.29 (commutator). Fix a Lie group G. For each a,b € T1G, we may take the commutator
[La, Ly)] to produce another left-invariant vector field, which we label L, ;).

Remark 1.30. The formalism of the commutator tells us that [—, —] is antisymmetric and satisfies the
Jacobi identity
[a, [b, ]] + [b, [e, al] + [c, [a, b]] = 0.

Definition 1.31 (Lie algebra). Fix a vector space g over afield k. Then a Lie algebrais such a vector space
g equipped with an antisymmetric pairing [—, —]: g X g — g satisfying the Jacobi identity

[a, [b, )] + [b, [c, a]] + [c, [a, b]] = 0.
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Example 1.32. For any Lie group G, we have seen that we may equip Lie G := TG with the structure of
a Lie group.
Example 1.33. If G = GL,,(C), then g = M,,(C), and one can check that [X,Y] = XY — Y X.

We now define Lie subalgebras and morphisms of Lie algebras in the expected way.

Definition 1.34 (Lie ideal). Fix a Lie algebra g. Then a Lie ideal ) C g is a subspace for which [f, g] C b.

Example 1.35. For any closed Lie subgroup H C G, we see that Lie H C Lie G is a Lie subalgebra. If H
is normal, then Lie H is a Lie ideal.

As expected, there is some representation theory.
Definition 1.36. Fix a Lie algebra g over a field k. Then a representation of g is a morphism g — gl,, (k).
One can relate Lie G to G more directly via exponentiation.

Definition 1.37 (exponential). Fix a Lie group G with Lie algebra g. We define a map exp: g — G as
follows. For each a € g, one can check that the differential equation

{e’(t) = e(t) - a,
e(0) =1,

admits a unique solution; we then define exp(ta) := e(t). (This is independent of the choice of ¢.) It turns
out that ¢ — exp(ta) is a group homomorphism.

Example 1.38. If G = GL,,(C), then exp: M,,(C) — GL,(C) is the usual matrix exponential.

Remark 1.39. It turns out that exp is a local diffeomorphism (though not necessarily injective), so there
isalocalinverselog: U — g, where U is some open neighborhood of the identity.

Remark 1.40. For small @ and b, it turns out that
1
log(exp(a) exp(b)) =a+b+ 5[04, b] +e
where - - - denotes cubic terms. For example, if G is commutative, then we see that the Lie bracket [—, —]

vanishes; conversely, if [—, —] vanishes, then G can be checked to commute in an open neighborhood of
the identity, so G commutes.

1.1.3 Fundamental Theorems

In a first course, one checks the following two fundamental theorems.

Theorem 1.41. Fix a Lie group G. Then there is a bijection between connected closed Lie subgroups
H C G and Lie subalgebras ) C LieG.
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Theorem 1.42. Fix Lie groups G and K, with G simply connected. Then taking the differential
Hom(G, K) — Hom(Lie G, Lie K)

is an isomorphism.

There is a third fundamental theorem, which we will prove later.

Theorem 1.43. For any finite-dimensional Lie algebra g (over R or C), then there is a Lie group G with
LieG & g.

The three theorems provide an equivalence between the category of simply connected Lie groups and the
category of Lie algebras, thereby classifying the former.

Remark 1.44. It follows that one may classify connected Lie groups as quotients of simply connected
Lie groups by discrete central subgroups.

1.1.4 Representations of Lie Algebras

Let's start with the representation theory of sl5(C).

Theorem 1.45. Fix the usual basis e := [§ }], f :=[{ 3], and h := [e, f] of sI5(C).

(@) Then allirreducible representations of sl;(C) can be parameterized as {V,,},,>0, where V,, is the
representation of homogeneous polynomials in z and y of degree n.

(b) Every representation is a direct sum of irreducible representations.
(c) Clebsch—Gordon rule: for any n and m, we have
min{m,n}
Vo ® Vi = @ Vv\mfn\Jr%-
=0
It will be helpful to turn representation theory of Lie algebras into a module category.
Definition 1.46 (universal enveloping algebra). Fix a Lie algebra g. Then we define Ug as the quotient of

the tensor algebra by the relation
[z, =2R@y-y®z.

Remark 1.47. It turns out that Rep g is the same category as Mod Ug.

Even though we have taken a quotient by an inhomogeneous relation, Ug still receives a natural filtration by
degree.

Theorem 1.48 (Poincaré—Birkhoff—Witt). Fix a Lie algebra g, and equip Ug with the natural filtration.
For any basis {x1,...,z,} of g, the ordered monomials in the basis form a basis of Ug.

To continue our story, we need some adjectives for Lie algebras.
Definition 1.49 (solvable). A Lie algebra gis solvable if and only if the derived series eventually vanishes.

Here, the derived series is defined inductively by D°(g) := g and D"*(g) = [D"(g), D"(g)] for each
n > 0.
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Definition 1.50 (nilpotent). A Lie algebra g is nilpotent if and only if the lower central series eventually
vanishes. Here, the derived series is defined inductively by Ly(g) := gand L,,+1(g) := [L.(g), g] for each
n > 0.

Remark 1.51. One can see that nilpotent implies solvable.

The representation theory of solvable Lie algebras is quite easy.

Theorem 1.52 (Lie). Fix a finite-dimensional solvable Lie algebra g over an algebraically closed field of
characteristic zero.

(@) Then every irreducible representation of g is one-dimensional.

(b) Every representation admits a basis on which g acts by upper-triangular matrices.

Theorem 1.53 (Engel). Fixa finite-dimensional Lie algebra g. Then gis nilpotentifandonlyifadx: g — g
is nilpotent forall X € g.

Thus, we see that we will want to ignore solvable and nilpotent pieces.

Definition 1.54 (radical). Fix a Lie algebra g. Then the radicalrad g is the sum of all solvable ideals of g.
Remark 1.55. One can check thatrad gis a solvable ideal, so it is automatically the largest solvable ideal.
Definition 1.56 (semisimple). Fix a Lie algebra g. Then g is semisimple if and only if rad g = 0.

Remark 1.57. It turns out that g

rad g

Oss =

is always semisimple. It turns out that the induced exact sequence splits, so there is a decomposition
g = gss X rad g, which is known as the Levi decomposition; we will prove this later.

Having defined semisimple, we should define “simple.”

Definition 1.58 (simple). A Lie algebra g is simple if and only if its only ideals are 0 and g.

Remark 1.59. One can check that semisimple Lie algebras are precisely the sums of simple Lie algebras.

It turns out to be convenient to allow a little radical.

Definition 1.60 (reductive). A Lie algebra g is reductive if and only if its radical is its center.

Example 1.61. One can check that s[,,(C) is simple, and gl,,(C) is reductive.
To test for a Lie algebra being semisimple (and other adjectives), we introduce the Killing form.

Definition 1.62 (Killing form). Fix a Lie algebra g. Then we define the Killing form by

K(z,y) = tr(ady o ady).
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Remark 1.63. One can check that K is g-invariant.

Theorem 1.64 (Cartan criteria). Fix a Lie algebra g.
(a) gissolvableifandonlyif [g,g] C K.

(b) gis semisimple if and only if K is non-degenerate.

Proposition 1.65. A Lie algebra g is reductive if and only if it admits a representation p: g — gl(V') for
which the bilinear form

BV(X7Y) = tr(px o py)

is non-degenerate.

We may as well state one of the main theorems of our representation theory.

Theorem 1.66. Every finite-dimensional representation of a semisimple Lie algebra is completely re-
ducible.

1.1.5 Structure Theory of Lie Algebras

Here is another piece of structure theory.

Definition 1.67 (adjoint). Fix a semisimple Lie algebra g. Then we define the adjoint Lie group G4 by
G2 := Aut(g)° C GL(g).

Remark 1.68. It turns out that Lie G4 = g.

In our setting, one can generalize the Jordan decomposition.

Definition 1.69 (semisimple, nilpotent). An element X € gis semisimple or nilpotent if and only if the
operator adx X is.

Theorem 1.70. Fix a Lie algebra g. Then any X € g can be written uniquely as a sum of a semisimple
and nilpotent element.

Remark 1.71. It turns out that semisimple elements always act semisimply on representations, and
nilpotent elements always act nilpotently on representations.

The notion of semisimple elements is important to define Cartan subalgebras.

Definition 1.72 (Cartan). Fix a semisimple Lie algebra g. Then a Cartan subalgebra is a maximal com-
mutative subalgebra of

Proposition 1.73. Fix a semisimple Lie algebra g. All Cartan subalgebras are conjugate by G4,
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Definition 1.74. Fix a semisimple Lie algebra g. Then the rank of g is the dimension of the Cartan sub-
algebras.

A choice of Cartan subalgebra  C g produces a root decomposition, which we write as

g=b® P oo

ach*\{0}

Definition 1.75 (root system). Fix a semisimple Lie algebra g and a Cartan subalgebra b C g. Then the
root system of g consists of those nonzero eigenvalues a € h* for the adjoint action of h on g. We write
go for this eigenspace, and we write ®(G) for the root system.

Remark 1.76. One can check that [g, gs] C g[a,g]- In fact, go and gg are orthogonal for the Killing form
except when a = —f3, where it is a perfect pairing.

Remark 1.77. It turns out that dim g, = 1 for each «. It follows that

#®(g) = dim g — rank g.

Remark 1.78. There are the usual pictures of root systems of various types.

1.1.6 Root Systems

It is useful to write down what properties are satisfied by these root systems.

Definition 1.79 (root system). Fix a Euclidean space E. Then a finite subset ® C FE is a root system if
and only if

(@) ® spans E,

(b) foreach a, 8 € ®, the number
2(a, B)

n =
T ()

is an integer,

(c) foreach a, 8 € ®, the reflection
sa(B) = B —napB

isin ®.

We say that @ is reduced if and only if & € ® implies that 2« ¢ ®.

Definition 1.80. A root system & is reducible if and only if it can be written as a disjoint union of root
systems coming from a decomposition of the Euclidean space into a product of Euclidean spaces.

The reflections are important enough to be placed into a group.

Definition 1.81 (Weyl group). Fix a root system ® C E. Then the Weyl group W is the subgroup of
GL(FE) generated by the reflections.

10
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Example 1.82. The Weyl group associated to the root system of sl,,.; consists of the permutation ma-
trices in GL,,(R). Indeed, each reflection corresponds to a transposition. This root system is said to be
of type A,,, where n refers to the rank.

Example 1.83. The root system associated to s02,11 is B,,. The root system associated to sp,,, is C,,.
Lastly, the root system associated to sos,, is D,,.

Remark 1.84. There are also various exceptional reduced root systems, which we may say something
about later.

We can even break down irreducible root systems into more controlled pieces.

Definition 1.85 (positive). Fix a root system ® C E. For a choice of t € E for which (¢, «) # 0 for all
a € E, we say that a root in @ is positive if and only if (¢,«) > 0. Similarly, « is negative if and only if
(t,a) < 0. We let T and &~ denote the sets of positive and negative roots, respectively.

Definition 1.86. Fix a root system ® C E. A positive root is simple if and only if it is not a sum of other
positive roots (with positive integer coefficients). We let IT denote the set of simple roots.

Proposition 1.87. Fix a root system ® C E. Then Il is a basis, and every positive root « € ®* can be
written as a unique sum of elements of II with positive integer coefficients.

Each root system also admits a dual.

Definition 1.88 (dual root system). Fix a root system ® C E. Then we define the dual root system
®V C EV to be given by the points

foreacha € ®.

Remark 1.89. The reduced root system B,, is dual to C,,.

It will be helpful to have some lattices from our root systems.

Definition 1.90. Fix a root system ® C F.
» The root lattice @) is spanned by ¢.
» The coroot lattice QV is spanned by the oV
 The lattice P C Fis (QY)*.

» The weight lattice PV C E* is Q*.
In general, @ C P, but equality does not have to hold.

Example 1.91. For s(,,, the quotient P/Q@ is isomorphic to Z/nZ.

11
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