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THEME 1

INTRODUCTION

1.1 February 2
Here we go.

1.1.1 Review of Lie Groups
We start with some quick review. Here are our groups.

Definition 1.1 (Lie group). A Lie group is a group objectG in the category of manifolds. One may specify
a “real” or “complex” Lie group, which means that we are taking the category of real or complex mani-
folds. Explicitly, we are asking for G to be equipped with regular maps m : G×G → G, i : G → G, and
an identity. A homomorphism of Lie groups is a morphism of the group objects.

Example 1.2. One has the usual examples: Rn, U(n), Sp2n(R), O(p, q), and SU(n) are all real Lie groups.

Example 1.3. There are classical groups over C, such as SLn(C), which are all Lie groups.

Definition 1.4. If G is a Lie group, then its connected component G◦ is a normal Lie subgroup.

Remark 1.5. The quotient π0G := G/G◦ is a discrete topological group.

Remark 1.6. Given a Lie group G, the universal cover G̃ → G can be checked to a Lie group via some
universal properties, so we receive a homomorphism π : G̃→ G. It turns out that the kernel is a central
discrete subgroup Z ⊆ G̃. It notably follows that π1(G) is abelian.

Remark 1.7. One can check thatG◦ is generated by any open neighborhood of the identity. Indeed, the
generated subgroup can be seen to be both open and closed.

Example 1.8. With G = S1, we have the universal cover G̃ = R, and the kernel is Z ⊆ R.

We also have subgroups.
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1.1. FEBRUARY 2 18.755: LIE THEORY

Definition 1.9 (Lie subgroup). A Lie subgroup is an immersed submanifold H ⊆ G which is also a sub-
group, meaning that H ↪→ G admits injective di�erentials. A closed Lie subgroup is an embedded
submanifold H ⊆ G which is also a subgroup.

Remark 1.10. It turns out that closed Lie subgroups are in fact closed subsets, which can be checked
locally.

Example 1.11. The subgroup Qn ⊆ Rn is a Lie subgroup, but it is not a closed Lie subgroup. The only
closed Li subgroups are vector spaces.

Example 1.12. The subgroup On(R) ⊆ GLn(R) is a closed real Lie subgroup.

Remark 1.13. It turns out that a closed subgroup of G is in fact a closed Lie subgroup. We will prove
this later in the semester.

Definition 1.14 (quotient). Fix a closed Lie subgroup H ⊆ G. Then G/H is a manifold with transitive
G-action. If H is normal, then G/H is further a Lie group.

Remark 1.15. In general, if G acts transitively on a manifold X, then for any x ∈ X, StabG(x) ⊆ G is a
closed Lie subgroup, and the quotient is isomorphic to X.

Remark 1.16. If G acts on a space X which is not transitive, then for any x ∈ X, the subset Gx ⊆ X is
at least an immersed submanifold.

Example 1.17. The group R has an action on R2/Z2 by t : x 7→ tx. The orbit of (say), (1/2,
√

2/2) is an
immersed but not closed submanifold.

Definition 1.18 (representation). Fix a Lie groupG. A representation of a Lie group is a homomorphism
G→ GLn(C).

Example 1.19. Let G act on itself by conjugation. Then each g ∈ G acts on T1G → T1G, so we receive
an adjoint representation Ad• : G→ GL(T1G).

As usual, one can define morphisms of representations, subrepresentations, direct sums, duals, tensor
products, irreducible representations, and so on. We also have a Schur’s lemma.

Lemma 1.20. Fix irreducible representations V and W of G.

(a) Then a G-equivariant map ϕ : V →W is either zero or an isomorphism.

(b) Any G-equivariant map A→ A is a scalar.

Proof. Omitted. �
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1.1. FEBRUARY 2 18.755: LIE THEORY

Definition 1.21 (unitary). A unitary representation is one admitting aG-invariant positive-definite Her-
mitian form.

Remark 1.22. Any unitary representation admits a decomposition into irreducible representations by
taking orthogonal complements.

Non-Example 1.23. Let B ⊆ GL2(C) be the subgroup of upper-triangular matrices. Then the standard
representation of B does not admit a decomposition into irreducibles, so it cannot be made unitary.

Example 1.24. If G is finite, then any representation V admits a unitary structure: given any unitary
structure 〈−,−〉0, one can define an invariant unitary structure

〈v, w〉 :=
1

|G|
∑
g∈G
〈gv, gw〉0,

where dg is a choice of Haar measure.

Theorem 1.25 (Maschke). Fix a finite groupG. Then all representations admit decomposition into irre-
ducible representations.

Proof. This follows from Example 1.24. �

1.1.2 Review of Lie Algebras
We now linearize our story.

Remark 1.26. Note thatG acts on itself by left translations `g, so the tangent bundle TG can be given a
global frame by the induced isomorphisms d`g : T1G→ TgG.

Notation 1.27. For each a ∈ T1G, we define the vector field La by

La := ga ∈ TaG.

Remark 1.28. One can check that all left-invariant vector fields take the form La.

Definition 1.29 (commutator). Fix a Lie group G. For each a, b ∈ T1G, we may take the commutator
[La, Lb] to produce another left-invariant vector field, which we label L[a,b].

Remark 1.30. The formalism of the commutator tells us that [−,−] is antisymmetric and satisfies the
Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Definition 1.31 (Lie algebra). Fix a vector space g over a field k. Then a Lie algebra is such a vector space
g equipped with an antisymmetric pairing [−,−] : g× g→ g satisfying the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.
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Example 1.32. For any Lie groupG, we have seen that we may equip LieG := T1Gwith the structure of
a Lie group.

Example 1.33. If G = GLn(C), then g = Mn(C), and one can check that [X,Y ] = XY − Y X.

We now define Lie subalgebras and morphisms of Lie algebras in the expected way.

Definition 1.34 (Lie ideal). Fix a Lie algebra g. Then a Lie ideal h ⊆ g is a subspace for which [h, g] ⊆ h.

Example 1.35. For any closed Lie subgroup H ⊆ G, we see that LieH ⊆ LieG is a Lie subalgebra. If H
is normal, then LieH is a Lie ideal.

As expected, there is some representation theory.

Definition 1.36. Fix a Lie algebra g over a field k. Then a representation of g is a morphism g→ gln(k).

One can relate LieG to G more directly via exponentiation.

Definition 1.37 (exponential). Fix a Lie group G with Lie algebra g. We define a map exp: g → G as
follows. For each a ∈ g, one can check that the di�erential equation{

e′(t) = e(t) · a,
e(0) = 1,

admits a unique solution; we then define exp(ta) := e(t). (This is independent of the choice of t.) It turns
out that t 7→ exp(ta) is a group homomorphism.

Example 1.38. If G = GLn(C), then exp: Mn(C)→ GLn(C) is the usual matrix exponential.

Remark 1.39. It turns out that exp is a local di�eomorphism (though not necessarily injective), so there
is a local inverse log : U → g, where U is some open neighborhood of the identity.

Remark 1.40. For small a and b, it turns out that

log(exp(a) exp(b)) = a+ b+
1

2
[a, b] + · · · ,

where · · · denotes cubic terms. For example, ifG is commutative, then we see that the Lie bracket [−,−]
vanishes; conversely, if [−,−] vanishes, thenG can be checked to commute in an open neighborhood of
the identity, so G commutes.

1.1.3 Fundamental Theorems
In a first course, one checks the following two fundamental theorems.

Theorem 1.41. Fix a Lie group G. Then there is a bijection between connected closed Lie subgroups
H ⊆ G and Lie subalgebras h ⊆ LieG.
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Theorem 1.42. Fix Lie groups G and K, with G simply connected. Then taking the di�erential

Hom(G,K)→ Hom(LieG,LieK)

is an isomorphism.

There is a third fundamental theorem, which we will prove later.

Theorem 1.43. For any finite-dimensional Lie algebra g (over R or C), then there is a Lie group G with
LieG ∼= g.

The three theorems provide an equivalence between the category of simply connected Lie groups and the
category of Lie algebras, thereby classifying the former.

Remark 1.44. It follows that one may classify connected Lie groups as quotients of simply connected
Lie groups by discrete central subgroups.

1.1.4 Representations of Lie Algebras
Let’s start with the representation theory of sl2(C).

Theorem 1.45. Fix the usual basis e := [ 0 1
0 0 ], f := [ 0 0

1 0 ], and h := [e, f ] of sl2(C).

(a) Then all irreducible representations of sl2(C) can be parameterized as {Vn}n≥0, where Vn is the
representation of homogeneous polynomials in x and y of degree n.

(b) Every representation is a direct sum of irreducible representations.

(c) Clebsch–Gordon rule: for any n and m, we have

Vn ⊗ Vm =

min{m,n}⊕
i=0

V|m−n|+2i.

It will be helpful to turn representation theory of Lie algebras into a module category.

Definition 1.46 (universal enveloping algebra). Fix a Lie algebra g. Then we defineUg as the quotient of
the tensor algebra by the relation

[x, y] = x⊗ y − y ⊗ x.

Remark 1.47. It turns out that Rep g is the same category as ModUg.

Even though we have taken a quotient by an inhomogeneous relation,Ug still receives a natural filtration by
degree.

Theorem 1.48 (Poincaré–Birkho�–Witt). Fix a Lie algebra g, and equip Ug with the natural filtration.
For any basis {x1, . . . , xn} of g, the ordered monomials in the basis form a basis of Ug.

To continue our story, we need some adjectives for Lie algebras.

Definition 1.49 (solvable). A Lie algebra g is solvable if and only if the derived series eventually vanishes.
Here, the derived series is defined inductively by D0(g) := g and Dn+1(g) := [Dn(g), Dn(g)] for each
n ≥ 0.
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Definition 1.50 (nilpotent). A Lie algebra g is nilpotent if and only if the lower central series eventually
vanishes. Here, the derived series is defined inductively byL0(g) := g andLn+1(g) := [Ln(g), g] for each
n ≥ 0.

Remark 1.51. One can see that nilpotent implies solvable.

The representation theory of solvable Lie algebras is quite easy.

Theorem 1.52 (Lie). Fix a finite-dimensional solvable Lie algebra g over an algebraically closed field of
characteristic zero.

(a) Then every irreducible representation of g is one-dimensional.

(b) Every representation admits a basis on which g acts by upper-triangular matrices.

Theorem 1.53 (Engel). Fix a finite-dimensional Lie algebrag. Theng is nilpotent if and only if adX : g→ g
is nilpotent for all X ∈ g.

Thus, we see that we will want to ignore solvable and nilpotent pieces.

Definition 1.54 (radical). Fix a Lie algebra g. Then the radical rad g is the sum of all solvable ideals of g.

Remark 1.55. One can check that rad g is a solvable ideal, so it is automatically the largest solvable ideal.

Definition 1.56 (semisimple). Fix a Lie algebra g. Then g is semisimple if and only if rad g = 0.

Remark 1.57. It turns out that
gss :=

g

rad g

is always semisimple. It turns out that the induced exact sequence splits, so there is a decomposition
g = gss n rad g, which is known as the Levi decomposition; we will prove this later.

Having defined semisimple, we should define “simple.”

Definition 1.58 (simple). A Lie algebra g is simple if and only if its only ideals are 0 and g.

Remark 1.59. One can check that semisimple Lie algebras are precisely the sums of simple Lie algebras.

It turns out to be convenient to allow a little radical.

Definition 1.60 (reductive). A Lie algebra g is reductive if and only if its radical is its center.

Example 1.61. One can check that sln(C) is simple, and gln(C) is reductive.

To test for a Lie algebra being semisimple (and other adjectives), we introduce the Killing form.

Definition 1.62 (Killing form). Fix a Lie algebra g. Then we define the Killing form by

K(x, y) := tr(adx ◦ ady).
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Remark 1.63. One can check that K is g-invariant.

Theorem 1.64 (Cartan criteria). Fix a Lie algebra g.

(a) g is solvable if and only if [g, g] ⊆ K.

(b) g is semisimple if and only if K is non-degenerate.

Proposition 1.65. A Lie algebra g is reductive if and only if it admits a representation ρ : g → gl(V ) for
which the bilinear form

BV (X,Y ) := tr(ρX ◦ ρY )

is non-degenerate.

We may as well state one of the main theorems of our representation theory.

Theorem 1.66. Every finite-dimensional representation of a semisimple Lie algebra is completely re-
ducible.

1.1.5 Structure Theory of Lie Algebras
Here is another piece of structure theory.

Definition 1.67 (adjoint). Fix a semisimple Lie algebra g. Then we define the adjoint Lie group Gad by
Gad := Aut(g)◦ ⊆ GL(g).

Remark 1.68. It turns out that LieGad = g.

In our setting, one can generalize the Jordan decomposition.

Definition 1.69 (semisimple, nilpotent). An element X ∈ g is semisimple or nilpotent if and only if the
operator adX X is.

Theorem 1.70. Fix a Lie algebra g. Then any X ∈ g can be written uniquely as a sum of a semisimple
and nilpotent element.

Remark 1.71. It turns out that semisimple elements always act semisimply on representations, and
nilpotent elements always act nilpotently on representations.

The notion of semisimple elements is important to define Cartan subalgebras.

Definition 1.72 (Cartan). Fix a semisimple Lie algebra g. Then a Cartan subalgebra is a maximal com-
mutative subalgebra of

Proposition 1.73. Fix a semisimple Lie algebra g. All Cartan subalgebras are conjugate by Gad.
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Definition 1.74. Fix a semisimple Lie algebra g. Then the rank of g is the dimension of the Cartan sub-
algebras.

A choice of Cartan subalgebra h ⊆ g produces a root decomposition, which we write as

g = h⊕
⊕

α∈h∗\{0}

gα.

Definition 1.75 (root system). Fix a semisimple Lie algebra g and a Cartan subalgebra h ⊆ g. Then the
root system of g consists of those nonzero eigenvalues α ∈ h∗ for the adjoint action of h on g. We write
gα for this eigenspace, and we write Φ(G) for the root system.

Remark 1.76. One can check that [gα, gβ ] ⊆ g[α,β]. In fact, gα and gβ are orthogonal for the Killing form
except when α = −β, where it is a perfect pairing.

Remark 1.77. It turns out that dim gα = 1 for each α. It follows that

#Φ(g) = dim g− rank g.

Remark 1.78. There are the usual pictures of root systems of various types.

1.1.6 Root Systems
It is useful to write down what properties are satisfied by these root systems.

Definition 1.79 (root system). Fix a Euclidean space E. Then a finite subset Φ ⊆ E is a root system if
and only if

(a) Φ spans E,

(b) for each α, β ∈ Φ, the number

nαβ :=
2(α, β)

(α, α)

is an integer,

(c) for each α, β ∈ Φ, the reflection
sα(β) := β − nαββ

is in Φ.

We say that Φ is reduced if and only if α ∈ Φ implies that 2α /∈ Φ.

Definition 1.80. A root system Φ is reducible if and only if it can be written as a disjoint union of root
systems coming from a decomposition of the Euclidean space into a product of Euclidean spaces.

The reflections are important enough to be placed into a group.

Definition 1.81 (Weyl group). Fix a root system Φ ⊆ E. Then the Weyl group W is the subgroup of
GL(E) generated by the reflections.
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Example 1.82. The Weyl group associated to the root system of sln+1 consists of the permutation ma-
trices in GLn(R). Indeed, each reflection corresponds to a transposition. This root system is said to be
of type An, where n refers to the rank.

Example 1.83. The root system associated to so2n+1 is Bn. The root system associated to sp2n is Cn.
Lastly, the root system associated to so2n is Dn.

Remark 1.84. There are also various exceptional reduced root systems, which we may say something
about later.

We can even break down irreducible root systems into more controlled pieces.

Definition 1.85 (positive). Fix a root system Φ ⊆ E. For a choice of t ∈ E for which (t, α) 6= 0 for all
α ∈ E, we say that a root in Φ is positive if and only if (t, α) > 0. Similarly, α is negative if and only if
(t, α) < 0. We let Φ+ and Φ− denote the sets of positive and negative roots, respectively.

Definition 1.86. Fix a root system Φ ⊆ E. A positive root is simple if and only if it is not a sum of other
positive roots (with positive integer coe�cients). We let Π denote the set of simple roots.

Proposition 1.87. Fix a root system Φ ⊆ E. Then Π is a basis, and every positive root α ∈ Φ+ can be
written as a unique sum of elements of Π with positive integer coe�cients.

Each root system also admits a dual.

Definition 1.88 (dual root system). Fix a root system Φ ⊆ E. Then we define the dual root system
Φ∨ ⊆ E∨ to be given by the points

α∨ =
2(α,−)

(α, α)

for each α ∈ Φ.

Remark 1.89. The reduced root system Bn is dual to Cn.

It will be helpful to have some lattices from our root systems.

Definition 1.90. Fix a root system Φ ⊆ E.

• The root latticeQ is spanned by φ.

• The coroot latticeQ∨ is spanned by the α∨.

• The lattice P ⊆ E is (Q∨)∗.

• The weight lattice P∨ ⊆ E∗ is Q∗.

In general, Q ⊆ P , but equality does not have to hold.

Example 1.91. For sln, the quotient P/Q is isomorphic to Z/nZ.
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