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THEME 1

INTRODUCTION

1.1 September 4

Welcome to the class.

1.1.1 Administrative Notes

Here are some administrative notes.

• There will be problem sets every two weeks, due on Fridays. They are not expected to be too time-
consuming.

• Technically, this course is a sequel to 18.745–18.755, but one can get away with a bit less. In particular,
we will assume familiarity with some basic notions in Lie theory, things about simple complex Lie
algebras (as related to compact Lie groups), the theory of roots and weights, and this theory of finite-
dimensional representations. For example, things like the Peter–Weyl theorem may come up.

• We will largely follow Etingof’s lecture notes.

This course is about the representations of Lie groups, especially those which are not necessarily compact.
For example, we may focus on real reductive Lie groups such as SLn(R), and there is a new feature here that
we must care about infinite-dimensional representations.

One of our motivations comes from quantum physics, where one finds groups acting on infinite-dimen-
sional Hilbert spaces. Another motivation is number-theoretic: one uses this theory to set up the arch-
imedean theory of automorphic forms.

1.1.2 Finite Groups

Let’s recall some background. As one does, let’s begin with the representation theory of finite groups. We
split this into a few theorems.

Theorem 1.1 (Maschke). LetG be a finite group. Then every finite-dimensional complex representation
is unitary (by averaging any given Hermitian form) and semisimple.
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1.1. SEPTEMBER 4 18.757: LIE GROUPS

Theorem 1.2 (Peter–Weyl). Let G be a finite group. Then there is a decomposition

C[G] =
⊕

V ∈IrRep(G)

EndC(V )

of C-algebras. It follows that the characters {trV }V ∈IrRep(G) form an orthonormal basis of the class
functions G→ C.

Remark 1.3. Let G be a finite group. For f ∈ C[G], there is a dimension formula

f(1) =
1

|G|
∑

V ∈IrRep(G)

dimVi · trVi
f.

Indeed, this follows from writing 〈ϕ,ψ〉 =
∑
V trV (ϕψ

′) (where ψ′ : g 7→ ψ(g−1)) and then noting that
〈ϕ,ψ′〉 = 1

|G| (ϕ ∗ ψ
′)(1).

1.1.3 Compact Groups
We now move up to the representation theory of compact connected Lie groups. Here is a generalization of
Maschke’s theorem.

Theorem 1.4 (Weyl’s unitarian trick). Let G be a compact Lie group. Then the representations of G are
semisimple, and the irreducible representations of G are finite-dimensional and unitary.

In order to compute the representations of G, one wants to pass to the Lie algebra g = LieG. One needs to
be slightly careful about this.

Proposition 1.5. Fix a Lie groupGwith Lie algebra g. Consider the functor F : Rep(G)→ Rep(g) send-
ing a representation ρ to the di�erential representation dρ1.

(a) If G is connected, then F is fully faithful.

(b) If G is connected and simply connected, then F is also essentially surjective and hence an equiv-
alence.

Example 1.6. TakeG = U(1). BecauseG is abelian, all irreducible representations are one-dimensional.
These representations U(1) → C× are indexed by n ∈ Z, given by z 7→ zn. Note that these are not in
bijection with the representations of LieG because G is not simply connected!

Example 1.7. Take G = SU(n) so that g = sln(C). A weight is a character of the maximal torus T , for
which we can take to be the subgroup of diagonal matrices. Explicitly,

T = {diag(z1, . . . , zn) : z1 · · · zn = 1},

so the weight lattice is Zn/Z(1, . . . , 1), and a weight λ = (λ1, . . . , λn) is dominant when the entries are
increasing.

Example 1.8. For example, with SU(2), we have an isomorphism Z2/Z(1, 1) → Z given by (λ1, λ2) 7→
λ2 − λ1, and the dominant weights are the nonnegative integers. One finds that weight n corresponds
to the nth symmetric power of the standard representation of SU(2).
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Here is a generalization of the Peter–Weyl theorem.

Theorem 1.9 (Peter–Weyl). Let G be a compact Lie group. The canonical map⊕
dominant λ

Vλ ⊗ V ∗λ → C∞(G)

is an embedding with dense image; here Vλ refers to the irreducible representation corresponding to
the dominant weight λ.

Example 1.10 (Fourier analysis). With G = U(1), then one can calculate that Vn ⊗ V ∗n → C∞(G) has
image given by the nth power map U(1) → U(1). Thus, we are asserting that the collection of such
polynomials are dense in the collection of all smooth functions U(1)→ C. If we identify U(1) with R/Z
via the exponential map, then this is asserting that the exponentials z 7→ e2πinz have dense span in the
collection of all smooth functions R/Z→ C.

One can characterize the image of the Peter–Weyl map.

Definition 1.11 (finite). A function f ∈ C∞(G) is G-finite if and only if the span of {gf : g ∈ G} is
finite-dimensional. We let Cfin(G) be the space of G-finite functions.

Remark 1.12. It turns out that the map ⊕
dominant λ

Vλ ⊗ V ∗λ → C∞(G)

has image given by the space of G-finite functions. (This is often proven as an input to the proof of the
Peter–Weyl theorem; it is much easier to show!)

Remark 1.13. The vector space Cfin(G) has two ring structures: there is pointwise multiplication (in C)
and also convolution given by

(ϕ ∗ ψ) : g 7→
∫
G

ϕ(x)ψ
(
x−1g

)
dx,

where dx is a Haar measure for G normalized so that
∫
G
dx = 1. (Because G is compact, dx is bi-

invariant.)

Remark 1.14. The convolution algebra is non-unital, so one sometimes upgrades to the algebra of dis-
tributions, where we have the unit δ1. Similar remarks hold for C∞(G) and even C(G).

Remark 1.15 (algebraic groups). In fact, Cfin(G) also has a comultiplication given by pulling back along
the multiplication map m : G×G→ G. Namely, the comultiplication is the composite

Cfin(G)
m∗→ Cfin(G×G) = Cfin(G)⊗ Cfin(G).

Thus, we have a Hopf algebra, which allows us to associate a complex algebraic groupGalg toG, and it
turns out that unitary representations ofG all arise from algebraic representations ofGalg. Conversely,
one can take a complex algebraic group Galg and then find a maximal compact subgroup G ⊆ Galg(C)
which is unique up to conjugacy.
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1.1.4 Unitary Representations
We will be interested in the unitary representations of Lie groupsG, which we no longer assume to be com-
pact.

Remark 1.16. IfG is simple and not compact, then all unitary representations are infinite-dimensional.
Proceeding by contraposition, suppose thatG is simple and admits a finite-dimensional unitary repre-
sentation ρ : G→ SU(n). BecauseG is simple, this is an embedding, and because SU(n) is compact, we
conclude that G must then also be compact.

Thus, we see that we will be interested in infinite-dimensional representations. Of course, one still must
add in topologies everywhere, though this point is more technical now that our vector spaces are not finite-
dimensional. For example, for unitary representations, we are looking for actions of G on Hilbert spaces,
though we will find occasion to look at more general topological vector spaces.

Our main source of examples of representations arise from more general group actions.

Example 1.17. IfG acts on a “geometric space”X, then we receive an induced action ofG on classes of
functions on X. For example, when X is a reasonably nice topological space, then we can think about
G acting on L2(X); when X is a manifold, we can think about G acting on C∞(X).

Example 1.18. The action of G on G itself by left multiplication gives rise to some “regular” represen-
tations.

Example 1.19. Many matrix groups such as SL(n,R) admit standard group action on a vector space.
Note that this standard action may not be unitary!

Let’s begin building our language.

Definition 1.20 (subrepresentation, irreducible). Fix a groupGand topological vector spaceV . Ifρ : G→
GL(V ) is a continuous representation, then a subrepresentation is a closed subspace W ⊆ V which is
G-invariant. We say that ρ is irreducible if and only if there are no proper nontrivial subspaces.

Note the hypothesis that W ⊆ V is closed for our subrepresentations!

Example 1.21. The action of SLn(R) on Rn has no nontrivial proper subrepresentations and hence is
irreducible. However, this representation is not unitary.

Remark 1.22. The action of G on itself makes L2(G) a representation of G. However, this representa-
tion frequently fails to be irreducible. For example, L2(G) has many automorphisms, so it cannot be
irreducible by a suitable version of Schur’s lemma. In some cases, we can see this more concretely: tak-
ingG = R, then we know R is isomorphic to its dual, so L2(R) ∼= L2

(
R2∨), and this right-hand side has

more obvious subrepresentations given by the subspace of functions which vanish on a given subset of
positive measure.

1.2 September 9

Today, we will discuss some general nonsense of topological vector spaces.
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1.2.1 Examples of Representations
Last time, we ended with the following example, which we recall here.

Example 1.23 (Heisenberg group). Fix a positive integer n ≥ 1. Then we define the Heisenberg group
Hn as the matrix group

Hn :=


1 a c
0 1n b
0 0 1

 : a ∈ R1×n, b ∈ Rn×1, c ∈ R

 .

It turns out that Hn admits a natural action on L2(Rn), which is an irreducible representation. Quickly,
the a-coordinate will act by translation on the Rn, and the b-coordinate will act by a character b 7→
e2πi〈b,−〉. One finds a similar action on C∞(Rn) and S(Rn).Check it

Remark 1.24. There is a finite analogue, where all the Rs are replaced with a finite field Fp, and the
character b 7→ e2πi〈b,−〉 is replaced with b 7→ e2πi〈b,−〉/p. Equivalently, we find Hn(Fp) = Fp × V ×
V ∨ (where V = Fnp ); then Hn(Fp) admits a natural action on V , where V acts by translation, and ξ ∈
V ∨ acts by multiplying with the function ψξ(x) := e2πi〈x,ξ〉/p. The central Fp ⊆ H now acts by scalar
multiplication as a 7→ e2πia/p.

Let’s check that this representation is irreducible. It is enough to check that EndHn
(C[V ]) is C. Well,

commuting with the V leaves us with

EndV (C[V ]) = EndC[V ](C[V ]) = C[V ].

Further, one sees that commuting with the scalar multiplication by elements inV ∨ restricts the possible
endomorphisms all the way down to scalars.

Example 1.23 appears in the book, and the argument is not too di�erent from the one given in the re-
mark.

Example 1.25. The group SL2(R) acts on R2 and therefore has a unitary representation on L2(R2). This
cannot possibly be irreducible because SL2(R) commutes with the extra scalar action on R2, so L2(R2)
has too many endomorphisms. To make this representation smaller, we can choose s ∈ C, which pro-
duces a character on R+ by χs : t 7→ ts; then we can defineL2(R2, χs) to be the functions with commute
with this character (namely, f(t−1x) = tsf(x)). (Geometrically, this is basically the sections of a line
bundle on RP1 given by the character.) We will soon see that almost all s produces an irreducible rep-
resentation.

For example, for s = 0, then L2(R2, χ0) consists of the functions on RP1. This is not irreducible
because it has a subrepresentation given by the constant functions. But L2(R2, χ0)/(C · 1) is still not
irreducible: it turns out to be the sum of two irreducible representations L+ and L−, where L+ is the
closure of zC[z], and L− is the closure of z−1C[z−1], where z is a standard coordinate on RP1. This can
be related to Fourier series by embedding RP1 into CP1, which is basically a circle. We will prove all
these claims later.

Remark 1.26. Here is an amusing way to view L2(R2, χs): this amounts to sections of a line bundle on
RP1, and after removing∞, we see that we are looking at functions on R. One can check that these are
the functions which transform by[

a b
c d

]−1

f(z) = f

(
az + b

cz + d

)
|cz + d|s .
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Fix a Lie group G acting on an orientable manifold X. If G preserves a volume form dx on X, then C∞c (X)
will have an invariant pairing

〈ϕ,ψ〉 :=
∫
X

ϕ(x)ψ(x) dx.

More generally, one can work with half-densities.

Definition 1.27 (density). An s-density on a smooth manifoldX is a section of a line bundle whose sec-
tions on an a�ne patch are just functions but which has transformations between coordinate charts
(xn) 7→ (x′n) given by

f(x1, . . . , xn) 7→ f(x′1, . . . , x
′
n)

∣∣∣∣det( ∂x′i∂xj

)∣∣∣∣s .
The point of working with half-densities is that we can define the standard inner product between them in
the usual way.

Example 1.28. Half-densities of SL2(R) acting on RP1 (in the obvious way) amounts to considering
L2(R2, χ−1).

1.2.2 Topological Vector Spaces
We spend a moment reviewing what we need about locally convex topological spaces; we refer to Ap-
pendix A for a more in-depth treatment.

Convention 1.29. All topological vector spaces are over C and are Hausdor�.

Definition 1.30 (locally convex). A topological vector spaceV is locally convex if and only if 0has an open
neighborhood basis of convex sets.

Remark 1.31. Equivalently, by Corollary A.23 a topological vector space V if and only if its topology is
generated by a collection of seminorms.

All representations in this class will actually be given by “Fréchet spaces.”

Definition 1.32 (Fréchet). A topological vector space V is Fréchet if and only if it is locally convex, has a
countable basis of neighborhoods of 0, and is sequentially complete.

Remark 1.33. By Proposition A.25, having a countable basis of neighborhoods of 0 is equivalent to being
metrizable. (In fact, one can choose the metric to be translation-invariant.) Once V is metrizable, being
sequentially complete is equivalent to being complete.

We will also frequently take our vector spaces V to be separable.

Definition 1.34 (separable). A topological spaceX is separable if and only if it admits a countable basis.

Convention 1.35. In this course, all Fréchet spaces are separable unless otherwise specified.

Non-Example 1.36. For p < 1, the space Lp([0, 1]) fails to be locally convex. In fact, the only open
nonempty convex subspace is the whole space!
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Example 1.37. For a topological space X, let C(X) be the space of continuous functions, where the
topology is given by uniform convergence. If X is (Hausdor�) compact, then C(X) is a Banach space
(given by ‖·‖∞). However, if X is merely a (Hausdor�, second countable) locally compact topological
space, then C(X) is merely a Fréchet space: write X as a countable union

⋃
iKi of compact sets, and

then we can use the seminorms ‖·|Ki‖∞.

Example 1.38. If X is a manifold, then we can consider the topological space Ck(X). (The topology is
given by uniform convergence of the first k derivatives.) Similarly, we see that Ck(X) is Banach when
k is finite andX is compact; otherwise, it is merely Fréchet. The same sort of argument shows that the
space S(Rn) of Schwartz functions is Fréchet.

Non-Example 1.39. IfX fails to be compact, then the subspaceC∞c (X) ofC∞(X) is not a Fréchet space
because it fails to be complete.

Sometimes, we will find ourselves in a circumstance where we can restrict to a nice class of spaces.

Definition 1.40 (Banach). A topological vector space V is a Banach space if and only if its topology is
given by a norm, and it is complete with respect to that norm.

For example, Hilbert spaces are Banach spaces.
Here is one benefit of working with a Banach space.

Lemma 1.41. Fix a topological group G acting on a Banach space V . Then the action G × V → V is
continuous if and only if the induced map ρ : G→ Aut(V ) is continuous in the strong topology, in which
{Ei} → E if and only if {Eiv} → Ev converges for all v ∈ V .

Proof. The forward direction has little content: given a net {gi} → g, we know that ρ(gi)v → ρ(g)v for each
v by continuity, so it follows that ρ(gi)→ ρ(g).

The reverse direction follows from the Uniform boundedness principle, which claims that |Eiv| being
bounded for every v implies that ‖Ei‖ is bounded. Namely, to show that G × V → V is continuous, we
choose a net {(gi, vi)} → (g, v) in G× V , and we would like to show that givi → gv. By translation, we may
assume that g = 1. We are given that ρ(gi)→ 1 in the strong topology, which implies that ρ(gi)w → w for all
w, so we may also assume that v = 0 by translation. Because now vi → 0, it is enough to show that ‖ρ(gi)‖
is bounded, which is what follows from the Uniform boundedness principle. �

Remark 1.42. A Banach space V can alternatively give EndV the norm topology, but then the map
G → AutV need not be continuous with the norm topology. For example, the action of R on L2(R)
by translation Taf(x) := f(x + a) fails to be continuous: as a → 0, we see Ta → id, but ‖Ta − id‖ = 1
for all a 6= 0.

1.2.3 Measures on a Space
Let’s say a bit about measures.

Remark 1.43. Given a locally compact second countable topological spaceX, thenC(X)has topological
dual C(X)∗, which is thought of as the (compact) measures on X. Given a measure µ, we can define
its support suppµ by having x /∈ suppµ if and only if there is an open neighborhood U of x for which
µ(f) = 0 for all f with f |U = 0. It follows that suppµ is closed, and one can even check that it is compact
by construction of C(X)∗. If X is an orientable manifold, then we remark that the Poincaré pairing
f 7→

∫
X
fϕω defines an embedding Cc(X)→ C(X)∗.

9
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Non-Example 1.44. Continuing with Remark 1.43, we can take the discrete space X = N. Then C(X)
is given by sequences in C, butC(X)∗ is given by finite sequences in C, and we have some convergence
σi → σ if and only if there is a finite subset S ⊆ N containing all the supports, and we have pointwise
convergence in S. One can check that this is separable, sequentially complete, but it is not complete
and thus not a Fréchet space!

Remark 1.45. One can replace the topology on C(X)∗ with the weak-∗ topology, in which {µi} → µ if
and only if {µi(f)} → µ(f) for all f . However, C(N)∗ continues to not be complete: it embeds into the
space of all linear maps C(N)→ C, but it is not a closed subset of this space.

Next class, we will takeG to be a Lie group, and we will find that compact measures onG is an algebra, and
it acts continuously on our continuous representations. The point is that it more or less plays the role of the
group algebra.
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APPENDIX A
FUNCTIONAL ANALYSIS

In this appendix, we introduce the small amount of functional analysis we will need in order to get going
with infinite-dimensional vector spaces. In other words, we need to set up the theory of Fréchet spaces.
Throughout this appendix, F denotes one of the fields R or C. Our exposition is largely stolen from [Con90].

A.1 Locally Convex Spaces

We begin with the following definition.

Definition A.1 (topological vector space). Fix a topological field k. Then a topological vector space is
a vector space V over k equipped with a topology so that addition map +: V × V → V and scalar
multiplication map · : k × V → V are both continuous. In these notes, all topological vector spaces will
be assumed to be Hausdor�.

A Fréchet space will be a complete topological vector space admitting two notable definitions: having its
topology is defined by a countable family of seminorms, or being locally convex and metrizable. As such,
let’s quickly recall the definition of a seminorm.

Definition A.2 (seminorm). Fix a vector space V over F. Then a seminorm is a function p : V → R satis-
fying the following.

• Subadditive: we have p(x+ y) ≤ p(x) + p(y) for any x, y ∈ V .

• Homogeneous: we have p(λx) = |λ| p(x) for any x ∈ V and λ ∈ F.

Remark A.3. The homogeneity implies that p(0) = 0, which is sometimes included in the definition.
Similarly, the subadditivity now implies that 2p(x) = p(x) + p(−x) is at least p(0) = 0, so p is automati-
cally nonnegative; this is also sometimes included in the definition.

It is worthwhile to have a few ways to check continuity.

11
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Lemma A.4. Fix a topological vector space V over F, and let p : V → R be a seminorm. Then the follow-
ing are equivalent.

(i) p is continuous.

(ii) {v : p(v) < 1} is open.

(iii) p is continuous at 0.

Proof. This is [Con90, Proposition 1.3]. Of course (i) implies (ii). We show the remaining implications inde-
pendently.

• We show (ii) implies (iii). For any net {xi} converging to 0, we want to show that {p(xi)} → 0, which is
true because any xi in the open neighborhood εU of 0 has p(xi) < ε.

• We show (iii) implies (i). Note that any net {xi} converging to some x has

|p(xi)− p(x)| ≤ p(xi − x),

and p(xi − x)→ 0 because xi − x→ 0. �

We now start talking about convex sets, but we will relate our definitions back to seminorms.

Definition A.5 (convex). Fix a vector space V over F. A subset A ⊆ V is convex if and only if any two
a, b ∈ A has

ta+ (1− t)b ∈ A

for any t ∈ [0, 1].

Example A.6. Let p : V → R be a seminorm. Then we claim that A := {v ∈ V : p(v) < 1} is convex.
Indeed, for a, b ∈ A and t ∈ [0, 1], we see that

p(ta+ (1− t)b) = tp(a) + (1− t)p(b),

which is still less than 1, so ta+ (1− t)b ∈ A.

Example A.7 (convex hull). For any subset A ⊆ V , we may define the convex hull

conv(A) :=

{
n∑
i=1

tiai : {ai}i ⊆ A, {ti}i ∈ [0, 1], t1 + · · ·+ tn = 1

}
.

Note that conv(A) is convex: for two points
∑
i tiai and

∑
j sjbj and t ∈ [0, 1], the sum

∑
i ttiai+

∑
j(1−

t)sjbj still has
∑
i tti +

∑
j(1 − t)sj = t + (1 − t) = 1. In fact, if B is convex and contains A, then

conv(A) ⊆ B because the sums
∑
i tiai can be checked to be in B by induction.

Convex sets on their own turn out to not be good enough for our purposes, so we will need extra adjec-
tives.

Definition A.8 (balanced). Fix a vector space V over F. A subsetA ⊆ V is balanced if and only if λA ⊆ A
for all λ ∈ F such that |λ| ≤ 1.

Example A.9. Let p : V → R be a seminorm. Then we claim that A := {v ∈ V : p(v) < 1} is balanced.
Indeed, for a ∈ A and λ with |λ| ≤ 1, we see that p(λa) = |λ| p(a), which is still less than 1, so λa ∈ A.

12
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Example A.10. For any subset A ⊆ V , the subset

bal(A) :=
⋃
|λ|≤1

λA

is balanced. Indeed, for any µ with |µ| ≤ 1, we see that µbal(A) =
⋃
λ µλA is contained in bal(A)

because |λµ| ≤ 1 whenever |λ| ≤ 1. Of course, we always have A ⊆ bal(A), and one can see that any
balanced set containing A must contain each λA and hence contain bal(A).

It turns out that passing to balanced convex sets is not too big of a burden.

Lemma A.11. Fix a topological vector space V over F. Any convex open neighborhood of 0 contains a
balanced convex open neighborhood of 0.

Proof. LetU be a convex open neighborhood of 0. The point is to use the continuity of scalar multiplication:
the continuity of

· : F× V → V

provides a basic open neighborhood B(0, ε) × U ′ of (0, 0) of F × V such that B(0, ε)U ′ ⊆ U . We claim that
conv(B(0, ε)U ′) is the desired open neighborhood. Here are our checks; set U ′′ := B(0, ε)U ′ for brevity.

• Because U is already convex, Example A.7 explains that U ′′ ⊆ U implies that conv(U ′′) ⊆ U .

• Convex: note conv(U ′′) is convex by Example A.7.

• Open: because scalar multiplication by a nonzero number is a homeomorphism, we see that U ′′ :=
B(0, ε)U ′, which is ⋃

0<|λ|<ε

λU ′,

is open. Then once U ′ is open, we see that conv(U ′) can be written as a union

⋃
n≥1

( ⋃
t1+···+tn=1

t1U
′′ + · · ·+ tnU

′′

)
,

which is open because the sum of two open subsets is open (indeed, the sum of open sets is a union of
translates of just one of the open sets).

• Balanced: the previous step realized U ′′ as a union
⋃

0<|λ|<ε λU
′, which can be shown to be balanced

exactly as in Example A.10. �

Remark A.12. Here is a sample application: suppose that 0 has a neighborhood basis of convex sets.
Then Lemma A.11 implies that 0 also admits a neighborhood basis of balanced convex sets: for each
U in the neighborhood basis, the lemma produces a smaller open subset which is still convex but now
also balanced. Similarly, admitting a countable neighborhood basis of convex sets can be upgraded to
admitting a countable neighborhood basis of balanced convex sets.

The previous remark allows us to make the following definition.

Definition A.13 (locally convex). A topological vector space V is locally convex if and only if 0 admits a
neighborhood basis of convex sets.

13
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Remark A.14. By translation, it is equivalent to require V to have a basis of convex sets. (Namely, if U is
the neighborhood basis of 0, then

⋃
v∈V v + U is the basis of V .) By Remark A.12, we can also upgrade

these notions to having bases of balanced convex sets.

It is notable that the previous two definitions avoid the mention of any topology. In order to continue not do-
ing any topology, we pick up the following definition, which provides a linear algebraic stand-in for “contains
an open neighborhood of the origin.”

Definition A.15 (absorbing). Fix a vector space V over F. A subset A ⊆ V is absorbing if and only if any
v ∈ V admits some ε > 0 such that tv ∈ A for all t ∈ [0, ε).

For example, we see that 0 is contained in any absorbing subset.

Remark A.16. Of course, if A is absorbing, and A ⊆ B, then B is absorbing: for each v, the ε which
worked for A continues to work for B.

Example A.17. Let’s explain the remark given before the definition. If V is a topological vector space
over F, then we claim that any open neighborhoodU of 0 is absorbing. This will follow by the continuity
of scalar multiplication: for any v ∈ V , the map R → V given by t 7→ tv is continuous. Thus, because
0 ∈ U , there must be ε > 0 such that (−ε, ε)v ⊆ U .

Example A.18. Let p : V → R be a seminorm, and set A := {v ∈ V : p(v) < 1}. Then we claim that
(−a) + A is absorbing for all a ∈ A; for example, setting a = 0 will imply that A is absorbing. Now, for
any v ∈ V , we need to show that a+ tv ∈ A for small t. Well, p(a+ tv) ≤ p(a) + |t| p(v), so taking any t
with p(v) |t| < (1− p(a)) will do. (In particular, any t will work if p(v) = 0.)

We are now ready to construct some seminorms.

Notation A.19. Fix a vector space V over F. For any absorbing subsetA ⊆ V , we define ‖·‖A : V → R≥0

by
‖v‖A = inf {t ≥ 0 : v ∈ tA} .

Here are some basic facts about this construction.

Remark A.20. Because A is absorbing, we see that any v ∈ V does in fact have some t > 0 for which
(1/t)v ∈ A and hence v ∈ tA, so the infimum is a real number.

Remark A.21. Suppose further that A is convex. Then we claim that v ∈ tA whenever t > ‖v‖A; note
if v = 0, then ‖0‖A = 0, so there is nothing to do. The main point is to note that sv ∈ A implies that
s′v ∈ A for any s′ ∈ [0, s] by convexity. Thus, if t > ‖v‖A, then we know there is s < t such that v ∈ sA,
so (1/s)v ∈ A while 1/t < 1/s, so (1/t)v ∈ A, so v ∈ tA.

Let’s put all our adjectives together, finally explaining the relationship between seminorms and convex
sets.

Proposition A.22. Fix a vector space V over F and a subset A ⊆ V .

(a) There is a seminorm p : V → R such that A = {v ∈ V : p(v) < 1} if and only if A is nonempty,
convex, balanced, and (−a) +A is absorbing for all a ∈ A.

(b) If A is merely convex, balanced, and absorbing, then there is a seminorm p : V → R such that
{v : p(v) < 1} ⊆ A.

14
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Proof. This is [Con90, Proposition 1.14]. The forward direction of (a) follows from combining Examples A.6,
A.9 and A.18. It remains to show the reverse direction of (a) and (b). For both of these, we will take p := ‖·‖A,
which is a well-defined function by Remark A.20 (once we know that A in (a) is absorbing). We will run our
checks in a few pieces.

• In (a), we show that A is absorbing. It is enough to check that 0 ∈ A. Well, being nonempty, there is
some a ∈ A. Because A is balanced, we see−a ∈ A, and because A is convex, it follows that 0 ∈ A.

• If A is absorbing and balanced, we check that p(λv) = |λ| p(v) for v ∈ V and λ ∈ F. Well, λv ∈ tA if
and only if v ∈ t

λA, which is equivalent to v ∈ t
|λ|A because A is balanced! It follows that

{t ≥ 0 : λv ∈ tA} = |λ|
{
t

|λ|
: v ∈ t

|λ|
A

}
,

so the check follows.

• If A is convex, balanced, and absorbing, then we check that p(v + w) ≤ p(v) + p(w) for v, w ∈ V . The
geometric input is that tA+ sA ⊆ (t+ s)A for any t, s > 0; this follows by convexity because

tA+ sA = (t+ s)

(
t

t+ s
A+

s

t+ s
A

)
is contained in (t + s)A by convexity. Now, for the check, we note that having p(v) < t and p(w) < s
implies that v ∈ tA and w ∈ sA by Remark A.21, so v + w ∈ (t + s)A, so p(v + w) ≤ t + s. Sending
t→ p(v) and s→ p(w) completes the check.

• We complete the proof of (b). The above checks show that p is a seminorm, so it remains to check that
{v : p(v) < 1} ⊆ A. This follows from A being balanced: if p(v) < 1, then there is t < 1 such that
v ∈ tA, and tA ⊆ A because A is balanced.

• We complete the proof of (a). The previous check shows that {v : p(v) < 1} ⊆ A, so it remains to
check the other inclusion. Well, for any a ∈ A, we see that (−a) + A is absorbing, so a + ta ∈ A for
small t > 0. It follows that a ∈ (1 + t)−1A, so p(a) < (1 + t)−1 < 1 follows. �

Corollary A.23. Fix a topological vector space V over F. The following are equivalent.

(i) V is locally convex.

(ii) The topology on V is induced by a family of seminorms.

Proof. We show the implications separately.

• Suppose that V is locally convex, so 0 admits a neighborhood basis U of balanced convex sets by Re-
mark A.14. By Example A.17, we see that each U ∈ U has (−a) + U absorbing for all a ∈ U , so
Proposition A.22 provides a seminorm pU : V → R such that U = {v : pU (v) < 1}. Note that pU is
continuous by Lemma A.4.
Lastly, we should check that the topology given by the seminorms {pU} is the correct one. Well, this
topology has basis given by finite intersections of sets of the form

{v ∈ V : pU (v) ∈ (a, b)},

where (a, b) ⊆ R. The continuity of the pUs implies that any such subset is open in V . Conversely, any
open neighborhood of 0 in V contains some U ∈ U and therefore contains {v ∈ V : p(v) ∈ (−1, 1)}, so
a comparison of the neighborhood bases (via translation) implies that the open neighborhood of 0 is
still open.

15
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• Suppose that V has its topology generated by a family of seminorms {pi}. Well, because pi(0) = 0
for each i, an open neighborhood basis of 0 can be given by finite intersections of sets of the form
p−1
i ((−ε, ε)). Of course, this is just

ε{v ∈ V : pi(v) < 1},
which we note is convex by Example A.6. Thus, 0 admits a neighborhood basis of convex sets. �

Now that we have an understanding of locally convex spaces, we may define Fréchet spaces.

Definition A.24 (Fréchet). A topological vector spaceX is Fréchet if and only if it is locally convex, metr-
izable, and complete.

The bizarre addition here is metrizable. This condition fits in with the other ones as follows.

Proposition A.25. Fix a locally convex topological vector space V over F. Then the following are equiv-
alent.

(i) V has its topology induced by a translation-invariant metric.

(ii) V is metrizable.

(iii) V has a countable neighborhood basis of 0.

(iv) The topology on V is induced by a countable family of seminorms.

Proof. The implication (i) to (ii) has no content, and (ii) to (iii) follows by taking the neighborhood basis of
open subsets given by {v : d(v, 0) < 1/n} for positive integers n. Next, (iii) implies (iv) by the proof of
the forward direction of Corollary A.23, which built one seminorm for each balanced convex subset in the
neighborhood basis of 0.

Lastly, we have to show that (iv) implies (i). Well, given the countable family of seminorms {pi}i≥1, we
define the function d : V × V → R by

d(x, y) :=

∞∑
i=1

1

2i
· pi(x− y)
1 + pi(x− y)

.

Here are our checks on d.
• We check that d is a metric. The summation always converges because pi(x−y)

1+pi(x−y) ≤ 1 always. Con-
tinuing, d(x, x) = 0 follows because pi(0) = 0 for all i, and the triangle inequality follows from the
subadditivity of each of the pis.
It remains to check the positivity of d. Well, if x 6= y, then because V is Hausdor�, we see that pi(x −
y) > 0 for some pi. (Otherwise, the constant net {x − y} would converge to both 0 and x − y.) Thus,
d(x, y) > 0.

• We check that d is translation-invariant. Well, for any a ∈ V , we see that d(x + a, y + a) is a function
of (x+ a)− (y + a) = (x− y) and will equal d(x, y).

• Lastly, we check that d induces the topology on V . It is enough to check that these two topologies have
the same convergent nets. Well, a net {xi} converges to some x ∈ V if and only if p•(xi − x) → 0 for
all seminorms p•. This surely implies that d(xi, x) → 0, and conversely, d(xi, x) → 0 will require that
p•(xi − x)→ 0 for each p•. �

A.2 The Open Mapping Theorem
In this section, we review the proof of the Open mapping theorem in order to extend the usual proof (for
Banach spaces) to the setting of Fréchet spaces.

As usual, our proof will have to rely on the Baire category theorem. Before introducing any strange ter-
minology, let’s start with a statement on just metric spaces.

16
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Lemma A.26. LetX be a nonempty complete metric space. Then a countable intersection of dense open
subsets is dense.

Proof. Let {Ui}i∈N be our collection of dense open subsets. We would like to show that their intersection⋂
i∈N Ui intersects any open subset V of X. The idea is to recursively choose nearby elements in Ui ∩ V for

each i, and then use completeness of X to finish the proof. We proceed in steps.

1. We build a sequence of points {xn}n∈N recursively, as follows. To start us o�, we note V ∩ U0 is
nonempty and open (by density of U0), so we are granted a point x0 ∈ U0 and ε0 such that B(x0, ε0) ⊆
V ∩ U0. For the recursion, we suppose that we are given such an open neighborhood B(xn, εn), and
then because Un+1 is open and dense, we are provided a point xn+1 in the intersection and some
εn+1 < εn/3 such that

B(xn+1, εn+1) ⊆ B(xn, εn) ∩ Un+1.

2. We claim that the sequence {xn}n∈N is (rapidly) Cauchy. Indeed, note εn+1 < εn/2 for each n, so
εn < 2−n follows by an induction. Thus, d(xn, xn+1) < 2−n for each n, so our sequence is rapidly
Cauchy. To finish checking that it is Cauchy, we note that whenever i < j, we have

d(xi, xj) ≤
j−1∑
k=i

d(xk, xk+1)︸ ︷︷ ︸
<2−k

,

which is upper-bounded by 2−i+1.

3. Now, we letxbe a limit point of {xn}n∈N. (This is where we used completeness!) Because our sequence
is eventually inB(xn, εn) for any given n, we see that x ∈ B(xn, εn) for each n. Thus, x ∈ V ∩U0 by the
first step of the construction, and x ∈ Un for each n ≥ 1 by the recursive step of the construction. �

The previous lemma now upgrades to the Baire category theorem.

Theorem A.27 (Baire category). LetX be a nonempty complete metric space. Let {Ui}i∈N be a countable
collection of dense open subsets. Then the intersection

⋂
i∈N Ui is not contained in a countable union

of nowhere dense subsets.

Proof. Suppose for the sake of contradiction that we have⋂
i∈N

Ui ⊆
⋃
j∈N

Aj ,

where each Aj is nowhere dense. It thus follows that⋂
i∈N

Ui ∩
⋂
j∈N

X \Aj

is empty. We claim that X \ Aj is open and dense, which yields the desired contradiction by Lemma A.26.
CertainlyX\Aj is open; for density, note thatAj contains no open subset, which means that the complement
intersects any open subset. �

Corollary A.28. Let X be a nonempty complete metric space. Then X is not the countable union of
nowhere dense subsets.

Proof. This follows from taking Ui = X for each i in Theorem A.27. �

We now proceed with the Open mapping theorem. We will isolate the application of the Baire category
theorem to the following lemma: Corollary A.28 shows that the hypothesis is satisfied.

17
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Lemma A.29. Let f : X → Y be a linear map of locally convex topological vector spaces. Suppose that
im f is not the union of nowhere dense subsets. Then f(U) contains an open neighborhood of 0 for each
open neighborhood U of 0.

Proof. This more or less follows from unwinding the hypothesis. BecauseV is locally convex, we may shrink
U to make it convex and balanced (by Lemma A.11); we will only use this at the end of the proof. The hy-
pothesis is applied as follows: because U is open, it is absorbing (by Example A.17), so V =

⋃
i∈N iU , so

im f =
⋃
i>0

iU.

Thus, the hypothesis implies that one of the iU fails to be nowhere dense; because multiplication by i > 0
is a homeomorphism, we see that U is also fails to be nowhere dense, so it contains an open subset V .

We now upgrade V into an open neighborhood of 0. Well, simply set V ′ := 1
2 (V − V ). Then f(V ′)

is contained in 1
2 (U − U) by linearity, which is 1

2 (U + U) because U is balanced, which is contained in U
because U is convex. �

It remains to use the hypothesis that X is complete, which is done in the following lemma.

Lemma A.30. Let f : X → Y be a continuous linear map of metrizable locally convex topological spaces.
Suppose thatX is complete and that f(U) contains an open neighborhood of 0 for each open neighbor-
hood U of 0. Then f is open.

Proof. The idea is to use the completeness ofX to construct points ofU which go to a required open neigh-
borhood. We proceed in steps.

1. We are going to show that f(U) contains an open neighborhood of 0 for each open neighborhood U
of 0, so let’s spend a moment to explain why this is enough. For each open subset U ′ ⊆ X and x ∈ U ′,
we note that f(U ′−x) contains an open neighborhood Vx of the origin. Thus, f(U ′) contains the open
neighborhood f(x) + Vx, so f(U ′) equals ⋃

x∈U ′
f(x) + Vx,

which is open because it is a union of open subsets.

2. We unwind the hypothesis on f . By shrinking our open neighborhoodU of 0, we may assume thatU is
convex and balanced (by Lemma A.11), so there is a seminorm p on X for which U is B(0, 1) for some
translation-invariant metric d on X, chosen via Proposition A.25. Similarly, by hypothesis on f , we
know that f(U) contains some open neighborhood V of 0, which we may again shrink until it isB(0, 2)
for some translation-invariant metric d on Y . It will be worthwhile to remove the closure from this
statement. Well, for any y ∈ Y , we see that y ∈ d(y, 0)V and so y ∈ q(y) · f(U), so any ε > 0 has some
x ∈ X for which d(x, 0) < d(y, 0) and d(y, f(x)) < ε.

3. We will actually show that V ⊆ f(U), so choose some y ∈ V . The completeness of X will be used via
a limiting process to produce an element of U mapping to y. To start us o�, fix some ε > 0 (to be fixed
at the end of the proof), and we take x0 := 0. Now, if we are given x0 + · · · + xn, we may select xn+1

so that d(xn+1, 0) < d(y − f(x0 + · · ·+ xn), 0) and

d(y − f(x0 + · · ·+ xn), f(xn+1)) < ε/2n+1

by the above paragraph.
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4. We complete the proof. Now, by construction, d(xn, 0) < ε/2n−1 for all n ≥ 2, so the sequence of par-
tial sums is rapidly Cauchy. As in the proof of Lemma A.26, it follows that these partial sums converge
to some x ∈ X.
We claim that this x is the desired element. To start, we see that f(x0 + · · · + xn) → y as n → ∞ by
construction, so f(x) = y by continuity of f !
It remains to check that x ∈ U . Well, d(x, 0) is bounded by

∞∑
n=0

d(xn, 0) < d(x0, 0) + d(x1, 0) +

∞∑
n=2

ε

2n−1
,

and d(x1, 0) < d(y, 0) < 2 and
∑∞
n=2

ε
2n−1 = ε, so x ∈ U for ε small enough. �

Theorem A.31 (Open mapping). Let f : X → Y be a continuous linear map of Fréchet spaces. If f is
surjective, then f is open.

Proof. By Corollary A.28, we see thatX is not a countable union of nowhere dense subsets. The result now
follows from combining Lemmas A.29 and A.30. �

Corollary A.32. Let f : X → Y be a bijective continuous linear map of Fréchet spaces. Then f has con-
tinuous inverse.

Proof. Let g be the inverse map. Checking that g is continuous is equivalent to checking that f is open, which
follows from Theorem A.31. �

A.3 The Hahn–Banach Theorem
In this section, we review the proof of the Hahn–Banach theorem. This section will be filled with plenty of
nonsense. Ultimately, we are interested in extending continuous linear functionals on Fréchet spaces, but
along the way, we will show that linear functionals separate convex sets.

As with Banach spaces, we check if a linear functional is continuous by checking if it is bounded, but the
definition of bounded needs to be adjusted.

Definition A.33 (bounded). Fix a topological vector space V over F. A linear functional ` : V → F is
bounded if and only if there is an open neighborhoodU of 0 and a constant c > 0 such that |`(x)| ≤ c for
all x ∈ U .

Lemma A.34. Fix a topological vector space V over F and a linear functional ` on V . Then the following
are equivalent.

(i) ` is continuous.

(ii) ` is bounded.

(iii) ` is continuous at 0.

Proof. We use Lemma A.4. The implication from (i) to (ii) is direct; the proof that (iii) implies (i) is identical
to the proof in Lemma A.4. To show (ii) implies (iii), we note |`| is a seminorm, and by considering nets, we
see that it is enough to check that |`| is continuous at 0, which follows from Lemma A.4(ii) and the fact that
` is bounded. �
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Corollary A.35. Fix a topological vector space V over F, and let p : V → R be a continuous seminorm.
Given a linear functional ` : V → F, if ` ≤ p pointwise, then ` is continuous.

Proof. Because ` ≤ p, we see that �

Thus, it will be important to be able to extend linear functionals along with an upper bound against a semi-
norm. By considerations with Zorn’s lemma, we will find that the hard part is extending the linear functional
one step, which is the content of the next lemma.

Lemma A.36. Fix a vector space V over R, a seminorm p on V , and a linear functional ` on a subspace
W ⊆ V such that ` ≤ p pointwise. Given any v′ ∈ V , there is an extension `′ to a linear functional on a
subspace W ′ containing v′ such that `′ ≤ p pointwise.

Proof. If v′ ∈W already, then there is nothing to do. Otherwise, for any real number c, we see that we may
extend ` to a linear functional `′ on W ′ :=W + Rv′ by setting `′(v′) := c. Namely, we have

`′(w + tv′) = `(w) + tc

for any w ∈W and t ∈ R.
We would like to show that we can choose c so that `′ ≤ p pointwise. This requires a little trickery. By

scaling, it is enough to only check with t ∈ {±1} (because t = 0 follows by hypothesis). Thus, we need both
`(w) + c ≤ p(w + v′) and `(w)− c ≤ p(w − v′) for all w ∈W . Now, such a c exists if and only if

sup
w∈W

(`(w)− p(w − v′))
?
≤ inf
w∈W

(p(w + v′)− `(w)).

For this, we should check that `(w)− p(w− v′) ≤ p(w′+ v′)− `(w′) for anyw,w′ ∈W , which is equivalent to
`(w +w′) ≤ p(w − v′) + p(w′ + v′). This last inequality follows because ` ≤ p and the subadditivity of p. �

Theorem A.37 (Hahn–Banach). Fix a vector space V over R, a seminorm p on V , and a linear functional
` on a subspace W ⊆ V such that ` ≤ p pointwise. Then ` extends to a linear functional `′ on V such
that `′ ≤ p.

Proof. After Lemma A.36, the rest of this proof is largely formal nonsense. We use Zorn’s lemma on the
partially ordered set P of pairs (V ′, `′), where V ′ is an intermediate subspace, and `′ is a functional on V ′
bounded above by p; the ordering is given by (V ′, `′) ≤ (V ′′, `′′) if and only if V ′ ⊆ V ′′ and `′′|V ′ = `′. Our
application of Zorn’s lemma is in two steps.

• We claim that P has a maximal element, for which we use Zorn’s lemma. First, note P is nonempty
because it has (W, `). Secondly, any ascending chain {(Wi, `i)}i in P has upper bound given by setting
V ′ :=

⋃
iWi and defining `′ as the union of the `is. We can see that V ′ is still a vector space, and the

nature of the partial ordering verifies that `′ is a well-defined functional extending `. Thus, so (V ′, `′)
is indeed an upper bound for our chain.

• Let (V ′, `′) be a maximal element of P . We claim that V ′ = V , which will complete the proof. We
already have V ′ ⊆ V , so it remains to show the other inclusion. Well, for any v ∈ V , we see that (V ′, `′)
can be extended up to V ′ + Rv by Lemma A.36, so the maximality of (V ′, `′) requires V ′ + Rv = V ′.
Thus, v ∈ V ′, so V ⊆ V ′ follows. �

20



BIBLIOGRAPHY

[Con90] John B. Conway. A course in functional analysis. Second. Vol. 96. Graduate Texts in Mathematics.
Springer-Verlag, New York, 1990, pp. xvi+399. ISBN: 0-387-97245-5.

[Shu16] Neal Shusterman. Scythe. Arc of a Scythe. Simon & Schuster, 2016.

21



LIST OF DEFINITIONS

absorbing, 14

balanced, 12
Banach, 9
bounded, 19

convex, 12

density, 8

finite, 5
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