18.906: Algebraic Topology Il

Nir Elber

Fall 2025



CONTENTS

How strange to actually have to see the path of your journey in order to
make it.

—Neal Shusterman, [Shul6]

Contents 2

1 oo-Categories 3
1.1 Septemberd . . . e e e e e e e e e e 3
1.1.1 Category Theory . . . . . i i i i ittt e e e e e e e e e e e e e e e e 3
1.1.2 Homotopy Types, Intuitively . . . . . . . . . . . e 6
1.1.3 Simplices . . . . o e e e e e e e e e e e e 7
1.1.4 SimplicialSets . . . . . . e e e e e e e e 8
1.1.5 Simplicial Sets by Combinatorics . . . . . . . . . .. e 9

1.2 Septemberd . . .o e e e e e e e 14
1.2.1 MoreonSimplicialSets . . . . . . . . . e e e 14
1.2.2 LiftingHorns . . . . . . e e e e e e e e e e e e 15
1.2.3 KanComplexes. . . . . o o v i i i e e e e e e e e e e e e e 16

Bibliography 18

List of Definitions 19



THEME 1
oo-CATEGORIES

Language turns us all into jesters.

—Savannah Brown, [Bro24]

1.1 September4

Here are some administrative notes.

Office hours will be on Tuesday and Thursday immediately after class in 2-374.

The syllabus will be posted to the course website later.

The syllabus will contain some recommended textbooks, which are some free online texts that contain
supersets of our class material.

» The grade will be 20% from a fifty-minute exam and 80% coming from problem sets. The exam will
probably occur shortly before the drop deadline.

We hope to cover simplicial sets, co-categories, homotopy theory, Eilenberg—MacLane spaces, Postnikov
towers, the Serre spectral sequence, and a little on vector bundles and characteristic classes. In particular,
we see that the first part of the class is some purely formal nonsense, which we then use to set up the oo-
category of spaces, which is the natural setting for homotopy theory.

1.1.1 Category Theory

Let's recall some starting notions of category theory, though we may use more than we define here.

@ Warning 1.1. We will mostly ignore size issues. If it makes the reader feel better, we are willing to
assume the existence of a countable ascending chain of inaccessible cardinals throughout the class.



1.1. SEPTEMBER 4 18.906: Algebraic Topology Il

Definition 1.2 (category). A category C is a collection of objects, a collection of morphisms Mor¢ (A4, B)
for each pair of objects, a distinguished identity element id 4 in Mor¢(A, A), and a composition law

o: More(B,C) x Mor¢(A, B) — More (A4, C).
We then require the composition law to be associative and unital with respect to the identity maps.

Remark 1.3. We will use the notation Hom for Mor whenever the category C is additive, meaning that
these collections of morphisms are abelian groups, and the composition law is Z-bilinear.

Definition 1.4 (functor). A functor F' between two categories C and D is a map which sends an object
A € Ctoanobject FA € D and a morphism f: A — BinC toamorphism Ff: FA — FB. We further
require F' to respect identities and composition.

Definition 1.5 (isomorphism). A morphism f: A — B in a category C is an isomorphism if and only if
there is a morphism g: B — A for which fog=idgandgo f =ida.

Definition 1.6 (groupoid). A groupoid is a category in which every morphism is an isomorphism.

Example 1.7. Any category C gives rise to a core groupoid CoreC, which is the subcategory with the
same objects but only taking the morphisms which are isomorphisms. One can check that this is in fact
a subcategory.

In mathematics, one frequently encounters a category C, and we are then interested in classifying the objects
up to isomorphism.

Example 1.8. If C = Set, then isomorphisms are bijections, so sets “up to bijection” are simply given by
their cardinalities.

Example 1.9. A commutative ring R gives rise to a category Modp, of (left) R-modules. If R is a field,
then this is a category of vector spaces, and objects up to isomorphism are given by their dimensions.

Example 1.10. One can consider the category Top of topological spaces, whose morphisms are con-
tinuous maps. (We will frequently restrict our category of topological spaces with some nicer subcat-
egories, such as CW complexes or manifolds.) It is rather hard to classify objects up to isomorphism
(here, isomorphisms are homeomorphisms), but there are some tools. For example, there are homol-
ogy functors

H;(—; R): Top — Modpg.

Because functors preserve isomorphisms, homeomorphic spaces must have isomorphic homology.

The definition of homology finds itself focused on continuous maps |A”| — X, where |A™| is the (topologi-
cal) n-simplex.

Definition 1.11 (n-simplex). The (topological) n-simplex |A™| is the subspace

|A™| == {(to,...,tn) eRg#:Zti: 1}.

=0
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We will soon upgrade this topological n-simplex |A™|, which explains why we are writing |A"| instead of
A",

We are shortly going to get a lot of mileage out of the next example, so we spend some time to prove it
in detail. We would like to define a category of functors between two given categories, but this requires us
to have a notion of morphism between functors.

Definition 1.12 (natural transformation). Given two functors F,G: C — D, a natural transformation
n: F = G is the data of a morphism n4: FA — GA for each object A € C. We further require that
Gfona =npgo Ff forany morphism f: A — B. A natural isomorphism is a natural transformation 7
in which each morphism 74 is an isomorphism.

Diagrammatically, the equation Gf o n4 = g o F'f amounts to the commutativity of the following square.

FA-™,GA

P |er

FB-",GB
Anyway, here is our result.

Lemma 1.13. Let C and D be categories. Then there is a functor category Fun(C, D) where the objects
are functors C — D and the morphisms are natural transformations.

Proof. We have explained our objects and morphisms, but we still have to provide identities and composi-
tion laws and check that everything works.

« Identities: given a functor F': C — D, there is an identity natural transformation idp: F' — F given
by (idr)a = idra; checking that this is a natural transformation amounts to noting that F'f o idpa =
idpp o F'f for any morphism f: A — B.

« Composition: given two natural transformations a: F = G and 8: G = H, we define the composite
natural transformation (8o a): F = H by (o a)a := 4 o ay foreach A € A. Checking that thisis a
natural transformation amounts to checking the commutativity of the outer rectangle of

(Boa) a

N
FA—— GA—— HA

Ffl Gfl ” lH I
(Boa)s

which indeed commutes: the top and bottom triangles commute by definition of 5 o «, and the two
inner squares commute by naturality of «and S.

« Identities: given a natural transformation n: F = G, we need to check thatidg on = noidr = n. Well,
for any object A, we see that

(idg on)a = (idg o n)a = idga) ©Na = Na,

and
(noidp)a =naoidrpa = na.

« Associativity: given natural transformations «, 8, and v with appropriate domains and codomains, we
must check that (o 3) oy = a0 (8 0 7). Well, for any object A, we see that

((aoB)oy)=(aaofa)oya=aaoc(Baoya)=(ao(Bo7))a,

as required. |

1 For those who are choosing to think about size issues, we remark that we will typically have one of C or D be locally small.

5
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1.1.2 Homotopy Types, Intuitively

The homology functors H;(—; R): Top — Modp factors through the homotopy category Ho(Top), which is
obtained from Top by declaring homotopic maps to be equal.

We are going to be homotopy theorists for the most part, which means that we will be interested in
understanding invariants of the category Ho(Top). One may complain that only studying spaces up to ho-
motopy is an over-simplification. However, there are good reasons to only be interested in these “homotopy
types” because such things also come up in other areas of mathematics.

Approximately speaking, a homotopy type is a collection of objects and morphisms between them. To
ensure some level of homogeneity, one may require that any pair f,g: A — B of morphisms has a col-
lection of “2-isomorphisms” f = g. Furthermore, there should be “3-isomorphisms” between these 2-
isomorphisms, and this thinking continues inductively.

Example 1.14. Given two objects A and B with an isomorphism f: A — B, one may think about these
objects as being identified. Similarly, if we have a third isomorphism g: B — C, then we can canonically
identify all three objects. Here is diagram for this situation.

At 9,¢ = A

Example 1.15. Given two objects A and B, there may be two isomorphisms f,g: A — B. One may want
to identify these two objects via either isomorphism, but then we don’t want to forget about the other
isomorphism, so perhaps we are thinking about an object with an automorphism. Here is a diagram for
this situation.

If one wanted to identify f and g, then there should be a “2-isomorphism” identifying f and g.

Example 1.16. We can think about a set as a homotopy type where all isomorphisms, 2-isomorphisms,
and so on are all just the identity maps.

Example 1.17. We can think about a groupoid as a homotopy type where all 2-isomorphisms, 3-iso-
morphisms, and so on are all just the identity maps.

The above two examples will let us think about Ho(Top) as a category of co-groupoids. This is more or less
why homotopy types are relevant to other areas of mathematics: one is frequently interested in not just
isomorphisms between objects but also the uniqueness of those isomorphisms, and also the uniqueness of
the isomorphisms identifying the isomorphisms, and so on.

Of course, we started with topological spaces, so let’s explain how then make some co-groupoid.

Example 1.18. Given a topological space X, we can build a corresponding co-groupoid as follows.
» The points provide objects in our co-groupoids; these are functions |A°| — X.
« The maps between points are given by paths; these are functions |A1| — X.

« The maps between paths are given by homotopies of paths; these are functions ‘AQ‘ — X. Tech-
nically speaking, AQ‘ gives two paths f and g whose composite should be homotopic to h. Thus,
the structure of such a map tells us something about how composition should behave!




1.1. SEPTEMBER 4 18.906: Algebraic Topology Il

1.1.3 Simplices

After building up some intuition, we are now forced to do some combinatorics in order to get ourselves off
of the ground.

Notation 1.19. For each integer n > 0, we define the category [n] whose objects are the elements of
{0,1,...,n} and whose morphisms are given by

@ ifi <k,

x ifi <y,

Hom[n] (Za .7) = {

where x simply refers to some one-element set.

We remark that identities and the composition maps are then all uniquely defined (because everything is
uniqueinthe one-element set x); similarly, the coherence checks of identity and associativity have no content
because everything is equal in .

Remark 1.20. Combinatorially, [r] is the poset category given by the totally ordered set

0<1<2<L---<n.

Definition 1.21 (simplex). The simplex category A has objects given by the categories [n], and the mor-
phisms are given by the collection of functors between any two such categories.

Remark 1.22. Combinatorially, we see that a functor F': [n] — [m] amounts to the data of an increasing
map. Indeed, whenever i < j in [n], which is equivalent to having a morphism i — j, we see that there
isa morphism Fi — F'j, which is equivalent to the requirement Fi < Fj.

Example 1.23. There are six morphisms [1] — [2], as follows.
« If0+— 0,then 1 € [1] can go anywhere.
« If0+— 1,then 1 mapstolor2in[2].

« If 0 +— 2, then 1 maps to 2.

Example 1.24. For each nonnegative integer n, there is a unique map [n] — [0] for each n. Indeed,
everything must go to 0.

Remark 1.25. There is an important functor F': A — Top given by sending [n] — |A™|. Let's explain
what this functor is on morphisms: given an increasing map f: [n] — [m], then we need to provide
a continuous map Ff: |A" — |A™|. Well, we may identify [n] and [m] with bases of R™ and R™,
respectively, so f is now a function on bases, so it upgrades uniquely to a linear map R™ — R™ given by

Ff ( Z tiei> = Z tief(i).
=0 =0

Thus, we see that F'f does restrict to a map |A™| — |A™|. Functoriality follows by the uniqueness of
the construction of F'f: given two increasing maps f: [n] — [#/] and g: [n/] — [n”], we see Fgo Ff
and F(g o f) definitionally are both defined as g o f on the basis of R™. (Of course, we should mention
idj,): [n] — [n] defines the identity on R™.)




Check:

fully faith-
ful.
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1.1.4 Simplicial Sets

The following is the first important definition of this course.

Definition 1.26 (simplicial set). A simplicial set is a functor A°? — Set. We let sSet denote the category
of such functors.

Note that this “functor category” is in fact a category by Lemma 1.13. Here are some examples of simplicial
sets.

Example 1.27 (Sing(X)). There is a functor Sing: Top — sSet such that

Sing(X): [n] — Morrep (JA™], X).

Proof. We have many checks to do, which we handle in sequence.

+ We define Sing(X) on morphisms. Well, given an increasing map f: [n] — [m], the functor F' of Re-
mark 1.25 provides a continuous map F'f: |A™| — |A"|, so there is a map

(—o Ff): Mormop(|A™|, X) — Morrop (JA™|, X).

+ We check that Sing(X) is a functor. First, the identity morphism id,;: [n] — [n] goes to the map
(= o Fidp,)): Morgep(JA"|, X) = Mortep (|A"|, X),

whichisthe identity because Fiid},,) = id|a»|. Second, givenincreasingmaps f: [n] — [n’]andg: [n/] —
[n"], we need to check that

(o F(gof))= (=0 Ff)o(-0Fy),
which is true because F(go f) = Fgo Ff.

+ We define Sing on morphisms. Well, given a continuous map f: X — Y, we use the map

(f o =): Morqp(JA"], X) — Morrep(|A"],Y).

+ We check that Sing is a functor. First, the identity idx : X — X goes to the map (idx o —), which is
just the identity composition. Second, given continuous maps f: X — Y andg: Y — Z, we note that

(go—)o(fo-)=(gof)o-)

by the associativity of composition. |

Remark 1.28. It turns out that not all simplicial sets arise from this construction. In particular, it turns
out that the image of Sing has many nice properties.

Remark 1.29. It will turn out that the homotopy type of X is uniquely determined by Sing(X). This is
remarkable because one expects Top to be a difficult category, even taken up to homotopy, but sSet just
looks like some combinatorial data.

Example 1.30 (nerve). Fix a category C. Then there is a “nerve” functor N: Cat — sSet such that

N(C): [n] = Fun([n],C).

The proof of this claim is exactly the same as in Example 1.27 (note that Fun([n],C) = Morcat([n],C)),
except now there is now need for the auxiliary functor F': A — Top because A is already a category.
(Being brazen, one can copy the same proof but erasing all F's, replacing Top with Cat throughout, and
replacing |A®|s with [e]s throughout.)
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Remark 1.31. As in Remark 1.28, nerves of categories have some nice properties which prevent them
from producing all simplicial sets. It turns out that oco-categories will be some kind of simultaneous

generalization of Sings and nerves.

1.1.5 Simplicial Sets by Combinatorics

Even though we will avoid doing so as much as possible in the sequel, it can be worthwhile to have a purely
combinatorial description of a simplicial set. Let’s begin by classifying increasing maps. We will get some
utility out of the following lemma, which allows us to think about increasing maps f in terms of the multi-set

im f.

Lemma 1.32. Let f, g: [n] — [m] be increasing maps. Suppose that

#f({kY) = #97 ({k})

forallk € [m]. Then f = g.

Proof. We proceed by induction on n. If n = 0, then [n] is a singleton, so there is a unique k& € [m] for which
F1({k}) and g~1({k}) are nonempty, namely f(0) and g(0) respectively, so the result follows.
For the induction, we are given two increasing maps f, g: [n + 1] — m. There are two steps.

1.

The main claim is that f(n + 1) = g(n + 1). To show this, note that im f = im g because these sets
are just the k € [m] with nonempty fibers. Thus, because n + 1 is the maximum of [n + 1], we see that
f(n+ 1) and g(n + 1) are maximal elements of im f and im g, respectively, so f(n + 1) = g(n + 1)
follows.

We now complete the proof. Note that

#f7H({kD) if f(n+1) #Fk,

—1 _
Al () = {#fl({k}) —1 iff(n+1) =4k,

and similar for g, so f|,,; and g|f,; have fibers of the same cardinality, so f|j,) = gl by the induction,
so f = g follows because they are already equal on n + 1. |

Let's now classify injective maps.

Definition 1.33 (face maps). Given some i € [n], we define the face map §°: [n — 1] — [n] to be the
embedding which omits ¢ by sending the set {0, ...,7 — 1} to itself and sending the set {7, ..., n} to one
more than each element.

Lemma 1.34. Every injective increasing map f: [n] — [m] can be written uniquely as a composite

f:éilo...oéi""

where iy > 49 > -+ > i,.

Proof. We proceed in steps.

1.

Given a decreasing sequence iy > iy > - -+ > i,, we claim that the map
(6 0---08"): [n] = [n+ 7]

9
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avoids the set {iy,...,i.}. We proceed by induction on r; for » = 0, the statement is vacuous. For the
induction, we are given a decreasing sequence iy > i > - -+ > i, > i,11. By the induction, the map

(62 0---0d8"+1): [n] = [n+7]

already avoids the set {is,...,i,11}. Then §" preserves the set {0,...,i; — 1} (and in particular pre-
serves the omitted set {is,...,i,,1}) while going on to omit i1, so the total composite §* o - - - o §ir+1
successfully omits {i1, ..., 441}

2. We show that any injective f is a composite of §°s as given. Well, given an injective increasing map
f:[n] = [m], setI :=[m]\im f,and arrange the elements of I as {71, ..., .} in decreasing order. Then
0% o ... 0§ is another injective increasing map which omits I by the previous step, so it equals f by
Lemma 1.32.

3. We show that two composites of decreasing §°s are equal if and only if the indices are equal. More
precisely, suppose that
S 0. §ir = §1 0. §iv

as maps [n] — [m], and the sequence of indices are both strictly decreasing; denote this map by f for
brevity. By the first step, the size of the fibers of f can be read off of the indices i, or i, (an index is
present exactly when not in im f), so these sequences must be equal. |

Remark 1.35. It follows that §% is the unique injection [n] — [n + 1] omitting a given element of [n + 1].
Remark 1.36. The requirement that the indices are strictly decreasing is necessary for the uniqueness.
Indeed, if i < j, then % 0 §/ avoidsiand j + 1, so it equals 6711 o §°.

Analogously, we have should handle surjective increasing maps.

Definition 1.37 (degeneracy maps). Given some j € [n+1], we define the degeneracy map o7 : [n+1] —
[n] to be the surjection which hits j twice by sending the set {0, ..., j} toitselfand sending {j +1, ..., n+
1} to one less than each element.

Lemma 1.38. Every surjective increasing map f: [n] — [m] can be written uniquely as a composite
f:o'jl o...oo—j"',

where j; > j3 > - > j,.

Proof. The structure of this proof is similar to Lemma 1.34, but the technical core requires a couple modi-
fications.

1. Given a decreasing sequence j; > js > --- > j,., we claim that the map
(07 o0’ [n] = [n—r]

has fiber over k € [n — r] of size equalto 1 + #{t : j; = k}. We proceed by induction on r; for r = 0,
the statement is vacuous. For the induction, we are given a decreasing sequence j; > -+ > j.11. By
induction, we know that the fiberof o :== 092 0 .- - o gi+1 overkis 1 + {2 <t <r+1:j, = k}.

Now, 071 oo has the same-size fibers over any k < j; as o because 071 preserves {0, ..., ji }. Fork > ji,
we note that the fibers of o over each such k is 1 because k > j; for each i (by the induction), so 07t o ¢
also has fiber of size 1 over this k. Lastly, for k£ = j;, we see that the fiber increases in size by 1 because
ot sends j; + 1 (whose fiber has size 1 for o) to j;. This casework completes the proof.

10
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2. We show that any surjective f is a composite of o°s as given. Well, let J be the multi-subset of [m] hit
multiple times by f, counted with multiplicity, and we may arrange the elements of J as {j1,...,j-}in
decreasing order. Then o7t o --- 0 o7~ and f have fibers of the same size by the previous step, so they
are equal functions by Lemma 1.32.

3. We show that two composites of decreasing °s are equal if and only if the indices are equal. More
precisely, suppose that

. . -/ -/
0-310...00-]7“:Ujlo...oo']'r-’

as maps [n] — [m], and the sequences of indices are both decreasing; denote this map by f. Well,
the fibers of f can be read off the indices {j,} or {j.} by the first step, so these sequences must be
equal. |

Remark 1.39. As in Remark 1.35, we note that the requirement that the indices are decreasing is nec-
essary for the uniqueness. Indeed, if i < j, then o® o ¢/ hits j — 1 twice and i twice (counted with
multiplicity), so 0’ 0 07 = 071 0 ¢,

We are now ready to classify general maps.

Lemma 1.40. Every increasing map f: [n] — [m] can be written uniquely as a composite
f= (5i1 o...o(sir)o(gjl o...gjs%

wherei; > --- >i.and j; > -+ > js.

Proof. The main point is to show that any increasing map f admits a unique decomposition as ¢ o o where
§: [k] — [m]isinjective and o: [n] — [k] is surjective. The existence and uniqueness of the required decom-
position now follows by the existence and uniqueness of the decomposition f = § o o with Lemmas 1.34
and 1.38. For example, to get the uniqueness, if

v

10 08rogiio .ol =§1 0. 08 0ol o gl
then the composites of the §°s and of the 0®s must each be equal (because those are injections and sur-
jections, respectively), and then the equalities of the indices follows from using Lemmas 1.34 and 1.38,
respectively.

It remains to show the main claim. We show existence and uniqueness separately.

« Existence: noteim f C [m]is some totally ordered subset, so we let its cardinality be k + 1. By suitably
ordering the elements of im f, we receive a totally ordered bijection [k] — im f. Then we see that f
decomposes into

(] L im f « [k] = [k] — im f C [m],

o §

as required.

» Uniqueness: suppose we have two equal decompositions f = § o 0 = ¢’ 0 ¢’ where o: [n] — [k] and
o':[n] — [K]and §: [k] — [m]and §: [k'] — [m]. To begin, note that the injectivity of § and ¢’ implies
that £ + 1 and k' + 1 are both the cardinality of im f, so & = &’ follows. Now, because § and ¢’ have
the same image, and both are injective, it follows that all their fibers from [m] have the same size (as
either 0 or 1)! Thus, § = ¢’ follows from Lemma 1.32. The injectivity of § now shows thatd oo = § o o’
implieso = o’. [ |

11
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Remark 1.41. As in Remarks 1.35 and 1.39, we note that putting ds before os is important for the
uniqueness. Suppose we have some ¢7 o 6%, and then we have the following cases.

o If j > i,then o’ fixes {0,...,i+ 1}, so 07 0 §* avoids i and hits j twice. This is the same as §° 0071,

« If j=iorj=1i—1,then o 0§ fixes {0,...,i — 1} throughout, and the elements at least i get +1
from §” and —1 from ¢7. Thus, 07 0 §' = id

e If j <i—1,then o7 o §* avoids i — 1 (—1 from ¢7) and hits j twice. This is the same as §°~! o ¢/

Having access to generators of these maps and some relations between them allows us to provide a com-
binatorial definition of a simplicial set.

Definition 1.42. A combinatorial simplicial set is a sequence of sets { X, } ,en equipped with face maps
do,...,dn: X, — X,,_1 and degeneracy maps sq, ..., sn: X, — X,i1 (for each n) satisfying the fol-
lowing simplicial identities

diSj =S ijldi ifi < 7,
and d;s; =id ifi=jori=j+1,

{djdi =did; 1 ifi<j,
diSj = dei—l ifi > j+ 1

858 = SiSj—1 ifi < 7

A morphism f: {X,,} — {Y,} of combinatorial simplicial sets is a function f,,: X,, — Y,, for eachn
commuting with the face and degeneracy maps;i.e., f,_10d, = dp o frand fr11 08y = Sy © fn.

Remark 1.43. One can check that there is a category of combinatorial simplicial sets. In particular, the
identity is given by (idx ), = idx,, and composition is defined by (g o f),, := gn © f, (which commutes
with the face and degeneracy maps because g and f do).

Proposition 1.44. There is an isomorphism of categories from the category of simplicial sets to the cat-
egory of combinatorial simplicial sets by sending X € sSet to a combinatorial simplicial set given by

Xy = X([n]),
de :=X(6*) foreachn eN,
Se =X (0®) foreachn € N.

Proof. We run our many checks in sequence.

» To check that X € sSet is sent to a combinatorial simplicial set {X,,}, we just need to check that the
des and s,s satisfy the simplicial identities. This follows from the functoriality of X and Remarks 1.35,
1.39and 1.41.

+ We define X — {X,} on morphisms. Well, a functor f: X = Y of simplicial sets defines maps
Jmy: X([n]) — Y ([n]), which we claim assembles into a morphism f: {X,,} — {Y,,} of combinatorial
simplicial sets by f,, := f},). Tocheckthis, we need to check compatibility with the face and degeneracy
maps. Well, f,,_10d, = d,o f,and f,41 08, = s, o f, follow by naturality of f because these amount
to requiring

fneyo X(@0") =Y (0") o fly  and  flup 0 X(0") =Y (0") o fiu-

» Weshowthat X — {X,}isfunctorial. To begin, noteid: X = X goestotheidentity mapsid,: X, —
X,. Thengiven f: X = Y andg: Y = Z, we see that the composite (g o f): {X,} — {Z,} is given
by (g0 f)n = (90 f)in] = 9in] © fin] = 9n © fn, as required.

12
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« We define a map from combinatorial simplicial sets back to simplicial sets. Well, given a combinatorial
simplicial set {X,,}, we begin defining our functor X: A°? — Set by X([n]) := X,,. On morphisms
f: [n] = [m], we need to define some map X f: X,, — X,,. For this, we note that Lemma 1.40 allows
us to write f uniquely as a composite

f=("0---06")o (0" 0---007),
where i, is strictly decreasing and j, is decreasing. Thus, we define
Xf=(sj,0---085)0(d;.0---0d;).

For example, f = id, is equal to the empty composite everywhere, so Xid,) = idx,,.

To complete our functoriality check, because any morphisms can be written as a composite of 6°s and
o°®s, itis enough to check functoriality for such morphisms. Namely, we have to check that

For the first, this is by definition when i > j and follows from the simplicial identities otherwise; the
second is similar. The third is also automatic, and the last follows from the simplicial identities again.

» We define our map on morphisms. Well, given a morphism F': {X,,} — {Y},} of combinatorial simpli-
cial sets, we already have our component morphisms F,,: X,, — Y;, which will become our morphisms
Fip: X([n]) — Y([n]). It remains to check the naturality of F': X = Y. Well, let f: [n] — [m] be an
increasing map, we should check that X f o F,,, = F,, o Y f. Because f can be written as a composite
of §*sand o*s (by Lemma 1.40), it is enough to check this for f € {§°, 0°*}, which now follows because
F started its life as a morphism of combinatorial simplicial sets.

« We show that {X,,} — X is functorial. To begin, note id: {X,,} — {X,} goes to the identity maps
idp, : X([n]) = X ([n]). Then given f: {X,,} — {Y,} and g: {Y,} — {Z,}, we see that the composite
(go f): X = Zisgivenby (go f)in = (90 f)n = gn © fu = gin) © fin-

+ We complete the check that we have defined inverse equivalences. For concreteness, let A: {X,,} —
X and B: X — {X,} beour functors.

Let's check BA = id. On an object {X,,}, we see that BA{X,,} has (BA{X,,}), = A{X,.}([n]) = X,
and simplicial maps d; and s; given by A({X,,})(6%) and A({X,,})(¢7) which are d; and s;, respectively.
On morphisms, we see BAf = f because (BAf),, = Af,) = fn for eachn.

Lastly, let's check AB = id. On an object X, we analogously see that ABX ([n]) = BX,, = X([n]);
further, to checkthat ABX (f) = X (f) foranincreasing map f, we note that Lemma 1.40 reduces this
check to 6* and o® by functoriality, which similarly follows by construction of A and B (which turns §°s
and 0°s to des and s,s and vice versa). Lastly, on morphisms, we see (ABf)[,) = Bf, = fi,) for each
n.

Remark 1.45. In light of Proposition 1.44, we will occasionally identify simplicial sets and combinatorial
simplicial sets. In particular, the term “combinatorial simplicial set” will not appear again.

Remark 1.46. There is also a notion of “semi-simplicial set” where we remove all the data associated to
the s.s. This notion is sufficient to work with homology, but because we are now homotopy theorists,
we work with simplicial sets.
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1.2 September4

The first problem set will be posted in about a day.

1.2.1 More on Simplicial Sets

It is worthwhile to explain nerves a little more.

Exercise 1.47. Fix a category C. We work our N(C); fori € {0, 1, 2}.

Proof. Here we go.
+ We see N(C), consists of functors from the category {e}, which are just objects of C.
« Similarly, N(C); consists of functors from the category {e — e} to C, which are just morphisms of C.

« Lastly, we note N(C), consists of functors from the category {e — e — e} to C, which amounts to the
data of a diagram

f
= c——c

— s e
\ J (go1) s
° C//

so that the nerve is required to know something about composition!

Let's work out N on some morphisms. For example, the canonical map oy: [n] — [0] picks out the identity
diagram, and the maps ¢° pick out some sub-diagrams. |

It turns out that sSet is a presheaf category.

Definition 1.48 (presheaf). Fix a category C. Then a presheaf on C is a functor C°? — Set. Accordingly,
the presheaf category PSh(C) is the functor category Fun(C°P, Set).

Example 1.49. We see that sSet = PSh(A).

These categories are nice because they admit Yoneda embeddings.

Lemma 1.50 (Yoneda). Fix a category C. Then there is a functor &: C — PSh(C) which is defined on
objects by
& (c) == More(—, ¢).

Furthermore, X is fully faithful.

Remark 1.51. Another way to state the last conclusion is that there is a canonical bijection between
Morc/(e1, ¢2) and natural transformations & (¢1) = &(c2).

Definition 1.52 (representable). A presheaf F on a category C is representable if and only if there is an
object ¢ € C for which F is isomorphic to &(c).
We are now allowed to remove the absolute value bars from our A™.

Notation 1.53. We define A™ as the simplicial set & ([n]).

14
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Example 1.54. We see that (A™),  consists of the order-preserving maps [m] — [n]. Forexample, (AQ)O
has three elements, and (A?), has six elements. Here are three of the elements of (A?),.

\

0

DO —— =

Here is another important simplicial set.

Definition 1.55 (boundary). For each n > 0, we define the boundary 9A™ € sSet to be the subfunctor of
A™ with 9A™(m) given by the non-surjective maps [m] — [n].

Definition 1.56 (horn). For each i € [n], we define the ith horn AT € sSet to be the subfunctor of A™
with A% given by the maps [m] — [n]. We say that A7 is an inner hornifand only if 0 < i < n; otherwise,
A is an outer horn.

Remark 1.57. There are canonicalinclusions A}, C 9A™ C A" for each relevant i and n.

Example 1.58. Intuitively, A” deletes the face opposite i. For example, here is A3.

0——1

N

2

One can similarly draw A2 (which omits 0 — 2) and A2 (which omits 0 — 1).

1.2.2 LiftingHorns

These horns allow us to state a special property of nerves.

Proposition 1.59. Fix a category C. Then any map A? — N(C) from an inner horn A? extends uniquely
toamap A™ — N(C).
A —— N(C)

1
-
e

An

Remark 1.60. In fact, a simplicial set is the nerve of a category if and only if it satisfies the conclusion
of Proposition 1.59. Thus, we have a characterization of the image of the fully faithful nerve functor!
Amusingly, this allows one to give an alternate definition of a category in terms of simplicial sets; this
is not circular because one can define simplicial sets as combinatorial simplicial sets.

Example 1.61. We show that any map Al — N(C) admits a unique extension to A2, Well, A} specifies
two maps f: cg — c¢;and g: ¢; — c2, which we complete to a map from A2 by defining the map ¢y — c»
to be the composite.

Example 1.62. It turns out that extending maps A? — N(C) and A3 — N(C) to A? encodes associativity
of composition.

15
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Non-Example 1.63. One does not expect any map A3 — N(C) to always extend to A%, Indeed, A3 only
has the maps 0 — 1 and 0 — 2, but there is no obvious way to then produce a map 1 — 2 in the nerve!

Remark 1.64. One can check that a category is a groupoid if and only if the outer horns also admit horn
fillings. The point is that being a groupoid allows one to reverse all the arrows, so coherence of com-
position allows one to do the filling.

We now turn to Sing.

Proposition 1.65. The functor Sing: sSet — Top admits a left adjoint || : Top — sSet. In fact, |A"| is
defined to be the topological n-simplex.

It is worthwhile to know how to construct adjoints.

Theorem 1.66. Fix a category C. Then PSh(C) has all limits and colimits.

Theorem 1.67. Suppose that C and D are categories, where D admits colimits. For any functor F': C —
D, there is a unique functor G: PSh(C) — D preserving colimits for which the composite

¢ 5 Psh(C) & .
In fact, G is a left adjoint.
Remark 1.68. This property characterizes Sing: indeed, for any topological space Y, we need to have
Sing(Y')(n) to be
Morgget (A", Sing(Y")) = Morrop (JA"|,Y).

We are now able to characterize the image of Sing.

Proposition 1.69. Fix a topological space Y. Then any map A? — SingY admits a lift to a map A™ —
Sing Y.

Proof. Bythe adjunction, itis enoughto lifta map |A?| — Y toamap |A™| — Y. But thisis not hard because
there are projection maps |A™| — |A?]. |

1.2.3 Kan Complexes

Proposition 1.69 motivates the following definition.

Definition 1.70 (Kan complex). A Kan complexis a simplicial set X in which every A? — X admits a lift
toamap A™ — X.

Example 1.71. By Proposition 1.69, we see that Sing Y is always a Kan complex.

Example 1.72. By Remark 1.64, we see that N(C) is a Kan complex if and only if C

At long last, we may define oco-categories, which is intended to simultaneously generalize nerves and Kan
complexes.

16
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Definition 1.73 (co-category, quasicategory). An oco-category quasicategory is a simplicial set X where
every inner horn A? — X admits a lift to A” — X. We may call X, the objects, call X; the morphisms,
and call X,, the n-morphisms for n > 1. More concretely, for any E € Cy, we may say that d; E exhibits
a 2-isomorphism between dyE and d> E.

Definition 1.74 (homotopic). Two maps f,g: X — Y are homotopicif and only if thereisamap h: X x
A' — Y such that the composites with dy: X x A? - X x Alandd;: X x A - X x Alaregand f,
respectively.

Remark 1.75. It turns out that being homotopic is an equivalence relation; the symmetry check uses the
fact that Y is a Kan complex.

Definition 1.76 (homotopy equivalent). Two Kan complexes X and Y are homotopy equivalent if and
only if there are maps f: X — Y and g: Y — X such that f o gand g o f are both homotopic to the
identities.

We will make use of the following hard(!) theorem.

Theorem 1.77 (Quillen). If X is a CW complex, then |Sing X | is homotopy equivalent to X. Similarly, if
X is a Kan complex, then Sing | X | is homotopy equivalent to X.

Corollary 1.78. The homotopy category of topological spaces is equivalent to the homotopy category
of Kan complexes.

This theorem is a purely motivational statement: it allows us to pass from topological spaces to just Kan
complexes.
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