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THEME 1

INTRODUCTION

1.1 February 2
Here we go.

1.1.1 Idempotent Algebras
The goal of this class is to understand some topics related to the chromatic splitting conjecture. Thus, the
first half of the class will try to understand the statement, and the second half of the class will explain how
it relates to other problems in algebra.

Warning 1.1. All categories in this course are∞-categories.

Example 1.2. Given a ring R, we have a stable, symmetric monoidal∞-category D(R) of chain com-
plexes ofR-modules, considered up to quasi-isomorphism. Notably, the symmetric monoidal structure
is given by the derived tensor product.

We begin our story with idempotent algebras.

Definition 1.3 (idempotent algebra). Fix a ring R. An idempotent algebra is an object E ∈ D(R) equip-
ped with a unit map R→ E such that the composite

E = E ⊗R R→ E ⊗R E

is an equivalence.

Remark 1.4. Such an objectE grantsE a multiplication structureE⊗RE → E, andE gains the structure
of a di�erentially graded algebra.

Example 1.5. Consider R = Z. Then for each prime p, the algebra Z(p) is idempotent: localizing Z(p)

further at (p) does nothing!

Non-Example 1.6. The Z-algebra Fp is not idempotent because the tensor product we are considering
is derived. Indeed, we computed Fp ⊗Z Fp last semester.
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Here is a quick reason why one might care about idempotent algebras.

Theorem 1.7 (Neeman). Fix a Noetherian ring R. Then the lattice of idempotent algebras is equivalent
to the data of SpecR as a topological space.

Example 1.8. For R = Z, it turns out that the idempotent algebras are either Z(p) or Q, and the maps
between them look like the specializations of SpecR.

Of course, we are homotopy theorists, so we have less reason to care about Z. Recall that Z is obtained
from N by formally adding inverses. But N is basically isomorphism classes of FinSet; if we had instead
formally added inverses directly to FinSet (instead of taking isomorphism classes first), we would have found
the sphere spectrum S. In particular, we will be interested in the category D(S) of S-modules, also called
spectra.

We now no longer have access to algebraic geometry directly on S. Instead, Theorem 1.7 motivates us
to look for the idempotent algebras for S.

Remark 1.9. For any x ∈ π∗S, there is an idempotent algebra S
[
x−1

]
. For example, π0S = Z, so there is

an idempotent algebra S(p).

Here is our first main theorem.

Theorem 1.10 (Nishida). Fix some x ∈ π∗S of positive degree. Then x is nilpotent.

Thus, the idempotent algebras S
[
x−1

]
do not look genuinely “new.” To get other idempotent algebras, we

need more tools.

1.1.2 The Adams–Novikov Spectral Sequence
Recall the S-algebra MU defined as the colimit of the embedding BU→ BLG(S) ⊆ Mod(S). Let’s compute
its homotopy groups.

Definition 1.11 (formal group law). Fix a commutative ring R. Then a commutative formal group law
over R is a power series f(x, y) ∈ R[[x, y]] satisfying

(a) f(x, 0) = x and f(0, y) = y,

(b) f(x, y) = f(y, x), and

(c) f(x, f(y, z)) = f(x, f(y, z)).

Definition 1.12 (Lazard ring). The Lazard ring is the ring L which is exactly the quotient of Z[{aij}ij ] by
the relations dictating that

f(x, y) =
∑
i,j≥0

aijx
iyj

is a commutative formal group law.

Remark 1.13. In other words, L represents the collection formal group laws, in the sense that the data
of a formal group law for a ring R amounts to the data of a ring homomorphism L→ R.
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Remark 1.14. By definition, there is a “universal” formal group law fL in L given exactly by

fL(x, y) =
∑
i,j≥0

aijx
iyj .

Theorem 1.15 (Quillen). The ring π∗MU is exactly the Lazard ring.

Remark 1.16. Quillen also computedπ∗(MU⊗SMU) as well as the two natural mapsπ∗MU→ π∗(MU⊗S
MU). It turns out that this is more or less related to some notion of isomorphism of the formal group
laws.

The use of MU is that it produces a spectral sequence with which we can understand π∗S. By Čech descent
along the map S→ MU, we see that S is the limit of the diagram

MU MU⊗S MU MU⊗S MU⊗S MU · · ·

which we can then truncate as filn S in order to get a descending filtration to fil0 S. Computing homotopy
along this filtration produces the desired spectral sequence, as soon as we compute homotopy groups of
the various tensor powers of the MUs and so on.

Theorem 1.17 (Adams–Novikov). LetMfg be the moduli space of formal groups. Then there is a spec-
tral sequence

E2 = Hs(Mfg;ω⊗t)⇒ π2t−sS.

Remark 1.18. It turns out that the spectral sequence is concentrated in the region s ≤ 2t− s.

Example 1.19. Along the line s = 2t − s, there is some h1 at (s, 2t − s) = (1, 1), and then we can take
powers of it to go up the line. It turns out thath1 survives the spectral sequence, and it goes to the “Hopf
map” η ∈ π1S; however, η4 = 0, though the Adams–Novikov spectral sequence cannot see it!

Thus, we see that the Adams–Novikov spectral sequence is not an amazing approximation: theE2 page sees
many classes which we know abstractly must vanish! Life is better if we pass to E∞ instead; the following
is our first main theorem.

Theorem 1.20 (Devinatz–Hopkins–Smith). TheE∞ page of the Adams–Novikov spectral sequence lies
under a curve which grows more slowly than any line.

Note that this immediately implies Theorem 1.10. On the other hand, we will see that the topological input
of Theorem 1.10 plus some algebraic facts about formal group laws will prove the above big theorem.

Remark 1.21. The curve is known to be faster than logarithmic, but not much else is known. Our proof
will not help us much because our proof of Theorem 1.10 will be ine�ective.

1.1.3 Back to Idempotent Algebras
Let’s return to trying to find some idempotent algebras.

Notation 1.22. Define the power series [n] ∈ L[[x]] to be adding with f a total of n times.
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Example 1.23. We see that [2](x) = f(x, x) and [5](x) = f(f(f(f(x, x), x), x), x).

Notation 1.24. Fix a prime p. Then we define the class vn ∈ π∗MU to be the coe�cient of xpn in the
power series [p](x).

Now, because localization is exact, we see that S(p) is the limit of the nerve

MU(p) MU(p) ⊗S MU(p) MU(p) ⊗S MU(p) ⊗S MU(p) · · ·

so it is not unreasonable to consider the following limit.

Notation 1.25. Fix a prime p and some n ≥ 0. Then we define LnS(p) as the limit of the following dia-
gram.

MU(p)

[
v−1n

]
MU(p)

[
v−1n

]
⊗S MU(p)

[
v−1n

]
MU(p)

[
v−1n

]
⊗S MU(p)

[
v−1n

]
⊗S MU(p)

[
v−1n

]
We may abbreviate LnS(p) to LnS if there is no possibility of confusion.

Remark 1.26. It turns out that there are natural maps Ln+1S→ LnS.

These spectra LnS give us new idempotent algebras, more or less granting us further understanding of the
“spectrum” of S.

Theorem 1.27 (Hopkins–Ravenel). Fix a prime p and somen ≥ 0. ThenLnS(p) is an idempotent algebra.

Remark 1.28. Ravenel has conjectured that if E is a nonzero idempotent algebra under S(p), then E is
either Q or one of the LnSs. This was recently disproved. It is current work to attempt a classification.

Nonetheless, S(p) can be understood well from the LnSs.

Theorem 1.29 (Hopkins–Ravenel). Fix a prime p. Then S(p) is the limit of the diagram

· · · → L3S(p) → L2S(p) → L1S(p).

1.1.4 Completion
Continue with our fixed prime p. For motivation, we return to abelian groups.

Remark 1.30. For any M ∈ D(Z), the p-localization sits in a pullback square

M(p) M∧p

M ⊗Z Q M∧p ⊗Z Q

more or less corresponding to finding the “lattice” Z(p) ⊆ Q.
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Analogously, there is a completion of LnS which fits into a diagram

LnE LK(n)E

Ln−1E Ln−1LK(n)E

(1.1)

where LnE := LnS⊗S E. We are now ready to state the chromatic splitting conjecture.

Conjecture 1.31 (Chromatic splitting). For any n ≥ 2, the inclusion

LK(n)S→ Ln−1LK(n)S

is an inclusion of a direct summand.

Remark 1.32. This implies that the natural map

S∧p →
∏
n≥1

LK(n)S

is the inclusion of a direct summand. The point is that the squares (1.1) are rather degenerate, which
would let us compute the homotopy groups of LnS from the completions.

Remark 1.33. Conjecture 1.31 is known at n = 2 and all primes, by work of many people.

The goal of the present class is to review the homotopy theory required to understand the statement of
Conjecture 1.31 formally, and then we will discuss why perfectoid geometry may be useful to prove it.

Let’s see why passing to LK(n)S is genuinely easier.

Example 1.34. For p > 2, we can define LK(1)S as the homotopy fiber of the endomorphism ψg − 1 of
KU∧p , where g is a choice of topological generator of Z×p , and ψ is some action of Z×p on KU∧p .

Theorem 1.35 (Goerss–Hopkins–Miller, Rogres). Fix a prime p. For each n ≥ 1, there is an S-algebra
En and a profinite group Gn for which

LK(n)S = (En)Gn .

In fact, En is a Galois extension of LK(n)S.

Remark 1.36. We will only be able to keep track of this sort of “infinite Galois theory” with condensed
mathematics.

Remark 1.37. The profinite group Gn is some subgroup of automorphisms of formal group laws.

Remark 1.38. For any spectrum X, there is some “Galois descent”

LK(n)X =
(
LK(n)(En ⊗X)

)Gn
.

This generalizes to a spectral sequence

H∗cts(Gn;π∗(LK(n)(En ⊗X)))⇒ π∗LK(n)X.
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The previous remark produces a spectral sequence

H∗cts(Gn;π∗En)⇒ π∗LK(n)S.

If p is large compared to n, then it turns out that the spectral sequence collapses for degree reasons, so we
are reduced to a pure algebra problem.

The end of the course will be interestedLK(n−1)LK(n)S(p) for general n but p very large. Conjecture 1.31
tells us that this should be fairly easy to understand, so we can view the end of the course as trying to provide
some evidence for the conjecture. For example, work in progress by many people has recently culminated
in the following strategy.

Notation 1.39. Fix B := En−1 ⊗S LK(n−1)En.

Remark 1.40. It turns out that B is Galois over LK(n−1)LK(n)S with Galois group Gn−1 ×Gn. Thus, we
can hope to be able to use some Galois descent spectral sequence to understand LK(n−1)LK(n)S, as in
Remark 1.38.

Now, π∗B is a local ring, so one becomes motivated to consider a perfection B̂. In particular, it turns out that
there is a Gn ×Gn−1-equivariant map B→ B̂, so taking fixed points produces a map out of LK(n−1)LK(n)S.
This is the sort of thing that Conjecture 1.31 asks us to do! Of course, the target is related to the perfection
B̂, which we now want to understand.

Theorem 1.41. The groups H∗cts(Gn ×Gn−1;π∗B̂) is the same as the cohomology of the structure sheaf
of some diamond related to the Fargues–Fontaine curve.

Let’s explain the application to Conjecture 1.31: this calculation tells us that (B̂)Gn×Gn−1 is LK(n−1)S ⊕
ΣLK(n−1)S, from which our small piece of Conjecture 1.31 follows!
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