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THEME 1
INTRODUCTION

1.1 February2

Here we go.

1.1.1 Idempotent Algebras

The goal of this class is to understand some topics related to the chromatic splitting conjecture. Thus, the
first half of the class will try to understand the statement, and the second half of the class will explain how
it relates to other problems in algebra.

Warning 1.1. All categories in this course are co-categories.

Example 1.2. Given a ring R, we have a stable, symmetric monoidal co-category D(R) of chain com-
plexes of R-modules, considered up to quasi-isomorphism. Notably, the symmetric monoidal structure
is given by the derived tensor product.

We begin our story with idempotent algebras.

Definition 1.3 (idempotent algebra). Fix a ring R. An idempotent algebrais an object E € D(R) equip-
ped with a unit map R — E such that the composite

EFE=FE®rR—>FEF®rFE
is an equivalence.

Remark 1.4. Such an object E grants E'a multiplication structure EQ g E — E, and E gains the structure
of a differentially graded algebra.

Example 1.5. Consider R = Z. Then for each prime p, the algebra Z,) is idempotent: localizing Z,)
further at (p) does nothing!

Non-Example 1.6. The Z-algebra F,, is not idempotent because the tensor product we are considering
is derived. Indeed, we computed F,, ®7 F), last semester.
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Here is a quick reason why one might care about idempotent algebras.

Theorem 1.7 (Neeman). Fix a Noetherian ring R. Then the lattice of idempotent algebras is equivalent
to the data of Spec R as a topological space.

Example 1.8. For R = Z, it turns out that the idempotent algebras are either Z, or Q, and the maps
between them look like the specializations of Spec R.

Of course, we are homotopy theorists, so we have less reason to care about Z. Recall that Z is obtained
from N by formally adding inverses. But N is basically isomorphism classes of FinSet; if we had instead
formally added inverses directly to FinSet (instead of taking isomorphism classes first), we would have found
the sphere spectrum S. In particular, we will be interested in the category D(S) of S-modules, also called
spectra.

We now no longer have access to algebraic geometry directly on S. Instead, Theorem 1.7 motivates us
to look for the idempotent algebras for S.

Remark 1.9. Forany = € S, there is an idempotent algebra S [z7!]. For example, 7S = Z, so there is
an idempotent algebra S,).

Here is our first main theorem.

Theorem 1.10 (Nishida). Fix some z € 7S of positive degree. Then z is nilpotent.

Thus, the idempotent algebras S [#7!] do not look genuinely “new.” To get other idempotent algebras, we
need more tools.

1.1.2 The Adams-Novikov Spectral Sequence

Recall the S-algebra MU defined as the colimit of the embedding BU — BLG(S) C Mod(S). Let’'s compute
its homotopy groups.

Definition 1.11 (formal group law). Fix a commutative ring R. Then a commutative formal group law
over Ris a power series f(z,y) € R|[z, y]] satisfying

(a) f(.T,O) =rand f(oay) =Y
(b) f(xay) :f(yvx)rand
(c) f(x,f(y,z)) = f(x,f(y,z))

Definition 1.12 (Lazard ring). The Lazard ring is the ring L which is exactly the quotient of Z[{a;; }:,] by
the relations dictating that

fl@y) =) aya'y’

4,520

is a commutative formal group law.

Remark 1.13. In other words, L represents the collection formal group laws, in the sense that the data
of a formal group law for a ring R amounts to the data of a ring homomorphism L — R.
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Remark 1.14. By definition, there is a “universal” formal group law f7, in L given exactly by

fo(z,y) = Z aijxiyj~

4,5 >0
Theorem 1.15 (Quillen). The ring 7. MU is exactly the Lazard ring.

Remark1.16. Quillen also computed 7, (MU®sMU) as well as the two natural maps 7. MU — 7, (MU®sg
MU). It turns out that this is more or less related to some notion of isomorphism of the formal group
laws.

The use of MU is that it produces a spectral sequence with which we can understand 7. S. By Cech descent
along the map S — MU, we see that S is the limit of the diagram

MU ==} MU s MU &= MU @5 MU ©5 MU

which we can then truncate as fil" S in order to get a descending filtration to fil”S. Computing homotopy
along this filtration produces the desired spectral sequence, as soon as we compute homotopy groups of
the various tensor powers of the MUs and so on.

Theorem 1.17 (Adams—Novikov). Let My, be the moduli space of formal groups. Then there is a spec-
tral sequence
= HS(Mfg;CU@t) = 71'2,5,58.

Remark 1.18. It turns out that the spectral sequence is concentrated in the region s < 2¢ — s.

Example 1.19. Along the line s = 2t — s, there is some h; at (s,2t — s) = (1, 1), and then we can take
powers of it to go up the line. It turns out that h; survives the spectral sequence, and it goes to the “Hopf
map” n € mS; however, n* = 0, though the Adams—Novikov spectral sequence cannot see it!

Thus, we see that the Adams—Novikov spectral sequence is not an amazing approximation: the F» page sees
many classes which we know abstractly must vanish! Life is better if we pass to E, instead; the following
is our first main theorem.

Theorem 1.20 (Devinatz—Hopkins—Smith). The E, page of the Adams—Novikov spectral sequence lies
under a curve which grows more slowly than any line.

Note that this immediately implies Theorem 1.10. On the other hand, we will see that the topological input
of Theorem 1.10 plus some algebraic facts about formal group laws will prove the above big theorem.

Remark 1.21. The curve is known to be faster than logarithmic, but not much else is known. Our proof
will not help us much because our proof of Theorem 1.10 will be ineffective.

1.1.3 Backtoldempotent Algebras

Let’s return to trying to find some idempotent algebras.

Notation 1.22. Define the power series [n] € L[[z]] to be adding with f a total of n times.
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Example 1.23. We see that [2|(z) = f(z,z) and [5](z) = f(f(f(f(z, ), ), ), z).

Notation 1.24. Fix a prime p. Then we define the class v, € .MU to be the coefficient of 2P" in the
power series [p](z).

Now, because localization is exact, we see that S, is the limit of the nerve
MU () &= MUy @5 MU, 55 MUy @5 MU @5 MUy
so it is not unreasonable to consider the following limit.

Notation 1.25. Fix a prime p and some n > 0. Then we define L,,S,) as the limit of the following dia-
gram.

MUy, [v7Y] 2= MU, [v;1] ®s MUy [v7] £ MU, [v71] ©5 MU, [v71] ®5 MU, [v7!]

We may abbreviate L,,S(,) to L,,S if there is no possibility of confusion.

Remark 1.26. It turns out that there are natural maps L,,11S — L,S.

These spectra L,,S give us new idempotent algebras, more or less granting us further understanding of the
“spectrum” of S.

Theorem 1.27 (Hopkins—Ravenel). Fixa prime pand somen > 0. Then L,,S, is an idempotent algebra.

Remark 1.28. Ravenel has conjectured that if E is a nonzero idempotent algebra under S, then E'is
either Q or one of the L,,;Ss. This was recently disproved. It is current work to attempt a classification.
Nonetheless, S, can be understood well from the L,,Ss.

Theorem 1.29 (Hopkins—Ravenel). Fix a prime p. Then S, is the limit of the diagram

coo =p L3S(p) — LQS(p) — LlS(p).

1.1.4 Completion

Continue with our fixed prime p. For motivation, we return to abelian groups.

Remark 1.30. For any M € D(Z), the p-localization sits in a pullback square

M) ——— M

! |

M®ZQ4>MZ/)\®ZQ

more or less corresponding to finding the “lattice” Z,) C Q.
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Analogously, there is a completion of L, S which fits into a diagram

L, F —— LK(n)E

l l (1.1)

LyE—— Ly 1L E
where L, E = L,,S ®s E. We are now ready to state the chromatic splitting conjecture.
Conjecture 1.31 (Chromatic splitting). For any n > 2, the inclusion

Li(m)S = Lu—1Lgm)S

is an inclusion of a direct summand.

Remark 1.32. This implies that the natural map

S;\ — H LK(n)S

n>1

is the inclusion of a direct summand. The point is that the squares (1.1) are rather degenerate, which
would let us compute the homotopy groups of L,,S from the completions.

Remark 1.33. Conjecture 1.31 is known at n = 2 and all primes, by work of many people.

The goal of the present class is to review the homotopy theory required to understand the statement of
Conjecture 1.31 formally, and then we will discuss why perfectoid geometry may be useful to prove it.
Let's see why passing to Ly ,,)S is genuinely easier.

Example 1.34. For p > 2, we can define Lk (1)S as the homotopy fiber of the endomorphism 9 — 1 of

/\ . . . . . /\
KU, where g is a choice of topological generator of Z, and ¢ is some action of Z5 on KU,

Theorem 1.35 (Goerss—Hopkins—Miller, Rogres). Fix a prime p. For each n > 1, there is an S-algebra
E,, and a profinite group G, for which

LK(n)S = (En)G"'.
In fact, E,, is a Galois extension of Ly ;,)S.

Remark 1.36. We will only be able to keep track of this sort of “infinite Galois theory” with condensed
mathematics.

Remark 1.37. The profinite group G,, is some subgroup of automorphisms of formal group laws.

Remark 1.38. For any spectrum X, there is some “Galois descent”
Gn
L)X = (Lx(n)(Bn® X)) .
This generalizes to a spectral sequence

H:ts(Gn; ﬂ*(LK(n)(En X X))) — W*LK(n)X.
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The previous remark produces a spectral sequence
H:ts(Gn; ’/T*En) = W*LK(n)S

If pis large compared to n, then it turns out that the spectral sequence collapses for degree reasons, so we
are reduced to a pure algebra problem.

The end of the course will be interested Lk (,,—1) Lk (n)S(p) for generaln but p very large. Conjecture 1.31
tells us that this should be fairly easy to understand, so we can view the end of the course as trying to provide
some evidence for the conjecture. For example, work in progress by many people has recently culminated
in the following strategy.

Notation 1.39. Fix B := E;,_; ®s Li(n—1)En.
Remark 1.40. It turns out that B is Galois over L (,,—1) L (n)S with Galois group G,,—1 x Gy. Thus, we

can hope to be able to use some Galois descent spectral sequence to understand Ly (,—1)Lxn)S, as in
Remark 1.38.

Now, 7B is a local ring, so one becomes motivated to consider a perfection B. In particular, it turns out that
thereisa G, x G, _;-equivariant map B — B, so taking fixed points produces a map out of Ly (,—1) Lk (n)S.
This is the sort of thing that Conjecture 1.31 asks us to do! Of course, the target is related to the perfection
]/E\%, which we now want to understand.

Theorem 1.41. The groups H%, (G, x G,,_1; w*ﬁ) is the same as the cohomology of the structure sheaf

cts

of some diamond related to the Fargues—Fontaine curve.

Let's explain the application to Conjecture 1.31: this calculation tells us that (@)G"XG"—l is Lgn—1)S @
YL (n—1)S, from which our small piece of Conjecture 1.31 follows!
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