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Abstract. We consider degenerate principal series representations IndGP χ over finite fields, where G is

a classical group of even rank, and P is the Siegel parabolic subgroup. For example, we show that this

representation is multiplicity-free and irreducible for most characters χ. We then discuss a particular in-
tertwining operator I on IndGP χ and its related combinatorics. Firstly, this operator I produces families

of diagonalizable antitriangular matrices with well-behaved eigenvalues. Secondly, applying I to a special
vector in IndGP χ leads us to various matrix Gauss sums, whose evaluations imply an explicit equidistribution

result of the trace and determinant of symmetric and alternating invertible matrices.
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1. Introduction

For motivation, we begin by reviewing the doubling method for finite fields as worked out in [Cha96],
though we remark that the notation of the introduction thus differs from the notation of the rest of the
paper. We refer to [PR87] for the theory over local and global fields. Let q be a prime-power not divisible
by 2 or 3, and let 2n be a positive even integer. The “doubling method” is a way to define zeta functions
and gamma factors to arbitrary irreducible representations π of a classical group; notably, we require no
genericity assumption! For the purposes of the introduction, we work with the group G = SLn(Fq).

The main idea of the doubling method is to embed our classical group of one of the same type and twice
the size. Thus, we let H := SL2n(Fq), and we let P ⊆ H denote the Siegel parabolic subgroup of matrices
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of the form [A B
D ] where A,B,D ∈ Fn×nq . Note that G×G is able to embed diagonally into P . Then for a

character ω of P , one tries to prove a multiplicity one result of the form

dimHomG×G

(
IndHP ω ⊗ π ⊗ π∨,C

)
?
= 1.

In this paper, we prove the following version of this result. The following theorem follows by combining
Propositions 2.3.1 and 2.3.6. In short, we use Gelfand pairs to show that the representation is multiplicity-
free, and we use Mackey theory to compute the number of irreducible components.

Theorem 1.0.1. The representation IndHP ω is multiplicity-free. Furthermore, the number of irreducible
components equals 

1 if ω2 ̸= 1,

2 if ω2 = 1 but ω ̸= 1,

n+ 1 if ω = 1.

Continuing with the doubling method, the multiplicity one result allows one to define a zeta function
Z(f, v, w) for π. One would like this zeta function to have a functional equation, so we need a map from

IndHP ω to a dual version. For this, we define a special intertwining operator M : IndGP ω → IndGP ω
′ by

Mf(g) :=
∑

B∈Fn×n
q

f

([
1n

−1n

] [
1n B

1n

]
g

)
,

where ω′ : P → C× is some other explicitly defined character; for example, one has ω′′ = ω. In general, one
has that M ◦M is an operator on IndGP ω; when ω

2 = 1, it turns out that ω′ = ω so that M is an operator

on IndGP ω.
This intertwining operator M now provides a functional equation for Z of the form

Z(Mf, v, w) = Γ(π, ω)Z(f, v, w),

where Γ(π, ω) is our gamma factor; see [Cha96, Theorem 3.14]. One would like to normalize Γ(π, ω), which

is typically done by using the functional equation twice to note that |Γ(π, ω)|2 should be an eigenvalue of
M ◦M .

Thus, we are interested in knowing the eigenvalues ofM . For most ω, we know that IndHP ω is irreducible,

so M ◦M must be a scalar anyway. In these cases, one way to proceed is to find a special vector in IndHP ω
for which one can see directly that it is an eigenvector and compute this eigenvalue; see [Cha96, Section 3.6]
for more discussion. Here is our manifestation of this notion. The following result is Proposition 2.5.6.

Theorem 1.0.2. Fix a nontrivial character ψ : Fq → C×. For each character ω : P → C×, we define a

vector fω ∈ IndHP ω as supported on matrices of the form p
[ −1n
1n

][
1n B

1n

]
for p ∈ P with value

fω

(
p

[
−1n

1n

] [
1n B

1n

])
:= ω(p)ψ(trB).

Then

Mfω =

( ∑
B∈GLn(Fq)

ω(detB)ψ(trB)

)
fω′ .

Remark 1.0.3. In fact, even when M fails to be a scalar, we will be able to show that the eigenvalue given
by the Gauss sum equals the smallest eigenvalue of M , and it seems to be the case that this eigenvalue has the
largest eigenspace in IndHP ω. This is discussed further in Remark 2.5.9. It would be interesting to explicitly

compute (or at least compare) the dimensions of all the eigenspaces of IndHP ω, but this seems out of reach
at the moment.

Thus, we are motivated to evaluate these Gauss sums. In the case of H = SL2n(Fq), the corresponding
Gauss sums given as above have been evaluated in [Kim97]. However, considerations of other groups G lead
to different sums. For example, H = Sp2n(Fq) leads to a sum over invertible symmetric matrices considered
in [Sai91], and H = O4n(Fq) leads to a sum over invertible alternating matrices (which appears to be new).

We provide evaluations for all of these matrix Gauss sums. Our methods are based on an explicit row-
reduction analogous to the Bruhat decomposition methods of [Kim97], but the explicit nature of our expo-
sition allows our proofs to be rather uniform over all the various sums. For example, even though the sum
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over invertible symmetric matrices has already been considered in [Sai91], our method seems to be easier to
visualize.

Evaluating these Gauss sums also has a combinatorial application: we are able to provide an explicit
formula for the number of invertible symmetric, alternating, or general matrices with given trace and deter-
minant. For general invertible matrices, this application is essentially implicit in [Kim97, Theorem 6.2], so
we only state results for symmetric and alternating matrices, which appear to be new. The following results
follow from Corollaries 3.3.6 and 3.4.6, and they provide an explicit equidistribution result for the trace and
determinant.

Theorem 1.0.4. Fix d ∈ F×
q and t ∈ Fq. For odd integers 2m + 1, the number N(d, t) of symmetric

A ∈ GL2m+1(Fq) with (detA, trA) = (d, t) is bounded by∣∣∣∣N(d, t)− N

q(q − 1)

∣∣∣∣ ≤ qm(m+1)(q − 1)m+1,

where N is the total number of invertible symmetric (2m+ 1)× (2m+ 1) matrices.

Remark 1.0.5. There is analogous, albeit slightly more complicated, result for even integers 2m.

Theorem 1.0.6. Fix a square d ∈ F×2
q and t ∈ Fq. For even integers 2m, the number N(d, t) of alternating

A ∈ GL2m(Fq) with (detA, trA) = (d, t) is bounded by∣∣∣∣N(d, t)− N

q(q − 1)/2

∣∣∣∣ ≤ qm(m−1)(q − 1)m,

where N is the total number of invertible alternating 2m× 2m matrices.

We now return to our discussion of the eigenvalues of M . We have left to deal with some cases where
IndHP ω fails to be irreducible. With some care, we are able to write down a matrix representation of M and
then compute its eigenvalues. Because it is more interesting, we will consider ω = 1 for the time being. By
choosing a “basis” of IndHP 1, we show the following in Proposition 2.4.5 and Theorem 4.2.2.

Theorem 1.0.7. One can give IndHP 1 an ordered basis so that the operator M on IndHP 1 has matrix given
by [

(−1)i+j−nqn
2−i2+(i+j−n

2 ) (q; q)2i
(q; q)2n−j(q; q)i+j−n

]
i+j≥n

,

where (a; q)n :=
∏n−1
i=0

(
1− aqi

)
is the q-Pochhammer symbol; here, i, j ∈ {0, . . . , n} are indices, and i+j ≥ n

indicates that the matrix has 0s when i+ j < n. This matrix is diagonalizable and has eigenvalues given by{
(−1)n−iq(

n
2)+(

i+1
2 ) : 0 ≤ i ≤ n

}
.

Remark 1.0.8. Considerations with other classical groups G produces other families of diagonalizable anti-
triangular matrices.

What is remarkable is that we have produced a family of diagonalizable “antitriangular” matrices. We
are not aware of any general method to handle such diagonalization problems, and it does not appear clear
a priori that the eigenvalues listed above should be so well-behaved. Diagonalizing certain antitriangular
(satisfying a “global antidiagonal property”) matrices have combinatorial applications in [BW22], and some
aspects of our methods can be considered q-analogues of their arguments, but the analogy is weak. Notably,
the family of matrices considered in Theorem 1.0.7 does not satisfy the global antidiagonal property.

1.1. Layout. We quickly explain the outline of the paper. In Section 2, we examine the representation theory
of IndHP ω and explain where the combinatorial applications arise. In Section 3, we evaluate our matrix Gauss
sums and provide the combinatorial applications. Lastly, in Section 4, we provide the diagonalization of our
intertwining operator.

1.2. Acknowledgements. This research was conducted during the University of Michigan REU during the
summer of 2023; it was funded by the NSF RTG Number Theory and Representation Theory grant. The
authors are particularly indebted to his advisors Elad Zelingher and Jialiang Zou for endlessly helpful advice
and guidance in many aspects of this paper, from suggestions on the Hecke algebra to a plethora of helpful
references. This project could not exist without them. The authors are also grateful to Ofir Gorodetsky for
aide in proving certain q-identities used in the article, most notably by explaining how to use the packages
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qZeil and qMultiSum. As such, the authors are also grateful to the Research Institute for Symbolic
Computation for access to those two packages.

The first author would also like to thank various friends in the undergraduate mathematics department
at the University of California at Berkeley, in particular Jad Damaj, Sophie McCormick, and Zain Shields
for diverting conversations regarding diagonalizing antitriangular matrices. Lastly, the first author is most
thankful to Hui Sun for consistent companionship.

2. Group-Theoretic Set-Up

In this section, we set up the necessary representation theory to proceed with the results in the rest of
the paper.

2.1. Groups and Subgroups. Let q be an odd prime-power, and let 2n be a positive even integer; for
convenience, we will take 3 ∤ q, but this is used infrequently. Throughout, G will be one of the groups
{GL2n,SL2n,GO2n,O2n,GSp2n,Sp2n} over the finite field Fq. To explicate our orthogonal and symplectic
groups, we fix

ε :=

{
+1 if G ∈ {GO2n,O2n},
−1 if G ∈ {GSp2n,Sp2n},

and J :=

[
ε1n

1n

]
so that G is defined to preserve the quadratic form J . In the cases where G ∈ {GL2n,SL2n}, it will be
convenient to define ε := −1 as well. Here, the blank entries in J indicate zeroes, a convention that will stay
in place for the rest of the article. Throughout, when there are multiple groups G involved, we will use a
superscript (·)G; for example, εGL2n = −1.

Note that G has split maximal torus T given by the diagonal matrices. The degenerate principal series
representations are induced from the Siegel parabolic subgroup

P :=

{[
A B

D

]
∈ G

}
,

where A,B,D are implicitly in Fn×nq , a convention that will remain in place for any expression in block
matrix form as above. We let U ⊆ P be the unipotent radical of P , and we let M ⊆ P be the Levi subgroup
so that P =M ⋉ U . Explicitly,

U =

{[
1n B

1n

]
∈ G

}
and M =

{[
A

D

]
∈ G

}
.

The various cases of G provide more constraints on these two subgroups. For example, if G ∈ {GO2n,O2n},
then B above must be alternating; if G ∈ {GSp2n,Sp2n}, then B above must be symmetric. Similarly, if
G = SL2n, then detD = (detA)−1; if G ∈ {O2n,Sp2n}, then D = A−⊺; and if G ∈ {GO2n,GSp2n}, then
D = λA−⊺ for some λ ∈ F×

q . A quick computation with the definition of G in the various cases reveals that
these are only the constraints.

It will be helpful in the sequel to understand characters of P . In all cases, we are able to define a “Siegel
determinant” χdet : P → F×

q given by

χdet

([
A B

D

])
:= (detD)−1.

In the cases G ∈ {GL2n,GO2n,GSp2n}, there is an additional “multiplier” m : P → F×
q given by

m

([
A B

D

])
= detAD if G = GL2n,

m

([
λA B

A−⊺

])
:= λ else.

For the remaining cases of G, we will definem to just be the trivial character. Both χdet andm are characters
by a direct computation. It turns out that these are essentially the only characters.

Lemma 2.1.1. Let χ : P → C be a character. Then χ = (α◦m)(β ◦χdet) for some characters α, β : F×
q → C.

Proof. This follows from an explicit computation of [P, P ] in all cases. The assumption 3 ∤ q is helpful. ■
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With a discussion of characters out of the way, we pick up the following notation, which we will use
without comment in the sequel.

Notation 2.1.2. Fix a group P and a character χ : P → C×. For any representation V of P , we let V χ

denote the subspace of χ-eigenvectors. Explicitly,

V χ := {v ∈ V : pv = χ(p)v for all p ∈ P}.

2.2. Some Weyl Group Computations. An argument similar to [Mil17, Example 17.88] verifies that
the diagonal subgroup T of G is always a maximal torus; namely, one can check that CG(T ) = T . Then
an argument similar to [Mil17, Example 17.42] verifies that NG(T ) consists of permutation matrices (up to
torus elements); alternatively, one can study the Weyl group of the relevant root system and then convert
this back into permutation matrices by hand. In any case, we let W denote the Weyl group of G, and we
let WP denote the Weyl group of the Siegel parabolic subgroup P .

It will be useful to explicitly compute these Weyl groups. If G ∈ {GLn,SLn}, then W consists of
the permutation matrices up to a sign. For each w ∈ W , we let σw ∈ NG(T ) denote the corresponding
permutation matrix, and we let dw ∈ T be a diagonal matrix with entries in ±1 such that det dwσw = 1.
(The choice of dw will not matter too much in the sequel.) The point is that {dwσw}w∈W provides a set of
representatives for W in G.

We would like a similar description for G ∈ {GO2n,O2n,GSp2n,Sp2n}. The following lemma, briefly,
determines which permutation matrices actually belong to G, up to a diagonal element.

Lemma 2.2.1. Suppose G ∈ {GO2n,O2n,GSp2n,Sp2n}. Let Σ be the set of permutations σ ∈ S2n such that
σ(i+ n) ≡ σ(i) + n (mod 2n) for each i.

(a) For each w representing a class in W , there exists a unique permutation σ ∈ Σ such that w = dσ
for some diagonal matrix d.

(b) For each σ ∈ Σ, there exists some diagonal matrix d with entries in {±1} such that dσ ∈ G.

Proof. Checking (a) is a matter of determining which permutations live in G. Checking (b) comes down to
writing down relations between the entries in d enforced by dσ ∈ G. For a little more detail (in the case of
general Lie groups), see [Kir08, Exercise 7.16]. ■

Remark 2.2.2. For consistency, we provide a convenient choice of signs dw for w ∈W . If G ∈ {GO2n,O2n},
then ε = 1, so dw := 12n will always work. If G ∈ {GSp2n,Sp2n}, then one can put signs dw on the top-right
quadrant of σw. Explicitly, we take dσ(i) = −1 if i ≤ n and σ(i) > n, and we take dσ(i) = 1 otherwise.

Our benefit to having explicit representatives ofW is that we get explicit representatives of certain double
quotients. For example, W itself provides representatives of B\G/B by the Bruhat decomposition, where
B ⊆ G is a Borel subgroup containing T . We will be interested in P\G/P .
Lemma 2.2.3. For each r ∈ {0, 1, . . . , n}, define

ηr :=


1n−r

ε1r
1n−r

1r

 .
Then {η0, . . . , ηn} ⊆ G provides a set of representatives of the double quotients P\G/P .

Proof. We define a function ρ : G → {0, . . . , n} by ρ ([A B
C D ]) := rankC. We will show that ρ descends to a

bijection P\G/P → {0, . . . , n}, from which the result follows.
Two of the required checks are not so bad. Note that ρ is surjective because ρ(ηr) = r for each r ∈

{0, . . . , n}. Additionally, an expansion of some 2× 2 block matrices is able to show that ρ actually descends
to a function on P\G/P .

It remains to show that ρ : P\G/P → {0, . . . , n} is injective. Unwinding definitions, it is enough to show
that we must show that ρ(g) = r implies that g ∈ PηrP . Choosing a Borel subgroup B ⊆ P containing T ,
we may use the Bruhat decomposition to see that each coset in B\G/B is represented by an element of the
Weyl group W . Thus, we may assume that g = w = dwσw where dw ∈ T and σw is a permutation matrix.
One now uses the permutations available in P to show that σw can be conjugated into ηr. ■
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Remark 2.2.4. The above proof shows that the double cosets

PηrP =

{[
A B
C D

]
∈ G : rankC = r

}
are all (Zariski) locally closed. In fact, Pη0P is (Zariski) closed, and PηnP is the only (Zariski) open double
coset (it is defined by detC ̸= 0).

2.3. Parabolic Induction. In the sequel, we will be interested in the representations IndGP χ where χ : P →
C× is a character. We spend this subsection collecting a few facts about these representations. In particular,
we will show that these representations are multiplicity-free and irreducible for “general” χ.

We begin with the generic irreducibility of IndGP χ.

Proposition 2.3.1. Fix a character χ : P → C×, which we write as χ = (α ◦ m)(β ◦ χdet). Then the

dimension of EndG IndGP χ equals

n+ 1 if β = 1,

2 if β2 = 1, β ̸= 1 and G = SL2n,

n+ 1 if β2 = 1, β ̸= 1 and G ∈ {O2n,Sp2n},⌊
1
2 (n+ 1)

⌋
if β2 = 1, β ̸= 1 and G ∈ {GO2n,GSp2n},

1 else.

In particular, IndGP χ is irreducible provided β2 ̸= 1.

Proof. We use Mackey theory in the form of [Bum13, Theorem 32.1]. Namely, we are interested in computing
the dimension of the space H of functions f : G→ C satisfying

f(p1gp2) = χ(p1)χ(p2)f(g)

for all p1, p2 ∈ P and g ∈ G. Thus, any f ∈ H is uniquely determined by its values on representatives of
the double cosets P\G/P . As such, we define fr ∈ H to be supported on PηrP defined by fr(ηr) ∈ {0, 1},
where we take fr(ηr) = 1 provided that this gives a well-defined function in H. Lemma 2.2.3 implies that
{fr : fr ̸= 0} is a basis of H.

We are left computing the number of r such that fr ∈ H is well-defined with fr(ηr) = 1. Fix some r for
us to check. After some rearranging, it is enough to check that any p ∈ P such that ηrpη

−1
r ∈ P satisfies

χ(p) = χ
(
ηrpη

−1
r

)
. Writing

p :=


A1 A2 B1 B2

A3 A4 B3 B4

D1 D2

D3 D4


to have the same block matrix dimensions as ηr, one can compute that ηrpη

−1
r ∈ P if and only if A3 = B4 =

D2 = 0. Thus, χ(p) = χ
(
ηrpη

−1
r

)
is equivalent to always having

χ



A1 εB2 B1 A2

D4 εD3

D1

B3 A4


 ?

= χ



A1 A2 B1 B2

A4 B3

D1

D3 D4


 .

By expanding out the definition of χ, we find that this is equivalent to

β(detA4)
?
= β(detD4),

where we take the convention that the “empty” matrix has determinant 1.

• If r = 0, then A4 and D4 are empty, so the condition holds. Thus, we will take r > 1 in the rest of
our casework.

• If β = 1, then the condition holds. Thus, we will take β ̸= 1 in the rest of our casework.
• Take G = GL2n. Because r > 0, det is always surjective, and here there are no conditions on how
detA4 and detD4 should relate to each other, so the condition never holds.
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• Take G = SL2n. Because r > 0, det will always be surjective. If r = n, then the condition det p = 1
becomes detA4 = detD−1

4 , so we get a contribution in this case only when β2 = 1. Otherwise,
r /∈ {0, n}, so detA4 and detD4 can be arbitrary elements of F×

q (our condition det p = 1 only
requires detA1D4D1A4 = 1), so the condition never holds.

• Take G ∈ {O2n,Sp2n}. Then A4 = D−⊺
4 , so we are requiring β(detA4)

2 = 1. Because det is
surjective when r > 0, nonzero r contribute in this case exactly when β2 = 1.

• Take G ∈ {GO2n,GSp2n}. Then A4 = m(p)D−⊺
4 , so we are requiring

β(detA4)
2 = β(m(p))r.

With r > 0, the values detA4 and m(p) are arbitrary elements of F×
q , so we would like for β(x)2 =

β(y)r for any x, y ∈ F×
q . Taking y = 1 shows that we will only get contributions in this case when

β2 = 1, and taking x = 1 shows that we will only get contributions when βr = 1 too. However, with
β ̸= 1, we see that βr = 1 only happens when r is even.

Tallying the above cases completes the proof. ■

Remark 2.3.2. In the sequel, we will make frequent use of the basis f• of H.

Even though it is not currently relevant to our discussion, we will want a similar Mackey theory compu-
tation in the future, so we will get it out of the way now. This requires a definition.

Definition 2.3.3. Note that J normalizes M . Thus, for any character χ : P → C×, we define the character
χJ as the following composite.

P ↠ M
J∼= M

χ→ C×

[A B
D ] 7→ [A D ] 7→ [D A ] 7→ χ ([D A ])

Remark 2.3.4. One can check that
(
χJ
)J

= χ. Further, if β = 1, then one can compute that χJ = χ;

alternatively, if we only have β2 = 1 but G ∈ {SL2n,O2n,Sp2n} so that m = 1, then we still have χJ = χ.

Proposition 2.3.5. Fix a character χ : P → C×, which we write as χ = (α◦m)(β ◦χdet). Then we compute

a basis for
(
IndGP χ

)χJ

.In particular, we find

dim
(
IndGP χ

)χJ

= dim
(
IndGP χ

)χ
.

Proof. We proceed as in Proposition 2.3.1. For brevity, set HJ :=
(
IndGP χ

)χJ

. Again, f ∈ HJ is uniquely

determined by its values on representatives of P\G/P , so we set fr ∈ HJ to be supported on PηrP defined
by fr(ηr) ∈ {0, 1} where we take fr(ηr) = 1 whenever possible; thus, {fr : fr ̸= 0} is a basis of HJ .

Continuing as in Proposition 2.3.1, we are checking which fr ∈ HJ are well-defined with fr(ηr) = 1.
Rearranging, it is enough to check that if p ∈ P has ηrpη

−1
r ∈ P , we need χ(p) = χ

(
ηrpη

−1
r

)
. Writing

p :=


A1 A2 B1 B2

A3 A4 B3 B4

D1 D2

D3 D4


to have the same dimensions as ηr, we can then compute that ηrpη

−1
r ∈ P if and only if A3 = B4 = D2 = 0.

Thus, χ(p) = χJ
(
ηrpη

−1
r

)
is equivalent to always having

χ



A1 A2 B1 B2

A4 B3

D1

D3 D4


 ?

= χJ



A1 εB2 B1 A2

D4 εD3

D1

B3 A4


 .

The result now follows from a similar casework on G and r. We will not write out the casework in its entirety
because a similar computation is recorded in Proposition 2.3.1. However, we will provide the answers.

• Suppose G ∈ {O2n,Sp2n}. If r = n, then we always get a contribution; otherwise, we get contribu-
tions only when β2 = 1.
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• Suppose G = SL2n. We get a contribution when r = n and when β = 1. Lastly, we also get a
contribution when r = 0 and β2 = 1.

• Suppose G = GL2n. We get a contribution when r = n or when β = 1 only.
• Suppose G ∈ {GO2n,GSp2n}. We get a contribution when r = n and when β = 1; otherwise, we get
an additional contribution when β2 = 1 and r ≡ n (mod 2).

Tallying the above cases and comparing with Proposition 2.3.1 completes the proof. ■

We now show that IndGP χ is multiplicity-free.

Proposition 2.3.6. For any character χ : P → C×, the representation IndGP χ is multiplicity-free.

Proof. Write χ = (α ◦ m)(β ◦ χdet), as usual. If β2 ̸= 1, then Proposition 2.3.1 tells us that IndGP χ is
irreducible. It remains to handle the case where β2 = 1. Consider the Hecke algebra H of functions
f : G→ C satisfying

f(p1gp2) = χ(p1)χ(p2)f(g).

for all p1, p2 ∈ P and g ∈ G, where product is given by convolution. By [Bum13, Theorem 45.1], it suffices
for the Hecke algebra H to be commutative. We will split this into three cases.

• Take G = SL2n where χ ̸= 1. We will apply force. Here, α = 1, so we still have χ2 = 1. Then the
computation of Proposition 2.3.1 tells us that H has C-basis given by the functions f0, fn : G → C
where fr is supported on PηrP with fr(ηr) = 1. To check that H is commutative, it is enough to
verify that f0 ∗ fn = fn ∗ f0. We will do this by explicit computation. It is enough to check that

(f0 ∗ fn)(ηr)
?
= (fn ∗ f0)(ηr)

for r ∈ {0, n}. For η0 = 12n, both convolutions vanish because f0 and fn have disjoint supports. For
ηn, a similar comparison of supports finds that both sides equal 1.

• Take G ∈ {SL2n,O2n,Sp2n}, except the above case. Again, α = 1, so χ2 = 1. We apply an argument
similar to the theory of Gelfand pairs, such as in [Bum13, Theorem 45.2]. Define ι : G → G by
ι(g) := g−1. Then ι(ι(g)) = g, and ι(gh) = ι(h)ι(g) for g ∈ G, and χ(ι(p)) = χ(p)−1 = χ(p) for
p ∈ P .1 Thus, we may define an operator (·)ι : H → H by

f ι(g) := f(ι(g)).

Now, (·)ι is of course C-linear, and it can be checked to be anti-commutative from the fact ι(gh) =
ι(h)ι(g).

However, we claim that (·)ι is in fact the identity map on H, from which it follows that H is
commutative. Fix some f ∈ H; we wish to show that f ι = f . By Lemma 2.2.3, we see that f is
uniquely determined by its values on the ηr for r ∈ {0, . . . , n} where fr ̸= 0, so it is enough to check
that f

(
η−1
r

)
= f(ηr). We can compute

f
(
η−1
r

)
= χ



1n−r

ε1r
1n−r

ε1r


 f(ηr).

Casework on χ and G verifies that this extra factor goes away.
• Take G ∈ {GL2n,GO2n,GSp2n}. Let S := kerm so that S ∈ {SL2n,O2n,Sp2n}.We will show this

case by reducing the claim from G to S. Let HS denote the Hecke algebra corresponding to the
group S and character χS := χ|S , and we will set HG := H and χG := χ. We will show that the ring
HS surjects onto HG, which shows that HG is commutative.

For each r ∈ {0, . . . , n}, let fGr ∈ HG and fSr ∈ HS denote the functions on the corresponding
group supported on the double coset of ηr with f•r (ηr) = 1 whenever possible. Then the set of
nonzero f•r forms a basis of H• as discussed in the proof of Proposition 2.3.1. In fact, a careful
reading of the computation in Proposition 2.3.1 shows that fGr ̸= 0 implies that fSr ̸= 0 for each r,
so we may construct a C-linear surjection π : HS → HG by π : fSr 7→ fGr .

1This last identity crucially requires that χ2 = 1, which is why we will have to work a little harder when G ∈
{GL2n,GO2n,GSp2n}.
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To complete the proof, we will show that π is multiplicative. Fix indices r, s, t ∈ {0, . . . , n} with
fGr , f

G
s , f

G
t ̸= 0, so it is enough to check that(

fGr ∗ fGs
)
(ηt)

?
=
(
fSr ∗ fSs

)
(ηt).

Expanding out the convolution, we are being asked to show that∑
h∈PG\G

fGr
(
ηth

−1
)
fGs (h)

?
=

∑
h∈PS\S

fSr
(
ηth

−1
)
fSs (h),

where PG ⊆ G and PS ⊆ S are the Siegel parabolic subgroups. We will show that these two sums
are equal term-wise. Note that the number of terms on each side agree because the inclusion S ⊆ G
descends to a bijection PS\S → PG\G.

We now show that our sums are equal term-wise. Namely, we want to show that

fGr
(
ηth

−1
)
fGs (h)

?
= fSr

(
ηth

−1
)
fSs (h)

for any h ∈ S. A computation of the supports shows that one side vanishes if and only if the other
side vanishes. Otherwise, we may assume that fSr

(
ηth

−1
)
fSs (h) ̸= 0. Then we can write h = p1ηsp2

and ηth
−1 = p′1ηsp

′
2 for p1, p2, p

′
1, p

′
2 ∈ PS , and an expansion of the definitions of fS• and fG• quickly

show that both sides are equal. ■

In the sequel, we will be interested in G-invariant operators on IndGP χ, so it will be worth our time to
provide a basis of sorts for this space. The main idea is as follows.

Lemma 2.3.7. Fix a character χ : P → C×. For each irreducible subrepresentation π of IndGP χ, there exists
exactly one dimension of χ-eigenvectors in π.

Proof. We are being asked to show that dimHomP

(
χ,ResGP π

)
= 1. This follows by combining Proposi-

tion 2.3.6 with Frobenius reciprocity. ■

Thus, we note that we can understand operators on IndGP χ by merely understanding where they send
a vector from each irreducible subrepresentation. Each irreducible subrepresentation contributes a unique

basis element to
(
IndGP χ

)χ
, so we may just understand how the operator behaves on

(
IndGP χ

)χ
. Now,(

IndGP χ
)χ

is exactly the underlying vector space of the corresponding Hecke algebra H, so the computation

of Proposition 2.3.1 provides a basis for this space.

2.4. The Intertwining Operator. We are now ready to introduce the main character of our story, which
is an operator I on the space Mor(G,C) = IndG1 1 defined by

(If)(g) :=
∑
u∈U

f
(
J−1ug

)
.

Note that I : IndG1 1 → IndG1 1 is G-invariant. In more typical notation, I is the intertwining operator MJ ,

where we view J as representing a Weyl group element. As the space IndG1 1 is too large, we are instead

interested in the spaces IndGP χ where χ : P → C× is some character. One can check that I restricts to a

G-invariant map IndGP χ→ IndGP χ
J .

This article is interested in understanding the linear transformation I : IndGP χ → IndGP χ
J and in par-

ticular the eigenvalues of the operator I ◦ I. (Note I ◦ I is automatically diagonalizable because IndGP χ is
multiplicity-free by Proposition 2.3.6.) For later use, we would like to expand I out as a matrix using the
bases of Lemma 2.3.7, which we see makes I into a linear transformation(

IndGP χ
)χ

→
(
IndGP χ

J
)χ

,

both of which have explicit bases by the computations of Propositions 2.3.1 and 2.3.5. Because we are
interested in I ◦ I as well, we also want to compute the linear transformation(

IndGP χ
J
)χ

→
(
IndGP χ

)χ
,

where we again have explicit bases.
To start, we begin with the easier generic case.
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Proposition 2.4.1. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦ χdet). Suppose β2 ̸= 1.

Then let {f0} and
{
fJn
}
be the bases of

(
IndGP χ

)χ
and

(
IndGP χ

J
)χ

described in Propositions 2.3.1 and 2.3.5,

respectively. Then {
If0 = fJn ,

IfJn = β(ε)n |U | f0.

In particular, I ◦ I is the scalar β(ε)n |U |.

Proof. Certainly If0 ∈ span
{
fJn
}
and IfJn ∈ span{f0}. We now do our computations separately.

• For If0, we know If0 = If0(ηn)fn, so we want to compute

If0(ηn) =
∑
u∈U

f0
(
J−1uηn

)
.

But P ∩ JPη−1
n = {12n}, so the summand vanishes unless u = 12n, hence If0(ηn) = 1 follows.

• For IfJn , we know IfJn = IfJn (η0)f0, so we want to compute

IfJn (η0) =
∑
u∈U

fJn
(
J−1uη0

)
.

On may use the P -invariance of f to rearrange the sum into |U | fJn
(
J−1

)
. Computing with fJn

completes the proof. ■

We now turn towards the case β2 = 1. We begin with a general lemma.

Lemma 2.4.2. Fix a character χ : P → C×, which we write as χ = (α◦m)(β ◦χdet). Given r, s ∈ {0, . . . , n}
such that fr ∈

(
IndGP χ

)χ
(of Proposition 2.3.1) is nonzero, we have

Ifr(ηs) = β(ε)n−sQ
∑

D∈Fs×s
q[

1n diag(D,0n−s)
1n

]
∈G

rankD=r+s−n

β(detE)−1,

where

Q :=


qn

2−s2 if G ∈ {GL2n,SL2n},
q(

n
2)−(

s
2) if G ∈ {GO2n,O2n},

q(
n+1
2 )−(s+1

2 ) if G ∈ {GSp2n,Sp2n},

and E ∈ GLr+s−n(Fq) is some matrix determined from D (not necessarily uniquely) as follows:

• we always have [E 0 ] = D1DD2 for D1, D2 ∈ SLs(Fq);
• and if G ∈ {GO2n,O2n}, we require D2 = D⊺

1 and E =
[

−1(r+s−n)/2

1(r+s−n)/2

]
;

• and if G ∈ {GSp2n,Sp2n}, we require D2 = D⊺
1 and E to be diagonal.

Proof. We are asked to compute Ifr(ηs) =
∑
u∈U fr

(
J−1uηs

)
. For this, we want to compute J−1uηs and

in particular want to ask when it lives in PηrP . As such, we write u in a block matrix form

u =


1n−s A B

1s C D
1n−s

1s


and compute

J−1uηs = ε


ε1n−s

ε1s
1n−s

D ε1s



1n−s B A

1s
1n−s
εC 1s

 .
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Now, χ vanishes on the last rightmost matrix, so we are left with

Ifr(ηs) = Q
∑

D∈Fs×s
q

fr




1n−s
1s

ε1n−s
D 1s




upon replacing D with εD. Now, fr is supported on PηrP , so by Lemma 2.2.3, we see that D gives a
nonzero contribution if and only if rank

[
ε1n−s

D

]
= r, which is equivalent to rankD = r + s− n, which we

will assume from now on. Set d := rankD for brevity.
We now place D into a normal form; it is not important to do this in a unique way.

• If G ∈ {GL2n,SL2n}, then we use row-reduction to find matrices D1, D2 ∈ SLs(Fq) such that D1DD2

takes the form [E 0 ].
• If G ∈ {GSp2n,Sp2n}, then D is symmetric, so finding an orthogonal basis grants D1 ∈ SLs(Fq)

such that D2 := D⊺
1 has D1DD2 = [E 0 ] where E ∈ GLd(Fq) is diagonal.

• If G ∈ {GO2n,O2n}, then D is alternating, so finding a symplectic basis grants D1 ∈ SLs(Fq) such
that D2 := D⊺

1 has D1DD2 = [E 0 ] where E =
[ −1
1

]
∈ Fd×dq .

Using the above normalizations, we may rewrite our summand as

fr




1n−s
1s

ε1n−s
D1DD2 1s


 ,

reducing ourselves from D to D1DD2 = [E 0 ]. We now note that [ 1E 1 ] =
[
−εE−1 1

E

]
[ ε
1 ]
[
1 E−1

1

]
, so the

summand equals

β(detE)−1fr




1n−s

ε1d
1n−r

ε1n−s
1d

0n−r 1n−r



 .

To compute the contribution of this element, it remains to transform the middle matrix into ηr. This is a
little tricky. To begin, we factor out diag(ε1n−s, 1s, ε1n−s, 1s) to see that the summand is

β(ε)n−sβ(detE)−1fr




ε1r
1n−r

1r
1n−r


 .

We can now apply a suitable permutation matrix to the above 4× 4 block matrix to show that this equals
β(ε)n−sβ(detE)−1fr(ηr), so summing completes the proof. ■

Remark 2.4.3. Consider G ∈ {GL2n,SL2n} with β ̸= 1. In this case, the value of β(detE) fails to be
well-defined given D for most values of r and s, so the sum doesn’t even make sense! This corresponds to
the fact that we tend to have fr = 0 for most r. A similar phenomenon can be seen for the other groups.

Remark 2.4.4. We explain what happens if we want to compute IfJr (ηs), where f
J
r ∈

(
IndGP χ

J
)χ

is the

usual basis vector (of Proposition 2.3.5). If β2 ̸= 1, then we appeal to Proposition 2.4.1. Otherwise, if
β2 = 1, then the matrix factorizations used above apply verbatim, showing the answer is the same sum.

We are now in a position to write down some matrices when β2 = 1. We begin with β = 1.

Proposition 2.4.5. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦ χdet). Suppose β = 1

so that χ = χJ . Then let {f0, . . . , fn} be the basis of
(
IndGP χ

)χ
described in Proposition 2.3.1. For each
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i, j ∈ {0, . . . , n}, define

ε(i, j) :=


(−1)i+j−n if G ∈ {GL2n,SL2n},
(−1)(i+j−n)/2 if G ∈ {GO2n,O2n},
(−1)i+j−n−⌊(i+j−n)/2⌋ if G ∈ {GSp2n,Sp2n},

and

Q(i, j) :=


qn

2−i2+(i+j−n
2 ) if G ∈ {GL2n,SL2n},

q(
n
2)−(

i
2)+2((i+j−n)/2

2 ) if G ∈ {GO2n,O2n},
q(

n+1
2 )−(i+1

2 )+2(⌊(i+j−n)/2⌋+1
2 ) if G ∈ {GSp2n,Sp2n},

and

R(i, j) :=



(q; q)2i
(q; q)2n−j(q; q)i+j−n

if G ∈ {GL2n,SL2n},

(q; q)i
(q; q)n−j(q2; q2)(i+j−n)/2

if G ∈ {GO2n,O2n},

(q; q)i
(q; q)n−j(q2; q2)⌊(i+j−n)/2⌋

if G ∈ {GSp2n,Sp2n},

where we implicitly take 0s unless i+j−n is nonnegative and unless i+j−n is even when G ∈ {GO2n,O2n}.
Then [ε(i, j)Q(i, j)R(i, j)]0≤i,j≤n is the matrix representation of I.

Proof. We use Lemma 2.4.2, which applies because the (i, j) matrix coefficient is given by Ifj(ηi). Because
β = 1, we are just counting the number of possible D ∈ Fi×iq of rank i+j−n maybe with some specified struc-
ture. If G ∈ {GL2n,SL2n}, then we are counting all such matrices, so we appeal to [HJ20, Theorem 7.1.5]. If
G ∈ {GO2n,O2n}, then we are counting alternating matrices, so we appeal to [HJ20, Theorem 7.5.5]. Lastly,
if G ∈ {GSp2n,Sp2n}, then we are counting symmetric matrices, so we appeal to [HJ20, Theorem 7.5.2]. ■

We now turn to the case where β2 = 1 but β ̸= 1. For convenience, we explain how to reduce to the case
G ∈ {SL2n,O2n,Sp2n} by taking suitable submatrices.

Lemma 2.4.6. Take G ∈ {GL2n,GO2n,GSp2n} so that S := kerm is in {SL2n,O2n,Sp2n}. Fix a character
χ : P → C×, which we write as χ = (α◦m)(β◦χdet). Suppose β

2 = 1 but β ̸= 1. Let
{
fGr
}
r∈A and

{
fJGr

}
r∈B

the bases of
(
IndGP χ

)χ
and

(
IndGP χ

J
)χ

described in Propositions 2.3.1 and 2.3.5 respectively; define fSr and

fJSr similarly for χ|S. Further, let
[
IS(i, j)

]
0≤i,j≤n be the matrix representation of I on

(
IndSPS χ

)χ
.

• The matrix representation of IG :
(
IndGP χ

)χ
→
(
IndGP χ

J
)χ

is[
IS(i, j)

]
0≤i,j≤n
i∈B,j∈A

.

• The matrix representation of IG :
(
IndGP χ

J
)χ

→
(
IndGP χ

)χ
is[

IS(i, j)
]
0≤i,j≤n
i∈A,j∈B

.

Proof. We focus on the proof of the first point. As in Proposition 2.4.5, we see that the (i, j) ∈ B × A
coefficient of I• equals I•f•j (ηi). But the computation of Lemma 2.4.2 explains that IGfGj (ηi) = ISfSj (ηi),
as required. The proof of the second point is essentially the same upon replacing Lemma 2.4.2 with Re-
mark 2.4.4. ■

Remark 2.4.7. It is worth recalling A and B. If G = GL2n, then A = {0} and B = {n}. Otherwise if
G ∈ {GO2n,GSp2n}, then A = {r : r ≡ 0 (mod 2)} and B = {r : r ≡ n (mod 2)}.
Remark 2.4.8. Here is a cute application of the above result. Using the notation of the lemma above, we
will show that IS(i, j) = 0 if i /∈ B but j ∈ A. Indeed, the argument above implies

IS(i, j) = IGfGj (ηi),

which vanishes because fJGi = 0. Similarly, we find IS(i, j) = 0 if i /∈ A but j ∈ B by using IfJGj (ηi) = 0
instead.
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We are now ready for our computation.

Proposition 2.4.9. Take G ∈ {SL2n,O2n,Sp2n}. Fix a character χ : P → C×, which we write as χ =

β ◦ χdet. Suppose β2 = 1 but β ̸= 1 so that χ = χJ . Let {fr}r∈A be the basis of
(
IndGP χ

)χ
described in

Proposition 2.3.1.

• If G = SL2n so that A = {0, n}, then I has the matrix representation[
β(−1)qn

2

1

]
.

• If G ∈ {O2n,Sp2n} so that A = {0, . . . , n}, then define

ε(i, j) := β(ε)n−i+(i+j−n)/2(−1)(i+j−n)/2,

and

Q(i, j) :=

{
q(

n
2)−(

i
2)+2((i+j−n)/2

2 ) if G = O2n,

q(
n+1
2 )−(i+1

2 )+2((i+j−n)/2+1
2 )−(i+j−n)/2 if G = Sp2n,

and

R(i, j) :=
(q; q)i

(q; q)n−j(q2; q2)(i+j−n)/2
,

which vanish unless i+ j − n is a nonnegative even integer. Then [ε(i, j)Q(i, j)R(i, j)]0≤i,j≤n is the
matrix representation of I.

Proof. Remark 2.4.8 explains all the vanishing entries. We now handle our groups separately.

• Take G = SL2n. Then it remains to compute If0(ηn)f
J
n and IfJn (η0)f0.

– For If0(ηn), Lemma 2.4.2 wants us to sum over D ∈ Fn×nq of rank 0, so D = 0, yielding 1.

– For IfJn (η0), Lemma 2.4.2 applies via Remark 2.4.4. This time, we are summing D ∈ F0×0
q of

rank 0, so the sum still returns 1, yielding IfJn (η0) = β(ε)nqn
2

.
• Take G = O2n. Using Lemma 2.4.2 as usual, we see β(detE)−1 = β(ε) = 1 always, so the same

argument as in Proposition 2.4.5 goes through.
• Take G = Sp2n. Using Lemma 2.4.2 as usual, we see that our sum is the difference between the

number of symmetric D ∈ Fi×iq of rank i+ j − n with detE ∈ F×2
q and the number of such D with

detE /∈ F×2
q . The formulae of [Mac69] tell us that the number of such D with detE ∈ F×2

q is

1

2
N · q

(i+j−n)/2 + β(−1)(i+j−n)/2

q(i+j−n)/2

when i+j−n is even, where N is the total number of symmetric matrices D ∈ Fi×iq of rank i+j−n.
Thus, we see that the desired difference is β(−1)(i+j−n)/2q−(i+j−n)/2N . Plugging into Lemma 2.4.2
completes the proof. ■

2.5. A Multiplicity One Result. Our understanding of I so far has relied on eigenvectors of IndGP χ with
eigenvalue χ (or χJ). In this subsection, we will use eigenvectors for the smaller subgroup U ⊆ P .

Definition 2.5.1. Fix T ∈ Fn×nq and a character ψ : Fq → C×. Then we define the character ψT : U → C
by

ψT

([
1n B

1n

])
:= ψ(trBT ).

Example 2.5.2. Fix T ∈ Fn×nq and a character ψ : Fq → C×. Given a character χ : P → C×, define

fT ∈
(
IndPG χ

)ψT

to be supported on PηnP and defined by

fχ,T (pηnu) := χ(p)ψT (u).

One can show that any g ∈ PηnP can be written uniquely in the form pηnu where p ∈ P and u ∈ U , so this
is a well-defined function.

Here is the main result of the present subsection.
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Proposition 2.5.3. Fix T ∈ GLn(Fq) such that [ 1 T1 ] ∈ G and a nontrivial character ψ : Fq → C×. For any
character χ : P → C×, we have

dimHomU

(
ψT , Ind

G
P χ
)
= 1.

In other words, HomU

(
ψT , Ind

G
P χ
)
is spanned by the fχ,T , defined in Example 2.5.2.

Proof. We use Mackey theory. By Frobenius reciprocity, we are computing the dimension of the space

HomG

(
IndGU ψT , Ind

G
P χ
)
, which [Bum13, Theorem 32.1] explains is isomorphic to the space H of functions

f : G→ C such that

f(pgu) = χ(p)f(g)ψT (u)

for p ∈ P and u ∈ U . We proceed in steps.

(1) We see that we are interested in the double coset space P\G/U . Lemma 2.2.3 tells us that the double
cosets P\G/P are represented by {η0, . . . , ηn}. Because P =MU , we thus see that the double coset
space P\G/U is represented (not uniquely) by the set

{ηrd : 0 ≤ r ≤ n, d ∈M}.

For the remainder of the proof, our goal will be to show that f ∈ H will have f(ηrd) = 0 for any
d ∈M whenever r ̸= n. This will complete the proof because it shows that any f ∈ H is supported
on PηnP = PηnU , meaning that f = f(ηn)fχ,T , so {fχ,T } is a basis of H.

The basic sketch is that we will find various u ∈ U such that ηrdu = pηrd for some p ∈ P , which
will allow us to show that f(ηrd) = f(ηrdu), but then f(ηrd) ̸= 0 would imply ψT (u) = 1. Having
many such u will allow us to force a full column of T to vanish, violating the hypothesis that T is
invertible.

(2) Fix some ηr and d ∈ M . If ηrdu = pηrd for some u ∈ U and p ∈ P , then we claim χ(p) = 1. In
other words, we are showing that χ is trivial on any p ∈ P ∩ ηrdUd−1η−1

r . Quickly, note that M
normalizes U , so we may reduce to the case d = 12n.

Now, we are given u ∈ U such that p := ηruη
−1
r is in P , and we want to show that χ(p) = 1.

Well, we expand u as

u =


1n−r A B

1r C D
1n−r

1r


and then compute

p =


1n−r εB A

1r
1n−r

εD C 1r

 .
Then p ∈ P is equivalent to D = 0, which then implies χ(p) = 1.

(3) Fix some ηr and d ∈M such that r < n. We claim that there exists u ∈ U such that ψT (u) ̸= 1 and
ηrdu = pηrd for some p ∈ P . We will proceed more or less by contraposition: we show that having
ψT (u) = 1 for all such u will imply that T fails to be invertible. This is the only step of the proof
which will use the invertibility of T and nontriviality of ψ.

The condition on u ∈ U is that ηrdud
−1η−1

r ∈ P . Because M normalizes U , our hypothesis is
simply that ηruη

−1
r ∈ P implies ψT

(
d−1ud

)
= 1; by replacing T with dTd−1, we reduce to the case

d = 12n. In the computation of the previous step, we found many u with ηruη
−1
r ∈ P ; for example,

using r < n, we know ψT must be trivial on

U1 :=

{[
1 B

1

]
∈ G : Bij = 0 for i, j > 1

}
.
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We claim that Te1 = 0, which then implies T fails to invertible. Quickly, we note that ψT (u) = 1
for u ∈ U1 is simply asserting

1 = ψ(T11B11) +

n∑
i=2

ψ(Ti1B1i) +

n∑
j=2

ψ(T1jBj1).

To continue, we will do some casework on G. For example, if G ∈ {GL2n,SL2n}, then we may
set the Bij arbitrarily, provided i = 1 or j = 1. We would like to show that Ti1 = 0 for all i,
so fixing some i, we set all coordinates except B1i to zero so that we know ψ(Ti1B1i) = 1 for all
B1i ∈ Fq; this successfully implies Ti1 = 0 because ψ is nontrivial. The arguments for other G are
essentially the same, except we must keep track of the requirement that T and B are alternating for
G ∈ {GO2n,O2n} and symmetric for G ∈ {GSp2n,Sp2n}.

(4) We now complete the proof. Given some f ∈ H, we would like to show that f(ηrd) = 0 whenever
r < 0. Well, the previous step provides p ∈ P and u ∈ U such that pηrd = ηrdu and ψT (u) ̸= 1. But
any such p must have χ(p) = 1 by the second step, so the equation

χ(p)f(ηrd) = ψT (u)f(ηrd)

forces f(ηrd) = 0, as claimed. ■

Remark 2.5.4. It is possible for no T satisfying the hypotheses of Proposition 2.5.3 to exist! Namely,
suppose n is odd and G ∈ {GO2n,O2n}. Then we are asking for T to be an invertible n × n alternating
matrix, which is impossible! However, we can find some T in all other cases.

This multiplicity-one result means that we can gain insight into I : IndGP χ → IndGP χ
J by plugging in

fχ,T . This will lead us to evaluate certain matrix Gauss sums.

Definition 2.5.5. Fix T ∈ Fn×nq and characters β : F×
q → C× and ψ : Fq → C×. Then we define the “matrix

Gauss sum”

gG(β, ψ, T ) :=
∑

B∈GLn(Fq)

[ 1 B1 ]∈G

β(detB)ψ(trBT ).

Proposition 2.5.6. Fix T ∈ GLn(Fq) such that [ 1 T1 ] ∈ G and a nontrivial character ψ : Fq → C×. Further,
fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦ χdet). Then

Ifχ,T = gG(β, ψ, T )fχJ ,T .

Proof. For brevity, let U denote the subgroup of B ∈ Fn×nq such that [ 1 B1 ] ∈ G, and we let U
×

denote the
invertible subset. Note that I carries ψT -eigenvectors to ψT -eigenvectors, so Proposition 2.5.3 tells us that

Ifχ,T = (Ifχ,T (ηn)) fχJ ,T .

It remains to evaluate Ifχ,T (ηn), which we do directly. To begin, note

Ifχ,T (ηn) =
∑
u∈U

fχ,T
(
η−1
n uηn

)
.

Now, writing u = [ 1 B1 ], we see that η−1
n uηn = [ 1

εB 1 ], so

Ifχ,T (ηn) =
∑
B∈U

fχ,T

([
1n
B 1n

])
.

Because fχ,T is supported on PηnU = PηnP , the proof of Lemma 2.2.3 tells us that B ∈ U produces
a nonzero contribution if and only if B is invertible. To compute this contribution, we note [ 1

B 1 ] =[
−εB−1 1

B

]
[ ε
1 ]
[
1 B−1

1

]
, so

Ifχ,T (ηn) =
∑
B∈U×

β
(
detB−1

)
ψT
(
B−1

)
.

Replacing B with B−1 completes the proof. ■
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Thus, we see that the values of gG(ω, ψ, T ) will be interesting to us. For example, when χ = χJ , we see

that gG(β, ψ, T ) is an eigenvalue of I. In the general case when merely I ◦ I is an operator on IndPG χ, we
get the following.

Corollary 2.5.7. Fix T ∈ GLn(Fq) such that [ 1 T1 ] ∈ G and a nontrivial character ψ : Fq → C×. Further,
fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦ χdet). Then

(I ◦ I)fχ,T = β(−1)n
∣∣gG(β, ψ, T )∣∣2 fχ,T .

Proof. Applying Proposition 2.5.6 twice, we see that

(I ◦ I)fχ,T = gG(β, ψ, T )gG
(
β−1, ψ, T

)
fχ,T .

A little rearrangement reveals that the scalar equals β(−1)n
∣∣gG(β, ψ, T )∣∣2. ■

Remark 2.5.8. Suppose β2 ̸= 1, and we compare the above computation with Proposition 2.4.1. When
G ∈ {GL2n,SL2n,GSp2n,Sp2n}, we see that ε = −1, so it follows that

(2.1)
∣∣gG(β, ψ, T )∣∣2 = |U | .

The point is that the sum in the definition of gG(β, ψ, T ) obeys the expected “square root” cancellation generi-
cally. (When G ∈ {GO2n,O2n}, it may appear that our signs may disagree, but recall from Remark 2.5.4 that

the statement is vacuous for odd n.) However, note that (2.1) cannot hold when β2 = 1 because
∣∣gG(β, ψ, T )∣∣2

is (up to sign) an eigenvalue of I ◦ I, but in general there need not be such an eigenvalue when β2 = 1. We
will compute the correct factor in Section 3.

Remark 2.5.9. When applicable, the above construction produces many linearly independent eigenvectors
for our operator I. Indeed, each available T produces a new eigenvector, and one can estimate that∣∣∣∣{T ∈ GLn(Fq) :

[
1 T

1

]
∈ G

}∣∣∣∣
is only a little less than |U | = |P\PηnP |, which is only a little less than |P\G| = dim IndGP χ. One can follow
these estimates to see that the eigenspace of I with eigenvalue given by the Gauss sum is large.

3. Computation of Matrix Gauss Sums

As before, let Fq denote the finite field with q elements, where q is an odd prime-power. For characters
ω : F×

q → C× and ψ : Fq → C, we are interested in computing sums of the form∑
A

ω(detA)ψ(trAT ),

where A and T are possibly subject to certain constraints (e.g., symmetric or alternating). To be explicit,
our sums will be done in three cases.

• GLn(Fq).
• Sym×

n (Fq), the set of invertible n× n symmetric matrices with coefficients in Fq.
• Alt×2n(Fq), the set of invertible 2n× 2n alternating matrices with coefficients in Fq. (Note that there
are no invertible alternating matrices of odd dimension.)

For brevity, we will remove Fq from our notation as much as possible.
Note that the sum over A ∈ GLn has already been considered by [Kim97] and many authors before; see

[Kim97, Section 1]. Additionally, the sum over symmetric matrices was considered in [Sai91]; their method
is based on a rather lengthy computation with the Bruhat decomposition. We are under the impression that
the sum over alternating matrices is new.

Our method is rather uniform over all kinds of sums considered. We will induct on the size of A via an
explicit row-reduction. As such, the arguments are essentially the same as the spirit of the arguments in
[Kim97] in the case of GLn. However, we believe that there is gain to the case of sums of symmetric matrices
because the arguments presented are somewhat more direct.
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3.1. Miscellaneous Computations. We take a moment to discuss a few sums which will be used frequently
in the sequel. For characters ω : F×

q → C× and ψ : Fq → C×, we denote the usual Gauss sum by

g(ω, ψ) :=
∑
a∈F×

q

ω(a)ψ(a).

It will be helpful to have the following well-known fact about the quadratic Gauss sum. Because the proof
is so quick, we include the proof.

Proposition 3.1.1. Let ω : F×
q → C× and ψ : Fq → C× denote nontrivial characters. Then

g(ω, ψ)g
(
ω−1, ψ−1

)
= q.

Thus, if χ : F×
q → C× denotes the nontrivial quadratic character, then g(χ, ψ)2 = χ(−1)q.

Proof. These are standard facts about Gauss sums. ■

The computation of the Gauss sums over Sym×
n will use the following fact.

Proposition 3.1.2. Let ω : F×
q → C× and ψ : Fq → C× be characters, and let χ : F×

q → C× denote the
nontrivial quadratic character. Then

ω(4)g(ω, ψ)g(ωχ, ψ) = g
(
ω2, ψ

)
g(χ, ψ).

Proof. Expanding out the Gauss sums, we are trying to show that∑
a,b∈F×

q

ω(4ab)χ(b)ψ(a+ b)
?
=

∑
a,b∈F×

q

ω
(
a2
)
χ(b)ψ(a+ b).

Fixing some d ∈ F×
q and t ∈ Fq, it is enough to show that

(3.1)
∑
a+b=t
4ab=d

χ(b)
?
=
∑
a+b=t
a2=d

χ(b)

and then sum over all possible values of d and t. At this point, the proof has become combinatorial number
theory. For convenience, extend χ to Fq by χ(0) := 0, and allow a, b ∈ Fq in the right-hand sum above; this
will not change its value. We begin with some easy cases.

• Suppose that d is not a square. Then the right-hand side of (3.1) is empty and hence zero. On
the other hand, we claim that the left-hand side is zero. Well, for any (a, b) solving a + b = t
and 4ab = d, we see that (b, a) also solves the system. Then because d is not a square, we have
{χ(a), χ(b)} = {+1,−1}, so the terms in the sum cancel out.

• In the rest of the proof, we may assume that d = x2 where x ∈ F×
q , so the right-hand side of (3.1)

is χ(t+ x) + χ(t− x).
To continue, observe that solving the system of equations a+ b = t and 4ab = d is equivalent to

having a = t− b and

(2b− t)2 = t2 − d.

As such, for our next case, suppose that t2 − d fails to be a square. Then the left-hand side of
(3.1) is empty and hence vanishes, so we want to show that the right-hand side also vanishes. Well,
t2 − d = (t+ x)(t− x) is then not a square, so {χ(t+ x), χ(t− x)} = {+1,−1}.

• In the rest of the proof, we may assume that t2 − d = y2 for some y ∈ Fq. Quickly, we deal with the
case where y = 0: the left-hand side equals χ(t/2), and the right-hand side equals χ(2t).

At the current point, we can now say that t2 = x2 + y2 where x, y ∈ F×
q , and (3.1) collapses into

χ

(
t+ y

2

)
+ χ

(
t− y

2

)
?
= χ(t+ x) + χ(t− x).

Because (t − x)(t + x) = y2 and
(
t+y
2

) (
t−y
2

)
= 1

4x
2, we see χ

(
t+y
2

)
= χ

(
t−y
2

)
and χ(t + x) = χ(t − x).

Because, these values are in {±1}, we see that it is enough to show that χ(t+x) = 1 if and only if χ
(
t+y
2

)
= 1.

We will show the forward implication; the reverse implication is similar.
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Thus, we want to show χ(t + x) = 1 implies that χ
(
t+y
2

)
= 1. Well, both t + x and t − x are squares;

write t+ x = x21 and t− x = x22 for x1, x2 ∈ F×
q . Adjusting signs, we may assume that y = x1x2. Thus,

t+ y

2
=

(
x1 + x2

2

)2

is a square, as desired. ■

All of our computations will frequently sum over vectors in some way, so we pick up the following fact.

Lemma 3.1.3. Fix a character ψ : Fq → C× and some A ∈ Fn×mq . Then∑
B∈Fm×n

q

ψ(trAB) =

{
0 if A ̸= 0 and ψ ̸= 1,

qmn if A = 0 or ψ = 1.

Proof. Note that

trAB =

m∑
i=1

n∑
j=1

AjiBij ,

so ∑
B∈Fm×n

q

ψ(trAB) =

m∏
i=1

n∏
j=1

∑
Bij

ψ(AjiBij).

If A = 0 or ψ = 1, then all summands are 1, so we total to qmn. Otherwise, say Aij ̸= 0 for some given
(i, j). Then the factor

∑
Bij

ψ(AjiBij) in the product will vanish, as desired. ■

3.2. The Sum Over GLn. For the purposes of this subsection, we define

gn(ω, ψ, T ) :=
∑

A∈GLn

ω(detA)ψ(trAT )

where ω : F×
q → C× and ψ : Fq → C× are characters, and T ∈ GLn. Even though our method to compute

gn(ω, ψ, T ) is essentially equivalent to the one presented in [Kim97], we present it here because it provides
a reasonable background to the approach.

The following general results will be helpful.

Lemma 3.2.1. Fix characters ω : F×
q → C× and ψ : Fq → C× and some T ∈ GLn.

(a) For any g, h ∈ GLn, we have

gn(ω, ψ, gTh) = ω(det gh)−1gn(ω, ψ, T ).

(b) If ψ = 1, then gn(ω, ψ, T ) = 0 unless ω = 1.

Proof. Here, (a) follows from some quick rearranging, and (b) follows because gn(ω, ψ, T ) is the sum of the
character ω on the group GLn. ■

Our explicit row-reduction is based on two cases: Ann ̸= 0 and Ann = 0. We begin with the case Ann = 0
because it is easier.

Lemma 3.2.2. Fix characters ω : F×
q → C× and ψ : Fq → C×. If ψ ̸= 1,∑

A∈GLn+1

An+1,n+1 ̸=0

ω(detA)ψ(trA) = qng(ω, ψ)gn(ω, ψ, 1n).

Proof. The main idea is that

GLn × Fnq × Fnq × F×
q → GLn+1

(B , v , w , c) 7→
[
1n v

1

]
[B c ]

[
1n
w⊺ 1

]
is a bijection onto elements of A ∈ GLn+1 with nonzero entry An+1,n+1. Our sum becomes∑

B∈GLn

ω(detB)ψ(trB)︸ ︷︷ ︸
gn(ω,ψ,1n)

∑
c,v,w

ω(c)ψ(c)ψ(tr cvw⊺).
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With ψ ̸= 1, so we can get cancellation by summing over w by Lemma 3.1.3. In particular, we only get a
nonzero contribution when v = 0, leaving us with qngn(ω, ψ, 1n)g(ω, ψ) after summing over c as well. ■

We now handle Ann = 0. It is mildly more technical because row-reduction still requires some nonzero
term in the right column, so we want to rearrange the right column suitably.

Lemma 3.2.3. Fix characters ω : F×
q → C× and ψ : Fq → C×. Choosing some nonzero v, w ∈ Fn+2

q such
that vn+2 = wn+2 = 0, if ψ ̸= 1, we have ∑

A∈GLn+2

Aen+2=v
A⊺en+2=w

ω(detA)ψ(trA) = 0.

Proof. We will transform our sum into ∑
A∈GLn+2

Aen+2=v
A⊺en+2=w

ω(detA)ψ(trAT ),

where vn+1, wn+1 ̸= 0, at the cost of allowing T to be specified a permutation matrix. Well, we may rearrange
the coordinates of v and w so that vn+1, wn+1 ̸= 0 by replacing A with σAτ for suitable permutation matrices
σ and τ . Looking at the original sum, this does not change detA (one can add a sign to v or w if necessary),
but it transforms trA into trAστ . For brevity, we rewrite στ as T := σ. Note the construction promises
that σ(n+ 2) = n+ 2.

The rest of the argument proceeds as before. Write v = (cv, c, 0) and w = (dw,w, 0) (as a column vector).
Then the point is that

GLn × Fnq × Fnq × Fq → GLn+1

(B , v′ , w′ , e) 7→
[
1n v v′

1
1

][
B
e c
d

][ 1n
w⊺ 1

(w′)⊺ 1

]
is a bijection onto A ∈ GLn+2 satisfying Aen+2 = v.

Now, with ψ ̸= 1, and we would like our sum to vanish; we have two cases on σ.

• Suppose that σ(n+ 1) = n+ 1. Then we may write σ as
[
Tn

12

]
. Then our sum looks like∑

B∈GLn

ω(detB)ψ(trBTn)

×
∑
v′,w′,e

ω(−cd)ψ(tr cv(w′)⊺Tn)ψ(tr dv
′w⊺Tn)ψ(tr ecdvw

⊺Tn)ψ(e).

By Lemma 3.1.3, we see that the sum over w′ will only produce nonzero contribution if v = 0. But
in this case, the sum over e is just

∑
ψ(e) = 0, so the total sum vanishes.

• Suppose σ(n+ 1) ̸= n+ 1; say σ(i0) = n+ 1 for i0 < n+ 1. Here, we sum over v′ while holding all
other variables fixed. The determinant does not depend on v′, so we are left summing over the ψ
terms. Only paying attention to v′, we see that we are computing

∑
v′∈Fn

q

n+2∏
i=1

ψ

e⊺i
dv′w⊺ dv′ 0

0 0 0
0 0 0

 eσ(i)
 .

We now sum over v′i0 and hold the remaining coordinates v′• constant. Then the only non-constant
factor in the product is i = i0, where σ(i) = n+ 1, thus producing the sum

∑
ψ(dv′i0) = 0. ■

We now synthesize our cases to evaluate our Gauss sums.

Theorem 3.2.4. Fix characters ω : F×
q → C× and ψ : Fq → C× and some T ∈ GLn.

(a) Suppose ψ ̸= 1. Then

gn(ω, ψ, T ) =
qn(n−1)/2

ω(detT )
· g(ω, ψ)n.
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(b) Suppose ψ = 1 and ω = 1. Then

gn(ω, ψ, T ) =

n−1∏
i=0

(
qn − qi

)
.

For any (ψ, ω) not in the above list, the sum vanishes.

Proof. Note the last sentence follows by Lemma 3.2.1. Quickly, we note that both (a) and (b) reduce to
the case where T = 1n by Lemma 3.2.1 because both sides are invariant under replacing T by gT for some
g ∈ GLn. Now, the sum in (b) is simply enumerating GLn, so the result follows from [HJ20, Proposition 7.1.1].

It remains to show (a). For n = 0, there is nothing to prove. Thus, by induction, it is enough to show
that

gn+1(ω, ψ, 1n+1)
?
= qng(ω, ψ)gn(ω, ψ, 1n)

for n ≥ 0, which follows by summing Lemmas 3.2.2 and 3.2.3. ■

Remark 3.2.5. It is possible to prove (b) in the theorem by tracking the case (ω, ψ) = (1, 1) through Lem-
mas 3.2.2 and 3.2.3. We have not done so for brevity.

We close this subsection with a combinatorial application; note there is a similar result in [Kim97, Theo-
rem 6.2].

Corollary 3.2.6. Let n be a nonnegative integer, and fix some T ∈ GLn. Further, fix d ∈ F×
q and t ∈ Fq.

Then the number N(d, t) of A ∈ GLn such that detA = d and trAT = t is

1

q(q − 1)

(
n−1∏
i=0

(
qn − qi

)
− qn(n−1)/2(q − 1)n

)
+ qn(n−1)/2 ·#

{
(y1, . . . , yn) : (y1 + · · ·+ yn) = t,

y1 · · · yn
detT

= d
}
.

Proof. For any characters ω : F×
q → C× and ψ : Fq → C×, we claim that gn(ω, ψ, T ) equals

1

q(q − 1)

(
n−1∏
i=0

(
qn − qi

)
− qn(n−1)/2(q − 1)n

) ∑
a∈F×

q ,b∈Fq

ω(a)ψ(b)

+
qn(n−1)/2

ω(detT )
· g(ω, ψ)n

If ψ ̸= 1, then this is (a) of Theorem 3.2.4; if ψ = 1, then both sides vanish unless ω = 1, in which case this
is (b) of Theorem 3.2.4. Now, we notice that full expansion gives

1

ω(detT )
· g(ω, ψ)n =

∑
y1,...,yn∈F×

q

ω
(y1 · · · yn

detT

)
ψ(y1 + · · ·+ yn),

so the result follows by summing appropriately over all ω and ψ. ■

3.3. The Sum Over Sym×
n . For the purposes of this subsection, we define

gn(ω, ψ, T ) :=
∑

A∈Sym×
n

ω(detA)ψ(trAT )

where ω : F×
q → C× and ψ : Fq → C× are characters, and T ∈ Sym×

n . Additionally, throughout we let

χ : F×
q → C× denote the nontrivial quadratic character.

Anyway, we follow the outline of the previous subsection on GLn.

Lemma 3.3.1. Fix characters ω : F×
q → C× and ψ : Fq → C× and some T ∈ Sym×

n .

(a) For any g ∈ GLn, we have

gn(ω, ψ, gTg
⊺) = ω(det g)−2gn(ω, ψ, T ).

(b) If ψ = 1 and ω ̸= 1, then gn(ω, ψ, T ) = 0 unless ω2 = 1 and n is even.

Proof. Here, (a) follows by some elementary rearrangement upon noticing that GLn acts on Sym×
n by g ·A =

gAg⊺. For (b), we handle the two listed cases separately.
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• Suppose ω2 ̸= 1. Then the rearrangement which shows (a) is able to show that gn(ω, 1, T ) =
ω(det g)2gn(ω, 1, T ) for any g ∈ GLn (because ψ = 1), so the gn(ω, 1, T ) = 0 follows.

• Suppose n is odd and ω2 = 1. Now, for any c ∈ F×
q , we see that A ∈ Sym×

n if and only if cA ∈ Sym×
n ,

so some rearrangement shows gn(ω, 1, T ) = ω(c)ngn(ω, 1, T ) for any c ∈ F×
q . However, n is odd, so

ωn = ω is nontrivial, so this forces gn(ω, 1, T ) = 0. ■

As before, our row-reduction will have two cases: Ann ̸= 0 and Ann = 0.

Lemma 3.3.2. Fix characters ω : F×
q → C× and ψ : Fq → C× and diagonal Tn+1 ∈ Sym×

n+1. Letting
Tn := diag(T11, . . . , Tnn), if ψ ̸= 1, then the sum∑

A∈Sym×
n+1

An+1,n+1 ̸=0

ω(detA)ψ(trATn+1)

equals

gn(ω, ψ, Tn)
χ(detTn)χ(Tn+1,n+1)

n

ω(Tn+1,n+1)
g(ωχn, ψ)g(χ, ψ)n.

Proof. The main point is that

Sym×
n × Fnq × F×

q → Sym×
n+1

(B , v , c) 7→ [ 1 v1 ][
B
c ]
[

1
v⊺ 1

]
is a bijection onto A ∈ Sym×

n+1 with An+1,n+1 ̸= 0. Thus, our sum is∑
B∈Sym×

n

ω(detB)ψ(trBTn)

︸ ︷︷ ︸
gn(ω,ψ,Tn)

∑
v,c

ω(c)ψ(tr cvv⊺Tn)ψ(cTn+1,n+1).

Now, for brevity, we set T := diag(d1, . . . , dn+1), so the sum over v and c above equals∑
c∈F×

q

ω(c)ψ(cdn+1)

n∏
i=1

( ∑
a∈Fq

ψ
(
cdia

2
))

after some expansion (of v ∈ Fnq ). Quickly, we note that∑
a∈Fq

ψ
(
cdka

2
) ?
=
∑
a∈Fq

(1 + χ(cdka))ψ(a),

where we have extended χ to Fq by χ(0) := 0; indeed, (1 + χ(cdka)) is an appropriate indicator for a/(cdk)
being a square. From here, we note ψ ̸= 1 implies∑

a∈Fq

ψ
(
cdka

2
)
= χ(cdk)g(χ, ψ).

Plugging this in, we see that our sum is

gn(ω, ψ, Tn)
∑
c∈F×

q

ω(c)χ(c)nψ(cdn+1)χ(d1 · · · dn)g(χ, ψ)n,

which rearranges into the desired. ■

Next, we handle Ann = 0.

Lemma 3.3.3. Fix characters ω : F×
q → C× and ψ : Fq → C× and some diagonal Tn+2 ∈ Sym×

n+2, and let

Tn := diag(T11, . . . , Tnn). Choosing some nonzero v ∈ Fn+2
q such that vn+2 = 0, if ψ ̸= 1, we have∑

A∈Sym×
n+2

Aen+2=v

ω(detA)ψ(trAT ) = 0.



22 NIR ELBER AND HAHN LHEEM

Proof. We begin by reducing to the case vn+1 ̸= 0. We want to rearrange the coordinates of v so that
vn+1 ̸= 0 by mapping A 7→ σ−1Aσ for suitable permutation matrix σ. This does not change detA, but it
transforms trAT into trAσTσ−1, effectively rearranging the rows and columns of T into a different diagonal
matrix. However, the conclusion is independent of T , so this rearrangement is legal.

We may now row-reduce. Write v = (cv, c, 0) (as a column vector). The main point is that there is a
bijection

Sym×
n × Fnq × Fq → Sym×

n+2

(B , w , d) 7→
[
1 v w
1

1

][
B
d c
c

][
1
v⊺ 1
w⊺ 1

]
onto the set of A ∈ Sym×

n+2 such that Aen+2 = v. Thus, we see that our sum is∑
B

ω
(
−c2 detB

)
ψ(trBTn)

×
∑
d

ψ (dTnn + d tr vv⊺Tn)
∑
w

ψ(2c tr vw⊺Tn).

With ψ ̸= 1, we see that the sum over w vanishes by Lemma 3.1.3 unless v = 0. But in the case where v = 0,
we see that the sum over d will vanish, so the total sum continues to vanish. ■

We now synthesize our cases to evaluate our Gauss sums.

Theorem 3.3.4. Fix characters ω : F×
q → C× and ψ : Fq → C× and some T ∈ Sym×

n . Let χ : F×
q → C×

denote the quadratic character.

(a) Suppose ψ ̸= 1.
• If n = 2m is a positive even integer, then

g2m(ω, ψ, T ) =
χ(−1)mχ(detT )qm

2

ω(4m detT )
· g
(
ω2, ψ

)m
.

• If n = 2m+ 1 is an odd nonnegative integer, then

g2m+1(ω, ψ, T ) =
qm(m+1)

ω(4m detT )
· g(ω, ψ)g

(
ω2, ψ

)m
.

(b) Suppose ψ = 1 and ω = χ. If n = 2m is even, then

g2m(χ, 1, T ) = χ(−1)mqm
2
m−1∏
k=0

(
q2k+1 − 1

)
.

(c) Suppose ψ = 1 and ω = 1.
• If n = 2m is even, then

g2m(1, 1, T ) = qm
2+m

m−1∏
k=0

(
q2k+1 − 1

)
.

• If n = 2m+ 1 is odd, then

g2m+1(1, 1, T ) = qm
2+m

m∏
k=0

(
q2k+1 − 1

)
.

For any (ψ, ω) not in the above list, the sum vanishes.

Proof. Note the last sentence follows by Lemma 3.3.1. Additionally, we may quickly handle (b) and (c),
where ψ = 1 because these results are merely combinatorics: (c) is counting invertible symmetric matrices,
so the result is [HJ20, Theorem 7.5.2]. Similarly, (b) is counting the difference between invertible symmetric
matrices with square and non-square determiniant, which is computed in [Mac69, p. 163].

It remains to prove (a). If n = 1, then there is not much to do, so we are allowed to induct. We quickly
reduce to the case where T is diagonal. By choosing an orthogonal basis for the symmetric bilinear form
given by T , we receive some g ∈ GLn such that D := gTg⊺ is diagonal. As such, Lemma 3.3.1 yields

gn(ω, ψ, T ) = ω(det g)2gn(ω, ψ,D).
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Now, suppose we have proven the theorem for diagonal matrices. In this case, we see gn(ω, ψ,D) =
(detD)−1gn(ω, ψ, 1), so detD = (det g)2(detT ) implies that

gn(ω, ψ, T ) = (detT )−1gn(ω, ψ, 1),

which is the theorem for T , as desired.
Thus, we may assume that Tn := diag(d1, . . . , dn); set Tn−1 := diag(d1, . . . , dn−1) and define Tn−2 analo-

gously. We now induct on n in cases.

• Suppose that n = 2m is an even positive integer. In this case, Lemmas 3.3.2 and 3.3.3 and induction
show g2m(ω, ψ, T ) equals

χ(detT )q(m−1)m

ω(4m−1 detT )
· g(ω, ψ)g

(
ω2, ψ

)m−1
g(ωχ, ψ)g(χ, ψ)2m−1.

We now recall g(χ, ψ)2 = χ(−1)q by Proposition 3.1.1 and ω(4)g(ω, ψ)g(ωχ, ψ) = g
(
ω2, ψ

)
g(χ, ψ)

by Proposition 3.1.2, so rearrangement completes the proof.
• Suppose n = 2m + 1 is an odd positive integer with m ≥ 1. In this case, Lemmas 3.3.2 and 3.3.3

and induction show g2m+1(ω, ψ, T ) equals

χ(−1)mqm
2

ω(4m detT )
· g
(
ω2, ψ

)m
g(ω, ψ)g(χ, ψ)2m.

We are now done after recalling g(χ, ψ)2 = χ(−1)q by Proposition 3.1.1 and rearranging. ■

Remark 3.3.5. It is possible to prove (b) and (c) above using the same inductive method which proves (a).
One merely needs to track the cases with ψ = 1 through Lemmas 3.3.2 and 3.3.3.

We conclude this subsection with a combinatorial application.

Corollary 3.3.6. Let n be a nonnegative integer, and fix some T ∈ Sym×
n . Further, fix d ∈ F×

q and t ∈ Fq.
(a) Suppose that n = 2m+1 is odd. Then the number N(d, t) of A ∈ Sym×

2m+1 such that detA = d and
trAT = t is

qm
2+m

q(q − 1)

(
m∏
k=0

(
q2k+1 − 1

)
− (q − 1)m+1

)

+ qm
2+m#

{
(y0, . . . , ym) : y0 + · · ·+ ym = t,

y0(y1 · · · ym)2

4m detT
= d

}
.

(b) Suppose that n = 2m is even. Let χ : F×
q → C× denote the nontrivial quadratic character. Then the

number N(d, t) of A ∈ Sym×
2m such that detA = d and trAT = t is

qm
2

q(q − 1)

(
(qm + χ(−1)mχ(d))

m−1∏
k=0

(
q2k+1 − 1

)
− χ(−1)m (χ(d) + χ(detT )) (q − 1)m

)

+ χ((−1)m detT )qm
2

#

{
(y1, . . . , ym) : y1 + · · ·+ ym = t,

(y1 · · · ym)2

4m detT
= d

}
.

Proof. We prove these separately.

(a) For any characters ω : F×
q → C× and ψ : Fq → C×, we claim that gn(ω, ψ, T ) equals

gn(1, 1, T )− qm(m+1)(q − 1)m+1

q(q − 1)

∑
a∈F×

q ,b∈Fq

ω(a)ψ(b)

+
qm(m+1)

ω (4m detT )
· g(ω, ψ)g

(
ω2, ψ

)m
This is by casework, using Theorem 3.3.4 repeatedly. If ψ is nontrivial, the sum vanishes, so the
claim follows from Theorem 3.3.4. If ψ is trivial and ω is nontrivial, then everything vanishes. Lastly,
if both ψ and ω are trivial, then everything equals gn(1, 1, T ).
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Now, we notice that fully expanding g(ω, ψ)g
(
ω2, ψ

)m
gives∑

y0,y1,...,ym∈F×
q

ω
(
y0(y1 · · · ym)2

)
ψ(y0 + · · ·+ ym),

so we achieve the result by summing appropriately over all ω and ψ and using the formula for
gn(1, 1, T ) given in Theorem 3.3.4.

(b) For any characters ω : F×
q → C× and ψ : Fq → C×, we claim that gn(ω, ψ, T ) equals

χ(−1)mχ(detT )qm
2

ω (4m detT )
· g
(
ω2, ψ

)m
+
gn(χ, 1, T )− χ(−1)mqm

2

(q − 1)m

q(q − 1)

∑
a∈F×

q ,b∈Fq

χ(a)ω(a)ψ(b)

+
gn(1, 1, T )− χ((−1)m detT )qm

2

(q − 1)m

q(q − 1)

∑
a∈F×

q ,b∈Fq

ω(a)ψ(b).

Again, this is by casework, repeatedly using Theorem 3.3.4. If ψ is nontrivial, this is Theorem 3.3.4.
Otherwise, ψ is trivial. Then if ω2 ̸= 1, then ω /∈ {1, χ}, so everything vanishes. Lastly, if ω ∈ {1, χ},
then both sides are equal by construction.

The rest of the proof proceeds as in (a) by expanding out g
(
ω2, ψ

)m
and summing over ω and ψ

appropriately. ■

3.4. The Sum Over Alt×2n. For the purposes of this subsection, we define

g2n(ω, ψ, T ) :=
∑

A∈Alt×2n

ω(detA)ψ(trAT )

where ω : F×
q and ψ : Fq → C× are characters, and T ∈ Alt×2n. Additionally, throughout we let J :=

[ −1
1

]
,

which is the 2× 2 version of the matrix defined in Section 2.
We would like to follow the outline established for GLn and row-reduce, but something must change

because A ∈ Alt×2n has A2n,2n = 0. Instead, our row-reduction will be based on subdividing A into 2 × 2
minors. As such, our casework is based on A2n,2n−1 = −A2n−1,2n. Otherwise, our outline is the same.

Lemma 3.4.1. Fix characters ω : F×
q and ψ : Fq → C× and some T ∈ Alt×2n.

(a) For any g ∈ GLn, we have

g2n(ω, ψ, gTg
⊺) = ω(det g)−2g2n(ω, ψ, T ).

(b) If ψ = 1, then g2n(ω, ψ, T ) = 0 unless ω2 = 1.

Proof. Here, (a) follows after some rearrangement using the action of GLn on Alt×n by g · A := gAg⊺. For
(b), we use this same rearrangement to show g2n(ω, 1, T ) = ω(det g)2g2n(ω, 1, T ) for any g ∈ GLn, so the
result follows. ■

We now handle A2n,2n−1 ̸= 0.

Lemma 3.4.2. Fix characters ω : F×
q → C× and ψ : Fq → C×, and set T2i := diag(J, . . . , J) ∈ Alt×2i for each

i. Then if ψ ̸= 1, ∑
A∈Alt×2n+2

A2n,2n−1 ̸=0

ω(detA)ψ(trAT2n+2) = q2ng
(
ω2, ψ2

)
g2n(ω, ψ, T2n).

Proof. The point is that the bottom-right 2×2 minor of our A ∈ Alt×2n+2 is invertible. Thus, the main point
is that

Alt×2n × F2n×2
q × F×

q → Alt×2n+2

(B , V , c) 7→
[
12n V

12

]
[B cJ ]

[
12n
V ⊺ 12

]
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is a bijection onto A ∈ Alt×2n+2 with A2n,2n−1 ̸= 0. Indeed, letting V = [ v w ], we find our sum is∑
B

ω (detB)ψ(trBT2n)

×
∑
c,v,w

ω
(
c2
)
ψ(−2c)ψ(tr(cwv⊺ − cvw⊺)T2n).

With ψ ̸= 1, we quickly compute − tr vw⊺T2n = trwv⊺T2n, so the sum over v and w is∑
v,w∈F2n

q

ψ(−2c tr vw⊺T2n).

Fixing v and summing over w, Lemma 3.1.3 tells us that we only get a nonzero contribution when v =
0, where we see the sum will evaluate to q2n. In this case, the desired sum in compresses down to
q2ng

(
ω2, ψ2

)
g2n(ω, ψ, T2n), as required. ■

Next, we handle A2n−1,2n = 0.

Lemma 3.4.3. Take n ≥ 1. Fix characters ω : F×
q and ψ : Fq → C×, and set T2i := diag(J, . . . , J) ∈ Alt×2i

for each i. Choosing some nonzero vector v ∈ F2n+2
q such that v2n+1 = v2n+2 = 0, if ψ ̸= 1, we have∑

A∈Alt×2n+2

Aen+2=v

ω(detA)ψ(trAT2n+2) = 0.

Proof. This argument is similar to Lemma 3.2.3, but we are more careful with the permutation matrix. We
would like to reduce to a case where v2n+1 ̸= 0 by adjusting T appropriately. Because v is nonzero, we
may find an index i0 /∈ {2n + 1, 2n + 2} such that vi0 is nonzero. By mapping A 7→ σAσ where σ is the
permutation matrix associated to some permutation of the form (2i, 2j)(2i+ 1, 2j + 1), we see that the sum
will not change (because detσAσ = detA and σT2n+2σ = T2n+2); thus, we may apply such a permutation
to assume that i0 ∈ {2n− 1, 2n}. We now set σ := (i0, 2n+ 1) and apply A 7→ σAσ to our sum, which does
adjust v (so that v2n+1 ̸= 0) as well as make our sum change T2n+2 to the matrix σT2n+2σ, which is in


T2n−2

−1
1

−1
1

 ,

T2n−2

−1
−1

1
1




(The left happens when i0 = 2n − 1, and the right happens when i0 = 2n.) With our now adjusted v, we
write v = (−cv,−c, 0) where v ∈ F2n

q and c ∈ F×
q , and we note we want to compute∑

A∈Alt×2n+2

Aen+2=v

ω(detA)ψ(trAσT2n+2σ).

Now, the main point is that

Alt×2n × Fnq → Alt×2n+2

(B , w) 7→
[
12n v w

1
1

][
B

−c
c

][
12n
v⊺ 1
w⊺ 1

]
is a bijection onto A ∈ Alt×2n+2 with Ae2n+2 = (−cv,−c, 0). Now, to find cancellation in our sum, we hold B
constant and let w vary. In particular, after some rearrangement, we see that the sum in question contains
the factor ∑

w∈Fn
q

ψ

tr

wv⊺ − cvw⊺ cw −cv
−cw⊺ −c
cv⊺ c

σT2n+2σ

 ,
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which we will show vanishes. In fact, we will look at a factor of this sum. Because σT2n+2σ takes the form
diag(T2n−2, T

′) for some T ′ ∈ Alt×4 described above, we see that the sum above contains the factor

∑
w2n−1,w2n

ψ

tr


∗ cw2n−1 −cv2n−1

∗ cw2n −cv2n
−cw2n−1 −cw2n ∗
cv2n−1 cv2n ∗

T ′


by using the bottom-right 4× 4 minors of our matrices; here ∗s denote terms which do not matter. Now, if
i0 = 2n− 1, then one finds that the sum over w2n vanishes; and if i0 = 2n, then one finds that the sum over
w2n−1 vanishes. ■

We now synthesize our cases.

Theorem 3.4.4. Fix characters ω : F×
q → C× and ψ : Fq → C× and some T ∈ Alt×2n.

(a) Suppose ψ ̸= 1. Then

g2n(ω, ψ, T ) =
qn(n−1)

ω(detT )
· g
(
ω2, ψ2

)n
.

(b) Suppose ψ = 1 and ω2 = 1. Then

g2n(ω, 1, T ) = qn(n−1)
n∏
i=1

(
q2i−1 − 1

)
.

For any (ψ, ω) not in the above list, the sum vanishes.

Proof. Note the last sentence follows from Lemma 3.4.1. We also quickly note that (b) is combinatorics:
because any A ∈ Alt×2n can be written as g diag(J, . . . , J)g⊺ for some g ∈ GLn (by finding a symplectic basis
for A), we see that (detA)2 = 1 always, so (b) is simply counting the number of invertible 2n×2n alternating
matrices. Thus, (b) follows from [HJ20, Theorem 7.5.5].

It remains to show (a). We note we may reduce to the case where T = diag(J, . . . , J) using Lemma 3.4.1.
Now, for n ∈ {0, 1}, there is not much to say, so we may induct. The induction now follows from summing
Lemmas 3.4.2 and 3.4.3. ■

Remark 3.4.5. As usual, we remark that one can track the cases with ψ = 1 through Lemmas 3.4.2 and 3.4.3
to prove (b) via the same method as (a).

Here is the corresponding combinatorial application.

Corollary 3.4.6. Fix some even nonnegative integer 2n and some T ∈ Alt×2n. Further, fix d ∈ (F×
q )

2 and

t ∈ Fq. Then the number N(d, t) of A ∈ Alt×2n such that detA = d and trAT = t is

2

q(q − 1)

(
qn(n−1)

n∏
i=1

(
q2i−1 − 1

)
− qn(n−1)(q − 1)n

)

+ qn(n−1)#

{
(y1, . . . , yn) : 2(y1 + · · ·+ yn) = t,

(y1 · · · yn)2

detT
= d

}
.

Proof. For any characters ω : F×
q and ψ : Fq → C×, we claim that g2n(ω, ψ, T ) equals

2

q(q − 1)

(
g2n(1, 1, T )− qn(n−1)(q − 1)n

) ∑
a∈(F×

q )2,b∈Fq

ω2(a)ψ(b)

+
qn(n−1)

ω(detT )
· g
(
ω2, ψ2

)n
.

This is the usual casework with Theorem 3.4.4: if ψ ̸= 1, then the top row vanishes; if ψ = 1 and ω2 ̸= 1,
then everything vanishes; and if ψ = 1 and ω2 = 1, then this holds by construction.

The result now follows by a direct expansion of g
(
ω2, ψ2

)
as∑

y1,...,yn

ω
(
(y1 · · · yn)2

)
ψ(2(y1 + · · ·+ yn)),

and then summing over ω and ψ appropriately. ■
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4. q-Combinatorial Inputs

In this section, we discuss the eigenvalues of some antitriangular matrices. Essentially the only method
in the literature to access the eigenvalues of an antitriangular matrix is to do some educated guessing in
order to make the give matrix upper-triangular. See [BW22] for a thorough discussion of a special case; the
work in this subsection can be seen as a q-analogue for some of their results. In Sections 4.1 and 4.3, we
discuss some (purely!) combinatorial inputs into our main results. Notably, these subsections will not use
the notation of Section 2, and q will be treated as a free variable.

4.1. A Couple q-Identities. In this quick subsection, we pick up a couple q-identities which will be useful
in the sequel. Throughout, we freely use the packages qZeil and qMultiSum developed by Axel Riese; see
[Rie97; Rie03] for a description of these packages.

The following identity is used for the linear groups.

Proposition 4.1.1. For any nonnegative integers m,n ∈ Z, we have

q−m
2+mn

m∑
i=0

(−1)
i
q

1
2 i(i−1)−ni (q; q)

2
m

(q; q)i (q; q)
2
m−i

=
∑

i+j+k=n

(−1)
i
q

1
2 i(i−1)−mi (q; q)n

(q; q)i (q; q)j (q; q)k
.

Proof. Let the left-hand side be Lm,n(q) and the right-hand side be Rm,n(q) so that we want to show that
Lm,n(q) = Rm,n(q). We will show that Lm,n(q) and Rm,n(q) satisfy the same recurrence in n and then check
that Lm,n(q) = Rm,n(q) for some small n. With this outline in mind, we have the following steps.

(1) After some rearranging, qMultiSum shows that n ≥ 0 makes

Rm,n+2 (q) +
(
q1+n−m − 2

)
Rm,n+1 (q)−

(
q1+n − 1

)
Rm,n (q)

vanish. We would like to show that Lm,n(q) satisfies the same recurrence in n. Well, define L̃m,n(q)
to be

Lm,n+2 (q) +
(
q1+n−m − 2

)
Lm,n+1 (q)−

(
q1+n − 1

)
Lm,n (q) ,

which we would like to vanish. Well, qZeil is able to show that qm
2−mnL̃m,n(q) vanishes after some

rearranging.
(2) It remains to check that Lm,n(q) = Rm,n(q) for n ∈ {0, 1}. For n = 0, qZeil shows Lm,0(q) = 1,

which agrees with Rm,0(q). For n = 1, qZeil shows

Lm,1(q) =
2qm − 1

2qm − q
Lm−1,1(q)

for m ≥ 1 and checks that Rm,1(q) satisfies the same recurrence in m. So we complete the proof
upon computing L1,0(q) = R1,0(q) = 1. ■

The following identity is used for the symplectic and orthogonal groups.

Proposition 4.1.2. For any nonnegative integers m,n ∈ Z, we have

q
−m2+m

2 +mn

⌊m/2⌋∑
i=0

(−1)iqi(i−1)−2in (q; q)m
(q2; q2)i (q; q)m−2i

=

n∑
j=0

(−1)jqj(j−m)

(
q2; q2

)
n

(q2; q2)j (q; q)n−j
.

Proof. Let the left-hand side be Lm,n(q), and let the right-hand side by Rm,n(q). The proof is essentially
the same as in Proposition 4.1.1: we will show that Lm,n(q) and Rm,n(q) satisfy the same recurrence in n
and then check that Lm,n,(q) = Rm,n(q) for some small n.

(1) The package qZeil shows that n ≥ 2 has

Rm,n (q) +

(
q2n − qm+1 − qm+2

)
qm+1

Rm,n−1 (q) + q
(
1− q2n−2

)
Rm,n−2 (q)
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vanishes. As before, we define L̃m,n(q) as the same expression above but replacing Rs with Ls,

and we would like to show that L̃m,n(q) vanishes. Well, qZeil is able to show this after a little
rearrangement.

(2) It remains to check that Lm,n(q) = Rm,n(q) for n ∈ {0, 1}. For n = 0, qZeil shows that Lm,0(q) = 1,
which agrees with Rm,0(q). For n = 1, qZeil shows that

Lm,1(q) =
q − qm − qm+1

q2 − qm − qm+1
Lm−1,1(q)

and checks that Rm,1(q) satisfies the same recurrence. Thus, it is enough to check that L0,1(q) =
R0,1(q) = 1. ■

4.2. Eigenvalues for Linear Groups. We continue with the notation of Section 2 with G ∈ {GL2n,SL2n}.
In this subsection, we will compute the eigenvalues of the intertwining operator when β = 1; if β2 = 1 while
β ̸= 1, then the eigenvalues are straightforward to compute from Proposition 2.4.9.

For expositional reasons, we begin by computing the eigenvalues of a certain helper matrix.

Proposition 4.2.1. Fix a positive integer n. For indices i, j ∈ {0, 1, . . . , n} such that i+ j − n ≥ 0, define

εA(i, j) := (−1)i+j−n,

and

QA(i, j) := q(
i+j−n+1

2 )−(i+1)2 ,

and

RA(i, j) :=
(q; q)2i

(q; q)2n−j(q; q)i+j−n
,

and define RA(i, j) = 0 for other i and j. Then the matrix A := [εA(i, j)QA(i, j)RA(i, j)]0≤i,j≤n is diago-
nalizable with eigenvalues {

(−1)n−iq(
i+1
2 )−(n+2

2 ) : 0 ≤ i ≤ n
}
.

Proof. This is essentially equivalent to Proposition 4.1.1. For indices i, j ∈ {0, 1, . . . , n} with j ≥ i, define

εB(i, j) := (−1)i,

and

QB(i, j) := q−(n+1)(j+1)+(i+1
2 ),

and

RB(i, j) :=

j−i∑
k=0

(q; q)j
(q; q)i(q; q)k(q; q)j−i−k

,

and defineRB(i, j) = 0 for other i and j. Then we claim that the matrixB := [εB(i, j)QB(i, j)RB(i, j)]0≤i,j≤n
is similar to A, which completes the proof upon reading off the diagonal entries of B.

It remains to show A ∼ B. We will show M−1AM = B, where M has entries

Mij := q−(i+1)(j+1)

for i, j ∈ {0, 1, . . . , n}. Because M is invertible, we may merely check that AM = MB. Thus, for indices
i and k, we want (AM)ik = (MB)ik. Because Aij will vanish unless i + j ≥ n, and Bjk will vanish unless
j ≤ k, we see we are asking for

i∑
j=0

Ai,n−i+jMn−i+j,k
?
=

k∑
j=0

MijBjk.

Upon plugging in our definitions and simplifying, this reduces to Proposition 4.1.1. ■

Theorem 4.2.2. Take G ∈ {GL2n,SL2n}. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦
χdet). Suppose β = 1 so that χ = χJ . Then the operator I on IndGP χ is diagonalizable and has eigenvalues
given by {

(−1)n−iq(
n
2)+(

i+1
2 ) : 0 ≤ i ≤ n

}
.
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Proof. Identify I with its matrix representation given in Proposition 2.4.5. We apply Proposition 4.2.1 after
conjugating I by the matrix T with entries

Tij =


−1 if i+ j = n− 1,

1 if i+ j = n,

0 otherwise,

where i, j ∈ {0, . . . , n}. Now, define A as in Proposition 4.2.1 with n as n− 1. Then we claim that

(4.1) TIT−1 ?
= qn

2

[
−σAσ

(1, . . . , 1) 1

]
,

where σ is the permutation sending ei 7→ en−1−i for all i ∈ {0, . . . , n − 1}, and (1, . . . , 1) is a row vector
consisting of all 1s. Before proving the claim, we explain how it implies the theorem. Taking the eigenvalues
of Proposition 4.2.1 (and some simplification) provides the needed eigenvalues; diagonalizability follows
because all eigenvalues are distinct.

It remains to show (4.1). It’s enough to show TI = qn
2
[

−σAσ
(1,...,1) 1

]
T because T is invertible. Choosing

some indices i and k, we see that we want to show that the (i, k) entries are equal, which amounts to checking

In−i,k − 1i<nIn−i−1,k

= qn
2

([
−σAσ

(1, . . . , 1) 1

]
i,n−k

− 1k<n

[
−σAσ

(1, . . . , 1) 1

]
i,n−k−1

)
after expanding out the definition of T . We verify this by rather tedious casework on i and k. Denote the
left-hand side by L and the right-hand side by R.

• Suppose i = k = n. Then the definition of I yields L = qn
2

, and we find R = qn
2

as well.

• Suppose i = n but k < n. Then we see L = 0, and one can check that R = qn
2

(1− 1) = 0.
• Suppose i < n but k = n. Then L and R equal

(−1)n−iqn
2−(n−i+1

2 )(q; q)n−i−1.

• Suppose k < i < n. Then (n − i) + k < n and (n − 1 − i) + (n − 1 − (n − k − 1)) < n − 1, so all
coefficients vanish.

• Suppose i = k < n. Then L = qn
2−(n−i)2 = R.

• Suppose i < k < n. Then L and R equal

(−1)k−iqn
2−(n−i)2+(k−i

2 ) (q; q)2n−i−1

(q; q)2n−k(q; q)k−i

(
1− 2qn−i + q2n−i−k

)
.

The above casework completes the proof. ■

4.3. A Helper Matrix. For this subsection, q will return to being a free variable. Akin to Proposition 4.2.1,
we describe a general helper matrix which shows up in the upper-triangularization for the groups G ∈
{GO2n,O2n,GSp2n,Sp2n}, so we handle it here. For some fixed nonnegative integer n and sign ε ∈ {±1}
and a ∈ C, we select indices 0 ≤ i, j ≤ n such that i+ j − n is an even nonnegative integer and define

εA(i, j) := ε
i−j−n

2 (−1)
i+j−n

2

and

QA(i, j) := q−(
i+a
2 )+ i+j−n

2 ( i+j−n
2 +a−1)

and

RA(i, j) :=
(q; q)i

(q2; q2)(i+j−n)/2(q; q)n−j
,

and define RA(i, j) = 0 for other indices i and j. Then set A := [εA(i, j)QA(i, j)RA(i, j)]0≤i,j≤n. This
(n+1)× (n+1) matrix will be used in approximately the same way we used Proposition 4.2.1. In particular,
we want to understand its eigenvalues.

We now compute the eigenvalues of A when n is even.
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Proposition 4.3.1. Define n, ε, a, and A as above. If n = 2m, then the antitriangular matrix [A(i, j)]0≤i,j≤n
is diagonalizable with eigenvalues{

εm(−1)⌊
i
2⌋q−(

a+m
2 )−(m+1

2 )+(m−⌊ i
2⌋)2 : 0 ≤ i ≤ n

}
.

Proof. We follow Proposition 4.2.1. For indices 0 ≤ i, j ≤ n such that j − i is a nonnegative even integer,
define

εB(i, j) := εm (−1)⌊
i
2⌋

and

QB(i, j) := q−(
a+m

2 )−(m+1
2 )+(m−⌊ i

2⌋)2− j−i
2 (2m−i+2⌊ i

2⌋)

and

RB(i, j) :=
(q2; q2)⌊j/2⌋

(q2; q2)⌊i/2⌋(q; q)(j−i)/2
,

and define RB(i, j) = 0 for other indices i and j. Then we claim that A is similar to the matrix B :=
[εB(i, j)QB(i, j)RB(i, j)]0≤i,j≤n, which will complete the proof upon reading off the diagonal entries of B.
Notably, even though some eigenvalues are equal, B splits into a direct sum of operators on the even basis
vectors and on the odd basis vectors, and the operators on these subspaces have distinct eigenvalues.

It remains to show the claim. We will show M−1AM = B, where M is defined by

Mij := ε⌊i/2⌋q⌊i/2⌋(2⌊j/2⌋+a)

for indices i and j such that i ≡ j (mod 2) and zero elsewhere. Because M is invertible, it is enough to show
AM = MB. Thus, for indices i and k, we want to show that (AM)ik = (MB)ik. If i and k fail to have
the same parity, then we note (AM)ik = (MB)ik = 0 because A, M , and B all send even (and odd) basis
vectors to linear combinations of even (and odd) basis vectors. Thus, we may assume that i ≡ k (mod 2).
Now, we are left to verify the identity

n∑
j=0

AijMjk
?
=

n∑
j=0

MijBjk.

Note Aij will vanish unless i + j − n is a nonnegative even integer, and Bjk will vanish unless k − j is a
nonnegative even integer, so we go ahead and re-index the sums so that we want to show

⌊i/2⌋∑
j=0

Ai,n−i+2jMn−i+2j,k
?
=

⌊k/2⌋∑
j=0

Mi,k−2⌊k/2⌋+2jBk−2⌊k/2⌋+2j,k.

Upon plugging in our definitions and simplifying, this reduces to Proposition 4.1.2. ■

One can upgrade the eigenvalue computations in the even case to the odd case as follows.

Proposition 4.3.2. Define n, ε, a, and A as above. If n is odd with n = 2m + 1, then the antitriangular
matrix [A(i, j)]0≤i,j≤n is diagonalizable with eigenvalues{

±
√
εq−

a
2−(

a+m
2 )−(m+1

2 )+(m−i)2−i : 0 ≤ i ≤ m
}
.

Proof. Fixing ε and a but letting n vary, denote the defined (n + 1) × (n + 1) matrix by An. We are
interested in the eigenvalues of A2m+1 for some m ≥ 0. For some m ≥ 0, note that A2m sends even (and
odd) basis vectors to a linear combination of even (and odd) basis vectors, so we let A+

2m (and A−
2m) denote

the submatrices of A2m consisting of the even (and odd) and columns and rows (respectively). Thus, by
rearranging the rows and columns of A2m, we see that A2m is similar to[

A+
2m

A−
2m

]
.

On the other hand, we see that A2m+1 sends even (and odd) basis vectors to a linear combination of odd
(and even) basis vectors. Defining A+

2m+1 (and A−
2m+1) to be the submatrix consisting of the even (odd)

columns and odd (even) rows, we thus see that A2m+1 is similar to[
A−

2m+1

A+
2m+1

]
.
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Now, for each n, we note that An is a submatrix of εAn+1, so keeping track of parities reveals that A+
n =

εA−
n+1. Thus, A2m+1 is similar to the antitriangular matrix

ε

[
A+

2m

A−
2m+2

]
.

The proof of Proposition 4.3.1 explains that A+
2m is similar to an upper-triangular matrix with diagonal

entries {
εm+1(−1)iq−(

a+m
2 )−(m+1

2 )+(m−i)2 : 0 ≤ i ≤ m
}
,

and A−
2m+2 is similar to an upper-triangular matrix with diagonal entries{

εm(−1)iq−(
a+m+1

2 )−(m+2
2 )+(m+1−i)2 : 0 ≤ i ≤ m

}
where we conjugate by the same (m+ 1)× (m+ 1) matrix! Thus, viewing A2m+1 as an (m+ 1)× (m+ 1)
matrix with entries that are 2×2 (block) matrices, we see that A2m+1 is similar to a (block) upper-triangular
matrix with diagonal entries{

εm+1(−1)iq−(
a+m

2 )−(m+1
2 )+(m−i)2

[
1

εq−a−2i

]
: 0 ≤ i ≤ m

}
.

The result follows from diagonalizing these 2×2 matrices and noting that all the eigenvalues are distinct. ■

4.4. Eigenvalues for Orthogonal Groups. We continue with the notation of Section 2, taking G ∈
{GO2n,O2n}. We (essentially) begin with the case β = 1.

Theorem 4.4.1. Take G ∈ {GO2n,O2n}. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦
χdet). Suppose either that β = 1, or β2 = 1 for G = O2n.

(a) If n = 2m is even, then the intertwining operator I on IndGP χ is diagonalizable and has eigenvalues
given by {

(−1)m−⌊ i
2⌋qm(m−1)+⌊ i

2⌋2

: 1 ≤ i ≤ n+ 1
}
.

(b) If n = 2m+1 is odd, then the intertwining operator I on IndGP χ is diagonalizable and has eigenvalues
given by {

±qm
2+i(i+1) : 0 ≤ i ≤ m

}
.

Proof. The assumptions imply that the intertwining operator I has a uniform matrix representation given

in Propositions 2.4.5 and 2.4.9. Now, we define A as in Section 4.3 with (n, ε, a) = (n, 1, 0) so that q(
n
2)A

is the matrix representation of I. The result now follows from combining Propositions 4.3.1 and 4.3.2 and
simplifying the eigenvalues. ■

It remains to cover the case where β2 = 1 but β ̸= 1 when G = GO2n. This will follow by submatrix
considerations via Lemma 2.4.6.

Theorem 4.4.2. Take G = GO2n. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦ χdet).
Assume that β2 = 1 but β ̸= 1.

(a) If n = 2m is even, then the intertwining operator I◦I on IndGP χ is diagonalizable and has eigenvalues{
q2m(m−1)+2i2 : 0 ≤ i ≤ m

}
.

(b) If n = 2m + 1 is odd, then the intertwining operator I ◦ I on IndGP χ is diagonalizable and has
eigenvalues {

q2m
2+2i(i+1) : 0 ≤ i ≤ m

}
.

Proof. We combine the computations of Theorem 4.4.1 with Lemma 2.4.6. Let I0 be the (n+ 1)× (n+ 1)
matrix representation of the corresponding operator for O2n, and let I+ and I− be the submatrices of

I0 given in Lemma 2.4.6 which are the matrix representations of I on
(
IndGP χ

)χ
→
(
IndGP χ

J
)χ

and(
IndGP χ

J
)χ

→
(
IndGP χ

)χ
, respectively. We must compute the eigenvalues of I− ◦ I+. We now handle the

even and odd cases separately.
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(a) If n = 2m is even, then I+ and I− are both the submatrix of I0 consisting of the even rows and
columns. Tracking through the proof of Theorem 4.5.2 (and notably its input Proposition 4.3.1), we
will show that I+ and I− are both diagonalizable with eigenvalues{

(−1)iqm(m−1)+(m−i)2 : 0 ≤ i ≤ m
}
,

which completes the proof upon squaring our eigenvalues. Indeed, defining A as in Theorem 4.4.1,

we see that I+ = I− is a submatrix of q(
n
2)A, and the upper-triangularization of A given in Propo-

sition 4.3.1 restricts to an upper-triangularization of I+ and I−. In particular, we can read off
the eigenvalues by taking the correct entries from (a) of Theorem 4.4.1 (or equivalently, Proposi-
tion 4.3.1).

(b) If n = 2m+1 is odd, then I+ is the submatrix of I0 consisting of the even columns and odd rows, and
I− is the submatrix of I0 consisting of the odd columns and even rows. Arguing as above, we define

A as in Theorem 4.4.1 so that we see that I0 is similar to q(
n
2)A, which in turn Proposition 4.3.2

explains is similar to the block diagonal matrix with diagonal given by the 2× 2 matrices{
(−1)iq(

2m+1
2 )−(m2 )−(

m+1
2 )+(m−i)2

[
1

q−2i

]
: 0 ≤ i ≤ m

}
.

All stated similarities preserve the even and odd subspaces, so we see that the matrices I+ and I−

will be similar to the diagonal matrices achieved by reading off the diagonals in the block diagonal
matrix described above. As such, computing the composite I− ◦ I+ tells us that the eigenvalues are{

q2m
2+2i(i+1) : 0 ≤ i ≤ m

}
after a little simplification. ■

4.5. Eigenvalues for Symplectic Groups. We continue with the notation of Section 2, taking G ∈
{GSp2n,Sp2n}. We begin with the case β = 1.

Theorem 4.5.1. Take G ∈ {GSp2n,Sp2n}. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦
χdet). Assume that β = 1 so that χ = χJ .

(a) If n = 2m is even, then the intertwining operator I on IndGP χ is diagonalizable and has eigenvalues
given by {

±qm
2+i(i+1) : 0 ≤ i ≤ m− 1

}
⊔
{
q(

2m+1
2 )
}
.

(b) If n = 2m+1 is odd, then the intertwining operator I on IndGP χ is diagonalizable and has eigenvalues
given by {

−(−1)m−⌊ i
2⌋qm(m+1)+⌊ i

2⌋2

: 1 ≤ i ≤ n+ 1
}
.

Proof. This argument is roughly the same as Theorem 4.2.2 upon replacing the computations of Propo-
sition 4.2.1 with Propositions 4.3.1 and 4.3.2. Identify I with its matrix representation. We will apply
Propositions 4.3.1 and 4.3.2 after conjugating I by the (n+ 1)× (n+ 1) matrix T defined by

Tij =


−1 if i+ j = n− 1,

1 if i+ j = n,

0 otherwise,

where i, j ∈ {0, . . . , n}. Now, define A as in Section 4.3 with (n, ε, a) = (n− 1, 1, 2). Then we claim that

(4.2) TIT−1 ?
= q(

n+1
2 )
[

−σAσ
(1, . . . , 1) 1

]
,

where σ is the permutation matrix sending ei 7→ en−1−i for all i ∈ {0, . . . , n−1}, and (1, . . . , 1) is a row vector
consisting of all 1s. Before proving the claim, we explain how it implies the result. Using the eigenvalues of
Propositions 4.3.1 and 4.3.2 (and some simplification) checks that the eigenvalues in the theorem are correct.
Because A is diagonalizable and does not have 1 as an eigenvalue, diagonalizability follows.

It remains to show (4.2). It is enough to check TI = q(
n+1
2 )
[

−σAσ
(1,...,1) 1

]
T because T is invertible, which one

can do using the same sort of tedious casework engaged in Theorem 4.2.2. We will not write out the results
for brevity. ■
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We now move on to the case where β2 = 1 but β ̸= 1. Let’s start with Sp2n.

Theorem 4.5.2. Take G = Sp2n. Fix a character χ : P → C×, which we write as χ = β ◦ χdet. Suppose
β2 = 1 but β ̸= 1 so that χ = χJ .

(a) If n = 2m is even, then the intertwining operator I on IndGP χ is diagonalizable and has eigenvalues{
β(−1)m(−1)m−⌊ i

2⌋qm
2+⌊ i

2⌋2

: 0 ≤ i ≤ n
}
.

(b) If n = 2m+1 is odd, then the intertwining operator I on IndGP χ is diagonalizable and has eigenvalues{
±
√
β(−1)qm(m+1)+i(i+1)+ 1

2 : 0 ≤ i ≤ m
}
.

Proof. Define A as in Section 4.3, with (n, ε, a) = (n, β(−1), 1). A little algebra shows that the matrix

representation of I is the matrix q(
n+1
2 )A. The result now follows by plugging into the eigenvalue computations

of Propositions 4.3.1 and 4.3.2 and simplifying. ■

As in Theorem 4.4.2, we now use submatrix arguments to compute the eigenvalues for GSp2n.

Theorem 4.5.3. Take G = GSp2n. Fix a character χ : P → C×, which we write as χ = (α ◦m)(β ◦ χdet).
Suppose that β2 = 1 but β ̸= 1.

(a) If n = 2m is even, then the intertwining operator I◦I on IndGP χ is diagonalizable and has eigenvalues{
q2m

2+2i2 : 0 ≤ i ≤ m
}
.

(b) If n = 2m + 1 is odd, then the intertwining operator I ◦ I on IndGP χ is diagonalizable and has
eigenvalues {

β(−1)q2m(m+1)+2i(i+1)+1 : 0 ≤ i ≤ m
}
.

Proof. The argument is exactly the same as Theorem 4.4.2 upon replacing the computations of Theorem 4.4.1
with Theorem 4.5.2, so we will not write it out. ■
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